Optimal transformations for categorical autoregressive time series
Buuren, S. van
1996-01-01
This paper describes a method for finding optimal transformations for analyzing time series by autoregressive models. 'Optimal' implies that the agreement between the autoregressive model and the transformed data is maximal. Such transformations help 1) to increase the model fit, and 2) to analyze
Forecasting with periodic autoregressive time series models
Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)
1999-01-01
textabstractThis paper is concerned with forecasting univariate seasonal time series data using periodic autoregressive models. We show how one should account for unit roots and deterministic terms when generating out-of-sample forecasts. We illustrate the models for various quarterly UK consumption
Testing periodically integrated autoregressive models
Ph.H.B.F. Franses (Philip Hans); M.J. McAleer (Michael)
1997-01-01
textabstractPeriodically integrated time series require a periodic differencing filter to remove the stochastic trend. A non-periodic integrated time series needs the first-difference filter for similar reasons. When the changing seasonal fluctuations for the non-periodic integrated series can be
Small Sample Properties of Bayesian Multivariate Autoregressive Time Series Models
Price, Larry R.
2012-01-01
The aim of this study was to compare the small sample (N = 1, 3, 5, 10, 15) performance of a Bayesian multivariate vector autoregressive (BVAR-SEM) time series model relative to frequentist power and parameter estimation bias. A multivariate autoregressive model was developed based on correlated autoregressive time series vectors of varying…
The Integration Order of Vector Autoregressive Processes
DEFF Research Database (Denmark)
Franchi, Massimo
We show that the order of integration of a vector autoregressive process is equal to the difference between the multiplicity of the unit root in the characteristic equation and the multiplicity of the unit root in the adjoint matrix polynomial. The equivalence with the standard I(1) and I(2...
On robust forecasting of autoregressive time series under censoring
Kharin, Y.; Badziahin, I.
2009-01-01
Problems of robust statistical forecasting are considered for autoregressive time series observed under distortions generated by interval censoring. Three types of robust forecasting statistics are developed; meansquare risk is evaluated for the developed forecasting statistics. Numerical results are given.
vector bilinear autoregressive time series model and its superiority
African Journals Online (AJOL)
KEYWORDS: Linear time series, Autoregressive process, Autocorrelation function, Partial autocorrelation function,. Vector time .... important result on matrix algebra with respect to the spectral ..... application to covariance analysis of super-.
Vector bilinear autoregressive time series model and its superiority ...
African Journals Online (AJOL)
In this research, a vector bilinear autoregressive time series model was proposed and used to model three revenue series (X1, X2, X3) . The “orders” of the three series were identified on the basis of the distribution of autocorrelation and partial autocorrelation functions and were used to construct the vector bilinear models.
Estimation of pure autoregressive vector models for revenue series ...
African Journals Online (AJOL)
This paper aims at applying multivariate approach to Box and Jenkins univariate time series modeling to three vector series. General Autoregressive Vector Models with time varying coefficients are estimated. The first vector is a response vector, while others are predictor vectors. By matrix expansion each vector, whether ...
Single-Index Additive Vector Autoregressive Time Series Models
LI, YEHUA; GENTON, MARC G.
2009-01-01
We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided
Forecasting autoregressive time series under changing persistence
DEFF Research Database (Denmark)
Kruse, Robinson
Changing persistence in time series models means that a structural change from nonstationarity to stationarity or vice versa occurs over time. Such a change has important implications for forecasting, as negligence may lead to inaccurate model predictions. This paper derives generally applicable...
Single-Index Additive Vector Autoregressive Time Series Models
LI, YEHUA
2009-09-01
We study a new class of nonlinear autoregressive models for vector time series, where the current vector depends on single-indexes defined on the past lags and the effects of different lags have an additive form. A sufficient condition is provided for stationarity of such models. We also study estimation of the proposed model using P-splines, hypothesis testing, asymptotics, selection of the order of the autoregression and of the smoothing parameters and nonlinear forecasting. We perform simulation experiments to evaluate our model in various settings. We illustrate our methodology on a climate data set and show that our model provides more accurate yearly forecasts of the El Niño phenomenon, the unusual warming of water in the Pacific Ocean. © 2009 Board of the Foundation of the Scandinavian Journal of Statistics.
Monthly streamflow forecasting with auto-regressive integrated moving average
Nasir, Najah; Samsudin, Ruhaidah; Shabri, Ani
2017-09-01
Forecasting of streamflow is one of the many ways that can contribute to better decision making for water resource management. The auto-regressive integrated moving average (ARIMA) model was selected in this research for monthly streamflow forecasting with enhancement made by pre-processing the data using singular spectrum analysis (SSA). This study also proposed an extension of the SSA technique to include a step where clustering was performed on the eigenvector pairs before reconstruction of the time series. The monthly streamflow data of Sungai Muda at Jeniang, Sungai Muda at Jambatan Syed Omar and Sungai Ketil at Kuala Pegang was gathered from the Department of Irrigation and Drainage Malaysia. A ratio of 9:1 was used to divide the data into training and testing sets. The ARIMA, SSA-ARIMA and Clustered SSA-ARIMA models were all developed in R software. Results from the proposed model are then compared to a conventional auto-regressive integrated moving average model using the root-mean-square error and mean absolute error values. It was found that the proposed model can outperform the conventional model.
On the maximum-entropy/autoregressive modeling of time series
Chao, B. F.
1984-01-01
The autoregressive (AR) model of a random process is interpreted in the light of the Prony's relation which relates a complex conjugate pair of poles of the AR process in the z-plane (or the z domain) on the one hand, to the complex frequency of one complex harmonic function in the time domain on the other. Thus the AR model of a time series is one that models the time series as a linear combination of complex harmonic functions, which include pure sinusoids and real exponentials as special cases. An AR model is completely determined by its z-domain pole configuration. The maximum-entropy/autogressive (ME/AR) spectrum, defined on the unit circle of the z-plane (or the frequency domain), is nothing but a convenient, but ambiguous visual representation. It is asserted that the position and shape of a spectral peak is determined by the corresponding complex frequency, and the height of the spectral peak contains little information about the complex amplitude of the complex harmonic functions.
Characteristics of the transmission of autoregressive sub-patterns in financial time series
Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong
2014-09-01
There are many types of autoregressive patterns in financial time series, and they form a transmission process. Here, we define autoregressive patterns quantitatively through an econometrical regression model. We present a computational algorithm that sets the autoregressive patterns as nodes and transmissions between patterns as edges, and then converts the transmission process of autoregressive patterns in a time series into a network. We utilised daily Shanghai (securities) composite index time series to study the transmission characteristics of autoregressive patterns. We found statistically significant evidence that the financial market is not random and that there are similar characteristics between parts and whole time series. A few types of autoregressive sub-patterns and transmission patterns drive the oscillations of the financial market. A clustering effect on fluctuations appears in the transmission process, and certain non-major autoregressive sub-patterns have high media capabilities in the financial time series. Different stock indexes exhibit similar characteristics in the transmission of fluctuation information. This work not only proposes a distinctive perspective for analysing financial time series but also provides important information for investors.
Identification of BWR feedwater control system using autoregressive integrated model
International Nuclear Information System (INIS)
Kanemoto, Shigeru; Andoh, Yasumasa; Yamamoto, Fumiaki; Idesawa, Masato; Itoh, Kazuo.
1983-01-01
With the view of contributing toward more reliable interpretation of noise behavior under normal operating conditions, which is essential for correct detection and/or diagnosis of incipient anomalies in nuclear power plants by noise analysis technique, studies has been undertaken of the noise behavior in a BWR feedwater control system, with use made of a multivariate autoregressive modeling technique. Noise propagation mechanisms as well as open- and closed-loop responses in the system are identified from noise data by a method in which an autoregressive integrated model is introduced. The closed-loop responses obtained with this method are compared with transient data from an actual test, and confirmed to be reliable in estimating semi-quantitative features. Other analyses performed with this model also yield results that appear most reasonable in their physical characteristics. These results have demonstrated the effectiveness of the noise analyses technique based on the autoregressive integrated model for evaluating and diagnosing the performance of feedwater control systems. (author)
I PUTU YUDI PRABHADIKA; NI KETUT TARI TASTRAWATI; LUH PUTU IDA HARINI
2018-01-01
Infusion supplies are an important thing that must be considered by the hospital in meeting the needs of patients. This study aims to predict the need for infusion of 0.9% 500 ml of NaCl and 5% 500 ml glucose infusion at Sanglah General Hospital (RSUP) Sanglah so that the hospital can estimate the many infusions needed for the next six months. The forecasting method used in this research is the autoregressive integrated moving average (ARIMA) time series method. The results of this study indi...
A General Representation Theorem for Integrated Vector Autoregressive Processes
DEFF Research Database (Denmark)
Franchi, Massimo
We study the algebraic structure of an I(d) vector autoregressive process, where d is restricted to be an integer. This is useful to characterize its polynomial cointegrating relations and its moving average representation, that is to prove a version of the Granger representation theorem valid...
Directory of Open Access Journals (Sweden)
Rahul Tripathi
2014-01-01
Full Text Available Forecasting of rice area, production, and productivity of Odisha was made from the historical data of 1950-51 to 2008-09 by using univariate autoregressive integrated moving average (ARIMA models and was compared with the forecasted all Indian data. The autoregressive (p and moving average (q parameters were identified based on the significant spikes in the plots of partial autocorrelation function (PACF and autocorrelation function (ACF of the different time series. ARIMA (2, 1, 0 model was found suitable for all Indian rice productivity and production, whereas ARIMA (1, 1, 1 was best fitted for forecasting of rice productivity and production in Odisha. Prediction was made for the immediate next three years, that is, 2007-08, 2008-09, and 2009-10, using the best fitted ARIMA models based on minimum value of the selection criterion, that is, Akaike information criteria (AIC and Schwarz-Bayesian information criteria (SBC. The performances of models were validated by comparing with percentage deviation from the actual values and mean absolute percent error (MAPE, which was found to be 0.61 and 2.99% for the area under rice in Odisha and India, respectively. Similarly for prediction of rice production and productivity in Odisha and India, the MAPE was found to be less than 6%.
Estimation of the order of an autoregressive time series: a Bayesian approach
International Nuclear Information System (INIS)
Robb, L.J.
1980-01-01
Finite-order autoregressive models for time series are often used for prediction and other inferences. Given the order of the model, the parameters of the models can be estimated by least-squares, maximum-likelihood, or Yule-Walker method. The basic problem is estimating the order of the model. The problem of autoregressive order estimation is placed in a Bayesian framework. This approach illustrates how the Bayesian method brings the numerous aspects of the problem together into a coherent structure. A joint prior probability density is proposed for the order, the partial autocorrelation coefficients, and the variance; and the marginal posterior probability distribution for the order, given the data, is obtained. It is noted that the value with maximum posterior probability is the Bayes estimate of the order with respect to a particular loss function. The asymptotic posterior distribution of the order is also given. In conclusion, Wolfer's sunspot data as well as simulated data corresponding to several autoregressive models are analyzed according to Akaike's method and the Bayesian method. Both methods are observed to perform quite well, although the Bayesian method was clearly superior, in most cases
Lohani, A. K.; Kumar, Rakesh; Singh, R. D.
2012-06-01
SummaryTime series modeling is necessary for the planning and management of reservoirs. More recently, the soft computing techniques have been used in hydrological modeling and forecasting. In this study, the potential of artificial neural networks and neuro-fuzzy system in monthly reservoir inflow forecasting are examined by developing and comparing monthly reservoir inflow prediction models, based on autoregressive (AR), artificial neural networks (ANNs) and adaptive neural-based fuzzy inference system (ANFIS). To take care the effect of monthly periodicity in the flow data, cyclic terms are also included in the ANN and ANFIS models. Working with time series flow data of the Sutlej River at Bhakra Dam, India, several ANN and adaptive neuro-fuzzy models are trained with different input vectors. To evaluate the performance of the selected ANN and adaptive neural fuzzy inference system (ANFIS) models, comparison is made with the autoregressive (AR) models. The ANFIS model trained with the input data vector including previous inflows and cyclic terms of monthly periodicity has shown a significant improvement in the forecast accuracy in comparison with the ANFIS models trained with the input vectors considering only previous inflows. In all cases ANFIS gives more accurate forecast than the AR and ANN models. The proposed ANFIS model coupled with the cyclic terms is shown to provide better representation of the monthly inflow forecasting for planning and operation of reservoir.
Self-organising mixture autoregressive model for non-stationary time series modelling.
Ni, He; Yin, Hujun
2008-12-01
Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the same time fits local linear regressive models to the clusters of segments. In such a way, a global non-stationary time series is represented by a dynamic set of local linear regressive models. Neural gas is used for a more flexible structure of the mixture model. Furthermore, a new similarity measure has been introduced in the self-organising network to better quantify the similarity of time series segments. The network can be used naturally in modelling and forecasting non-stationary time series. Experiments on artificial, benchmark time series (e.g. Mackey-Glass) and real-world data (e.g. numbers of sunspots and Forex rates) are presented and the results show that the proposed SOMAR network is effective and superior to other similar approaches.
Galka, Andreas; Siniatchkin, Michael; Stephani, Ulrich; Groening, Kristina; Wolff, Stephan; Bosch-Bayard, Jorge; Ozaki, Tohru
2010-12-01
The analysis of time series obtained by functional magnetic resonance imaging (fMRI) may be approached by fitting predictive parametric models, such as nearest-neighbor autoregressive models with exogeneous input (NNARX). As a part of the modeling procedure, it is possible to apply instantaneous linear transformations to the data. Spatial smoothing, a common preprocessing step, may be interpreted as such a transformation. The autoregressive parameters may be constrained, such that they provide a response behavior that corresponds to the canonical haemodynamic response function (HRF). We present an algorithm for estimating the parameters of the linear transformations and of the HRF within a rigorous maximum-likelihood framework. Using this approach, an optimal amount of both the spatial smoothing and the HRF can be estimated simultaneously for a given fMRI data set. An example from a motor-task experiment is discussed. It is found that, for this data set, weak, but non-zero, spatial smoothing is optimal. Furthermore, it is demonstrated that activated regions can be estimated within the maximum-likelihood framework.
Directory of Open Access Journals (Sweden)
Ernest Kissi
2018-03-01
Full Text Available Prices of construction resources keep on fluctuating due to unstable economic situations that have been experienced over the years. Clients knowledge of their financial commitments toward their intended project remains the basis for their final decision. The use of construction tender price index provides a realistic estimate at the early stage of the project. Tender price index (TPI is influenced by various economic factors, hence there are several statistical techniques that have been employed in forecasting. Some of these include regression, time series, vector error correction among others. However, in recent times the integrated modelling approach is gaining popularity due to its ability to give powerful predictive accuracy. Thus, in line with this assumption, the aim of this study is to apply autoregressive integrated moving average with exogenous variables (ARIMAX in modelling TPI. The results showed that ARIMAX model has a better predictive ability than the use of the single approach. The study further confirms the earlier position of previous research of the need to use the integrated model technique in forecasting TPI. This model will assist practitioners to forecast the future values of tender price index. Although the study focuses on the Ghanaian economy, the findings can be broadly applicable to other developing countries which share similar economic characteristics.
Autoregressive-model-based missing value estimation for DNA microarray time series data.
Choong, Miew Keen; Charbit, Maurice; Yan, Hong
2009-01-01
Missing value estimation is important in DNA microarray data analysis. A number of algorithms have been developed to solve this problem, but they have several limitations. Most existing algorithms are not able to deal with the situation where a particular time point (column) of the data is missing entirely. In this paper, we present an autoregressive-model-based missing value estimation method (ARLSimpute) that takes into account the dynamic property of microarray temporal data and the local similarity structures in the data. ARLSimpute is especially effective for the situation where a particular time point contains many missing values or where the entire time point is missing. Experiment results suggest that our proposed algorithm is an accurate missing value estimator in comparison with other imputation methods on simulated as well as real microarray time series datasets.
DEFF Research Database (Denmark)
Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag
2009-01-01
In this article we consider geometric ergodicity and likelihood-based inference for linear and nonlinear Poisson autoregression. In the linear case, the conditional mean is linked linearly to its past values, as well as to the observed values of the Poisson process. This also applies...... to the conditional variance, making possible interpretation as an integer-valued generalized autoregressive conditional heteroscedasticity process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and past observations. As a particular example, we consider...... an exponential autoregressive Poisson model for time series. Under geometric ergodicity, the maximum likelihood estimators are shown to be asymptotically Gaussian in the linear model. In addition, we provide a consistent estimator of their asymptotic covariance matrix. Our approach to verifying geometric...
Autoregressive Prediction with Rolling Mechanism for Time Series Forecasting with Small Sample Size
Directory of Open Access Journals (Sweden)
Zhihua Wang
2014-01-01
Full Text Available Reasonable prediction makes significant practical sense to stochastic and unstable time series analysis with small or limited sample size. Motivated by the rolling idea in grey theory and the practical relevance of very short-term forecasting or 1-step-ahead prediction, a novel autoregressive (AR prediction approach with rolling mechanism is proposed. In the modeling procedure, a new developed AR equation, which can be used to model nonstationary time series, is constructed in each prediction step. Meanwhile, the data window, for the next step ahead forecasting, rolls on by adding the most recent derived prediction result while deleting the first value of the former used sample data set. This rolling mechanism is an efficient technique for its advantages of improved forecasting accuracy, applicability in the case of limited and unstable data situations, and requirement of little computational effort. The general performance, influence of sample size, nonlinearity dynamic mechanism, and significance of the observed trends, as well as innovation variance, are illustrated and verified with Monte Carlo simulations. The proposed methodology is then applied to several practical data sets, including multiple building settlement sequences and two economic series.
A time series model: First-order integer-valued autoregressive (INAR(1))
Simarmata, D. M.; Novkaniza, F.; Widyaningsih, Y.
2017-07-01
Nonnegative integer-valued time series arises in many applications. A time series model: first-order Integer-valued AutoRegressive (INAR(1)) is constructed by binomial thinning operator to model nonnegative integer-valued time series. INAR (1) depends on one period from the process before. The parameter of the model can be estimated by Conditional Least Squares (CLS). Specification of INAR(1) is following the specification of (AR(1)). Forecasting in INAR(1) uses median or Bayesian forecasting methodology. Median forecasting methodology obtains integer s, which is cumulative density function (CDF) until s, is more than or equal to 0.5. Bayesian forecasting methodology forecasts h-step-ahead of generating the parameter of the model and parameter of innovation term using Adaptive Rejection Metropolis Sampling within Gibbs sampling (ARMS), then finding the least integer s, where CDF until s is more than or equal to u . u is a value taken from the Uniform(0,1) distribution. INAR(1) is applied on pneumonia case in Penjaringan, Jakarta Utara, January 2008 until April 2016 monthly.
Klos, Anna; Pottiaux, Eric; Van Malderen, Roeland; Bock, Olivier; Bogusz, Janusz
2017-04-01
A synthetic benchmark dataset of Integrated Water Vapour (IWV) was created within the activity of "Data homogenisation" of sub-working group WG3 of COST ES1206 Action. The benchmark dataset was created basing on the analysis of IWV differences retrieved by Global Positioning System (GPS) International GNSS Service (IGS) stations using European Centre for Medium-Range Weather Forecats (ECMWF) reanalysis data (ERA-Interim). Having analysed a set of 120 series of IWV differences (ERAI-GPS) derived for IGS stations, we delivered parameters of a number of gaps and breaks for every certain station. Moreover, we estimated values of trends, significant seasonalities and character of residuals when deterministic model was removed. We tested five different noise models and found that a combination of white and autoregressive processes of first order describes the stochastic part with a good accuracy. Basing on this analysis, we performed Monte Carlo simulations of 25 years long data with two different types of noise: white as well as combination of white and autoregressive processes. We also added few strictly defined offsets, creating three variants of synthetic dataset: easy, less-complicated and fully-complicated. The 'Easy' dataset included seasonal signals (annual, semi-annual, 3 and 4 months if present for a particular station), offsets and white noise. The 'Less-complicated' dataset included above-mentioned, as well as the combination of white and first order autoregressive processes (AR(1)+WH). The 'Fully-complicated' dataset included, beyond above, a trend and gaps. In this research, we show the impact of manual homogenisation on the estimates of trend and its error. We also cross-compare the results for three above-mentioned datasets, as the synthetized noise type might have a significant influence on manual homogenisation. Therefore, it might mostly affect the values of trend and their uncertainties when inappropriately handled. In a future, the synthetic dataset
Evaluation of the autoregression time-series model for analysis of a noisy signal
International Nuclear Information System (INIS)
Allen, J.W.
1977-01-01
The autoregression (AR) time-series model of a continuous noisy signal was statistically evaluated to determine quantitatively the uncertainties of the model order, the model parameters, and the model's power spectral density (PSD). The result of such a statistical evaluation enables an experimenter to decide whether an AR model can adequately represent a continuous noisy signal and be consistent with the signal's frequency spectrum, and whether it can be used for on-line monitoring. Although evaluations of other types of signals have been reported in the literature, no direct reference has been found to AR model's uncertainties for continuous noisy signals; yet the evaluation is necessary to decide the usefulness of AR models of typical reactor signals (e.g., neutron detector output or thermocouple output) and the potential of AR models for on-line monitoring applications. AR and other time-series models for noisy data representation are being investigated by others since such models require fewer parameters than the traditional PSD model. For this study, the AR model was selected for its simplicity and conduciveness to uncertainty analysis, and controlled laboratory bench signals were used for continuous noisy data. (author)
Non-linear auto-regressive models for cross-frequency coupling in neural time series
Tallot, Lucille; Grabot, Laetitia; Doyère, Valérie; Grenier, Yves; Gramfort, Alexandre
2017-01-01
We address the issue of reliably detecting and quantifying cross-frequency coupling (CFC) in neural time series. Based on non-linear auto-regressive models, the proposed method provides a generative and parametric model of the time-varying spectral content of the signals. As this method models the entire spectrum simultaneously, it avoids the pitfalls related to incorrect filtering or the use of the Hilbert transform on wide-band signals. As the model is probabilistic, it also provides a score of the model “goodness of fit” via the likelihood, enabling easy and legitimate model selection and parameter comparison; this data-driven feature is unique to our model-based approach. Using three datasets obtained with invasive neurophysiological recordings in humans and rodents, we demonstrate that these models are able to replicate previous results obtained with other metrics, but also reveal new insights such as the influence of the amplitude of the slow oscillation. Using simulations, we demonstrate that our parametric method can reveal neural couplings with shorter signals than non-parametric methods. We also show how the likelihood can be used to find optimal filtering parameters, suggesting new properties on the spectrum of the driving signal, but also to estimate the optimal delay between the coupled signals, enabling a directionality estimation in the coupling. PMID:29227989
Directory of Open Access Journals (Sweden)
C. Serio
1997-06-01
Full Text Available The time dynamics of geoelectrical precursory time series has been investigated and a method to discriminate chaotic behaviour in geoelectrical precursory time series is proposed. It allows us to detect low-dimensional chaos when the only information about the time series comes from the time series themselves. The short-term predictability of these time series is evaluated using two possible forecasting approaches: global autoregressive approximation and local autoregressive approximation. The first views the data as a realization of a linear stochastic process, whereas the second considers the data points as a realization of a deterministic process, supposedly non-linear. The comparison of the predictive skill of the two techniques is a test to discriminate between low-dimensional chaos and random dynamics. The analyzed time series are geoelectrical measurements recorded by an automatic station located in Tito (Southern Italy in one of the most seismic areas of the Mediterranean region. Our findings are that the global (linear approach is superior to the local one and the physical system governing the phenomena of electrical nature is characterized by a large number of degrees of freedom. Power spectra of the filtered time series follow a P(f = F-a scaling law: they exhibit the typical behaviour of a broad class of fractal stochastic processes and they are a signature of the self-organized systems.
Liu, Siwei; Molenaar, Peter C M
2014-12-01
This article introduces iVAR, an R program for imputing missing data in multivariate time series on the basis of vector autoregressive (VAR) models. We conducted a simulation study to compare iVAR with three methods for handling missing data: listwise deletion, imputation with sample means and variances, and multiple imputation ignoring time dependency. The results showed that iVAR produces better estimates for the cross-lagged coefficients than do the other three methods. We demonstrate the use of iVAR with an empirical example of time series electrodermal activity data and discuss the advantages and limitations of the program.
DEFF Research Database (Denmark)
He, Changli; Kang, Jian; Terasvirta, Timo
In this paper we introduce an autoregressive model with seasonal dummy variables in which coefficients of seasonal dummies vary smoothly and deterministically over time. The error variance of the model is seasonally heteroskedastic and multiplicatively decomposed, the decomposition being similar ...... temperature series. More specifically, the idea is to find out in which way and by how much the monthly temperatures are varying over time during the period of more than 240 years, if they do. Misspecification tests are applied to the estimated model and the findings discussed....
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
International Nuclear Information System (INIS)
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan
2014-01-01
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan
2014-09-01
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.
Medium term municipal solid waste generation prediction by autoregressive integrated moving average
Energy Technology Data Exchange (ETDEWEB)
Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan [Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)
2014-09-12
Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.
International Nuclear Information System (INIS)
Che Jinxing; Wang Jianzhou
2010-01-01
In this paper, we present the use of different mathematical models to forecast electricity price under deregulated power. A successful prediction tool of electricity price can help both power producers and consumers plan their bidding strategies. Inspired by that the support vector regression (SVR) model, with the ε-insensitive loss function, admits of the residual within the boundary values of ε-tube, we propose a hybrid model that combines both SVR and Auto-regressive integrated moving average (ARIMA) models to take advantage of the unique strength of SVR and ARIMA models in nonlinear and linear modeling, which is called SVRARIMA. A nonlinear analysis of the time-series indicates the convenience of nonlinear modeling, the SVR is applied to capture the nonlinear patterns. ARIMA models have been successfully applied in solving the residuals regression estimation problems. The experimental results demonstrate that the model proposed outperforms the existing neural-network approaches, the traditional ARIMA models and other hybrid models based on the root mean square error and mean absolute percentage error.
Testing for Co-integration in Vector Autoregressions with Non-Stationary Volatility
DEFF Research Database (Denmark)
Cavaliere, Guiseppe; Rahbæk, Anders; Taylor, A.M. Robert
Many key macro-economic and financial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special...
Testing for Co-integration in Vector Autoregressions with Non-Stationary Volatility
DEFF Research Database (Denmark)
Cavaliere, Giuseppe; Rahbek, Anders Christian; Taylor, A. M. Robert
Many key macro-economic and …nancial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special...
Bivariate autoregressive state-space modeling of psychophysiological time series data.
Smith, Daniel M; Abtahi, Mohammadreza; Amiri, Amir Mohammad; Mankodiya, Kunal
2016-08-01
Heart rate (HR) and electrodermal activity (EDA) are often used as physiological measures of psychological arousal in various neuropsychology experiments. In this exploratory study, we analyze HR and EDA data collected from four participants, each with a history of suicidal tendencies, during a cognitive task known as the Paced Auditory Serial Addition Test (PASAT). A central aim of this investigation is to guide future research by assessing heterogeneity in the population of individuals with suicidal tendencies. Using a state-space modeling approach to time series analysis, we evaluate the effect of an exogenous input, i.e., the stimulus presentation rate which was increased systematically during the experimental task. Participants differed in several parameters characterizing the way in which psychological arousal was experienced during the task. Increasing the stimulus presentation rate was associated with an increase in EDA in participants 2 and 4. The effect on HR was positive for participant 2 and negative for participants 3 and 4. We discuss future directions in light of the heterogeneity in the population indicated by these findings.
DEFF Research Database (Denmark)
Fokianos, Konstantinos; Rahbek, Anders Christian; Tjøstheim, Dag
This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, implying an interpretation as an integer valued GARCH process. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model for time...
DEFF Research Database (Denmark)
Fokianos, Konstantinos; Rahbæk, Anders; Tjøstheim, Dag
This paper considers geometric ergodicity and likelihood based inference for linear and nonlinear Poisson autoregressions. In the linear case the conditional mean is linked linearly to its past values as well as the observed values of the Poisson process. This also applies to the conditional...... variance, making an interpretation as an integer valued GARCH process possible. In a nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past values and a nonlinear function of past observations. As a particular example an exponential autoregressive Poisson model...
Kammerdiner, Alla; Xanthopoulos, Petros; Pardalos, Panos M.
2007-11-01
In this chapter a potential problem with application of the Granger-causality based on the simple vector autoregressive (VAR) modeling to EEG data is investigated. Although some initial studies tested whether the data support the stationarity assumption of VAR, the stability of the estimated model is rarely (if ever) been verified. In fact, in cases when the stability condition is violated the process may exhibit a random walk like behavior or even be explosive. The problem is illustrated by an example.
Autoregressive Integrated Adaptive Neural Networks Classifier for EEG-P300 Classification
Directory of Open Access Journals (Sweden)
Demi Soetraprawata
2013-06-01
Full Text Available Brain Computer Interface has a potency to be applied in mechatronics apparatus and vehicles in the future. Compared to the other techniques, EEG is the most preferred for BCI designs. In this paper, a new adaptive neural network classifier of different mental activities from EEG-based P300 signals is proposed. To overcome the over-training that is caused by noisy and non-stationary data, the EEG signals are filtered and extracted using autoregressive models before passed to the adaptive neural networks classifier. To test the improvement in the EEG classification performance with the proposed method, comparative experiments were conducted using Bayesian Linear Discriminant Analysis. The experiment results show that the all subjects achieve a classification accuracy of 100%.
Tani, Yuji; Ogasawara, Katsuhiko
2012-01-01
This study aimed to contribute to the management of a healthcare organization by providing management information using time-series analysis of business data accumulated in the hospital information system, which has not been utilized thus far. In this study, we examined the performance of the prediction method using the auto-regressive integrated moving-average (ARIMA) model, using the business data obtained at the Radiology Department. We made the model using the data used for analysis, which was the number of radiological examinations in the past 9 years, and we predicted the number of radiological examinations in the last 1 year. Then, we compared the actual value with the forecast value. We were able to establish that the performance prediction method was simple and cost-effective by using free software. In addition, we were able to build the simple model by pre-processing the removal of trend components using the data. The difference between predicted values and actual values was 10%; however, it was more important to understand the chronological change rather than the individual time-series values. Furthermore, our method was highly versatile and adaptable compared to the general time-series data. Therefore, different healthcare organizations can use our method for the analysis and forecasting of their business data.
Pemodelan Markov Switching Autoregressive
Ariyani, Fiqria Devi; Warsito, Budi; Yasin, Hasbi
2014-01-01
Transition from depreciation to appreciation of exchange rate is one of regime switching that ignored by classic time series model, such as ARIMA, ARCH, or GARCH. Therefore, economic variables are modeled by Markov Switching Autoregressive (MSAR) which consider the regime switching. MLE is not applicable to parameters estimation because regime is an unobservable variable. So that filtering and smoothing process are applied to see the regime probabilities of observation. Using this model, tran...
Directory of Open Access Journals (Sweden)
Carlos Quispe
2013-04-01
Full Text Available El Niño connects globally climate, ecosystems and socio-economic activities. Since 1980 this event has been tried to be predicted, but until now the statistical and dynamical models are insuffi cient. Thus, the objective of the present work was to explore using an autoregressive moving average model the effect of El Niño over the sea surface temperature (TSM off the Peruvian coast. The work involved 5 stages: identifi cation, estimation, diagnostic checking, forecasting and validation. Simple and partial autocorrelation functions (FAC and FACP were used to identify and reformulate the orders of the model parameters, as well as Akaike information criterium (AIC and Schwarz criterium (SC for the selection of the best models during the diagnostic checking. Among the main results the models ARIMA(12,0,11 were proposed, which simulated monthly conditions in agreement with the observed conditions off the Peruvian coast: cold conditions at the end of 2004, and neutral conditions at the beginning of 2005.
International Nuclear Information System (INIS)
Marseguerra, M.; Minoggio, S.; Rossi, A.; Zio, E.
1992-01-01
The correlated noise affecting many industrial plants under stationary or cyclo-stationary conditions - nuclear reactors included -has been successfully modeled by autoregressive moving average (ARMA) due to the versatility of this technique. The relatively recent neural network methods have similar features and much effort is being devoted to exploring their usefulness in forecasting and control. Identifying a signal by means of an ARMA model gives rise to the problem of selecting its correct order. Similar difficulties must be faced when applying neural network methods and, specifically, particular care must be given to the setting up of the appropriate network topology, the data normalization procedure and the learning code. In the present paper the capability of some neural networks of learning ARMA and seasonal ARMA processes is investigated. The results of the tested cases look promising since they indicate that the neural networks learn the underlying process with relative ease so that their forecasting capability may represent a convenient fault diagnosis tool. (Author)
Jones, A. L.; Smart, P. L.
2005-08-01
Autoregressive modelling is used to investigate the internal structure of long-term (1935-1999) records of nitrate concentration for five karst springs in the Mendip Hills. There is a significant short term (1-2 months) positive autocorrelation at three of the five springs due to the availability of sufficient nitrate within the soil store to maintain concentrations in winter recharge for several months. The absence of short term (1-2 months) positive autocorrelation in the other two springs is due to the marked contrast in land use between the limestone and swallet parts of the catchment, rapid concentrated recharge from the latter causing short term switching in the dominant water source at the spring and thus fluctuating nitrate concentrations. Significant negative autocorrelation is evident at lags varying from 4 to 7 months through to 14-22 months for individual springs, with positive autocorrelation at 19-20 months at one site. This variable timing is explained by moderation of the exhaustion effect in the soil by groundwater storage, which gives longer residence times in large catchments and those with a dominance of diffuse flow. The lags derived from autoregressive modelling may therefore provide an indication of average groundwater residence times. Significant differences in the structure of the autocorrelation function for successive 10-year periods are evident at Cheddar Spring, and are explained by the effect the ploughing up of grasslands during the Second World War and increased fertiliser usage on available nitrogen in the soil store. This effect is moderated by the influence of summer temperatures on rates of mineralization, and of both summer and winter rainfall on the timing and magnitude of nitrate leaching. The pattern of nitrate leaching also appears to have been perturbed by the 1976 drought.
Alwee, Razana; Shamsuddin, Siti Mariyam Hj; Sallehuddin, Roselina
2013-01-01
Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR) and autoregressive integrated moving average (ARIMA) to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models.
Directory of Open Access Journals (Sweden)
Razana Alwee
2013-01-01
Full Text Available Crimes forecasting is an important area in the field of criminology. Linear models, such as regression and econometric models, are commonly applied in crime forecasting. However, in real crimes data, it is common that the data consists of both linear and nonlinear components. A single model may not be sufficient to identify all the characteristics of the data. The purpose of this study is to introduce a hybrid model that combines support vector regression (SVR and autoregressive integrated moving average (ARIMA to be applied in crime rates forecasting. SVR is very robust with small training data and high-dimensional problem. Meanwhile, ARIMA has the ability to model several types of time series. However, the accuracy of the SVR model depends on values of its parameters, while ARIMA is not robust to be applied to small data sets. Therefore, to overcome this problem, particle swarm optimization is used to estimate the parameters of the SVR and ARIMA models. The proposed hybrid model is used to forecast the property crime rates of the United State based on economic indicators. The experimental results show that the proposed hybrid model is able to produce more accurate forecasting results as compared to the individual models.
Directory of Open Access Journals (Sweden)
Chieh-Fan Chen
2011-01-01
Full Text Available This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume.
Testing for co-integration in vector autoregressions with non-stationary volatility
DEFF Research Database (Denmark)
Cavaliere, Giuseppe; Rahbek, Anders Christian; Taylor, Robert M.
2010-01-01
cases. We show that the conventional rank statistics computed as in (Johansen, 1988) and (Johansen, 1991) are potentially unreliable. In particular, their large sample distributions depend on the integrated covariation of the underlying multivariate volatility process which impacts on both the size...... and power of the associated co-integration tests, as we demonstrate numerically. A solution to the identified inference problem is provided by considering wild bootstrap-based implementations of the rank tests. These do not require the practitioner to specify a parametric model for volatility, or to assume...
Dean, Roger T; Dunsmuir, William T M
2016-06-01
Many articles on perception, performance, psychophysiology, and neuroscience seek to relate pairs of time series through assessments of their cross-correlations. Most such series are individually autocorrelated: they do not comprise independent values. Given this situation, an unfounded reliance is often placed on cross-correlation as an indicator of relationships (e.g., referent vs. response, leading vs. following). Such cross-correlations can indicate spurious relationships, because of autocorrelation. Given these dangers, we here simulated how and why such spurious conclusions can arise, to provide an approach to resolving them. We show that when multiple pairs of series are aggregated in several different ways for a cross-correlation analysis, problems remain. Finally, even a genuine cross-correlation function does not answer key motivating questions, such as whether there are likely causal relationships between the series. Thus, we illustrate how to obtain a transfer function describing such relationships, informed by any genuine cross-correlations. We illustrate the confounds and the meaningful transfer functions by two concrete examples, one each in perception and performance, together with key elements of the R software code needed. The approach involves autocorrelation functions, the establishment of stationarity, prewhitening, the determination of cross-correlation functions, the assessment of Granger causality, and autoregressive model development. Autocorrelation also limits the interpretability of other measures of possible relationships between pairs of time series, such as mutual information. We emphasize that further complexity may be required as the appropriate analysis is pursued fully, and that causal intervention experiments will likely also be needed.
Directory of Open Access Journals (Sweden)
Yu-Pin Liao
2017-11-01
Full Text Available In the past few decades, demand forecasting has become relatively difficult due to rapid changes in the global environment. This research illustrates the use of the make-to-stock (MTS production strategy in order to explain how forecasting plays an essential role in business management. The linear mixed-effect (LME model has been extensively developed and is widely applied in various fields. However, no study has used the LME model for business forecasting. We suggest that the LME model be used as a tool for prediction and to overcome environment complexity. The data analysis is based on real data in an international display company, where the company needs accurate demand forecasting before adopting a MTS strategy. The forecasting result from the LME model is compared to the commonly used approaches, including the regression model, autoregressive model, times series model, and exponential smoothing model, with the results revealing that prediction performance provided by the LME model is more stable than using the other methods. Furthermore, product types in the data are regarded as a random effect in the LME model, hence demands of all types can be predicted simultaneously using a single LME model. However, some approaches require splitting the data into different type categories, and then predicting the type demand by establishing a model for each type. This feature also demonstrates the practicability of the LME model in real business operations.
Bose, Eliezer; Hravnak, Marilyn; Sereika, Susan M
Patients undergoing continuous vital sign monitoring (heart rate [HR], respiratory rate [RR], pulse oximetry [SpO2]) in real time display interrelated vital sign changes during situations of physiological stress. Patterns in this physiological cross-talk could portend impending cardiorespiratory instability (CRI). Vector autoregressive (VAR) modeling with Granger causality tests is one of the most flexible ways to elucidate underlying causal mechanisms in time series data. The purpose of this article is to illustrate the development of patient-specific VAR models using vital sign time series data in a sample of acutely ill, monitored, step-down unit patients and determine their Granger causal dynamics prior to onset of an incident CRI. CRI was defined as vital signs beyond stipulated normality thresholds (HR = 40-140/minute, RR = 8-36/minute, SpO2 time segment prior to onset of first CRI was chosen for time series modeling in 20 patients using a six-step procedure: (a) the uniform time series for each vital sign was assessed for stationarity, (b) appropriate lag was determined using a lag-length selection criteria, (c) the VAR model was constructed, (d) residual autocorrelation was assessed with the Lagrange Multiplier test, (e) stability of the VAR system was checked, and (f) Granger causality was evaluated in the final stable model. The primary cause of incident CRI was low SpO2 (60% of cases), followed by out-of-range RR (30%) and HR (10%). Granger causality testing revealed that change in RR caused change in HR (21%; i.e., RR changed before HR changed) more often than change in HR causing change in RR (15%). Similarly, changes in RR caused changes in SpO2 (15%) more often than changes in SpO2 caused changes in RR (9%). For HR and SpO2, changes in HR causing changes in SpO2 and changes in SpO2 causing changes in HR occurred with equal frequency (18%). Within this sample of acutely ill patients who experienced a CRI event, VAR modeling indicated that RR changes
Bose, Eliezer; Hravnak, Marilyn; Sereika, Susan M.
2016-01-01
Background Patients undergoing continuous vital sign monitoring (heart rate [HR], respiratory rate [RR], pulse oximetry [SpO2]) in real time display inter-related vital sign changes during situations of physiologic stress. Patterns in this physiological cross-talk could portend impending cardiorespiratory instability (CRI). Vector autoregressive (VAR) modeling with Granger causality tests is one of the most flexible ways to elucidate underlying causal mechanisms in time series data. Purpose The purpose of this article is to illustrate development of patient-specific VAR models using vital sign time series (VSTS) data in a sample of acutely ill, monitored, step-down unit (SDU) patients, and determine their Granger causal dynamics prior to onset of an incident CRI. Approach CRI was defined as vital signs beyond stipulated normality thresholds (HR = 40–140/minute, RR = 8–36/minute, SpO2 < 85%) and persisting for 3 minutes within a 5-minute moving window (60% of the duration of the window). A 6-hour time segment prior to onset of first CRI was chosen for time series modeling in 20 patients using a six-step procedure: (a) the uniform time series for each vital sign was assessed for stationarity; (b) appropriate lag was determined using a lag-length selection criteria; (c) the VAR model was constructed; (d) residual autocorrelation was assessed with the Lagrange Multiplier test; (e) stability of the VAR system was checked; and (f) Granger causality was evaluated in the final stable model. Results The primary cause of incident CRI was low SpO2 (60% of cases), followed by out-of-range RR (30%) and HR (10%). Granger causality testing revealed that change in RR caused change in HR (21%) (i.e., RR changed before HR changed) more often than change in HR causing change in RR (15%). Similarly, changes in RR caused changes in SpO2 (15%) more often than changes in SpO2 caused changes in RR (9%). For HR and SpO2, changes in HR causing changes in SpO2 and changes in SpO2 causing
Directory of Open Access Journals (Sweden)
Zheng Lu
2017-06-01
Full Text Available A method using a nonlinear auto-regressive neural network with exogenous input (NARXnn to retrieve time series soil moisture (SM that is spatially and temporally continuous and high quality over the Heihe River Basin (HRB in China was investigated in this study. The input training data consisted of the X-band dual polarization brightness temperature (TB and the Ka-band V polarization TB from the Advanced Microwave Scanning Radiometer II (AMSR2, Global Land Satellite product (GLASS Leaf Area Index (LAI, precipitation from the Tropical Rainfall Measuring Mission (TRMM and the Global Precipitation Measurement (GPM, and a global 30 arc-second elevation (GTOPO-30. The output training data were generated from fused SM products of the Japan Aerospace Exploration Agency (JAXA and the Land Surface Parameter Model (LPRM. The reprocessed fused SM from two years (2013 and 2014 was inputted into the NARXnn for training; subsequently, SM during a third year (2015 was estimated. Direct and indirect validations were then performed during the period 2015 by comparing with in situ measurements, SM from JAXA, LPRM and the Global Land Data Assimilation System (GLDAS, as well as precipitation data from TRMM and GPM. The results showed that the SM predictions from NARXnn performed best, as indicated by their higher correlation coefficients (R ≥ 0.85 for the whole year of 2015, lower Bias values (absolute value of Bias ≤ 0.02 and root mean square error values (RMSE ≤ 0.06, and their improved response to precipitation. This method is being used to produce the NARXnn SM product over the HRB in China.
Noncausal Bayesian Vector Autoregression
DEFF Research Database (Denmark)
Lanne, Markku; Luoto, Jani
We propose a Bayesian inferential procedure for the noncausal vector autoregressive (VAR) model that is capable of capturing nonlinearities and incorporating effects of missing variables. In particular, we devise a fast and reliable posterior simulator that yields the predictive distribution...
The Prediction of Exchange Rates with the Use of Auto-Regressive Integrated Moving-Average Models
Directory of Open Access Journals (Sweden)
Daniela Spiesová
2014-10-01
Full Text Available Currency market is recently the largest world market during the existence of which there have been many theories regarding the prediction of the development of exchange rates based on macroeconomic, microeconomic, statistic and other models. The aim of this paper is to identify the adequate model for the prediction of non-stationary time series of exchange rates and then use this model to predict the trend of the development of European currencies against Euro. The uniqueness of this paper is in the fact that there are many expert studies dealing with the prediction of the currency pairs rates of the American dollar with other currency but there is only a limited number of scientific studies concerned with the long-term prediction of European currencies with the help of the integrated ARMA models even though the development of exchange rates has a crucial impact on all levels of economy and its prediction is an important indicator for individual countries, banks, companies and businessmen as well as for investors. The results of this study confirm that to predict the conditional variance and then to estimate the future values of exchange rates, it is adequate to use the ARIMA (1,1,1 model without constant, or ARIMA [(1,7,1,(1,7] model, where in the long-term, the square root of the conditional variance inclines towards stable value.
Incorporating measurement error in n=1 psychological autoregressive modeling
Schuurman, Noemi K.; Houtveen, Jan H.; Hamaker, Ellen L.
2015-01-01
Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive
Jia, Song; Xu, Tian-he; Sun, Zhang-zhen; Li, Jia-jing
2017-02-01
UT1-UTC is an important part of the Earth Orientation Parameters (EOP). The high-precision predictions of UT1-UTC play a key role in practical applications of deep space exploration, spacecraft tracking and satellite navigation and positioning. In this paper, a new prediction method with combination of Gray Model (GM(1, 1)) and Autoregressive Integrated Moving Average (ARIMA) is developed. The main idea is as following. Firstly, the UT1-UTC data are preprocessed by removing the leap second and Earth's zonal harmonic tidal to get UT1R-TAI data. Periodic terms are estimated and removed by the least square to get UT2R-TAI. Then the linear terms of UT2R-TAI data are modeled by the GM(1, 1), and the residual terms are modeled by the ARIMA. Finally, the UT2R-TAI prediction can be performed based on the combined model of GM(1, 1) and ARIMA, and the UT1-UTC predictions are obtained by adding the corresponding periodic terms, leap second correction and the Earth's zonal harmonic tidal correction. The results show that the proposed model can be used to predict UT1-UTC effectively with higher middle and long-term (from 32 to 360 days) accuracy than those of LS + AR, LS + MAR and WLS + MAR.
A-integrable martingale sequences and Walsh series
International Nuclear Information System (INIS)
Skvortsov, V A
2001-01-01
A sufficient condition for a Walsh series converging to an A-integrable function f to be the A-Fourier's series of f is stated in terms of uniform A-integrability of a martingale subsequence of partial sums of the Walsh series. Moreover, the existence is proved of a Walsh series that converges almost everywhere to an A-integrable function and is not the A-Fourier series of its sum
Generalizing smooth transition autoregressions
DEFF Research Database (Denmark)
Chini, Emilio Zanetti
We introduce a variant of the smooth transition autoregression - the GSTAR model - capable to parametrize the asymmetry in the tails of the transition equation by using a particular generalization of the logistic function. A General-to-Specific modelling strategy is discussed in detail, with part......We introduce a variant of the smooth transition autoregression - the GSTAR model - capable to parametrize the asymmetry in the tails of the transition equation by using a particular generalization of the logistic function. A General-to-Specific modelling strategy is discussed in detail......, with particular emphasis on two different LM-type tests for the null of symmetric adjustment towards a new regime and three diagnostic tests, whose power properties are explored via Monte Carlo experiments. Four classical real datasets illustrate the empirical properties of the GSTAR, jointly to a rolling...
Directory of Open Access Journals (Sweden)
Agus Supriatna
2017-11-01
Full Text Available The tourism sector is one of the contributors of foreign exchange is quite influential in improving the economy of Indonesia. The development of this sector will have a positive impact, including employment opportunities and opportunities for entrepreneurship in various industries such as adventure tourism, craft or hospitality. The beauty and natural resources owned by Indonesia become a tourist attraction for domestic and foreign tourists. One of the many tourist destination is the island of Bali. The island of Bali is not only famous for its natural, cultural diversity and arts but there are also add the value of tourism. In 2015 the increase in the number of tourist arrivals amounted to 6.24% from the previous year. In improving the quality of services, facing a surge of visitors, or prepare a strategy in attracting tourists need a prediction of arrival so that planning can be more efficient and effective. This research used Holt Winter's method and Seasonal Autoregressive Integrated Moving Average (SARIMA method to predict tourist arrivals. Based on data of foreign tourist arrivals who visited the Bali island in January 2007 until June 2016, the result of Holt Winter's method with parameter values α=0.1 ,β=0.1 ,γ=0.3 has an error MAPE is 6,171873. While the result of SARIMA method with (0,1,1〖(1,0,0〗12 model has an error MAPE is 5,788615 and it can be concluded that SARIMA method is better. Keywords: Foreign Tourist, Prediction, Bali Island, Holt-Winter’s, SARIMA.
Directory of Open Access Journals (Sweden)
Wudi Wei
Full Text Available Hepatitis is a serious public health problem with increasing cases and property damage in Heng County. It is necessary to develop a model to predict the hepatitis epidemic that could be useful for preventing this disease.The autoregressive integrated moving average (ARIMA model and the generalized regression neural network (GRNN model were used to fit the incidence data from the Heng County CDC (Center for Disease Control and Prevention from January 2005 to December 2012. Then, the ARIMA-GRNN hybrid model was developed. The incidence data from January 2013 to December 2013 were used to validate the models. Several parameters, including mean absolute error (MAE, root mean square error (RMSE, mean absolute percentage error (MAPE and mean square error (MSE, were used to compare the performance among the three models.The morbidity of hepatitis from Jan 2005 to Dec 2012 has seasonal variation and slightly rising trend. The ARIMA(0,1,2(1,1,112 model was the most appropriate one with the residual test showing a white noise sequence. The smoothing factor of the basic GRNN model and the combined model was 1.8 and 0.07, respectively. The four parameters of the hybrid model were lower than those of the two single models in the validation. The parameters values of the GRNN model were the lowest in the fitting of the three models.The hybrid ARIMA-GRNN model showed better hepatitis incidence forecasting in Heng County than the single ARIMA model and the basic GRNN model. It is a potential decision-supportive tool for controlling hepatitis in Heng County.
Earnest, Arul; Chen, Mark I; Ng, Donald; Sin, Leo Yee
2005-05-11
The main objective of this study is to apply autoregressive integrated moving average (ARIMA) models to make real-time predictions on the number of beds occupied in Tan Tock Seng Hospital, during the recent SARS outbreak. This is a retrospective study design. Hospital admission and occupancy data for isolation beds was collected from Tan Tock Seng hospital for the period 14th March 2003 to 31st May 2003. The main outcome measure was daily number of isolation beds occupied by SARS patients. Among the covariates considered were daily number of people screened, daily number of people admitted (including observation, suspect and probable cases) and days from the most recent significant event discovery. We utilized the following strategy for the analysis. Firstly, we split the outbreak data into two. Data from 14th March to 21st April 2003 was used for model development. We used structural ARIMA models in an attempt to model the number of beds occupied. Estimation is via the maximum likelihood method using the Kalman filter. For the ARIMA model parameters, we considered the simplest parsimonious lowest order model. We found that the ARIMA (1,0,3) model was able to describe and predict the number of beds occupied during the SARS outbreak well. The mean absolute percentage error (MAPE) for the training set and validation set were 5.7% and 8.6% respectively, which we found was reasonable for use in the hospital setting. Furthermore, the model also provided three-day forecasts of the number of beds required. Total number of admissions and probable cases admitted on the previous day were also found to be independent prognostic factors of bed occupancy. ARIMA models provide useful tools for administrators and clinicians in planning for real-time bed capacity during an outbreak of an infectious disease such as SARS. The model could well be used in planning for bed-capacity during outbreaks of other infectious diseases as well.
Methodology for the AutoRegressive Planet Search (ARPS) Project
Feigelson, Eric; Caceres, Gabriel; ARPS Collaboration
2018-01-01
The detection of periodic signals of transiting exoplanets is often impeded by the presence of aperiodic photometric variations. This variability is intrinsic to the host star in space-based observations (typically arising from magnetic activity) and from observational conditions in ground-based observations. The most common statistical procedures to remove stellar variations are nonparametric, such as wavelet decomposition or Gaussian Processes regression. However, many stars display variability with autoregressive properties, wherein later flux values are correlated with previous ones. Providing the time series is evenly spaced, parametric autoregressive models can prove very effective. Here we present the methodology of the Autoregessive Planet Search (ARPS) project which uses Autoregressive Integrated Moving Average (ARIMA) models to treat a wide variety of stochastic short-memory processes, as well as nonstationarity. Additionally, we introduce a planet-search algorithm to detect periodic transits in the time-series residuals after application of ARIMA models. Our matched-filter algorithm, the Transit Comb Filter (TCF), replaces the traditional box-fitting step. We construct a periodogram based on the TCF to concentrate the signal of these periodic spikes. Various features of the original light curves, the ARIMA fits, the TCF periodograms, and folded light curves at peaks of the TCF periodogram can then be collected to provide constraints for planet detection. These features provide input into a multivariate classifier when a training set is available. The ARPS procedure has been applied NASA's Kepler mission observations of ~200,000 stars (Caceres, Dissertation Talk, this meeting) and will be applied in the future to other datasets.
Autoregressive Processes in Homogenization of GNSS Tropospheric Data
Klos, A.; Bogusz, J.; Teferle, F. N.; Bock, O.; Pottiaux, E.; Van Malderen, R.
