Time series analysis time series analysis methods and applications
Rao, Tata Subba; Rao, C R
2012-01-01
The field of statistics not only affects all areas of scientific activity, but also many other matters such as public policy. It is branching rapidly into so many different subjects that a series of handbooks is the only way of comprehensively presenting the various aspects of statistical methodology, applications, and recent developments. The Handbook of Statistics is a series of self-contained reference books. Each volume is devoted to a particular topic in statistics, with Volume 30 dealing with time series. The series is addressed to the entire community of statisticians and scientists in various disciplines who use statistical methodology in their work. At the same time, special emphasis is placed on applications-oriented techniques, with the applied statistician in mind as the primary audience. Comprehensively presents the various aspects of statistical methodology Discusses a wide variety of diverse applications and recent developments Contributors are internationally renowened experts in their respect...
Highly comparative time-series analysis: the empirical structure of time series and their methods.
Fulcher, Ben D; Little, Max A; Jones, Nick S
2013-06-06
The process of collecting and organizing sets of observations represents a common theme throughout the history of science. However, despite the ubiquity of scientists measuring, recording and analysing the dynamics of different processes, an extensive organization of scientific time-series data and analysis methods has never been performed. Addressing this, annotated collections of over 35 000 real-world and model-generated time series, and over 9000 time-series analysis algorithms are analysed in this work. We introduce reduced representations of both time series, in terms of their properties measured by diverse scientific methods, and of time-series analysis methods, in terms of their behaviour on empirical time series, and use them to organize these interdisciplinary resources. This new approach to comparing across diverse scientific data and methods allows us to organize time-series datasets automatically according to their properties, retrieve alternatives to particular analysis methods developed in other scientific disciplines and automate the selection of useful methods for time-series classification and regression tasks. The broad scientific utility of these tools is demonstrated on datasets of electroencephalograms, self-affine time series, heartbeat intervals, speech signals and others, in each case contributing novel analysis techniques to the existing literature. Highly comparative techniques that compare across an interdisciplinary literature can thus be used to guide more focused research in time-series analysis for applications across the scientific disciplines.
Mathematical methods in time series analysis and digital image processing
Kurths, J; Maass, P; Timmer, J
2008-01-01
The aim of this volume is to bring together research directions in theoretical signal and imaging processing developed rather independently in electrical engineering, theoretical physics, mathematics and the computer sciences. In particular, mathematically justified algorithms and methods, the mathematical analysis of these algorithms, and methods as well as the investigation of connections between methods from time series analysis and image processing are reviewed. An interdisciplinary comparison of these methods, drawing upon common sets of test problems from medicine and geophysical/enviromental sciences, is also addressed. This volume coherently summarizes work carried out in the field of theoretical signal and image processing. It focuses on non-linear and non-parametric models for time series as well as on adaptive methods in image processing.
Time series analysis methods and applications for flight data
Zhang, Jianye
2017-01-01
This book focuses on different facets of flight data analysis, including the basic goals, methods, and implementation techniques. As mass flight data possesses the typical characteristics of time series, the time series analysis methods and their application for flight data have been illustrated from several aspects, such as data filtering, data extension, feature optimization, similarity search, trend monitoring, fault diagnosis, and parameter prediction, etc. An intelligent information-processing platform for flight data has been established to assist in aircraft condition monitoring, training evaluation and scientific maintenance. The book will serve as a reference resource for people working in aviation management and maintenance, as well as researchers and engineers in the fields of data analysis and data mining.
Time Series Analysis of Insar Data: Methods and Trends
Osmanoglu, Batuhan; Sunar, Filiz; Wdowinski, Shimon; Cano-Cabral, Enrique
2015-01-01
Time series analysis of InSAR data has emerged as an important tool for monitoring and measuring the displacement of the Earth's surface. Changes in the Earth's surface can result from a wide range of phenomena such as earthquakes, volcanoes, landslides, variations in ground water levels, and changes in wetland water levels. Time series analysis is applied to interferometric phase measurements, which wrap around when the observed motion is larger than one-half of the radar wavelength. Thus, the spatio-temporal ''unwrapping" of phase observations is necessary to obtain physically meaningful results. Several different algorithms have been developed for time series analysis of InSAR data to solve for this ambiguity. These algorithms may employ different models for time series analysis, but they all generate a first-order deformation rate, which can be compared to each other. However, there is no single algorithm that can provide optimal results in all cases. Since time series analyses of InSAR data are used in a variety of applications with different characteristics, each algorithm possesses inherently unique strengths and weaknesses. In this review article, following a brief overview of InSAR technology, we discuss several algorithms developed for time series analysis of InSAR data using an example set of results for measuring subsidence rates in Mexico City.
Financial time series analysis based on information categorization method
Tian, Qiang; Shang, Pengjian; Feng, Guochen
2014-12-01
The paper mainly applies the information categorization method to analyze the financial time series. The method is used to examine the similarity of different sequences by calculating the distances between them. We apply this method to quantify the similarity of different stock markets. And we report the results of similarity in US and Chinese stock markets in periods 1991-1998 (before the Asian currency crisis), 1999-2006 (after the Asian currency crisis and before the global financial crisis), and 2007-2013 (during and after global financial crisis) by using this method. The results show the difference of similarity between different stock markets in different time periods and the similarity of the two stock markets become larger after these two crises. Also we acquire the results of similarity of 10 stock indices in three areas; it means the method can distinguish different areas' markets from the phylogenetic trees. The results show that we can get satisfactory information from financial markets by this method. The information categorization method can not only be used in physiologic time series, but also in financial time series.
Minimum entropy density method for the time series analysis
Lee, Jeong Won; Park, Joongwoo Brian; Jo, Hang-Hyun; Yang, Jae-Suk; Moon, Hie-Tae
2009-01-01
The entropy density is an intuitive and powerful concept to study the complicated nonlinear processes derived from physical systems. We develop the minimum entropy density method (MEDM) to detect the structure scale of a given time series, which is defined as the scale in which the uncertainty is minimized, hence the pattern is revealed most. The MEDM is applied to the financial time series of Standard and Poor’s 500 index from February 1983 to April 2006. Then the temporal behavior of structure scale is obtained and analyzed in relation to the information delivery time and efficient market hypothesis.
A Multivariate Time Series Method for Monte Carlo Reactor Analysis
International Nuclear Information System (INIS)
Taro Ueki
2008-01-01
A robust multivariate time series method has been established for the Monte Carlo calculation of neutron multiplication problems. The method is termed Coarse Mesh Projection Method (CMPM) and can be implemented using the coarse statistical bins for acquisition of nuclear fission source data. A novel aspect of CMPM is the combination of the general technical principle of projection pursuit in the signal processing discipline and the neutron multiplication eigenvalue problem in the nuclear engineering discipline. CMPM enables reactor physicists to accurately evaluate major eigenvalue separations of nuclear reactors with continuous energy Monte Carlo calculation. CMPM was incorporated in the MCNP Monte Carlo particle transport code of Los Alamos National Laboratory. The great advantage of CMPM over the traditional Fission Matrix method is demonstrated for the three space-dimensional modeling of the initial core of a pressurized water reactor
Multi-Scale Entropy Analysis as a Method for Time-Series Analysis of Climate Data
Directory of Open Access Journals (Sweden)
Heiko Balzter
2015-03-01
Full Text Available Evidence is mounting that the temporal dynamics of the climate system are changing at the same time as the average global temperature is increasing due to multiple climate forcings. A large number of extreme weather events such as prolonged cold spells, heatwaves, droughts and floods have been recorded around the world in the past 10 years. Such changes in the temporal scaling behaviour of climate time-series data can be difficult to detect. While there are easy and direct ways of analysing climate data by calculating the means and variances for different levels of temporal aggregation, these methods can miss more subtle changes in their dynamics. This paper describes multi-scale entropy (MSE analysis as a tool to study climate time-series data and to identify temporal scales of variability and their change over time in climate time-series. MSE estimates the sample entropy of the time-series after coarse-graining at different temporal scales. An application of MSE to Central European, variance-adjusted, mean monthly air temperature anomalies (CRUTEM4v is provided. The results show that the temporal scales of the current climate (1960–2014 are different from the long-term average (1850–1960. For temporal scale factors longer than 12 months, the sample entropy increased markedly compared to the long-term record. Such an increase can be explained by systems theory with greater complexity in the regional temperature data. From 1961 the patterns of monthly air temperatures are less regular at time-scales greater than 12 months than in the earlier time period. This finding suggests that, at these inter-annual time scales, the temperature variability has become less predictable than in the past. It is possible that climate system feedbacks are expressed in altered temporal scales of the European temperature time-series data. A comparison with the variance and Shannon entropy shows that MSE analysis can provide additional information on the
The Fourier decomposition method for nonlinear and non-stationary time series analysis.
Singh, Pushpendra; Joshi, Shiv Dutt; Patney, Rakesh Kumar; Saha, Kaushik
2017-03-01
for many decades, there has been a general perception in the literature that Fourier methods are not suitable for the analysis of nonlinear and non-stationary data. In this paper, we propose a novel and adaptive Fourier decomposition method (FDM), based on the Fourier theory, and demonstrate its efficacy for the analysis of nonlinear and non-stationary time series. The proposed FDM decomposes any data into a small number of 'Fourier intrinsic band functions' (FIBFs). The FDM presents a generalized Fourier expansion with variable amplitudes and variable frequencies of a time series by the Fourier method itself. We propose an idea of zero-phase filter bank-based multivariate FDM (MFDM), for the analysis of multivariate nonlinear and non-stationary time series, using the FDM. We also present an algorithm to obtain cut-off frequencies for MFDM. The proposed MFDM generates a finite number of band-limited multivariate FIBFs (MFIBFs). The MFDM preserves some intrinsic physical properties of the multivariate data, such as scale alignment, trend and instantaneous frequency. The proposed methods provide a time-frequency-energy (TFE) distribution that reveals the intrinsic structure of a data. Numerical computations and simulations have been carried out and comparison is made with the empirical mode decomposition algorithms.
He, Jiayi; Shang, Pengjian; Xiong, Hui
2018-06-01
Stocks, as the concrete manifestation of financial time series with plenty of potential information, are often used in the study of financial time series. In this paper, we utilize the stock data to recognize their patterns through out the dissimilarity matrix based on modified cross-sample entropy, then three-dimensional perceptual maps of the results are provided through multidimensional scaling method. Two modified multidimensional scaling methods are proposed in this paper, that is, multidimensional scaling based on Kronecker-delta cross-sample entropy (MDS-KCSE) and multidimensional scaling based on permutation cross-sample entropy (MDS-PCSE). These two methods use Kronecker-delta based cross-sample entropy and permutation based cross-sample entropy to replace the distance or dissimilarity measurement in classical multidimensional scaling (MDS). Multidimensional scaling based on Chebyshev distance (MDSC) is employed to provide a reference for comparisons. Our analysis reveals a clear clustering both in synthetic data and 18 indices from diverse stock markets. It implies that time series generated by the same model are easier to have similar irregularity than others, and the difference in the stock index, which is caused by the country or region and the different financial policies, can reflect the irregularity in the data. In the synthetic data experiments, not only the time series generated by different models can be distinguished, the one generated under different parameters of the same model can also be detected. In the financial data experiment, the stock indices are clearly divided into five groups. Through analysis, we find that they correspond to five regions, respectively, that is, Europe, North America, South America, Asian-Pacific (with the exception of mainland China), mainland China and Russia. The results also demonstrate that MDS-KCSE and MDS-PCSE provide more effective divisions in experiments than MDSC.
Trend analysis using non-stationary time series clustering based on the finite element method
Gorji Sefidmazgi, M.; Sayemuzzaman, M.; Homaifar, A.; Jha, M. K.; Liess, S.
2014-01-01
In order to analyze low-frequency variability of climate, it is useful to model the climatic time series with multiple linear trends and locate the times of significant changes. In this paper, we have used non-stationary time series clustering to find change points in the trends. Clustering in a multi-dimensional non-stationary time series is challenging, since the problem is mathematically ill-posed. Clustering based on the finite element method (FEM) is one of the methods ...
Trend analysis using non-stationary time series clustering based on the finite element method
Gorji Sefidmazgi, M.; Sayemuzzaman, M.; Homaifar, A.; Jha, M. K.; Liess, S.
2014-05-01
In order to analyze low-frequency variability of climate, it is useful to model the climatic time series with multiple linear trends and locate the times of significant changes. In this paper, we have used non-stationary time series clustering to find change points in the trends. Clustering in a multi-dimensional non-stationary time series is challenging, since the problem is mathematically ill-posed. Clustering based on the finite element method (FEM) is one of the methods that can analyze multidimensional time series. One important attribute of this method is that it is not dependent on any statistical assumption and does not need local stationarity in the time series. In this paper, it is shown how the FEM-clustering method can be used to locate change points in the trend of temperature time series from in situ observations. This method is applied to the temperature time series of North Carolina (NC) and the results represent region-specific climate variability despite higher frequency harmonics in climatic time series. Next, we investigated the relationship between the climatic indices with the clusters/trends detected based on this clustering method. It appears that the natural variability of climate change in NC during 1950-2009 can be explained mostly by AMO and solar activity.
Learning from environmental data: Methods for analysis of forest nutrition time series
Energy Technology Data Exchange (ETDEWEB)
Sulkava, M. (Helsinki Univ. of Technology, Espoo (Finland). Computer and Information Science)
2008-07-01
Data analysis methods play an important role in increasing our knowledge of the environment as the amount of data measured from the environment increases. This thesis fits under the scope of environmental informatics and environmental statistics. They are fields, in which data analysis methods are developed and applied for the analysis of environmental data. The environmental data studied in this thesis are time series of nutrient concentration measurements of pine and spruce needles. In addition, there are data of laboratory quality and related environmental factors, such as the weather and atmospheric depositions. The most important methods used for the analysis of the data are based on the self-organizing map and linear regression models. First, a new clustering algorithm of the self-organizing map is proposed. It is found to provide better results than two other methods for clustering of the self-organizing map. The algorithm is used to divide the nutrient concentration data into clusters, and the result is evaluated by environmental scientists. Based on the clustering, the temporal development of the forest nutrition is modeled and the effect of nitrogen and sulfur deposition on the foliar mineral composition is assessed. Second, regression models are used for studying how much environmental factors and properties of the needles affect the changes in the nutrient concentrations of the needles between their first and second year of existence. The aim is to build understandable models with good prediction capabilities. Sparse regression models are found to outperform more traditional regression models in this task. Third, fusion of laboratory quality data from different sources is performed to estimate the precisions of the analytical methods. Weighted regression models are used to quantify how much the precision of observations can affect the time needed to detect a trend in environmental time series. The results of power analysis show that improving the
Directory of Open Access Journals (Sweden)
WANG Minhao
2017-08-01
Full Text Available Plate structures with openings are common in many engineering structures. The study of the vibration characteristics of such structures is directly related to the vibration reduction, noise reduction and stability analysis of an overall structure. This paper conducts research into the free vibration characteristics of a thin elastic plate with a rectangular opening parallel to the plate in an arbitrary position. We use the improved Fourier series to represent the displacement tolerance function of the rectangular plate with an opening. We can divide the plate into an eight zone plate to simplify the calculation. We then use linear springs, which are uniformly distributed along the boundary, to simulate the classical boundary conditions and the boundary conditions of the boundaries between the regions. According to the energy functional and variational method, we can obtain the overall energy functional. We can also obtain the generalized eigenvalue matrix equation by studying the extremum of the unknown improved Fourier series expansion coefficients. We can then obtain the natural frequencies and corresponding vibration modes of the rectangular plate with an opening by solving the equation. We then compare the calculated results with the finite element method to verify the accuracy and effectiveness of the method proposed in this paper. Finally, we research the influence of the boundary condition, opening size and opening position on the vibration characteristics of a plate with an opening. This provides a theoretical reference for practical engineering application.
Directory of Open Access Journals (Sweden)
Peter Celec
2004-01-01
Full Text Available Cyclic variations of variables are ubiquitous in biomedical science. A number of methods for detecting rhythms have been developed, but they are often difficult to interpret. A simple procedure for detecting cyclic variations in biological time series and quantification of their probability is presented here. Analysis of rhythmic variance (ANORVA is based on the premise that the variance in groups of data from rhythmic variables is low when a time distance of one period exists between the data entries. A detailed stepwise calculation is presented including data entry and preparation, variance calculating, and difference testing. An example for the application of the procedure is provided, and a real dataset of the number of papers published per day in January 2003 using selected keywords is compared to randomized datasets. Randomized datasets show no cyclic variations. The number of papers published daily, however, shows a clear and significant (p<0.03 circaseptan (period of 7 days rhythm, probably of social origin
River catchment rainfall series analysis using additive Holt-Winters method
Puah, Yan Jun; Huang, Yuk Feng; Chua, Kuan Chin; Lee, Teang Shui
2016-03-01
Climate change is receiving more attention from researchers as the frequency of occurrence of severe natural disasters is getting higher. Tropical countries like Malaysia have no distinct four seasons; rainfall has become the popular parameter to assess climate change. Conventional ways that determine rainfall trends can only provide a general result in single direction for the whole study period. In this study, rainfall series were modelled using additive Holt-Winters method to examine the rainfall pattern in Langat River Basin, Malaysia. Nine homogeneous series of more than 25 years data and less than 10% missing data were selected. Goodness of fit of the forecasted models was measured. It was found that seasonal rainfall model forecasts are generally better than the monthly rainfall model forecasts. Three stations in the western region exhibited increasing trend. Rainfall in southern region showed fluctuation. Increasing trends were discovered at stations in the south-eastern region except the seasonal analysis at station 45253. Decreasing trend was found at station 2818110 in the east, while increasing trend was shown at station 44320 that represents the north-eastern region. The accuracies of both rainfall model forecasts were tested using the recorded data of years 2010-2012. Most of the forecasts are acceptable.
New significance test methods for Fourier analysis of geophysical time series
Directory of Open Access Journals (Sweden)
Z. Zhang
2011-09-01
Full Text Available When one applies the discrete Fourier transform to analyze finite-length time series, discontinuities at the data boundaries will distort its Fourier power spectrum. In this paper, based on a rigid statistics framework, we present a new significance test method which can extract the intrinsic feature of a geophysical time series very well. We show the difference in significance level compared with traditional Fourier tests by analyzing the Arctic Oscillation (AO and the Nino3.4 time series. In the AO, we find significant peaks at about 2.8, 4.3, and 5.7 yr periods and in Nino3.4 at about 12 yr period in tests against red noise. These peaks are not significant in traditional tests.
Jolivet, R.; Simons, M.
2018-02-01
Interferometric synthetic aperture radar time series methods aim to reconstruct time-dependent ground displacements over large areas from sets of interferograms in order to detect transient, periodic, or small-amplitude deformation. Because of computational limitations, most existing methods consider each pixel independently, ignoring important spatial covariances between observations. We describe a framework to reconstruct time series of ground deformation while considering all pixels simultaneously, allowing us to account for spatial covariances, imprecise orbits, and residual atmospheric perturbations. We describe spatial covariances by an exponential decay function dependent of pixel-to-pixel distance. We approximate the impact of imprecise orbit information and residual long-wavelength atmosphere as a low-order polynomial function. Tests on synthetic data illustrate the importance of incorporating full covariances between pixels in order to avoid biased parameter reconstruction. An example of application to the northern Chilean subduction zone highlights the potential of this method.
Time-series analysis of climatologic measurements: a method to distinguish future climatic changes
International Nuclear Information System (INIS)
Duband, D.
1992-01-01
Time-series analysis of climatic parameters as air temperature, rivers flow rate, lakes or seas level is an indispensable basis to detect a possible significant climatic change. These observations, when they are carefully analyzed and criticized, constitute the necessary reference for testing and validation numerical climatic models which try to simulate the physical and dynamical process of the ocean-atmosphere couple, taking continents into account. 32 refs., 13 figs
Time series analysis in road safety research uisng state space methods
BIJLEVELD, FD
2008-01-01
In this thesis we present a comprehensive study into novel time series models for aggregated road safety data. The models are mainly intended for analysis of indicators relevant to road safety, with a particular focus on how to measure these factors. Such developments may need to be related to or explained by external influences. It is also possible to make forecasts using the models. Relevant indicators include the number of persons killed permonth or year. These statistics are closely watch...
DEFF Research Database (Denmark)
Fischer, Paul; Hilbert, Astrid
2012-01-01
We introduce a platform which supplies an easy-to-handle, interactive, extendable, and fast analysis tool for time series analysis. In contrast to other software suits like Maple, Matlab, or R, which use a command-line-like interface and where the user has to memorize/look-up the appropriate...... commands, our application is select-and-click-driven. It allows to derive many different sequences of deviations for a given time series and to visualize them in different ways in order to judge their expressive power and to reuse the procedure found. For many transformations or model-ts, the user may...... choose between manual and automated parameter selection. The user can dene new transformations and add them to the system. The application contains efficient implementations of advanced and recent techniques for time series analysis including techniques related to extreme value analysis and filtering...
Woodward, Wayne A; Elliott, Alan C
2011-01-01
""There is scarcely a standard technique that the reader will find left out … this book is highly recommended for those requiring a ready introduction to applicable methods in time series and serves as a useful resource for pedagogical purposes.""-International Statistical Review (2014), 82""Current time series theory for practice is well summarized in this book.""-Emmanuel Parzen, Texas A&M University""What an extraordinary range of topics covered, all very insightfully. I like [the authors'] innovations very much, such as the AR factor table.""-David Findley, U.S. Census Bureau (retired)""…
Trend analysis of time-series data: A novel method for untargeted metabolite discovery
Peters, S.; Janssen, H.-G.; Vivó-Truyols, G.
2010-01-01
A new strategy for biomarker discovery is presented that uses time-series metabolomics data. Data sets from samples analysed at different time points after an intervention are searched for compounds that show a meaningful trend following the intervention. Obviously, this requires new data-analytical
A Course in Time Series Analysis
Peña, Daniel; Tsay, Ruey S
2011-01-01
New statistical methods and future directions of research in time series A Course in Time Series Analysis demonstrates how to build time series models for univariate and multivariate time series data. It brings together material previously available only in the professional literature and presents a unified view of the most advanced procedures available for time series model building. The authors begin with basic concepts in univariate time series, providing an up-to-date presentation of ARIMA models, including the Kalman filter, outlier analysis, automatic methods for building ARIMA models, a
Directory of Open Access Journals (Sweden)
Eulogio Pardo-Igúzquiza
2015-08-01
Full Text Available Many studies have revealed the cyclicity of past ocean/atmosphere dynamics at a wide range of time scales (from decadal to millennial time scales, based on the spectral analysis of time series of climate proxies obtained from deep sea sediment cores. Among the many techniques available for spectral analysis, the maximum entropy method and the Thomson multitaper approach have frequently been used because of their good statistical properties and high resolution with short time series. The novelty of the present study is that we compared the two methods by according to the performance of their statistical tests to assess the statistical significance of their power spectrum estimates. The statistical significance of maximum entropy estimates was assessed by a random permutation test (Pardo-Igúzquiza and Rodríguez-Tovar, 2000, while the statistical significance of the Thomson multitaper method was assessed by an F-test (Thomson, 1982. We compared the results obtained in a case study using simulated data where the spectral content of the time series was known and in a case study with real data. In both cases the results are similar: while the cycles identified as significant by maximum entropy and the permutation test have a clear physical interpretation, the F-test with the Thomson multitaper estimator tends to find as no significant the peaks in the low frequencies and tends to give as significant more spurious peaks in the middle and high frequencies. Nevertheless, the best strategy is to use both techniques and to use the advantages of each of them.