2016-12-01
Offsets due to changes in hardware equipment or any other artificial event are all a subject of a task of homogenization of tropospheric data estimated within a processing of Global Navigation Satellite System (GNSS) observables. This task is aimed at identifying exact epochs of offsets and estimate their magnitudes since they may artificially under- or over-estimate trend and its uncertainty delivered from tropospheric data and used in climate studies. In this research, we analysed a common data set of differences of Integrated Water Vapour (IWV) from GPS and ERA-Interim (1995-2010) provided for a homogenization group working within ES1206 COST Action GNSS4SWEC. We analysed daily IWV records of GPS and ERA-Interim in terms of trend, seasonal terms and noise model with Maximum Likelihood Estimation in Hector software. We found that this data has a character of autoregressive process (AR). Basing on this analysis, we performed Monte Carlo simulations of 25 years long data with two different noise types: white as well as combination of white and autoregressive and also added few strictly defined offsets. This synthetic data set of exactly the same character as IWV from GPS and ERA-Interim was then subjected to a task of manual and automatic/statistical homogenization. We made blind tests and detected possible epochs of offsets manually. We found that simulated offsets were easily detected in series with white noise, no influence of seasonal signal was noticed. The autoregressive series were much more problematic when offsets had to be determined. We found few epochs, for which no offset was simulated. This was mainly due to strong autocorrelation of data, which brings an artificial trend within. Due to regime-like behaviour of AR it is difficult for statistical methods to properly detect epochs of offsets, which was previously reported by climatologists.
Directory of Open Access Journals (Sweden)
Earnest Arul
2005-05-01
Full Text Available Abstract Background The main objective of this study is to apply autoregressive integrated moving average (ARIMA models to make real-time predictions on the number of beds occupied in Tan Tock Seng Hospital, during the recent SARS outbreak. Methods This is a retrospective study design. Hospital admission and occupancy data for isolation beds was collected from Tan Tock Seng hospital for the period 14th March 2003 to 31st May 2003. The main outcome measure was daily number of isolation beds occupied by SARS patients. Among the covariates considered were daily number of people screened, daily number of people admitted (including observation, suspect and probable cases and days from the most recent significant event discovery. We utilized the following strategy for the analysis. Firstly, we split the outbreak data into two. Data from 14th March to 21st April 2003 was used for model development. We used structural ARIMA models in an attempt to model the number of beds occupied. Estimation is via the maximum likelihood method using the Kalman filter. For the ARIMA model parameters, we considered the simplest parsimonious lowest order model. Results We found that the ARIMA (1,0,3 model was able to describe and predict the number of beds occupied during the SARS outbreak well. The mean absolute percentage error (MAPE for the training set and validation set were 5.7% and 8.6% respectively, which we found was reasonable for use in the hospital setting. Furthermore, the model also provided three-day forecasts of the number of beds required. Total number of admissions and probable cases admitted on the previous day were also found to be independent prognostic factors of bed occupancy. Conclusion ARIMA models provide useful tools for administrators and clinicians in planning for real-time bed capacity during an outbreak of an infectious disease such as SARS. The model could well be used in planning for bed-capacity during outbreaks of other infectious
An introduction to Fourier series and integrals
Seeley, Robert T
2006-01-01
This compact guide emphasizes the relationship between physics and mathematics, introducing Fourier series in the way that Fourier himself used them: as solutions of the heat equation in a disk. 1966 edition.
Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)
DEFF Research Database (Denmark)
Agosto, Arianna; Cavaliere, Guiseppe; Kristensen, Dennis
We develop a class of Poisson autoregressive models with additional covariates (PARX) that can be used to model and forecast time series of counts. We establish the time series properties of the models, including conditions for stationarity and existence of moments. These results are in turn used...
Testing and modelling autoregressive conditional heteroskedasticity of streamflow processes
Directory of Open Access Journals (Sweden)
W. Wang
2005-01-01
Full Text Available Conventional streamflow models operate under the assumption of constant variance or season-dependent variances (e.g. ARMA (AutoRegressive Moving Average models for deseasonalized streamflow series and PARMA (Periodic AutoRegressive Moving Average models for seasonal streamflow series. However, with McLeod-Li test and Engle's Lagrange Multiplier test, clear evidences are found for the existence of autoregressive conditional heteroskedasticity (i.e. the ARCH (AutoRegressive Conditional Heteroskedasticity effect, a nonlinear phenomenon of the variance behaviour, in the residual series from linear models fitted to daily and monthly streamflow processes of the upper Yellow River, China. It is shown that the major cause of the ARCH effect is the seasonal variation in variance of the residual series. However, while the seasonal variation in variance can fully explain the ARCH effect for monthly streamflow, it is only a partial explanation for daily flow. It is also shown that while the periodic autoregressive moving average model is adequate in modelling monthly flows, no model is adequate in modelling daily streamflow processes because none of the conventional time series models takes the seasonal variation in variance, as well as the ARCH effect in the residuals, into account. Therefore, an ARMA-GARCH (Generalized AutoRegressive Conditional Heteroskedasticity error model is proposed to capture the ARCH effect present in daily streamflow series, as well as to preserve seasonal variation in variance in the residuals. The ARMA-GARCH error model combines an ARMA model for modelling the mean behaviour and a GARCH model for modelling the variance behaviour of the residuals from the ARMA model. Since the GARCH model is not followed widely in statistical hydrology, the work can be a useful addition in terms of statistical modelling of daily streamflow processes for the hydrological community.
Table of integrals, series, and products
Gradshteyn, I S; Zwillinger, Daniel; Moll, Victor
2015-01-01
The eighth edition of the classic Gradshteyn and Ryzhik is an updated completely revised edition of what is acknowledged universally by mathematical and applied science users as the key reference work concerning the integrals and special functions. The book is valued by users of previous editions of the work both for its comprehensive coverage of integrals and special functions, and also for its accuracy and valuable updates. Since the first edition, published in 1965, the mathematical content of this book has significantly increased due to the addition of new material, though the size of the book has remained almost unchanged. The new 8th edition contains entirely new results and amendments to the auxiliary conditions that accompany integrals and wherever possible most entries contain valuable references to their source.
Model reduction methods for vector autoregressive processes
Brüggemann, Ralf
2004-01-01
1. 1 Objective of the Study Vector autoregressive (VAR) models have become one of the dominant research tools in the analysis of macroeconomic time series during the last two decades. The great success of this modeling class started with Sims' (1980) critique of the traditional simultaneous equation models (SEM). Sims criticized the use of 'too many incredible restrictions' based on 'supposed a priori knowledge' in large scale macroeconometric models which were popular at that time. Therefore, he advo cated largely unrestricted reduced form multivariate time series models, unrestricted VAR models in particular. Ever since his influential paper these models have been employed extensively to characterize the underlying dynamics in systems of time series. In particular, tools to summarize the dynamic interaction between the system variables, such as impulse response analysis or forecast error variance decompo sitions, have been developed over the years. The econometrics of VAR models and related quantities i...
Stochastic B-series and order conditions for exponential integrators
DEFF Research Database (Denmark)
Arara, Alemayehu Adugna; Debrabant, Kristian; Kværnø, Anne
2018-01-01
We discuss stochastic differential equations with a stiff linear part and their approximation by stochastic exponential integrators. Representing the exact and approximate solutions using B-series and rooted trees, we derive the order conditions for stochastic exponential integrators. The resulting...
Extending "the Rubber Rope": Convergent Series, Divergent Series and the Integrating Factor
McCartney, Mark
2013-01-01
A well-known mathematical puzzle regarding a worm crawling along an elastic rope is considered. The resulting generalizations provide examples for use in a teaching context including applications of series summation, the use of the integrating factor for the solution of differential equations, and the evaluation of definite integrals. A number of…
Empirical Vector Autoregressive Modeling
M. Ooms (Marius)
1993-01-01
textabstractChapter 2 introduces the baseline version of the VAR model, with its basic statistical assumptions that we examine in the sequel. We first check whether the variables in the VAR can be transformed to meet these assumptions. We analyze the univariate characteristics of the series.
International Nuclear Information System (INIS)
Altac, Zekeriya
2007-01-01
Generalized exponential integral functions (GEIF) are encountered in multi-dimensional thermal radiative transfer problems in the integral equation kernels. Several series expansions for the first-order generalized exponential integral function, along with a series expansion for the general nth order GEIF, are derived. The convergence issues of these series expansions are investigated numerically as well as theoretically, and a recurrence relation which does not require derivatives of the GEIF is developed. The exact series expansions of the two dimensional cylindrical and/or two-dimensional planar integral kernels as well as their spatial moments have been explicitly derived and compared with numerical values
Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity
Directory of Open Access Journals (Sweden)
Isao Ishida
2015-01-01
Full Text Available We introduce and investigate some properties of a class of nonlinear time series models based on the moving sample quantiles in the autoregressive data generating process. We derive a test fit to detect this type of nonlinearity. Using the daily realized volatility data of Standard & Poor’s 500 (S&P 500 and several other indices, we obtained good performance using these models in an out-of-sample forecasting exercise compared with the forecasts obtained based on the usual linear heterogeneous autoregressive and other models of realized volatility.
Incorporating measurement error in n = 1 psychological autoregressive modeling
Schuurman, Noémi K.; Houtveen, Jan H.; Hamaker, Ellen L.
2015-01-01
Measurement error is omnipresent in psychological data. However, the vast majority of applications of autoregressive time series analyses in psychology do not take measurement error into account. Disregarding measurement error when it is present in the data results in a bias of the autoregressive parameters. We discuss two models that take measurement error into account: An autoregressive model with a white noise term (AR+WN), and an autoregressive moving average (ARMA) model. In a simulation study we compare the parameter recovery performance of these models, and compare this performance for both a Bayesian and frequentist approach. We find that overall, the AR+WN model performs better. Furthermore, we find that for realistic (i.e., small) sample sizes, psychological research would benefit from a Bayesian approach in fitting these models. Finally, we illustrate the effect of disregarding measurement error in an AR(1) model by means of an empirical application on mood data in women. We find that, depending on the person, approximately 30–50% of the total variance was due to measurement error, and that disregarding this measurement error results in a substantial underestimation of the autoregressive parameters. PMID:26283988
Rapid Calculation of Spacecraft Trajectories Using Efficient Taylor Series Integration
Scott, James R.; Martini, Michael C.
2011-01-01
A variable-order, variable-step Taylor series integration algorithm was implemented in NASA Glenn's SNAP (Spacecraft N-body Analysis Program) code. SNAP is a high-fidelity trajectory propagation program that can propagate the trajectory of a spacecraft about virtually any body in the solar system. The Taylor series algorithm's very high order accuracy and excellent stability properties lead to large reductions in computer time relative to the code's existing 8th order Runge-Kutta scheme. Head-to-head comparison on near-Earth, lunar, Mars, and Europa missions showed that Taylor series integration is 15.8 times faster than Runge- Kutta on average, and is more accurate. These speedups were obtained for calculations involving central body, other body, thrust, and drag forces. Similar speedups have been obtained for calculations that include J2 spherical harmonic for central body gravitation. The algorithm includes a step size selection method that directly calculates the step size and never requires a repeat step. High-order Taylor series integration algorithms have been shown to provide major reductions in computer time over conventional integration methods in numerous scientific applications. The objective here was to directly implement Taylor series integration in an existing trajectory analysis code and demonstrate that large reductions in computer time (order of magnitude) could be achieved while simultaneously maintaining high accuracy. This software greatly accelerates the calculation of spacecraft trajectories. At each time level, the spacecraft position, velocity, and mass are expanded in a high-order Taylor series whose coefficients are obtained through efficient differentiation arithmetic. This makes it possible to take very large time steps at minimal cost, resulting in large savings in computer time. The Taylor series algorithm is implemented primarily through three subroutines: (1) a driver routine that automatically introduces auxiliary variables and
On the Stationarity of Multiple Autoregressive Approximants: Theory and Algorithms
1976-08-01
a I (3.4) Hannan and Terrell (1972) consider problems of a similar nature. Efficient estimates A(1),... , A(p) , and i of A(1)... ,A(p) and...34Autoregressive model fitting for control, Ann . Inst. Statist. Math., 23, 163-180. Hannan, E. J. (1970), Multiple Time Series, New York, John Wiley...Hannan, E. J. and Terrell , R. D. (1972), "Time series regression with linear constraints, " International Economic Review, 13, 189-200. Masani, P
Texture classification using autoregressive filtering
Lawton, W. M.; Lee, M.
1984-01-01
A general theory of image texture models is proposed and its applicability to the problem of scene segmentation using texture classification is discussed. An algorithm, based on half-plane autoregressive filtering, which optimally utilizes second order statistics to discriminate between texture classes represented by arbitrary wide sense stationary random fields is described. Empirical results of applying this algorithm to natural and sysnthesized scenes are presented and future research is outlined.
Autoregressive Moving Average Graph Filtering
Isufi, Elvin; Loukas, Andreas; Simonetto, Andrea; Leus, Geert
2016-01-01
One of the cornerstones of the field of signal processing on graphs are graph filters, direct analogues of classical filters, but intended for signals defined on graphs. This work brings forth new insights on the distributed graph filtering problem. We design a family of autoregressive moving average (ARMA) recursions, which (i) are able to approximate any desired graph frequency response, and (ii) give exact solutions for tasks such as graph signal denoising and interpolation. The design phi...
Application of Taylor-Series Integration to Reentry Problems with Wind
Bergsma, Michiel; Mooij, E.
2016-01-01
Taylor-series integration is a numerical integration technique that computes the Taylor series of state variables using recurrence relations and uses this series to propagate the state in time. A Taylor-series integration reentry integrator is developed and compared with the fifth-order
Ultrasonic series resonant converter with integrated L-C-T
CSIR Research Space (South Africa)
Smit, MC
1995-01-01
Full Text Available primary plate separation, w G bifilar primary 2EOE,NpW(h + To - T;) d C= where d plate width. Fig. 8. SPICE model of discrete component converter ~ 21 B. Spice Simulation The objective of the simulation is to show that the integrated structure... reacts in the same way as a discrete series inductor capacitor and transformer would do, and in turn agrees with the experimental results. Fig. 8 shows the SPICE circuit model of the discrete component series resonant converter. Inductance L...
Temporal aggregation in first order cointegrated vector autoregressive models
DEFF Research Database (Denmark)
La Cour, Lisbeth Funding; Milhøj, Anders
We study aggregation - or sample frequencies - of time series, e.g. aggregation from weekly to monthly or quarterly time series. Aggregation usually gives shorter time series but spurious phenomena, in e.g. daily observations, can on the other hand be avoided. An important issue is the effect of ...... of aggregation on the adjustment coefficient in cointegrated systems. We study only first order vector autoregressive processes for n dimensional time series Xt, and we illustrate the theory by a two dimensional and a four dimensional model for prices of various grades of gasoline...
Temporal aggregation in first order cointegrated vector autoregressive
DEFF Research Database (Denmark)
la Cour, Lisbeth Funding; Milhøj, Anders
2006-01-01
We study aggregation - or sample frequencies - of time series, e.g. aggregation from weekly to monthly or quarterly time series. Aggregation usually gives shorter time series but spurious phenomena, in e.g. daily observations, can on the other hand be avoided. An important issue is the effect of ...... of aggregation on the adjustment coefficient in cointegrated systems. We study only first order vector autoregressive processes for n dimensional time series Xt, and we illustrate the theory by a two dimensional and a four dimensional model for prices of various grades of gasoline....
International Nuclear Information System (INIS)
Wang, Jianzhou; Hu, Jianming
2015-01-01
With the increasing importance of wind power as a component of power systems, the problems induced by the stochastic and intermittent nature of wind speed have compelled system operators and researchers to search for more reliable techniques to forecast wind speed. This paper proposes a combination model for probabilistic short-term wind speed forecasting. In this proposed hybrid approach, EWT (Empirical Wavelet Transform) is employed to extract meaningful information from a wind speed series by designing an appropriate wavelet filter bank. The GPR (Gaussian Process Regression) model is utilized to combine independent forecasts generated by various forecasting engines (ARIMA (Autoregressive Integrated Moving Average), ELM (Extreme Learning Machine), SVM (Support Vector Machine) and LSSVM (Least Square SVM)) in a nonlinear way rather than the commonly used linear way. The proposed approach provides more probabilistic information for wind speed predictions besides improving the forecasting accuracy for single-value predictions. The effectiveness of the proposed approach is demonstrated with wind speed data from two wind farms in China. The results indicate that the individual forecasting engines do not consistently forecast short-term wind speed for the two sites, and the proposed combination method can generate a more reliable and accurate forecast. - Highlights: • The proposed approach can make probabilistic modeling for wind speed series. • The proposed approach adapts to the time-varying characteristic of the wind speed. • The hybrid approach can extract the meaningful components from the wind speed series. • The proposed method can generate adaptive, reliable and more accurate forecasting results. • The proposed model combines four independent forecasting engines in a nonlinear way.
Stable Parameter Estimation for Autoregressive Equations with Random Coefficients
Directory of Open Access Journals (Sweden)
V. B. Goryainov
2014-01-01
Full Text Available In recent yearsthere has been a growing interest in non-linear time series models. They are more flexible than traditional linear models and allow more adequate description of real data. Among these models a autoregressive model with random coefficients plays an important role. It is widely used in various fields of science and technology, for example, in physics, biology, economics and finance. The model parameters are the mean values of autoregressive coefficients. Their evaluation is the main task of model identification. The basic method of estimation is still the least squares method, which gives good results for Gaussian time series, but it is quite sensitive to even small disturbancesin the assumption of Gaussian observations. In this paper we propose estimates, which generalize the least squares estimate in the sense that the quadratic objective function is replaced by an arbitrary convex and even function. Reasonable choice of objective function allows you to keep the benefits of the least squares estimate and eliminate its shortcomings. In particular, you can make it so that they will be almost as effective as the least squares estimate in the Gaussian case, but almost never loose in accuracy with small deviations of the probability distribution of the observations from the Gaussian distribution.The main result is the proof of consistency and asymptotic normality of the proposed estimates in the particular case of the one-parameter model describing the stationary process with finite variance. Another important result is the finding of the asymptotic relative efficiency of the proposed estimates in relation to the least squares estimate. This allows you to compare the two estimates, depending on the probability distribution of innovation process and of autoregressive coefficients. The results can be used to identify an autoregressive process, especially with nonGaussian nature, and/or of autoregressive processes observed with gross
New series of 3 D lattice integrable models
International Nuclear Information System (INIS)
Mangazeev, V.V.; Sergeev, S.M.; Stroganov, Yu.G.
1993-01-01
In this paper we present a new series of 3-dimensional integrable lattice models with N colors. The weight functions of the models satisfy modified tetrahedron equations with N states and give a commuting family of two-layer transfer-matrices. The dependence on the spectral parameters corresponds to the static limit of the modified tetrahedron equations and weights are parameterized in terms of elliptic functions. The models contain two free parameters: elliptic modulus and additional parameter η. 12 refs
Recursive wind speed forecasting based on Hammerstein Auto-Regressive model
International Nuclear Information System (INIS)
Ait Maatallah, Othman; Achuthan, Ajit; Janoyan, Kerop; Marzocca, Pier
2015-01-01
Highlights: • Developed a new recursive WSF model for 1–24 h horizon based on Hammerstein model. • Nonlinear HAR model successfully captured chaotic dynamics of wind speed time series. • Recursive WSF intrinsic error accumulation corrected by applying rotation. • Model verified for real wind speed data from two sites with different characteristics. • HAR model outperformed both ARIMA and ANN models in terms of accuracy of prediction. - Abstract: A new Wind Speed Forecasting (WSF) model, suitable for a short term 1–24 h forecast horizon, is developed by adapting Hammerstein model to an Autoregressive approach. The model is applied to real data collected for a period of three years (2004–2006) from two different sites. The performance of HAR model is evaluated by comparing its prediction with the classical Autoregressive Integrated Moving Average (ARIMA) model and a multi-layer perceptron Artificial Neural Network (ANN). Results show that the HAR model outperforms both the ARIMA model and ANN model in terms of root mean square error (RMSE), mean absolute error (MAE), and Mean Absolute Percentage Error (MAPE). When compared to the conventional models, the new HAR model can better capture various wind speed characteristics, including asymmetric (non-gaussian) wind speed distribution, non-stationary time series profile, and the chaotic dynamics. The new model is beneficial for various applications in the renewable energy area, particularly for power scheduling
Kepler AutoRegressive Planet Search
Caceres, Gabriel Antonio; Feigelson, Eric
2016-01-01
The Kepler AutoRegressive Planet Search (KARPS) project uses statistical methodology associated with autoregressive (AR) processes to model Kepler lightcurves in order to improve exoplanet transit detection in systems with high stellar variability. We also introduce a planet-search algorithm to detect transits in time-series residuals after application of the AR models. One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The variability displayed by many stars may have autoregressive properties, wherein later flux values are correlated with previous ones in some manner. Our analysis procedure consisting of three steps: pre-processing of the data to remove discontinuities, gaps and outliers; AR-type model selection and fitting; and transit signal search of the residuals using a new Transit Comb Filter (TCF) that replaces traditional box-finding algorithms. The analysis procedures of the project are applied to a portion of the publicly available Kepler light curve data for the full 4-year mission duration. Tests of the methods have been made on a subset of Kepler Objects of Interest (KOI) systems, classified both as planetary `candidates' and `false positives' by the Kepler Team, as well as a random sample of unclassified systems. We find that the ARMA-type modeling successfully reduces the stellar variability, by a factor of 10 or more in active stars and by smaller factors in more quiescent stars. A typical quiescent Kepler star has an interquartile range (IQR) of ~10 e-/sec, which may improve slightly after modeling, while those with IQR ranging from 20 to 50 e-/sec, have improvements from 20% up to 70%. High activity stars (IQR exceeding 100) markedly improve. A periodogram based on the TCF is constructed to concentrate the signal of these periodic spikes. When a periodic transit is found, the model is displayed on a standard period-folded averaged light curve. Our findings to date on real
Kumaraswamy autoregressive moving average models for double bounded environmental data
Bayer, Fábio Mariano; Bayer, Débora Missio; Pumi, Guilherme
2017-12-01
In this paper we introduce the Kumaraswamy autoregressive moving average models (KARMA), which is a dynamic class of models for time series taking values in the double bounded interval (a,b) following the Kumaraswamy distribution. The Kumaraswamy family of distribution is widely applied in many areas, especially hydrology and related fields. Classical examples are time series representing rates and proportions observed over time. In the proposed KARMA model, the median is modeled by a dynamic structure containing autoregressive and moving average terms, time-varying regressors, unknown parameters and a link function. We introduce the new class of models and discuss conditional maximum likelihood estimation, hypothesis testing inference, diagnostic analysis and forecasting. In particular, we provide closed-form expressions for the conditional score vector and conditional Fisher information matrix. An application to environmental real data is presented and discussed.
Ağaç, Kübra; Koçak, Kasım; Deniz, Ali
2015-04-01
A time series approach using autoregressive model (AR), moving average model (MA) and seasonal autoregressive integrated moving average model (SARIMA) were used in this study to simulate and forecast daily PM10 concentrations in Kagithane Creek Valley, Istanbul. Hourly PM10 concentrations have been measured in Kagithane Creek Valley between 2010 and 2014 periods. Bosphorus divides the city in two parts as European and Asian parts. The historical part of the city takes place in Golden Horn. Our study area Kagithane Creek Valley is connected with this historical part. The study area is highly polluted because of its topographical structure and industrial activities. Also population density is extremely high in this site. The dispersion conditions are highly poor in this creek valley so it is necessary to calculate PM10 levels for air quality and human health. For given period there were some missing PM10 concentration values so to make an accurate calculations and to obtain exact results gap filling method was applied by Singular Spectrum Analysis (SSA). SSA is a new and efficient method for gap filling and it is an state-of-art modeling. SSA-MTM Toolkit was used for our study. SSA is considered as a noise reduction algorithm because it decomposes an original time series to trend (if exists), oscillatory and noise components by way of a singular value decomposition. The basic SSA algorithm has stages of decomposition and reconstruction. For given period daily and monthly PM10 concentrations were calculated and episodic periods are determined. Long term and short term PM10 concentrations were analyzed according to European Union (EU) standards. For simulation and forecasting of high level PM10 concentrations, meteorological data (wind speed, pressure and temperature) were used to see the relationship between daily PM10 concentrations. Fast Fourier Transformation (FFT) was also applied to the data to see the periodicity and according to these periods models were built
Behavioural Pattern of Causality Parameter of Autoregressive ...
African Journals Online (AJOL)
In this paper, a causal form of Autoregressive Moving Average process, ARMA (p, q) of various orders and behaviour of the causality parameter of ARMA model is investigated. It is deduced that the behaviour of causality parameter ψi depends on positive and negative values of autoregressive parameter φ and moving ...
One loop integration with hypergeometric series by using recursion relations
International Nuclear Information System (INIS)
Watanabe, Norihisa; Kaneko, Toshiaki
2014-01-01
General one-loop integrals with arbitrary mass and kinematical parameters in d-dimensional space-time are studied. By using Bernstein theorem, a recursion relation is obtained which connects (n + 1)-point to n-point functions. In solving this recursion relation, we have shown that one-loop integrals are expressed by a newly defined hypergeometric function, which is a special case of Aomoto-Gelfand hypergeometric functions. We have also obtained coefficients of power series expansion around 4-dimensional space-time for two-, three- and four-point functions. The numerical results are compared with ''LoopTools'' for the case of two- and three-point functions as examples
Generalizing Integrals Involving X [superscript X] and Series Involving N [superscript N
Osler, Thomas J.; Tsay, Jeffrey
2005-01-01
In this paper, the authors evaluate the series and integrals presented by P. Glaister. The authors show that this function has the Maclauren series expansion. The authors derive the series from the integral in two ways. The first derivation uses the technique employed by Glaister. The second derivation uses a change in variable in the integral.
The Integrated Tiger Series version 5.0
International Nuclear Information System (INIS)
Laub, Th.W.; Kensek, R.P.; Franke, B.C.; Lorence, L.J.; Crawford, M.J.; Quirk, Th.J.
2005-01-01
The Integrated Tiger Series (ITS) is a powerful and user-friendly software package permitting Monte Carlo solution of linear time-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. The package contains programs to perform 1-, 2-, and 3-dimensional simulations. Improvements in the ITS code package since the release of version 3.0 include improved physics, multigroup and adjoint capabilities, Computer-Aided Design geometry tracking, parallel implementations of all ITS codes, and more automated sub-zoning capabilities. These improvements and others are described as current or planned development efforts. The ITS package is currently at version 5.0. (authors)
Asymptotic series and functional integrals in quantum field theory
International Nuclear Information System (INIS)
Shirkov, D.V.
1979-01-01
Investigations of the methods for analyzing ultra-violet and infrared asymptotics in the quantum field theory (QFT) have been reviewed. A powerful method of the QFT analysis connected with the group property of renormalized transformations has been created at the first stage. The result of the studies of the second period is the constructive solution of the problem of outgoing the framework of weak coupling. At the third stage of studies essential are the asymptotic series and functional integrals in the QFT, which are used for obtaining the asymptotic type of the power expansion coefficients in the coupling constant at high values of the exponents for a number of simple models. Further advance to higher values of the coupling constant requires surmounting the difficulties resulting from the asymptotic character of expansions and a constructive application in the region of strong coupling (g >> 1)
Penalised Complexity Priors for Stationary Autoregressive Processes
Sø rbye, Sigrunn Holbek; Rue, Haavard
2017-01-01
The autoregressive (AR) process of order p(AR(p)) is a central model in time series analysis. A Bayesian approach requires the user to define a prior distribution for the coefficients of the AR(p) model. Although it is easy to write down some prior, it is not at all obvious how to understand and interpret the prior distribution, to ensure that it behaves according to the users' prior knowledge. In this article, we approach this problem using the recently developed ideas of penalised complexity (PC) priors. These prior have important properties like robustness and invariance to reparameterisations, as well as a clear interpretation. A PC prior is computed based on specific principles, where model component complexity is penalised in terms of deviation from simple base model formulations. In the AR(1) case, we discuss two natural base model choices, corresponding to either independence in time or no change in time. The latter case is illustrated in a survival model with possible time-dependent frailty. For higher-order processes, we propose a sequential approach, where the base model for AR(p) is the corresponding AR(p-1) model expressed using the partial autocorrelations. The properties of the new prior distribution are compared with the reference prior in a simulation study.
Penalised Complexity Priors for Stationary Autoregressive Processes
Sørbye, Sigrunn Holbek
2017-05-25
The autoregressive (AR) process of order p(AR(p)) is a central model in time series analysis. A Bayesian approach requires the user to define a prior distribution for the coefficients of the AR(p) model. Although it is easy to write down some prior, it is not at all obvious how to understand and interpret the prior distribution, to ensure that it behaves according to the users\\' prior knowledge. In this article, we approach this problem using the recently developed ideas of penalised complexity (PC) priors. These prior have important properties like robustness and invariance to reparameterisations, as well as a clear interpretation. A PC prior is computed based on specific principles, where model component complexity is penalised in terms of deviation from simple base model formulations. In the AR(1) case, we discuss two natural base model choices, corresponding to either independence in time or no change in time. The latter case is illustrated in a survival model with possible time-dependent frailty. For higher-order processes, we propose a sequential approach, where the base model for AR(p) is the corresponding AR(p-1) model expressed using the partial autocorrelations. The properties of the new prior distribution are compared with the reference prior in a simulation study.
THE ALLOMETRIC-AUTOREGRESSIVE MODEL IN GENETIC ...
African Journals Online (AJOL)
The application of an allometric-autoregressive model for the quantification of growth and efficiency of feed utilization for purposes of selection for ... be of value in genetic studies. ... mass) gives a fair indication of the cumulative preweaning.
CSIR Research Space (South Africa)
Fedotov, I
2006-07-01
Full Text Available The Combined Helmholtz Integral Equation – Fourier series Formulation (CHIEFF) is based on representation of a velocity potential in terms of Fourier series and finding the Fourier coefficients of this expansion. The solution could be substantially...
Dang, Shilpa; Chaudhury, Santanu; Lall, Brejesh; Roy, Prasun Kumar
2017-02-15
Effective connectivity (EC) analysis of neuronal groups using fMRI delivers insights about functional-integration. However, fMRI signal has low-temporal resolution due to down-sampling and indirectly measures underlying neuronal activity. The aim is to address above issues for more reliable EC estimates. This paper proposes use of autoregressive hidden Markov model with missing data (AR-HMM-md) in dynamically multi-linked (DML) framework for learning EC using multiple fMRI time series. In our recent work (Dang et al., 2016), we have shown how AR-HMM-md for modelling single fMRI time series outperforms the existing methods. AR-HMM-md models unobserved neuronal activity and lost data over time as variables and estimates their values by joint optimization given fMRI observation sequence. The effectiveness in learning EC is shown using simulated experiments. Also the effects of sampling and noise are studied on EC. Moreover, classification-experiments are performed for Attention-Deficit/Hyperactivity Disorder subjects and age-matched controls for performance evaluation of real data. Using Bayesian model selection, we see that the proposed model converged to higher log-likelihood and demonstrated that group-classification can be performed with higher cross-validation accuracy of above 94% using distinctive network EC which characterizes patients vs. The full data EC obtained from DML-AR-HMM-md is more consistent with previous literature than the classical multivariate Granger causality method. The proposed architecture leads to reliable estimates of EC than the existing latent models. This framework overcomes the disadvantage of low-temporal resolution and improves cross-validation accuracy significantly due to presence of missing data variables and autoregressive process. Copyright © 2016 Elsevier B.V. All rights reserved.
Model selection in periodic autoregressions
Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)
1994-01-01
textabstractThis paper focuses on the issue of period autoagressive time series models (PAR) selection in practice. One aspect of model selection is the choice for the appropriate PAR order. This can be of interest for the valuation of economic models. Further, the appropriate PAR order is important
High Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration
Scott, James R.; Martini, Michael C.
2008-01-01
Taylor series integration is implemented in a spacecraft trajectory analysis code-the Spacecraft N-body Analysis Program (SNAP) - and compared with the code s existing eighth-order Runge-Kutta Fehlberg time integration scheme. Nine trajectory problems, including near Earth, lunar, Mars and Europa missions, are analyzed. Head-to-head comparison at five different error tolerances shows that, on average, Taylor series is faster than Runge-Kutta Fehlberg by a factor of 15.8. Results further show that Taylor series has superior convergence properties. Taylor series integration proves that it can provide rapid, highly accurate solutions to spacecraft trajectory problems.
Further Generalized Integrals Involving x[superscript x] and Series Involving N[superscript N
Glaister, P.
2005-01-01
In this paper, the author gives a further simple generalization of a power series evaluation of an integral using Taylor series to derive the result. The author encourages readers to consider numerical methods to evaluate the integrals and sums. Such methods are suitable for use in courses in advanced calculus and numerical analysis.
Forecasting daily meteorological time series using ARIMA and regression models
Murat, Małgorzata; Malinowska, Iwona; Gos, Magdalena; Krzyszczak, Jaromir
2018-04-01
The daily air temperature and precipitation time series recorded between January 1, 1980 and December 31, 2010 in four European sites (Jokioinen, Dikopshof, Lleida and Lublin) from different climatic zones were modeled and forecasted. In our forecasting we used the methods of the Box-Jenkins and Holt- Winters seasonal auto regressive integrated moving-average, the autoregressive integrated moving-average with external regressors in the form of Fourier terms and the time series regression, including trend and seasonality components methodology with R software. It was demonstrated that obtained models are able to capture the dynamics of the time series data and to produce sensible forecasts.
Stock Market Autoregressive Dynamics: A Multinational Comparative Study with Quantile Regression
Directory of Open Access Journals (Sweden)
Lili Li
2016-01-01
Full Text Available We study the nonlinear autoregressive dynamics of stock index returns in seven major advanced economies (G7 and China. The quantile autoregression model (QAR enables us to investigate the autocorrelation across the whole spectrum of return distribution, which provides more insightful conditional information on multinational stock market dynamics than conventional time series models. The relation between index return and contemporaneous trading volume is also investigated. While prior studies have mixed results on stock market autocorrelations, we find that the dynamics is usually state dependent. The results for G7 stock markets exhibit conspicuous similarities, but they are in manifest contrast to the findings on Chinese stock markets.
Mixed Causal-Noncausal Autoregressions with Strictly Exogenous Regressors
Hecq, Alain; Issler, J.V.; Telg, Sean
2017-01-01
The mixed autoregressive causal-noncausal model (MAR) has been proposed to estimate economic relationships involving explosive roots in their autoregressive part, as they have stationary forward solutions. In previous work, possible exogenous variables in economic relationships are substituted into
Optimal Hedging with the Vector Autoregressive Model
L. Gatarek (Lukasz); S.G. Johansen (Soren)
2014-01-01
markdownabstract__Abstract__ We derive the optimal hedging ratios for a portfolio of assets driven by a Cointegrated Vector Autoregressive model with general cointegration rank. Our hedge is optimal in the sense of minimum variance portfolio. We consider a model that allows for the hedges to be
Interval Forecast for Smooth Transition Autoregressive Model ...
African Journals Online (AJOL)
In this paper, we propose a simple method for constructing interval forecast for smooth transition autoregressive (STAR) model. This interval forecast is based on bootstrapping the residual error of the estimated STAR model for each forecast horizon and computing various Akaike information criterion (AIC) function. This new ...
New interval forecast for stationary autoregressive models ...
African Journals Online (AJOL)
In this paper, we proposed a new forecasting interval for stationary Autoregressive, AR(p) models using the Akaike information criterion (AIC) function. Ordinarily, the AIC function is used to determine the order of an AR(p) process. In this study however, AIC forecast interval compared favorably with the theoretical forecast ...
Forecasting nuclear power supply with Bayesian autoregression
International Nuclear Information System (INIS)
Beck, R.; Solow, J.L.
1994-01-01
We explore the possibility of forecasting the quarterly US generation of electricity from nuclear power using a Bayesian autoregression model. In terms of forecasting accuracy, this approach compares favorably with both the Department of Energy's current forecasting methodology and their more recent efforts using ARIMA models, and it is extremely easy and inexpensive to implement. (author)
Oracle Inequalities for High Dimensional Vector Autoregressions
DEFF Research Database (Denmark)
Callot, Laurent; Kock, Anders Bredahl
This paper establishes non-asymptotic oracle inequalities for the prediction error and estimation accuracy of the LASSO in stationary vector autoregressive models. These inequalities are used to establish consistency of the LASSO even when the number of parameters is of a much larger order...
Directory of Open Access Journals (Sweden)
Mohammad Ghahremanzadeh
2014-06-01
Full Text Available Agriculture as one of the major economic sectors of Iran, has an important role in Gross Domestic Production by providing about 14% of GDP. This study attempts to forecast the value of the agriculture GDP using Periodic Autoregressive model (PAR, as the new seasonal time series techniques. To address this aim, the quarterly data were collected from March 1988 to July 1989. The collected data was firstly analyzed using periodic unit root test Franses & Paap (2004. The analysis found non-periodic unit root in the seasonal data. Second, periodic seasonal behavior (Boswijk & Franses, 1996 was examined. The results showed that periodic autoregressive model fits agriculture GDP well. This makes an accurate forecast of agriculture GDP possible. Using the estimated model, the future value of quarter agricultural GDP from March 2011 to July 2012was forecasted. With consideration to the fair fit of this model with agricultural GDP, It is recommended to use periodic autoregressive model for the future studies.
Directory of Open Access Journals (Sweden)
Usman M. Umer
2018-06-01
Full Text Available Travel and leisure recorded a consecutive robust growth and become among the fastest economic sectors in the world. Various forecasting models are proposed by researchers that serve as an early recommendation for investors and policy makers. Numerous studies proposed distinct forecasting models to predict the dynamics of this sector and provide early recommendation for investors and policy makers. In this paper, we compare the performance of smooth transition autoregressive (STAR and linear autoregressive (AR models using monthly returns of Turkey and FTSE travel and leisure index from April 1997 to August 2016. MSCI world index used as a proxy of the overall market. The result shows that nonlinear LSTAR model cannot improve the out-of-sample forecast of linear AR model. This finding demonstrates little to be gained from using LSTAR model in the prediction of travel and leisure stock index. Keywords: Nonlinear time-series, Out-of-sample forecasting, Smooth transition autoregressive, Travel and leisure
To center or not to center? Investigating inertia with a multilevel autoregressive model
Directory of Open Access Journals (Sweden)
Ellen L. Hamaker
2015-01-01
Full Text Available Whether level 1 predictors should be centered per cluster has received considerable attention in the multilevel literature. While most agree that there is no one preferred approach, it has also been argued that cluster mean centering is desirable when the within-cluster slope and the between-cluster slope are expected to deviate, and the main interest is in the within-cluster slope. However, we show in a series of simulations that if one has a multilevel autoregressive model in which the level 1 predictor is the lagged outcome variable (i.e., the outcome variable at the previous occasion, cluster mean centering will in general lead to a downward bias in the parameter estimate of the within-cluster slope (i.e., the autoregressive relationship. This is particularly relevant if the main question is whether there is on average an autoregressive effect. Nonetheless, we show that if the main interest is in estimating the effect of a level 2 predictor on the autoregressive parameter (i.e., a cross-level interaction, cluster mean centering should be preferred over other forms of centering. Hence, researchers should be clear on what is considered the main goal of their study, and base their choice of centering method on this when using a multilevel autoregressive model.
Management Ethics: Integrity at Work. Sage Series on Business Ethics.
Petrick, Joseph A.; Quinn, John F.
This book tries to redefine what it means for a manager to function with integrity and competence in the private and public sectors domestically and globally. It integrates theoretical work in both descriptive and normative ethics and incorporates legal, communication, quality, and organizational theories into a conceptual framework designed to…
An integral time series on simulated labeling using fractal structure
International Nuclear Information System (INIS)
Djainal, D.D.
1997-01-01
This research deals with the detection of time series of vertical two-phase flow, in attempt to developed an objective indicator of time series flow patterns. One of new method is fractal analysis which can complement conventional methods in the description of highly irregular fluctuations. in the present work, fractal analysis applied to analyze simulated boiling coolant signal. this simulated signals built by sum random elements in small subchannels of the coolant channel. Two modes are defined and both modes are characterized by their void fractions. in the case of unimodal-PDF signals, the difference between these modes is relative small. on other hand, bimodal-PDF signals have relative large range. in this research, fractal dimension can indicate the characters of that signals simulation
Time series analysis of the developed financial markets' integration using visibility graphs
Zhuang, Enyu; Small, Michael; Feng, Gang
2014-09-01
A time series representing the developed financial markets' segmentation from 1973 to 2012 is studied. The time series reveals an obvious market integration trend. To further uncover the features of this time series, we divide it into seven windows and generate seven visibility graphs. The measuring capabilities of the visibility graphs provide means to quantitatively analyze the original time series. It is found that the important historical incidents that influenced market integration coincide with variations in the measured graphical node degree. Through the measure of neighborhood span, the frequencies of the historical incidents are disclosed. Moreover, it is also found that large "cycles" and significant noise in the time series are linked to large and small communities in the generated visibility graphs. For large cycles, how historical incidents significantly affected market integration is distinguished by density and compactness of the corresponding communities.
Series-connected substrate-integrated lead-carbon hybrid ...
Indian Academy of Sciences (India)
Voltage-management circuit for the ultracapacitor is presented, and its effectiveness is validated ... and V2 = 1.84 V. Clearly, ultracapacitor C1 is operating ... affect the reliability of the overall system. ... 3.1 Performance data for substrate-integrated lead-carbon .... Financial support from Department of Science & Technol-.
Multistage Stochastic Programming via Autoregressive Sequences
Czech Academy of Sciences Publication Activity Database
Kaňková, Vlasta
2007-01-01
Roč. 15, č. 4 (2007), s. 99-110 ISSN 0572-3043 R&D Projects: GA ČR GA402/07/1113; GA ČR(CZ) GA402/06/0990; GA ČR GD402/03/H057 Institutional research plan: CEZ:AV0Z10750506 Keywords : Economic proceses * Multistage stochastic programming * autoregressive sequences * individual probability constraints Subject RIV: BB - Applied Statistics, Operational Research
On a new series of integrable nonlinear evolution equations
International Nuclear Information System (INIS)
Ichikawa, Y.H.; Wadati, Miki; Konno, Kimiaki; Shimizu, Tohru.
1980-10-01
Recent results of our research are surveyed in this report. The derivative nonlinear Schroedinger equation for the circular polarized Alfven wave admits the spiky soliton solutions for the plane wave boundary condition. The nonlinear equation for complex amplitude associated with the carrier wave is shown to be a generalized nonlinear Schroedinger equation, having the ordinary cubic nonlinear term and the derivative of cubic nonlinear term. A generalized scheme of the inverse scattering transformation has confirmed that superposition of the A-K-N-S scheme and the K-N scheme for the component equations valids for the generalized nonlinear Schroedinger equation. Then, two types of new integrable nonlinear evolution equation have been derived from our scheme of the inverse scattering transformation. One is the type of nonlinear Schroedinger equation, while the other is the type of Korteweg-de Vries equation. Brief discussions are presented for physical phenomena, which could be accounted by the second type of the new integrable nonlinear evolution equation. Lastly, the stationary solitary wave solutions have been constructed for the integrable nonlinear evolution equation of the second type. These solutions have peculiar structure that they are singular and discrete. It is a new challenge to construct singular potentials by the inverse scattering transformation. (author)
Asymptotically stable phase synchronization revealed by autoregressive circle maps
Drepper, F. R.
2000-11-01
A specially designed of nonlinear time series analysis is introduced based on phases, which are defined as polar angles in spaces spanned by a finite number of delayed coordinates. A canonical choice of the polar axis and a related implicit estimation scheme for the potentially underlying autoregressive circle map (next phase map) guarantee the invertibility of reconstructed phase space trajectories to the original coordinates. The resulting Fourier approximated, invertibility enforcing phase space map allows us to detect conditional asymptotic stability of coupled phases. This comparatively general synchronization criterion unites two existing generalizations of the old concept and can successfully be applied, e.g., to phases obtained from electrocardiogram and airflow recordings characterizing cardiorespiratory interaction.
Directory of Open Access Journals (Sweden)
Snezhana Georgieva Gocheva-Ilieva
2013-01-01
Full Text Available There are obtained integral form and recurrence representations for some Fourier series and connected with them Favard constants. The method is based on preliminary integration of Fourier series which permits to establish general recursion formulas for Favard constants. This gives the opportunity for effective summation of infinite series and calculation of some classes of multiple singular integrals by the Favard constants.
Mehdizadeh, Saeid; Behmanesh, Javad; Khalili, Keivan
2017-11-01
Precipitation plays an important role in determining the climate of a region. Precise estimation of precipitation is required to manage and plan water resources, as well as other related applications such as hydrology, climatology, meteorology and agriculture. Time series of hydrologic variables such as precipitation are composed of deterministic and stochastic parts. Despite this fact, the stochastic part of the precipitation data is not usually considered in modeling of precipitation process. As an innovation, the present study introduces three new hybrid models by integrating soft computing methods including multivariate adaptive regression splines (MARS), Bayesian networks (BN) and gene expression programming (GEP) with a time series model, namely generalized autoregressive conditional heteroscedasticity (GARCH) for modeling of the monthly precipitation. For this purpose, the deterministic (obtained by soft computing methods) and stochastic (obtained by GARCH time series model) parts are combined with each other. To carry out this research, monthly precipitation data of Babolsar, Bandar Anzali, Gorgan, Ramsar, Tehran and Urmia stations with different climates in Iran were used during the period of 1965-2014. Root mean square error (RMSE), relative root mean square error (RRMSE), mean absolute error (MAE) and determination coefficient (R2) were employed to evaluate the performance of conventional/single MARS, BN and GEP, as well as the proposed MARS-GARCH, BN-GARCH and GEP-GARCH hybrid models. It was found that the proposed novel models are more precise than single MARS, BN and GEP models. Overall, MARS-GARCH and BN-GARCH models yielded better accuracy than GEP-GARCH. The results of the present study confirmed the suitability of proposed methodology for precise modeling of precipitation.
Modeling of Volatility with Non-linear Time Series Model
Kim Song Yon; Kim Mun Chol
2013-01-01
In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.
Integrated Test and Evaluation (ITE) Flight Test Series 4
Marston, Michael
2016-01-01
The integrated Flight Test 4 (FT4) will gather data for the UAS researchers Sense and Avoid systems (referred to as Detect and Avoid in the RTCA SC 228 ToR) algorithms and pilot displays for candidate UAS systems in a relevant environment. The technical goals of FT4 are to: 1) perform end-to-end traffic encounter test of pilot guidance generated by DAA algorithms; 2) collect data to inform the initial Minimum Operational Performance Standards (MOPS) for Detect and Avoid systems. FT4 objectives and test infrastructure builds from previous UAS project simulations and flight tests. NASA Ames (ARC), NASA Armstrong (AFRC), and NASA Langley (LaRC) Research Centers will share responsibility for conducting the tests, each providing a test lab and critical functionality. UAS-NAS project support and participation on the 2014 flight test of ACAS Xu and DAA Self Separation (SS) significantly contributed to building up infrastructure and procedures for FT3 as well. The DAA Scripted flight test (FT4) will be conducted out of NASA Armstrong over an eight-week period beginning in April 2016.
International Nuclear Information System (INIS)
Quirk, Thomas J. IV
2004-01-01
The Integrated TIGER Series (ITS) is a software package that solves coupled electron-photon transport problems. ITS performs analog photon tracking for energies between 1 keV and 1 GeV. Unlike its deterministic counterpart, the Monte Carlo calculations of ITS do not require a memory-intensive meshing of phase space; however, its solutions carry statistical variations. Reducing these variations is heavily dependent on runtime. Monte Carlo simulations must therefore be both physically accurate and computationally efficient. Compton scattering is the dominant photon interaction above 100 keV and below 5-10 MeV, with higher cutoffs occurring in lighter atoms. In its current model of Compton scattering, ITS corrects the differential Klein-Nishina cross sections (which assumes a stationary, free electron) with the incoherent scattering function, a function dependent on both the momentum transfer and the atomic number of the scattering medium. While this technique accounts for binding effects on the scattering angle, it excludes the Doppler broadening the Compton line undergoes because of the momentum distribution in each bound state. To correct for these effects, Ribbefor's relativistic impulse approximation (IA) will be employed to create scattering cross section differential in both energy and angle for each element. Using the parameterizations suggested by Brusa et al., scattered photon energies and angle can be accurately sampled at a high efficiency with minimal physical data. Two-body kinematics then dictates the electron's scattered direction and energy. Finally, the atomic ionization is relaxed via Auger emission or fluorescence. Future work will extend these improvements in incoherent scattering to compounds and to adjoint calculations.
Chain binomial models and binomial autoregressive processes.
Weiss, Christian H; Pollett, Philip K
2012-09-01
We establish a connection between a class of chain-binomial models of use in ecology and epidemiology and binomial autoregressive (AR) processes. New results are obtained for the latter, including expressions for the lag-conditional distribution and related quantities. We focus on two types of chain-binomial model, extinction-colonization and colonization-extinction models, and present two approaches to parameter estimation. The asymptotic distributions of the resulting estimators are studied, as well as their finite-sample performance, and we give an application to real data. A connection is made with standard AR models, which also has implications for parameter estimation. © 2011, The International Biometric Society.
Medium- and Long-term Prediction of LOD Change with the Leap-step Autoregressive Model
Liu, Q. B.; Wang, Q. J.; Lei, M. F.
2015-09-01
It is known that the accuracies of medium- and long-term prediction of changes of length of day (LOD) based on the combined least-square and autoregressive (LS+AR) decrease gradually. The leap-step autoregressive (LSAR) model is more accurate and stable in medium- and long-term prediction, therefore it is used to forecast the LOD changes in this work. Then the LOD series from EOP 08 C04 provided by IERS (International Earth Rotation and Reference Systems Service) is used to compare the effectiveness of the LSAR and traditional AR methods. The predicted series resulted from the two models show that the prediction accuracy with the LSAR model is better than that from AR model in medium- and long-term prediction.
on the performance of Autoregressive Moving Average Polynomial
African Journals Online (AJOL)
Timothy Ademakinwa
Distributed Lag (PDL) model, Autoregressive Polynomial Distributed Lag ... Moving Average Polynomial Distributed Lag (ARMAPDL) model. ..... Global Journal of Mathematics and Statistics. Vol. 1. ... Business and Economic Research Center.
Non-Gaussian Autoregressive Processes with Tukey g-and-h Transformations
Yan, Yuan
2017-11-20
When performing a time series analysis of continuous data, for example from climate or environmental problems, the assumption that the process is Gaussian is often violated. Therefore, we introduce two non-Gaussian autoregressive time series models that are able to fit skewed and heavy-tailed time series data. Our two models are based on the Tukey g-and-h transformation. We discuss parameter estimation, order selection, and forecasting procedures for our models and examine their performances in a simulation study. We demonstrate the usefulness of our models by applying them to two sets of wind speed data.
Non-Gaussian Autoregressive Processes with Tukey g-and-h Transformations
Yan, Yuan; Genton, Marc G.
2017-01-01
When performing a time series analysis of continuous data, for example from climate or environmental problems, the assumption that the process is Gaussian is often violated. Therefore, we introduce two non-Gaussian autoregressive time series models that are able to fit skewed and heavy-tailed time series data. Our two models are based on the Tukey g-and-h transformation. We discuss parameter estimation, order selection, and forecasting procedures for our models and examine their performances in a simulation study. We demonstrate the usefulness of our models by applying them to two sets of wind speed data.
MACROECONOMIC FORECASTING USING BAYESIAN VECTOR AUTOREGRESSIVE APPROACH
Directory of Open Access Journals (Sweden)
D. Tutberidze
2017-04-01
Full Text Available There are many arguments that can be advanced to support the forecasting activities of business entities. The underlying argument in favor of forecasting is that managerial decisions are significantly dependent on proper evaluation of future trends as market conditions are constantly changing and require a detailed analysis of future dynamics. The article discusses the importance of using reasonable macro-econometric tool by suggesting the idea of conditional forecasting through a Vector Autoregressive (VAR modeling framework. Under this framework, a macroeconomic model for Georgian economy is constructed with the few variables believed to be shaping business environment. Based on the model, forecasts of macroeconomic variables are produced, and three types of scenarios are analyzed - a baseline and two alternative ones. The results of the study provide confirmatory evidence that suggested methodology is adequately addressing the research phenomenon and can be used widely by business entities in responding their strategic and operational planning challenges. Given this set-up, it is shown empirically that Bayesian Vector Autoregressive approach provides reasonable forecasts for the variables of interest.
Kepler AutoRegressive Planet Search (KARPS)
Caceres, Gabriel
2018-01-01
One of the main obstacles in detecting faint planetary transits is the intrinsic stellar variability of the host star. The Kepler AutoRegressive Planet Search (KARPS) project implements statistical methodology associated with autoregressive processes (in particular, ARIMA and ARFIMA) to model stellar lightcurves in order to improve exoplanet transit detection. We also develop a novel Transit Comb Filter (TCF) applied to the AR residuals which provides a periodogram analogous to the standard Box-fitting Least Squares (BLS) periodogram. We train a random forest classifier on known Kepler Objects of Interest (KOIs) using select features from different stages of this analysis, and then use ROC curves to define and calibrate the criteria to recover the KOI planet candidates with high fidelity. These statistical methods are detailed in a contributed poster (Feigelson et al., this meeting).These procedures are applied to the full DR25 dataset of NASA’s Kepler mission. Using the classification criteria, a vast majority of known KOIs are recovered and dozens of new KARPS Candidate Planets (KCPs) discovered, including ultra-short period exoplanets. The KCPs will be briefly presented and discussed.