Liang, Y.; Gallaher, D. W.; Grant, G.; Lv, Q.
2011-12-01
Change over time, is the central driver of climate change detection. The goal is to diagnose the underlying causes, and make projections into the future. In an effort to optimize this process we have developed the Data Rod model, an object-oriented approach that provides the ability to query grid cell changes and their relationships to neighboring grid cells through time. The time series data is organized in time-centric structures called "data rods." A single data rod can be pictured as the multi-spectral data history at one grid cell: a vertical column of data through time. This resolves the long-standing problem of managing time-series data and opens new possibilities for temporal data analysis. This structure enables rapid time- centric analysis at any grid cell across multiple sensors and satellite platforms. Collections of data rods can be spatially and temporally filtered, statistically analyzed, and aggregated for use with pattern matching algorithms. Likewise, individual image pixels can be extracted to generate multi-spectral imagery at any spatial and temporal location. The Data Rods project has created a series of prototype databases to store and analyze massive datasets containing multi-modality remote sensing data. Using object-oriented technology, this method overcomes the operational limitations of traditional relational databases. To demonstrate the speed and efficiency of time-centric analysis using the Data Rods model, we have developed a sea ice detection algorithm. This application determines the concentration of sea ice in a small spatial region across a long temporal window. If performed using traditional analytical techniques, this task would typically require extensive data downloads and spatial filtering. Using Data Rods databases, the exact spatio-temporal data set is immediately available No extraneous data is downloaded, and all selected data querying occurs transparently on the server side. Moreover, fundamental statistical
Accuracy assessment of the ERP prediction method based on analysis of 100-year ERP series
Malkin, Z.; Tissen, V. M.
2012-12-01
A new method has been developed at the Siberian Research Institute of Metrology (SNIIM) for highly accurate prediction of UT1 and Pole motion (PM). In this study, a detailed comparison was made of real-time UT1 predictions made in 2006-2011 and PMpredictions made in 2009-2011making use of the SNIIM method with simultaneous predictions computed at the International Earth Rotation and Reference Systems Service (IERS), USNO. Obtained results have shown that proposed method provides better accuracy at different prediction lengths.
How cyanobacteria pose new problems to old methods: challenges in microarray time series analysis
Czech Academy of Sciences Publication Activity Database
Lehmann, R.; Machné, R.; Georg, J.; Benary, M.; Axman, I. M.; Steuer, Ralf
2013-01-01
Roč. 14, č. 133 (2013) ISSN 1471-2105 R&D Projects: GA MŠk(CZ) EE2.3.20.0256 Institutional support: RVO:67179843 Keywords : gene-expression data * growing neural-network * Scycle-regulated genes * cell-cycle * cluster-analysis * normalization * patterns * identification * calibration * intensities Subject RIV: EH - Ecology, Behaviour Impact factor: 2.672, year: 2013
A comparative study of time series modeling methods for reactor noise analysis
International Nuclear Information System (INIS)
Kitamura, Masaharu; Shigeno, Kei; Sugiyama, Kazusuke
1978-01-01
Two modeling algorithms were developed to study at-power reactor noise as a multi-input, multi-output process. A class of linear, discrete time description named autoregressive-moving average model was used as a compact mathematical expression of the objective process. One of the model estimation (modeling) algorithms is based on the theory of Kalman filtering, and the other on a conjugate gradient method. By introducing some modifications in the formulation of the problem, realization of the practically usable algorithms was made feasible. Through the testing with several simulation models, reliability and effectiveness of these algorithms were confirmed. By applying these algorithms to experimental data obtained from a nuclear power plant, interesting knowledge about the at-power reactor noise was found out. (author)
The foundations of modern time series analysis
Mills, Terence C
2011-01-01
This book develops the analysis of Time Series from its formal beginnings in the 1890s through to the publication of Box and Jenkins' watershed publication in 1970, showing how these methods laid the foundations for the modern techniques of Time Series analysis that are in use today.
A Time Series Forecasting Method
Directory of Open Access Journals (Sweden)
Wang Zhao-Yu
2017-01-01
Full Text Available This paper proposes a novel time series forecasting method based on a weighted self-constructing clustering technique. The weighted self-constructing clustering processes all the data patterns incrementally. If a data pattern is not similar enough to an existing cluster, it forms a new cluster of its own. However, if a data pattern is similar enough to an existing cluster, it is removed from the cluster it currently belongs to and added to the most similar cluster. During the clustering process, weights are learned for each cluster. Given a series of time-stamped data up to time t, we divide it into a set of training patterns. By using the weighted self-constructing clustering, the training patterns are grouped into a set of clusters. To estimate the value at time t + 1, we find the k nearest neighbors of the input pattern and use these k neighbors to decide the estimation. Experimental results are shown to demonstrate the effectiveness of the proposed approach.
Carleton, W Christopher; Campbell, David; Collard, Mark
2018-01-01
Statistical time-series analysis has the potential to improve our understanding of human-environment interaction in deep time. However, radiocarbon dating-the most common chronometric technique in archaeological and palaeoenvironmental research-creates challenges for established statistical methods. The methods assume that observations in a time-series are precisely dated, but this assumption is often violated when calibrated radiocarbon dates are used because they usually have highly irregular uncertainties. As a result, it is unclear whether the methods can be reliably used on radiocarbon-dated time-series. With this in mind, we conducted a large simulation study to investigate the impact of chronological uncertainty on a potentially useful time-series method. The method is a type of regression involving a prediction algorithm called the Poisson Exponentially Weighted Moving Average (PEMWA). It is designed for use with count time-series data, which makes it applicable to a wide range of questions about human-environment interaction in deep time. Our simulations suggest that the PEWMA method can often correctly identify relationships between time-series despite chronological uncertainty. When two time-series are correlated with a coefficient of 0.25, the method is able to identify that relationship correctly 20-30% of the time, providing the time-series contain low noise levels. With correlations of around 0.5, it is capable of correctly identifying correlations despite chronological uncertainty more than 90% of the time. While further testing is desirable, these findings indicate that the method can be used to test hypotheses about long-term human-environment interaction with a reasonable degree of confidence.
A New Method for Non-linear and Non-stationary Time Series Analysis:
The Hilbert Spectral Analysis
CERN. Geneva
2000-01-01
A new method for analysing non-linear and non-stationary data has been developed. The key part of the method is the Empirical Mode Decomposition method with which any complicated data set can be decomposed into a finite and often small number of Intrinsic Mode Functions (IMF). An IMF is defined as any function having the same numbers of zero crossing and extreme, and also having symmetric envelopes defined by the local maximal and minima respectively. The IMF also admits well-behaved Hilbert transform. This decomposition method is adaptive, and, therefore, highly efficient. Since the decomposition is based on the local characteristic time scale of the data, it is applicable to non-linear and non-stationary processes. With the Hilbert transform, the Intrinsic Mode Functions yield instantaneous frequencies as functions of time that give sharp identifications of imbedded structures. The final presentation of the results is an energy-frequency-time distribution, designated as the Hilbert Spectrum. Classical non-l...
Analysis of Heavy-Tailed Time Series
DEFF Research Database (Denmark)
Xie, Xiaolei
This thesis is about analysis of heavy-tailed time series. We discuss tail properties of real-world equity return series and investigate the possibility that a single tail index is shared by all return series of actively traded equities in a market. Conditions for this hypothesis to be true...... are identified. We study the eigenvalues and eigenvectors of sample covariance and sample auto-covariance matrices of multivariate heavy-tailed time series, and particularly for time series with very high dimensions. Asymptotic approximations of the eigenvalues and eigenvectors of such matrices are found...... and expressed in terms of the parameters of the dependence structure, among others. Furthermore, we study an importance sampling method for estimating rare-event probabilities of multivariate heavy-tailed time series generated by matrix recursion. We show that the proposed algorithm is efficient in the sense...
Boesveldt, S.; Knol, D.L.; Verbunt, J.P.A.; Berendse, H.W.
2009-01-01
Objectives: To determine whether time-series analysis of magnetoencephalography (MEG) data is a suitable method to study brain activity related to olfactory information processing, and to detect differences in odor-induced brain activity between patients with Parkinson's disease (PD) and controls.
Xie, Hong-Bo; Dokos, Socrates
2013-06-01
We present a hybrid symplectic geometry and central tendency measure (CTM) method for detection of determinism in noisy time series. CTM is effective for detecting determinism in short time series and has been applied in many areas of nonlinear analysis. However, its performance significantly degrades in the presence of strong noise. In order to circumvent this difficulty, we propose to use symplectic principal component analysis (SPCA), a new chaotic signal de-noising method, as the first step to recover the system dynamics. CTM is then applied to determine whether the time series arises from a stochastic process or has a deterministic component. Results from numerical experiments, ranging from six benchmark deterministic models to 1/f noise, suggest that the hybrid method can significantly improve detection of determinism in noisy time series by about 20 dB when the data are contaminated by Gaussian noise. Furthermore, we apply our algorithm to study the mechanomyographic (MMG) signals arising from contraction of human skeletal muscle. Results obtained from the hybrid symplectic principal component analysis and central tendency measure demonstrate that the skeletal muscle motor unit dynamics can indeed be deterministic, in agreement with previous studies. However, the conventional CTM method was not able to definitely detect the underlying deterministic dynamics. This result on MMG signal analysis is helpful in understanding neuromuscular control mechanisms and developing MMG-based engineering control applications.
Time Series Analysis Forecasting and Control
Box, George E P; Reinsel, Gregory C
2011-01-01
A modernized new edition of one of the most trusted books on time series analysis. Since publication of the first edition in 1970, Time Series Analysis has served as one of the most influential and prominent works on the subject. This new edition maintains its balanced presentation of the tools for modeling and analyzing time series and also introduces the latest developments that have occurred n the field over the past decade through applications from areas such as business, finance, and engineering. The Fourth Edition provides a clearly written exploration of the key methods for building, cl
Energy Technology Data Exchange (ETDEWEB)
Conte, Elio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari, Bari (Italy); School of Advanced International Studies on Nuclear, Theoretical and Nonlinear Methodologies-Bari (Italy)], E-mail: fisio2@fisiol.uniba.it; Federici, Antonio [Department of Pharmacology and Human Physiology and Tires, Center for Innovative Technologies for Signal Detection and Processing, University of Bari, Bari (Italy); Zbilut, Joseph P. [Department of Molecular Biophysics and Physiology, Rush University Medical Center, 1653W Congress, Chicago, IL 60612 (United States)
2009-08-15
It is known that R-R time series calculated from a recorded ECG, are strongly correlated to sympathetic and vagal regulation of the sinus pacemaker activity. In human physiology it is a crucial question to estimate such components with accuracy. Fourier analysis dominates still to day the data analysis efforts of such data ignoring that FFT is valid under some crucial restrictions that results largely violated in R-R time series data as linearity and stationarity. In order to go over such approach, we introduce a new method, called CZF. It is based on variogram analysis. It is aimed from a profound link with Recurrence Quantification Analysis that is a basic tool for investigation of non linear and non stationary time series. Therefore, a relevant feature of the method is that it finally may be applied also in cases of non linear and non stationary time series analysis. In addition, the method enables also to analyze the fractal variance function, the Generalized Fractal Dimension and, finally, the relative probability density function of the data. The CZF gives very satisfactory results. In the present paper it has been applied to direct experimental cases of normal subjects, patients with hypertension before and after therapy and in children under some different conditions of experimentation.
International Nuclear Information System (INIS)
Conte, Elio; Federici, Antonio; Zbilut, Joseph P.