Operational Overview for UAS Integration in the NAS Project Flight Test Series 3
Valkov, Steffi B.; Sternberg, Daniel; Marston, Michael
2018-01-01
The National Aeronautics and Space Administration Unmanned Aircraft Systems Integration in the National Airspace System Project has conducted a series of flight tests intended to support the reduction of barriers that prevent unmanned aircraft from flying without the required waivers from the Federal Aviation Administration. The 2015 Flight Test Series 3, supported two separate test configurations. The first configuration investigated the timing of Detect and Avoid alerting thresholds using a radar equipped unmanned vehicle and multiple live intruders flown at varying encounter geometries.
Linear and non-linear autoregressive models for short-term wind speed forecasting
International Nuclear Information System (INIS)
Lydia, M.; Suresh Kumar, S.; Immanuel Selvakumar, A.; Edwin Prem Kumar, G.
2016-01-01
Highlights: • Models for wind speed prediction at 10-min intervals up to 1 h built on time-series wind speed data. • Four different multivariate models for wind speed built based on exogenous variables. • Non-linear models built using three data mining algorithms outperform the linear models. • Autoregressive models based on wind direction perform better than other models. - Abstract: Wind speed forecasting aids in estimating the energy produced from wind farms. The soaring energy demands of the world and minimal availability of conventional energy sources have significantly increased the role of non-conventional sources of energy like solar, wind, etc. Development of models for wind speed forecasting with higher reliability and greater accuracy is the need of the hour. In this paper, models for predicting wind speed at 10-min intervals up to 1 h have been built based on linear and non-linear autoregressive moving average models with and without external variables. The autoregressive moving average models based on wind direction and annual trends have been built using data obtained from Sotavento Galicia Plc. and autoregressive moving average models based on wind direction, wind shear and temperature have been built on data obtained from Centre for Wind Energy Technology, Chennai, India. While the parameters of the linear models are obtained using the Gauss–Newton algorithm, the non-linear autoregressive models are developed using three different data mining algorithms. The accuracy of the models has been measured using three performance metrics namely, the Mean Absolute Error, Root Mean Squared Error and Mean Absolute Percentage Error.
Integrable deformations and scattering matrices for the N=2 supersymmetric discrete series
International Nuclear Information System (INIS)
Fendley, P.; Mathur, S.D.; Vafa, C.; Warner, N.P.
1990-01-01
We find integrable deformations of the N=2 supersymmetric minimal series of conformal models by discovering supermultiplets of conserved currents in the perturbed theories. Integrability for these models is closely related to the geometric structure of the perturbed superpotentials. The exact soliton spectrum can be read off from the superpotential and this is then used to determine the purely elastic scattering matrices for the perturbed massive theories. (orig.)
The ATOMFT integrator - Using Taylor series to solve ordinary differential equations
Berryman, Kenneth W.; Stanford, Richard H.; Breckheimer, Peter J.
1988-01-01
This paper discusses the application of ATOMFT, an integration package based on Taylor series solution with a sophisticated user interface. ATOMFT has the capabilities to allow the implementation of user defined functions and the solution of stiff and algebraic equations. Detailed examples, including the solutions to several astrodynamics problems, are presented. Comparisons with its predecessor ATOMCC and other modern integrators indicate that ATOMFT is a fast, accurate, and easy method to use to solve many differential equation problems.
The comparison study among several data transformations in autoregressive modeling
Setiyowati, Susi; Waluyo, Ramdhani Try
2015-12-01
In finance, the adjusted close of stocks are used to observe the performance of a company. The extreme prices, which may increase or decrease drastically, are often become particular concerned since it can impact to bankruptcy. As preventing action, the investors have to observe the future (forecasting) stock prices comprehensively. For that purpose, time series analysis could be one of statistical methods that can be implemented, for both stationary and non-stationary processes. Since the variability process of stocks prices tend to large and also most of time the extreme values are always exist, then it is necessary to do data transformation so that the time series models, i.e. autoregressive model, could be applied appropriately. One of popular data transformation in finance is return model, in addition to ratio of logarithm and some others Tukey ladder transformation. In this paper these transformations are applied to AR stationary models and non-stationary ARCH and GARCH models through some simulations with varying parameters. As results, this work present the suggestion table that shows transformations behavior for some condition of parameters and models. It is confirmed that the better transformation is obtained, depends on type of data distributions. In other hands, the parameter conditions term give significant influence either.
Dealing with Multiple Solutions in Structural Vector Autoregressive Models.
Beltz, Adriene M; Molenaar, Peter C M
2016-01-01
Structural vector autoregressive models (VARs) hold great potential for psychological science, particularly for time series data analysis. They capture the magnitude, direction of influence, and temporal (lagged and contemporaneous) nature of relations among variables. Unified structural equation modeling (uSEM) is an optimal structural VAR instantiation, according to large-scale simulation studies, and it is implemented within an SEM framework. However, little is known about the uniqueness of uSEM results. Thus, the goal of this study was to investigate whether multiple solutions result from uSEM analysis and, if so, to demonstrate ways to select an optimal solution. This was accomplished with two simulated data sets, an empirical data set concerning children's dyadic play, and modifications to the group iterative multiple model estimation (GIMME) program, which implements uSEMs with group- and individual-level relations in a data-driven manner. Results revealed multiple solutions when there were large contemporaneous relations among variables. Results also verified several ways to select the correct solution when the complete solution set was generated, such as the use of cross-validation, maximum standardized residuals, and information criteria. This work has immediate and direct implications for the analysis of time series data and for the inferences drawn from those data concerning human behavior.
Bias-correction in vector autoregressive models
DEFF Research Database (Denmark)
Engsted, Tom; Pedersen, Thomas Quistgaard
2014-01-01
We analyze the properties of various methods for bias-correcting parameter estimates in both stationary and non-stationary vector autoregressive models. First, we show that two analytical bias formulas from the existing literature are in fact identical. Next, based on a detailed simulation study......, we show that when the model is stationary this simple bias formula compares very favorably to bootstrap bias-correction, both in terms of bias and mean squared error. In non-stationary models, the analytical bias formula performs noticeably worse than bootstrapping. Both methods yield a notable...... improvement over ordinary least squares. We pay special attention to the risk of pushing an otherwise stationary model into the non-stationary region of the parameter space when correcting for bias. Finally, we consider a recently proposed reduced-bias weighted least squares estimator, and we find...
van den Broek, PLC; van Egmond, J; van Rijn, CM; Takens, F; Coenen, AML; Booij, LHDJ
2005-01-01
Background: This study assessed the feasibility of online calculation of the correlation integral (C(r)) aiming to apply C(r)derived statistics. For real-time application it is important to reduce calculation time. It is shown how our method works for EEG time series. Methods: To achieve online
Broek, P.L.C. van den; Egmond, J. van; Rijn, C.M. van; Takens, F.; Coenen, A.M.L.; Booij, L.H.D.J.
2005-01-01
This study assessed the feasibility of online calculation of the correlation integral (C(r)) aiming to apply C(r)-derived statistics. For real-time application it is important to reduce calculation time. It is shown how our method works for EEG time series. Methods: To achieve online calculation of
The principal series for a reductive symmetric space, II. Eisenstein integrals.
Ban, E.P. van den
1991-01-01
In this paper we develop a theory of Eisenstein integrals related to the principal series for a reductive symmetric space G=H: Here G is a real reductive group of Harish-Chandra's class, ? an involution of G and H an open subgroup of the group G ? of xed points for ?: The group G itself is a
Power Series Expansion of Propagator for Path Integral and Its Applications
International Nuclear Information System (INIS)
Ou Yuanjin; Liang Xianting
2007-01-01
In this paper we obtain a propagator of path integral for a harmonic oscillator and a driven harmonic oscillator by using the power series expansion. It is shown that our result for the harmonic oscillator is more exact than the previous one obtained with other approximation methods. By using the same method, we obtain a propagator of path integral for the driven harmonic oscillator, which does not have any exact expansion. The more exact propagators may improve the path integral results for these systems.
Medium- and Long-term Prediction of LOD Change by the Leap-step Autoregressive Model
Wang, Qijie
2015-08-01
The accuracy of medium- and long-term prediction of length of day (LOD) change base on combined least-square and autoregressive (LS+AR) deteriorates gradually. Leap-step autoregressive (LSAR) model can significantly reduce the edge effect of the observation sequence. Especially, LSAR model greatly improves the resolution of signals’ low-frequency components. Therefore, it can improve the efficiency of prediction. In this work, LSAR is used to forecast the LOD change. The LOD series from EOP 08 C04 provided by IERS is modeled by both the LSAR and AR models. The results of the two models are analyzed and compared. When the prediction length is between 10-30 days, the accuracy improvement is less than 10%. When the prediction length amounts to above 30 day, the accuracy improved obviously, with the maximum being around 19%. The results show that the LSAR model has higher prediction accuracy and stability in medium- and long-term prediction.
Long Series of GNSS Integrated Precipitable Water as a Climate Change Indicator
Directory of Open Access Journals (Sweden)
Kruczyk Michał
2015-12-01
Full Text Available This paper investigates information potential contained in tropospheric delay product for selected International GNSS Service (IGS stations in climatologic research. Long time series of daily averaged Integrated Precipitable Water (IPW can serve as climate indicator. The seasonal model of IPW change has been adjusted to the multi-year series (by the least square method. Author applied two modes: sinusoidal and composite (two or more oscillations. Even simple sinusoidal seasonal model (of daily IPW values series clearly represents diversity of world climates. Residuals in periods from 10 up to 17 years are searched for some long-term IPW trend – self-evident climate change indicator. Results are ambiguous: for some stations or periods IPW trends are quite clear, the following years (or the other station not visible. Method of fitting linear trend to IPW series does not influence considerably the value of linear trend. The results are mostly influenced by series length, completeness and data (e.g. meteorological quality. The longer and more homogenous IPW series, the better chance to estimate the magnitude of climatologic IPW changes.
An algebraic method for constructing stable and consistent autoregressive filters
International Nuclear Information System (INIS)
Harlim, John; Hong, Hoon; Robbins, Jacob L.
2015-01-01
In this paper, we introduce an algebraic method to construct stable and consistent univariate autoregressive (AR) models of low order for filtering and predicting nonlinear turbulent signals with memory depth. By stable, we refer to the classical stability condition for the AR model. By consistent, we refer to the classical consistency constraints of Adams–Bashforth methods of order-two. One attractive feature of this algebraic method is that the model parameters can be obtained without directly knowing any training data set as opposed to many standard, regression-based parameterization methods. It takes only long-time average statistics as inputs. The proposed method provides a discretization time step interval which guarantees the existence of stable and consistent AR model and simultaneously produces the parameters for the AR models. In our numerical examples with two chaotic time series with different characteristics of decaying time scales, we find that the proposed AR models produce significantly more accurate short-term predictive skill and comparable filtering skill relative to the linear regression-based AR models. These encouraging results are robust across wide ranges of discretization times, observation times, and observation noise variances. Finally, we also find that the proposed model produces an improved short-time prediction relative to the linear regression-based AR-models in forecasting a data set that characterizes the variability of the Madden–Julian Oscillation, a dominant tropical atmospheric wave pattern
Directory of Open Access Journals (Sweden)
Lo Kenneth
2012-08-01
Full Text Available Abstract Background Inference about regulatory networks from high-throughput genomics data is of great interest in systems biology. We present a Bayesian approach to infer gene regulatory networks from time series expression data by integrating various types of biological knowledge. Results We formulate network construction as a series of variable selection problems and use linear regression to model the data. Our method summarizes additional data sources with an informative prior probability distribution over candidate regression models. We extend the Bayesian model averaging (BMA variable selection method to select regulators in the regression framework. We summarize the external biological knowledge by an informative prior probability distribution over the candidate regression models. Conclusions We demonstrate our method on simulated data and a set of time-series microarray experiments measuring the effect of a drug perturbation on gene expression levels, and show that it outperforms leading regression-based methods in the literature.
Circular Conditional Autoregressive Modeling of Vector Fields.
Modlin, Danny; Fuentes, Montse; Reich, Brian
2012-02-01
As hurricanes approach landfall, there are several hazards for which coastal populations must be prepared. Damaging winds, torrential rains, and tornadoes play havoc with both the coast and inland areas; but, the biggest seaside menace to life and property is the storm surge. Wind fields are used as the primary forcing for the numerical forecasts of the coastal ocean response to hurricane force winds, such as the height of the storm surge and the degree of coastal flooding. Unfortunately, developments in deterministic modeling of these forcings have been hindered by computational expenses. In this paper, we present a multivariate spatial model for vector fields, that we apply to hurricane winds. We parameterize the wind vector at each site in polar coordinates and specify a circular conditional autoregressive (CCAR) model for the vector direction, and a spatial CAR model for speed. We apply our framework for vector fields to hurricane surface wind fields for Hurricane Floyd of 1999 and compare our CCAR model to prior methods that decompose wind speed and direction into its N-S and W-E cardinal components.
BiGGEsTS: integrated environment for biclustering analysis of time series gene expression data
Directory of Open Access Journals (Sweden)
Madeira Sara C
2009-07-01
Full Text Available Abstract Background The ability to monitor changes in expression patterns over time, and to observe the emergence of coherent temporal responses using expression time series, is critical to advance our understanding of complex biological processes. Biclustering has been recognized as an effective method for discovering local temporal expression patterns and unraveling potential regulatory mechanisms. The general biclustering problem is NP-hard. In the case of time series this problem is tractable, and efficient algorithms can be used. However, there is still a need for specialized applications able to take advantage of the temporal properties inherent to expression time series, both from a computational and a biological perspective. Findings BiGGEsTS makes available state-of-the-art biclustering algorithms for analyzing expression time series. Gene Ontology (GO annotations are used to assess the biological relevance of the biclusters. Methods for preprocessing expression time series and post-processing results are also included. The analysis is additionally supported by a visualization module capable of displaying informative representations of the data, including heatmaps, dendrograms, expression charts and graphs of enriched GO terms. Conclusion BiGGEsTS is a free open source graphical software tool for revealing local coexpression of genes in specific intervals of time, while integrating meaningful information on gene annotations. It is freely available at: http://kdbio.inesc-id.pt/software/biggests. We present a case study on the discovery of transcriptional regulatory modules in the response of Saccharomyces cerevisiae to heat stress.
Variable Selection in Time Series Forecasting Using Random Forests
Directory of Open Access Journals (Sweden)
Hristos Tyralis
2017-10-01
Full Text Available Time series forecasting using machine learning algorithms has gained popularity recently. Random forest is a machine learning algorithm implemented in time series forecasting; however, most of its forecasting properties have remained unexplored. Here we focus on assessing the performance of random forests in one-step forecasting using two large datasets of short time series with the aim to suggest an optimal set of predictor variables. Furthermore, we compare its performance to benchmarking methods. The first dataset is composed by 16,000 simulated time series from a variety of Autoregressive Fractionally Integrated Moving Average (ARFIMA models. The second dataset consists of 135 mean annual temperature time series. The highest predictive performance of RF is observed when using a low number of recent lagged predictor variables. This outcome could be useful in relevant future applications, with the prospect to achieve higher predictive accuracy.
Forecasting and simulating wind speed in Corsica by using an autoregressive model
International Nuclear Information System (INIS)
Poggi, P.; Muselli, M.; Notton, G.; Cristofari, C.; Louche, A.
2003-01-01
Alternative approaches for generating wind speed time series are discussed. The method utilized involves the use of an autoregressive process model. The model has been applied to three Mediterranean sites in Corsica and has been used to generate 3-hourly synthetic time series for these considered sites. The synthetic time series have been examined to determine their ability to preserve the statistical properties of the Corsican wind speed time series. In this context, using the main statistical characteristics of the wind speed (mean, variance, probability distribution, autocorrelation function), the data simulated are compared to experimental ones in order to check whether the wind speed behavior was correctly reproduced over the studied periods. The purpose is to create a data generator in order to construct a reference year for wind systems simulation in Corsica
A Two-Factor Autoregressive Moving Average Model Based on Fuzzy Fluctuation Logical Relationships
Directory of Open Access Journals (Sweden)
Shuang Guan
2017-10-01
Full Text Available Many of the existing autoregressive moving average (ARMA forecast models are based on one main factor. In this paper, we proposed a new two-factor first-order ARMA forecast model based on fuzzy fluctuation logical relationships of both a main factor and a secondary factor of a historical training time series. Firstly, we generated a fluctuation time series (FTS for two factors by calculating the difference of each data point with its previous day, then finding the absolute means of the two FTSs. We then constructed a fuzzy fluctuation time series (FFTS according to the defined linguistic sets. The next step was establishing fuzzy fluctuation logical relation groups (FFLRGs for a two-factor first-order autoregressive (AR(1 model and forecasting the training data with the AR(1 model. Then we built FFLRGs for a two-factor first-order autoregressive moving average (ARMA(1,m model. Lastly, we forecasted test data with the ARMA(1,m model. To illustrate the performance of our model, we used real Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX and Dow Jones datasets as a secondary factor to forecast TAIEX. The experiment results indicate that the proposed two-factor fluctuation ARMA method outperformed the one-factor method based on real historic data. The secondary factor may have some effects on the main factor and thereby impact the forecasting results. Using fuzzified fluctuations rather than fuzzified real data could avoid the influence of extreme values in historic data, which performs negatively while forecasting. To verify the accuracy and effectiveness of the model, we also employed our method to forecast the Shanghai Stock Exchange Composite Index (SHSECI from 2001 to 2015 and the international gold price from 2000 to 2010.
High-Speed Solution of Spacecraft Trajectory Problems Using Taylor Series Integration
Scott, James R.; Martini, Michael C.
2010-01-01
It has been known for some time that Taylor series (TS) integration is among the most efficient and accurate numerical methods in solving differential equations. However, the full benefit of the method has yet to be realized in calculating spacecraft trajectories, for two main reasons. First, most applications of Taylor series to trajectory propagation have focused on relatively simple problems of orbital motion or on specific problems and have not provided general applicability. Second, applications that have been more general have required use of a preprocessor, which inevitably imposes constraints on computational efficiency. The latter approach includes the work of Berryman et al., who solved the planetary n-body problem with relativistic effects. Their work specifically noted the computational inefficiencies arising from use of a preprocessor and pointed out the potential benefit of manually coding derivative routines. In this Engineering Note, we report on a systematic effort to directly implement Taylor series integration in an operational trajectory propagation code: the Spacecraft N-Body Analysis Program (SNAP). The present Taylor series implementation is unique in that it applies to spacecraft virtually anywhere in the solar system and can be used interchangeably with another integration method. SNAP is a high-fidelity trajectory propagator that includes force models for central body gravitation with N X N harmonics, other body gravitation with N X N harmonics, solar radiation pressure, atmospheric drag (for Earth orbits), and spacecraft thrusting (including shadowing). The governing equations are solved using an eighth-order Runge-Kutta Fehlberg (RKF) single-step method with variable step size control. In the present effort, TS is implemented by way of highly integrated subroutines that can be used interchangeably with RKF. This makes it possible to turn TS on or off during various phases of a mission. Current TS force models include central body
A Mixture Innovation Heterogeneous Autoregressive Model for Structural Breaks and Long Memory
DEFF Research Database (Denmark)
Nonejad, Nima
We propose a flexible model to describe nonlinearities and long-range dependence in time series dynamics. Our model is an extension of the heterogeneous autoregressive model. Structural breaks occur through mixture distributions in state innovations of linear Gaussian state space models. Monte...... Carlo simulations evaluate the properties of the estimation procedures. Results show that the proposed model is viable and flexible for purposes of forecasting volatility. Model uncertainty is accounted for by employing Bayesian model averaging. Bayesian model averaging provides very competitive...... forecasts compared to any single model specification. It provides further improvements when we average over nonlinear specifications....
DEFF Research Database (Denmark)
Chon, K H; Cohen, R J; Holstein-Rathlou, N H
1997-01-01
A linear and nonlinear autoregressive moving average (ARMA) identification algorithm is developed for modeling time series data. The algorithm uses Laguerre expansion of kernals (LEK) to estimate Volterra-Wiener kernals. However, instead of estimating linear and nonlinear system dynamics via moving...... average models, as is the case for the Volterra-Wiener analysis, we propose an ARMA model-based approach. The proposed algorithm is essentially the same as LEK, but this algorithm is extended to include past values of the output as well. Thus, all of the advantages associated with using the Laguerre...
International Nuclear Information System (INIS)
Devine, R.T.; Hsu, Hsiao-Hua
1994-01-01
The current basis for conversion coefficients for calibrating individual photon dosimeters in terms of dose equivalents is found in the series of papers by Grosswent. In his calculation the collision kerma inside the phantom is determined by calculation of the energy fluence at the point of interest and the use of the mass energy absorption coefficient. This approximates the local absorbed dose. Other Monte Carlo methods can be sued to provide calculations of the conversion coefficients. Rogers has calculated fluence-to-dose equivalent conversion factors with the Electron-Gamma Shower Version 3, EGS3, Monte Carlo program and produced results similar to Grosswent's calculations. This paper will report on calculations using the Integrated TIGER Series Version 3, ITS3, code to calculate the conversion coefficients in ICRU Tissue and in PMMA. A complete description of the input parameters to the program is given and comparison to previous results is included
Time Series Modelling of Syphilis Incidence in China from 2005 to 2012.
Zhang, Xingyu; Zhang, Tao; Pei, Jiao; Liu, Yuanyuan; Li, Xiaosong; Medrano-Gracia, Pau
2016-01-01
The infection rate of syphilis in China has increased dramatically in recent decades, becoming a serious public health concern. Early prediction of syphilis is therefore of great importance for heath planning and management. In this paper, we analyzed surveillance time series data for primary, secondary, tertiary, congenital and latent syphilis in mainland China from 2005 to 2012. Seasonality and long-term trend were explored with decomposition methods. Autoregressive integrated moving average (ARIMA) was used to fit a univariate time series model of syphilis incidence. A separate multi-variable time series for each syphilis type was also tested using an autoregressive integrated moving average model with exogenous variables (ARIMAX). The syphilis incidence rates have increased three-fold from 2005 to 2012. All syphilis time series showed strong seasonality and increasing long-term trend. Both ARIMA and ARIMAX models fitted and estimated syphilis incidence well. All univariate time series showed highest goodness-of-fit results with the ARIMA(0,0,1)×(0,1,1) model. Time series analysis was an effective tool for modelling the historical and future incidence of syphilis in China. The ARIMAX model showed superior performance than the ARIMA model for the modelling of syphilis incidence. Time series correlations existed between the models for primary, secondary, tertiary, congenital and latent syphilis.
Time Series Modelling of Syphilis Incidence in China from 2005 to 2012
Zhang, Xingyu; Zhang, Tao; Pei, Jiao; Liu, Yuanyuan; Li, Xiaosong; Medrano-Gracia, Pau
2016-01-01
Background The infection rate of syphilis in China has increased dramatically in recent decades, becoming a serious public health concern. Early prediction of syphilis is therefore of great importance for heath planning and management. Methods In this paper, we analyzed surveillance time series data for primary, secondary, tertiary, congenital and latent syphilis in mainland China from 2005 to 2012. Seasonality and long-term trend were explored with decomposition methods. Autoregressive integrated moving average (ARIMA) was used to fit a univariate time series model of syphilis incidence. A separate multi-variable time series for each syphilis type was also tested using an autoregressive integrated moving average model with exogenous variables (ARIMAX). Results The syphilis incidence rates have increased three-fold from 2005 to 2012. All syphilis time series showed strong seasonality and increasing long-term trend. Both ARIMA and ARIMAX models fitted and estimated syphilis incidence well. All univariate time series showed highest goodness-of-fit results with the ARIMA(0,0,1)×(0,1,1) model. Conclusion Time series analysis was an effective tool for modelling the historical and future incidence of syphilis in China. The ARIMAX model showed superior performance than the ARIMA model for the modelling of syphilis incidence. Time series correlations existed between the models for primary, secondary, tertiary, congenital and latent syphilis. PMID:26901682
International Nuclear Information System (INIS)
Plotnikov, M G
2007-01-01
Several properties of generalized multivariate integrals are considered. In the two-dimensional case the consistency of the regular Perron integral is proved, as well as the consistency of a generalized integral solving the problem of the recovery of the coefficients of double Haar series in a certain class. Several generalizations of Skvortsov's well-known theorem are obtained as consequences, for instance, the following result: if a double Haar series converges for some ρ element of (0,1/2] ρ-regularly everywhere in the unit square to a finite function that is Perron-integrable in the ρ-regular sense, then the series in question is the Fourier-Perron series of its sum. Bibliography: 20 titles.
International Nuclear Information System (INIS)
Benmouiza, Khalil; Cheknane, Ali
2013-01-01
Highlights: • An unsupervised clustering algorithm with a neural network model was explored. • The forecasting results of solar radiation time series and the comparison of their performance was simulated. • A new method was proposed combining k-means algorithm and NAR network to provide better prediction results. - Abstract: In this paper, we review our work for forecasting hourly global horizontal solar radiation based on the combination of unsupervised k-means clustering algorithm and artificial neural networks (ANN). k-Means algorithm focused on extracting useful information from the data with the aim of modeling the time series behavior and find patterns of the input space by clustering the data. On the other hand, nonlinear autoregressive (NAR) neural networks are powerful computational models for modeling and forecasting nonlinear time series. Taking the advantage of both methods, a new method was proposed combining k-means algorithm and NAR network to provide better forecasting results
Outlier Detection in Structural Time Series Models
DEFF Research Database (Denmark)
Marczak, Martyna; Proietti, Tommaso
investigate via Monte Carlo simulations how this approach performs for detecting additive outliers and level shifts in the analysis of nonstationary seasonal time series. The reference model is the basic structural model, featuring a local linear trend, possibly integrated of order two, stochastic seasonality......Structural change affects the estimation of economic signals, like the underlying growth rate or the seasonally adjusted series. An important issue, which has attracted a great deal of attention also in the seasonal adjustment literature, is its detection by an expert procedure. The general......–to–specific approach to the detection of structural change, currently implemented in Autometrics via indicator saturation, has proven to be both practical and effective in the context of stationary dynamic regression models and unit–root autoregressions. By focusing on impulse– and step–indicator saturation, we...
A complex autoregressive model and application to monthly temperature forecasts
Directory of Open Access Journals (Sweden)
X. Gu
2005-11-01
Full Text Available A complex autoregressive model was established based on the mathematic derivation of the least squares for the complex number domain which is referred to as the complex least squares. The model is different from the conventional way that the real number and the imaginary number are separately calculated. An application of this new model shows a better forecast than forecasts from other conventional statistical models, in predicting monthly temperature anomalies in July at 160 meteorological stations in mainland China. The conventional statistical models include an autoregressive model, where the real number and the imaginary number are separately disposed, an autoregressive model in the real number domain, and a persistence-forecast model.
Lana, X.; Burgueño, A.; Serra, C.; Martínez, M. D.
2017-01-01
Dry spell lengths, DSL, defined as the number of consecutive days with daily rain amounts below a given threshold, may provide relevant information about drought regimes. Taking advantage of a daily pluviometric database covering a great extension of Europe, a detailed analysis of the multifractality of the dry spell regimes is achieved. At the same time, an autoregressive process is applied with the aim of predicting DSL. A set of parameters, namely Hurst exponent, H, estimated from multifractal spectrum, f( α), critical Hölder exponent, α 0, for which f( α) reaches its maximum value, spectral width, W, and spectral asymmetry, B, permits a first clustering of European rain gauges in terms of the complexity of their DSL series. This set of parameters also allows distinguishing between time series describing fine- or smooth-structure of the DSL regime by using the complexity index, CI. Results of previous monofractal analyses also permits establishing comparisons between smooth-structures, relatively low correlation dimensions, notable predictive instability and anti-persistence of DSL for European areas, sometimes submitted to long droughts. Relationships are also found between the CI and the mean absolute deviation, MAD, and the optimum autoregressive order, OAO, of an ARIMA( p, d,0) autoregressive process applied to the DSL series. The detailed analysis of the discrepancies between empiric and predicted DSL underlines the uncertainty over predictability of long DSL, particularly for the Mediterranean region.
Characterization of autoregressive processes using entropic quantifiers
Traversaro, Francisco; Redelico, Francisco O.
2018-01-01
The aim of the contribution is to introduce a novel information plane, the causal-amplitude informational plane. As previous works seems to indicate, Bandt and Pompe methodology for estimating entropy does not allow to distinguish between probability distributions which could be fundamental for simulation or for probability analysis purposes. Once a time series is identified as stochastic by the causal complexity-entropy informational plane, the novel causal-amplitude gives a deeper understanding of the time series, quantifying both, the autocorrelation strength and the probability distribution of the data extracted from the generating processes. Two examples are presented, one from climate change model and the other from financial markets.
Forecasting Marine Corps Enlisted Manpower Inventory Levels With Univariate Time Series Models
National Research Council Canada - National Science Library
Feiring, Douglas I
2006-01-01
.... Models are developed for 44 representative population groups using Holt-Winters exponential smoothing, multiplicative decomposition, and Box-Jenkins autoregressive integrated moving average (ARIMA...
Application of autoregressive moving average model in reactor noise analysis
International Nuclear Information System (INIS)
Tran Dinh Tri
1993-01-01
The application of an autoregressive (AR) model to estimating noise measurements has achieved many successes in reactor noise analysis in the last ten years. The physical processes that take place in the nuclear reactor, however, are described by an autoregressive moving average (ARMA) model rather than by an AR model. Consequently more correct results could be obtained by applying the ARMA model instead of the AR model to reactor noise analysis. In this paper the system of the generalised Yule-Walker equations is derived from the equation of an ARMA model, then a method for its solution is given. Numerical results show the applications of the method proposed. (author)
Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes
International Nuclear Information System (INIS)
Smith, L.M.; Hochstedler, R.D.
1997-01-01
Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code)
Accelerating execution of the integrated TIGER series Monte Carlo radiation transport codes
Smith, L. M.; Hochstedler, R. D.
1997-02-01
Execution of the integrated TIGER series (ITS) of coupled electron/photon Monte Carlo radiation transport codes has been accelerated by modifying the FORTRAN source code for more efficient computation. Each member code of ITS was benchmarked and profiled with a specific test case that directed the acceleration effort toward the most computationally intensive subroutines. Techniques for accelerating these subroutines included replacing linear search algorithms with binary versions, replacing the pseudo-random number generator, reducing program memory allocation, and proofing the input files for geometrical redundancies. All techniques produced identical or statistically similar results to the original code. Final benchmark timing of the accelerated code resulted in speed-up factors of 2.00 for TIGER (the one-dimensional slab geometry code), 1.74 for CYLTRAN (the two-dimensional cylindrical geometry code), and 1.90 for ACCEPT (the arbitrary three-dimensional geometry code).
Estimation bias and bias correction in reduced rank autoregressions
DEFF Research Database (Denmark)
Nielsen, Heino Bohn
2017-01-01
This paper characterizes the finite-sample bias of the maximum likelihood estimator (MLE) in a reduced rank vector autoregression and suggests two simulation-based bias corrections. One is a simple bootstrap implementation that approximates the bias at the MLE. The other is an iterative root...
A note on intrinsic conditional autoregressive models for disconnected graphs
Freni-Sterrantino, Anna; Ventrucci, Massimo; Rue, Haavard
2018-01-01
In this note we discuss (Gaussian) intrinsic conditional autoregressive (CAR) models for disconnected graphs, with the aim of providing practical guidelines for how these models should be defined, scaled and implemented. We show how these suggestions can be implemented in two examples, on disease mapping.
Robust bayesian analysis of an autoregressive model with ...
African Journals Online (AJOL)
In this work, robust Bayesian analysis of the Bayesian estimation of an autoregressive model with exponential innovations is performed. Using a Bayesian robustness methodology, we show that, using a suitable generalized quadratic loss, we obtain optimal Bayesian estimators of the parameters corresponding to the ...
Optimal hedging with the cointegrated vector autoregressive model
DEFF Research Database (Denmark)
Gatarek, Lukasz; Johansen, Søren
We derive the optimal hedging ratios for a portfolio of assets driven by a Coin- tegrated Vector Autoregressive model (CVAR) with general cointegration rank. Our hedge is optimal in the sense of minimum variance portfolio. We consider a model that allows for the hedges to be cointegrated with the...
A note on intrinsic conditional autoregressive models for disconnected graphs
Freni-Sterrantino, Anna
2018-05-23
In this note we discuss (Gaussian) intrinsic conditional autoregressive (CAR) models for disconnected graphs, with the aim of providing practical guidelines for how these models should be defined, scaled and implemented. We show how these suggestions can be implemented in two examples, on disease mapping.
An extension of cointegration to fractional autoregressive processes
DEFF Research Database (Denmark)
Johansen, Søren
This paper contains an overview of some recent results on the statistical analysis of cofractional processes, see Johansen and Nielsen (2010). We first give an brief summary of the analysis of cointegration in the vector autoregressive model and then show how this can be extended to fractional pr...
Truncation of the Series Expressions in the Advanced ENZ-Theory of Diffraction Integrals
van Haver, S.; Janssen, A. J. E. M.
2014-09-01
The point-spread function (PSF) is used in optics for design and assessment of the imaging capabilities of an optical system. It is therefore of vital importance that this PSF can be calculated fast and accurately. In the past 12 years, the Extended Nijboer-Zernike (ENZ) approach has been developed for the purpose of semi-analytic evaluation of the PSF, for circularly symmetric optical systems, in the focal region. In the earliest ENZ-years, the Debye approximation of the diffraction integral, by which the PSF is given, was considered for the very basic situation of a low-NA optical system and relatively small defocus values, so that a scalar treatment was allowed with a focal factor comprising a quadratic function in the exponential. At present, the ENZ-method allows calculation of the PSF in low- and high-NA cases, in scalar form and for vector fields (including polarization), for large wave-front aberrations, including amplitude non-uniformities, using a quasi-spherical phase focal factor in a virtually unlimited focal range around the focal plane, and no limitations in the off-axis direction. Additionally, the application range of the method has been broadened and generalized to the calculation of aerial images of extended objects by including the finite distance of the object to the entrance pupil. Also imaging into a multi-layer is now possible by accounting for both forward and backward propagation in the layers. In the advanced ENZ-approach, the generalized, complex-valued pupil function is developed into a series of Zernike circle polynomials, with exponential azimuthal dependence (having cosine/sine azimuthal dependence as special cases). For each Zernike term, the diffraction integral reduces after azimuthal integration to an integral that can be expressed as an infinite double series involving spherical Bessel functions, accounting for the parameters of the optical system and the defocus value, and Jinc functions comprising the radial off-axis value
Time series analysis of reference crop evapotranspiration for Bokaro District, Jharkhand, India
Directory of Open Access Journals (Sweden)
Gautam Ratnesh
2016-09-01
Full Text Available Evapotranspiration is the one of the major role playing element in water cycle. More accurate measurement and forecasting of Evapotranspiration would enable more efficient water resources management. This study, is therefore, particularly focused on evapotranspiration modelling and forecasting, since forecasting would provide better information for optimal water resources management. There are numerous techniques of evapotranspiration forecasting that include autoregressive (AR and moving average (MA, autoregressive moving average (ARMA, autoregressive integrated moving average (ARIMA, Thomas Feiring, etc. Out of these models ARIMA model has been found to be more suitable for analysis and forecasting of hydrological events. Therefore, in this study ARIMA models have been used for forecasting of mean monthly reference crop evapotranspiration by stochastic analysis. The data series of 102 years i.e. 1224 months of Bokaro District were used for analysis and forecasting. Different order of ARIMA model was selected on the basis of autocorrelation function (ACF and partial autocorrelation (PACF of data series. Maximum likelihood method was used for determining the parameters of the models. To see the statistical parameter of model, best fitted model is ARIMA (0, 1, 4 (0, 1, 112.
On nonstationarity and antipersistency in global temperature series
KäRner, O.
2002-10-01
Statistical analysis is carried out for satellite-based global daily tropospheric and stratospheric temperature anomaly and solar irradiance data sets. Behavior of the series appears to be nonstationary with stationary daily increments. Estimating long-range dependence between the increments reveals a remarkable difference between the two temperature series. Global average tropospheric temperature anomaly behaves similarly to the solar irradiance anomaly. Their daily increments show antipersistency for scales longer than 2 months. The property points at a cumulative negative feedback in the Earth climate system governing the tropospheric variability during the last 22 years. The result emphasizes a dominating role of the solar irradiance variability in variations of the tropospheric temperature and gives no support to the theory of anthropogenic climate change. The global average stratospheric temperature anomaly proceeds like a 1-dim random walk at least up to 11 years, allowing good presentation by means of the autoregressive integrated moving average (ARIMA) models for monthly series.
Neural network versus classical time series forecasting models
Nor, Maria Elena; Safuan, Hamizah Mohd; Shab, Noorzehan Fazahiyah Md; Asrul, Mohd; Abdullah, Affendi; Mohamad, Nurul Asmaa Izzati; Lee, Muhammad Hisyam
2017-05-01
Artificial neural network (ANN) has advantage in time series forecasting as it has potential to solve complex forecasting problems. This is because ANN is data driven approach which able to be trained to map past values of a time series. In this study the forecast performance between neural network and classical time series forecasting method namely seasonal autoregressive integrated moving average models was being compared by utilizing gold price data. Moreover, the effect of different data preprocessing on the forecast performance of neural network being examined. The forecast accuracy was evaluated using mean absolute deviation, root mean square error and mean absolute percentage error. It was found that ANN produced the most accurate forecast when Box-Cox transformation was used as data preprocessing.
A revival of the autoregressive distributed lag model in estimating energy demand relationships
Energy Technology Data Exchange (ETDEWEB)
Bentzen, J.; Engsted, T.
1999-07-01
The findings in the recent energy economics literature that energy economic variables are non-stationary, have led to an implicit or explicit dismissal of the standard autoregressive distribution lag (ARDL) model in estimating energy demand relationships. However, Pesaran and Shin (1997) show that the ARDL model remains valid when the underlying variables are non-stationary, provided the variables are co-integrated. In this paper we use the ARDL approach to estimate a demand relationship for Danish residential energy consumption, and the ARDL estimates are compared to the estimates obtained using co-integration techniques and error-correction models (ECM's). It turns out that both quantitatively and qualitatively, the ARDL approach and the co-integration/ECM approach give very similar results. (au)
A revival of the autoregressive distributed lag model in estimating energy demand relationships
Energy Technology Data Exchange (ETDEWEB)
Bentzen, J; Engsted, T
1999-07-01
The findings in the recent energy economics literature that energy economic variables are non-stationary, have led to an implicit or explicit dismissal of the standard autoregressive distribution lag (ARDL) model in estimating energy demand relationships. However, Pesaran and Shin (1997) show that the ARDL model remains valid when the underlying variables are non-stationary, provided the variables are co-integrated. In this paper we use the ARDL approach to estimate a demand relationship for Danish residential energy consumption, and the ARDL estimates are compared to the estimates obtained using co-integration techniques and error-correction models (ECM's). It turns out that both quantitatively and qualitatively, the ARDL approach and the co-integration/ECM approach give very similar results. (au)
ITS - The integrated TIGER series of coupled electron/photon Monte Carlo transport codes
International Nuclear Information System (INIS)
Halbleib, J.A.; Mehlhorn, T.A.
1985-01-01
The TIGER series of time-independent coupled electron/photon Monte Carlo transport codes is a group of multimaterial, multidimensional codes designed to provide a state-of-the-art description of the production and transport of the electron/photon cascade. The codes follow both electrons and photons from 1.0 GeV down to 1.0 keV, and the user has the option of combining the collisional transport with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence. Source particles can be either electrons or photons. The most important output data are (a) charge and energy deposition profiles, (b) integral and differential escape coefficients for both electrons and photons, (c) differential electron and photon flux, and (d) pulse-height distributions for selected regions of the problem geometry. The base codes of the series differ from one another primarily in their dimensionality and geometric modeling. They include (a) a one-dimensional multilayer code, (b) a code that describes the transport in two-dimensional axisymmetric cylindrical material geometries with a fully three-dimensional description of particle trajectories, and (c) a general three-dimensional transport code which employs a combinatorial geometry scheme. These base codes were designed primarily for describing radiation transport for those situations in which the detailed atomic structure of the transport medium is not important. For some applications, it is desirable to have a more detailed model of the low energy transport. The system includes three additional codes that contain a more elaborate ionization/relaxation model than the base codes. Finally, the system includes two codes that combine the collisional transport of the multidimensional base codes with transport in macroscopic electric and magnetic fields of arbitrary spatial dependence
Gálvez, Juan Manuel; Castillo, Daniel; Herrera, Luis Javier; San Román, Belén; Valenzuela, Olga; Ortuño, Francisco Manuel; Rojas, Ignacio
2018-01-01
Most of the research studies developed applying microarray technology to the characterization of different pathological states of any disease may fail in reaching statistically significant results. This is largely due to the small repertoire of analysed samples, and to the limitation in the number of states or pathologies usually addressed. Moreover, the influence of potential deviations on the gene expression quantification is usually disregarded. In spite of the continuous changes in omic sciences, reflected for instance in the emergence of new Next-Generation Sequencing-related technologies, the existing availability of a vast amount of gene expression microarray datasets should be properly exploited. Therefore, this work proposes a novel methodological approach involving the integration of several heterogeneous skin cancer series, and a later multiclass classifier design. This approach is thus a way to provide the clinicians with an intelligent diagnosis support tool based on the use of a robust set of selected biomarkers, which simultaneously distinguishes among different cancer-related skin states. To achieve this, a multi-platform combination of microarray datasets from Affymetrix and Illumina manufacturers was carried out. This integration is expected to strengthen the statistical robustness of the study as well as the finding of highly-reliable skin cancer biomarkers. Specifically, the designed operation pipeline has allowed the identification of a small subset of 17 differentially expressed genes (DEGs) from which to distinguish among 7 involved skin states. These genes were obtained from the assessment of a number of potential batch effects on the gene expression data. The biological interpretation of these genes was inspected in the specific literature to understand their underlying information in relation to skin cancer. Finally, in order to assess their possible effectiveness in cancer diagnosis, a cross-validation Support Vector Machines (SVM
Volatility Behaviors of Financial Time Series by Percolation System on Sierpinski Carpet Lattice
Pei, Anqi; Wang, Jun
2015-01-01
The financial time series is simulated and investigated by the percolation system on the Sierpinski carpet lattice, where percolation is usually employed to describe the behavior of connected clusters in a random graph, and the Sierpinski carpet lattice is a graph which corresponds the fractal — Sierpinski carpet. To study the fluctuation behavior of returns for the financial model and the Shanghai Composite Index, we establish a daily volatility measure — multifractal volatility (MFV) measure to obtain MFV series, which have long-range cross-correlations with squared daily return series. The autoregressive fractionally integrated moving average (ARFIMA) model is used to analyze the MFV series, which performs better when compared to other volatility series. By a comparative study of the multifractality and volatility analysis of the data, the simulation data of the proposed model exhibits very similar behaviors to those of the real stock index, which indicates somewhat rationality of the model to the market application.
Likelihood inference for a nonstationary fractional autoregressive model
DEFF Research Database (Denmark)
Johansen, Søren; Ørregård Nielsen, Morten
2010-01-01
This paper discusses model-based inference in an autoregressive model for fractional processes which allows the process to be fractional of order d or d-b. Fractional differencing involves infinitely many past values and because we are interested in nonstationary processes we model the data X1......,...,X_{T} given the initial values X_{-n}, n=0,1,..., as is usually done. The initial values are not modeled but assumed to be bounded. This represents a considerable generalization relative to all previous work where it is assumed that initial values are zero. For the statistical analysis we assume...... the conditional Gaussian likelihood and for the probability analysis we also condition on initial values but assume that the errors in the autoregressive model are i.i.d. with suitable moment conditions. We analyze the conditional likelihood and its derivatives as stochastic processes in the parameters, including...
Mathematical model with autoregressive process for electrocardiogram signals
Evaristo, Ronaldo M.; Batista, Antonio M.; Viana, Ricardo L.; Iarosz, Kelly C.; Szezech, José D., Jr.; Godoy, Moacir F. de
2018-04-01
The cardiovascular system is composed of the heart, blood and blood vessels. Regarding the heart, cardiac conditions are determined by the electrocardiogram, that is a noninvasive medical procedure. In this work, we propose autoregressive process in a mathematical model based on coupled differential equations in order to obtain the tachograms and the electrocardiogram signals of young adults with normal heartbeats. Our results are compared with experimental tachogram by means of Poincaré plot and dentrended fluctuation analysis. We verify that the results from the model with autoregressive process show good agreement with experimental measures from tachogram generated by electrical activity of the heartbeat. With the tachogram we build the electrocardiogram by means of coupled differential equations.
CICAAR - Convolutive ICA with an Auto-Regressive Inverse Model
DEFF Research Database (Denmark)
Dyrholm, Mads; Hansen, Lars Kai
2004-01-01
We invoke an auto-regressive IIR inverse model for convolutive ICA and derive expressions for the likelihood and its gradient. We argue that optimization will give a stable inverse. When there are more sensors than sources the mixing model parameters are estimated in a second step by least square...... estimation. We demonstrate the method on synthetic data and finally separate speech and music in a real room recording....
Testing exact rational expectations in cointegrated vector autoregressive models
DEFF Research Database (Denmark)
Johansen, Søren; Swensen, Anders Rygh
1999-01-01
This paper considers the testing of restrictions implied by rational expectations hypotheses in a cointegrated vector autoregressive model for I(1) variables. If the rational expectations involve one-step-ahead observations only and the coefficients are known, an explicit parameterization...... of the restrictions is found, and the maximum-likelihood estimator is derived by regression and reduced rank regression. An application is given to a present value model....
Clustering of financial time series
D'Urso, Pierpaolo; Cappelli, Carmela; Di Lallo, Dario; Massari, Riccardo
2013-05-01
This paper addresses the topic of classifying financial time series in a fuzzy framework proposing two fuzzy clustering models both based on GARCH models. In general clustering of financial time series, due to their peculiar features, needs the definition of suitable distance measures. At this aim, the first fuzzy clustering model exploits the autoregressive representation of GARCH models and employs, in the framework of a partitioning around medoids algorithm, the classical autoregressive metric. The second fuzzy clustering model, also based on partitioning around medoids algorithm, uses the Caiado distance, a Mahalanobis-like distance, based on estimated GARCH parameters and covariances that takes into account the information about the volatility structure of time series. In order to illustrate the merits of the proposed fuzzy approaches an application to the problem of classifying 29 time series of Euro exchange rates against international currencies is presented and discussed, also comparing the fuzzy models with their crisp version.
CSIR Research Space (South Africa)
Shatalov, MY
2006-01-01
Full Text Available -scale structure to guarantee the numerical accuracy of solution. In the present paper the authors propose to use a novel method of solution of the Helmholtz integral equation, which is based on expansion of the integrands in double Fourier series. The main...
Forecasting Cryptocurrencies Financial Time Series
Catania, Leopoldo; Grassi, Stefano; Ravazzolo, Francesco
2018-01-01
This paper studies the predictability of cryptocurrencies time series. We compare several alternative univariate and multivariate models in point and density forecasting of four of the most capitalized series: Bitcoin, Litecoin, Ripple and Ethereum. We apply a set of crypto–predictors and rely on Dynamic Model Averaging to combine a large set of univariate Dynamic Linear Models and several multivariate Vector Autoregressive models with different forms of time variation. We find statistical si...
DEFF Research Database (Denmark)
Pinson, Pierre; Madsen, Henrik
2012-01-01
optimized is based on penalized maximum likelihood, with exponential forgetting of past observations. MSAR models are then employed for one-step-ahead point forecasting of 10 min resolution time series of wind power at two large offshore wind farms. They are favourably compared against persistence......Wind power production data at temporal resolutions of a few minutes exhibit successive periods with fluctuations of various dynamic nature and magnitude, which cannot be explained (so far) by the evolution of some explanatory variable. Our proposal is to capture this regime-switching behaviour...... and autoregressive models. It is finally shown that the main interest of MSAR models lies in their ability to generate interval/density forecasts of significantly higher skill....
Shi, Jinfei; Zhu, Songqing; Chen, Ruwen
2017-12-01
An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.
Sin, Kuek Jia; Cheong, Chin Wen; Hooi, Tan Siow
2017-04-01
This study aims to investigate the crude oil volatility using a two components autoregressive conditional heteroscedasticity (ARCH) model with the inclusion of abrupt jump feature. The model is able to capture abrupt jumps, news impact, clustering volatility, long persistence volatility and heavy-tailed distributed error which are commonly observed in the crude oil time series. For the empirical study, we have selected the WTI crude oil index from year 2000 to 2016. The results found that by including the multiple-abrupt jumps in ARCH model, there are significant improvements of estimation evaluations as compared with the standard ARCH models. The outcomes of this study can provide useful information for risk management and portfolio analysis in the crude oil markets.
Zhao, Yu Xi; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi
2018-04-01
Hydrological process evaluation is temporal dependent. Hydrological time series including dependence components do not meet the data consistency assumption for hydrological computation. Both of those factors cause great difficulty for water researches. Given the existence of hydrological dependence variability, we proposed a correlationcoefficient-based method for significance evaluation of hydrological dependence based on auto-regression model. By calculating the correlation coefficient between the original series and its dependence component and selecting reasonable thresholds of correlation coefficient, this method divided significance degree of dependence into no variability, weak variability, mid variability, strong variability, and drastic variability. By deducing the relationship between correlation coefficient and auto-correlation coefficient in each order of series, we found that the correlation coefficient was mainly determined by the magnitude of auto-correlation coefficient from the 1 order to p order, which clarified the theoretical basis of this method. With the first-order and second-order auto-regression models as examples, the reasonability of the deduced formula was verified through Monte-Carlo experiments to classify the relationship between correlation coefficient and auto-correlation coefficient. This method was used to analyze three observed hydrological time series. The results indicated the coexistence of stochastic and dependence characteristics in hydrological process.
Pekár, Stano; Michalko, Radek; Korenko, Stanislav; Sedo, Ondřej; Líznarová, Eva; Sentenská, Lenka; Zdráhal, Zbyněk
2013-02-01
Several hypotheses have been put forward to explain the evolution of prey specificity (stenophagy). Yet little light has so far been shed on the process of evolution of stenophagy in carnivorous predators. We performed a detailed analysis of a variety of trophic adaptations in one species. Our aim was to determine whether a specific form of stenophagy, myrmecophagy, has evolved from euryphagy via parallel changes in several traits from pre-existing characters. For that purpose, we studied the trophic niche and morphological, behavioural, venomic and physiological adaptations in a euryphagous spider, Selamia reticulata. It is a species that is branching off earlier in phylogeny than stenophagous ant-eating spiders of the genus Zodarion (both Zodariidae). The natural diet was wide and included ants. Laboratory feeding trials revealed versatile prey capture strategies that are effective on ants and other prey types. The performance of spiders on two different diets - ants only and mixed insects - failed to reveal differences in most fitness components (survival and developmental rate). However, the weight increase was significantly higher in spiders on the mixed diet. As a result, females on a mixed diet had higher fecundity and oviposited earlier. No differences were found in incubation period, hatching success or spiderling size. S. reticulata possesses a more diverse venom composition than Zodarion. Its venom is more effective for the immobilisation of beetle larvae than of ants. Comparative analysis of morphological traits related to myrmecophagy in the family Zodariidae revealed that their apomorphic states appeared gradually along the phylogeny to derived prey-specialised genera. Our results suggest that myrmecophagy has evolved gradually from the ancestral euryphagous strategy by integrating a series of trophic traits. Copyright © 2012 Elsevier GmbH. All rights reserved.
Comparison of Classical and Robust Estimates of Threshold Auto-regression Parameters
Directory of Open Access Journals (Sweden)
V. B. Goryainov
2017-01-01
Full Text Available The study object is the first-order threshold auto-regression model with a single zero-located threshold. The model describes a stochastic temporal series with discrete time by means of a piecewise linear equation consisting of two linear classical first-order autoregressive equations. One of these equations is used to calculate a running value of the temporal series. A control variable that determines the choice between these two equations is the sign of the previous value of the same series.The first-order threshold autoregressive model with a single threshold depends on two real parameters that coincide with the coefficients of the piecewise linear threshold equation. These parameters are assumed to be unknown. The paper studies an estimate of the least squares, an estimate the least modules, and the M-estimates of these parameters. The aim of the paper is a comparative study of the accuracy of these estimates for the main probabilistic distributions of the updating process of the threshold autoregressive equation. These probability distributions were normal, contaminated normal, logistic, double-exponential distributions, a Student's distribution with different number of degrees of freedom, and a Cauchy distribution.As a measure of the accuracy of each estimate, was chosen its variance to measure the scattering of the estimate around the estimated parameter. An estimate with smaller variance made from the two estimates was considered to be the best. The variance was estimated by computer simulation. To estimate the smallest modules an iterative weighted least-squares method was used and the M-estimates were done by the method of a deformable polyhedron (the Nelder-Mead method. To calculate the least squares estimate, an explicit analytic expression was used.It turned out that the estimation of least squares is best only with the normal distribution of the updating process. For the logistic distribution and the Student's distribution with the
Grimm, C. A.
This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…
Modeling Polio Data Using the First Order Non-Negative Integer-Valued Autoregressive, INAR(1), Model
Vazifedan, Turaj; Shitan, Mahendran
Time series data may consists of counts, such as the number of road accidents, the number of patients in a certain hospital, the number of customers waiting for service at a certain time and etc. When the value of the observations are large it is usual to use Gaussian Autoregressive Moving Average (ARMA) process to model the time series. However if the observed counts are small, it is not appropriate to use ARMA process to model the observed phenomenon. In such cases we need to model the time series data by using Non-Negative Integer valued Autoregressive (INAR) process. The modeling of counts data is based on the binomial thinning operator. In this paper we illustrate the modeling of counts data using the monthly number of Poliomyelitis data in United States between January 1970 until December 1983. We applied the AR(1), Poisson regression model and INAR(1) model and the suitability of these models were assessed by using the Index of Agreement(I.A.). We found that INAR(1) model is more appropriate in the sense it had a better I.A. and it is natural since the data are counts.
Unit root vector autoregression with volatility induced stationarity
DEFF Research Database (Denmark)
Rahbek, Anders; Nielsen, Heino Bohn
We propose a discrete-time multivariate model where lagged levels of the process enter both the conditional mean and the conditional variance. This way we allow for the empirically observed persistence in time series such as interest rates, often implying unit-roots, while at the same time maintain...... and geometrically ergodic. Interestingly, these conditions include the case of unit roots and a reduced rank structure in the conditional mean, known from linear co-integration to imply non-stationarity. Asymptotic theory of the maximum likelihood estimators for a particular structured case (so-called self...
Unit Root Vector Autoregression with volatility Induced Stationarity
DEFF Research Database (Denmark)
Rahbek, Anders; Nielsen, Heino Bohn
We propose a discrete-time multivariate model where lagged levels of the process enter both the conditional mean and the conditional variance. This way we allow for the empirically observed persistence in time series such as interest rates, often implying unit-roots, while at the same time maintain...... and geometrically ergodic. Interestingly, these conditions include the case of unit roots and a reduced rank structure in the conditional mean, known from linear co-integration to imply non-stationarity. Asymptotic theory of the maximum likelihood estimators for a particular structured case (so-called self...
A Network for Integrated Science and Mathematics Teaching and Learning. NCSTL Monograph Series, #2.
Berlin, Donna F.; White, Arthur L.
This monograph presents a summary of the results of the Wingspread Conference in April, 1991 concerning the viability and future of the concept of integration of mathematics and science teaching and learning. The conference focused on three critical issues: (1) development of definitions of integration and a rationale for integrated teaching and…
Bias-corrected estimation in potentially mildly explosive autoregressive models
DEFF Research Database (Denmark)
Haufmann, Hendrik; Kruse, Robinson
This paper provides a comprehensive Monte Carlo comparison of different finite-sample bias-correction methods for autoregressive processes. We consider classic situations where the process is either stationary or exhibits a unit root. Importantly, the case of mildly explosive behaviour is studied...... that the indirect inference approach oers a valuable alternative to other existing techniques. Its performance (measured by its bias and root mean squared error) is balanced and highly competitive across many different settings. A clear advantage is its applicability for mildly explosive processes. In an empirical...
Analysis of nonlinear systems using ARMA [autoregressive moving average] models
International Nuclear Information System (INIS)
Hunter, N.F. Jr.
1990-01-01
While many vibration systems exhibit primarily linear behavior, a significant percentage of the systems encountered in vibration and model testing are mildly to severely nonlinear. Analysis methods for such nonlinear systems are not yet well developed and the response of such systems is not accurately predicted by linear models. Nonlinear ARMA (autoregressive moving average) models are one method for the analysis and response prediction of nonlinear vibratory systems. In this paper we review the background of linear and nonlinear ARMA models, and illustrate the application of these models to nonlinear vibration systems. We conclude by summarizing the advantages and disadvantages of ARMA models and emphasizing prospects for future development. 14 refs., 11 figs
Testing the Conditional Mean Function of Autoregressive Conditional Duration Models
DEFF Research Database (Denmark)
Hautsch, Nikolaus
be subject to censoring structures. In an empirical study based on financial transaction data we present an application of the model to estimate conditional asset price change probabilities. Evaluating the forecasting properties of the model, it is shown that the proposed approach is a promising competitor......This paper proposes a dynamic proportional hazard (PH) model with non-specified baseline hazard for the modelling of autoregressive duration processes. A categorization of the durations allows us to reformulate the PH model as an ordered response model based on extreme value distributed errors...
Palm oil price forecasting model: An autoregressive distributed lag (ARDL) approach
Hamid, Mohd Fahmi Abdul; Shabri, Ani
2017-05-01
Palm oil price fluctuated without any clear trend or cyclical pattern in the last few decades. The instability of food commodities price causes it to change rapidly over time. This paper attempts to develop Autoregressive Distributed Lag (ARDL) model in modeling and forecasting the price of palm oil. In order to use ARDL as a forecasting model, this paper modifies the data structure where we only consider lagged explanatory variables to explain the variation in palm oil price. We then compare the performance of this ARDL model with a benchmark model namely ARIMA in term of their comparative forecasting accuracy. This paper also utilize ARDL bound testing approach to co-integration in examining the short run and long run relationship between palm oil price and its determinant; production, stock, and price of soybean as the substitute of palm oil and price of crude oil. The comparative forecasting accuracy suggests that ARDL model has a better forecasting accuracy compared to ARIMA.
DEFF Research Database (Denmark)
Lassen Kaspersen, Line; Føyn, Tullik Helene Ystanes
This paper investigates price transmission for agricultural commodities between world markets and the Ugandan market in an attempt to determine the impact of world market prices on the Ugandan market. Based on the realization that price formation is not a static concept, a dynamic vector...... price relations, i.e. the price variations between geographically separated markets in Uganda and the world markets. Our analysis indicates that food markets in Uganda, based on our study of sorghum price transmission, are not integrated into world markets, and that oil prices are a very determining...... autoregressive (VAR) model is presented. The prices of Robusta coffee and sorghum are examined, as both of these crops are important for the domestic economy of Uganda – Robusta as a cash crop, mainly traded internationally, and sorghum for consumption at household level. The analysis focuses on the spatial...
Osredkar, Damjan; Derganc, Metka; Paro-Panjan, Darja; Neubauer, David
2006-01-01
Aim: To assess the diagnostic value of amplitude-integrated electroencephalography (EEG) in comparison to standard EEG in newborns without severe hypoxic-ischemic encephalopathy who were at risk for seizures. Methods: The study included a consecutive series of 18 term newborns without severe hypoxic-ischemic encephalopathy, but with clinical signs suspicious of epileptic seizures, history of loss of social contact, disturbance of muscle tone, hyperirritability, and/or jitteriness. Amplitud...
International Nuclear Information System (INIS)
Dekker, H.
1978-01-01
The lagrangian for the action occurring in the path integral solution of the nonlinear Fokker-Planck equation with constant diffusion function is derived by means of a straightforward Fourier series analysis. In this manner the path between the prepoint and the postpoint in the short time propagator is not restricted a priori to the usually considered straight line. Earlier results by Graham, Stratonovich, Horsthemke and Back, and the author's are recovered and thus put on much safer ground. (Auth.)
Directory of Open Access Journals (Sweden)
Cristhian Moreno-Chaparro
2011-12-01
Full Text Available This paper proposes a monthly electricity forecast method for the National Interconnected System (SIN of Colombia. The method preprocesses the time series using a Multiresolution Analysis (MRA with Discrete Wavelet Transform (DWT; a study for the selection of the mother wavelet and her order, as well as the level decomposition was carried out. Given that original series follows a non-linear behaviour, a neural nonlinear autoregressive (NAR model was used. The prediction was obtained by adding the forecast trend with the estimated obtained by the residual series combined with further components extracted from preprocessing. A bibliographic review of studies conducted internationally and in Colombia is included, in addition to references to investigations made with wavelet transform applied to electric energy prediction and studies reporting the use of NAR in prediction.
Suharsono, Agus; Aziza, Auliya; Pramesti, Wara
2017-12-01
Capital markets can be an indicator of the development of a country's economy. The presence of capital markets also encourages investors to trade; therefore investors need information and knowledge of which shares are better. One way of making decisions for short-term investments is the need for modeling to forecast stock prices in the period to come. Issue of stock market-stock integration ASEAN is very important. The problem is that ASEAN does not have much time to implement one market in the economy, so it would be very interesting if there is evidence whether the capital market in the ASEAN region, especially the countries of Indonesia, Malaysia, Philippines, Singapore and Thailand deserve to be integrated or still segmented. Furthermore, it should also be known and proven What kind of integration is happening: what A capital market affects only the market Other capital, or a capital market only Influenced by other capital markets, or a Capital market as well as affecting as well Influenced by other capital markets in one ASEAN region. In this study, it will compare forecasting of Indonesian share price (IHSG) with neighboring countries (ASEAN) including developed and developing countries such as Malaysia (KLSE), Singapore (SGE), Thailand (SETI), Philippines (PSE) to find out which stock country the most superior and influential. These countries are the founders of ASEAN and share price index owners who have close relations with Indonesia in terms of trade, especially exports and imports. Stock price modeling in this research is using multivariate time series analysis that is VAR (Vector Autoregressive) and VECM (Vector Error Correction Modeling). VAR and VECM models not only predict more than one variable but also can see the interrelations between variables with each other. If the assumption of white noise is not met in the VAR modeling, then the cause can be assumed that there is an outlier. With this modeling will be able to know the pattern of relationship
Economic School Integration: An Update. The Century Foundation Issue Brief Series.
Kahlenberg, Richard D.
In 2000, an Idea Brief asserted that the best way to improve education would be to give every schoolchild the opportunity to attend a middle class public school (economic school integration). This brief reviews recent research and policy developments regarding economic school integration, noting that school segregation based on socioeconomic…
Miller, Diane M.; Chengelis Czegan, Demetra A.
2016-01-01
This paper describes assignments that have been implemented in a General Chemistry I course to promote science literacy. This course was chosen in particular because it reaches a broad audience, which includes nonscience majors. The assignment series begins with several discussions and tasks to develop information literacy, in which students find…
Nonlinear time series modeling and forecasting the seismic data of the Hindu Kush region
Khan, Muhammad Yousaf; Mittnik, Stefan
2018-01-01
In this study, we extended the application of linear and nonlinear time models in the field of earthquake seismology and examined the out-of-sample forecast accuracy of linear Autoregressive (AR), Autoregressive Conditional Duration (ACD), Self-Exciting Threshold Autoregressive (SETAR), Threshold Autoregressive (TAR), Logistic Smooth Transition Autoregressive (LSTAR), Additive Autoregressive (AAR), and Artificial Neural Network (ANN) models for seismic data of the Hindu Kush region. We also extended the previous studies by using Vector Autoregressive (VAR) and Threshold Vector Autoregressive (TVAR) models and compared their forecasting accuracy with linear AR model. Unlike previous studies that typically consider the threshold model specifications by using internal threshold variable, we specified these models with external transition variables and compared their out-of-sample forecasting performance with the linear benchmark AR model. The modeling results show that time series models used in the present study are capable of capturing the dynamic structure present in the seismic data. The point forecast results indicate that the AR model generally outperforms the nonlinear models. However, in some cases, threshold models with external threshold variables specification produce more accurate forecasts, indicating that specification of threshold time series models is of crucial importance. For raw seismic data, the ACD model does not show an improved out-of-sample forecasting performance over the linear AR model. The results indicate that the AR model is the best forecasting device to model and forecast the raw seismic data of the Hindu Kush region.
R.W. Strachan (Rodney); H.K. van Dijk (Herman)
2007-01-01
textabstractA Bayesian model averaging procedure is presented within the class of vector autoregressive (VAR) processes and applied to two empirical issues. First, stability of the "Great Ratios" in U.S. macro-economic time series is investigated, together with the presence and e¤ects of permanent
Energy Technology Data Exchange (ETDEWEB)
Fuchs, A.
2005-07-01
This final report for the Swiss Federal Office of Energy (SFOE) describes work done on a project concerning the further evaluation and improvement of the small-series hybrid drive with the final aim of developing a product. The modular drive system, which can be coupled with components of third party manufacturers, is described. The report deals with practical work done on the subject as well as studies involving investors and the user market. The main results of the project are presented including interesting results on human pedalling effort under load, gear losses and measurements made on hub-motors. Components and energy balances are dealt with. Problems still to be addressed and further work to be done are listed.
Directory of Open Access Journals (Sweden)
Gloria Bordogna
2016-05-01
Full Text Available Currently, the best practice to support land planning calls for the development of Spatial Data Infrastructures (SDI capable of integrating both geospatial datasets and time series information from multiple sources, e.g., multitemporal satellite data and Volunteered Geographic Information (VGI. This paper describes an original OGC standard interoperable SDI architecture and a geospatial data and metadata workflow for creating and managing multisource heterogeneous geospatial datasets and time series, and discusses it in the framework of the Space4Agri project study case developed to support the agricultural sector in Lombardy region, Northern Italy. The main novel contributions go beyond the application domain for which the SDI has been developed and are the following: the ingestion within an a-centric SDI, potentially distributed in several nodes on the Internet to support scalability, of products derived by processing remote sensing images, authoritative data, georeferenced in-situ measurements and voluntary information (VGI created by farmers and agronomists using an original Smart App; the workflow automation for publishing sets and time series of heterogeneous multisource geospatial data and relative web services; and, finally, the project geoportal, that can ease the analysis of the geospatial datasets and time series by providing complex intelligent spatio-temporal query and answering facilities.
ARIMA representation for daily solar irradiance and surface air temperature time series
Kärner, Olavi
2009-06-01
Autoregressive integrated moving average (ARIMA) models are used to compare long-range temporal variability of the total solar irradiance (TSI) at the top of the atmosphere (TOA) and surface air temperature series. The comparison shows that one and the same type of the model is applicable to represent the TSI and air temperature series. In terms of the model type surface air temperature imitates closely that for the TSI. This may mean that currently no other forcing to the climate system is capable to change the random walk type variability established by the varying activity of the rotating Sun. The result should inspire more detailed examination of the dependence of various climate series on short-range fluctuations of TSI.
Modeling vector nonlinear time series using POLYMARS
de Gooijer, J.G.; Ray, B.K.
2003-01-01
A modified multivariate adaptive regression splines method for modeling vector nonlinear time series is investigated. The method results in models that can capture certain types of vector self-exciting threshold autoregressive behavior, as well as provide good predictions for more general vector
How to statistically analyze nano exposure measurement results: using an ARIMA time series approach
International Nuclear Information System (INIS)
Klein Entink, Rinke H.; Fransman, Wouter; Brouwer, Derk H.
2011-01-01
Measurement strategies for exposure to nano-sized particles differ from traditional integrated sampling methods for exposure assessment by the use of real-time instruments. The resulting measurement series is a time series, where typically the sequential measurements are not independent from each other but show a pattern of autocorrelation. This article addresses the statistical difficulties when analyzing real-time measurements for exposure assessment to manufactured nano objects. To account for autocorrelation patterns, Autoregressive Integrated Moving Average (ARIMA) models are proposed. A simulation study shows the pitfalls of using a standard t-test and the application of ARIMA models is illustrated with three real-data examples. Some practical suggestions for the data analysis of real-time exposure measurements conclude this article.
Models for dependent time series
Tunnicliffe Wilson, Granville; Haywood, John
2015-01-01
Models for Dependent Time Series addresses the issues that arise and the methodology that can be applied when the dependence between time series is described and modeled. Whether you work in the economic, physical, or life sciences, the book shows you how to draw meaningful, applicable, and statistically valid conclusions from multivariate (or vector) time series data.The first four chapters discuss the two main pillars of the subject that have been developed over the last 60 years: vector autoregressive modeling and multivariate spectral analysis. These chapters provide the foundational mater
Implementing Modifed Burg Algorithms in Multivariate Subset Autoregressive Modeling
Directory of Open Access Journals (Sweden)
A. Alexandre Trindade
2003-02-01
Full Text Available The large number of parameters in subset vector autoregressive models often leads one to procure fast, simple, and efficient alternatives or precursors to maximum likelihood estimation. We present the solution of the multivariate subset Yule-Walker equations as one such alternative. In recent work, Brockwell, Dahlhaus, and Trindade (2002, show that the Yule-Walker estimators can actually be obtained as a special case of a general recursive Burg-type algorithm. We illustrate the structure of this Algorithm, and discuss its implementation in a high-level programming language. Applications of the Algorithm in univariate and bivariate modeling are showcased in examples. Univariate and bivariate versions of the Algorithm written in Fortran 90 are included in the appendix, and their use illustrated.
Bias-correction in vector autoregressive models: A simulation study
DEFF Research Database (Denmark)
Engsted, Tom; Pedersen, Thomas Quistgaard
We analyze and compare the properties of various methods for bias-correcting parameter estimates in vector autoregressions. First, we show that two analytical bias formulas from the existing literature are in fact identical. Next, based on a detailed simulation study, we show that this simple...... and easy-to-use analytical bias formula compares very favorably to the more standard but also more computer intensive bootstrap bias-correction method, both in terms of bias and mean squared error. Both methods yield a notable improvement over both OLS and a recently proposed WLS estimator. We also...... of pushing an otherwise stationary model into the non-stationary region of the parameter space during the process of correcting for bias....
Least squares estimation in a simple random coefficient autoregressive model
DEFF Research Database (Denmark)
Johansen, S; Lange, T
2013-01-01
The question we discuss is whether a simple random coefficient autoregressive model with infinite variance can create the long swings, or persistence, which are observed in many macroeconomic variables. The model is defined by yt=stρyt−1+εt,t=1,…,n, where st is an i.i.d. binary variable with p...... we prove the curious result that View the MathML source. The proof applies the notion of a tail index of sums of positive random variables with infinite variance to find the order of magnitude of View the MathML source and View the MathML source and hence the limit of View the MathML source...
The cointegrated vector autoregressive model with general deterministic terms
DEFF Research Database (Denmark)
Johansen, Søren; Nielsen, Morten Ørregaard
2017-01-01
In the cointegrated vector autoregression (CVAR) literature, deterministic terms have until now been analyzed on a case-by-case, or as-needed basis. We give a comprehensive unified treatment of deterministic terms in the additive model X(t)=Z(t) Y(t), where Z(t) belongs to a large class...... of deterministic regressors and Y(t) is a zero-mean CVAR. We suggest an extended model that can be estimated by reduced rank regression and give a condition for when the additive and extended models are asymptotically equivalent, as well as an algorithm for deriving the additive model parameters from the extended...... model parameters. We derive asymptotic properties of the maximum likelihood estimators and discuss tests for rank and tests on the deterministic terms. In particular, we give conditions under which the estimators are asymptotically (mixed) Gaussian, such that associated tests are X 2 -distributed....
The cointegrated vector autoregressive model with general deterministic terms
DEFF Research Database (Denmark)
Johansen, Søren; Nielsen, Morten Ørregaard
In the cointegrated vector autoregression (CVAR) literature, deterministic terms have until now been analyzed on a case-by-case, or as-needed basis. We give a comprehensive unified treatment of deterministic terms in the additive model X(t)= Z(t) + Y(t), where Z(t) belongs to a large class...... of deterministic regressors and Y(t) is a zero-mean CVAR. We suggest an extended model that can be estimated by reduced rank regression and give a condition for when the additive and extended models are asymptotically equivalent, as well as an algorithm for deriving the additive model parameters from the extended...... model parameters. We derive asymptotic properties of the maximum likelihood estimators and discuss tests for rank and tests on the deterministic terms. In particular, we give conditions under which the estimators are asymptotically (mixed) Gaussian, such that associated tests are khi squared distributed....
4K Video Traffic Prediction using Seasonal Autoregressive Modeling
Directory of Open Access Journals (Sweden)
D. R. Marković
2017-06-01
Full Text Available From the perspective of average viewer, high definition video streams such as HD (High Definition and UHD (Ultra HD are increasing their internet presence year over year. This is not surprising, having in mind expansion of HD streaming services, such as YouTube, Netflix etc. Therefore, high definition video streams are starting to challenge network resource allocation with their bandwidth requirements and statistical characteristics. Need for analysis and modeling of this demanding video traffic has essential importance for better quality of service and experience support. In this paper we use an easy-to-apply statistical model for prediction of 4K video traffic. Namely, seasonal autoregressive modeling is applied in prediction of 4K video traffic, encoded with HEVC (High Efficiency Video Coding. Analysis and modeling were performed within R programming environment using over 17.000 high definition video frames. It is shown that the proposed methodology provides good accuracy in high definition video traffic modeling.
Bias-Correction in Vector Autoregressive Models: A Simulation Study
Directory of Open Access Journals (Sweden)
Tom Engsted
2014-03-01
Full Text Available We analyze the properties of various methods for bias-correcting parameter estimates in both stationary and non-stationary vector autoregressive models. First, we show that two analytical bias formulas from the existing literature are in fact identical. Next, based on a detailed simulation study, we show that when the model is stationary this simple bias formula compares very favorably to bootstrap bias-correction, both in terms of bias and mean squared error. In non-stationary models, the analytical bias formula performs noticeably worse than bootstrapping. Both methods yield a notable improvement over ordinary least squares. We pay special attention to the risk of pushing an otherwise stationary model into the non-stationary region of the parameter space when correcting for bias. Finally, we consider a recently proposed reduced-bias weighted least squares estimator, and we find that it compares very favorably in non-stationary models.
REGIONAL FIRST ORDER PERIODIC AUTOREGRESSIVE MODELS FOR MONTHLY FLOWS
Directory of Open Access Journals (Sweden)
Ceyhun ÖZÇELİK
2008-01-01
Full Text Available First order periodic autoregressive models is of mostly used models in modeling of time dependency of hydrological flow processes. In these models, periodicity of the correlogram is preserved as well as time dependency of processes. However, the parameters of these models, namely, inter-monthly lag-1 autocorrelation coefficients may be often estimated erroneously from short samples, since they are statistics of high order moments. Therefore, to constitute a regional model may be a solution that can produce more reliable and decisive estimates, and derive models and model parameters in any required point of the basin considered. In this study, definitions of homogeneous region for lag-1 autocorrelation coefficients are made; five parametric and non parametric models are proposed to set regional models of lag-1 autocorrelation coefficients. Regional models are applied on 30 stream flow gauging stations in Seyhan and Ceyhan basins, and tested by criteria of relative absolute bias, simple and relative root of mean square errors.
Drought Patterns Forecasting using an Auto-Regressive Logistic Model
del Jesus, M.; Sheffield, J.; Méndez Incera, F. J.; Losada, I. J.; Espejo, A.
2014-12-01
Drought is characterized by a water deficit that may manifest across a large range of spatial and temporal scales. Drought may create important socio-economic consequences, many times of catastrophic dimensions. A quantifiable definition of drought is elusive because depending on its impacts, consequences and generation mechanism, different water deficit periods may be identified as a drought by virtue of some definitions but not by others. Droughts are linked to the water cycle and, although a climate change signal may not have emerged yet, they are also intimately linked to climate.In this work we develop an auto-regressive logistic model for drought prediction at different temporal scales that makes use of a spatially explicit framework. Our model allows to include covariates, continuous or categorical, to improve the performance of the auto-regressive component.Our approach makes use of dimensionality reduction (principal component analysis) and classification techniques (K-Means and maximum dissimilarity) to simplify the representation of complex climatic patterns, such as sea surface temperature (SST) and sea level pressure (SLP), while including information on their spatial structure, i.e. considering their spatial patterns. This procedure allows us to include in the analysis multivariate representation of complex climatic phenomena, as the El Niño-Southern Oscillation. We also explore the impact of other climate-related variables such as sun spots. The model allows to quantify the uncertainty of the forecasts and can be easily adapted to make predictions under future climatic scenarios. The framework herein presented may be extended to other applications such as flash flood analysis, or risk assessment of natural hazards.
Commission of the European Communities, Brussels (Belgium). Directorate-General for Education and Culture.
This document profiles nine European programs that exemplify good practice in social and occupational integration of disadvantaged people. The programs profiled are as follows: (1) Restaurant Venezia (a CD-ROM program to improve the reading and writing skills of young people in Luxembourg who have learning difficulties); (2) an integrated…
International Nuclear Information System (INIS)
Nourelfath, Mustapha; Yalaoui, Farouk
2012-01-01
A production system containing a set of machines (also called components) arranged according to a series-parallel configuration is addressed. A set of products must be produced in lots on this production system during a specified finite planning horizon. This paper presents a method for integrating load distribution decisions, and tactical production planning considering the costs of capacity change and the costs of unused capacity. The objective is to minimize the sum of capacity change costs, unused capacity costs, setup costs, holding costs, backorder costs, and production costs. The main constraints consist in satisfying the demand for all products over the entire horizon, and in not exceeding available repair resource. The production series-parallel system is modeled as a multi-state system with binary-state components. The proposed model takes into account the dependence of machines' failure rates on their load. Universal generating function technique can be used in the optimization algorithm for evaluating the expected system production rate in each period. We show how the formulated problem can be solved by comparing the results of several multi-product lot-sizing problems with capacity associated costs. The importance of integrating load distribution decisions and production planning is illustrated through numerical examples.
Directory of Open Access Journals (Sweden)
Mei-Yu LEE
2014-11-01
Full Text Available This paper investigates the effect of the nonzero autocorrelation coefficients on the sampling distributions of the Durbin-Watson test estimator in three time-series models that have different variance-covariance matrix assumption, separately. We show that the expected values and variances of the Durbin-Watson test estimator are slightly different, but the skewed and kurtosis coefficients are considerably different among three models. The shapes of four coefficients are similar between the Durbin-Watson model and our benchmark model, but are not the same with the autoregressive model cut by one-lagged period. Second, the large sample case shows that the three models have the same expected values, however, the autoregressive model cut by one-lagged period explores different shapes of variance, skewed and kurtosis coefficients from the other two models. This implies that the large samples lead to the same expected values, 2(1 – ρ0, whatever the variance-covariance matrix of the errors is assumed. Finally, comparing with the two sample cases, the shape of each coefficient is almost the same, moreover, the autocorrelation coefficients are negatively related with expected values, are inverted-U related with variances, are cubic related with skewed coefficients, and are U related with kurtosis coefficients.
Detecting method for crude oil price fluctuation mechanism under different periodic time series
International Nuclear Information System (INIS)
Gao, Xiangyun; Fang, Wei; An, Feng; Wang, Yue
2017-01-01
Highlights: • We proposed the concept of autoregressive modes to indicate the fluctuation patterns. • We constructed transmission networks for studying the fluctuation mechanism. • There are different fluctuation mechanism under different periodic time series. • Only a few types of autoregressive modes control the fluctuations in crude oil price. • There are cluster effects during the fluctuation mechanism of autoregressive modes. - Abstract: Current existing literatures can characterize the long-term fluctuation of crude oil price time series, however, it is difficult to detect the fluctuation mechanism specifically under short term. Because each fluctuation pattern for one short period contained in a long-term crude oil price time series have dynamic characteristics of diversity; in other words, there exhibit various fluctuation patterns in different short periods and transmit to each other, which reflects the reputedly complicate and chaotic oil market. Thus, we proposed an incorporated method to detect the fluctuation mechanism, which is the evolution of the different fluctuation patterns over time from the complex network perspective. We divided crude oil price time series into segments using sliding time windows, and defined autoregressive modes based on regression models to indicate the fluctuation patterns of each segment. Hence, the transmissions between different types of autoregressive modes over time form a transmission network that contains rich dynamic information. We then capture transmission characteristics of autoregressive modes under different periodic time series through the structure features of the transmission networks. The results indicate that there are various autoregressive modes with significantly different statistical characteristics under different periodic time series. However, only a few types of autoregressive modes and transmission patterns play a major role in the fluctuation mechanism of the crude oil price, and these
Vector autoregressive model approach for forecasting outflow cash in Central Java
hoyyi, Abdul; Tarno; Maruddani, Di Asih I.; Rahmawati, Rita
2018-05-01
Multivariate time series model is more applied in economic and business problems as well as in other fields. Applications in economic problems one of them is the forecasting of outflow cash. This problem can be viewed globally in the sense that there is no spatial effect between regions, so the model used is the Vector Autoregressive (VAR) model. The data used in this research is data on the money supply in Bank Indonesia Semarang, Solo, Purwokerto and Tegal. The model used in this research is VAR (1), VAR (2) and VAR (3) models. Ordinary Least Square (OLS) is used to estimate parameters. The best model selection criteria use the smallest Akaike Information Criterion (AIC). The result of data analysis shows that the AIC value of VAR (1) model is equal to 42.72292, VAR (2) equals 42.69119 and VAR (3) equals 42.87662. The difference in AIC values is not significant. Based on the smallest AIC value criteria, the best model is the VAR (2) model. This model has satisfied the white noise assumption.
Sensor network based solar forecasting using a local vector autoregressive ridge framework
Energy Technology Data Exchange (ETDEWEB)
Xu, J. [Stony Brook Univ., NY (United States); Yoo, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Heiser, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kalb, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)
2016-04-04
The significant improvements and falling costs of photovoltaic (PV) technology make solar energy a promising resource, yet the cloud induced variability of surface solar irradiance inhibits its effective use in grid-tied PV generation. Short-term irradiance forecasting, especially on the minute scale, is critically important for grid system stability and auxiliary power source management. Compared to the trending sky imaging devices, irradiance sensors are inexpensive and easy to deploy but related forecasting methods have not been well researched. The prominent challenge of applying classic time series models on a network of irradiance sensors is to address their varying spatio-temporal correlations due to local changes in cloud conditions. We propose a local vector autoregressive framework with ridge regularization to forecast irradiance without explicitly determining the wind field or cloud movement. By using local training data, our learned forecast model is adaptive to local cloud conditions and by using regularization, we overcome the risk of overfitting from the limited training data. Our systematic experimental results showed an average of 19.7% RMSE and 20.2% MAE improvement over the benchmark Persistent Model for 1-5 minute forecasts on a comprehensive 25-day dataset.
Chin, Wen Cheong; Lee, Min Cherng; Yap, Grace Lee Ching
2016-01-01
High frequency financial data modelling has become one of the important research areas in the field of financial econometrics. However, the possible structural break in volatile financial time series often trigger inconsistency issue in volatility estimation. In this study, we propose a structural break heavy-tailed heterogeneous autoregressive (HAR) volatility econometric model with the enhancement of jump-robust estimators. The breakpoints in the volatility are captured by dummy variables after the detection by Bai-Perron sequential multi breakpoints procedure. In order to further deal with possible abrupt jump in the volatility, the jump-robust volatility estimators are composed by using the nearest neighbor truncation approach, namely the minimum and median realized volatility. Under the structural break improvements in both the models and volatility estimators, the empirical findings show that the modified HAR model provides the best performing in-sample and out-of-sample forecast evaluations as compared with the standard HAR models. Accurate volatility forecasts have direct influential to the application of risk management and investment portfolio analysis.
Integrating Hypnosis with Other Therapies for Treating Specific Phobias: A Case Series.
Hirsch, Joseph A
2018-04-01
There is a high prevalence of anxiety disorders including specific phobias and panic disorder in the United States and Europe. A variety of therapeutic modalities including pharmacotherapy, cognitive behavioral therapy, systematic desensitization, hypnosis, in vivo exposure, and virtual reality exposure therapy have been applied. No one modality has been entirely successful. There has been only a limited attempt to combine psychological therapies in the treatment of specific phobias and panic disorder and what has been done has been primarily with systematic desensitization or cognitive behavioral therapy along with hypnotherapy. I present two cases of multiple specific phobias that were successfully treated with hypnotherapy combined with virtual reality exposure therapy or in vivo exposure therapy. The rationale for this integrative therapy and the neurobiological constructs are considered.
Directory of Open Access Journals (Sweden)
Ke Gong
2018-01-01
Full Text Available A series-fed linear substrate-integrated dielectric resonator antenna array (SIDRAA is presented for millimeter-wave applications, in which the substrate-integrated dielectric resonator antenna (SIDRA elements and the feeding structure can be codesigned and fabricated using the same planar process. A prototype 4 × 1 SIDRAA is designed at Ka-band and fabricated with a two-layer printed circuit board (PCB technology. Four SIDRAs are implemented in the Rogers RT6010 substrate using the perforation technique and fed by a compact substrate-integrated waveguide (SIW through four longitudinal coupling slots within the Rogers RT5880 substrate. The return loss, radiation patterns, and antenna gain were experimentally studied, and good agreement between the measured and simulated results is observed. The SIDRAA example provides a bandwidth of about 10% around 34.5 GHz for 10 dB return loss and stable broadside radiation patterns with the peak gain of 10.5–11.5 dBi across the band.
Prediction of municipal solid waste generation using nonlinear autoregressive network.
Younes, Mohammad K; Nopiah, Z M; Basri, N E Ahmad; Basri, H; Abushammala, Mohammed F M; Maulud, K N A
2015-12-01
Most of the developing countries have solid waste management problems. Solid waste strategic planning requires accurate prediction of the quality and quantity of the generated waste. In developing countries, such as Malaysia, the solid waste generation rate is increasing rapidly, due to population growth and new consumption trends that characterize society. This paper proposes an artificial neural network (ANN) approach using feedforward nonlinear autoregressive network with exogenous inputs (NARX) to predict annual solid waste generation in relation to demographic and economic variables like population number, gross domestic product, electricity demand per capita and employment and unemployment numbers. In addition, variable selection procedures are also developed to select a significant explanatory variable. The model evaluation was performed using coefficient of determination (R(2)) and mean square error (MSE). The optimum model that produced the lowest testing MSE (2.46) and the highest R(2) (0.97) had three inputs (gross domestic product, population and employment), eight neurons and one lag in the hidden layer, and used Fletcher-Powell's conjugate gradient as the training algorithm.
Likelihood inference for a fractionally cointegrated vector autoregressive model
DEFF Research Database (Denmark)
Johansen, Søren; Ørregård Nielsen, Morten
2012-01-01
such that the process X_{t} is fractional of order d and cofractional of order d-b; that is, there exist vectors ß for which ß'X_{t} is fractional of order d-b, and no other fractionality order is possible. We define the statistical model by 0inference when the true values satisfy b0¿1/2 and d0-b0......We consider model based inference in a fractionally cointegrated (or cofractional) vector autoregressive model with a restricted constant term, ¿, based on the Gaussian likelihood conditional on initial values. The model nests the I(d) VAR model. We give conditions on the parameters...... process in the parameters when errors are i.i.d. with suitable moment conditions and initial values are bounded. When the limit is deterministic this implies uniform convergence in probability of the conditional likelihood function. If the true value b0>1/2, we prove that the limit distribution of (ß...
Sparse representation based image interpolation with nonlocal autoregressive modeling.
Dong, Weisheng; Zhang, Lei; Lukac, Rastislav; Shi, Guangming
2013-04-01
Sparse representation is proven to be a promising approach to image super-resolution, where the low-resolution (LR) image is usually modeled as the down-sampled version of its high-resolution (HR) counterpart after blurring. When the blurring kernel is the Dirac delta function, i.e., the LR image is directly down-sampled from its HR counterpart without blurring, the super-resolution problem becomes an image interpolation problem. In such cases, however, the conventional sparse representation models (SRM) become less effective, because the data fidelity term fails to constrain the image local structures. In natural images, fortunately, many nonlocal similar patches to a given patch could provide nonlocal constraint to the local structure. In this paper, we incorporate the image nonlocal self-similarity into SRM for image interpolation. More specifically, a nonlocal autoregressive model (NARM) is proposed and taken as the data fidelity term in SRM. We show that the NARM-induced sampling matrix is less coherent with the representation dictionary, and consequently makes SRM more effective for image interpolation. Our extensive experimental results demonstrate that the proposed NARM-based image interpolation method can effectively reconstruct the edge structures and suppress the jaggy/ringing artifacts, achieving the best image interpolation results so far in terms of PSNR as well as perceptual quality metrics such as SSIM and FSIM.
Adaptive Autoregressive Model for Reduction of Noise in SPECT
Directory of Open Access Journals (Sweden)
Reijo Takalo
2015-01-01
Full Text Available This paper presents improved autoregressive modelling (AR to reduce noise in SPECT images. An AR filter was applied to prefilter projection images and postfilter ordered subset expectation maximisation (OSEM reconstruction images (AR-OSEM-AR method. The performance of this method was compared with filtered back projection (FBP preceded by Butterworth filtering (BW-FBP method and the OSEM reconstruction method followed by Butterworth filtering (OSEM-BW method. A mathematical cylinder phantom was used for the study. It consisted of hot and cold objects. The tests were performed using three simulated SPECT datasets. Image quality was assessed by means of the percentage contrast resolution (CR% and the full width at half maximum (FWHM of the line spread functions of the cylinders. The BW-FBP method showed the highest CR% values and the AR-OSEM-AR method gave the lowest CR% values for cold stacks. In the analysis of hot stacks, the BW-FBP method had higher CR% values than the OSEM-BW method. The BW-FBP method exhibited the lowest FWHM values for cold stacks and the AR-OSEM-AR method for hot stacks. In conclusion, the AR-OSEM-AR method is a feasible way to remove noise from SPECT images. It has good spatial resolution for hot objects.
Biometeorological and autoregressive indices for predicting olive pollen intensity.
Oteros, J; García-Mozo, H; Hervás, C; Galán, C
2013-03-01
This paper reports on modelling to predict airborne olive pollen season severity, expressed as a pollen index (PI), in Córdoba province (southern Spain) several weeks prior to the pollen season start. Using a 29-year database (1982-2010), a multivariate regression model based on five indices-the index-based model-was built to enhance the efficacy of prediction models. Four of the indices used were biometeorological indices: thermal index, pre-flowering hydric index, dormancy hydric index and summer index; the fifth was an autoregressive cyclicity index based on pollen data from previous years. The extreme weather events characteristic of the Mediterranean climate were also taken into account by applying different adjustment criteria. The results obtained with this model were compared with those yielded by a traditional meteorological-based model built using multivariate regression analysis of simple meteorological-related variables. The performance of the models (confidence intervals, significance levels and standard errors) was compared, and they were also validated using the bootstrap method. The index-based model built on biometeorological and cyclicity indices was found to perform better for olive pollen forecasting purposes than the traditional meteorological-based model.
Torres-Matallana, J.A.; Leopold, U.; Heuvelink, G.B.M.
2017-01-01
Precipitation is the most active flux and major input of hydrological systems. Precipitation controls hydrological states (soil moisture and groundwater level), and fluxes (runoff, evapotranspiration and groundwater recharge).
Hence, precipitation plays a paramount role in urban water systems.
Metabolic and Subjective Results Review of the Integrated Suit Test Series
Norcross, J.R.; Stroud, L.C.; Klein, J.; Desantis, L.; Gernhardt, M.L.
2009-01-01
Crewmembers will perform a variety of exploration and construction activities on the lunar surface. These activities will be performed while inside an extravehicular activity (EVA) spacesuit. In most cases, human performance is compromised while inside an EVA suit as compared to a crewmember s unsuited performance baseline. Subjects completed different EVA type tasks, ranging from ambulation to geology and construction activities, in different lunar analog environments including overhead suspension, underwater and 1-g lunar-like terrain, in both suited and unsuited conditions. In the suited condition, the Mark III (MKIII) EVA technology demonstrator suit was used and suit pressure and suit weight were parameters tested. In the unsuited conditions, weight, mass, center of gravity (CG), terrain type and navigation were the parameters. To the extent possible, one parameter was varied while all others were held constant. Tests were not fully crossed, but rather one parameter was varied while all others were left in the most nominal setting. Oxygen consumption (VO2), modified Cooper-Harper (CH) ratings of operator compensation and ratings of perceived exertion (RPE) were measured for each trial. For each variable, a lower value correlates to more efficient task performance. Due to a low sample size, statistical significance was not attainable. Initial findings indicate that suit weight, CG and the operational environment can have a large impact on human performance during EVA. Systematic, prospective testing series such as those performed to date will enable a better understanding of the crucial interactions of the human and the EVA suit system and their environment. However, work remains to be done to confirm these findings. These data have been collected using only unsuited subjects and one EVA suit prototype that is known to fit poorly on a large demographic of the astronaut population. Key findings need to be retested using an EVA suit prototype better suited to a
DEFF Research Database (Denmark)
Kock, Anders Bredahl
2016-01-01
We show that the adaptive Lasso is oracle efficient in stationary and nonstationary autoregressions. This means that it estimates parameters consistently, selects the correct sparsity pattern, and estimates the coefficients belonging to the relevant variables at the same asymptotic efficiency...
International Nuclear Information System (INIS)
Kirk, B.L.
1985-12-01
The ITS (Integrated Tiger Series) Monte Carlo code package developed at Sandia National Laboratories and distributed as CCC-467/ITS by the Radiation Shielding Information Center (RSIC) at Oak Ridge National Laboratory (ORNL) consists of eight codes - the standard codes, TIGER, CYLTRAN, ACCEPT; the P-codes, TIGERP, CYLTRANP, ACCEPTP; and the M-codes ACCEPTM, CYLTRANM. The codes have been adapted to run on the IBM 3081, VAX 11/780, CDC-7600, and Cray 1 with the use of the update emulator UPEML. This manual should serve as a guide to a user running the codes on IBM computers having 370 architecture. The cases listed were tested on the IBM 3033, under the MVS operating system using the VS Fortran Level 1.3.1 compiler
International Nuclear Information System (INIS)
Beutler, D.E.; Halbleib, J.A.; Knott, D.P.
1989-01-01
This paper reports pulse-height distributions in two different types of Ge detectors measured for a variety of medium-energy x-ray bremsstrahlung spectra. These measurements have been compared to predictions using the integrated tiger series (ITS) Monte Carlo electron/photon transport code. In general, the authors find excellent agreement between experiments and predictions using no free parameters. These results demonstrate that the ITS codes can predict the combined bremsstrahlung production and energy deposition with good precision (within measurement uncertainties). The one region of disagreement observed occurs for low-energy (<50 keV) photons using low-energy bremsstrahlung spectra. In this case the ITS codes appear to underestimate the produced and/or absorbed radiation by almost an order of magnitude
Temporal feature integration for music genre classification
DEFF Research Database (Denmark)
Meng, Anders; Ahrendt, Peter; Larsen, Jan
2007-01-01
, but they capture neither the temporal dynamics nor dependencies among the individual feature dimensions. Here, a multivariate autoregressive feature model is proposed to solve this problem for music genre classification. This model gives two different feature sets, the diagonal autoregressive (DAR......) and multivariate autoregressive (MAR) features which are compared against the baseline mean-variance as well as two other temporal feature integration techniques. Reproducibility in performance ranking of temporal feature integration methods were demonstrated using two data sets with five and eleven music genres...
Directory of Open Access Journals (Sweden)
Georgia Doxani
2015-10-01
Full Text Available The Sentinel missions have been designed to support the operational services of the Copernicus program, ensuring long-term availability of data for a wide range of spectral, spatial and temporal resolutions. In particular, Sentinel-2 (S-2 data with improved high spatial resolution and higher revisit frequency (five days with the pair of satellites in operation will play a fundamental role in recording land cover types and monitoring land cover changes at regular intervals. Nevertheless, cloud coverage usually hinders the time series availability and consequently the continuous land surface monitoring. In an attempt to alleviate this limitation, the synergistic use of instruments with different features is investigated, aiming at the future synergy of the S-2 MultiSpectral Instrument (MSI and Sentinel-3 (S-3 Ocean and Land Colour Instrument (OLCI. To that end, an unmixing model is proposed with the intention of integrating the benefits of the two Sentinel missions, when both in orbit, in one composite image. The main goal is to fill the data gaps in the S-2 record, based on the more frequent information of the S-3 time series. The proposed fusion model has been applied on MODIS (MOD09GA L2G and SPOT4 (Take 5 data and the experimental results have demonstrated that the approach has high potential. However, the different acquisition characteristics of the sensors, i.e. illumination and viewing geometry, should be taken into consideration and bidirectional effects correction has to be performed in order to reduce noise in the reflectance time series.
Analyzing inflation in Nigeria: a fractionally integrated ARFIMA ...
African Journals Online (AJOL)
The study looked into the stochastic properties of CPI-inflation rate for Nigeria from 1995Q1 to 2016Q4. The study employed an autoregressive fractionally integrated moving average and a general autoregressive conditional heteroskedasticity (ARFIMA-GARCH) methodology as well as ADF/KPSS to investigate the ...
DEFF Research Database (Denmark)
Pinson, Pierre; Madsen, Henrik
2008-01-01
Better modelling and forecasting of very short-term power fluctuations at large offshore wind farms may significantly enhance control and management strategies of their power output. The paper introduces a new methodology for modelling and forecasting such very short-term fluctuations. The proposed...... consists in 1-step ahead forecasting exercise on time-series of wind generation with a time resolution of 10 minute. The quality of the introduced forecasting methodology and its interest for better understanding power fluctuations are finally discussed....... methodology is based on a Markov-switching autoregressive model with time-varying coefficients. An advantage of the method is that one can easily derive full predictive densities. The quality of this methodology is demonstrated from the test case of 2 large offshore wind farms in Denmark. The exercise...
Levine, Matthew E; Albers, David J; Hripcsak, George
2016-01-01
Time series analysis methods have been shown to reveal clinical and biological associations in data collected in the electronic health record. We wish to develop reliable high-throughput methods for identifying adverse drug effects that are easy to implement and produce readily interpretable results. To move toward this goal, we used univariate and multivariate lagged regression models to investigate associations between twenty pairs of drug orders and laboratory measurements. Multivariate lagged regression models exhibited higher sensitivity and specificity than univariate lagged regression in the 20 examples, and incorporating autoregressive terms for labs and drugs produced more robust signals in cases of known associations among the 20 example pairings. Moreover, including inpatient admission terms in the model attenuated the signals for some cases of unlikely associations, demonstrating how multivariate lagged regression models' explicit handling of context-based variables can provide a simple way to probe for health-care processes that confound analyses of EHR data.
Yu, Bing; Shu, Wenjun; Cao, Can
2018-05-01
A novel modeling method for aircraft engine using nonlinear autoregressive exogenous (NARX) models based on wavelet neural networks is proposed. The identification principle and process based on wavelet neural networks are studied, and the modeling scheme based on NARX is proposed. Then, the time series data sets from three types of aircraft engines are utilized to build the corresponding NARX models, and these NARX models are validated by the simulation. The results show that all the best NARX models can capture the original aircraft engine's dynamic characteristic well with the high accuracy. For every type of engine, the relative identification errors of its best NARX model and the component level model are no more than 3.5 % and most of them are within 1 %.
Assessment and prediction of air quality using fuzzy logic and autoregressive models
Carbajal-Hernández, José Juan; Sánchez-Fernández, Luis P.; Carrasco-Ochoa, Jesús A.; Martínez-Trinidad, José Fco.
2012-12-01
In recent years, artificial intelligence methods have been used for the treatment of environmental problems. This work, presents two models for assessment and prediction of air quality. First, we develop a new computational model for air quality assessment in order to evaluate toxic compounds that can harm sensitive people in urban areas, affecting their normal activities. In this model we propose to use a Sigma operator to statistically asses air quality parameters using their historical data information and determining their negative impact in air quality based on toxicity limits, frequency average and deviations of toxicological tests. We also introduce a fuzzy inference system to perform parameter classification using a reasoning process and integrating them in an air quality index describing the pollution levels in five stages: excellent, good, regular, bad and danger, respectively. The second model proposed in this work predicts air quality concentrations using an autoregressive model, providing a predicted air quality index based on the fuzzy inference system previously developed. Using data from Mexico City Atmospheric Monitoring System, we perform a comparison among air quality indices developed for environmental agencies and similar models. Our results show that our models are an appropriate tool for assessing site pollution and for providing guidance to improve contingency actions in urban areas.
International Nuclear Information System (INIS)
McCall, K C; Jeraj, R
2007-01-01
A new approach to the problem of modelling and predicting respiration motion has been implemented. This is a dual-component model, which describes the respiration motion as a non-periodic time series superimposed onto a periodic waveform. A periodic autoregressive moving average algorithm has been used to define a mathematical model of the periodic and non-periodic components of the respiration motion. The periodic components of the motion were found by projecting multiple inhale-exhale cycles onto a common subspace. The component of the respiration signal that is left after removing this periodicity is a partially autocorrelated time series and was modelled as an autoregressive moving average (ARMA) process. The accuracy of the periodic ARMA model with respect to fluctuation in amplitude and variation in length of cycles has been assessed. A respiration phantom was developed to simulate the inter-cycle variations seen in free-breathing and coached respiration patterns. At ±14% variability in cycle length and maximum amplitude of motion, the prediction errors were 4.8% of the total motion extent for a 0.5 s ahead prediction, and 9.4% at 1.0 s lag. The prediction errors increased to 11.6% at 0.5 s and 21.6% at 1.0 s when the respiration pattern had ±34% variations in both these parameters. Our results have shown that the accuracy of the periodic ARMA model is more strongly dependent on the variations in cycle length than the amplitude of the respiration cycles
Automatic Target Recognition Using Nonlinear Autoregressive Neural Networks
2014-03-27
series. Chakraborty et al. (1992) modeled flour prices over an eight year period for the cities of Buffalo, Minneapolis and Kansas City via a neural...on stock and commodity market prices (Kaastra & Boyd, 1996) with a goal of discovering non-linear relationships via ANNs which might provide an...Time Series A vector of past observations from a specific time interval is an example of a time series. For example, monthly stock prices from 2000
RADON CONCENTRATION TIME SERIES MODELING AND APPLICATION DISCUSSION.
Stránský, V; Thinová, L
2017-11-01
In the year 2010 a continual radon measurement was established at Mladeč Caves in the Czech Republic using a continual radon monitor RADIM3A. In order to model radon time series in the years 2010-15, the Box-Jenkins Methodology, often used in econometrics, was applied. Because of the behavior of radon concentrations (RCs), a seasonal integrated, autoregressive moving averages model with exogenous variables (SARIMAX) has been chosen to model the measured time series. This model uses the time series seasonality, previously acquired values and delayed atmospheric parameters, to forecast RC. The developed model for RC time series is called regARIMA(5,1,3). Model residuals could be retrospectively compared with seismic evidence of local or global earthquakes, which occurred during the RCs measurement. This technique enables us to asses if continuously measured RC could serve an earthquake precursor. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
An application of the Autoregressive Conditional Poisson (ACP) model
CSIR Research Space (South Africa)
Holloway, Jennifer P
2010-11-01
Full Text Available When modelling count data that comes in the form of a time series, the static Poisson regression and standard time series models are often not appropriate. A current study therefore involves the evaluation of several observation-driven and parameter...
on the performance of Autoregressive Moving Average Polynomial
African Journals Online (AJOL)
Timothy Ademakinwa
estimated using least squares and Newton Raphson iterative methods. To determine the order of the ... r is the degree of polynomial while j is the number of lag of the ..... use a real time series dataset, monthly rainfall and temperature series ...
Analysis of time series and size of equivalent sample
International Nuclear Information System (INIS)
Bernal, Nestor; Molina, Alicia; Pabon, Daniel; Martinez, Jorge
2004-01-01
In a meteorological context, a first approach to the modeling of time series is to use models of autoregressive type. This allows one to take into account the meteorological persistence or temporal behavior, thereby identifying the memory of the analyzed process. This article seeks to pre-sent the concept of the size of an equivalent sample, which helps to identify in the data series sub periods with a similar structure. Moreover, in this article we examine the alternative of adjusting the variance of the series, keeping in mind its temporal structure, as well as an adjustment to the covariance of two time series. This article presents two examples, the first one corresponding to seven simulated series with autoregressive structure of first order, and the second corresponding to seven meteorological series of anomalies of the air temperature at the surface in two Colombian regions
A double-integration hypothesis to explain ocean ecosystem response to climate forcing
Di Lorenzo, Emanuele; Ohman, Mark D.
2013-01-01
Long-term time series of marine ecological indicators often are characterized by large-amplitude state transitions that can persist for decades. Understanding the significance of these variations depends critically on the underlying hypotheses characterizing expected natural variability. Using a linear autoregressive model in combination with long-term zooplankton observations off the California coast, we show that cumulative integrations of white-noise atmospheric forcing can generate marine population responses that are characterized by strong transitions and prolonged apparent state changes. This model provides a baseline hypothesis for explaining ecosystem variability and for interpreting the significance of abrupt responses and climate change signatures in marine ecosystems. PMID:23341628
Langley, Tessa E; McNeill, Ann; Lewis, Sarah; Szatkowski, Lisa; Quinn, Casey
2012-11-01
To evaluate the effect of tobacco control media campaigns and pharmaceutical company-funded advertising for nicotine replacement therapy (NRT) on smoking cessation activity. Multiple time series analysis using structural vector autoregression, January 2002-May 2010. England and Wales. Tobacco control campaign data from the Central Office of Information; commercial NRT campaign data; data on calls to the National Health Service (NHS) stop smoking helpline from the Department of Health; point-of-sale data on over-the-counter (OTC) sales of NRT; and prescribing data from The Health Improvement Network (THIN), a database of UK primary care records. Monthly calls to the NHS stop smoking helpline and monthly rates of OTC sales and prescribing of NRT. A 1% increase in tobacco control television ratings (TVRs), a standard measure of advertising exposure, was associated with a statistically significant 0.085% increase in calls in the same month (P = 0.007), and no statistically significant effect in subsequent months. Tobacco control TVRs were not associated with OTC NRT sales or prescribed NRT. NRT advertising TVRs had a significant effect on NRT sales which became non-significant in the seasonally adjusted model, and no significant effect on prescribing or calls. Tobacco control campaigns appear to be more effective at triggering quitting behaviour than pharmaceutical company NRT campaigns. Any effect of such campaigns on quitting behaviour seems to be restricted to the month of the campaign, suggesting that such campaigns need to be sustained over time. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.