2009-01-01
It is known that R-R time series calculated from a recorded ECG, are strongly correlated to sympathetic and vagal regulation of the sinus pacemaker activity. In human physiology it is a crucial question to estimate such components with accuracy. Fourier analysis dominates still to day the data analysis efforts of such data ignoring that FFT is valid under some crucial restrictions that results largely violated in R-R time series data as linearity and stationarity. In order to go over such approach, we introduce a new method, called CZF. It is based on variogram analysis. It is aimed from a profound link with Recurrence Quantification Analysis that is a basic tool for investigation of non linear and non stationary time series. Therefore, a relevant feature of the method is that it finally may be applied also in cases of non linear and non stationary time series analysis. In addition, the method enables also to analyze the fractal variance function, the Generalized Fractal Dimension and, finally, the relative probability density function of the data. The CZF gives very satisfactory results. In the present paper it has been applied to direct experimental cases of normal subjects, patients with hypertension before and after therapy and in children under some different conditions of experimentation.
Time series analysis of barometric pressure data
International Nuclear Information System (INIS)
La Rocca, Paola; Riggi, Francesco; Riggi, Daniele
2010-01-01
Time series of atmospheric pressure data, collected over a period of several years, were analysed to provide undergraduate students with educational examples of application of simple statistical methods of analysis. In addition to basic methods for the analysis of periodicities, a comparison of two forecast models, one based on autoregression algorithms, and the other making use of an artificial neural network, was made. Results show that the application of artificial neural networks may give slightly better results compared to traditional methods.
Visibility Graph Based Time Series Analysis.
Stephen, Mutua; Gu, Changgui; Yang, Huijie
2015-01-01
Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq) and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.
Visibility Graph Based Time Series Analysis.
Directory of Open Access Journals (Sweden)
Mutua Stephen
Full Text Available Network based time series analysis has made considerable achievements in the recent years. By mapping mono/multivariate time series into networks, one can investigate both it's microscopic and macroscopic behaviors. However, most proposed approaches lead to the construction of static networks consequently providing limited information on evolutionary behaviors. In the present paper we propose a method called visibility graph based time series analysis, in which series segments are mapped to visibility graphs as being descriptions of the corresponding states and the successively occurring states are linked. This procedure converts a time series to a temporal network and at the same time a network of networks. Findings from empirical records for stock markets in USA (S&P500 and Nasdaq and artificial series generated by means of fractional Gaussian motions show that the method can provide us rich information benefiting short-term and long-term predictions. Theoretically, we propose a method to investigate time series from the viewpoint of network of networks.
A taylor series approach to survival analysis
International Nuclear Information System (INIS)
Brodsky, J.B.; Groer, P.G.
1984-09-01
A method of survival analysis using hazard functions is developed. The method uses the well known mathematical theory for Taylor Series. Hypothesis tests of the adequacy of many statistical models, including proportional hazards and linear and/or quadratic dose responses, are obtained. A partial analysis of leukemia mortality in the Life Span Study cohort is used as an example. Furthermore, a relatively robust estimation procedure for the proportional hazards model is proposed. (author)
1991-03-21
discussion of spectral factorability and motivations for broadband analysis, the report is subdivided into four main sections. In Section 1.0, we...estimates. The motivation for developing our multi-channel deconvolution method was to gain information about seismic sources, most notably, nuclear...with complex constraints for estimating the rupture history. Such methods (applied mostly to data sets that also include strong rmotion data), were
Genealogical series method. Hyperpolar points screen effect
International Nuclear Information System (INIS)
Gorbatov, A.M.
1991-01-01
The fundamental values of the genealogical series method -the genealogical integrals (sandwiches) have been investigated. The hyperpolar points screen effect has been found. It allows one to calculate the sandwiches for the Fermion systems with large number of particles and to ascertain the validity of the iterated-potential method as well. For the first time the genealogical-series method has been realized numerically for the central spin-independent potential
Methods in Clinical Pharmacology Series
Beaumont, Claire; Young, Graeme C; Cavalier, Tom; Young, Malcolm A
2014-01-01
Human radiolabel studies are traditionally conducted to provide a definitive understanding of the human absorption, distribution, metabolism and excretion (ADME) properties of a drug. However, advances in technology over the past decade have allowed alternative methods to be employed to obtain both clinical ADME and pharmacokinetic (PK) information. These include microdose and microtracer approaches using accelerator mass spectrometry, and the identification and quantification of metabolites in samples from classical human PK studies using technologies suitable for non-radiolabelled drug molecules, namely liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy. These recently developed approaches are described here together with relevant examples primarily from experiences gained in support of drug development projects at GlaxoSmithKline. The advantages of these study designs together with their limitations are described. We also discuss special considerations which should be made for a successful outcome to these new approaches and also to the more traditional human radiolabel study in order to maximize knowledge around the human ADME properties of drug molecules. PMID:25041729
Introduction to time series analysis and forecasting
Montgomery, Douglas C; Kulahci, Murat
2015-01-01
Praise for the First Edition ""…[t]he book is great for readers who need to apply the methods and models presented but have little background in mathematics and statistics."" -MAA Reviews Thoroughly updated throughout, Introduction to Time Series Analysis and Forecasting, Second Edition presents the underlying theories of time series analysis that are needed to analyze time-oriented data and construct real-world short- to medium-term statistical forecasts. Authored by highly-experienced academics and professionals in engineering statistics, the Second Edition features discussions on both
Fourier analysis of time series an introduction
Bloomfield, Peter
2000-01-01
A new, revised edition of a yet unrivaled work on frequency domain analysis Long recognized for his unique focus on frequency domain methods for the analysis of time series data as well as for his applied, easy-to-understand approach, Peter Bloomfield brings his well-known 1976 work thoroughly up to date. With a minimum of mathematics and an engaging, highly rewarding style, Bloomfield provides in-depth discussions of harmonic regression, harmonic analysis, complex demodulation, and spectrum analysis. All methods are clearly illustrated using examples of specific data sets, while ample
Lenoir, Guillaume; Crucifix, Michel
2018-03-01
We develop a general framework for the frequency analysis of irregularly sampled time series. It is based on the Lomb-Scargle periodogram, but extended to algebraic operators accounting for the presence of a polynomial trend in the model for the data, in addition to a periodic component and a background noise. Special care is devoted to the correlation between the trend and the periodic component. This new periodogram is then cast into the Welch overlapping segment averaging (WOSA) method in order to reduce its variance. We also design a test of significance for the WOSA periodogram, against the background noise. The model for the background noise is a stationary Gaussian continuous autoregressive-moving-average (CARMA) process, more general than the classical Gaussian white or red noise processes. CARMA parameters are estimated following a Bayesian framework. We provide algorithms that compute the confidence levels for the WOSA periodogram and fully take into account the uncertainty in the CARMA noise parameters. Alternatively, a theory using point estimates of CARMA parameters provides analytical confidence levels for the WOSA periodogram, which are more accurate than Markov chain Monte Carlo (MCMC) confidence levels and, below some threshold for the number of data points, less costly in computing time. We then estimate the amplitude of the periodic component with least-squares methods, and derive an approximate proportionality between the squared amplitude and the periodogram. This proportionality leads to a new extension for the periodogram: the weighted WOSA periodogram, which we recommend for most frequency analyses with irregularly sampled data. The estimated signal amplitude also permits filtering in a frequency band. Our results generalise and unify methods developed in the fields of geosciences, engineering, astronomy and astrophysics. They also constitute the starting point for an extension to the continuous wavelet transform developed in a companion
Lenoir, Guillaume; Crucifix, Michel
2018-03-01
Geophysical time series are sometimes sampled irregularly along the time axis. The situation is particularly frequent in palaeoclimatology. Yet, there is so far no general framework for handling the continuous wavelet transform when the time sampling is irregular. Here we provide such a framework. To this end, we define the scalogram as the continuous-wavelet-transform equivalent of the extended Lomb-Scargle periodogram defined in Part 1 of this study (Lenoir and Crucifix, 2018). The signal being analysed is modelled as the sum of a locally periodic component in the time-frequency plane, a polynomial trend, and a background noise. The mother wavelet adopted here is the Morlet wavelet classically used in geophysical applications. The background noise model is a stationary Gaussian continuous autoregressive-moving-average (CARMA) process, which is more general than the traditional Gaussian white and red noise processes. The scalogram is smoothed by averaging over neighbouring times in order to reduce its variance. The Shannon-Nyquist exclusion zone is however defined as the area corrupted by local aliasing issues. The local amplitude in the time-frequency plane is then estimated with least-squares methods. We also derive an approximate formula linking the squared amplitude and the scalogram. Based on this property, we define a new analysis tool: the weighted smoothed scalogram, which we recommend for most analyses. The estimated signal amplitude also gives access to band and ridge filtering. Finally, we design a test of significance for the weighted smoothed scalogram against the stationary Gaussian CARMA background noise, and provide algorithms for computing confidence levels, either analytically or with Monte Carlo Markov chain methods. All the analysis tools presented in this article are available to the reader in the Python package WAVEPAL.
A method for summing nonalternating asymptotic series
International Nuclear Information System (INIS)
Kazakov, D.I.
1980-01-01
A method for reconstructing a function from its nonalternating asymptotic series is proposed. It can also be applied when only a limited number of coefficients and their high order asymptotic behaviour are known. The method is illustrated by examples of the ordinary simple integral simulating a functional integral in a theory with degenerate minimum and of the double-well unharmonic oscillator
International Nuclear Information System (INIS)
Pirkle, F.L.
1981-04-01
STAARS is a new series which is being published to disseminate information concerning statistical procedures for interpreting aerial radiometric data. The application of a particular data interpretation technique to geologic understanding for delineating regions favorable to uranium deposition is the primary concern of STAARS. Statements concerning the utility of a technique on aerial reconnaissance data as well as detailed aerial survey data will be included
A novel weight determination method for time series data aggregation
Xu, Paiheng; Zhang, Rong; Deng, Yong
2017-09-01
Aggregation in time series is of great importance in time series smoothing, predicting and other time series analysis process, which makes it crucial to address the weights in times series correctly and reasonably. In this paper, a novel method to obtain the weights in time series is proposed, in which we adopt induced ordered weighted aggregation (IOWA) operator and visibility graph averaging (VGA) operator and linearly combine the weights separately generated by the two operator. The IOWA operator is introduced to the weight determination of time series, through which the time decay factor is taken into consideration. The VGA operator is able to generate weights with respect to the degree distribution in the visibility graph constructed from the corresponding time series, which reflects the relative importance of vertices in time series. The proposed method is applied to two practical datasets to illustrate its merits. The aggregation of Construction Cost Index (CCI) demonstrates the ability of proposed method to smooth time series, while the aggregation of The Taiwan Stock Exchange Capitalization Weighted Stock Index (TAIEX) illustrate how proposed method maintain the variation tendency of original data.
Time Series Analysis and Forecasting by Example
Bisgaard, Soren
2011-01-01
An intuition-based approach enables you to master time series analysis with ease Time Series Analysis and Forecasting by Example provides the fundamental techniques in time series analysis using various examples. By introducing necessary theory through examples that showcase the discussed topics, the authors successfully help readers develop an intuitive understanding of seemingly complicated time series models and their implications. The book presents methodologies for time series analysis in a simplified, example-based approach. Using graphics, the authors discuss each presented example in
The analysis of time series: an introduction
National Research Council Canada - National Science Library
Chatfield, Christopher
1989-01-01
.... A variety of practical examples are given to support the theory. The book covers a wide range of time-series topics, including probability models for time series, Box-Jenkins forecasting, spectral analysis, linear systems and system identification...
International Nuclear Information System (INIS)
Hofschen, S.; Wolff, I.
1996-01-01
Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are compared with measurements and show good agreement
Energy Technology Data Exchange (ETDEWEB)
Hofschen, S.; Wolff, I. [Gerhard Mercator Univ. of Duisburg (Germany). Dept. of Electrical Engineering
1996-08-01
Time-domain simulation results of two-dimensional (2-D) planar waveguide finite-difference time-domain (FDTD) analysis are normally analyzed using Fourier transform. The introduced method of time series analysis to extract propagation and attenuation constants reduces the desired computation time drastically. Additionally, a nonequidistant discretization together with an adequate excitation technique is used to reduce the number of spatial grid points. Therefore, it is possible to reduce the number of spatial grid points. Therefore, it is possible to simulate normal- and superconducting planar waveguide structures with very thin conductors and small dimensions, as they are used in MMIC technology. The simulation results are compared with measurements and show good agreement.
2016-09-01
provide a foundational understanding of the steps involved, how to per- form them in a repeatable and reliable manner , and to provide the theory behind...how to perform them in a repeatable and reliable manner , and to provide the theory behind the analysis. 15. SUBJECT TERMS Surface area, BET
TIME SERIES ANALYSIS USING A UNIQUE MODEL OF TRANSFORMATION
Directory of Open Access Journals (Sweden)
Goran Klepac
2007-12-01
Full Text Available REFII1 model is an authorial mathematical model for time series data mining. The main purpose of that model is to automate time series analysis, through a unique transformation model of time series. An advantage of this approach of time series analysis is the linkage of different methods for time series analysis, linking traditional data mining tools in time series, and constructing new algorithms for analyzing time series. It is worth mentioning that REFII model is not a closed system, which means that we have a finite set of methods. At first, this is a model for transformation of values of time series, which prepares data used by different sets of methods based on the same model of transformation in a domain of problem space. REFII model gives a new approach in time series analysis based on a unique model of transformation, which is a base for all kind of time series analysis. The advantage of REFII model is its possible application in many different areas such as finance, medicine, voice recognition, face recognition and text mining.
Palmprint Verification Using Time Series Method
Directory of Open Access Journals (Sweden)
A. A. Ketut Agung Cahyawan Wiranatha
2013-11-01
Full Text Available The use of biometrics as an automatic recognition system is growing rapidly in solving security problems, palmprint is one of biometric system which often used. This paper used two steps in center of mass moment method for region of interest (ROI segmentation and apply the time series method combined with block window method as feature representation. Normalized Euclidean Distance is used to measure the similarity degrees of two feature vectors of palmprint. System testing is done using 500 samples palms, with 4 samples as the reference image and the 6 samples as test images. Experiment results show that this system can achieve a high performance with success rate about 97.33% (FNMR=1.67%, FMR=1.00 %, T=0.036.
Analysis of series resonant converter with series-parallel connection
Lin, Bor-Ren; Huang, Chien-Lan
2011-02-01
In this study, a parallel inductor-inductor-capacitor (LLC) resonant converter series-connected on the primary side and parallel-connected on the secondary side is presented for server power supply systems. Based on series resonant behaviour, the power metal-oxide-semiconductor field-effect transistors are turned on at zero voltage switching and the rectifier diodes are turned off at zero current switching. Thus, the switching losses on the power semiconductors are reduced. In the proposed converter, the primary windings of the two LLC converters are connected in series. Thus, the two converters have the same primary currents to ensure that they can supply the balance load current. On the output side, two LLC converters are connected in parallel to share the load current and to reduce the current stress on the secondary windings and the rectifier diodes. In this article, the principle of operation, steady-state analysis and design considerations of the proposed converter are provided and discussed. Experiments with a laboratory prototype with a 24 V/21 A output for server power supply were performed to verify the effectiveness of the proposed converter.
Methods of solving sequence and series problems
Grigorieva, Ellina
2016-01-01
This book aims to dispel the mystery and fear experienced by students surrounding sequences, series, convergence, and their applications. The author, an accomplished female mathematician, achieves this by taking a problem solving approach, starting with fascinating problems and solving them step by step with clear explanations and illuminating diagrams. The reader will find the problems interesting, unusual, and fun, yet solved with the rigor expected in a competition. Some problems are taken directly from mathematics competitions, with the name and year of the exam provided for reference. Proof techniques are emphasized, with a variety of methods presented. The text aims to expand the mind of the reader by often presenting multiple ways to attack the same problem, as well as drawing connections with different fields of mathematics. Intuitive and visual arguments are presented alongside technical proofs to provide a well-rounded methodology. With nearly 300 problems including hints, answers, and solutions,Met...
Stochastic time series analysis of hydrology data for water resources
Sathish, S.; Khadar Babu, S. K.
2017-11-01
The prediction to current publication of stochastic time series analysis in hydrology and seasonal stage. The different statistical tests for predicting the hydrology time series on Thomas-Fiering model. The hydrology time series of flood flow have accept a great deal of consideration worldwide. The concentration of stochastic process areas of time series analysis method are expanding with develop concerns about seasonal periods and global warming. The recent trend by the researchers for testing seasonal periods in the hydrologic flowseries using stochastic process on Thomas-Fiering model. The present article proposed to predict the seasonal periods in hydrology using Thomas-Fiering model.
Methods for summing general Kapteyn series
Energy Technology Data Exchange (ETDEWEB)
Tautz, R C [Zentrum fuer Astronomie und Astrophysik, Technische Universitaet Berlin, Hardenbergstrasse 36, D-10623 Berlin (Germany); Lerche, I [Institut fuer Geowissenschaften, Naturwissenschaftliche Fakultaet III, Martin-Luther-Universitaet Halle, D-06099 Halle (Germany); Dominici, D, E-mail: rct@gmx.eu, E-mail: lercheian@yahoo.com, E-mail: dominicd@newpaltz.edu [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr, New Paltz, NY 12561-2443 (United States)
2011-09-23
The general features and characteristics of Kapteyn series, which are a special type of series involving the Bessel function, are investigated. For many applications in physics, astrophysics and mathematics, it is crucial to have closed-form expressions in order to determine their functional structure and parametric behavior. The closed-form expressions of Kapteyn series have mostly been limited to special cases, even though there are often similarities in the approaches used to reduce the series to analytically tractable forms. The goal of this paper is to review the previous work in the area and to show that Kapteyn series can be expressed as trigonometric or gamma function series, which can be evaluated in a closed form for specific parameters. Two examples with a similar structure are given, showing the complexity of Kapteyn series. (paper)
Applied time series analysis and innovative computing
Ao, Sio-Iong
2010-01-01
This text is a systematic, state-of-the-art introduction to the use of innovative computing paradigms as an investigative tool for applications in time series analysis. It includes frontier case studies based on recent research.
Allan deviation analysis of financial return series
Hernández-Pérez, R.
2012-05-01
We perform a scaling analysis for the return series of different financial assets applying the Allan deviation (ADEV), which is used in the time and frequency metrology to characterize quantitatively the stability of frequency standards since it has demonstrated to be a robust quantity to analyze fluctuations of non-stationary time series for different observation intervals. The data used are opening price daily series for assets from different markets during a time span of around ten years. We found that the ADEV results for the return series at short scales resemble those expected for an uncorrelated series, consistent with the efficient market hypothesis. On the other hand, the ADEV results for absolute return series for short scales (first one or two decades) decrease following approximately a scaling relation up to a point that is different for almost each asset, after which the ADEV deviates from scaling, which suggests that the presence of clustering, long-range dependence and non-stationarity signatures in the series drive the results for large observation intervals.
Introduction to time series analysis and forecasting
Montgomery, Douglas C; Kulahci, Murat
2008-01-01
An accessible introduction to the most current thinking in and practicality of forecasting techniques in the context of time-oriented data. Analyzing time-oriented data and forecasting are among the most important problems that analysts face across many fields, ranging from finance and economics to production operations and the natural sciences. As a result, there is a widespread need for large groups of people in a variety of fields to understand the basic concepts of time series analysis and forecasting. Introduction to Time Series Analysis and Forecasting presents the time series analysis branch of applied statistics as the underlying methodology for developing practical forecasts, and it also bridges the gap between theory and practice by equipping readers with the tools needed to analyze time-oriented data and construct useful, short- to medium-term, statistically based forecasts.
Entropic Analysis of Electromyography Time Series
Kaufman, Miron; Sung, Paul
2005-03-01
We are in the process of assessing the effectiveness of fractal and entropic measures for the diagnostic of low back pain from surface electromyography (EMG) time series. Surface electromyography (EMG) is used to assess patients with low back pain. In a typical EMG measurement, the voltage is measured every millisecond. We observed back muscle fatiguing during one minute, which results in a time series with 60,000 entries. We characterize the complexity of time series by computing the Shannon entropy time dependence. The analysis of the time series from different relevant muscles from healthy and low back pain (LBP) individuals provides evidence that the level of variability of back muscle activities is much larger for healthy individuals than for individuals with LBP. In general the time dependence of the entropy shows a crossover from a diffusive regime to a regime characterized by long time correlations (self organization) at about 0.01s.
Nonlinear time series analysis of the human electrocardiogram
International Nuclear Information System (INIS)
Perc, Matjaz
2005-01-01
We analyse the human electrocardiogram with simple nonlinear time series analysis methods that are appropriate for graduate as well as undergraduate courses. In particular, attention is devoted to the notions of determinism and stationarity in physiological data. We emphasize that methods of nonlinear time series analysis can be successfully applied only if the studied data set originates from a deterministic stationary system. After positively establishing the presence of determinism and stationarity in the studied electrocardiogram, we calculate the maximal Lyapunov exponent, thus providing interesting insights into the dynamics of the human heart. Moreover, to facilitate interest and enable the integration of nonlinear time series analysis methods into the curriculum at an early stage of the educational process, we also provide user-friendly programs for each implemented method
Time series analysis of temporal networks
Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh
2016-01-01
A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue
Nonlinear Time Series Analysis via Neural Networks
Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin
This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.
Lecture notes for Advanced Time Series Analysis
DEFF Research Database (Denmark)
Madsen, Henrik; Holst, Jan
1997-01-01
A first version of this notes was used at the lectures in Grenoble, and they are now extended and improved (together with Jan Holst), and used in Ph.D. courses on Advanced Time Series Analysis at IMM and at the Department of Mathematical Statistics, University of Lund, 1994, 1997, ...
Elements of nonlinear time series analysis and forecasting
De Gooijer, Jan G
2017-01-01
This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible...
The Photoplethismographic Signal Processed with Nonlinear Time Series Analysis Tools
International Nuclear Information System (INIS)
Hernandez Caceres, Jose Luis; Hong, Rolando; Garcia Lanz, Abel; Garcia Dominguez, Luis; Cabannas, Karelia
2001-01-01
Finger photoplethismography (PPG) signals were submitted to nonlinear time series analysis. The applied analytical techniques were: (i) High degree polynomial fitting for baseline estimation; (ii) FFT analysis for estimating power spectra; (iii) fractal dimension estimation via the Higuchi's time-domain method, and (iv) kernel nonparametric estimation for reconstructing noise free-attractors and also for estimating signal's stochastic components
Time Series Analysis Based on Running Mann Whitney Z Statistics
A sensitive and objective time series analysis method based on the calculation of Mann Whitney U statistics is described. This method samples data rankings over moving time windows, converts those samples to Mann-Whitney U statistics, and then normalizes the U statistics to Z statistics using Monte-...
The Statistical Analysis of Time Series
Anderson, T W
2011-01-01
The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences George
Time averaging, ageing and delay analysis of financial time series
Cherstvy, Andrey G.; Vinod, Deepak; Aghion, Erez; Chechkin, Aleksei V.; Metzler, Ralf
2017-06-01
We introduce three strategies for the analysis of financial time series based on time averaged observables. These comprise the time averaged mean squared displacement (MSD) as well as the ageing and delay time methods for varying fractions of the financial time series. We explore these concepts via statistical analysis of historic time series for several Dow Jones Industrial indices for the period from the 1960s to 2015. Remarkably, we discover a simple universal law for the delay time averaged MSD. The observed features of the financial time series dynamics agree well with our analytical results for the time averaged measurables for geometric Brownian motion, underlying the famed Black-Scholes-Merton model. The concepts we promote here are shown to be useful for financial data analysis and enable one to unveil new universal features of stock market dynamics.