International Nuclear Information System (INIS)
Franke, B.C.; Kensek, R.P.; Prinja, A.K.
2013-01-01
Stochastic-media simulations require numerous boundary crossings. We consider two Monte Carlo electron transport approaches and evaluate accuracy with numerous material boundaries. In the condensed-history method, approximations are made based on infinite-medium solutions for multiple scattering over some track length. Typically, further approximations are employed for material-boundary crossings where infinite-medium solutions become invalid. We have previously explored an alternative 'condensed transport' formulation, a Generalized Boltzmann-Fokker-Planck (GBFP) method, which requires no special boundary treatment but instead uses approximations to the electron-scattering cross sections. Some limited capabilities for analog transport and a GBFP method have been implemented in the Integrated Tiger Series (ITS) codes. Improvements have been made to the condensed history algorithm. The performance of the ITS condensed-history and condensed-transport algorithms are assessed for material-boundary crossings. These assessments are made both by introducing artificial material boundaries and by comparison to analog Monte Carlo simulations. (authors)
Energy Technology Data Exchange (ETDEWEB)
Engsted, T; Bentzen, J
1997-04-01
This paper provides a detailed survey of the recent literature on unit roots and co-integration, and relates the concepts to the estimation of energy demand relationships. The special features and properties of non-stationary time-series are discussed, including the relevant asymptotic theory. The most often used tests for unit roots and co-integration - and various techniques for estimating co-integration relationships - are described, and the connection between co-integration and error-correction models is explored. Further, we revisit the autoregressive distributed lag (ADL) model, which is very often used in energy demand studies, and state under which conditions this model provides a valid framework for estimating income- and price- elasticities, when time-series are non-stationary. Throughout, tests and estimation techniques are illustrated using data on Danish energy consumption, prices, income, and temperature. (au) 71 refs.
Stochastic approaches for time series forecasting of boron: a case study of Western Turkey.
Durdu, Omer Faruk
2010-10-01
In the present study, a seasonal and non-seasonal prediction of boron concentrations time series data for the period of 1996-2004 from Büyük Menderes river in western Turkey are addressed by means of linear stochastic models. The methodology presented here is to develop adequate linear stochastic models known as autoregressive integrated moving average (ARIMA) and multiplicative seasonal autoregressive integrated moving average (SARIMA) to predict boron content in the Büyük Menderes catchment. Initially, the Box-Whisker plots and Kendall's tau test are used to identify the trends during the study period. The measurements locations do not show significant overall trend in boron concentrations, though marginal increasing and decreasing trends are observed for certain periods at some locations. ARIMA modeling approach involves the following three steps: model identification, parameter estimation, and diagnostic checking. In the model identification step, considering the autocorrelation function (ACF) and partial autocorrelation function (PACF) results of boron data series, different ARIMA models are identified. The model gives the minimum Akaike information criterion (AIC) is selected as the best-fit model. The parameter estimation step indicates that the estimated model parameters are significantly different from zero. The diagnostic check step is applied to the residuals of the selected ARIMA models and the results indicate that the residuals are independent, normally distributed, and homoscadastic. For the model validation purposes, the predicted results using the best ARIMA models are compared to the observed data. The predicted data show reasonably good agreement with the actual data. The comparison of the mean and variance of 3-year (2002-2004) observed data vs predicted data from the selected best models show that the boron model from ARIMA modeling approaches could be used in a safe manner since the predicted values from these models preserve the basic
Identification of the time series interrelationships with reference to ...
African Journals Online (AJOL)
In this study, the model of interest is that of a rational distributed lag function Y on X plus an independent Autoregressive Moving Average (ARMA) model. To investigate the model structure relating X and Y we considered the inverse cross correlation function for the observed and residual series in the presence of outliers.
Time series analysis of barometric pressure data
International Nuclear Information System (INIS)
La Rocca, Paola; Riggi, Francesco; Riggi, Daniele
2010-01-01
Time series of atmospheric pressure data, collected over a period of several years, were analysed to provide undergraduate students with educational examples of application of simple statistical methods of analysis. In addition to basic methods for the analysis of periodicities, a comparison of two forecast models, one based on autoregression algorithms, and the other making use of an artificial neural network, was made. Results show that the application of artificial neural networks may give slightly better results compared to traditional methods.
Sun, Bruce Qiang; Zhang, Jie
2016-03-01
For the effects of social integration on suicides, there have been different and even contradictive conclusions. In this study, the selected economic and social risks of suicide for different age groups and genders in the United Kingdom were identified and the effects were estimated by the multilevel time series analyses. To our knowledge, there exist no previous studies that estimated a dynamic model of suicides on the time series data together with multilevel analysis and autoregressive distributed lags. The investigation indicated that unemployment rate, inflation rate, and divorce rate are all significantly and positively related to the national suicide rates in the United Kingdom from 1981 to 2011. Furthermore, the suicide rates of almost all groups above 40 years are significantly associated with the risk factors of unemployment and inflation rate, in comparison with the younger groups. © 2016 American Academy of Forensic Sciences.
Directory of Open Access Journals (Sweden)
Yan Hong Chen
2016-01-01
Full Text Available This paper proposes a new electric load forecasting model by hybridizing the fuzzy time series (FTS and global harmony search algorithm (GHSA with least squares support vector machines (LSSVM, namely GHSA-FTS-LSSVM model. Firstly, the fuzzy c-means clustering (FCS algorithm is used to calculate the clustering center of each cluster. Secondly, the LSSVM is applied to model the resultant series, which is optimized by GHSA. Finally, a real-world example is adopted to test the performance of the proposed model. In this investigation, the proposed model is verified using experimental datasets from the Guangdong Province Industrial Development Database, and results are compared against autoregressive integrated moving average (ARIMA model and other algorithms hybridized with LSSVM including genetic algorithm (GA, particle swarm optimization (PSO, harmony search, and so on. The forecasting results indicate that the proposed GHSA-FTS-LSSVM model effectively generates more accurate predictive results.
Directory of Open Access Journals (Sweden)
Fei Jin
2013-05-01
Full Text Available This paper studies the generalized spatial two stage least squares (GS2SLS estimation of spatial autoregressive models with autoregressive disturbances when there are endogenous regressors with many valid instruments. Using many instruments may improve the efficiency of estimators asymptotically, but the bias might be large in finite samples, making the inference inaccurate. We consider the case that the number of instruments K increases with, but at a rate slower than, the sample size, and derive the approximate mean square errors (MSE that account for the trade-offs between the bias and variance, for both the GS2SLS estimator and a bias-corrected GS2SLS estimator. A criterion function for the optimal K selection can be based on the approximate MSEs. Monte Carlo experiments are provided to show the performance of our procedure of choosing K.
Indian Academy of Sciences (India)
2016-08-26
Aug 26, 2016 ... http://www.ias.ac.in/article/fulltext/pmsc/115/04/0371-0381. Keywords. Inverse binomial series; hypergeometric series; polylogarithms; integral representations. Abstract. In this paper we investigate the series ∑ k = 1 ∞ ( 3 k k ) − 1 k − n x k . Obtaining some integral representations of them, we evaluated the ...
Grilli, A; Sciandra, M; Terracciano, M; Picci, P; Scotlandi, K
2015-06-30
microRNAs (miRs) are small non-coding RNAs involved in the fine regulation of several cellular processes by inhibiting their target genes at post-transcriptional level. Osteosarcoma (OS) is a tumor thought to be related to a molecular blockade of the normal process of osteoblast differentiation. The current paper explores temporal transcriptional modifications comparing an osteosarcoma cell line, Saos-2, and clones stably transfected with CD99, a molecule which was found to drive OS cells to terminally differentiate. Parental cell line and CD99 transfectants were cultured up to 14 days in differentiating medium. In this setting, OS cells were profiled by gene and miRNA expression arrays. Integration of gene and miRNA profiling was performed by both sequence complementarity and expression correlation. Further enrichment and network analyses were carried out to focus on the modulated pathways and on the interactions between transcriptome and miRNome. To track the temporal transcriptional modification, a PCA analysis with differentiated human MSC was performed. We identified a strong (about 80 %) gene down-modulation where reversion towards the osteoblast-like phenotype matches significant enrichment in TGFbeta signaling players like AKT1 and SMADs. In parallel, we observed the modulation of several cancer-related microRNAs like miR-34a, miR-26b or miR-378. To decipher their impact on the modified transcriptional program in CD99 cells, we correlated gene and microRNA time-series data miR-34a, in particular, was found to regulate a distinct subnetwork of genes with respect to the rest of the other differentially expressed miRs and it appeared to be the main mediator of several TGFbeta signaling genes at initial and middle phases of differentiation. Integration studies further highlighted the involvement of TGFbeta pathway in the differentiation of OS cells towards osteoblasts and its regulation by microRNAs. These data underline that the expression of miR-34a and down
Temporal Aggregation in First Order Cointegrated Vector Autoregressive models
DEFF Research Database (Denmark)
Milhøj, Anders; la Cour, Lisbeth Funding
2011-01-01
with the frequency of the data. We also introduce a graphical representation that will prove useful as an additional informational tool for deciding the appropriate cointegration rank of a model. In two examples based on models of time series of different grades of gasoline, we demonstrate the usefulness of our...
Thresholds and Smooth Transitions in Vector Autoregressive Models
DEFF Research Database (Denmark)
Hubrich, Kirstin; Teräsvirta, Timo
This survey focuses on two families of nonlinear vector time series models, the family of Vector Threshold Regression models and that of Vector Smooth Transition Regression models. These two model classes contain incomplete models in the sense that strongly exogeneous variables are allowed in the...
An interpretable LSTM neural network for autoregressive exogenous model
Guo, Tian; Lin, Tao; Lu, Yao
2018-01-01
In this paper, we propose an interpretable LSTM recurrent neural network, i.e., multi-variable LSTM for time series with exogenous variables. Currently, widely used attention mechanism in recurrent neural networks mostly focuses on the temporal aspect of data and falls short of characterizing variable importance. To this end, our multi-variable LSTM equipped with tensorized hidden states is developed to learn variable specific representations, which give rise to both temporal and variable lev...
Time Series in Education: The Analysis of Daily Attendance in Two High Schools
Koopmans, Matthijs
2011-01-01
This presentation discusses the use of a time series approach to the analysis of daily attendance in two urban high schools over the course of one school year (2009-10). After establishing that the series for both schools were stationary, they were examined for moving average processes, autoregression, seasonal dependencies (weekly cycles),…
Applications and Comparisons of Four Time Series Models in Epidemiological Surveillance Data
Young, Alistair A.; Li, Xiaosong
2014-01-01
Public health surveillance systems provide valuable data for reliable predication of future epidemic events. This paper describes a study that used nine types of infectious disease data collected through a national public health surveillance system in mainland China to evaluate and compare the performances of four time series methods, namely, two decomposition methods (regression and exponential smoothing), autoregressive integrated moving average (ARIMA) and support vector machine (SVM). The data obtained from 2005 to 2011 and in 2012 were used as modeling and forecasting samples, respectively. The performances were evaluated based on three metrics: mean absolute error (MAE), mean absolute percentage error (MAPE), and mean square error (MSE). The accuracy of the statistical models in forecasting future epidemic disease proved their effectiveness in epidemiological surveillance. Although the comparisons found that no single method is completely superior to the others, the present study indeed highlighted that the SVMs outperforms the ARIMA model and decomposition methods in most cases. PMID:24505382
GIS integration of the 1:75,000 Romanian topographic map series from the World War I
Timár, G.; Mugnier, C. J.
2009-04-01
During the WWI, the Kingdom of Romania developed a 1:75,000 topographic map series, covering not only the actual territory of the country (the former Danube Principalities and Dobrogea) but also Bessarabia (now the Republic of Moldova), which was under Russian rule. The map sheets were issued between 1914 and 1917. The whole map consists of two zones; Columns A-F are the western zone, while Columns G-Q are belonging to the eastern one. To integrate the scanned map sheets to a geographic information system (GIS), the parameters of the map projection and the geodetic datum should be defined as well as the sheet labelling system. The sheets have no grid lines indicated; most of them have latitude and longitude lines but some of them have no coordinate descriptions. The sheets, however, can be rectified using their four corners as virtual control points, and using the following grid and datum parameters: Eastern zone: • Projection type: Bonne. • Projection center: latitude=46d 30m; longitude=27d 20m 13.35s (from Greenwich). • Base ellipsoid: Bessel 1841 • Datum parameters (from local to WGS84): dX=+875 m; dY=-119 m; dZ=+313 m. • Sheet size: 40*40 kilometers, projection center is the NW corner of the 779 (Column L; Row VII) sheet. Western zone: • Projection type: Bonne. • Projection center: latitude=45d; longitude=26d 6m 41.18s (from Greenwich); • Base ellipsoid: Bessel 1841 • Datum parameters (from local to WGS84): dX=+793 m; dY=+364 m; dZ=+173 m. • Sheet size: 0.6*0.4 grad (new degrees), except Column F, which is wider to east to fill the territory to the zone boundary. In Columns E and F geographic coordinates are indicated in new degrees, with the prime meridian of Bucharest. Apart from the system of columns and rows, each sheet has its own label of three or four digit. The last two digit correspond to the column number (69 for Column A going up to 84 for Column Q) while the first digit(s) refer directly to row number (1-15). During the
Estimation and Forecasting in Vector Autoregressive Moving Average Models for Rich Datasets
DEFF Research Database (Denmark)
Dias, Gustavo Fruet; Kapetanios, George
We address the issue of modelling and forecasting macroeconomic variables using rich datasets, by adopting the class of Vector Autoregressive Moving Average (VARMA) models. We overcome the estimation issue that arises with this class of models by implementing an iterative ordinary least squares (...
de Vries, S O; Fidler, Vaclav; Kuipers, Wietze D; Hunink, Maria G M
1998-01-01
The purpose of this study was to develop a model that predicts the outcome of supervised exercise for intermittent claudication. The authors present an example of the use of autoregressive logistic regression for modeling observed longitudinal data. Data were collected from 329 participants in a
Multivariate Self-Exciting Threshold Autoregressive Models with eXogenous Input
Addo, Peter Martey
2014-01-01
This study defines a multivariate Self--Exciting Threshold Autoregressive with eXogenous input (MSETARX) models and present an estimation procedure for the parameters. The conditions for stationarity of the nonlinear MSETARX models is provided. In particular, the efficiency of an adaptive parameter estimation algorithm and LSE (least squares estimate) algorithm for this class of models is then provided via simulations.
Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes
Janssen, A.J.E.M.; Veldhuis, R.N.J.; Vries, L.B.
1986-01-01
The authors present an adaptive algorithm for the restoration of lost sample values in discrete-time signals that can locally be described by means of autoregressive processes. The only restrictions are that the positions of the unknown samples should be known and that they should be embedded in a
Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes
Janssen, A.J.E.M.; Veldhuis, Raymond N.J.; Vries, Lodewijk B.
1986-01-01
This paper presents an adaptive algorithm for the restoration of lost sample values in discrete-time signals that can locally be described by means of autoregressive processes. The only restrictions are that the positions of the unknown samples should be known and that they should be embedded in a
A Vector AutoRegressive (VAR) Approach to the Credit Channel for ...
African Journals Online (AJOL)
This paper is an attempt to determine the presence and empirical significance of monetary policy and the bank lending view of the credit channel for Mauritius, which is particularly relevant at these times. A vector autoregressive (VAR) model of order three is used to examine the monetary transmission mechanism using ...
On the Oracle Property of the Adaptive LASSO in Stationary and Nonstationary Autoregressions
DEFF Research Database (Denmark)
Kock, Anders Bredahl
We show that the Adaptive LASSO is oracle efficient in stationary and non-stationary autoregressions. This means that it estimates parameters consistently, selects the correct sparsity pattern, and estimates the coefficients belonging to the relevant variables at the same asymptotic efficiency...
Bayesian Analysis of Multivariate Threshold Autoregressive Models with Missing Data
Calderón Villanueva, Sergio Alejandro
2014-01-01
Resumen. En algunos campos, nos vemos forzados a trabajar con datos faltantes en series de tiempo multivaridas, desafortunadamente el análisis en este contexto no puede ser hecho como en caso completo. El análisis de modelos multivaridos autoregresivos de umbrales(MTAR) con entradas exógenas y datos faltantes es llevado a cabo vía el enfoque Bayesiano. Los métodos MCMC son usados para obtener muestras de las distribuciones marginales aposteriori, incluyendo los valores de los umbrales y los d...
Time series modelling and forecasting of emergency department overcrowding.
Kadri, Farid; Harrou, Fouzi; Chaabane, Sondès; Tahon, Christian
2014-09-01
Efficient management of patient flow (demand) in emergency departments (EDs) has become an urgent issue for many hospital administrations. Today, more and more attention is being paid to hospital management systems to optimally manage patient flow and to improve management strategies, efficiency and safety in such establishments. To this end, EDs require significant human and material resources, but unfortunately these are limited. Within such a framework, the ability to accurately forecast demand in emergency departments has considerable implications for hospitals to improve resource allocation and strategic planning. The aim of this study was to develop models for forecasting daily attendances at the hospital emergency department in Lille, France. The study demonstrates how time-series analysis can be used to forecast, at least in the short term, demand for emergency services in a hospital emergency department. The forecasts were based on daily patient attendances at the paediatric emergency department in Lille regional hospital centre, France, from January 2012 to December 2012. An autoregressive integrated moving average (ARIMA) method was applied separately to each of the two GEMSA categories and total patient attendances. Time-series analysis was shown to provide a useful, readily available tool for forecasting emergency department demand.
Experimental designs for autoregressive models applied to industrial maintenance
International Nuclear Information System (INIS)
Amo-Salas, M.; López-Fidalgo, J.; Pedregal, D.J.
2015-01-01
Some time series applications require data which are either expensive or technically difficult to obtain. In such cases scheduling the points in time at which the information should be collected is of paramount importance in order to optimize the resources available. In this paper time series models are studied from a new perspective, consisting in the use of Optimal Experimental Design setup to obtain the best times to take measurements, with the principal aim of saving costs or discarding useless information. The model and the covariance function are expressed in an explicit form to apply the usual techniques of Optimal Experimental Design. Optimal designs for various approaches are computed and their efficiencies are compared. The methods working in an application of industrial maintenance of a critical piece of equipment at a petrochemical plant are shown. This simple model allows explicit calculations in order to show openly the procedure to find the correlation structure, needed for computing the optimal experimental design. In this sense the techniques used in this paper to compute optimal designs may be transferred to other situations following the ideas of the paper, but taking into account the increasing difficulty of the procedure for more complex models. - Highlights: • Optimal experimental design theory is applied to AR models to reduce costs. • The first observation has an important impact on any optimal design. • Either the lack of precision or small starting observations claim for large times. • Reasonable optimal times were obtained relaxing slightly the efficiency. • Optimal designs were computed in a predictive maintenance context
Time Series ARIMA Models of Undergraduate Grade Point Average.
Rogers, Bruce G.
The Auto-Regressive Integrated Moving Average (ARIMA) Models, often referred to as Box-Jenkins models, are regression methods for analyzing sequential dependent observations with large amounts of data. The Box-Jenkins approach, a three-stage procedure consisting of identification, estimation and diagnosis, was used to select the most appropriate…
Wang, K W; Deng, C; Li, J P; Zhang, Y Y; Li, X Y; Wu, M C
2017-04-01
Tuberculosis (TB) affects people globally and is being reconsidered as a serious public health problem in China. Reliable forecasting is useful for the prevention and control of TB. This study proposes a hybrid model combining autoregressive integrated moving average (ARIMA) with a nonlinear autoregressive (NAR) neural network for forecasting the incidence of TB from January 2007 to March 2016. Prediction performance was compared between the hybrid model and the ARIMA model. The best-fit hybrid model was combined with an ARIMA (3,1,0) × (0,1,1)12 and NAR neural network with four delays and 12 neurons in the hidden layer. The ARIMA-NAR hybrid model, which exhibited lower mean square error, mean absolute error, and mean absolute percentage error of 0·2209, 0·1373, and 0·0406, respectively, in the modelling performance, could produce more accurate forecasting of TB incidence compared to the ARIMA model. This study shows that developing and applying the ARIMA-NAR hybrid model is an effective method to fit the linear and nonlinear patterns of time-series data, and this model could be helpful in the prevention and control of TB.
Warren B. Cohen; Hans-Erik Andersen; Sean P. Healey; Gretchen G. Moisen; Todd A. Schroeder; Christopher W. Woodall; Grant M. Domke; Zhiqiang Yang; Robert E. Kennedy; Stephen V. Stehman; Curtis Woodcock; Jim Vogelmann; Zhe Zhu; Chengquan. Huang
2015-01-01
We are developing a system that provides temporally consistent biomass estimates for national greenhouse gas inventory reporting to the United Nations Framework Convention on Climate Change. Our model-assisted estimation framework relies on remote sensing to scale from plot measurements to lidar strip samples, to Landsat time series-based maps. As a demonstration, new...
McKenna, Thomas M; Bawa, Gagandeep; Kumar, Kamal; Reifman, Jaques
2007-04-01
The physiology analysis system (PAS) was developed as a resource to support the efficient warehousing, management, and analysis of physiology data, particularly, continuous time-series data that may be extensive, of variable quality, and distributed across many files. The PAS incorporates time-series data collected by many types of data-acquisition devices, and it is designed to free users from data management burdens. This Web-based system allows both discrete (attribute) and time-series (ordered) data to be manipulated, visualized, and analyzed via a client's Web browser. All processes occur on a server, so that the client does not have to download data or any application programs, and the PAS is independent of the client's computer operating system. The PAS contains a library of functions, written in different computer languages that the client can add to and use to perform specific data operations. Functions from the library are sequentially inserted into a function chain-based logical structure to construct sophisticated data operators from simple function building blocks, affording ad hoc query and analysis of time-series data. These features support advanced mining of physiology data.
Taghvaei, Sajjad; Jahanandish, Mohammad Hasan; Kosuge, Kazuhiro
2017-01-01
Population aging of the societies requires providing the elderly with safe and dependable assistive technologies in daily life activities. Improving the fall detection algorithms can play a major role in achieving this goal. This article proposes a real-time fall prediction algorithm based on the acquired visual data of a user with walking assistive system from a depth sensor. In the lack of a coupled dynamic model of the human and the assistive walker a hybrid "system identification-machine learning" approach is used. An autoregressive-moving-average (ARMA) model is fitted on the time-series walking data to forecast the upcoming states, and a hidden Markov model (HMM) based classifier is built on the top of the ARMA model to predict falling in the upcoming time frames. The performance of the algorithm is evaluated through experiments with four subjects including an experienced physiotherapist while using a walker robot in five different falling scenarios; namely, fall forward, fall down, fall back, fall left, and fall right. The algorithm successfully predicts the fall with a rate of 84.72%.
Modeling money demand components in Lebanon using autoregressive models
International Nuclear Information System (INIS)
Mourad, M.
2008-01-01
This paper analyses monetary aggregate in Lebanon and its different component methodology of AR model. Thirteen variables in monthly data have been studied for the period January 1990 through December 2005. Using the Augmented Dickey-Fuller (ADF) procedure, twelve variables are integrated at order 1, thus they need the filter (1-B)) to become stationary, however the variable X 1 3,t (claims on private sector) becomes stationary with the filter (1-B)(1-B 1 2) . The ex-post forecasts have been calculated for twelve horizons and for one horizon (one-step ahead forecast). The quality of forecasts has been measured using the MAPE criterion for which the forecasts are good because the MAPE values are lower. Finally, a pursuit of this research using the cointegration approach is proposed. (author)
Khan, Habib Nawaz; Razali, Radzuan B.; Shafei, Afza Bt.
2016-11-01
The objectives of this paper is two-fold: First, to empirically investigate the effects of an enlarged number of healthy and well-educated people on economic growth in Malaysia within the Endogeneous Growth Model framework. Second, to examine the causal links between education, health and economic growth using annual time series data from 1981 to 2014 for Malaysia. Data series were checked for the time series properties by using ADF and KPSS tests. Long run co-integration relationship was investigated with the help of vector autoregressive (VAR) method. For short and long run dynamic relationship investigation vector error correction model (VECM) was applied. Causality analysis was performed through Engle-Granger technique. The study results showed long run co-integration relation and positively significant effects of education and health on economic growth in Malaysia. The reported results also confirmed a feedback hypothesis between the variables in the case of Malaysia. The study results have policy relevance of the importance of human capital (health and education) to the growth process of the Malaysia. Thus, it is suggested that policy makers focus on education and health sectors for sustainable economic growth in Malaysia.
Directory of Open Access Journals (Sweden)
Luis Gonzaga Baca Ruiz
2016-08-01
Full Text Available This paper addresses the problem of energy consumption prediction using neural networks over a set of public buildings. Since energy consumption in the public sector comprises a substantial share of overall consumption, the prediction of such consumption represents a decisive issue in the achievement of energy savings. In our experiments, we use the data provided by an energy consumption monitoring system in a compound of faculties and research centers at the University of Granada, and provide a methodology to predict future energy consumption using nonlinear autoregressive (NAR and the nonlinear autoregressive neural network with exogenous inputs (NARX, respectively. Results reveal that NAR and NARX neural networks are both suitable for performing energy consumption prediction, but also that exogenous data may help to improve the accuracy of predictions.
International Nuclear Information System (INIS)
Yao, Ruigen; Pakzad, Shamim N
2014-01-01
In the past few decades many types of structural damage indices based on structural health monitoring signals have been proposed, requiring performance evaluation and comparison studies on these indices in a quantitative manner. One tool to help accomplish this objective is analytical sensitivity analysis, which has been successfully used to evaluate the influences of system operational parameters on observable characteristics in many fields of study. In this paper, the sensitivity expressions of two damage features, namely the Mahalanobis distance of autoregressive coefficients and the Cosh distance of autoregressive spectra, will be derived with respect to both structural damage and measurement noise level. The effectiveness of the proposed methods is illustrated in a numerical case study on a 10-DOF system, where their results are compared with those from direct simulation and theoretical calculation. (paper)
Hierarchical time series bottom-up approach for forecast the export value in Central Java
Mahkya, D. A.; Ulama, B. S.; Suhartono
2017-10-01
The purpose of this study is Getting the best modeling and predicting the export value of Central Java using a Hierarchical Time Series. The export value is one variable injection in the economy of a country, meaning that if the export value of the country increases, the country’s economy will increase even more. Therefore, it is necessary appropriate modeling to predict the export value especially in Central Java. Export Value in Central Java are grouped into 21 commodities with each commodity has a different pattern. One approach that can be used time series is a hierarchical approach. Hierarchical Time Series is used Buttom-up. To Forecast the individual series at all levels using Autoregressive Integrated Moving Average (ARIMA), Radial Basis Function Neural Network (RBFNN), and Hybrid ARIMA-RBFNN. For the selection of the best models used Symmetric Mean Absolute Percentage Error (sMAPE). Results of the analysis showed that for the Export Value of Central Java, Bottom-up approach with Hybrid ARIMA-RBFNN modeling can be used for long-term predictions. As for the short and medium-term predictions, it can be used a bottom-up approach RBFNN modeling. Overall bottom-up approach with RBFNN modeling give the best result.
Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation
Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou
2018-06-01
Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.
Bušs, Ginters
2009-01-01
Bayesian inference requires an analyst to set priors. Setting the right prior is crucial for precise forecasts. This paper analyzes how optimal prior changes when an economy is hit by a recession. For this task, an autoregressive distributed lag (ADL) model is chosen. The results show that a sharp economic slowdown changes the optimal prior in two directions. First, it changes the structure of the optimal weight prior, setting smaller weight on the lagged dependent variable compared to varia...
Use of (Time-Domain) Vector Autoregressions to Test Uncovered Interest Parity
Takatoshi Ito
1984-01-01
In this paper, a vector autoregression model (VAR) is proposed in order to test uncovered interest parity (UIP) in the foreign exchange market. Consider a VAR system of the spot exchange rate (yen/dollar), the domestic (US) interest rate and the foreign (Japanese) interest rate, describing the interdependence of the domestic and international financia lmarkets. Uncovered interest parity is stated as a null hypothesis that the current difference between the two interest rates is equal to the d...
Directory of Open Access Journals (Sweden)
Sun Zhangzhen
2012-08-01
Full Text Available In this paper, an improved weighted least squares (WLS, together with autoregressive (AR model, is proposed to improve prediction accuracy of earth rotation parameters(ERP. Four weighting schemes are developed and the optimal power e for determination of the weight elements is studied. The results show that the improved WLS-AR model can improve the ERP prediction accuracy effectively, and for different prediction intervals of ERP, different weight scheme should be chosen.
A Dynamic Model of U.S. Sugar-Related Markets: A Cointegrated Vector Autoregression Approach
Babula, Ronald A.; Newman, Douglas; Rogowsky, Robert A.
2006-01-01
The methods of the cointegrated vector autoregression (VAR) model are applied to monthly U.S. markets for sugar and for sugar-using markets for confectionary, soft drink, and bakery products. Primarily a methods paper, we apply Johansen and Juselius' advanced procedures to these markets for perhaps the first time, with focus on achievement of a statistically adequate model through analysis of a battery of advanced statistical diagnostic tests and on exploitation of the system's cointegration ...
Brillouin Scattering Spectrum Analysis Based on Auto-Regressive Spectral Estimation
Huang, Mengyun; Li, Wei; Liu, Zhangyun; Cheng, Linghao; Guan, Bai-Ou
2018-03-01
Auto-regressive (AR) spectral estimation technology is proposed to analyze the Brillouin scattering spectrum in Brillouin optical time-domain refelectometry. It shows that AR based method can reliably estimate the Brillouin frequency shift with an accuracy much better than fast Fourier transform (FFT) based methods provided the data length is not too short. It enables about 3 times improvement over FFT at a moderate spatial resolution.
Exchange rate pass-through in Switzerland: Evidence from vector autoregressions
Jonas Stulz
2007-01-01
This study investigates the pass-through of exchange rate and import price shocks to different aggregated prices in Switzerland. The baseline analysis is carried out with recursively identified vector autoregressive (VAR) models. The data set comprises monthly observations, and pass-through effects are quantified by means of impulse response functions. Evidence shows that the exchange rate pass-through to import prices is substantial (although incomplete), but only moderate to total consumer ...
Lee, Duncan; Rushworth, Alastair; Sahu, Sujit K
2014-06-01
Estimation of the long-term health effects of air pollution is a challenging task, especially when modeling spatial small-area disease incidence data in an ecological study design. The challenge comes from the unobserved underlying spatial autocorrelation structure in these data, which is accounted for using random effects modeled by a globally smooth conditional autoregressive model. These smooth random effects confound the effects of air pollution, which are also globally smooth. To avoid this collinearity a Bayesian localized conditional autoregressive model is developed for the random effects. This localized model is flexible spatially, in the sense that it is not only able to model areas of spatial smoothness, but also it is able to capture step changes in the random effects surface. This methodological development allows us to improve the estimation performance of the covariate effects, compared to using traditional conditional auto-regressive models. These results are established using a simulation study, and are then illustrated with our motivating study on air pollution and respiratory ill health in Greater Glasgow, Scotland in 2011. The model shows substantial health effects of particulate matter air pollution and nitrogen dioxide, whose effects have been consistently attenuated by the currently available globally smooth models. © 2014, The Authors Biometrics published by Wiley Periodicals, Inc. on behalf of International Biometric Society.
Time series regression model for infectious disease and weather.
Imai, Chisato; Armstrong, Ben; Chalabi, Zaid; Mangtani, Punam; Hashizume, Masahiro
2015-10-01
Time series regression has been developed and long used to evaluate the short-term associations of air pollution and weather with mortality or morbidity of non-infectious diseases. The application of the regression approaches from this tradition to infectious diseases, however, is less well explored and raises some new issues. We discuss and present potential solutions for five issues often arising in such analyses: changes in immune population, strong autocorrelations, a wide range of plausible lag structures and association patterns, seasonality adjustments, and large overdispersion. The potential approaches are illustrated with datasets of cholera cases and rainfall from Bangladesh and influenza and temperature in Tokyo. Though this article focuses on the application of the traditional time series regression to infectious diseases and weather factors, we also briefly introduce alternative approaches, including mathematical modeling, wavelet analysis, and autoregressive integrated moving average (ARIMA) models. Modifications proposed to standard time series regression practice include using sums of past cases as proxies for the immune population, and using the logarithm of lagged disease counts to control autocorrelation due to true contagion, both of which are motivated from "susceptible-infectious-recovered" (SIR) models. The complexity of lag structures and association patterns can often be informed by biological mechanisms and explored by using distributed lag non-linear models. For overdispersed models, alternative distribution models such as quasi-Poisson and negative binomial should be considered. Time series regression can be used to investigate dependence of infectious diseases on weather, but may need modifying to allow for features specific to this context. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
FARIMA MODELING OF SOLAR FLARE ACTIVITY FROM EMPIRICAL TIME SERIES OF SOFT X-RAY SOLAR EMISSION
International Nuclear Information System (INIS)
Stanislavsky, A. A.; Burnecki, K.; Magdziarz, M.; Weron, A.; Weron, K.
2009-01-01
A time series of soft X-ray emission observed by the Geostationary Operational Environment Satellites from 1974 to 2007 is analyzed. We show that in the solar-maximum periods the energy distribution of soft X-ray solar flares for C, M, and X classes is well described by a fractional autoregressive integrated moving average model with Pareto noise. The model incorporates two effects detected in our empirical studies. One effect is a long-term dependence (long-term memory), and another corresponds to heavy-tailed distributions. The parameters of the model: self-similarity exponent H, tail index α, and memory parameter d are statistically stable enough during the periods 1977-1981, 1988-1992, 1999-2003. However, when the solar activity tends to minimum, the parameters vary. We discuss the possible causes of this evolution and suggest a statistically justified model for predicting the solar flare activity.
Aulia, D.; Ayu, S. F.; Matondang, A.
2018-01-01
Malaria is the most contagious global concern. As a public health problem with outbreaks, affect the quality of life and economy, also could lead to death. Therefore, this research is to forecast malaria cases with climatic factors as predictors in Mandailing Natal Regency. The total number of positive malaria cases on January 2008 to December 2016 were taken from health department of Mandailing Natal Regency. Climates data such as rainfall, humidity, and temperature were taken from Center of Statistic Department of Mandailing Natal Regency. E-views ver. 9 is used to analyze this study. Autoregressive integrated average, ARIMA (0,1,1) (1,0,0)12 is the best model to explain the 67,2% variability data in time series study. Rainfall (P value = 0.0005), temperature (P value = 0,0029) and humidity (P value = 0.0001) are significant predictors for malaria transmission. Seasonal adjusted factor (SAF) in November and March shows peak for malaria cases.
Forecasting Hourly Water Demands With Seasonal Autoregressive Models for Real-Time Application
Chen, Jinduan; Boccelli, Dominic L.
2018-02-01
Consumer water demands are not typically measured at temporal or spatial scales adequate to support real-time decision making, and recent approaches for estimating unobserved demands using observed hydraulic measurements are generally not capable of forecasting demands and uncertainty information. While time series modeling has shown promise for representing total system demands, these models have generally not been evaluated at spatial scales appropriate for representative real-time modeling. This study investigates the use of a double-seasonal time series model to capture daily and weekly autocorrelations to both total system demands and regional aggregated demands at a scale that would capture demand variability across a distribution system. Emphasis was placed on the ability to forecast demands and quantify uncertainties with results compared to traditional time series pattern-based demand models as well as nonseasonal and single-seasonal time series models. Additional research included the implementation of an adaptive-parameter estimation scheme to update the time series model when unobserved changes occurred in the system. For two case studies, results showed that (1) for the smaller-scale aggregated water demands, the log-transformed time series model resulted in improved forecasts, (2) the double-seasonal model outperformed other models in terms of forecasting errors, and (3) the adaptive adjustment of parameters during forecasting improved the accuracy of the generated prediction intervals. These results illustrate the capabilities of time series modeling to forecast both water demands and uncertainty estimates at spatial scales commensurate for real-time modeling applications and provide a foundation for developing a real-time integrated demand-hydraulic model.
Directory of Open Access Journals (Sweden)
Ali Akbar Akbari
2014-08-01
Full Text Available Introduction In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers have been trying to use a combination of various techniques to provide suitable rehabilitation systems. Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are the driving force for the whole system. Electromyography(EMG, as an experimental technique,is concerned with the development, recording, and analysis of myoelectric signals. EMG-based research is making progress in the development of simple, robust, user-friendly, and efficient interface devices for the amputees. Materials and Methods Prediction of muscular activity and motion patterns is a common, practical problem in prosthetic organs. Recurrent neural network (RNN models are not only applicable for the prediction of time series, but are also commonly used for the control of dynamical systems. The prediction can be assimilated to identification of a dynamic process. An architectural approach of RNN with embedded memory is Nonlinear Autoregressive Exogenous (NARX model, which seems to be suitable for dynamic system applications. Results Performance of NARX model is verified for several chaotic time series, which are applied as input for the neural network. The results showed that NARX has the potential to capture the model of nonlinear dynamic systems. The R-value and MSE are and , respectively. Conclusion EMG signals of deltoid and pectoralis major muscles are the inputs of the NARX network. It is possible to obtain EMG signals of muscles in other arm motions to predict the lost functions of the absent arm in above-elbow amputees, using NARX model.
Long, Xi; Pauws, S.C.; Pijl, M.; Lacroix, J.; Goris, A.H.C.; Aarts, R.M.
2009-01-01
Results are provided on predicting daily physical activity level (PAL) data from past data of participants of a physical activity lifestyle program aimed at promoting a healthier lifestyle consisting of more physical exercise. The PAL data quantifies the level of a person’s daily physical activity
Chen, Yu-Wen; Wang, Yetmen; Chang, Liang-Cheng
2017-04-01
Groundwater resources play a vital role on regional supply. To avoid irreversible environmental impact such as land subsidence, the characteristic identification of groundwater system is crucial before sustainable management of groundwater resource. This study proposes a signal process approach to identify the character of groundwater systems based on long-time hydrologic observations include groundwater level and rainfall. The study process contains two steps. First, a linear signal model (LSM) is constructed and calibrated to simulate the variation of underground hydrology based on the time series of groundwater levels and rainfall. The mass balance equation of the proposed LSM contains three major terms contain net rate of horizontal exchange, rate of rainfall recharge and rate of pumpage and four parameters are required to calibrate. Because reliable records of pumpage is rare, the time-variant groundwater amplitudes of daily frequency (P ) calculated by STFT are assumed as linear indicators of puamage instead of pumpage records. Time series obtained from 39 observation wells and 50 rainfall stations in and around the study area, Pintung Plain, are paired for model construction. Second, the well-calibrated parameters of the linear signal model can be used to interpret the characteristic of groundwater system. For example, the rainfall recharge coefficient (γ) means the transform ratio between rainfall intention and groundwater level raise. The area around the observation well with higher γ means that the saturated zone here is easily affected by rainfall events and the material of unsaturated zone might be gravel or coarse sand with high infiltration ratio. Considering the spatial distribution of γ, the values of γ decrease from the upstream to the downstream of major rivers and also are correlated to the spatial distribution of grain size of surface soil. Via the time-series of groundwater levels and rainfall, the well-calibrated parameters of LSM have
Regional Educational Laboratory Mid-Atlantic, 2015
2015-01-01
In this webinar, long-time educator and developer of education technology Michael Jay discussed the importance of using technology to support learning and gave examples of how teachers can integrate technology into their instruction based on the Common Core State Standards and the Next Generation Science Standards. The PowerPoint presentation and…
Taipa, M. A^ngela; Azevedo, Ana M.; Grilo, Anto´nio L.; Couto, Pedro T.; Ferreira, Filipe A. G.; Fortuna, Ana R. M.; Pinto, Ine^s F.; Santos, Rafael M.; Santos, Susana B.
2015-01-01
An integrative laboratory study addressing fundamentals of enzyme catalysis and their application to reactors operation and modeling is presented. Invertase, a ß-fructofuranosidase that catalyses the hydrolysis of sucrose, is used as the model enzyme at optimal conditions (pH 4.5 and 45 °C). The experimental work involves 3 h of laboratory time…
International Nuclear Information System (INIS)
Keles, Dogan; Genoese, Massimo; Möst, Dominik; Fichtner, Wolf
2012-01-01
This paper evaluates different financial price and time series models, such as mean reversion, autoregressive moving average (ARMA), integrated ARMA (ARIMA) and general autoregressive conditional heteroscedasticity (GARCH) process, usually applied for electricity price simulations. However, as these models are developed to describe the stochastic behaviour of electricity prices, they are extended by a separate data treatment for the deterministic components (trend, daily, weekly and annual cycles) of electricity spot prices. Furthermore price jumps are considered and implemented within a regime-switching model. Since 2008 market design allows for negative prices at the European Energy Exchange, which also occurred for several hours in the last years. Up to now, only a few financial and time series approaches exist, which are able to capture negative prices. This paper presents a new approach incorporating negative prices. The evaluation of the different approaches presented points out that the mean reversion and the ARMA models deliver the lowest mean root square error between simulated and historical electricity spot prices gained from the European Energy Exchange. These models posses also lower mean average errors than GARCH models. Hence, they are more suitable to simulate well-fitting price paths. Furthermore it is shown that the daily structure of historical price curves is better captured applying ARMA or ARIMA processes instead of mean-reversion or GARCH models. Another important outcome of the paper is that the regime-switching approach and the consideration of negative prices via the new proposed approach lead to a significant improvement of the electricity price simulation. - Highlights: ► Considering negative prices improves the results of time-series and financial models for electricity prices. ► Regime-switching approach captures the jumps and base prices quite well. ► Removing and separate modelling of deterministic annual, weekly and daily
Gemitzi, Alexandra; Stefanopoulos, Kyriakos
2011-06-01
SummaryGroundwaters and their dependent ecosystems are affected both by the meteorological conditions as well as from human interventions, mainly in the form of groundwater abstractions for irrigation needs. This work aims at investigating the quantitative effects of meteorological conditions and man intervention on groundwater resources and their dependent ecosystems. Various seasonal Auto-Regressive Integrated Moving Average (ARIMA) models with external predictor variables were used in order to model the influence of meteorological conditions and man intervention on the groundwater level time series. Initially, a seasonal ARIMA model that simulates the abstraction time series using as external predictor variable temperature ( T) was prepared. Thereafter, seasonal ARIMA models were developed in order to simulate groundwater level time series in 8 monitoring locations, using the appropriate predictor variables determined for each individual case. The spatial component was introduced through the use of Geographical Information Systems (GIS). Application of the proposed methodology took place in the Neon Sidirochorion alluvial aquifer (Northern Greece), for which a 7-year long time series (i.e., 2003-2010) of piezometric and groundwater abstraction data exists. According to the developed ARIMA models, three distinct groups of groundwater level time series exist; the first one proves to be dependent only on the meteorological parameters, the second group demonstrates a mixed dependence both on meteorological conditions and on human intervention, whereas the third group shows a clear influence from man intervention. Moreover, there is evidence that groundwater abstraction has affected an important protected ecosystem.
Wang, L.; Toshioka, T.; Nakajima, T.; Narita, A.; Xue, Z.
2017-12-01
In recent years, more and more Carbon Capture and Storage (CCS) studies focus on seismicity monitoring. For the safety management of geological CO2 storage at Tomakomai, Hokkaido, Japan, an Advanced Traffic Light System (ATLS) combined different seismic messages (magnitudes, phases, distributions et al.) is proposed for injection controlling. The primary task for ATLS is the seismic events detection in a long-term sustained time series record. Considering the time-varying characteristics of Signal to Noise Ratio (SNR) of a long-term record and the uneven energy distributions of seismic event waveforms will increase the difficulty in automatic seismic detecting, in this work, an improved probability autoregressive (AR) method for automatic seismic event detecting is applied. This algorithm, called sequentially discounting AR learning (SDAR), can identify the effective seismic event in the time series through the Change Point detection (CPD) of the seismic record. In this method, an anomaly signal (seismic event) can be designed as a change point on the time series (seismic record). The statistical model of the signal in the neighborhood of event point will change, because of the seismic event occurrence. This means the SDAR aims to find the statistical irregularities of the record thought CPD. There are 3 advantages of SDAR. 1. Anti-noise ability. The SDAR does not use waveform messages (such as amplitude, energy, polarization) for signal detecting. Therefore, it is an appropriate technique for low SNR data. 2. Real-time estimation. When new data appears in the record, the probability distribution models can be automatic updated by SDAR for on-line processing. 3. Discounting property. the SDAR introduces a discounting parameter to decrease the influence of present statistic value on future data. It makes SDAR as a robust algorithm for non-stationary signal processing. Within these 3 advantages, the SDAR method can handle the non-stationary time-varying long
Model Identification of Integrated ARMA Processes
Stadnytska, Tetiana; Braun, Simone; Werner, Joachim
2008-01-01
This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…
Directory of Open Access Journals (Sweden)
Sharad Shandilya
Full Text Available The timing of defibrillation is mostly at arbitrary intervals during cardio-pulmonary resuscitation (CPR, rather than during intervals when the out-of-hospital cardiac arrest (OOH-CA patient is physiologically primed for successful countershock. Interruptions to CPR may negatively impact defibrillation success. Multiple defibrillations can be associated with decreased post-resuscitation myocardial function. We hypothesize that a more complete picture of the cardiovascular system can be gained through non-linear dynamics and integration of multiple physiologic measures from biomedical signals.Retrospective analysis of 153 anonymized OOH-CA patients who received at least one defibrillation for ventricular fibrillation (VF was undertaken. A machine learning model, termed Multiple Domain Integrative (MDI model, was developed to predict defibrillation success. We explore the rationale for non-linear dynamics and statistically validate heuristics involved in feature extraction for model development. Performance of MDI is then compared to the amplitude spectrum area (AMSA technique.358 defibrillations were evaluated (218 unsuccessful and 140 successful. Non-linear properties (Lyapunov exponent > 0 of the ECG signals indicate a chaotic nature and validate the use of novel non-linear dynamic methods for feature extraction. Classification using MDI yielded ROC-AUC of 83.2% and accuracy of 78.8%, for the model built with ECG data only. Utilizing 10-fold cross-validation, at 80% specificity level, MDI (74% sensitivity outperformed AMSA (53.6% sensitivity. At 90% specificity level, MDI had 68.4% sensitivity while AMSA had 43.3% sensitivity. Integrating available end-tidal carbon dioxide features into MDI, for the available 48 defibrillations, boosted ROC-AUC to 93.8% and accuracy to 83.3% at 80% sensitivity.At clinically relevant sensitivity thresholds, the MDI provides improved performance as compared to AMSA, yielding fewer unsuccessful defibrillations
Lepot, M.J.; Aubin, Jean Baptiste; Clemens, F.H.L.R.
2017-01-01
A thorough review has been performed on interpolation methods to fill gaps in time-series, efficiency criteria, and uncertainty quantifications. On one hand, there are numerous available methods: interpolation, regression, autoregressive, machine learning methods, etc. On the other hand, there are
Forecasting malaria cases using climatic factors in delhi, India: a time series analysis.
Kumar, Varun; Mangal, Abha; Panesar, Sanjeet; Yadav, Geeta; Talwar, Richa; Raut, Deepak; Singh, Saudan
2014-01-01
Background. Malaria still remains a public health problem in developing countries and changing environmental and climatic factors pose the biggest challenge in fighting against the scourge of malaria. Therefore, the study was designed to forecast malaria cases using climatic factors as predictors in Delhi, India. Methods. The total number of monthly cases of malaria slide positives occurring from January 2006 to December 2013 was taken from the register maintained at the malaria clinic at Rural Health Training Centre (RHTC), Najafgarh, Delhi. Climatic data of monthly mean rainfall, relative humidity, and mean maximum temperature were taken from Regional Meteorological Centre, Delhi. Expert modeler of SPSS ver. 21 was used for analyzing the time series data. Results. Autoregressive integrated moving average, ARIMA (0,1,1) (0,1,0)(12), was the best fit model and it could explain 72.5% variability in the time series data. Rainfall (P value = 0.004) and relative humidity (P value = 0.001) were found to be significant predictors for malaria transmission in the study area. Seasonal adjusted factor (SAF) for malaria cases shows peak during the months of August and September. Conclusion. ARIMA models of time series analysis is a simple and reliable tool for producing reliable forecasts for malaria in Delhi, India.
Time series trends of the safety effects of pavement resurfacing.
Park, Juneyoung; Abdel-Aty, Mohamed; Wang, Jung-Han
2017-04-01
This study evaluated the safety performance of pavement resurfacing projects on urban arterials in Florida using the observational before and after approaches. The safety effects of pavement resurfacing were quantified in the crash modification factors (CMFs) and estimated based on different ranges of heavy vehicle traffic volume and time changes for different severity levels. In order to evaluate the variation of CMFs over time, crash modification functions (CMFunctions) were developed using nonlinear regression and time series models. The results showed that pavement resurfacing projects decrease crash frequency and are found to be more safety effective to reduce severe crashes in general. Moreover, the results of the general relationship between the safety effects and time changes indicated that the CMFs increase over time after the resurfacing treatment. It was also found that pavement resurfacing projects for the urban roadways with higher heavy vehicle volume rate are more safety effective than the roadways with lower heavy vehicle volume rate. Based on the exploration and comparison of the developed CMFucntions, the seasonal autoregressive integrated moving average (SARIMA) and exponential functional form of the nonlinear regression models can be utilized to identify the trend of CMFs over time. Copyright © 2017 Elsevier Ltd. All rights reserved.
Forecasting incidence of dengue in Rajasthan, using time series analyses.
Bhatnagar, Sunil; Lal, Vivek; Gupta, Shiv D; Gupta, Om P
2012-01-01
To develop a prediction model for dengue fever/dengue haemorrhagic fever (DF/DHF) using time series data over the past decade in Rajasthan and to forecast monthly DF/DHF incidence for 2011. Seasonal autoregressive integrated moving average (SARIMA) model was used for statistical modeling. During January 2001 to December 2010, the reported DF/DHF cases showed a cyclical pattern with seasonal variation. SARIMA (0,0,1) (0,1,1) 12 model had the lowest normalized Bayesian information criteria (BIC) of 9.426 and mean absolute percentage error (MAPE) of 263.361 and appeared to be the best model. The proportion of variance explained by the model was 54.3%. Adequacy of the model was established through Ljung-Box test (Q statistic 4.910 and P-value 0.996), which showed no significant correlation between residuals at different lag times. The forecast for the year 2011 showed a seasonal peak in the month of October with an estimated 546 cases. Application of SARIMA model may be useful for forecast of cases and impending outbreaks of DF/DHF and other infectious diseases, which exhibit seasonal pattern.
African Journals Online (AJOL)
2017-09-10
Sep 10, 2017 ... The NAR identification process is done in two steps namely model structure selection and parameter .... with MATLAB 2014a as the development platform. ..... on Modeling, Simulation and Applied Optimization, 2011, pp. 1-5.
Zafari, A.; Zurita-Milla, R.; Izquierdo-Verdiguier, E.
2017-10-01
Crop maps are essential inputs for the agricultural planning done at various governmental and agribusinesses agencies. Remote sensing offers timely and costs efficient technologies to identify and map crop types over large areas. Among the plethora of classification methods, Support Vector Machine (SVM) and Random Forest (RF) are widely used because of their proven performance. In this work, we study the synergic use of both methods by introducing a random forest kernel (RFK) in an SVM classifier. A time series of multispectral WorldView-2 images acquired over Mali (West Africa) in 2014 was used to develop our case study. Ground truth containing five common crop classes (cotton, maize, millet, peanut, and sorghum) were collected at 45 farms and used to train and test the classifiers. An SVM with the standard Radial Basis Function (RBF) kernel, a RF, and an SVM-RFK were trained and tested over 10 random training and test subsets generated from the ground data. Results show that the newly proposed SVM-RFK classifier can compete with both RF and SVM-RBF. The overall accuracies based on the spectral bands only are of 83, 82 and 83% respectively. Adding vegetation indices to the analysis result in the classification accuracy of 82, 81 and 84% for SVM-RFK, RF, and SVM-RBF respectively. Overall, it can be observed that the newly tested RFK can compete with SVM-RBF and RF classifiers in terms of classification accuracy.
Directory of Open Access Journals (Sweden)
Xiaodong Na
2018-05-01
Full Text Available Zhalong wetland is a globally important breeding habitat for many rare migratory bird species. Prompted by the high demand for temporal and spatial information about the wetland’s hydrological regimes and landscape patterns, eight time series Radarsat-2 images were utilized to detect the flooding characteristics of the Zhalong wetland. Subsequently, a random forest model was built to discriminate wetlands from other land cover types, combining with optical, radar, and hydrological regime data derived from multitemporal synthetic aperture radar (SAR images. The results showed that hydrological regimes variables, including flooding extent and flooding frequency, derived from multitemporal SAR images, improve the land cover classification accuracy in the natural wetlands distribution area. The permutation importance scores derived from the random forest classifier indicate that normalized difference vegetation index (NDVI calculated from optical imagery and the flooding frequency derived from multitemporal SAR imagery were found to be the most important variables for land cover mapping. Accuracy testing indicate that the addition of hydrological regime features effectively depressed the omission error rates (from 52.14% to 2.88% of marsh and the commission error (from 77.34% to 51.27% of meadow, thereby improving the overall classification accuracy (from 76.49% to 91.73%. The hydrological regimes and land cover monitoring in the typical wetlands are important for eco-hydrological modeling, biodiversity conservation, and regional ecology and water security.