Statistical methods of parameter estimation for deterministically chaotic time series
Pisarenko, V. F.; Sornette, D.
2004-03-01
We discuss the possibility of applying some standard statistical methods (the least-square method, the maximum likelihood method, and the method of statistical moments for estimation of parameters) to deterministically chaotic low-dimensional dynamic system (the logistic map) containing an observational noise. A “segmentation fitting” maximum likelihood (ML) method is suggested to estimate the structural parameter of the logistic map along with the initial value x1 considered as an additional unknown parameter. The segmentation fitting method, called “piece-wise” ML, is similar in spirit but simpler and has smaller bias than the “multiple shooting” previously proposed. Comparisons with different previously proposed techniques on simulated numerical examples give favorable results (at least, for the investigated combinations of sample size N and noise level). Besides, unlike some suggested techniques, our method does not require the a priori knowledge of the noise variance. We also clarify the nature of the inherent difficulties in the statistical analysis of deterministically chaotic time series and the status of previously proposed Bayesian approaches. We note the trade off between the need of using a large number of data points in the ML analysis to decrease the bias (to guarantee consistency of the estimation) and the unstable nature of dynamical trajectories with exponentially fast loss of memory of the initial condition. The method of statistical moments for the estimation of the parameter of the logistic map is discussed. This method seems to be the unique method whose consistency for deterministically chaotic time series is proved so far theoretically (not only numerically).
Nonlinear time series analysis with R
Huffaker, Ray; Rosa, Rodolfo
2017-01-01
In the process of data analysis, the investigator is often facing highly-volatile and random-appearing observed data. A vast body of literature shows that the assumption of underlying stochastic processes was not necessarily representing the nature of the processes under investigation and, when other tools were used, deterministic features emerged. Non Linear Time Series Analysis (NLTS) allows researchers to test whether observed volatility conceals systematic non linear behavior, and to rigorously characterize governing dynamics. Behavioral patterns detected by non linear time series analysis, along with scientific principles and other expert information, guide the specification of mechanistic models that serve to explain real-world behavior rather than merely reproducing it. Often there is a misconception regarding the complexity of the level of mathematics needed to understand and utilize the tools of NLTS (for instance Chaos theory). However, mathematics used in NLTS is much simpler than many other subjec...
Transition Icons for Time-Series Visualization and Exploratory Analysis.
Nickerson, Paul V; Baharloo, Raheleh; Wanigatunga, Amal A; Manini, Todd M; Tighe, Patrick J; Rashidi, Parisa
2018-03-01
The modern healthcare landscape has seen the rapid emergence of techniques and devices that temporally monitor and record physiological signals. The prevalence of time-series data within the healthcare field necessitates the development of methods that can analyze the data in order to draw meaningful conclusions. Time-series behavior is notoriously difficult to intuitively understand due to its intrinsic high-dimensionality, which is compounded in the case of analyzing groups of time series collected from different patients. Our framework, which we call transition icons, renders common patterns in a visual format useful for understanding the shared behavior within groups of time series. Transition icons are adept at detecting and displaying subtle differences and similarities, e.g., between measurements taken from patients receiving different treatment strategies or stratified by demographics. We introduce various methods that collectively allow for exploratory analysis of groups of time series, while being free of distribution assumptions and including simple heuristics for parameter determination. Our technique extracts discrete transition patterns from symbolic aggregate approXimation representations, and compiles transition frequencies into a bag of patterns constructed for each group. These transition frequencies are normalized and aligned in icon form to intuitively display the underlying patterns. We demonstrate the transition icon technique for two time-series datasets-postoperative pain scores, and hip-worn accelerometer activity counts. We believe transition icons can be an important tool for researchers approaching time-series data, as they give rich and intuitive information about collective time-series behaviors.
A method for generating high resolution satellite image time series
Guo, Tao
2014-10-01
There is an increasing demand for satellite remote sensing data with both high spatial and temporal resolution in many applications. But it still is a challenge to simultaneously improve spatial resolution and temporal frequency due to the technical limits of current satellite observation systems. To this end, much R&D efforts have been ongoing for years and lead to some successes roughly in two aspects, one includes super resolution, pan-sharpen etc. methods which can effectively enhance the spatial resolution and generate good visual effects, but hardly preserve spectral signatures and result in inadequate analytical value, on the other hand, time interpolation is a straight forward method to increase temporal frequency, however it increase little informative contents in fact. In this paper we presented a novel method to simulate high resolution time series data by combing low resolution time series data and a very small number of high resolution data only. Our method starts with a pair of high and low resolution data set, and then a spatial registration is done by introducing LDA model to map high and low resolution pixels correspondingly. Afterwards, temporal change information is captured through a comparison of low resolution time series data, and then projected onto the high resolution data plane and assigned to each high resolution pixel according to the predefined temporal change patterns of each type of ground objects. Finally the simulated high resolution data is generated. A preliminary experiment shows that our method can simulate a high resolution data with a reasonable accuracy. The contribution of our method is to enable timely monitoring of temporal changes through analysis of time sequence of low resolution images only, and usage of costly high resolution data can be reduces as much as possible, and it presents a highly effective way to build up an economically operational monitoring solution for agriculture, forest, land use investigation
Time series analysis and its applications with R examples
Shumway, Robert H
2017-01-01
The fourth edition of this popular graduate textbook, like its predecessors, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonli...
Time-Series Analysis: A Cautionary Tale
Damadeo, Robert
2015-01-01
Time-series analysis has often been a useful tool in atmospheric science for deriving long-term trends in various atmospherically important parameters (e.g., temperature or the concentration of trace gas species). In particular, time-series analysis has been repeatedly applied to satellite datasets in order to derive the long-term trends in stratospheric ozone, which is a critical atmospheric constituent. However, many of the potential pitfalls relating to the non-uniform sampling of the datasets were often ignored and the results presented by the scientific community have been unknowingly biased. A newly developed and more robust application of this technique is applied to the Stratospheric Aerosol and Gas Experiment (SAGE) II version 7.0 ozone dataset and the previous biases and newly derived trends are presented.
Taylor's series method for solving the nonlinear point kinetics equations
International Nuclear Information System (INIS)
Nahla, Abdallah A.
2011-01-01
Highlights: → Taylor's series method for nonlinear point kinetics equations is applied. → The general order of derivatives are derived for this system. → Stability of Taylor's series method is studied. → Taylor's series method is A-stable for negative reactivity. → Taylor's series method is an accurate computational technique. - Abstract: Taylor's series method for solving the point reactor kinetics equations with multi-group of delayed neutrons in the presence of Newtonian temperature feedback reactivity is applied and programmed by FORTRAN. This system is the couples of the stiff nonlinear ordinary differential equations. This numerical method is based on the different order derivatives of the neutron density, the precursor concentrations of i-group of delayed neutrons and the reactivity. The r th order of derivatives are derived. The stability of Taylor's series method is discussed. Three sets of applications: step, ramp and temperature feedback reactivities are computed. Taylor's series method is an accurate computational technique and stable for negative step, negative ramp and temperature feedback reactivities. This method is useful than the traditional methods for solving the nonlinear point kinetics equations.
Time series analysis in chaotic diode resonator circuit
Energy Technology Data Exchange (ETDEWEB)
Hanias, M.P. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece)] e-mail: mhanias@teihal.gr; Giannaris, G. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece); Spyridakis, A. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece); Rigas, A. [TEI of Chalkis, GR 34400, Evia, Chalkis (Greece)
2006-01-01
A diode resonator chaotic circuit is presented. Multisim is used to simulate the circuit and show the presence of chaos. Time series analysis performed by the method proposed by Grasberger and Procaccia. The correlation and minimum embedding dimension {nu} and m {sub min}, respectively, were calculated. Also the corresponding Kolmogorov entropy was calculated.
Time series analysis in chaotic diode resonator circuit
International Nuclear Information System (INIS)
Hanias, M.P.; Giannaris, G.; Spyridakis, A.; Rigas, A.
2006-01-01
A diode resonator chaotic circuit is presented. Multisim is used to simulate the circuit and show the presence of chaos. Time series analysis performed by the method proposed by Grasberger and Procaccia. The correlation and minimum embedding dimension ν and m min , respectively, were calculated. Also the corresponding Kolmogorov entropy was calculated
Valencio, Arthur; Grebogi, Celso; Baptista, Murilo S.
2017-10-01
The presence of undesirable dominating signals in geophysical experimental data is a challenge in many subfields. One remarkable example is surface gravimetry, where frequencies from Earth tides correspond to time-series fluctuations up to a thousand times larger than the phenomena of major interest, such as hydrological gravity effects or co-seismic gravity changes. This work discusses general methods for the removal of unwanted dominating signals by applying them to 8 long-period gravity time-series of the International Geodynamics and Earth Tides Service, equivalent to the acquisition from 8 instruments in 5 locations representative of the network. We compare three different conceptual approaches for tide removal: frequency filtering, physical modelling, and data-based modelling. Each approach reveals a different limitation to be considered depending on the intended application. Vestiges of tides remain in the residues for the modelling procedures, whereas the signal was distorted in different ways by the filtering and data-based procedures. The linear techniques employed were power spectral density, spectrogram, cross-correlation, and classical harmonics decomposition, while the system dynamics was analysed by state-space reconstruction and estimation of the largest Lyapunov exponent. Although the tides could not be completely eliminated, they were sufficiently reduced to allow observation of geophysical events of interest above the 10 nm s-2 level, exemplified by a hydrology-related event of 60 nm s-2. The implementations adopted for each conceptual approach are general, so that their principles could be applied to other kinds of data affected by undesired signals composed mainly by periodic or quasi-periodic components.
Handbook of Time Series Analysis Recent Theoretical Developments and Applications
Schelter, Björn; Timmer, Jens
2006-01-01
This handbook provides an up-to-date survey of current research topics and applications of time series analysis methods written by leading experts in their fields. It covers recent developments in univariate as well as bivariate and multivariate time series analysis techniques ranging from physics' to life sciences' applications. Each chapter comprises both methodological aspects and applications to real world complex systems, such as the human brain or Earth's climate. Covering an exceptionally broad spectrum of topics, beginners, experts and practitioners who seek to understand the latest de
Seismic assessment of a site using the time series method
International Nuclear Information System (INIS)
Krutzik, N.J.; Rotaru, I.; Bobei, M.; Mingiuc, C.; Serban, V.; Androne, M.
1997-01-01
To increase the safety of a NPP located on a seismic site, the seismic acceleration level to which the NPP should be qualified must be as representative as possible for that site, with a conservative degree of safety but not too exaggerated. The consideration of the seismic events affecting the site as independent events and the use of statistic methods to define some safety levels with very low annual occurrence probability (10 -4 ) may lead to some exaggerations of the seismic safety level. The use of some very high value for the seismic acceleration imposed by the seismic safety levels required by the hazard analysis may lead to very costly technical solutions that can make the plant operation more difficult and increase maintenance costs. The considerations of seismic events as a time series with dependence among the events produced, may lead to a more representative assessment of a NPP site seismic activity and consequently to a prognosis on the seismic level values to which the NPP would be ensured throughout its life-span. That prognosis should consider the actual seismic activity (including small earthquakes in real time) of the focuses that affect the plant site. The paper proposes the applications of Autoregressive Time Series to issue a prognosis on the seismic activity of a focus and presents the analysis on Vrancea focus that affects NPP Cernavoda site, by this method. The paper also presents the manner to analyse the focus activity as per the new approach and it assesses the maximum seismic acceleration that may affect NPP Cernavoda throughout its life-span (∼ 30 years). Development and applications of new mathematical analysis method, both for long - and short - time intervals, may lead to important contributions in the process of foretelling the seismic events in the future. (authors)
Seismic assessment of a site using the time series method
International Nuclear Information System (INIS)
Krutzik, N.J.; Rotaru, I.; Bobei, M.; Mingiuc, C.; Serban, V.; Androne, M.