Nonlinearity and fractional integration in the US dollar/euro exchange rate
Directory of Open Access Journals (Sweden)
Kiran Burcu
2012-01-01
Full Text Available This paper examines the nonlinear behavior and the fractional integration property of the US dollar/euro exchange rate over the period from January 1999 to August 2010 by extending the procedure of Peter M. Robinson (1994 to the case of nonlinearity. First, using the approach developed by Mehmet Caner and Bruce E. Hansen (2001, we investigate the possible presence of nonlinearity in the series through the estimation of a two-regime threshold autoregressive model. After finding nonlinearity, we also allow for disturbances to be fractionally integrated based on the different versions of Robinson (1994 tests. The findings show that the US dollar/euro exchange rate follows a stationary process with a weak evidence for long memory.
Directory of Open Access Journals (Sweden)
Cynthia A. Lietz
2010-11-01
Full Text Available Arizona’s Department of Economic Security (DES engaged in a strengths-based initiative to increase quality and integration of human services. Twenty teams including employees from state agencies, community leaders, and families were brought together to discuss and implement improvements to a variety of social services. A mixed methods study was conducted to explore the complex process of forming diverse teams to strengthen social services. Specifically, the research team conducted focus groups to collect qualitative data from a purposive sample of the teams to explore their experiences in greater depth. Analysis of the data led to the development of an online survey instrument that allowed all collaborative members an opportunity to participate in the study. Findings suggest that while the teams faced many challenges, a commitment to the process brought perseverance, communication, and creativity allowing this collaborative to initiate 105 activities to bring about positive changes in social services within their communities.
Time series modeling for syndromic surveillance
Directory of Open Access Journals (Sweden)
Mandl Kenneth D
2003-01-01
Full Text Available Abstract Background Emergency department (ED based syndromic surveillance systems identify abnormally high visit rates that may be an early signal of a bioterrorist attack. For example, an anthrax outbreak might first be detectable as an unusual increase in the number of patients reporting to the ED with respiratory symptoms. Reliably identifying these abnormal visit patterns requires a good understanding of the normal patterns of healthcare usage. Unfortunately, systematic methods for determining the expected number of (ED visits on a particular day have not yet been well established. We present here a generalized methodology for developing models of expected ED visit rates. Methods Using time-series methods, we developed robust models of ED utilization for the purpose of defining expected visit rates. The models were based on nearly a decade of historical data at a major metropolitan academic, tertiary care pediatric emergency department. The historical data were fit using trimmed-mean seasonal models, and additional models were fit with autoregressive integrated moving average (ARIMA residuals to account for recent trends in the data. The detection capabilities of the model were tested with simulated outbreaks. Results Models were built both for overall visits and for respiratory-related visits, classified according to the chief complaint recorded at the beginning of each visit. The mean absolute percentage error of the ARIMA models was 9.37% for overall visits and 27.54% for respiratory visits. A simple detection system based on the ARIMA model of overall visits was able to detect 7-day-long simulated outbreaks of 30 visits per day with 100% sensitivity and 97% specificity. Sensitivity decreased with outbreak size, dropping to 94% for outbreaks of 20 visits per day, and 57% for 10 visits per day, all while maintaining a 97% benchmark specificity. Conclusions Time series methods applied to historical ED utilization data are an important tool
Forecasting electricity spot-prices using linear univariate time-series models
International Nuclear Information System (INIS)
Cuaresma, Jesus Crespo; Hlouskova, Jaroslava; Kossmeier, Stephan; Obersteiner, Michael
2004-01-01
This paper studies the forecasting abilities of a battery of univariate models on hourly electricity spot prices, using data from the Leipzig Power Exchange. The specifications studied include autoregressive models, autoregressive-moving average models and unobserved component models. The results show that specifications, where each hour of the day is modelled separately present uniformly better forecasting properties than specifications for the whole time-series, and that the inclusion of simple probabilistic processes for the arrival of extreme price events can lead to improvements in the forecasting abilities of univariate models for electricity spot prices. (Author)
Recognition of NEMP and LEMP signals based on auto-regression model and artificial neutral network
International Nuclear Information System (INIS)
Li Peng; Song Lijun; Han Chao; Zheng Yi; Cao Baofeng; Li Xiaoqiang; Zhang Xueqin; Liang Rui
2010-01-01
Auto-regression (AR) model, one power spectrum estimation method of stationary random signals, and artificial neutral network were adopted to recognize nuclear and lightning electromagnetic pulses. Self-correlation function and Burg algorithms were used to acquire the AR model coefficients as eigenvalues, and BP artificial neural network was introduced as the classifier with different numbers of hidden layers and hidden layer nodes. The results show that AR model is effective in those signals, feature extraction, and the Burg algorithm is more effective than the self-correlation function algorithm. (authors)
Insurance-growth nexus in Ghana: An autoregressive distributed lag bounds cointegration approach
Directory of Open Access Journals (Sweden)
Abdul Latif Alhassan
2014-12-01
Full Text Available This paper examines the long-run causal relationship between insurance penetration and economic growth in Ghana from 1990 to 2010. Using the autoregressive distributed lag (ARDL bounds approach to cointegration by Pesaran et al. (1996, 2001, the study finds a long-run positive relationship between insurance penetration and economic growth which implies that funds mobilized from insurance business have a long run impact on economic growth. A unidirectional causality was found to run from aggregate insurance penetration, life and non-life insurance penetration to economic growth to support the ‘supply-leading’ hypothesis. The findings have implications for insurance market development in Ghana.
Autoregressive Model with Partial Forgetting within Rao-Blackwellized Particle Filter
Czech Academy of Sciences Publication Activity Database
Dedecius, Kamil; Hofman, Radek
2012-01-01
Roč. 41, č. 5 (2012), s. 582-589 ISSN 0361-0918 R&D Projects: GA MV VG20102013018; GA ČR GA102/08/0567 Grant - others:ČVUT(CZ) SGS 10/099/OHK3/1T/16 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian methods * Particle filters * Recursive estimation Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.295, year: 2012 http://library.utia.cas.cz/separaty/2012/AS/dedecius-autoregressive model with partial forgetting within rao-blackwellized particle filter.pdf
Autcha Araveeporn
2013-01-01
This paper compares a Least-Squared Random Coefficient Autoregressive (RCA) model with a Least-Squared RCA model based on Autocorrelated Errors (RCA-AR). We looked at only the first order models, denoted RCA(1) and RCA(1)-AR(1). The efficiency of the Least-Squared method was checked by applying the models to Brownian motion and Wiener process, and the efficiency followed closely the asymptotic properties of a normal distribution. In a simulation study, we compared the performance of RCA(1) an...
1987-02-04
U5tr,)! P(U 5-t Since U - F with F RS, we get (3.1). Case b: 0 S 5 k -a Now P([U~t]riM) = P(UZk-a) and P([ Ugt ]rM) = P(US-k-a) S P(US-(k-a)) which again...robustness for autoregressive processes." The Annals of Statistics, 12, 843-863. Mallows, C.L. (1980). "Some theory of nonlinear smoothen." The Annals of
Robust estimation of autoregressive processes using a mixture-based filter-bank
Czech Academy of Sciences Publication Activity Database
Šmídl, V.; Anthony, Q.; Kárný, Miroslav; Guy, Tatiana Valentine
2005-01-01
Roč. 54, č. 4 (2005), s. 315-323 ISSN 0167-6911 R&D Projects: GA AV ČR IBS1075351; GA ČR GA102/03/0049; GA ČR GP102/03/P010; GA MŠk 1M0572 Institutional research plan: CEZ:AV0Z10750506 Keywords : Bayesian estimation * probabilistic mixtures * recursive estimation Subject RIV: BC - Control Systems Theory Impact factor: 1.239, year: 2005 http://library.utia.cas.cz/separaty/historie/karny-robust estimation of autoregressive processes using a mixture-based filter- bank .pdf
Business cycles and fertility dynamics in the United States: a vector autoregressive model.
Mocan, N H
1990-01-01
"Using vector-autoregressions...this paper shows that fertility moves countercyclically over the business cycle....[It] shows that the United States fertility is not governed by a deterministic trend as was assumed by previous studies. Rather, fertility evolves around a stochastic trend. It is shown that a bivariate analysis between fertility and unemployment yields a procyclical picture of fertility. However, when one considers the effects on fertility of early marriages and the divorce behavior as well as economic activity, fertility moves countercyclically." excerpt
A representation theory for a class of vector autoregressive models for fractional processes
DEFF Research Database (Denmark)
Johansen, Søren
2008-01-01
Based on an idea of Granger (1986), we analyze a new vector autoregressive model defined from the fractional lag operator 1-(1-L)^{d}. We first derive conditions in terms of the coefficients for the model to generate processes which are fractional of order zero. We then show that if there is a un...... root, the model generates a fractional process X(t) of order d, d>0, for which there are vectors ß so that ß'X(t) is fractional of order d-b, 0...
Directory of Open Access Journals (Sweden)
Shuntaro Okazaki
Full Text Available People's behaviors synchronize. It is difficult, however, to determine whether synchronized behaviors occur in a mutual direction--two individuals influencing one another--or in one direction--one individual leading the other, and what the underlying mechanism for synchronization is. To answer these questions, we hypothesized a non-leader-follower postural sway synchronization, caused by a reciprocal visuo-postural feedback system operating on pairs of individuals, and tested that hypothesis both experimentally and via simulation. In the behavioral experiment, 22 participant pairs stood face to face either 20 or 70 cm away from each other wearing glasses with or without vision blocking lenses. The existence and direction of visual information exchanged between pairs of participants were systematically manipulated. The time series data for the postural sway of these pairs were recorded and analyzed with cross correlation and causality. Results of cross correlation showed that postural sway of paired participants was synchronized, with a shorter time lag when participant pairs could see one another's head motion than when one of the participants was blindfolded. In addition, there was less of a time lag in the observed synchronization when the distance between participant pairs was smaller. As for the causality analysis, noise contribution ratio (NCR, the measure of influence using a multivariate autoregressive model, was also computed to identify the degree to which one's postural sway is explained by that of the other's and how visual information (sighted vs. blindfolded interacts with paired participants' postural sway. It was found that for synchronization to take place, it is crucial that paired participants be sighted and exert equal influence on one another by simultaneously exchanging visual information. Furthermore, a simulation for the proposed system with a wider range of visual input showed a pattern of results similar to the
Kusev, Petko; van Schaik, Paul; Tsaneva-Atanasova, Krasimira; Juliusson, Asgeir; Chater, Nick
2018-01-01
When attempting to predict future events, people commonly rely on historical data. One psychological characteristic of judgmental forecasting of time series, established by research, is that when people make forecasts from series, they tend to underestimate future values for upward trends and overestimate them for downward ones, so-called trend-damping (modeled by anchoring on, and insufficient adjustment from, the average of recent time series values). Events in a time series can be experienced sequentially (dynamic mode), or they can also be retrospectively viewed simultaneously (static mode), not experienced individually in real time. In one experiment, we studied the influence of presentation mode (dynamic and static) on two sorts of judgment: (a) predictions of the next event (forecast) and (b) estimation of the average value of all the events in the presented series (average estimation). Participants' responses in dynamic mode were anchored on more recent events than in static mode for all types of judgment but with different consequences; hence, dynamic presentation improved prediction accuracy, but not estimation. These results are not anticipated by existing theoretical accounts; we develop and present an agent-based model-the adaptive anchoring model (ADAM)-to account for the difference between processing sequences of dynamically and statically presented stimuli (visually presented data). ADAM captures how variation in presentation mode produces variation in responses (and the accuracy of these responses) in both forecasting and judgment tasks. ADAM's model predictions for the forecasting and judgment tasks fit better with the response data than a linear-regression time series model. Moreover, ADAM outperformed autoregressive-integrated-moving-average (ARIMA) and exponential-smoothing models, while neither of these models accounts for people's responses on the average estimation task. Copyright © 2017 The Authors. Cognitive Science published by Wiley
Tolstov, Georgi P
1962-01-01
Richard A. Silverman's series of translations of outstanding Russian textbooks and monographs is well-known to people in the fields of mathematics, physics, and engineering. The present book is another excellent text from this series, a valuable addition to the English-language literature on Fourier series.This edition is organized into nine well-defined chapters: Trigonometric Fourier Series, Orthogonal Systems, Convergence of Trigonometric Fourier Series, Trigonometric Series with Decreasing Coefficients, Operations on Fourier Series, Summation of Trigonometric Fourier Series, Double Fourie
Joshi, M S; Bernard, D B
1999-08-01
In recent years, health and disease management has emerged as an effective means of delivering, integrating, and improving care through a population-based approach. Since 1997 the University of Pennsylvania Health System (UPHS) has utilized the key principles and components of continuous quality improvement (CQI) and disease management to form a model for health care improvement that focuses on designing best practices, using best practices to influence clinical decision making, changing processes and systems to deploy and deliver best practices, and measuring outcomes to improve the process. Experience with 28 programs and more than 14,000 patients indicates significant improvement in outcomes, including high physician satisfaction, increased patient satisfaction, reduced costs, and improved clinical process and outcome measures across multiple diseases. DIABETES DISEASE MANAGEMENT: In three months a UPHS multidisciplinary diabetes disease management team developed a best practice approach for the treatment of all patients with diabetes in the UPHS. After the program was pilot tested in three primary care physician sites, it was then introduced progressively to additional practice sites throughout the health system. The establishment of the role of the diabetes nurse care managers (certified diabetes educators) was central to successful program deployment. Office-based coordinators ensure incorporation of the best practice protocols into routine flow processes. A disease management intranet disseminates programs electronically. Outcomes of the UPHS health and disease management programs so far demonstrate success across multiple dimensions of performance-service, clinical quality, access, and value. The task of health care leadership today is to remove barriers and enable effective implementation of key strategies, such as health and disease management. Substantial effort and resources must be dedicated to gain physician buy-in and achieve compliance. The
International Nuclear Information System (INIS)
Frank, T D; Mongkolsakulvong, S
2015-01-01
In a previous study strongly nonlinear autoregressive (SNAR) models have been introduced as a generalization of the widely-used time-discrete autoregressive models that are known to apply both to Markov and non-Markovian systems. In contrast to conventional autoregressive models, SNAR models depend on process mean values. So far, only linear dependences have been studied. We consider the case in which process mean values can have a nonlinear impact on the processes under consideration. It is shown that such models describe Markov and non-Markovian many-body systems with mean field forces that exhibit a nonlinear impact on single subsystems. We exemplify that such nonlinear dependences can describe order-disorder phase transitions of time-discrete Markovian and non-Markovian many-body systems. The relevant order parameter equations are derived and issues of stability and stationarity are studied. (paper)
DEFF Research Database (Denmark)
Emerek, Ruth
2004-01-01
Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...
Gómez Rodríguez, Rafael Ángel
2014-01-01
To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.
Applying Time Series Analysis Model to Temperature Data in Greenhouses
Directory of Open Access Journals (Sweden)
Abdelhafid Hasni
2011-03-01
Full Text Available The objective of the research is to find an appropriate Seasonal Auto-Regressive Integrated Moving Average (SARIMA Model for fitting the inside air temperature (Tin of a naturally ventilated greenhouse under Mediterranean conditions by considering the minimum of Akaike Information Criterion (AIC. The results of fitting were as follows: the best SARIMA Model for fitting air temperature of greenhouse is SARIMA (1,0,0 (1,0,224.
Short Term Prediction of PM10 Concentrations Using Seasonal Time Series Analysis
Directory of Open Access Journals (Sweden)
Hamid Hazrul Abdul
2016-01-01
Full Text Available Air pollution modelling is one of an important tool that usually used to make short term and long term prediction. Since air pollution gives a big impact especially to human health, prediction of air pollutants concentration is needed to help the local authorities to give an early warning to people who are in risk of acute and chronic health effects from air pollution. Finding the best time series model would allow prediction to be made accurately. This research was carried out to find the best time series model to predict the PM10 concentrations in Nilai, Negeri Sembilan, Malaysia. By considering two seasons which is wet season (north east monsoon and dry season (south west monsoon, seasonal autoregressive integrated moving average model were used to find the most suitable model to predict the PM10 concentrations in Nilai, Negeri Sembilan by using three error measures. Based on AIC statistics, results show that ARIMA (1, 1, 1 × (1, 0, 012 is the most suitable model to predict PM10 concentrations in Nilai, Negeri Sembilan.
Time series modelling to forecast prehospital EMS demand for diabetic emergencies.
Villani, Melanie; Earnest, Arul; Nanayakkara, Natalie; Smith, Karen; de Courten, Barbora; Zoungas, Sophia
2017-05-05
Acute diabetic emergencies are often managed by prehospital Emergency Medical Services (EMS). The projected growth in prevalence of diabetes is likely to result in rising demand for prehospital EMS that are already under pressure. The aims of this study were to model the temporal trends and provide forecasts of prehospital attendances for diabetic emergencies. A time series analysis on monthly cases of hypoglycemia and hyperglycemia was conducted using data from the Ambulance Victoria (AV) electronic database between 2009 and 2015. Using the seasonal autoregressive integrated moving average (SARIMA) modelling process, different models were evaluated. The most parsimonious model with the highest accuracy was selected. Forty-one thousand four hundred fifty-four prehospital diabetic emergencies were attended over a seven-year period with an increase in the annual median monthly caseload between 2009 (484.5) and 2015 (549.5). Hypoglycemia (70%) and people with type 1 diabetes (48%) accounted for most attendances. The SARIMA (0,1,0,12) model provided the best fit, with a MAPE of 4.2% and predicts a monthly caseload of approximately 740 by the end of 2017. Prehospital EMS demand for diabetic emergencies is increasing. SARIMA time series models are a valuable tool to allow forecasting of future caseload with high accuracy and predict increasing cases of prehospital diabetic emergencies into the future. The model generated by this study may be used by service providers to allow appropriate planning and resource allocation of EMS for diabetic emergencies.
Diffusive and subdiffusive dynamics of indoor microclimate: a time series modeling.
Maciejewska, Monika; Szczurek, Andrzej; Sikora, Grzegorz; Wyłomańska, Agnieszka
2012-09-01
The indoor microclimate is an issue in modern society, where people spend about 90% of their time indoors. Temperature and relative humidity are commonly used for its evaluation. In this context, the two parameters are usually considered as behaving in the same manner, just inversely correlated. This opinion comes from observation of the deterministic components of temperature and humidity time series. We focus on the dynamics and the dependency structure of the time series of these parameters, without deterministic components. Here we apply the mean square displacement, the autoregressive integrated moving average (ARIMA), and the methodology for studying anomalous diffusion. The analyzed data originated from five monitoring locations inside a modern office building, covering a period of nearly one week. It was found that the temperature data exhibited a transition between diffusive and subdiffusive behavior, when the building occupancy pattern changed from the weekday to the weekend pattern. At the same time the relative humidity consistently showed diffusive character. Also the structures of the dependencies of the temperature and humidity data sets were different, as shown by the different structures of the ARIMA models which were found appropriate. In the space domain, the dynamics and dependency structure of the particular parameter were preserved. This work proposes an approach to describe the very complex conditions of indoor air and it contributes to the improvement of the representative character of microclimate monitoring.
Failure and reliability prediction by support vector machines regression of time series data
International Nuclear Information System (INIS)
Chagas Moura, Marcio das; Zio, Enrico; Lins, Isis Didier; Droguett, Enrique
2011-01-01
Support Vector Machines (SVMs) are kernel-based learning methods, which have been successfully adopted for regression problems. However, their use in reliability applications has not been widely explored. In this paper, a comparative analysis is presented in order to evaluate the SVM effectiveness in forecasting time-to-failure and reliability of engineered components based on time series data. The performance on literature case studies of SVM regression is measured against other advanced learning methods such as the Radial Basis Function, the traditional MultiLayer Perceptron model, Box-Jenkins autoregressive-integrated-moving average and the Infinite Impulse Response Locally Recurrent Neural Networks. The comparison shows that in the analyzed cases, SVM outperforms or is comparable to other techniques. - Highlights: → Realistic modeling of reliability demands complex mathematical formulations. → SVM is proper when the relation input/output is unknown or very costly to be obtained. → Results indicate the potential of SVM for reliability time series prediction. → Reliability estimates support the establishment of adequate maintenance strategies.
Ferrand, Yann; Kelton, Christina M L; Guo, Jeff J; Levy, Martin S; Yu, Yan
2011-03-01
Medicaid programs' spending on antidepressants increased from $159 million in 1991 to $2 billion in 2005. The National Institute for Health Care Management attributed this expenditure growth to increases in drug utilization, entry of newer higher-priced antidepressants, and greater prescription drug insurance coverage. Rising enrollment in Medicaid has also contributed to this expenditure growth. This research examines the impact of specific events, including branded-drug and generic entry, a black box warning, direct-to-consumer advertising (DTCA), and new indication approval, on Medicaid spending on antidepressants. Using quarterly expenditure data for 1991-2005 from the national Medicaid pharmacy claims database maintained by the Centers for Medicare and Medicaid Services, a time-series autoregressive integrated moving average (ARIMA) intervention analysis was performed on 6 specific antidepressant drugs and on overall antidepressant spending. Twenty-nine potentially relevant interventions and their dates of occurrence were identified from the literature. Each was tested for an impact on the time series. Forecasts from the models were compared with a holdout sample of actual expenditure data. Interventions with significant impacts on Medicaid expenditures included the patent expiration of Prozac® (P0.05), implying that the expanding market for antidepressants overwhelmed the effect of generic competition. Copyright © 2011 Elsevier Inc. All rights reserved.
Bekti, Rokhana Dwi; Nurhadiyanti, Gita; Irwansyah, Edy
2014-10-01
The diarrhea case pattern information, especially for toddler, is very important. It is used to show the distribution of diarrhea in every region, relationship among that locations, and regional economic characteristic or environmental behavior. So, this research uses spatial pattern to perform them. This method includes: Moran's I, Spatial Autoregressive Models (SAR), and Local Indicator of Spatial Autocorrelation (LISA). It uses sample from 23 sub districts of Bekasi Regency, West Java, Indonesia. Diarrhea case, regional economic, and environmental behavior of households have a spatial relationship among sub district. SAR shows that the percentage of Regional Gross Domestic Product is significantly effect on diarrhea at α = 10%. Therefore illiteracy and health center facilities are significant at α = 5%. With LISA test, sub districts in southern Bekasi have high dependencies with Cikarang Selatan, Serang Baru, and Setu. This research also builds development application that is based on java and R to support data analysis.
Packet loss replacement in voip using a recursive low-order autoregressive modelbased speech
International Nuclear Information System (INIS)
Miralavi, Seyed Reza; Ghorshi, Seyed; Mortazavi, Mohammad; Choupan, Jeiran
2011-01-01
In real-time packet-based communication systems one major problem is misrouted or delayed packets which results in degraded perceived voice quality. When some speech packets are not available on time, the packet is known as lost packet in real-time communication systems. The easiest task of a network terminal receiver is to replace silence for the duration of lost speech segments. In a high quality communication system in order to avoid quality reduction due to packet loss a suitable method and/or algorithm is needed to replace the missing segments of speech. In this paper, we introduce a recursive low order autoregressive (AR) model for replacement of lost speech segment. The evaluation results show that this method has a lower mean square error (MSE) and low complexity compared to the other efficient methods like high-order AR model without any substantial degradation in perceived voice quality.
Remaining Useful Life Prediction of Gas Turbine Engine using Autoregressive Model
Directory of Open Access Journals (Sweden)
Ahsan Shazaib
2017-01-01
Full Text Available Gas turbine (GT engines are known for their high availability and reliability and are extensively used for power generation, marine and aero-applications. Maintenance of such complex machines should be done proactively to reduce cost and sustain high availability of the GT. The aim of this paper is to explore the use of autoregressive (AR models to predict remaining useful life (RUL of a GT engine. The Turbofan Engine data from NASA benchmark data repository is used as case study. The parametric investigation is performed to check on any effect of changing model parameter on modelling accuracy. Results shows that a single sensory data cannot accurately predict RUL of GT and further research need to be carried out by incorporating multi-sensory data. Furthermore, the predictions made using AR model seems to give highly pessimistic values for RUL of GT.
Autoregressive techniques for acoustic detection of in-sodium water leaks
International Nuclear Information System (INIS)
Hayashi, K.
1997-01-01
We have been applied a background signal whitening filter built by univariate autoregressive model to the estimation problem of the leak start time and duration. In the 1995 present benchmark stage, we evaluated the method using acoustic signals from real hydrogen or water/steam injection experiments. The results show that the signal processing technique using this filter can detect reliability the leak signals with a sufficient signal-to-noise ratio. Even if the sensor signal contains non-boiling or non-leak high-amplitude pulses, they can be classified by spectral information. Especially, the feature signal made from the time-frequency spectrum of the filtered signal is very sensitive and useful. (author). 8 refs, 14 figs, 6 tabs
International Nuclear Information System (INIS)
Morishima, N.
1996-01-01
The multivariate autoregressive (MAR) modeling of a vector noise process is discussed in terms of the estimation of dominant noise sources in BWRs. The discussion is based on a physical approach: a transfer function model on BWR core dynamics is utilized in developing a noise model; a set of input-output relations between three system variables and twelve different noise sources is obtained. By the least-square fitting of a theoretical PSD on neutron noise to an experimental one, four kinds of dominant noise sources are selected. It is shown that some of dominant noise sources consist of two or more different noise sources and have the spectral properties of being coloured and correlated with each other. By diagonalizing the PSD matrix for dominant noise sources, we may obtain an MAR expression for a vector noise process as a response to the diagonal elements(i.e. residual noises) being white and mutually-independent. (Author)
Integer valued autoregressive processes with generalized discrete Mittag-Leffler marginals
Directory of Open Access Journals (Sweden)
Kanichukattu K. Jose
2013-05-01
Full Text Available In this paper we consider a generalization of discrete Mittag-Leffler distributions. We introduce and study the properties of a new distribution called geometric generalized discrete Mittag-Leffler distribution. Autoregressive processes with geometric generalized discrete Mittag-Leffler distributions are developed and studied. The distributions are further extended to develop a more general class of geometric generalized discrete semi-Mittag-Leffler distributions. The processes are extended to higher orders also. An application with respect to an empirical data on customer arrivals in a bank counter is also given. Various areas of potential applications like human resource development, insect growth, epidemic modeling, industrial risk modeling, insurance and actuaries, town planning etc are also discussed.
DEFF Research Database (Denmark)
Thomsen, C E; Rosenfalck, A; Nørregaard Christensen, K
1991-01-01
The brain activity electroencephalogram (EEG) was recorded from 30 healthy women scheduled for hysterectomy. The patients were anaesthetized with isoflurane, halothane or etomidate/fentanyl. A multiparametric method was used for extraction of amplitude and frequency information from the EEG....... The method applied autoregressive modelling of the signal, segmented in 2 s fixed intervals. The features from the EEG segments were used for learning and for classification. The learning process was unsupervised and hierarchical clustering analysis was used to construct a learning set of EEG amplitude......-frequency patterns for each of the three anaesthetic drugs. These EEG patterns were assigned to a colour code corresponding to similar clinical states. A common learning set could be used for all patients anaesthetized with the same drug. The classification process could be performed on-line and the results were...
METODE VECTOR AUTOREGRESSIVE (VAR DALAM PERAMALAN JUMLAH WISATAWAN MANCANEGARA KE BALI
Directory of Open Access Journals (Sweden)
TJOK GDE SAHITYAHUTTI RANANGGA
2018-05-01
Full Text Available The purposes of this research were to model and to forecast the number of foreign tourists (Australia, China, and Japan arrival to Bali using vector autoregressive (VAR method. The estimated of VAR model obtained to forecast the number of foreign tourists to Bali is the sixth order VAR (VAR(6.We used multivariate least square method to estimate the VAR(6’s parameters.The mean absolute percentage error (MAPE in this model were as follows 6.8% in predicting the number of Australian tourists, 15.9% in predicting the number of Chinese tourists, and 9% in predicting the number of Japanese tourists. The prediction of Australian, Chinese, and Japanese tourists arrival to Bali for July 2017 to December 2017 tended to experience up and downs that were not too high compared to the previous months.
International Nuclear Information System (INIS)
Oguma, Ritsuo
1980-01-01
In the HBWR (Halden Boiling Water Reactor), there exists a resonant power oscillation with period about 0.04 Hz at power levels higher than about 9.5 MWt. While the resonant oscillation in not so large as to affect the normal reactor operation, it is significant, from the viewpoint of reactor diagnosis, to grasp its characteristics and find the cause. Noise analysis based on the autoregressive (AR) modeling technique has been made to reveal the driving source for this oscillation which led to the suggestion that it is attributed to the dynamic interference of heat exchange process between two parallel-connected steam transformers against the reactor. The present study demonstrates that the method used here is highly effective for tracing back to a noise source inducing the variation of quantities in a system, and also applicable to problems of reactor noise analysis and diagnosis. (author)
The impact of oil-price shocks on Hawaii's economy: A case study using vector autoregression
International Nuclear Information System (INIS)
Gopalakrishnan, C.; Tian, X.; Tran, D.
1991-01-01
The effects of oil-price shocks on the macroeconomic performance of a non-oil-producing, oil-importing state are studied in terms of Hawaii's experience (1974-1986) using Vector Autoregression (VAR). The VAR model contains three macrovariables-real oil price, interest rate, and real GNP, and three regional variable-total civilian labor force, Honolulu consumer price index, and real personal income. The results suggested that oil-price shock had a positive effect on interest rate as well as local price (i.e., higher interest and higher local price), but a negative influence on real GNP. The negative income effect, however, was offset by the positive employment effect. The price of oil was found to be exogenous to all other variables in the system. The macrovariables exerted a pronounced impact on Hawaii's economy, most notably on consumer price
Very-short-term wind power probabilistic forecasts by sparse vector autoregression
DEFF Research Database (Denmark)
Dowell, Jethro; Pinson, Pierre
2016-01-01
A spatio-temporal method for producing very-shortterm parametric probabilistic wind power forecasts at a large number of locations is presented. Smart grids containing tens, or hundreds, of wind generators require skilled very-short-term forecasts to operate effectively, and spatial information...... is highly desirable. In addition, probabilistic forecasts are widely regarded as necessary for optimal power system management as they quantify the uncertainty associated with point forecasts. Here we work within a parametric framework based on the logit-normal distribution and forecast its parameters....... The location parameter for multiple wind farms is modelled as a vector-valued spatiotemporal process, and the scale parameter is tracked by modified exponential smoothing. A state-of-the-art technique for fitting sparse vector autoregressive models is employed to model the location parameter and demonstrates...
Debt Contagion in Europe: A Panel-Vector Autoregressive (VAR Analysis
Directory of Open Access Journals (Sweden)
Florence Bouvet
2013-12-01
Full Text Available The European sovereign-debt crisis began in Greece when the government announced in December, 2009, that its debt reached 121% of GDP (or 300 billion euros and its 2009 budget deficit was 12.7% of GDP, four times the level allowed by the Maastricht Treaty. The Greek crisis soon spread to other Economic and Monetary Union (EMU countries, notably Ireland, Portugal, Spain and Italy. Using quarterly data for the 2000–2011 period, we implement a panel-vector autoregressive (PVAR model for 11 EMU countries to examine the extent to which a rise in a country’s bond-yield spread or debt-to-GDP ratio affects another EMU countries’ fiscal and macroeconomic outcomes. To distinguish between interdependence and contagion among EMU countries, we compare results obtained for the pre-crisis period (2000–2007 with the crisis period (2008–2011 and control for global risk aversion.
DEFF Research Database (Denmark)
Chon, K H; Hoyer, D; Armoundas, A A
1999-01-01
In this study, we introduce a new approach for estimating linear and nonlinear stochastic autoregressive moving average (ARMA) model parameters, given a corrupt signal, using artificial recurrent neural networks. This new approach is a two-step approach in which the parameters of the deterministic...... part of the stochastic ARMA model are first estimated via a three-layer artificial neural network (deterministic estimation step) and then reestimated using the prediction error as one of the inputs to the artificial neural networks in an iterative algorithm (stochastic estimation step). The prediction...... error is obtained by subtracting the corrupt signal of the estimated ARMA model obtained via the deterministic estimation step from the system output response. We present computer simulation examples to show the efficacy of the proposed stochastic recurrent neural network approach in obtaining accurate...
Statistical aspects of autoregressive-moving average models in the assessment of radon mitigation
International Nuclear Information System (INIS)
Dunn, J.E.; Henschel, D.B.
1989-01-01
Radon values, as reflected by hourly scintillation counts, seem dominated by major, pseudo-periodic, random fluctuations. This methodological paper reports a moderate degree of success in modeling these data using relatively simple autoregressive-moving average models to assess the effectiveness of radon mitigation techniques in existing housing. While accounting for the natural correlation of successive observations, familiar summary statistics such as steady state estimates, standard errors, confidence limits, and tests of hypothesis are produced. The Box-Jenkins approach is used throughout. In particular, intervention analysis provides an objective means of assessing the effectiveness of an active mitigation measure, such as a fan off/on cycle. Occasionally, failure to declare a significant intervention has suggested a means of remedial action in the data collection procedure
DEFF Research Database (Denmark)
Ørregård Nielsen, Morten
2015-01-01
the multivariate non-cointegrated fractional autoregressive integrated moving average (ARIMA) model. The novelty of the consistency result, in particular, is that it applies to a multivariate model and to an arbitrarily large set of admissible parameter values, for which the objective function does not converge...
Schliep, E. M.; Gelfand, A. E.; Holland, D. M.
2015-12-01
There is considerable demand for accurate air quality information in human health analyses. The sparsity of ground monitoring stations across the United States motivates the need for advanced statistical models to predict air quality metrics, such as PM2.5, at unobserved sites. Remote sensing technologies have the potential to expand our knowledge of PM2.5 spatial patterns beyond what we can predict from current PM2.5 monitoring networks. Data from satellites have an additional advantage in not requiring extensive emission inventories necessary for most atmospheric models that have been used in earlier data fusion models for air pollution. Statistical models combining monitoring station data with satellite-obtained aerosol optical thickness (AOT), also referred to as aerosol optical depth (AOD), have been proposed in the literature with varying levels of success in predicting PM2.5. The benefit of using AOT is that satellites provide complete gridded spatial coverage. However, the challenges involved with using it in fusion models are (1) the correlation between the two data sources varies both in time and in space, (2) the data sources are temporally and spatially misaligned, and (3) there is extensive missingness in the monitoring data and also in the satellite data due to cloud cover. We propose a hierarchical autoregressive spatially varying coefficients model to jointly model the two data sources, which addresses the foregoing challenges. Additionally, we offer formal model comparison for competing models in terms of model fit and out of sample prediction of PM2.5. The models are applied to daily observations of PM2.5 and AOT in the summer months of 2013 across the conterminous United States. Most notably, during this time period, we find small in-sample improvement incorporating AOT into our autoregressive model but little out-of-sample predictive improvement.
Benbenishty, Rami; Astor, Ron Avi; Roziner, Ilan; Wrabel, Stephani L.
2016-01-01
The present study explores the causal link between school climate, school violence, and a school's general academic performance over time using a school-level, cross-lagged panel autoregressive modeling design. We hypothesized that reductions in school violence and climate improvement would lead to schools' overall improved academic performance.…
DEFF Research Database (Denmark)
Kock, Anders Bredahl; Callot, Laurent
We show that the adaptive Lasso (aLasso) and the adaptive group Lasso (agLasso) are oracle efficient in stationary vector autoregressions where the number of parameters per equation is smaller than the number of observations. In particular, this means that the parameters are estimated consistently...
Directory of Open Access Journals (Sweden)
Qian Sun
2016-11-01
Full Text Available Although the past few decades have witnessed the great development of Synthetic Aperture Radar Interferometry (InSAR technology in the monitoring of landslides, such applications are limited by geometric distortions and ambiguity of 1D Line-Of-Sight (LOS measurements, both of which are the fundamental weakness of InSAR. Integration of multi-sensor InSAR datasets has recently shown its great potential in breaking through the two limits. In this study, 16 ascending images from the Advanced Land Observing Satellite (ALOS and 18 descending images from the Environmental Satellite (ENVISAT have been integrated to characterize and to detect the slow-moving landslides in Zhouqu, China between 2008 and 2010. Geometric distortions are first mapped by using the imaging geometric parameters of the used SAR data and public Digital Elevation Model (DEM data of Zhouqu, which allow the determination of the most appropriate data assembly for a particular slope. Subsequently, deformation rates along respective LOS directions of ALOS ascending and ENVISAT descending tracks are estimated by conducting InSAR time series analysis with a Temporarily Coherent Point (TCP-InSAR algorithm. As indicated by the geometric distortion results, 3D deformation rates of the Xieliupo slope at the east bank of the Pai-lung River are finally reconstructed by joint exploiting of the LOS deformation rates from cross-heading datasets based on the surface–parallel flow assumption. It is revealed that the synergistic results of ALOS and ENVISAT datasets provide a more comprehensive understanding and monitoring of the slow-moving landslides in Zhouqu.
Directory of Open Access Journals (Sweden)
Juan D Velásquez
2008-12-01
Full Text Available Una red neuronal autorregresiva es estimada para el precio mensual brasileño de corto plazo de la electricidad, la cual describe mejor la dinámica de los precios que un modelo lineal autorregresivo y que un perceptrón multicapa clásico que usan las mismas entradas y neuronas en la capa oculta. El modelo propuesto es especificado usando un procedimiento estadístico basado en el contraste del radio de verosimilitud. El modelo pasa una batería de pruebas de diagnóstico. El procedimiento de especificación propuesto permite seleccionar el número de unidades en la capa oculta y las entradas a la red neuronal, usando pruebas estadísticas que tienen en cuenta la cantidad de los datos y el ajuste del modelo a la serie de precios. La especificación del modelo final demuestra que el precio para el próximo mes es una función no lineal del precio actual, de la energía afluente actual y de la energía almacenada en el embalse equivalente en el mes actual y dos meses atrás.An autoregressive neural network model is estimated for the monthly Brazilian electricity spot price, which describes the prices dynamics better than a linear autoregressive model and a classical multilayer perceptron using the same input and neurons in the hidden layer. The proposed model is specified using a statistical procedure based on a likelihood ratio test. The model passes a battery of diagnostic tests. The proposed specification procedure allows us to select the number of units in hidden layer and the inputs to the neural network based on statistical tests, taking into account the number of data and the model fitting to the price time series. The final model specification demonstrates that the price for the next month is a nonlinear function of the current price, the current energy inflow, and the energy saved in the equivalent reservoir in the current month and two months ago.
International Nuclear Information System (INIS)
Ghayspoor, R.; Roth, J.R.
1986-01-01
The nonlinear characteristics of data obtained by many plasma diagnostic systems requires the power of modern computers for on-line data processing and reduction. The objective of this work is to develop an integrated data acquisition and handling system based on digital time series analysis techniques. These techniques make it possible to investigate the nature of plasma fluctuations and the physical processes which give rise to them. The approach is to digitize the data, and to generate various spectra by means of Fast Fourier Transforms (FFT). Of particular interest is the computer generated auto-power spectrum, cross-power spectrum, phase spectrum, and squared coherency spectrum. Software programs based on those developed by Jae. Y. Hong at the University of Texas are utilized for these spectra. The LeCroy 3500-SA signal analyzer and VAX 11/780 are used as the data handling and reduction system in this work. In this report, the software required to link these two systems are described
Giannini, Andrea; Russo, Eleonora; Mannella, Paolo; Palla, Giulia; Pisaneschi, Silvia; Cecchi, Elena; Maremmani, Michele; Morelli, Luca; Perutelli, Alessandra; Cela, Vito; Melfi, Franca; Simoncini, Tommaso
2017-08-01
To present the first case series of total robotic hysterectomy (TRH), using integrated table motion (ITM), which is a new feature comprising a unique operating table by Trumpf Medical that communicates wirelessly with the da Vinci Xi surgical system. ITM has been specifically developed to improve multiquadrant robotic surgery such as that conducted in colorectal surgery. Between May and October 2015, a prospective post-market study was conducted on ITM in the EU in 40 cases from different specialties. The gynecological study group comprised 12 patients. Primary endpoints were ITM feasibility, safety and efficacy. Ten patients underwent TRH. Mean number of ITM moves was three during TRH; there were 31 instances of table moves in the ten procedures. Twenty-eight of 31 ITM moves were made to gain internal exposure. The endoscope remained inserted during 29 of the 31 table movements (94%), while the instruments remained inserted during 27 of the 31 moves (87%). No external instrument collisions or other problems related to the operating table were noted. There were no ITM safety-related observations and no adverse events. This preliminary study demonstrated the feasibility, safety and efficacy of ITM for the da Vinci Xi surgical system in TRH. ITM was safe, with no adverse events related to its use. Further studies will be useful to define the real role and potential benefit of ITM in gynecological surgery.
Güssregen, Stefan; Matter, Hans; Hessler, Gerhard; Lionta, Evanthia; Heil, Jochen; Kast, Stefan M
2017-07-24
Water molecules play an essential role for mediating interactions between ligands and protein binding sites. Displacement of specific water molecules can favorably modulate the free energy of binding of protein-ligand complexes. Here, the nature of water interactions in protein binding sites is investigated by 3D RISM (three-dimensional reference interaction site model) integral equation theory to understand and exploit local thermodynamic features of water molecules by ranking their possible displacement in structure-based design. Unlike molecular dynamics-based approaches, 3D RISM theory allows for fast and noise-free calculations using the same detailed level of solute-solvent interaction description. Here we correlate molecular water entities instead of mere site density maxima with local contributions to the solvation free energy using novel algorithms. Distinct water molecules and hydration sites are investigated in multiple protein-ligand X-ray structures, namely streptavidin, factor Xa, and factor VIIa, based on 3D RISM-derived free energy density fields. Our approach allows the semiquantitative assessment of whether a given structural water molecule can potentially be targeted for replacement in structure-based design. Finally, PLS-based regression models from free energy density fields used within a 3D-QSAR approach (CARMa - comparative analysis of 3D RISM Maps) are shown to be able to extract relevant information for the interpretation of structure-activity relationship (SAR) trends, as demonstrated for a series of serine protease inhibitors.
Assessment and prediction of road accident injuries trend using time-series models in Kurdistan.
Parvareh, Maryam; Karimi, Asrin; Rezaei, Satar; Woldemichael, Abraha; Nili, Sairan; Nouri, Bijan; Nasab, Nader Esmail
2018-01-01
Road traffic accidents are commonly encountered incidents that can cause high-intensity injuries to the victims and have direct impacts on the members of the society. Iran has one of the highest incident rates of road traffic accidents. The objective of this study was to model the patterns of road traffic accidents leading to injury in Kurdistan province, Iran. A time-series analysis was conducted to characterize and predict the frequency of road traffic accidents that lead to injury in Kurdistan province. The injuries were categorized into three separate groups which were related to the car occupants, motorcyclists and pedestrian road traffic accident injuries. The Box-Jenkins time-series analysis was used to model the injury observations applying autoregressive integrated moving average (ARIMA) and seasonal autoregressive integrated moving average (SARIMA) from March 2009 to February 2015 and to predict the accidents up to 24 months later (February 2017). The analysis was carried out using R-3.4.2 statistical software package. A total of 5199 pedestrians, 9015 motorcyclists, and 28,906 car occupants' accidents were observed. The mean (SD) number of car occupant, motorcyclist and pedestrian accident injuries observed were 401.01 (SD 32.78), 123.70 (SD 30.18) and 71.19 (SD 17.92) per year, respectively. The best models for the pattern of car occupant, motorcyclist, and pedestrian injuries were the ARIMA (1, 0, 0), SARIMA (1, 0, 2) (1, 0, 0) 12 , and SARIMA (1, 1, 1) (0, 0, 1) 12 , respectively. The motorcyclist and pedestrian injuries showed a seasonal pattern and the peak was during summer (August). The minimum frequency for the motorcyclist and pedestrian injuries were observed during the late autumn and early winter (December and January). Our findings revealed that the observed motorcyclist and pedestrian injuries had a seasonal pattern that was explained by air temperature changes overtime. These findings call the need for close monitoring of the
Hirschman, Isidore Isaac
2014-01-01
This text for advanced undergraduate and graduate students presents a rigorous approach that also emphasizes applications. Encompassing more than the usual amount of material on the problems of computation with series, the treatment offers many applications, including those related to the theory of special functions. Numerous problems appear throughout the book.The first chapter introduces the elementary theory of infinite series, followed by a relatively complete exposition of the basic properties of Taylor series and Fourier series. Additional subjects include series of functions and the app
Directory of Open Access Journals (Sweden)
Matthew Perry
2017-06-01
Full Text Available A tool has been developed to statistically increase the temporal resolution of solar irradiance time series. Fine temporal resolution time series are an important input into the planning process for solar power plants, and lead to increased understanding of the likely short-term variability of solar energy. The approach makes use of the spatial variability of hourly gridded datasets around a location of interest to make inferences about the temporal variability within the hour. The unique characteristics of solar irradiance data are modelled by classifying each hour into a typical weather situation. Low variability situations are modelled using an autoregressive process which is applied to ramps of clear-sky index. High variability situations are modelled as a transition between states of clear sky conditions and different levels of cloud opacity. The methods have been calibrated to Australian conditions using 1 min data from four ground stations for a 10 year period. These stations, together with an independent dataset, have also been used to verify the quality of the results using a number of relevant metrics. The results show that the method generates realistic fine resolution synthetic time series. The synthetic time series correlate well with observed data on monthly and annual timescales as they are constrained to the nearest grid-point value on each hour. The probability distributions of the synthetic and observed global irradiance data are similar, with Kolmogorov-Smirnov test statistic less than 0.04 at each station. The tool could be useful for the estimation of solar power output for integration studies.
Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris
2018-02-01
We investigate the predictability of monthly temperature and precipitation by applying automatic univariate time series forecasting methods to a sample of 985 40-year-long monthly temperature and 1552 40-year-long monthly precipitation time series. The methods include a naïve one based on the monthly values of the last year, as well as the random walk (with drift), AutoRegressive Fractionally Integrated Moving Average (ARFIMA), exponential smoothing state-space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components (BATS), simple exponential smoothing, Theta and Prophet methods. Prophet is a recently introduced model inspired by the nature of time series forecasted at Facebook and has not been applied to hydrometeorological time series before, while the use of random walk, BATS, simple exponential smoothing and Theta is rare in hydrology. The methods are tested in performing multi-step ahead forecasts for the last 48 months of the data. We further investigate how different choices of handling the seasonality and non-normality affect the performance of the models. The results indicate that: (a) all the examined methods apart from the naïve and random walk ones are accurate enough to be used in long-term applications; (b) monthly temperature and precipitation can be forecasted to a level of accuracy which can barely be improved using other methods; (c) the externally applied classical seasonal decomposition results mostly in better forecasts compared to the automatic seasonal decomposition used by the BATS and Prophet methods; and (d) Prophet is competitive, especially when it is combined with externally applied classical seasonal decomposition.
Directory of Open Access Journals (Sweden)
Nadine Keen
2017-06-01
Full Text Available Despite high rates of trauma in individuals with psychotic symptoms, post-traumatic stress symptoms are frequently overlooked in clinical practice. There is also reluctance to treat post-traumatic symptoms in case the therapeutic procedure of reprocessing the trauma exacerbates psychotic symptoms. Recent evidence demonstrates that it is safe to use reprocessing strategies in this population. However, most published studies have been based on treating post-traumatic symptoms in isolation from psychotic symptoms. The aims of the current case series were to assess the acceptability, feasibility, and preliminary effectiveness of integrating cognitive-behavioural approaches for post-traumatic stress and psychotic symptoms into a single protocol. Nine participants reporting distressing psychotic and post-traumatic symptoms were recruited from a specialist psychological therapies service for psychosis. Clients were assessed at five time points (baseline, pre, mid, end of therapy, and at 6+ months of follow-up by an independent assessor on measures of current symptoms of psychosis, post-traumatic stress, emotional problems, and well-being. Therapy was formulation based and individualised, depending on presenting symptoms and trauma type. It consisted of five broad, flexible phases, and included imaginal reprocessing strategies (reliving and/or rescripting. The intervention was well received, with positive post-therapy feedback and satisfaction ratings. Unusually for this population, no-one dropped out of therapy. Post therapy, all but one (88% of participants achieved a reliable improvement compared to pre-therapy on at least one outcome measure: post-traumatic symptoms (63%, voices (25%, delusions (50%, depression (50%, anxiety (36%, and well-being (40%. Follow-up assessments were completed by 78% (n = 7 of whom 86% (n = 6 maintained at least one reliable improvement. Rates of improvements following therapy (average of 44% across measures post
International Nuclear Information System (INIS)
Suslov, I.M.
2005-01-01
Various perturbation series are factorially divergent. The behavior of their high-order terms can be determined by Lipatov's method, which involves the use of instanton configurations of appropriate functional integrals. When the Lipatov asymptotic form is known and several lowest order terms of the perturbation series are found by direct calculation of diagrams, one can gain insight into the behavior of the remaining terms of the series, which can be resummed to solve various strong-coupling problems in a certain approximation. This approach is demonstrated by determining the Gell-Mann-Low functions in φ 4 theory, QED, and QCD with arbitrary coupling constants. An overview of the mathematical theory of divergent series is presented, and interpretation of perturbation series is discussed. Explicit derivations of the Lipatov asymptotic form are presented for some basic problems in theoretical physics. A solution is proposed to the problem of renormalon contributions, which hampered progress in this field in the late 1970s. Practical perturbation-series summation schemes are described both for a coupling constant of order unity and in the strong-coupling limit. An interpretation of the Borel integral is given for 'non-Borel-summable' series. Higher order corrections to the Lipatov asymptotic form are discussed
Kargoll, Boris; Omidalizarandi, Mohammad; Loth, Ina; Paffenholz, Jens-André; Alkhatib, Hamza
2018-03-01
In this paper, we investigate a linear regression time series model of possibly outlier-afflicted observations and autocorrelated random deviations. This colored noise is represented by a covariance-stationary autoregressive (AR) process, in which the independent error components follow a scaled (Student's) t-distribution. This error model allows for the stochastic modeling of multiple outliers and for an adaptive robust maximum likelihood (ML) estimation of the unknown regression and AR coefficients, the scale parameter, and the degree of freedom of the t-distribution. This approach is meant to be an extension of known estimators, which tend to focus only on the regression model, or on the AR error model, or on normally distributed errors. For the purpose of ML estimation, we derive an expectation conditional maximization either algorithm, which leads to an easy-to-implement version of iteratively reweighted least squares. The estimation performance of the algorithm is evaluated via Monte Carlo simulations for a Fourier as well as a spline model in connection with AR colored noise models of different orders and with three different sampling distributions generating the white noise components. We apply the algorithm to a vibration dataset recorded by a high-accuracy, single-axis accelerometer, focusing on the evaluation of the estimated AR colored noise model.
Nurhaida, Subanar, Abdurakhman, Abadi, Agus Maman
2017-08-01
Seismic data is usually modelled using autoregressive processes. The aim of this paper is to find the arrival times of the seismic waves of Mt. Rinjani in Indonesia. Kitagawa algorithm's is used to detect the seismic P and S-wave. Householder transformation used in the algorithm made it effectively finding the number of change points and parameters of the autoregressive models. The results show that the use of Box-Cox transformation on the variable selection level makes the algorithm works well in detecting the change points. Furthermore, when the basic span of the subinterval is set 200 seconds and the maximum AR order is 20, there are 8 change points which occur at 1601, 2001, 7401, 7601,7801, 8001, 8201 and 9601. Finally, The P and S-wave arrival times are detected at time 1671 and 2045 respectively using a precise detection algorithm.
Multivariate Autoregressive Model Based Heart Motion Prediction Approach for Beating Heart Surgery
Directory of Open Access Journals (Sweden)
Fan Liang
2013-02-01
Full Text Available A robotic tool can enable a surgeon to conduct off-pump coronary artery graft bypass surgery on a beating heart. The robotic tool actively alleviates the relative motion between the point of interest (POI on the heart surface and the surgical tool and allows the surgeon to operate as if the heart were stationary. Since the beating heart's motion is relatively high-band, with nonlinear and nonstationary characteristics, it is difficult to follow. Thus, precise beating heart motion prediction is necessary for the tracking control procedure during the surgery. In the research presented here, we first observe that Electrocardiography (ECG signal contains the causal phase information on heart motion and non-stationary heart rate dynamic variations. Then, we investigate the relationship between ECG signal and beating heart motion using Granger Causality Analysis, which describes the feasibility of the improved prediction of heart motion. Next, we propose a nonlinear time-varying multivariate vector autoregressive (MVAR model based adaptive prediction method. In this model, the significant correlation between ECG and heart motion enables the improvement of the prediction of sharp changes in heart motion and the approximation of the motion with sufficient detail. Dual Kalman Filters (DKF estimate the states and parameters of the model, respectively. Last, we evaluate the proposed algorithm through comparative experiments using the two sets of collected vivo data.