2001-01-01
1. To increase the safety of a NPP located on a seismic site, the seismic acceleration level to which the NPP should be qualified must be as representative as possible for that site, with a conservative degree of safety but not too exaggerated. 2. The consideration of the seismic events affecting the site as independent events and the use of statistic methods to define some safety levels with very low annual occurrence probabilities (10 -4 ) may lead to some exaggerations of the seismic safety level. 3. The use of some very high values for the seismic accelerations imposed by the seismic safety levels required by the hazard analysis may lead to very expensive technical solutions that can make the plant operation more difficult and increase the maintenance costs. 4. The consideration of seismic events as a time series with dependence among the events produced may lead to a more representative assessment of a NPP site seismic activity and consequently to a prognosis on the seismic level values to which the NPP would be ensured throughout its life-span. That prognosis should consider the actual seismic activity (including small earthquakes in real time) of the focuses that affect the plant site. The method is useful for two purposes: a) research, i.e. homogenizing the history data basis by the generation of earthquakes during periods lacking information and correlation of the information with the existing information. The aim is to perform the hazard analysis using a homogeneous data set in order to determine the seismic design data for a site; b) operation, i.e. the performance of a prognosis on the seismic activity on a certain site and consideration of preventive measures to minimize the possible effects of an earthquake. 5. The paper proposes the application of Autoregressive Time Series to issue a prognosis on the seismic activity of a focus and presents the analysis on Vrancea focus that affects Cernavoda NPP site by this method. 6. The paper also presents the
Summation of Divergent Series and Zeldovich's Regularization Method
International Nuclear Information System (INIS)
Mur, V.D.; Pozdnyakov, S.G.; Popruzhenko, S.V.; Popov, V.S.
2005-01-01
A method for summing divergent series, including perturbation-theory series, is considered. This method is an analog of Zeldovich's regularization method in the theory of quasistationary states. It is shown that the method in question is more powerful than the well-known Abel and Borel methods, but that it is compatible with them (that is, it leads to the same value for the sum of a series). The constraints on the parameter domain that arise upon the removal of the regularization of divergent integrals by this method are discussed. The dynamical Stark shifts and widths of loosely bound s states in the field of a circularly polarized electromagnetic wave are calculated at various values of the Keldysh adiabaticity parameter and the multiquantum parameter
Analysis apparatus and method of analysis
International Nuclear Information System (INIS)
1976-01-01
A continuous streaming method developed for the excution of immunoassays is described in this patent. In addition, a suitable apparatus for the method was developed whereby magnetic particles are automatically employed for the consecutive analysis of a series of liquid samples via the RIA technique
Transformation-cost time-series method for analyzing irregularly sampled data.
Ozken, Ibrahim; Eroglu, Deniz; Stemler, Thomas; Marwan, Norbert; Bagci, G Baris; Kurths, Jürgen
2015-06-01
Irregular sampling of data sets is one of the challenges often encountered in time-series analysis, since traditional methods cannot be applied and the frequently used interpolation approach can corrupt the data and bias the subsequence analysis. Here we present the TrAnsformation-Cost Time-Series (TACTS) method, which allows us to analyze irregularly sampled data sets without degenerating the quality of the data set. Instead of using interpolation we consider time-series segments and determine how close they are to each other by determining the cost needed to transform one segment into the following one. Using a limited set of operations-with associated costs-to transform the time series segments, we determine a new time series, that is our transformation-cost time series. This cost time series is regularly sampled and can be analyzed using standard methods. While our main interest is the analysis of paleoclimate data, we develop our method using numerical examples like the logistic map and the Rössler oscillator. The numerical data allows us to test the stability of our method against noise and for different irregular samplings. In addition we provide guidance on how to choose the associated costs based on the time series at hand. The usefulness of the TACTS method is demonstrated using speleothem data from the Secret Cave in Borneo that is a good proxy for paleoclimatic variability in the monsoon activity around the maritime continent.
Transformation-cost time-series method for analyzing irregularly sampled data
Ozken, Ibrahim; Eroglu, Deniz; Stemler, Thomas; Marwan, Norbert; Bagci, G. Baris; Kurths, Jürgen
2015-06-01
Irregular sampling of data sets is one of the challenges often encountered in time-series analysis, since traditional methods cannot be applied and the frequently used interpolation approach can corrupt the data and bias the subsequence analysis. Here we present the TrAnsformation-Cost Time-Series (TACTS) method, which allows us to analyze irregularly sampled data sets without degenerating the quality of the data set. Instead of using interpolation we consider time-series segments and determine how close they are to each other by determining the cost needed to transform one segment into the following one. Using a limited set of operations—with associated costs—to transform the time series segments, we determine a new time series, that is our transformation-cost time series. This cost time series is regularly sampled and can be analyzed using standard methods. While our main interest is the analysis of paleoclimate data, we develop our method using numerical examples like the logistic map and the Rössler oscillator. The numerical data allows us to test the stability of our method against noise and for different irregular samplings. In addition we provide guidance on how to choose the associated costs based on the time series at hand. The usefulness of the TACTS method is demonstrated using speleothem data from the Secret Cave in Borneo that is a good proxy for paleoclimatic variability in the monsoon activity around the maritime continent.
Analysis of JET ELMy time series
International Nuclear Information System (INIS)
Zvejnieks, G.; Kuzovkov, V.N.
2005-01-01
Full text: Achievement of the planned operational regime in the next generation tokamaks (such as ITER) still faces principal problems. One of the main challenges is obtaining the control of edge localized modes (ELMs), which should lead to both long plasma pulse times and reasonable divertor life time. In order to control ELMs the hypothesis was proposed by Degeling [1] that ELMs exhibit features of chaotic dynamics and thus a standard chaos control methods might be applicable. However, our findings which are based on the nonlinear autoregressive (NAR) model contradict this hypothesis for JET ELMy time-series. In turn, it means that ELM behavior is of a relaxation or random type. These conclusions coincide with our previous results obtained for ASDEX Upgrade time series [2]. [1] A.W. Degeling, Y.R. Martin, P.E. Bak, J. B.Lister, and X. Llobet, Plasma Phys. Control. Fusion 43, 1671 (2001). [2] G. Zvejnieks, V.N. Kuzovkov, O. Dumbrajs, A.W. Degeling, W. Suttrop, H. Urano, and H. Zohm, Physics of Plasmas 11, 5658 (2004)
Summation of divergent series and Zel'dovich's regularization method
International Nuclear Information System (INIS)
Mur, V.D.; Pozdnyakov, S.G.; Popruzhenko, S.V.; Popov, V.S.
2005-01-01
The method of summation of divergent series, including series of a perturbation theory, which is an analog of the Zel'dovich regularization procedure in the theory of quasistationary states is considered. It is shown that this method is more powerful than the well-known Abel and Borel methods, but compatible with them (i. e., gives the same value for the sum of the series). The restrictions to the range of parameters which appear after removal of the regularization of integrals by this method are discussed. The dynamical Stark shifts and widths of weakly bound s states in a field of circularly polarized electromagnetic wave are calculated at different values of the Keldysh adiabaticity parameter and multiquantum parameter [ru
Time series analysis of ozone data in Isfahan
Omidvari, M.; Hassanzadeh, S.; Hosseinibalam, F.
2008-07-01
Time series analysis used to investigate the stratospheric ozone formation and decomposition processes. Different time series methods are applied to detect the reason for extreme high ozone concentrations for each season. Data was convert into seasonal component and frequency domain, the latter has been evaluated by using the Fast Fourier Transform (FFT), spectral analysis. The power density spectrum estimated from the ozone data showed peaks at cycle duration of 22, 20, 36, 186, 365 and 40 days. According to seasonal component analysis most fluctuation was in 1999 and 2000, but the least fluctuation was in 2003. The best correlation between ozone and sun radiation was found in 2000. Other variables which are not available cause to this fluctuation in the 1999 and 2001. The trend of ozone is increasing in 1999 and is decreasing in other years.
Recurrence Density Enhanced Complex Networks for Nonlinear Time Series Analysis
Costa, Diego G. De B.; Reis, Barbara M. Da F.; Zou, Yong; Quiles, Marcos G.; Macau, Elbert E. N.
We introduce a new method, which is entitled Recurrence Density Enhanced Complex Network (RDE-CN), to properly analyze nonlinear time series. Our method first transforms a recurrence plot into a figure of a reduced number of points yet preserving the main and fundamental recurrence properties of the original plot. This resulting figure is then reinterpreted as a complex network, which is further characterized by network statistical measures. We illustrate the computational power of RDE-CN approach by time series by both the logistic map and experimental fluid flows, which show that our method distinguishes different dynamics sufficiently well as the traditional recurrence analysis. Therefore, the proposed methodology characterizes the recurrence matrix adequately, while using a reduced set of points from the original recurrence plots.
Rodgers, Joseph Lee; Beasley, William Howard; Schuelke, Matthew
2014-01-01
Many data structures, particularly time series data, are naturally seasonal, cyclical, or otherwise circular. Past graphical methods for time series have focused on linear plots. In this article, we move graphical analysis onto the circle. We focus on 2 particular methods, one old and one new. Rose diagrams are circular histograms and can be produced in several different forms using the RRose software system. In addition, we propose, develop, illustrate, and provide software support for a new circular graphical method, called Wrap-Around Time Series Plots (WATS Plots), which is a graphical method useful to support time series analyses in general but in particular in relation to interrupted time series designs. We illustrate the use of WATS Plots with an interrupted time series design evaluating the effect of the Oklahoma City bombing on birthrates in Oklahoma County during the 10 years surrounding the bombing of the Murrah Building in Oklahoma City. We compare WATS Plots with linear time series representations and overlay them with smoothing and error bands. Each method is shown to have advantages in relation to the other; in our example, the WATS Plots more clearly show the existence and effect size of the fertility differential.
Cluster analysis of activity-time series in motor learning
DEFF Research Database (Denmark)
Balslev, Daniela; Nielsen, Finn Å; Futiger, Sally A
2002-01-01
Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel......-time series. The optimal number of clusters was chosen using a cross-validated likelihood method, which highlights the clustering pattern that generalizes best over the subjects. Data were acquired with PET at different time points during practice of a visuomotor task. The results from cluster analysis show...
Long-memory time series theory and methods
Palma, Wilfredo
2007-01-01
Wilfredo Palma, PhD, is Chairman and Professor of Statistics in the Department of Statistics at Pontificia Universidad Católica de Chile. Dr. Palma has published several refereed articles and has received over a dozen academic honors and awards. His research interests include time series analysis, prediction theory, state space systems, linear models, and econometrics.
Nonparametric factor analysis of time series
Rodríguez-Poo, Juan M.; Linton, Oliver Bruce
1998-01-01
We introduce a nonparametric smoothing procedure for nonparametric factor analaysis of multivariate time series. The asymptotic properties of the proposed procedures are derived. We present an application based on the residuals from the Fair macromodel.
Comparison of correlation analysis techniques for irregularly sampled time series
Directory of Open Access Journals (Sweden)
K. Rehfeld
2011-06-01
Full Text Available Geoscientific measurements often provide time series with irregular time sampling, requiring either data reconstruction (interpolation or sophisticated methods to handle irregular sampling. We compare the linear interpolation technique and different approaches for analyzing the correlation functions and persistence of irregularly sampled time series, as Lomb-Scargle Fourier transformation and kernel-based methods. In a thorough benchmark test we investigate the performance of these techniques.