Energy Technology Data Exchange (ETDEWEB)
Ciftcioglu, O.; Hoogenboom, J.E.; Dam, H. van
1988-01-01
Studies on the multivariate autoregressive (MAR) analysis are carried out for the choice of the parameters for modelling the data obtained from various sensors optimally. Accordingly, the roles of the parameters on the analysis results are identified and the related ambiguities are reduced. Experimental investigations are carried out by means of synthesized reactor noise-like data obtained from a digital simulator providing simulated stochastic signals of an operating nuclear reactor so that the simulator constitutes a favourable tool for the present studies aimed. As the system is well defined with its known structure, precise comparison of the MAR analysis results with the true values is performed. With the help of the information gained through the studies carried out, conditions to be taken care of for optimal signal processing in MAR modelling are determined. Although the parameters involved are related among themselves and they have to be given different values suitable for the particular application in hand, some criteria, namely memory-time and sample length-time play an essential role in AR modelling and they are found to be applicable to each individual case commonly, for the establishment of the optimality.
International Nuclear Information System (INIS)
Ciftcioglu, O.
1988-01-01
Studies on the multivariate autoregressive (MAR) analysis are carried out for the choice of the parameters for modelling the data obtained from various sensors optimally. Accordingly, the roles of the parameters on the analysis results are identified and the related ambiguities are reduced. Experimental investigations are carried out by means of synthesized reactor noise-like data obtained from a digital simulator providing simulated stochastic signals of an operating nuclear reactor so that the simulator constitutes a favourable tool for the present studies aimed. As the system is well defined with its known structure, precise comparison of the MAR analysis results with the true values is performed. With the help of the information gained through the studies carried out, conditions to be taken care of for optimal signal processing in MAR modelling are determined. Although the parameters involved are related among themselves and they have to be given different values suitable for the particular application in hand, some criteria, namely memory-time and sample length-time play an essential role in AR modelling and they are found to be applicable to each individual case commonly, for the establishment of the optimality. (author)
International Nuclear Information System (INIS)
Yi Guo-Sheng; Wang Jiang; Deng Bin; Wei Xi-Le; Han Chun-Xiao
2013-01-01
To investigate whether and how manual acupuncture (MA) modulates brain activities, we design an experiment where acupuncture at acupoint ST36 of the right leg is used to obtain electroencephalograph (EEG) signals in healthy subjects. We adopt the autoregressive (AR) Burg method to estimate the power spectrum of EEG signals and analyze the relative powers in delta (0 Hz–4 Hz), theta (4 Hz–8 Hz), alpha (8 Hz–13 Hz), and beta (13 Hz–30 Hz) bands. Our results show that MA at ST36 can significantly increase the EEG slow wave relative power (delta band) and reduce the fast wave relative powers (alpha and beta bands), while there are no statistical differences in theta band relative power between different acupuncture states. In order to quantify the ratio of slow to fast wave EEG activity, we compute the power ratio index. It is found that the MA can significantly increase the power ratio index, especially in frontal and central lobes. All the results highlight the modulation of brain activities with MA and may provide potential help for the clinical use of acupuncture. The proposed quantitative method of acupuncture signals may be further used to make MA more standardized. (interdisciplinary physics and related areas of science and technology)
International Nuclear Information System (INIS)
Ueki, Taro
2010-01-01
The noise propagation of tallies in the Monte Carlo power method can be represented by the autoregressive moving average process of orders p and p-1 (ARMA(p,p-1)], where p is an integer larger than or equal to two. The formula of the autocorrelation of ARMA(p,q), p≥q+1, indicates that ARMA(3,2) fitting is equivalent to lumping the eigenmodes of fluctuation propagation in three modes such as the slow, intermediate and fast attenuation modes. Therefore, ARMA(3,2) fitting was applied to the real standard deviation estimation of fuel assemblies at particular heights. The numerical results show that straightforward ARMA(3,2) fitting is promising but a stability issue must be resolved toward the incorporation in the distributed version of production Monte Carlo codes. The same numerical results reveal that the average performance of ARMA(3,2) fitting is equivalent to that of the batch method in MCNP with a batch size larger than one hundred and smaller than two hundred cycles for a 1100 MWe pressurized water reactor. The bias correction of low lag autocovariances in MVP/GMVP is demonstrated to have the potential of improving the average performance of ARMA(3,2) fitting. (author)
Genetic risk prediction using a spatial autoregressive model with adaptive lasso.
Wen, Yalu; Shen, Xiaoxi; Lu, Qing
2018-05-31
With rapidly evolving high-throughput technologies, studies are being initiated to accelerate the process toward precision medicine. The collection of the vast amounts of sequencing data provides us with great opportunities to systematically study the role of a deep catalog of sequencing variants in risk prediction. Nevertheless, the massive amount of noise signals and low frequencies of rare variants in sequencing data pose great analytical challenges on risk prediction modeling. Motivated by the development in spatial statistics, we propose a spatial autoregressive model with adaptive lasso (SARAL) for risk prediction modeling using high-dimensional sequencing data. The SARAL is a set-based approach, and thus, it reduces the data dimension and accumulates genetic effects within a single-nucleotide variant (SNV) set. Moreover, it allows different SNV sets having various magnitudes and directions of effect sizes, which reflects the nature of complex diseases. With the adaptive lasso implemented, SARAL can shrink the effects of noise SNV sets to be zero and, thus, further improve prediction accuracy. Through simulation studies, we demonstrate that, overall, SARAL is comparable to, if not better than, the genomic best linear unbiased prediction method. The method is further illustrated by an application to the sequencing data from the Alzheimer's Disease Neuroimaging Initiative. Copyright © 2018 John Wiley & Sons, Ltd.
A Ramp Cosine Cepstrum Model for the Parameter Estimation of Autoregressive Systems at Low SNR
Directory of Open Access Journals (Sweden)
Zhu Wei-Ping
2010-01-01
Full Text Available A new cosine cepstrum model-based scheme is presented for the parameter estimation of a minimum-phase autoregressive (AR system under low levels of signal-to-noise ratio (SNR. A ramp cosine cepstrum (RCC model for the one-sided autocorrelation function (OSACF of an AR signal is first proposed by considering both white noise and periodic impulse-train excitations. Using the RCC model, a residue-based least-squares optimization technique that guarantees the stability of the system is then presented in order to estimate the AR parameters from noisy output observations. For the purpose of implementation, the discrete cosine transform, which can efficiently handle the phase unwrapping problem and offer computational advantages as compared to the discrete Fourier transform, is employed. From extensive experimentations on AR systems of different orders, it is shown that the proposed method is capable of estimating parameters accurately and consistently in comparison to some of the existing methods for the SNR levels as low as −5 dB. As a practical application of the proposed technique, simulation results are also provided for the identification of a human vocal tract system using noise-corrupted natural speech signals demonstrating a superior estimation performance in terms of the power spectral density of the synthesized speech signals.
Dynamics analysis of a boiling water reactor based on multivariable autoregressive modeling
International Nuclear Information System (INIS)
Oguma, Ritsuo; Matsubara, Kunihiko
1980-01-01
The establishment of the highly reliable mathematical model for the dynamic characteristics of a reactor is indispensable for the achievement of safe operation in reactor plants. The authors have tried to model the dynamic characteristics of a reactor based on the identification technique, taking the JPDR (Japan Power Demonstration Reactor) as the object, as one of the technical studies for diagnosing BWR anomaly, and employed the multivariable autoregressive modeling (MAR method) as one of the useful methods for forwarding the analysis. In this paper, the outline of the system analysis by MAR modeling is explained, and the identification experiments and their analysis results performed in the phase 4 of the power increase test of the JPDR are described. The authors evaluated the results of identification based on only reactor noises, making reference to the results of identification in the case of exciting the system by applying artificial irregular disturbance, in order to clarify the extent in which the modeling is possible by reactor noises only. However, some difficulties were encountered. The largest problem is the one concerning the separation and identification of the noise sources exciting the variables from the dynamic characteristics among the variables. If the effective technique can be obtained to this problem, the approach by the identification technique based on the probability model might be a powerful tool in the field of reactor noise analysis and the development of diagnosis technics. (Wakatsuki, Y.)
Noise source analysis of nuclear ship Mutsu plant using multivariate autoregressive model
International Nuclear Information System (INIS)
Hayashi, K.; Shimazaki, J.; Shinohara, Y.
1996-01-01
The present study is concerned with the noise sources in N.S. Mutsu reactor plant. The noise experiments on the Mutsu plant were performed in order to investigate the plant dynamics and the effect of sea condition and and ship motion on the plant. The reactor noise signals as well as the ship motion signals were analyzed by a multivariable autoregressive (MAR) modeling method to clarify the noise sources in the reactor plant. It was confirmed from the analysis results that most of the plant variables were affected mainly by a horizontal component of the ship motion, that is the sway, through vibrations of the plant structures. Furthermore, the effect of ship motion on the reactor power was evaluated through the analysis of wave components extracted by a geometrical transform method. It was concluded that the amplitude of the reactor power oscillation was about 0.15% in normal sea condition, which was small enough for safe operation of the reactor plant. (authors)
A method simulating random magnetic field in interplanetary space by an autoregressive method
International Nuclear Information System (INIS)
Kato, Masahito; Sakai, Takasuke
1985-01-01
With an autoregressive method, we tried to generate the random noise fitting in with the power spectrum which can be analytically Fouriertransformed into an autocorrelation function. Although we can not directly compare our method with FFT by Owens (1978), we can only point out the following; FFT method should determine at first the number of data points N, or the total length to be generated and we cannot generate random data more than N. Because, beyond the NΔy, the generated data repeats the same pattern as below NΔy, where Δy = minimum interval for random noise. So if you want to change or increase N after generating the random noise, you should start the generation from the first step. The characteristic of the generated random number may depend upon the number of N, judging from the generating method. Once the prediction error filters are determined, our method can produce successively the random numbers, that is, we can possibly extend N to infinite without any effort. (author)
Nabelek, Daniel P.; Ho, K. C.
2013-06-01
The detection of shallow buried low-metal content objects using ground penetrating radar (GPR) is a challenging task. This is because these targets are right underneath the ground and the ground bounce reflection interferes with their detections. They do not create distinctive hyperbolic signatures as required by most existing GPR detection algorithms due to their special geometric shapes and low metal content. This paper proposes the use of the Autoregressive (AR) modeling method for the detection of these targets. We fit an A-scan of the GPR data to an AR model. It is found that the fitting error will be small when such a target is present and large when it is absent. The ratio of the energy in an Ascan before and after AR model fitting is used as the confidence value for detection. We also apply AR model fitting over scans and utilize the fitting residual energies over several scans to form a feature vector for improving the detections. Using the data collected from a government test site, the proposed method can improve the detection of this kind of targets by 30% compared to the pre-screener, at a false alarm rate of 0.002/m2.
Men, Zhongxian; Yee, Eugene; Lien, Fue-Sang; Yang, Zhiling; Liu, Yongqian
2014-01-01
Short-term wind speed and wind power forecasts (for a 72 h period) are obtained using a nonlinear autoregressive exogenous artificial neural network (ANN) methodology which incorporates either numerical weather prediction or high-resolution computational fluid dynamics wind field information as an exogenous input. An ensemble approach is used to combine the predictions from many candidate ANNs in order to provide improved forecasts for wind speed and power, along with the associated uncertainties in these forecasts. More specifically, the ensemble ANN is used to quantify the uncertainties arising from the network weight initialization and from the unknown structure of the ANN. All members forming the ensemble of neural networks were trained using an efficient particle swarm optimization algorithm. The results of the proposed methodology are validated using wind speed and wind power data obtained from an operational wind farm located in Northern China. The assessment demonstrates that this methodology for wind speed and power forecasting generally provides an improvement in predictive skills when compared to the practice of using an "optimal" weight vector from a single ANN while providing additional information in the form of prediction uncertainty bounds.
Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models
Energy Technology Data Exchange (ETDEWEB)
Pappas, S.S. [Department of Information and Communication Systems Engineering, University of the Aegean, Karlovassi, 83 200 Samos (Greece); Ekonomou, L.; Chatzarakis, G.E. [Department of Electrical Engineering Educators, ASPETE - School of Pedagogical and Technological Education, N. Heraklion, 141 21 Athens (Greece); Karamousantas, D.C. [Technological Educational Institute of Kalamata, Antikalamos, 24100 Kalamata (Greece); Katsikas, S.K. [Department of Technology Education and Digital Systems, University of Piraeus, 150 Androutsou Srt., 18 532 Piraeus (Greece); Liatsis, P. [Division of Electrical Electronic and Information Engineering, School of Engineering and Mathematical Sciences, Information and Biomedical Engineering Centre, City University, Northampton Square, London EC1V 0HB (United Kingdom)
2008-09-15
This study addresses the problem of modeling the electricity demand loads in Greece. The provided actual load data is deseasonilized and an AutoRegressive Moving Average (ARMA) model is fitted on the data off-line, using the Akaike Corrected Information Criterion (AICC). The developed model fits the data in a successful manner. Difficulties occur when the provided data includes noise or errors and also when an on-line/adaptive modeling is required. In both cases and under the assumption that the provided data can be represented by an ARMA model, simultaneous order and parameter estimation of ARMA models under the presence of noise are performed. The produced results indicate that the proposed method, which is based on the multi-model partitioning theory, tackles successfully the studied problem. For validation purposes the produced results are compared with three other established order selection criteria, namely AICC, Akaike's Information Criterion (AIC) and Schwarz's Bayesian Information Criterion (BIC). The developed model could be useful in the studies that concern electricity consumption and electricity prices forecasts. (author)
An Autoregressive and Distributed Lag Model Approach to Inflation in Nigeria
Directory of Open Access Journals (Sweden)
Chimere Okechukwu Iheonu
2017-03-01
Full Text Available This study scrutinized the precursors of Inflation in Nigeria between the periods 1980 to 2014. The Augmented Dickey-Fuller test was engaged to test for stationarity of the variables while the Autoregressive and Distributed lag (ARDL Model was applied to capture the affiliation between inflation and selected macroeconomic variables. Our findings revealed that there exists a long run relationship between Inflation, money supply, interest rate, GDP per capita and exchange rate in Nigeria while in the short run, money supply has a significant positive one period lag effect on Inflation and Interest Rate also has a significant negative one period lag influence on Inflation in Nigeria. Recommendations are that in the short run, monetary policies should be geared towards the control of money supply and interest rate in Nigeria in other to regulate Inflation and also, the Nigerian economy can afford to vary any of human capital development or technological advancement to boost productivity without causing inflation as GDP per capita proved insignificant in the short run.
Modeling Nonstationary Emotion Dynamics in Dyads using a Time-Varying Vector-Autoregressive Model.
Bringmann, Laura F; Ferrer, Emilio; Hamaker, Ellen L; Borsboom, Denny; Tuerlinckx, Francis
2018-01-01
Emotion dynamics are likely to arise in an interpersonal context. Standard methods to study emotions in interpersonal interaction are limited because stationarity is assumed. This means that the dynamics, for example, time-lagged relations, are invariant across time periods. However, this is generally an unrealistic assumption. Whether caused by an external (e.g., divorce) or an internal (e.g., rumination) event, emotion dynamics are prone to change. The semi-parametric time-varying vector-autoregressive (TV-VAR) model is based on well-studied generalized additive models, implemented in the software R. The TV-VAR can explicitly model changes in temporal dependency without pre-existing knowledge about the nature of change. A simulation study is presented, showing that the TV-VAR model is superior to the standard time-invariant VAR model when the dynamics change over time. The TV-VAR model is applied to empirical data on daily feelings of positive affect (PA) from a single couple. Our analyses indicate reliable changes in the male's emotion dynamics over time, but not in the female's-which were not predicted by her own affect or that of her partner. This application illustrates the usefulness of using a TV-VAR model to detect changes in the dynamics in a system.
Forecasting Nord Pool day-ahead prices with an autoregressive model
International Nuclear Information System (INIS)
Kristiansen, Tarjei
2012-01-01
This paper presents a model to forecast Nord Pool hourly day-ahead prices. The model is based on but reduced in terms of estimation parameters (from 24 sets to 1) and modified to include Nordic demand and Danish wind power as exogenous variables. We model prices across all hours in the analysis period rather than across each single hour of 24 hours. By applying three model variants on Nord Pool data, we achieve a weekly mean absolute percentage error (WMAE) of around 6–7% and an hourly mean absolute percentage error (MAPE) ranging from 8% to 11%. Out of sample results yields a WMAE and an hourly MAPE of around 5%. The models enable analysts and traders to forecast hourly day-ahead prices accurately. Moreover, the models are relatively straightforward and user-friendly to implement. They can be set up in any trading organization. - Highlights: ► Forecasting Nord Pool day-ahead prices with an autoregressive model. ► The model is based on but with the set of parameters reduced from 24 to 1. ► The model includes Nordic demand and Danish wind power as exogenous variables. ► Hourly mean absolute percentage error ranges from 8% to 11%. ► Out of sample results yields a WMAE and an hourly MAPE of around 5%.
Fong Chao, B.
1983-12-01
The homogeneous set of 80-year-long (1900-1979) International Latitude Service (ILS) polar motion data is analyzed using the autoregressive method (Chao and Gilbert, 1980) which resolves and produces estimates for the complex frequency (or frequency and Q) and complex amplitude (or amplitude and phase) of each harmonic component in the data. Principal conclusion of this analysis are that (1) the ILS data support the multiple-component hypothesis of the Chandler wobble (it is found that the Chandler wobble can be adequately modeled as a linear combination of four (coherent) harmonic components, each of which represents a steady, nearly circular, prograte motion, a behavior that is inconsistent with the hypothesis of a single Chandler period excited in a temporally and/or spatially random fashion). (2) the four-component Chandler wobble model ``explains'' the apparent phase reversal during 1920-1940 and the pre-1950 empirical period-amplitude relation, (3) the annual wobble is shown to be rather stationary over the years both in amplitude and in phase and no evidence is found to support the large variations reported by earlier investigations. (4) the Markowitz wobble is found to support the large variations reported by earlier investigations. (4) the Markowitz wobble is found to be marginally retrograde and appears to have a complicated behavior which cannot be resolved because of the shortness of the data set.
Liu, Zhuofu; Wang, Lin; Luo, Zhongming; Heusch, Andrew I; Cascioli, Vincenzo; McCarthy, Peter W
2015-11-01
There is a need to develop a greater understanding of temperature at the skin-seat interface during prolonged seating from the perspectives of both industrial design (comfort/discomfort) and medical care (skin ulcer formation). Here we test the concept of predicting temperature at the seat surface and skin interface during prolonged sitting (such as required from wheelchair users). As caregivers are usually busy, such a method would give them warning ahead of a problem. This paper describes a data-driven model capable of predicting thermal changes and thus having the potential to provide an early warning (15- to 25-min ahead prediction) of an impending temperature that may increase the risk for potential skin damages for those subject to enforced sitting and who have little or no sensory feedback from this area. Initially, the oscillations of the original signal are suppressed using the reconstruction strategy of empirical mode decomposition (EMD). Consequentially, the autoregressive data-driven model can be used to predict future thermal trends based on a shorter period of acquisition, which reduces the possibility of introducing human errors and artefacts associated with longer duration "enforced" sitting by volunteers. In this study, the method had a maximum predictive error of body insensitivity and disability requiring them to be immobile in seats for prolonged periods. Copyright © 2015 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.
Investigating Spatial Interdependence in E-Bike Choice Using Spatially Autoregressive Model
Directory of Open Access Journals (Sweden)
Chengcheng Xu
2017-08-01
Full Text Available Increased attention has been given to promoting e-bike usage in recent years. However, the research gap still exists in understanding the effects of spatial interdependence on e-bike choice. This study investigated how spatial interdependence affected the e-bike choice. The Moran’s I statistic test showed that spatial interdependence exists in e-bike choice at aggregated level. Bayesian spatial autoregressive logistic analyses were then used to investigate the spatial interdependence at individual level. Separate models were developed for commuting and non-commuting trips. The factors affecting e-bike choice are different between commuting and non-commuting trips. Spatial interdependence exists at both origin and destination sides of commuting and non-commuting trips. Travellers are more likely to choose e-bikes if their neighbours at the trip origin and destination also travel by e-bikes. And the magnitude of this spatial interdependence is different across various traffic analysis zones. The results suggest that, without considering spatial interdependence, the traditional methods may have biased estimation results and make systematic forecasting errors.
Inflation, Exchange Rates and Interest Rates in Ghana: an Autoregressive Distributed Lag Model
Directory of Open Access Journals (Sweden)
Dennis Nchor
2015-01-01
Full Text Available This paper investigates the impact of exchange rate movement and the nominal interest rate on inflation in Ghana. It also looks at the presence of the Fisher Effect and the International Fisher Effect scenarios. It makes use of an autoregressive distributed lag model and an unrestricted error correction model. Ordinary Least Squares regression methods were also employed to determine the presence of the Fischer Effect and the International Fisher Effect. The results from the study show that in the short run a percentage point increase in the level of depreciation of the Ghana cedi leads to an increase in the rate of inflation by 0.20%. A percentage point increase in the level of nominal interest rates however results in a decrease in inflation by 0.98%. Inflation increases by 1.33% for every percentage point increase in the nominal interest rate in the long run. An increase in inflation on the other hand increases the nominal interest rate by 0.51% which demonstrates the partial Fisher effect. A 1% increase in the interest rate differential leads to a depreciation of the Ghana cedi by approximately 1% which indicates the full International Fisher effect.
Wo-Chiang Lee; Joe-Ming Lee
2014-01-01
This article applies the threshold autoregressive model to investigate the relationship between bond funds’ net flow and investment risk in Taiwan. Our empirical findings show that bond funds’ investors are concerned about the investment return and neglect the investment risk. In particular, when expanding the size of the bond funds, fund investors believe that the fund cannot lose any money on investment products. In order to satisfy investors, bond fund managers only target short-term retur...
Long Memory Models to Generate Synthetic Hydrological Series
Directory of Open Access Journals (Sweden)
Guilherme Armando de Almeida Pereira
2014-01-01
Full Text Available In Brazil, much of the energy production comes from hydroelectric plants whose planning is not trivial due to the strong dependence on rainfall regimes. This planning is accomplished through optimization models that use inputs such as synthetic hydrologic series generated from the statistical model PAR(p (periodic autoregressive. Recently, Brazil began the search for alternative models able to capture the effects that the traditional model PAR(p does not incorporate, such as long memory effects. Long memory in a time series can be defined as a significant dependence between lags separated by a long period of time. Thus, this research develops a study of the effects of long dependence in the series of streamflow natural energy in the South subsystem, in order to estimate a long memory model capable of generating synthetic hydrologic series.
International Nuclear Information System (INIS)
Benth, Fred Espen; Taib, Che Mohd Imran Che
2013-01-01
We extend the concept of half life of an Ornstein–Uhlenbeck process to Lévy-driven continuous-time autoregressive moving average processes with stochastic volatility. The half life becomes state dependent, and we analyze its properties in terms of the characteristics of the process. An empirical example based on daily temperatures observed in Petaling Jaya, Malaysia, is presented, where the proposed model is estimated and the distribution of the half life is simulated. The stationarity of the dynamics yield futures prices which asymptotically tend to constant at an exponential rate when time to maturity goes to infinity. The rate is characterized by the eigenvalues of the dynamics. An alternative description of this convergence can be given in terms of our concept of half life. - Highlights: • The concept of half life is extended to Levy-driven continuous time autoregressive moving average processes • The dynamics of Malaysian temperatures are modeled using a continuous time autoregressive model with stochastic volatility • Forward prices on temperature become constant when time to maturity tends to infinity • Convergence in time to maturity is at an exponential rate given by the eigenvalues of the model temperature model
Directory of Open Access Journals (Sweden)
Patrícia Ramos
2016-11-01
Full Text Available In this work, a cross-validation procedure is used to identify an appropriate Autoregressive Integrated Moving Average model and an appropriate state space model for a time series. A minimum size for the training set is specified. The procedure is based on one-step forecasts and uses different training sets, each containing one more observation than the previous one. All possible state space models and all ARIMA models where the orders are allowed to range reasonably are fitted considering raw data and log-transformed data with regular differencing (up to second order differences and, if the time series is seasonal, seasonal differencing (up to first order differences. The value of root mean squared error for each model is calculated averaging the one-step forecasts obtained. The model which has the lowest root mean squared error value and passes the Ljung–Box test using all of the available data with a reasonable significance level is selected among all the ARIMA and state space models considered. The procedure is exemplified in this paper with a case study of retail sales of different categories of women’s footwear from a Portuguese retailer, and its accuracy is compared with three reliable forecasting approaches. The results show that our procedure consistently forecasts more accurately than the other approaches and the improvements in the accuracy are significant.
Directory of Open Access Journals (Sweden)
Sean T. Doherty
2015-01-01
Full Text Available Type 2 diabetes is known to be associated with environmental, behavioral, and lifestyle factors. However, the actual impacts of these factors on blood glucose (BG variation throughout the day have remained relatively unexplored. Continuous blood glucose monitors combined with human activity tracking technologies afford new opportunities for exploration in a naturalistic setting. Data from a study of 40 patients with diabetes is utilized in this paper, including continuously monitored BG, food/medicine intake, and patient activity/location tracked using global positioning systems over a 4-day period. Standard linear regression and more disaggregated time-series analysis using autoregressive integrated moving average (ARIMA are used to explore patient BG variation throughout the day and over space. The ARIMA models revealed a wide variety of BG correlating factors related to specific activity types, locations (especially those far from home, and travel modes, although the impacts were highly personal. Traditional variables related to food intake and medications were less often significant. Overall, the time-series analysis revealed considerable patient-by-patient variation in the effects of geographic and daily lifestyle factors. We would suggest that maps of BG spatial variation or an interactive messaging system could provide new tools to engage patients and highlight potential risk factors.
DEFF Research Database (Denmark)
Olwig, Karen Fog
2011-01-01
, while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....
U.S. Department of Health & Human Services — The Centers for Medicare and Medicaid Services (CMS) offers several different Chart Series with data on beneficiary health status, spending, operations, and quality...
Quality Quandaries- Time Series Model Selection and Parsimony
DEFF Research Database (Denmark)
Bisgaard, Søren; Kulahci, Murat
2009-01-01
Some of the issues involved in selecting adequate models for time series data are discussed using an example concerning the number of users of an Internet server. The process of selecting an appropriate model is subjective and requires experience and judgment. The authors believe an important...... consideration in model selection should be parameter parsimony. They favor the use of parsimonious mixed ARMA models, noting that research has shown that a model building strategy that considers only autoregressive representations will lead to non-parsimonious models and to loss of forecasting accuracy....
Time Series Analysis of Onchocerciasis Data from Mexico: A Trend towards Elimination
Pérez-Rodríguez, Miguel A.; Adeleke, Monsuru A.; Orozco-Algarra, María E.; Arrendondo-Jiménez, Juan I.; Guo, Xianwu
2013-01-01
Background In Latin America, there are 13 geographically isolated endemic foci distributed among Mexico, Guatemala, Colombia, Venezuela, Brazil and Ecuador. The communities of the three endemic foci found within Mexico have been receiving ivermectin treatment since 1989. In this study, we predicted the trend of occurrence of cases in Mexico by applying time series analysis to monthly onchocerciasis data reported by the Mexican Secretariat of Health between 1988 and 2011 using the software R. Results A total of 15,584 cases were reported in Mexico from 1988 to 2011. The data of onchocerciasis cases are mainly from the main endemic foci of Chiapas and Oaxaca. The last case in Oaxaca was reported in 1998, but new cases were reported in the Chiapas foci up to 2011. Time series analysis performed for the foci in Mexico showed a decreasing trend of the disease over time. The best-fitted models with the smallest Akaike Information Criterion (AIC) were Auto-Regressive Integrated Moving Average (ARIMA) models, which were used to predict the tendency of onchocerciasis cases for two years ahead. According to the ARIMA models predictions, the cases in very low number (below 1) are expected for the disease between 2012 and 2013 in Chiapas, the last endemic region in Mexico. Conclusion The endemic regions of Mexico evolved from high onchocerciasis-endemic states to the interruption of transmission due to the strategies followed by the MSH, based on treatment with ivermectin. The extremely low level of expected cases as predicted by ARIMA models for the next two years suggest that the onchocerciasis is being eliminated in Mexico. To our knowledge, it is the first study utilizing time series for predicting case dynamics of onchocerciasis, which could be used as a benchmark during monitoring and post-treatment surveillance. PMID:23459370
Normalizing the causality between time series
Liang, X. San
2015-08-01
Recently, a rigorous yet concise formula was derived to evaluate information flow, and hence the causality in a quantitative sense, between time series. To assess the importance of a resulting causality, it needs to be normalized. The normalization is achieved through distinguishing a Lyapunov exponent-like, one-dimensional phase-space stretching rate and a noise-to-signal ratio from the rate of information flow in the balance of the marginal entropy evolution of the flow recipient. It is verified with autoregressive models and applied to a real financial analysis problem. An unusually strong one-way causality is identified from IBM (International Business Machines Corporation) to GE (General Electric Company) in their early era, revealing to us an old story, which has almost faded into oblivion, about "Seven Dwarfs" competing with a giant for the mainframe computer market.
Zhou, Tony; Dickson, Jennifer L; Geoffrey Chase, J
2018-01-01
Continuous glucose monitoring (CGM) devices have been effective in managing diabetes and offer potential benefits for use in the intensive care unit (ICU). Use of CGM devices in the ICU has been limited, primarily due to the higher point accuracy errors over currently used traditional intermittent blood glucose (BG) measures. General models of CGM errors, including drift and random errors, are lacking, but would enable better design of protocols to utilize these devices. This article presents an autoregressive (AR) based modeling method that separately characterizes the drift and random noise of the GlySure CGM sensor (GlySure Limited, Oxfordshire, UK). Clinical sensor data (n = 33) and reference measurements were used to generate 2 AR models to describe sensor drift and noise. These models were used to generate 100 Monte Carlo simulations based on reference blood glucose measurements. These were then compared to the original CGM clinical data using mean absolute relative difference (MARD) and a Trend Compass. The point accuracy MARD was very similar between simulated and clinical data (9.6% vs 9.9%). A Trend Compass was used to assess trend accuracy, and found simulated and clinical sensor profiles were similar (simulated trend index 11.4° vs clinical trend index 10.9°). The model and method accurately represents cohort sensor behavior over patients, providing a general modeling approach to any such sensor by separately characterizing each type of error that can arise in the data. Overall, it enables better protocol design based on accurate expected CGM sensor behavior, as well as enabling the analysis of what level of each type of sensor error would be necessary to obtain desired glycemic control safety and performance with a given protocol.
Directory of Open Access Journals (Sweden)
Helen Higgs
2014-03-01
Full Text Available This paper models the price and income elasticity of retail finance in Australia using aggregate quarterly data and an autoregressive distributed lag (ARDL approach. We particularly focus on the impact of the global financial crisis (GFC from 2007 onwards on retail finance demand and analyse four submarkets (period analysed in brackets: owneroccupied housing loans (Sep 1985–June 2010, term loans (for motor vehicles, household goods and debt consolidation, etc. (Dec 1988–Jun 2010, credit card loans (Mar 1990–Jun 2010, and margin loans (Sep 2000–Jun 2010. Other than the indicator lending rates and annual full-time earnings respectively used as proxies for the price and income effects, we specify a large number of other variables as demand factors, particularly reflecting the value of the asset for which retail finance demand is derived. These variously include the yield on indexed bonds as a proxy for inflation expectations, median housing prices, consumer sentiment indices as measures of consumer confidence, motor vehicle and retail trade sales, housing debt-to-housing assets as a measure of leverage, the proportion of protected margin lending, the available credit limit on credit cards, and the All Ordinaries Index. In the long run, we find significant price elasticities only for term loans and margin loans, and significant income elasticities of demand for housing loans, term loans and margin loans. We also find that the GFC only significantly affected the longrun demand for term loans and margin loans. In the short run, we find that the GFC has had a significant effect on the price elasticity of demand for term loans and margin loans. Expected inflation is also a key factor affecting retail finance demand. Overall, most of the submarkets in the analysis indicate that retail finance demand is certainly price inelastic but more income elastic than conventionally thought.
Prediction of high airway pressure using a non-linear autoregressive model of pulmonary mechanics.
Langdon, Ruby; Docherty, Paul D; Schranz, Christoph; Chase, J Geoffrey
2017-11-02
For mechanically ventilated patients with acute respiratory distress syndrome (ARDS), suboptimal PEEP levels can cause ventilator induced lung injury (VILI). In particular, high PEEP and high peak inspiratory pressures (PIP) can cause over distension of alveoli that is associated with VILI. However, PEEP must also be sufficient to maintain recruitment in ARDS lungs. A lung model that accurately and precisely predicts the outcome of an increase in PEEP may allow dangerous high PIP to be avoided, and reduce the incidence of VILI. Sixteen pressure-flow data sets were collected from nine mechanically ventilated ARDs patients that underwent one or more recruitment manoeuvres. A nonlinear autoregressive (NARX) model was identified on one or more adjacent PEEP steps, and extrapolated to predict PIP at 2, 4, and 6 cmH 2 O PEEP horizons. The analysis considered whether the predicted and measured PIP exceeded a threshold of 40 cmH 2 O. A direct comparison of the method was made using the first order model of pulmonary mechanics (FOM(I)). Additionally, a further, more clinically appropriate method for the FOM was tested, in which the FOM was trained on a single PEEP prior to prediction (FOM(II)). The NARX model exhibited very high sensitivity (> 0.96) in all cases, and a high specificity (> 0.88). While both FOM methods had a high specificity (> 0.96), the sensitivity was much lower, with a mean of 0.68 for FOM(I), and 0.82 for FOM(II). Clinically, false negatives are more harmful than false positives, as a high PIP may result in distension and VILI. Thus, the NARX model may be more effective than the FOM in allowing clinicians to reduce the risk of applying a PEEP that results in dangerously high airway pressures.
GPS Position Time Series @ JPL
Owen, Susan; Moore, Angelyn; Kedar, Sharon; Liu, Zhen; Webb, Frank; Heflin, Mike; Desai, Shailen
2013-01-01
Different flavors of GPS time series analysis at JPL - Use same GPS Precise Point Positioning Analysis raw time series - Variations in time series analysis/post-processing driven by different users. center dot JPL Global Time Series/Velocities - researchers studying reference frame, combining with VLBI/SLR/DORIS center dot JPL/SOPAC Combined Time Series/Velocities - crustal deformation for tectonic, volcanic, ground water studies center dot ARIA Time Series/Coseismic Data Products - Hazard monitoring and response focused center dot ARIA data system designed to integrate GPS and InSAR - GPS tropospheric delay used for correcting InSAR - Caltech's GIANT time series analysis uses GPS to correct orbital errors in InSAR - Zhen Liu's talking tomorrow on InSAR Time Series analysis
Linking the Negative Binomial and Logarithmic Series Distributions via their Associated Series
SADINLE, MAURICIO
2008-01-01
The negative binomial distribution is associated to the series obtained by taking derivatives of the logarithmic series. Conversely, the logarithmic series distribution is associated to the series found by integrating the series associated to the negative binomial distribution. The parameter of the number of failures of the negative binomial distribution is the number of derivatives needed to obtain the negative binomial series from the logarithmic series. The reasoning in this article could ...
Linear and nonlinear dynamic systems in financial time series prediction
Directory of Open Access Journals (Sweden)
Salim Lahmiri
2012-10-01
Full Text Available Autoregressive moving average (ARMA process and dynamic neural networks namely the nonlinear autoregressive moving average with exogenous inputs (NARX are compared by evaluating their ability to predict financial time series; for instance the S&P500 returns. Two classes of ARMA are considered. The first one is the standard ARMA model which is a linear static system. The second one uses Kalman filter (KF to estimate and predict ARMA coefficients. This model is a linear dynamic system. The forecasting ability of each system is evaluated by means of mean absolute error (MAE and mean absolute deviation (MAD statistics. Simulation results indicate that the ARMA-KF system performs better than the standard ARMA alone. Thus, introducing dynamics into the ARMA process improves the forecasting accuracy. In addition, the ARMA-KF outperformed the NARX. This result may suggest that the linear component found in the S&P500 return series is more dominant than the nonlinear part. In sum, we conclude that introducing dynamics into the ARMA process provides an effective system for S&P500 time series prediction.
Harden, Angela; Thomas, James; Cargo, Margaret; Harris, Janet; Pantoja, Tomas; Flemming, Kate; Booth, Andrew; Garside, Ruth; Hannes, Karin; Noyes, Jane
2018-05-01
The Cochrane Qualitative and Implementation Methods Group develops and publishes guidance on the synthesis of qualitative and mixed-method evidence from process evaluations. Despite a proliferation of methods for the synthesis of qualitative research, less attention has focused on how to integrate these syntheses within intervention effectiveness reviews. In this article, we report updated guidance from the group on approaches, methods, and tools, which can be used to integrate the findings from quantitative studies evaluating intervention effectiveness with those from qualitative studies and process evaluations. We draw on conceptual analyses of mixed methods systematic review designs and the range of methods and tools that have been used in published reviews that have successfully integrated different types of evidence. We outline five key methods and tools as devices for integration which vary in terms of the levels at which integration takes place; the specialist skills and expertise required within the review team; and their appropriateness in the context of limited evidence. In situations where the requirement is the integration of qualitative and process evidence within intervention effectiveness reviews, we recommend the use of a sequential approach. Here, evidence from each tradition is synthesized separately using methods consistent with each tradition before integration takes place using a common framework. Reviews which integrate qualitative and process evaluation evidence alongside quantitative evidence on intervention effectiveness in a systematic way are rare. This guidance aims to support review teams to achieve integration and we encourage further development through reflection and formal testing. Copyright © 2017 Elsevier Inc. All rights reserved.
Vandenberg, Andrew D; Bales, Barney L; Salikhov, K M; Peric, Miroslav
2012-12-27
Electron paramagnetic resonance (EPR) spectra of the nitroxide spin probe 3β-doxyl-5α-cholestane (CSL) are studied as functions of the molar concentration, c, and the temperature, T, in a series of n-alkanes. The results are compared with a similar study of a much smaller spin probe, perdeuterated 2,2,6,6-tetramethyl-4-oxopiperidine-1-oxyl (pDT). The Heisenberg spin exchange (HSE) rate constants, K(ex), of CSL are similar in hexane, octane, and decane and are about one-half of those for pDT in the same solvents. They are also about one-half of the Stokes-Einstein-Perrin prediction. This reduction in HSE efficiency is attributed to an effective steric factor, f(eff), which was evaluated by comparing the results with the Stokes-Einstein-Perrin prediction or with pDT, and it is equal to 0.49 ± 0.03, independent of temperature. The unpaired spin density in CSL is localized near one end of the long molecule, so the exchange integral, J, leading to HSE, is expected to be large in some collisions and small in others; thus, J is modeled by an ideal distribution of values of J = J(0) with probability f and J = 0 with probability (1 - f). Because of rotational and translation diffusion during contact and between re-encounters of the probe, the effective steric factor is predicted to be f(eff) = f(1/2). Estimating the fraction of the surface of CSL with rich spin density yields a theoretical estimate of f(eff) = 0.59 ± 0.08, in satisfactory agreement with experiment. HSE is well described by simple hydrodynamic theory, with only a small dependence on solvent-probe relative sizes at the same value of T/η, where η is the viscosity of the solvent. This result is probably due to a fortuitous interplay between long- and short-range effects that describe diffusion processes over relatively large distances. In contrast, dipole-dipole interactions (DD) as measured by the line broadening, B(dip), and the mean time between re-encounters within the cage, τ(RE), vary significantly
Amato, Franceso; Rosoldi, Marco; Madonna, Fabio
2015-04-01
Information about the amount and spatial distribution of atmospheric water vapor is essential to improve our knowledge of weather forecasting and climate change. Water vapor is highly variable in space and time depending on the complex interplay of several phenomena like convection, precipitation, turbulence, etc. It remains one of the most poorly characterized meteorological parameters. Remarkable progress in using of Global Navigation Satellite Systems (GNSS), in particular GPS, for the monitoring of atmospheric water vapor has been achieved during the last decades. Various studies have demonstrated that GPS could provide accurate water vapor estimates for the study of the atmosphere. Different GPS data processing provided within the scientific community made use of various tropospheric models that primarily differs for the assumptions on the vertical refractivity profiles and the mapping of the vertical delay with elevation angles. This works compares several models based on the use of surface meteorological data. In order to calculate the Integrated Water Vapour (IWV), an algorithm for calculating the zenith tropospheric delay was implemented. It is based upon different mapping functions (Niell, Saastamoinen, Chao and Herring Mapping Functions). Observations are performed at the Istituto di Metodologie per l'Analisi Ambientale (IMAA) GPS station located in Tito Scalo, Potenza (40.60N, 15.72E), from July to December 2014, in the framework of OSCAR project (Observation System for Climate Application at Regional scale). The retrieved values of the IWV using the GPS are systematically compared with the other estimation of IWV collected at CIAO (CNR-IMAA Atmospheric Observatory) using the other available measurement techniques. In particular, in this work the compared IWV are retrieved from: 1. a Trimble GPS antenna (data processed by the GPS-Met network, see gpsmet.nooa.gov); 2. a Novatel GPS antenna (data locally processed using a software developed at CIAO); 3
African Journals Online (AJOL)
calciphylaxis is prevention through rigorous control of phosphate and calcium balance. We here present two ... The authors declared no conflict of interest. Introduction. Calciphylaxis is a rare but serious disorder .... were reported to resolve the calciphylaxis lesions in a chronic renal failure patient [20]. In a series of five.
Indian Academy of Sciences (India)
polynomials are dense in the class of continuous functions! The body of literature dealing with Fourier series has reached epic proportions over the last two centuries. We have only given the readers an outline of the topic in this article. For the full length episode we refer the reader to the monumental treatise of. A Zygmund.
African Journals Online (AJOL)
abp
13 oct. 2017 ... This is an Open Access article distributed under the terms of the Creative Commons Attribution ... Bifocal leg fractures pose many challenges for the surgeon due to .... Dans notre serie, le taux d'infection est reste dans un.
Indian Academy of Sciences (India)
The theory of Fourier series deals with periodic functions. By a periodic ..... including Dirichlet, Riemann and Cantor occupied themselves with the problem of ... to converge only on a set which is negligible in a certain sense (Le. of measure ...
African Journals Online (AJOL)
Administrator
Key words: Case report, case series, concept analysis, research design. African Health Sciences 2012; (4): 557 - 562 http://dx.doi.org/10.4314/ahs.v12i4.25. PO Box 17666 .... According to the latest version of the Dictionary of. Epidemiology ...
K.O. Dzhaparidze (Kacha)
1998-01-01
textabstractIn this paper a convergence class is characterized for special series associated with Gelfond's interpolation problem (a generalization of the Abel-Goncharov problem) when the interpolation nodes are equidistantly distributed within the interval $[0,1]$. As a result, an expansion is
A Power Series Expansion and Its Applications
Chen, Hongwei
2006-01-01
Using the power series solution of a differential equation and the computation of a parametric integral, two elementary proofs are given for the power series expansion of (arcsin x)[squared], as well as some applications of this expansion.
Directory of Open Access Journals (Sweden)
Ryan Louise
2007-11-01
Full Text Available Abstract Background The Conditional Autoregressive (CAR model is widely used in many small-area ecological studies to analyse outcomes measured at an areal level. There has been little evaluation of the influence of different neighbourhood weight matrix structures on the amount of smoothing performed by the CAR model. We examined this issue in detail. Methods We created several neighbourhood weight matrices and applied them to a large dataset of births and birth defects in New South Wales (NSW, Australia within 198 Statistical Local Areas. Between the years 1995–2003, there were 17,595 geocoded birth defects and 770,638 geocoded birth records with available data. Spatio-temporal models were developed with data from 1995–2000 and their fit evaluated within the following time period: 2001–2003. Results We were able to create four adjacency-based weight matrices, seven distance-based weight matrices and one matrix based on similarity in terms of a key covariate (i.e. maternal age. In terms of agreement between observed and predicted relative risks, categorised in epidemiologically relevant groups, generally the distance-based matrices performed better than the adjacency-based neighbourhoods. In terms of recovering the underlying risk structure, the weight-7 model (smoothing by maternal-age 'Covariate model' was able to correctly classify 35/47 high-risk areas (sensitivity 74% with a specificity of 47%, and the 'Gravity' model had sensitivity and specificity values of 74% and 39% respectively. Conclusion We found considerable differences in the smoothing properties of the CAR model, depending on the type of neighbours specified. This in turn had an effect on the models' ability to recover the observed risk in an area. Prior to risk mapping or ecological modelling, an exploratory analysis of the neighbourhood weight matrix to guide the choice of a suitable weight matrix is recommended. Alternatively, the weight matrix can be chosen a priori
Krishnan, M.; Bhowmik, B.; Hazra, B.; Pakrashi, V.
2018-02-01
In this paper, a novel baseline free approach for continuous online damage detection of multi degree of freedom vibrating structures using Recursive Principal Component Analysis (RPCA) in conjunction with Time Varying Auto-Regressive Modeling (TVAR) is proposed. In this method, the acceleration data is used to obtain recursive proper orthogonal components online using rank-one perturbation method, followed by TVAR modeling of the first transformed response, to detect the change in the dynamic behavior of the vibrating system from its pristine state to contiguous linear/non-linear-states that indicate damage. Most of the works available in the literature deal with algorithms that require windowing of the gathered data owing to their data-driven nature which renders them ineffective for online implementation. Algorithms focussed on mathematically consistent recursive techniques in a rigorous theoretical framework of structural damage detection is missing, which motivates the development of the present framework that is amenable for online implementation which could be utilized along with suite experimental and numerical investigations. The RPCA algorithm iterates the eigenvector and eigenvalue estimates for sample covariance matrices and new data point at each successive time instants, using the rank-one perturbation method. TVAR modeling on the principal component explaining maximum variance is utilized and the damage is identified by tracking the TVAR coefficients. This eliminates the need for offline post processing and facilitates online damage detection especially when applied to streaming data without requiring any baseline data. Numerical simulations performed on a 5-dof nonlinear system under white noise excitation and El Centro (also known as 1940 Imperial Valley earthquake) excitation, for different damage scenarios, demonstrate the robustness of the proposed algorithm. The method is further validated on results obtained from case studies involving
International Nuclear Information System (INIS)
Aruquipa Coloma, Wilmer
2017-01-01
Nuclear reactors are susceptible to instability, causing oscillations in reactor power in specific working regions characterized by determined values of power and coolant mass flow. During reactor startup, there is a greater probability that these regions of instability will be present; another reason may be due to transient processes in some reactor parameters. The analysis of the temporal evolution of the power reveals a stable or unstable process after the disturbance in a light water reactor of type BWR (Boiling Water Reactor). In this work, the instability problem was approached in two ways. The first form is based on the ARMA (Autoregressive Moving Average models) model. This model was used to calculate the Decay Ratio (DR) and natural frequency (NF) of the oscillations, parameters that indicate if the one power signal is stable or not. In this sense, the DRARMA code was developed. In the second form, the problems of instability were analyzed using the classical concepts of non-linear systems, such as Lyapunov exponents, phase space and attractors. The Lyapunov exponents quantify the exponential divergence of the trajectories initially close to the phase space and estimate the amount of chaos in a system; the phase space and the attractors describe the dynamic behavior of the system. The main aim of the instability phenomena studies in nuclear reactors is to try to identify points or regions of operation that can lead to power oscillations conditions. The two approaches were applied to two sets of signals. The first set comes from signals of instability events of the commercial Forsmark reactors 1 and 2 and were used to validate the DRARMA code. The second set was obtained from the simulation of transient events of the Peach Bottom reactor; for the simulation, the PARCS and RELAP5 codes were used for the neutronic/thermal hydraulic coupling calculation. For all analyzes made in this work, the Matlab software was used due to its ease of programming and
International Nuclear Information System (INIS)
Iwama, N.; Inoue, A.; Tsukishima, T.; Sato, M.; Kawahata, K.
1981-07-01
A new procedure for the maximum entropy spectral estimation is studied for the purpose of data processing in Fourier transform spectroscopy. The autoregressive model fitting is examined under a least squares criterion based on the Yule-Walker equations. An AIC-like criterion is suggested for selecting the model order. The principal advantage of the new procedure lies in the enhanced frequency resolution particularly for small values of the maximum optical path-difference of the interferogram. The usefulness of the procedure is ascertained by some numerical simulations and further by experiments with respect to a highly coherent submillimeter wave and the electron cyclotron emission from a stellarator plasma. (author)
DEFF Research Database (Denmark)
Li, Chunjian; Andersen, Søren Vang
2007-01-01
We propose two blind system identification methods that exploit the underlying dynamics of non-Gaussian signals. The two signal models to be identified are: an Auto-Regressive (AR) model driven by a discrete-state Hidden Markov process, and the same model whose output is perturbed by white Gaussi...... outputs. The signal models are general and suitable to numerous important signals, such as speech signals and base-band communication signals. Applications to speech analysis and blind channel equalization are given to exemplify the efficiency of the new methods....
Autoregressive modelling of measured sea waves off west coast of India
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; SanilKumar, V.; Nayak, B.U.
(Pierson-Moskowitz, JONSWAP, etc.), they may not be computationally efficient in providing accurate results for a given application. A more efficient method is therefore described here to generate time series data on sea waves and to provide spectral...
Year Ahead Demand Forecast of City Natural Gas Using Seasonal Time Series Methods
Directory of Open Access Journals (Sweden)
Mustafa Akpinar
2016-09-01
Full Text Available Consumption of natural gas, a major clean energy source, increases as energy demand increases. We studied specifically the Turkish natural gas market. Turkey’s natural gas consumption increased as well in parallel with the world‘s over the last decade. This consumption growth in Turkey has led to the formation of a market structure for the natural gas industry. This significant increase requires additional investments since a rise in consumption capacity is expected. One of the reasons for the consumption increase is the user-based natural gas consumption influence. This effect yields imbalances in demand forecasts and if the error rates are out of bounds, penalties may occur. In this paper, three univariate statistical methods, which have not been previously investigated for mid-term year-ahead monthly natural gas forecasting, are used to forecast natural gas demand in Turkey’s Sakarya province. Residential and low-consumption commercial data is used, which may contain seasonality. The goal of this paper is minimizing more or less gas tractions on mid-term consumption while improving the accuracy of demand forecasting. In forecasting models, seasonality and single variable impacts reinforce forecasts. This paper studies time series decomposition, Holt-Winters exponential smoothing and autoregressive integrated moving average (ARIMA methods. Here, 2011–2014 monthly data were prepared and divided into two series. The first series is 2011–2013 monthly data used for finding seasonal effects and model requirements. The second series is 2014 monthly data used for forecasting. For the ARIMA method, a stationary series was prepared and transformation process prior to forecasting was done. Forecasting results confirmed that as the computation complexity of the model increases, forecasting accuracy increases with lower error rates. Also, forecasting errors and the coefficients of determination values give more consistent results. Consequently
Stimson, Blake
2011-01-01
Reaktion Books’ Exposures series, edited by Peter Hamilton and Mark Haworth-Booth, is comprised of 13 volumes and counting, each less than 200 pages with 80 high-quality illustrations in color and black and white. Currently available titles include Photography and Australia, Photography and Spirit, Photography and Cinema, Photography and Literature, Photography and Flight, Photography and Egypt, Photography and Science, Photography and Africa, Photography and Italy, Photography and the USA, P...
A Parsimonious Bootstrap Method to Model Natural Inflow Energy Series
Directory of Open Access Journals (Sweden)
Fernando Luiz Cyrino Oliveira
2014-01-01
Full Text Available The Brazilian energy generation and transmission system is quite peculiar in its dimension and characteristics. As such, it can be considered unique in the world. It is a high dimension hydrothermal system with huge participation of hydro plants. Such strong dependency on hydrological regimes implies uncertainties related to the energetic planning, requiring adequate modeling of the hydrological time series. This is carried out via stochastic simulations of monthly inflow series using the family of Periodic Autoregressive models, PAR(p, one for each period (month of the year. In this paper it is shown the problems in fitting these models by the current system, particularly the identification of the autoregressive order “p” and the corresponding parameter estimation. It is followed by a proposal of a new approach to set both the model order and the parameters estimation of the PAR(p models, using a nonparametric computational technique, known as Bootstrap. This technique allows the estimation of reliable confidence intervals for the model parameters. The obtained results using the Parsimonious Bootstrap Method of Moments (PBMOM produced not only more parsimonious model orders but also adherent stochastic scenarios and, in the long range, lead to a better use of water resources in the energy operation planning.
Assessing air quality in Aksaray with time series analysis
Kadilar, Gamze Özel; Kadilar, Cem
2017-04-01
Sulphur dioxide (SO2) is a major air pollutant caused by the dominant usage of diesel, petrol and fuels by vehicles and industries. One of the most air-polluted city in Turkey is Aksaray. Hence, in this study, the level of SO2 is analyzed in Aksaray based on the database monitored at air quality monitoring station of Turkey. Seasonal Autoregressive Integrated Moving Average (SARIMA) approach is used to forecast the level of SO2 air quality parameter. The results indicate that the seasonal ARIMA model provides reliable and satisfactory predictions for the air quality parameters and expected to be an alternative tool for practical assessment and justification.
Time series modeling for analysis and control advanced autopilot and monitoring systems
Ohtsu, Kohei; Kitagawa, Genshiro
2015-01-01
This book presents multivariate time series methods for the analysis and optimal control of feedback systems. Although ships’ autopilot systems are considered through the entire book, the methods set forth in this book can be applied to many other complicated, large, or noisy feedback control systems for which it is difficult to derive a model of the entire system based on theory in that subject area. The basic models used in this method are the multivariate autoregressive model with exogenous variables (ARX) model and the radial bases function net-type coefficients ARX model. The noise contribution analysis can then be performed through the estimated autoregressive (AR) model and various types of autopilot systems can be designed through the state–space representation of the models. The marine autopilot systems addressed in this book include optimal controllers for course-keeping motion, rolling reduction controllers with rudder motion, engine governor controllers, noise adaptive autopilots, route-tracki...
Stochastic models in the DORIS position time series: estimates for IDS contribution to ITRF2014
Klos, Anna; Bogusz, Janusz; Moreaux, Guilhem
2017-11-01
This paper focuses on the investigation of the deterministic and stochastic parts of the Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) weekly time series aligned to the newest release of ITRF2014. A set of 90 stations was divided into three groups depending on when the data were collected at an individual station. To reliably describe the DORIS time series, we employed a mathematical model that included the long-term nonlinear signal, linear trend, seasonal oscillations and a stochastic part, all being estimated with maximum likelihood estimation. We proved that the values of the parameters delivered for DORIS data are strictly correlated with the time span of the observations. The quality of the most recent data has significantly improved. Not only did the seasonal amplitudes decrease over the years, but also, and most importantly, the noise level and its type changed significantly. Among several tested models, the power-law process may be chosen as the preferred one for most of the DORIS data. Moreover, the preferred noise model has changed through the years from an autoregressive process to pure power-law noise with few stations characterised by a positive spectral index. For the latest observations, the medians of the velocity errors were equal to 0.3, 0.3 and 0.4 mm/year, respectively, for the North, East and Up components. In the best cases, a velocity uncertainty of DORIS sites of 0.1 mm/year is achievable when the appropriate coloured noise model is taken into consideration.
Energy Technology Data Exchange (ETDEWEB)
Lu, Fengbin, E-mail: fblu@amss.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China); Qiao, Han, E-mail: qiaohan@ucas.ac.cn [School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190 (China); Wang, Shouyang, E-mail: sywang@amss.ac.cn [School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190 (China); Lai, Kin Keung, E-mail: mskklai@cityu.edu.hk [Department of Management Sciences, City University of Hong Kong (Hong Kong); Li, Yuze, E-mail: richardyz.li@mail.utoronto.ca [Department of Industrial Engineering, University of Toronto (Canada)
2017-01-15
This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor’s 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model.
Ou, Lu; Chow, Sy-Miin; Ji, Linying; Molenaar, Peter C M
2017-01-01
The autoregressive latent trajectory (ALT) model synthesizes the autoregressive model and the latent growth curve model. The ALT model is flexible enough to produce a variety of discrepant model-implied change trajectories. While some researchers consider this a virtue, others have cautioned that this may confound interpretations of the model's parameters. In this article, we show that some-but not all-of these interpretational difficulties may be clarified mathematically and tested explicitly via likelihood ratio tests (LRTs) imposed on the initial conditions of the model. We show analytically the nested relations among three variants of the ALT model and the constraints needed to establish equivalences. A Monte Carlo simulation study indicated that LRTs, particularly when used in combination with information criterion measures, can allow researchers to test targeted hypotheses about the functional forms of the change process under study. We further demonstrate when and how such tests may justifiably be used to facilitate our understanding of the underlying process of change using a subsample (N = 3,995) of longitudinal family income data from the National Longitudinal Survey of Youth.
International Nuclear Information System (INIS)
Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze
2017-01-01
This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor’s 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model.
Directory of Open Access Journals (Sweden)
MEHDI AMIAN
2013-10-01
Full Text Available Functional near infrared spectroscopy (fNIRS is a technique that is used for noninvasive measurement of the oxyhemoglobin (HbO2 and deoxyhemoglobin (HHb concentrations in the brain tissue. Since the ratio of the concentration of these two agents is correlated with the neuronal activity, fNIRS can be used for the monitoring and quantifying the cortical activity. The portability of fNIRS makes it a good candidate for studies involving subject's movement. The fNIRS measurements, however, are sensitive to artifacts generated by subject's head motion. This makes fNIRS signals less effective in such applications. In this paper, the autoregressive moving average (ARMA modeling of the fNIRS signal is proposed for state-space representation of the signal which is then fed to the Kalman filter for estimating the motionless signal from motion corrupted signal. Results are compared to the autoregressive model (AR based approach, which has been done previously, and show that the ARMA models outperform AR models. We attribute it to the richer structure, containing more terms indeed, of ARMA than AR. We show that the signal to noise ratio (SNR is about 2 dB higher for ARMA based method.
Miftahurrohmah, Brina; Iriawan, Nur; Fithriasari, Kartika
2017-06-01
Stocks are known as the financial instruments traded in the capital market which have a high level of risk. Their risks are indicated by their uncertainty of their return which have to be accepted by investors in the future. The higher the risk to be faced, the higher the return would be gained. Therefore, the measurements need to be made against the risk. Value at Risk (VaR) as the most popular risk measurement method, is frequently ignore when the pattern of return is not uni-modal Normal. The calculation of the risks using VaR method with the Normal Mixture Autoregressive (MNAR) approach has been considered. This paper proposes VaR method couple with the Mixture Laplace Autoregressive (MLAR) that would be implemented for analysing the first three biggest capitalization Islamic stock return in JII, namely PT. Astra International Tbk (ASII), PT. Telekomunikasi Indonesia Tbk (TLMK), and PT. Unilever Indonesia Tbk (UNVR). Parameter estimation is performed by employing Bayesian Markov Chain Monte Carlo (MCMC) approaches.
Lu, Fengbin; Qiao, Han; Wang, Shouyang; Lai, Kin Keung; Li, Yuze
2017-01-01
This paper proposes a new time-varying coefficient vector autoregressions (VAR) model, in which the coefficient is a linear function of dynamic lagged correlation. The proposed model allows for flexibility in choices of dynamic correlation models (e.g. dynamic conditional correlation generalized autoregressive conditional heteroskedasticity (GARCH) models, Markov-switching GARCH models and multivariate stochastic volatility models), which indicates that it can describe many types of time-varying causal effects. Time-varying causal relations between West Texas Intermediate (WTI) crude oil and the US Standard and Poor's 500 (S&P 500) stock markets are examined by the proposed model. The empirical results show that their causal relations evolve with time and display complex characters. Both positive and negative causal effects of the WTI on the S&P 500 in the subperiods have been found and confirmed by the traditional VAR models. Similar results have been obtained in the causal effects of S&P 500 on WTI. In addition, the proposed model outperforms the traditional VAR model. Copyright Â© 2016 Elsevier Ltd. All rights reserved.
Does the Wagner’s Law hold for Thailand? A Time Series Study
Sinha, Dipendra
2007-01-01
Wagner’s Law suggests that as the GDP of a country increases, so does its government expenditure. We test for the Law for Thailand using recent advances in econometric techniques. Both total and per capita GDP and government expenditure are used. Ng-Perron unit root tests show that all variables are integrated of order 1. Toda-Yamamoto tests of Granger causality show that there is no causality flowing from either direction between GDP and government expenditure. Autoregressive Distributed Lag...
Energy Technology Data Exchange (ETDEWEB)
Fiet, N
1998-10-23
The Aptian-Albian series of the Marches-Umbria basin is considered as a field analogue of most basin deposits of the same age located in the Atlantic domain. It corresponds to a pelagic sedimentation with alternations of marls, black shales, and limestones. The study of the black shales series has been carried out using a combination of petrological, geochemical and palynological data. The integration of these data allows to propose a detailed typology of these beds, to define a deposition mode with respect to the organic matter content and to precise the location of sources and transfer ways. A close relationship between the deposition of the black shales and the development of delta zones in the North-Gondwana margin is shown. A comparison with sub-actual analogues allows to explain their rhythmical organization within the sedimentation. A cyclo-stratigraphical approach of the overall series has been performed using the analysis of the sedimentary rhythms. A detailed time calibration (< 100 ka) of the Aptian and Albian epochs is proposed according to the planktonic foraminifera, the calcareous nano-fossils and the dyno-cysts populations. The M-0 magnetic chron has ben dated to 116.7 {+-} 0.7 Ma. The combination of all stratigraphical approaches has permitted to elaborate a subdivision of the series into deposition sequences. The forcing phenomena that led to the genesis of these sedimentary bodies are probably of astronomical-climatical origin. Then a relative sea-level curve has been constructed and compared with the existing reference curves published for the worldwide ocean and the Russian platform. The strong similarities between these curves and the amplitude of the relative variations (up to 80 m) suggest a control of the sedimentation of glacial-eustatic origin. Thus, several glaciation phases are proposed according to the low sea level deposits identified in the series (upper Gargasian, Clansayesian, upper Albian, middle Vraconian). (J.S.)
Energy Technology Data Exchange (ETDEWEB)
Fiet, N.
1998-10-23
The Aptian-Albian series of the Marches-Umbria basin is considered as a field analogue of most basin deposits of the same age located in the Atlantic domain. It corresponds to a pelagic sedimentation with alternations of marls, black shales, and limestones. The study of the black shales series has been carried out using a combination of petrological, geochemical and palynological data. The integration of these data allows to propose a detailed typology of these beds, to define a deposition mode with respect to the organic matter content and to precise the location of sources and transfer ways. A close relationship between the deposition of the black shales and the development of delta zones in the North-Gondwana margin is shown. A comparison with sub-actual analogues allows to explain their rhythmical organization within the sedimentation. A cyclo-stratigraphical approach of the overall series has been performed using the analysis of the sedimentary rhythms. A detailed time calibration (< 100 ka) of the Aptian and Albian epochs is proposed according to the planktonic foraminifera, the calcareous nano-fossils and the dyno-cysts populations. The M-0 magnetic chron has ben dated to 116.7 {+-} 0.7 Ma. The combination of all stratigraphical approaches has permitted to elaborate a subdivision of the series into deposition sequences. The forcing phenomena that led to the genesis of these sedimentary bodies are probably of astronomical-climatical origin. Then a relative sea-level curve has been constructed and compared with the existing reference curves published for the worldwide ocean and the Russian platform. The strong similarities between these curves and the amplitude of the relative variations (up to 80 m) suggest a control of the sedimentation of glacial-eustatic origin. Thus, several glaciation phases are proposed according to the low sea level deposits identified in the series (upper Gargasian, Clansayesian, upper Albian, middle Vraconian). (J.S.)
Yang, Eunjoo; Park, Hyun Woo; Choi, Yeon Hwa; Kim, Jusim; Munkhdalai, Lkhagvadorj; Musa, Ibrahim; Ryu, Keun Ho
2018-05-11
Early detection of infectious disease outbreaks is one of the important and significant issues in syndromic surveillance systems. It helps to provide a rapid epidemiological response and reduce morbidity and mortality. In order to upgrade the current system at the Korea Centers for Disease Control and Prevention (KCDC), a comparative study of state-of-the-art techniques is required. We compared four different temporal outbreak detection algorithms: the CUmulative SUM (CUSUM), the Early Aberration Reporting System (EARS), the autoregressive integrated moving average (ARIMA), and the Holt-Winters algorithm. The comparison was performed based on not only 42 different time series generated taking into account trends, seasonality, and randomly occurring outbreaks, but also real-world daily and weekly data related to diarrhea infection. The algorithms were evaluated using different metrics. These were namely, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), F1 score, symmetric mean absolute percent error (sMAPE), root-mean-square error (RMSE), and mean absolute deviation (MAD). Although the comparison results showed better performance for the EARS C3 method with respect to the other algorithms, despite the characteristics of the underlying time series data, Holt⁻Winters showed better performance when the baseline frequency and the dispersion parameter values were both less than 1.5 and 2, respectively.
Aljoumani, Basem; Kluge, Björn; sanchez, Josep; Wessolek, Gerd
2017-04-01
Highways and main roads are potential sources of contamination for the surrounding environment. High traffic rates result in elevated heavy metal concentrations in road runoff, soil and water seepage, which has attracted much attention in the recent past. Prediction of heavy metals transfer near the roadside into deeper soil layers are very important to prevent the groundwater pollution. This study was carried out on data of a number of lysimeters which were installed along the A115 highway (Germany) with a mean daily traffic of 90.000 vehicles per day. Three polyethylene (PE) lysimeters were installed at the A115 highway. They have the following dimensions: length 150 cm, width 100 cm, height 60 cm. The lysimeters were filled with different soil materials, which were recently used for embankment construction in Germany. With the obtained data, we will develop a time series analysis model to predict total and dissolved metal concentration in road runoff and in soil solution of the roadside embankments. The time series consisted of monthly measurements of heavy metals and was transformed to a stationary situation. Subsequently, the transformed data will be used to conduct analyses in the time domain in order to obtain the parameters of a seasonal autoregressive integrated moving average (ARIMA) model. Four phase approaches for identifying and fitting ARIMA models will be used: identification, parameter estimation, diagnostic checking, and forecasting. An automatic selection criterion, such as the Akaike information criterion, will use to enhance this flexible approach to model building
The application of time series models to cloud field morphology analysis
Chin, Roland T.; Jau, Jack Y. C.; Weinman, James A.
1987-01-01
A modeling method for the quantitative description of remotely sensed cloud field images is presented. A two-dimensional texture modeling scheme based on one-dimensional time series procedures is adopted for this purpose. The time series procedure used is the seasonal autoregressive, moving average (ARMA) process in Box and Jenkins. Cloud field properties such as directionality, clustering and cloud coverage can be retrieved by this method. It has been demonstrated that a cloud field image can be quantitatively defined by a small set of parameters and synthesized surrogates can be reconstructed from these model parameters. This method enables cloud climatology to be studied quantitatively.
Moore, Corey L.; Wang, Ningning; Washington, Janique Tynez
2017-01-01
Purpose: This study assessed and demonstrated the efficacy of two select empirical forecast models (i.e., autoregressive integrated moving average [ARIMA] model vs. grey model [GM]) in accurately predicting state vocational rehabilitation agency (SVRA) rehabilitation success rate trends across six different racial and ethnic population cohorts…
Messel, H.; Barker, E. N.
Described are the science syllabuses and texts for the science courses written to fulfill the aims of the new system of education in the state of New South Wales, Australia. The science course was developed in two stages: (1) A four year integrated science syllabus for grades 7-10, and (2) separate courses in physics, chemistry, and biology with…
Time series modelling of increased soil temperature anomalies during long period
Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar
2015-10-01
Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.
Abunama, Taher; Othman, Faridah
2017-06-01
Analysing the fluctuations of wastewater inflow rates in sewage treatment plants (STPs) is essential to guarantee a sufficient treatment of wastewater before discharging it to the environment. The main objectives of this study are to statistically analyze and forecast the wastewater inflow rates into the Bandar Tun Razak STP in Kuala Lumpur, Malaysia. A time series analysis of three years’ weekly influent data (156weeks) has been conducted using the Auto-Regressive Integrated Moving Average (ARIMA) model. Various combinations of ARIMA orders (p, d, q) have been tried to select the most fitted model, which was utilized to forecast the wastewater inflow rates. The linear regression analysis was applied to testify the correlation between the observed and predicted influents. ARIMA (3, 1, 3) model was selected with the highest significance R-square and lowest normalized Bayesian Information Criterion (BIC) value, and accordingly the wastewater inflow rates were forecasted to additional 52weeks. The linear regression analysis between the observed and predicted values of the wastewater inflow rates showed a positive linear correlation with a coefficient of 0.831.
Sharafi, Mehdi; Ghaem, Haleh; Tabatabaee, Hamid Reza; Faramarzi, Hossein
2017-01-01
To predict the trend of cutaneous leishmaniasis and assess the relationship between the disease trend and weather variables in south of Fars province using Seasonal Autoregressive Integrated Moving Average (SARIMA) model. The trend of cutaneous leishmaniasis was predicted using Mini tab software and SARIMA model. Besides, information about the disease and weather conditions was collected monthly based on time series design during January 2010 to March 2016. Moreover, various SARIMA models were assessed and the best one was selected. Then, the model's fitness was evaluated based on normality of the residuals' distribution, correspondence between the fitted and real amounts, and calculation of Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC). The study results indicated that SARIMA model (4,1,4)(0,1,0) (12) in general and SARIMA model (4,1,4)(0,1,1) (12) in below and above 15 years age groups could appropriately predict the disease trend in the study area. Moreover, temperature with a three-month delay (lag3) increased the disease trend, rainfall with a four-month delay (lag4) decreased the disease trend, and rainfall with a nine-month delay (lag9) increased the disease trend. Based on the results, leishmaniasis follows a descending trend in the study area in case drought condition continues, SARIMA models can suitably measure the disease trend, and the disease follows a seasonal trend. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.
Li, X.; Zhang, C.; Li, W.
2017-12-01
Long-term spatiotemporal analysis and modeling of aerosol optical depth (AOD) distribution is of paramount importance to study radiative forcing, climate change, and human health. This study is focused on the trends and variations of AOD over six stations located in United States and China during 2003 to 2015, using satellite-retrieved Moderate Resolution Imaging Spectrometer (MODIS) Collection 6 retrievals and ground measurements derived from Aerosol Robotic NETwork (AERONET). An autoregressive integrated moving average (ARIMA) model is applied to simulate and predict AOD values. The R2, adjusted R2, Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Bayesian Information Criterion (BIC) are used as indices to select the best fitted model. Results show that there is a persistent decreasing trend in AOD for both MODIS data and AERONET data over three stations. Monthly and seasonal AOD variations reveal consistent aerosol patterns over stations along mid-latitudes. Regional differences impacted by climatology and land cover types are observed for the selected stations. Statistical validation of time series models indicates that the non-seasonal ARIMA model performs better for AERONET AOD data than for MODIS AOD data over most stations, suggesting the method works better for data with higher quality. By contrast, the seasonal ARIMA model reproduces the seasonal variations of MODIS AOD data much more precisely. Overall, the reasonably predicted results indicate the applicability and feasibility of the stochastic ARIMA modeling technique to forecast future and missing AOD values.
Chadsuthi, Sudarat; Modchang, Charin; Lenbury, Yongwimon; Iamsirithaworn, Sopon; Triampo, Wannapong
2012-07-01
To study the number of leptospirosis cases in relations to the seasonal pattern, and its association with climate factors. Time series analysis was used to study the time variations in the number of leptospirosis cases. The Autoregressive Integrated Moving Average (ARIMA) model was used in data curve fitting and predicting the next leptospirosis cases. We found that the amount of rainfall was correlated to leptospirosis cases in both regions of interest, namely the northern and northeastern region of Thailand, while the temperature played a role in the northeastern region only. The use of multivariate ARIMA (ARIMAX) model showed that factoring in rainfall (with an 8 months lag) yields the best model for the northern region while the model, which factors in rainfall (with a 10 months lag) and temperature (with an 8 months lag) was the best for the northeastern region. The models are able to show the trend in leptospirosis cases and closely fit the recorded data in both regions. The models can also be used to predict the next seasonal peak quite accurately. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Ebhuoma, Osadolor; Gebreslasie, Michael; Magubane, Lethumusa
The change of the malaria control intervention policy in South Africa (SA), re-introduction of dichlorodiphenyltrichloroethane (DDT), may be responsible for the low and sustained malaria transmission in KwaZulu-Natal (KZN). We evaluated the effect of the re-introduction of DDT on malaria in KZN and suggested practical ways the province can strengthen her already existing malaria control and elimination efforts, to achieve zero malaria transmission. We obtained confirmed monthly malaria cases in KZN from the malaria control program of KZN from 1998 to 2014. The seasonal autoregressive integrated moving average (SARIMA) intervention time series analysis (ITSA) was employed to model the effect of the re-introduction of DDT on confirmed monthly malaria cases. The result is an abrupt and permanent decline of monthly malaria cases (w 0 =-1174.781, p-value=0.003) following the implementation of the intervention policy. The sustained low malaria cases observed over a long period suggests that the continued usage of DDT did not result in insecticide resistance as earlier anticipated. It may be due to exophagic malaria vectors, which renders the indoor residual spraying not totally effective. Therefore, the feasibility of reducing malaria transmission to zero in KZN requires other reliable and complementary intervention resources to optimize the existing ones. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Directory of Open Access Journals (Sweden)
Long Yan
Full Text Available Influence of meteorological variables on the transmission of bacillary dysentery (BD is under investigated topic and effective forecasting models as public health tool are lacking. This paper aimed to quantify the relationship between meteorological variables and BD cases in Beijing and to establish an effective forecasting model.A time series analysis was conducted in the Beijing area based upon monthly data on weather variables (i.e. temperature, rainfall, relative humidity, vapor pressure, and wind speed and on the number of BD cases during the period 1970-2012. Autoregressive integrated moving average models with explanatory variables (ARIMAX were built based on the data from 1970 to 2004. Prediction of monthly BD cases from 2005 to 2012 was made using the established models. The prediction accuracy was evaluated by the mean square error (MSE.Firstly, temperature with 2-month and 7-month lags and rainfall with 12-month lag were found positively correlated with the number of BD cases in Beijing. Secondly, ARIMAX model with covariates of temperature with 7-month lag (β = 0.021, 95% confidence interval(CI: 0.004-0.038 and rainfall with 12-month lag (β = 0.023, 95% CI: 0.009-0.037 displayed the highest prediction accuracy.The ARIMAX model developed in this study showed an accurate goodness of fit and precise prediction accuracy in the short term, which would be beneficial for government departments to take early public health measures to prevent and control possible BD popularity.
Directory of Open Access Journals (Sweden)
Coghetto Roland
2017-10-01
Full Text Available Some authors have formalized the integral in the Mizar Mathematical Library (MML. The first article in a series on the Darboux/Riemann integral was written by Noboru Endou and Artur Korniłowicz: [6]. The Lebesgue integral was formalized a little later [13] and recently the integral of Riemann-Stieltjes was introduced in the MML by Keiko Narita, Kazuhisa Nakasho and Yasunari Shidama [12].
DEFF Research Database (Denmark)
Teräsvirta, Timo; Yang, Yukai
is illustrated by two applications. In the first one, the dynamic relationship between the US gasoline price and consumption is studied and possible asymmetries in it considered. The second application consists of modelling two well known Icelandic riverflow series, previously considered by many hydrologists...
Klos, A.; Bogusz, J.; Moreaux, G.
2017-12-01
This research focuses on the investigation of the deterministic and stochastic parts of the DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) weekly coordinate time series from the IDS contribution to the ITRF2014A set of 90 stations was divided into three groups depending on when the data was collected at an individual station. To reliably describe the DORIS time series, we employed a mathematical model that included the long-term nonlinear signal, linear trend, seasonal oscillations (these three sum up to produce the Polynomial Trend Model) and a stochastic part, all being resolved with Maximum Likelihood Estimation (MLE). We proved that the values of the parameters delivered for DORIS data are strictly correlated with the time span of the observations, meaning that the most recent data are the most reliable ones. Not only did the seasonal amplitudes decrease over the years, but also, and most importantly, the noise level and its type changed significantly. We examined five different noise models to be applied to the stochastic part of the DORIS time series: a pure white noise (WN), a pure power-law noise (PL), a combination of white and power-law noise (WNPL), an autoregressive process of first order (AR(1)) and a Generalized Gauss Markov model (GGM). From our study it arises that the PL process may be chosen as the preferred one for most of the DORIS data. Moreover, the preferred noise model has changed through the years from AR(1) to pure PL with few stations characterized by a positive spectral index.
Directory of Open Access Journals (Sweden)
Farshad Fathian
2017-02-01
Full Text Available Introduction: Time series models are one of the most important tools for investigating and modeling hydrological processes in order to solve problems related to water resources management. Many hydrological time series shows nonstationary and nonlinear behaviors. One of the important hydrological modeling tasks is determining the existence of nonstationarity and the way through which we can access the stationarity accordingly. On the other hand, streamflow processes are usually considered as nonlinear mechanisms while in many studies linear time series models are used to model streamflow time series. However, it is not clear what kind of nonlinearity is acting underlying the streamflowprocesses and how intensive it is. Materials and Methods: Streamflow time series of 6 hydro-gauge stations located in the upstream basin rivers of ZarrinehRoud dam (located in the southern part of Urmia Lake basin have been considered to investigate stationarity and nonlinearity. All data series used here to startfrom January 1, 1997, and end on December 31, 2011. In this study, stationarity is tested by ADF and KPSS tests and nonlinearity is tested by BDS, Keenan and TLRT tests. The stationarity test is carried out with two methods. Thefirst one method is the augmented Dickey-Fuller (ADF unit root test first proposed by Dickey and Fuller (1979 and modified by Said and Dickey (1984, which examinsthe presence of unit roots in time series.The second onemethod is KPSS test, proposed by Kwiatkowski et al. (1992, which examinesthestationarity around a deterministic trend (trend stationarity and the stationarity around a fixed level (level stationarity. The BDS test (Brock et al., 1996 is a nonparametric method for testing the serial independence and nonlinear structure in time series based on the correlation integral of the series. The null hypothesis is the time series sample comes from an independent identically distributed (i.i.d. process. The alternative hypothesis
Vetrayan, Jayachandran; Othman, Suhana; Victor Paulraj, Smily Jesu Priya
2017-01-01
To assess the effectiveness and feasibility of behavioral sleep intervention for medicated children with ADHD. Six medicated children (five boys, one girl; aged 6-12 years) with ADHD participated in a 4-week sleep intervention program. The main behavioral strategies used were Faded Bedtime With Response Cost (FBRC) and positive reinforcement. Within a case-series design, objective measure (Sleep Disturbance Scale for Children [SDSC]) and subjective measure (sleep diaries) were used to record changes in children's sleep. For all six children, significant decrease was found in the severity of children's sleep problems (based on SDSC data). Bedtime resistance and mean sleep onset latency were reduced following the 4-week intervention program according to sleep diaries data. Gains were generally maintained at the follow-up. Parents perceived the intervention as being helpful. Based on the initial data, this intervention shows promise as an effective and feasible treatment.
Rawat, Angeli; Uebel, Kerry; Moore, David; Yassi, Annalee
2018-04-15
Noncommunicable diseases (NCDs), specifically diabetes and hypertension, are rising in high HIV-burdened countries such as South Africa. How integrated HIV care into primary health care (PHC) influences NCD care is unknown. We aimed to understand whether differences existed in NCD care (pre- versus post-integration) and how changes may relate to HIV patient numbers. Public sector PHC clinics in Free State, South Africa. Using a quasiexperimental design, we analyzed monthly administrative data on 4 indicators for diabetes and hypertension (clinic and population levels) during 4 years as HIV integration was implemented in PHC. Data represented 131 PHC clinics with a catchment population of 1.5 million. We used interrupted time series analysis at ±18 and ±30 months from HIV integration in each clinic to identify changes in trends postintegration compared with those in preintegration. We used linear mixed-effect models to study relationships between HIV and NCD indicators. Patients receiving antiretroviral therapy in the 131 PHC clinics studied increased from 1614 (April 2009) to 57, 958 (April 2013). Trends in new diabetes patients on treatment remained unchanged. However, population-level new hypertensives on treatment decreased at ±30 months from integration by 6/100, 000 (SE = 3, P < 0.02) and was associated with the number of new patients with HIV on treatment at the clinics. Our findings suggest that during the implementation of integrated HIV care into PHC clinics, care for hypertensive patients could be compromised. Further research is needed to understand determinants of NCD care in South Africa and other high HIV-burdened settings to ensure patient-centered PHC.
Nonparametric autocovariance estimation from censored time series by Gaussian imputation.
Park, Jung Wook; Genton, Marc G; Ghosh, Sujit K
2009-02-01
One of the most frequently used methods to model the autocovariance function of a second-order stationary time series is to use the parametric framework of autoregressive and moving average models developed by Box and Jenkins. However, such parametric models, though very flexible, may not always be adequate to model autocovariance functions with sharp changes. Furthermore, if the data do not follow the parametric model and are censored at a certain value, the estimation results may not be reliable. We develop a Gaussian imputation method to estimate an autocovariance structure via nonparametric estimation of the autocovariance function in order to address both censoring and incorrect model specification. We demonstrate the effectiveness of the technique in terms of bias and efficiency with simulations under various rates of censoring and underlying models. We describe its application to a time series of silicon concentrations in the Arctic.
Energy Technology Data Exchange (ETDEWEB)
Neto, Joao C. do L, E-mail: jcaldas@ufam.edu.br [Group of Optimization and Fuzzy Systems, Federal University of Amazonas, General Rodrigo Octavio Jordao Ramos Avenue, 3000, Academic Campus, 69077-000 Manaus, Amazonas (Brazil); Costa Junior, Carlos T. da [Postgraduate Program in Electrical Engineering, Institute of Technology, Federal University of Para, Augusto Correa Street, 1, Guama, 66075-900 Belem, Para (Brazil); Bitar, Sandro D.B. [Group of Optimization and Fuzzy Systems, Federal University of Amazonas, General Rodrigo Octavio Jordao Ramos Avenue, 3000, Academic Campus, 69077-000 Manaus, Amazonas (Brazil); Junior, Walter B. [Postgraduate Program in Electrical Engineering, Institute of Technology, Federal University of Para, Augusto Correa Street, 1, Guama, 66075-900 Belem, Para (Brazil)
2011-09-15
Understanding the uncertainty inherent in the analysis of diesel fuel consumption and its impact on the generation of electricity is an important topic for planning the expansion of isolated thermoelectric systems in the state of Amazonas. In light of this, a decision support system has been developed to forecast the cost of electricity production using non-stationary data by integrating the methodology of time series models with fuzzy systems and optimization tools. The method presented herein combines the potential of the Autoregressive Integrated Moving Average (ARIMA) and the Seasonal ARIMA (SARIMA) models, such as the forecasting tool, with the advantages of fuzzy set theory to compensate for the uncertainties and errors encountered in the observed data, which would degrade the validity of forecasted values. The results show that incorporation of the {alpha}-cut concept facilitated the evaluation of risks while allowing simultaneous consideration of intervals for the unitary cost of energy production. This provides the analyst with the ability to make decisions using various predicted intervals with different membership values instead of the common practice of simply using the specific costs. - Highlights: > A decision support system has been developed using SARIMA with fuzzy systems and optimizations tools. > It assists the decision-making process for planning the expansion in isolated thermoelectric systems. > The {alpha}-cut concept facilitated the evaluation of risks for the cost of electricity production. > Provides decisions using various forecasted interval for this cost with different membership values.
International Nuclear Information System (INIS)
Neto, Joao C. do L; Costa Junior, Carlos T. da; Bitar, Sandro D.B.; Junior, Walter B.
2011-01-01
Understanding the uncertainty inherent in the analysis of diesel fuel consumption and its impact on the generation of electricity is an important topic for planning the expansion of isolated thermoelectric systems in the state of Amazonas. In light of this, a decision support system has been developed to forecast the cost of electricity production using non-stationary data by integrating the methodology of time series models with fuzzy systems and optimization tools. The method presented herein combines the potential of the Autoregressive Integrated Moving Average (ARIMA) and the Seasonal ARIMA (SARIMA) models, such as the forecasting tool, with the advantages of fuzzy set theory to compensate for the uncertainties and errors encountered in the observed data, which would degrade the validity of forecasted values. The results show that incorporation of the α-cut concept facilitated the evaluation of risks while allowing simultaneous consideration of intervals for the unitary cost of energy production. This provides the analyst with the ability to make decisions using various predicted intervals with different membership values instead of the common practice of simply using the specific costs. - Highlights: → A decision support system has been developed using SARIMA with fuzzy systems and optimizations tools. → It assists the decision-making process for planning the expansion in isolated thermoelectric systems. → The α-cut concept facilitated the evaluation of risks for the cost of electricity production. → Provides decisions using various forecasted interval for this cost with different membership values.
Directory of Open Access Journals (Sweden)
Josefa Ramoni Perazzi
2013-08-01
Full Text Available A fundamental element for the coffee Colombian sector, is to know to short, medium and long term, the behavior of the exports of soft coffee of Colombia, to know his relation in the processes of sales and production. In conformity with the previous thing, the present work was elaborated realizing an evaluation of the levels of exports of coffee, in monthly form from beginnings of 1958 until ends of 2008. With the aim to develop a model who allows to characterize and to obtain forecasts on the behavior of the exports of coffee realized in the country, the methodology used Box Jenkins, following the phases for the models ARIMA (Autoregressive Integrated of Mobile Average.The information was taken of the web page of the National Federation of Coffee Growers of Colombia. In the series under study a seasonal behavior was observed, where the first quarters present the minor levels of the year, particularly in February,month that registers the lowest levels of exports of the year, these levels quarterly go increasing of gradual form up to reaching the major level of exports in the quarter IV, specifically between November and December. Finally the forecasts were obtained between the year 2009 and 2011, following a stable behavior with regard to the period of validation of the sample of the series. The information was analyzed using the language R.
Tienfuan Kerh; Shin-Hung Wu
2017-01-01
Forecasting of a typhoon moving path may help to evaluate the potential negative impacts in the neighbourhood areas along the moving path. This study proposed a work of using both static and dynamic neural network models to link a time series of typhoon track parameters including longitude and latitude of the typhoon central location, cyclonic radius, central wind speed, and typhoon moving speed. Based on the historical records of 100 typhoons, the performances of neural network models are ev...
`Indoor` series vending machines; `Indoor` series jido hanbaiki
Energy Technology Data Exchange (ETDEWEB)
Gensui, T.; Kida, A. [Fuji Electric Co. Ltd., Tokyo (Japan); Okumura, H. [Fuji Denki Reiki Co. Ltd., Tokyo (Japan)
1996-07-10
This paper introduces three series of vending machines that were designed to match the interior of an office building. The three series are vending machines for cups, paper packs, cans, and tobacco. Among the three series, `Interior` series has a symmetric design that was coated in a grain pattern. The inside of the `Interior` series is coated by laser satin to ensure a sense of superior quality and a refined style. The push-button used for product selection is hot-stamped on the plastic surface to ensure the hair-line luster. `Interior Phase II` series has a bay window design with a sense of superior quality and lightness. The inside of the `Interior Phase II` series is coated by laser satin. `Interior 21` series is integrated with the wall except the sales operation panel. The upper and lower dress panels can be detached and attached. The door lock is a wire-type structure with high operativity. The operation block is coated by titanium color. The dimensions of three series are standardized. 6 figs., 1 tab.
Predicting long-term catchment nutrient export: the use of nonlinear time series models
Valent, Peter; Howden, Nicholas J. K.; Szolgay, Jan; Komornikova, Magda
2010-05-01
After the Second World War the nitrate concentrations in European water bodies changed significantly as the result of increased nitrogen fertilizer use and changes in land use. However, in the last decades, as a consequence of the implementation of nitrate-reducing measures in Europe, the nitrate concentrations in water bodies slowly decrease. This causes that the mean and variance of the observed time series also changes with time (nonstationarity and heteroscedascity). In order to detect changes and properly describe the behaviour of such time series by time series analysis, linear models (such as autoregressive (AR), moving average (MA) and autoregressive moving average models (ARMA)), are no more suitable. Time series with sudden changes in statistical characteristics can cause various problems in the calibration of traditional water quality models and thus give biased predictions. Proper statistical analysis of these non-stationary and heteroscedastic time series with the aim of detecting and subsequently explaining the variations in their statistical characteristics requires the use of nonlinear time series models. This information can be then used to improve the model building and calibration of conceptual water quality model or to select right calibration periods in order to produce reliable predictions. The objective of this contribution is to analyze two long time series of nitrate concentrations of the rivers Ouse and Stour with advanced nonlinear statistical modelling techniques and compare their performance with traditional linear models of the ARMA class in order to identify changes in the time series characteristics. The time series were analysed with nonlinear models with multiple regimes represented by self-exciting threshold autoregressive (SETAR) and Markov-switching models (MSW). The analysis showed that, based on the value of residual sum of squares (RSS) in both datasets, SETAR and MSW models described the time-series better than models of the
Directory of Open Access Journals (Sweden)
Syarif Hidayatullah
2017-04-01
Full Text Available Penelitian ini membahas analisis risiko data runtun waktu dengan model Value at Risk- Asymmetric Power Autoregressive Conditional Heteroscedasticity (VaR-APARCHdalam pasar modal syariah. Metode yang digunakan dalam penelitian ini adalah penerapan kasus.Data yang digunakan adalah harga penutupan harian saham dalam Jakarta Islamic Index (JIIperiode 4 Maret 2013 sampai 8 April 2015.Model APARCH yang dipilih berdasarkan nilai Schwarz Criterion (SC.Langkah-langkah dalam penelitian ini adalah menguji kestasioneran data, mengidentifikasi model ARIMA,mengestimasi parameter model ARIMA, menguji diagnostik model ARIMA, mendeteksi ada tidaknya unsur ARCH atau unsur heteroskedastisitas, uji asimetris data saham, mengestimasi model APARCH, menguji diagnostik model APARCH, dan menghitung risiko dengan VaR-APARCH.Model terbaik yang dipilih adalah ARIMA ((3,0,0 dan APARCH (1,1. Model ini valid untuk menganalisis besar risiko investasi dalam jangka waktu 10 hari ke depan.
Directory of Open Access Journals (Sweden)
Youngjae Chang
2016-11-01
Full Text Available We reviewed the data pertaining to the illegal dumping of municipal solid waste in the Republic of Korea for the year 2011 to check for the presence of spatial autoregression of illegal dumping among 224 basic autonomous units with reference to the “Broken Windows Theory.” We found that a pure neighborhood effect exists even after controlling for conventional variables that explain illegal dumping behavior. Interestingly, however, the neighborhood effect is largely offset by so-called relative price effect such that the number of illegal dumping reported in one region is in fact decreased as the price of vinyl bag for MSW in neighboring regions increases, which is seemingly against the implication of the “Broken Windows Theory.”
Directory of Open Access Journals (Sweden)
Zina Boussaada
2018-03-01
Full Text Available The solar photovoltaic (PV energy has an important place among the renewable energy sources. Therefore, several researchers have been interested by its modelling and its prediction, in order to improve the management of the electrical systems which include PV arrays. Among the existing techniques, artificial neural networks have proved their performance in the prediction of the solar radiation. However, the existing neural network models don’t satisfy the requirements of certain specific situations such as the one analyzed in this paper. The aim of this research work is to supply, with electricity, a race sailboat using exclusively renewable sources. The developed solution predicts the direct solar radiation on a horizontal surface. For that, a Nonlinear Autoregressive Exogenous (NARX neural network is used. All the specific conditions of the sailboat operation are taken into account. The results show that the best prediction performance is obtained when the training phase of the neural network is performed periodically.
Directory of Open Access Journals (Sweden)
Teheni El Ghak
2017-05-01
Full Text Available In recent years, the changing economic and political environment in Tunisia led to a renewed interest on the drivers of foreign direct investment, given its potential important gains. In this study, we investigated the impact of various factors over the period 1980-2012. In doing this, three categories of determinants were considered: economic, political and sociocultural variables. Empirical findings drawn from the autoregressive distributed lag bounds testing approach show that variation in foreign direct investment inflow in the short-run and long-run is affected by the majority of variables considered, except exchange rate, urban population and gross domestic savings. As a matter of policy, it is essential that government should continue its efforts to create a macroeconomic environment which is attractive to foreign direct investment.
Porto, Markus; Roman, H Eduardo
2002-04-01
We consider autoregressive conditional heteroskedasticity (ARCH) processes in which the variance sigma(2)(y) depends linearly on the absolute value of the random variable y as sigma(2)(y) = a+b absolute value of y. While for the standard model, where sigma(2)(y) = a + b y(2), the corresponding probability distribution function (PDF) P(y) decays as a power law for absolute value of y-->infinity, in the linear case it decays exponentially as P(y) approximately exp(-alpha absolute value of y), with alpha = 2/b. We extend these results to the more general case sigma(2)(y) = a+b absolute value of y(q), with 0 history of the ARCH process is taken into account, the resulting PDF becomes a stretched exponential even for q = 1, with a stretched exponent beta = 2/3, in a much better agreement with the empirical data.
Directory of Open Access Journals (Sweden)
Philip Stearns
2011-06-01
Full Text Available Photo essay. A collection of Images produced by intentionally corrupting the circuitry of a Kodak DC280 2 MP digitalcamera. By rewiring the electronics of a digital camera, glitched images are produced in a manner that parallels chemically processing unexposed film or photographic paper to produce photographic images without exposure to light. The DCP Series of Digital Images are direct visualizations of data generated by a digital camera as it takes a picture. Electronic processes associated with the normal operations of the camera, which are usually taken for granted, are revealed through an act of intervention. The camera is turned insideout through complexes of shortcircuits, selected by the artist, transforming the camera from a picture taking device to a data capturing device that renders raw data (electronic signals as images. In essence, these images are snapshots of electronic signals dancing through the camera's circuits, manually rerouted, written directly to the onboard memory device. Rather than seeing images of the world through a lens, we catch a glimpse of what the camera sees when it is forced to peer inside its own mind.
Analysis of JET ELMy time series
International Nuclear Information System (INIS)
Zvejnieks, G.; Kuzovkov, V.N.
2005-01-01
Full text: Achievement of the planned operational regime in the next generation tokamaks (such as ITER) still faces principal problems. One of the main challenges is obtaining the control of edge localized modes (ELMs), which should lead to both long plasma pulse times and reasonable divertor life time. In order to control ELMs the hypothesis was proposed by Degeling [1] that ELMs exhibit features of chaotic dynamics and thus a standard chaos control methods might be applicable. However, our findings which are based on the nonlinear autoregressive (NAR) model contradict this hypothesis for JET ELMy time-series. In turn, it means that ELM behavior is of a relaxation or random type. These conclusions coincide with our previous results obtained for ASDEX Upgrade time series [2]. [1] A.W. Degeling, Y.R. Martin, P.E. Bak, J. B.Lister, and X. Llobet, Plasma Phys. Control. Fusion 43, 1671 (2001). [2] G. Zvejnieks, V.N. Kuzovkov, O. Dumbrajs, A.W. Degeling, W. Suttrop, H. Urano, and H. Zohm, Physics of Plasmas 11, 5658 (2004)
Forecasting Natural Gas Prices Using Wavelets, Time Series, and Artificial Neural Networks.
Jin, Junghwan; Kim, Jinsoo
2015-01-01
Following the unconventional gas revolution, the forecasting of natural gas prices has become increasingly important because the association of these prices with those of crude oil has weakened. With this as motivation, we propose some modified hybrid models in which various combinations of the wavelet approximation, detail components, autoregressive integrated moving average, generalized autoregressive conditional heteroskedasticity, and artificial neural network models are employed to predict natural gas prices. We also emphasize the boundary problem in wavelet decomposition, and compare results that consider the boundary problem case with those that do not. The empirical results show that our suggested approach can handle the boundary problem, such that it facilitates the extraction of the appropriate forecasting results. The performance of the wavelet-hybrid approach was superior in all cases, whereas the application of detail components in the forecasting was only able to yield a small improvement in forecasting performance. Therefore, forecasting with only an approximation component would be acceptable, in consideration of forecasting efficiency.
Describing temporal variability of the mean Estonian precipitation series in climate time scale
Post, P.; Kärner, O.
2009-04-01
Applicability of the random walk type models to represent the temporal variability of various atmospheric temperature series has been successfully demonstrated recently (e.g. Kärner, 2002). Main problem in the temperature modeling is connected to the scale break in the generally self similar air temperature anomaly series (Kärner, 2005). The break separates short-range strong non-stationarity from nearly stationary longer range variability region. This is an indication of the fact that several geophysical time series show a short-range non-stationary behaviour and a stationary behaviour in longer range (Davis et al., 1996). In order to model series like that the choice of time step appears to be crucial. To characterize the long-range variability we can neglect the short-range non-stationary fluctuations, provided that we are able to model properly the long-range tendencies. The structure function (Monin and Yaglom, 1975) was used to determine an approximate segregation line between the short and the long scale in terms of modeling. The longer scale can be called climate one, because such models are applicable in scales over some decades. In order to get rid of the short-range fluctuations in daily series the variability can be examined using sufficiently long time step. In the present paper, we show that the same philosophy is useful to find a model to represent a climate-scale temporal variability of the Estonian daily mean precipitation amount series over 45 years (1961-2005). Temporal variability of the obtained daily time series is examined by means of an autoregressive and integrated moving average (ARIMA) family model of the type (0,1,1). This model is applicable for daily precipitation simulating if to select an appropriate time step that enables us to neglet the short-range non-stationary fluctuations. A considerably longer time step than one day (30 days) is used in the current paper to model the precipitation time series variability. Each ARIMA (0
International Nuclear Information System (INIS)
Chou, Jui-Sheng; Ngo, Ngoc-Tri
2016-01-01
Highlights: • This study develops a novel time-series sliding window forecast system. • The system integrates metaheuristics, machine learning and time-series models. • Site experiment of smart grid infrastructure is installed to retrieve real-time data. • The proposed system accurately predicts energy consumption in residential buildings. • The forecasting system can help users minimize their electricity usage. - Abstract: Smart grids are a promising solution to the rapidly growing power demand because they can considerably increase building energy efficiency. This study developed a novel time-series sliding window metaheuristic optimization-based machine learning system for predicting real-time building energy consumption data collected by a smart grid. The proposed system integrates a seasonal autoregressive integrated moving average (SARIMA) model and metaheuristic firefly algorithm-based least squares support vector regression (MetaFA-LSSVR) model. Specifically, the proposed system fits the SARIMA model to linear data components in the first stage, and the MetaFA-LSSVR model captures nonlinear data components in the second stage. Real-time data retrieved from an experimental smart grid installed in a building were used to evaluate the efficacy and effectiveness of the proposed system. A k-week sliding window approach is proposed for employing historical data as input for the novel time-series forecasting system. The prediction system yielded high and reliable accuracy rates in 1-day-ahead predictions of building energy consumption, with a total error rate of 1.181% and mean absolute error of 0.026 kW h. Notably, the system demonstrates an improved accuracy rate in the range of 36.8–113.2% relative to those of the linear forecasting model (i.e., SARIMA) and nonlinear forecasting models (i.e., LSSVR and MetaFA-LSSVR). Therefore, end users can further apply the forecasted information to enhance efficiency of energy usage in their buildings, especially
Arima and integrated arfima models for forecasting air pollution index in Shah Alam, Selangor
International Nuclear Information System (INIS)
Lim, Ying Siew; Lim, Ying Chin; Pauline, Mah Jin Wee
2008-01-01
Air pollution is one of the major issues that has been affecting human health, agricultural crops, forest species and ecosystems. Since 1980, Malaysia has had a series of haze episodes and the worst ever was reported in 1997. As a result, the government has established the Malaysia Air Quality Guidelines, the Air Pollution Index (API) and Haze Action Plan, to improve the air quality. The API was introduced as an index system for classifying and reporting the ambient air quality in Malaysia. The API for a given period is calculated based on the sub-index value (sub-API) for all the five air pollutants, namely sulphur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), ozone (O 3 ), carbon monoxide (CO) and particulate matter below 10 micron size (PM 10 ). The forecast of air pollution can be used for air pollution assessment and management. It can serve as information and warning to the public in cases of high air pollution levels and for policy management of many different chemical compounds. Hence, the objective of this project is to fit and illustrate the use of time series models in forecasting the API in Shah Alam, Selangor. The data used in this study consists of 70 monthly observations of API (from March 1998 to December 2003) published in the Annual Reports of the Department of Environment, Selangor. The time series models that were being considered were the Integrated Autoregressive Moving Average (ARIMA) and the Integrated Long Memory Model (ARFIMA) models. The lowest MAE, RMSE and MAPE values were used as the model selection criteria. Between these two models considered, the integrated ARFIMA model appears to be the better model as it has the lowest MAPE value. However, the actual value of May 2003 falls outside the 95% forecast interval, probably due to emissions from mobile sources (i.e., motor vehicles), industrial emissions, burning of solid wastes and forest fires. (author)
Blair, Matthew W; Hurtado, Natalia; Chavarro, Carolina M; Muñoz-Torres, Monica C; Giraldo, Martha C; Pedraza, Fabio; Tomkins, Jeff; Wing, Rod
2011-03-22
Sequencing of cDNA libraries for the development of expressed sequence tags (ESTs) as well as for the discovery of simple sequence repeats (SSRs) has been a common method of developing microsatellites or SSR-based markers. In this research, our objective was to further sequence and develop common bean microsatellites from leaf and root cDNA libraries derived from the Andean gene pool accession G19833 and the Mesoamerican gene pool accession DOR364, mapping parents of a commonly used reference map. The root libraries were made from high and low phosphorus treated plants. A total of 3,123 EST sequences from leaf and root cDNA libraries were screened and used for direct simple sequence repeat discovery. From these EST sequences we found 184 microsatellites; the majority containing tri-nucleotide motifs, many of which were GC rich (ACC, AGC and AGG in particular). Di-nucleotide motif microsatellites were about half as common as the tri-nucleotide motif microsatellites but most of these were AGn microsatellites with a moderate number of ATn microsatellites in root ESTs followed by few ACn and no GCn microsatellites. Out of the 184 new SSR loci, 120 new microsatellite markers were developed in the BMc (Bean Microsatellites from cDNAs) series and these were evaluated for their capacity to distinguish bean diversity in a germplasm panel of 18 genotypes. We developed a database with images of the microsatellites and their polymorphism information content (PIC), which averaged 0.310 for polymorphic markers. The present study produced information about microsatellite frequency in root and leaf tissues of two important genotypes for common bean genomics: namely G19833, the Andean genotype selected for whole genome shotgun sequencing from race Peru, and DOR364 a race Mesoamerica subgroup 2 genotype that is a small-red seeded, released variety in Central America. Both race Peru and Mesoamerica subgroup 2 (small red beans) have been understudied in comparison to race Nueva
Time Series Analysis of Wheat Futures Reward in China
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Different from the fact that the main researches are focused on single futures contract and lack of the comparison of different periods, this paper described the statistical characteristics of wheat futures reward time series of Zhengzhou Commodity Exchange in recent three years. Besides the basic statistic analysis, the paper used the GARCH and EGARCH model to describe the time series which had the ARCH effect and analyzed the persistence of volatility shocks and the leverage effect. The results showed that compared with that of normal one,wheat futures reward series were abnormality, leptokurtic and thick tail distribution. The study also found that two-part of the reward series had no autocorrelation. Among the six correlative series, three ones presented the ARCH effect. By using of the Auto-regressive Distributed Lag Model, GARCH model and EGARCH model, the paper demonstrates the persistence of volatility shocks and the leverage effect on the wheat futures reward time series. The results reveal that on the one hand, the statistical characteristics of the wheat futures reward are similar to the aboard mature futures market as a whole. But on the other hand, the results reflect some shortages such as the immatureness and the over-control by the government in the Chinese future market.
Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.
Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi
2015-02-01
We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.
Sadashiva, Rajitha; Naral, Damodara; Kudva, Jyothi; Madan Kumar, S.; Byrappa, K.; Mohammed Shafeeulla, R.; Kumsi, Manjunatha
2017-10-01
In the current study, a series of 2,4-disubstituted-1,3-thiazoles linked with pyrazoline scaffolds 3a-o were rationally designed and synthesized. The structures of the title compounds were elucidated by spectroscopic data (UV-Vis, IR, NMR and Mass spectra) and elemental analysis. Single crystal X-Ray diffraction studies revealed that, the compounds 3i and 3k crystallized in monoclinic crystal system with P21/n space group and Z = 4. The molecules 3i and 3k were connected with intermolecular hydrogen bonds N2-H2 … O1, N3sbnd H3 … Cl1 and short contacts (Csbnd H … π and Csbnd Cl … π). Intramolecular hydrogen bonds, N3sbnd H3 … N5 and C5sbnd H5 ….N1 were also existed. The compounds were evaluated for their anticancer activity against A549 and MCF-7 human cancer cell lines and in vitro antimicrobial activity against pathogenic microbial strains. The compounds bearing chloro atom at the para position of phenyl ring A like 3f, 3j and 3k with the IC50: 7.5, 5.0 and 5.0 μM respectively, exhibited better activity than standard drug Cisplatin (IC50: 10.0 μM). In addition, the compounds 3a, 3f, 3j and 3l have exhibited the similar antimicrobial activity as that of standard drug Ciprofloxacin and Fluconazole. Furthermore, to support the biological potency of the compounds, in silico molecular docking studies were carried out against the E. coli MurB (PDB code: pdb:2MBR)
Stock price forecasting based on time series analysis
Chi, Wan Le
2018-05-01
Using the historical stock price data to set up a sequence model to explain the intrinsic relationship of data, the future stock price can forecasted. The used models are auto-regressive model, moving-average model and autoregressive-movingaverage model. The original data sequence of unit root test was used to judge whether the original data sequence was stationary. The non-stationary original sequence as a first order difference needed further processing. Then the stability of the sequence difference was re-inspected. If it is still non-stationary, the second order differential processing of the sequence is carried out. Autocorrelation diagram and partial correlation diagram were used to evaluate the parameters of the identified ARMA model, including coefficients of the model and model order. Finally, the model was used to forecast the fitting of the shanghai composite index daily closing price with precision. Results showed that the non-stationary original data series was stationary after the second order difference. The forecast value of shanghai composite index daily closing price was closer to actual value, indicating that the ARMA model in the paper was a certain accuracy.