All methods have comparable root mean square errors (RMSEs for low skewness of the inter-observation time distribution. For high skewness, very irregular data, interpolation bias and RMSE increase strongly. We find a 40 % lower RMSE for the lag-1 autocorrelation function (ACF for the Gaussian kernel method vs. the linear interpolation scheme,in the analysis of highly irregular time series. For the cross correlation function (CCF the RMSE is then lower by 60 %. The application of the Lomb-Scargle technique gave results comparable to the kernel methods for the univariate, but poorer results in the bivariate case. Especially the high-frequency components of the signal, where classical methods show a strong bias in ACF and CCF magnitude, are preserved when using the kernel methods.
We illustrate the performances of interpolation vs. Gaussian kernel method by applying both to paleo-data from four locations, reflecting late Holocene Asian monsoon variability as derived from speleothem δ^{18}O measurements. Cross correlation results are similar for both methods, which we attribute to the long time scales of the common variability. The persistence time (memory is strongly overestimated when using the standard, interpolation-based, approach. Hence, the Gaussian kernel is a reliable and more robust estimator with significant advantages compared to other techniques and suitable for large scale application to paleo-data.
Generalized series method in the theory of atomic nucleus
International Nuclear Information System (INIS)
Gorbatov, A.M.
1991-01-01
On a hypersphere of a prescribed radius the so-called genealogical basis has been constructed. By making use of this basis, the many-body Schroedinger equation has been obtained for bound states of various physical systems. The genealogical series method, being in general outline the extension of the angular potential functions method, deals with the potential harmonics of any generation needed. The new approach provides an exact numerical description of the hadron systems with two-body higher interaction
DIY Solar Market Analysis Webinar Series: Solar Resource and Technical
Series: Solar Resource and Technical Potential DIY Solar Market Analysis Webinar Series: Solar Resource and Technical Potential Wednesday, June 11, 2014 As part of a Do-It-Yourself Solar Market Analysis Potential | State, Local, and Tribal Governments | NREL DIY Solar Market Analysis Webinar
Horváth, Csilla; Kornelis, Marcel; Leeflang, Peter S.H.
2002-01-01
In this review, we give a comprehensive summary of time series techniques in marketing, and discuss a variety of time series analysis (TSA) techniques and models. We classify them in the sets (i) univariate TSA, (ii) multivariate TSA, and (iii) multiple TSA. We provide relevant marketing
Time series analysis in the social sciences the fundamentals
Shin, Youseop
2017-01-01
Times Series Analysis in the Social Sciences is a practical and highly readable introduction written exclusively for students and researchers whose mathematical background is limited to basic algebra. The book focuses on fundamental elements of time series analysis that social scientists need to understand so they can employ time series analysis for their research and practice. Through step-by-step explanations and using monthly violent crime rates as case studies, this book explains univariate time series from the preliminary visual analysis through the modeling of seasonality, trends, and re
Methods for obtaining sorption data from uranium-series disequilibria
International Nuclear Information System (INIS)
Finnegan, D.L.; Bryant, E.A.
1987-12-01
Two possible methods have been identified for obtaining in situ retardation factors from measurements of uranium-series disequilibria at Yucca Mountain. The first method would make use of the enhanced 234 U/ 238 U ratio in groundwater to derive a signature for exchangeable uranium sorbed on the rock; the exchangeable uranium would be leached and assayed. The second method would use the ratio of 222 Rn to 234 U in solution, corrected for weathering, to infer the retardation factor for uranium. Similar methods could be applied to thorium and radium
Biostatistics series module 9: Survival analysis
Directory of Open Access Journals (Sweden)
Avijit Hazra
2017-01-01
Full Text Available Survival analysis is concerned with “time to event“ data. Conventionally, it dealt with cancer death as the event in question, but it can handle any event occurring over a time frame, and this need not be always adverse in nature. When the outcome of a study is the time to an event, it is often not possible to wait until the event in question has happened to all the subjects, for example, until all are dead. In addition, subjects may leave the study prematurely. Such situations lead to what is called censored observations as complete information is not available for these subjects. The data set is thus an assemblage of times to the event in question and times after which no more information on the individual is available. Survival analysis methods are the only techniques capable of handling censored observations without treating them as missing data. They also make no assumption regarding normal distribution of time to event data. Descriptive methods for exploring survival times in a sample include life table and Kaplan–Meier techniques as well as various kinds of distribution fitting as advanced modeling techniques. The Kaplan–Meier cumulative survival probability over time plot has become the signature plot for biomedical survival analysis. Several techniques are available for comparing the survival experience in two or more groups – the log-rank test is popularly used. This test can also be used to produce an odds ratio as an estimate of risk of the event in the test group; this is called hazard ratio (HR. Limitations of the traditional log-rank test have led to various modifications and enhancements. Finally, survival analysis offers different regression models for estimating the impact of multiple predictors on survival. Cox's proportional hazard model is the most general of the regression methods that allows the hazard function to be modeled on a set of explanatory variables without making restrictive assumptions concerning the
Multiscale multifractal multiproperty analysis of financial time series based on Rényi entropy
Yujun, Yang; Jianping, Li; Yimei, Yang
This paper introduces a multiscale multifractal multiproperty analysis based on Rényi entropy (3MPAR) method to analyze short-range and long-range characteristics of financial time series, and then applies this method to the five time series of five properties in four stock indices. Combining the two analysis techniques of Rényi entropy and multifractal detrended fluctuation analysis (MFDFA), the 3MPAR method focuses on the curves of Rényi entropy and generalized Hurst exponent of five properties of four stock time series, which allows us to study more universal and subtle fluctuation characteristics of financial time series. By analyzing the curves of the Rényi entropy and the profiles of the logarithm distribution of MFDFA of five properties of four stock indices, the 3MPAR method shows some fluctuation characteristics of the financial time series and the stock markets. Then, it also shows a richer information of the financial time series by comparing the profile of five properties of four stock indices. In this paper, we not only focus on the multifractality of time series but also the fluctuation characteristics of the financial time series and subtle differences in the time series of different properties. We find that financial time series is far more complex than reported in some research works using one property of time series.
DEFF Research Database (Denmark)
Madsen, Henrik; Rasmussen, Peter F.; Rosbjerg, Dan
1997-01-01
Two different models for analyzing extreme hydrologic events, based on, respectively, partial duration series (PDS) and annual maximum series (AMS), are compared. The PDS model assumes a generalized Pareto distribution for modeling threshold exceedances corresponding to a generalized extreme value......). In the case of ML estimation, the PDS model provides the most efficient T-year event estimator. In the cases of MOM and PWM estimation, the PDS model is generally preferable for negative shape parameters, whereas the AMS model yields the most efficient estimator for positive shape parameters. A comparison...... of the considered methods reveals that in general, one should use the PDS model with MOM estimation for negative shape parameters, the PDS model with exponentially distributed exceedances if the shape parameter is close to zero, the AMS model with MOM estimation for moderately positive shape parameters, and the PDS...
Taylor-series method for four-nucleon wave functions
International Nuclear Information System (INIS)
Sandulescu, A.; Tarnoveanu, I.; Rizea, M.
1977-09-01
Taylor-series method for transforming the infinite or finite well two-nucleon wave functions from individual coordinates to relative and c.m. coordinates, by expanding the single particle shell model wave functions around c.m. of the system, is generalized to four-nucleon wave functions. Also the connections with the Talmi-Moshinsky method for two and four harmonic oscillator wave functions are deduced. For both methods Fortran IV programs for the expansion coefficients have been written and the equivalence of corresponding expressions numerically proved. (author)
Mathematical foundations of time series analysis a concise introduction
Beran, Jan
2017-01-01
This book provides a concise introduction to the mathematical foundations of time series analysis, with an emphasis on mathematical clarity. The text is reduced to the essential logical core, mostly using the symbolic language of mathematics, thus enabling readers to very quickly grasp the essential reasoning behind time series analysis. It appeals to anybody wanting to understand time series in a precise, mathematical manner. It is suitable for graduate courses in time series analysis but is equally useful as a reference work for students and researchers alike.
Topological data analysis of financial time series: Landscapes of crashes
Gidea, Marian; Katz, Yuri
2018-02-01
We explore the evolution of daily returns of four major US stock market indices during the technology crash of 2000, and the financial crisis of 2007-2009. Our methodology is based on topological data analysis (TDA). We use persistence homology to detect and quantify topological patterns that appear in multidimensional time series. Using a sliding window, we extract time-dependent point cloud data sets, to which we associate a topological space. We detect transient loops that appear in this space, and we measure their persistence. This is encoded in real-valued functions referred to as a 'persistence landscapes'. We quantify the temporal changes in persistence landscapes via their Lp-norms. We test this procedure on multidimensional time series generated by various non-linear and non-equilibrium models. We find that, in the vicinity of financial meltdowns, the Lp-norms exhibit strong growth prior to the primary peak, which ascends during a crash. Remarkably, the average spectral density at low frequencies of the time series of Lp-norms of the persistence landscapes demonstrates a strong rising trend for 250 trading days prior to either dotcom crash on 03/10/2000, or to the Lehman bankruptcy on 09/15/2008. Our study suggests that TDA provides a new type of econometric analysis, which complements the standard statistical measures. The method can be used to detect early warning signals of imminent market crashes. We believe that this approach can be used beyond the analysis of financial time series presented here.
Doig, Emmah; Kuipers, Pim; Prescott, Sarah; Cornwell, Petrea; Fleming, Jennifer
2014-01-01
OBJECTIVE. We examined participation in goal planning and development of self-awareness for people with impaired self-awareness after traumatic brain injury. METHOD. We performed a mixed-methods study of 8 participants recently discharged from inpatient rehabilitation. Self-awareness was measured using discrepancy between self and significant other ratings on the Mayo-Portland Adaptability Index (MPAI-4) at four time points. We calculated effect size to evaluate the change in MPAI-4 discrepancy over time. RESULTS. Seven participants identified their own goals. We found a large reduction in mean MPAI-4 discrepancy (M = 8.57, SD = 6.59, N = 7, d = 1.08) in the first 6 wk and a further small reduction (M = 5.33, SD = 9.09, N = 6, d = 0.45) in the second 6 wk of intervention. Case data indicated that 7 participants demonstrated some growth in self-awareness. CONCLUSION. Engagement in occupation-based, goal-directed rehabilitation appeared to foster awareness of injury-related changes to varying extents. Copyright © 2014 by the American Occupational Therapy Association, Inc.
Which DTW Method Applied to Marine Univariate Time Series Imputation
Phan , Thi-Thu-Hong; Caillault , Émilie; Lefebvre , Alain; Bigand , André
2017-01-01
International audience; Missing data are ubiquitous in any domains of applied sciences. Processing datasets containing missing values can lead to a loss of efficiency and unreliable results, especially for large missing sub-sequence(s). Therefore, the aim of this paper is to build a framework for filling missing values in univariate time series and to perform a comparison of different similarity metrics used for the imputation task. This allows to suggest the most suitable methods for the imp...
The power series method in the effectiveness factor calculations
Filipich, C. P.; Villa, L. T.; Grossi, Ricardo Oscar
2017-01-01
In the present paper, exact analytical solutions are obtained for nonlinear ordinary differential equations which appear in complex diffusionreaction processes. A technique based on the power series method is used. Numerical results were computed for a number of cases which correspond to boundary value problems available in the literature. Additionally, new numerical results were generated for several important cases. Fil: Filipich, C. P.. Universidad Tecnológica Nacional. Facultad Regiona...
A novel time series link prediction method: Learning automata approach
Moradabadi, Behnaz; Meybodi, Mohammad Reza
2017-09-01
Link prediction is a main social network challenge that uses the network structure to predict future links. The common link prediction approaches to predict hidden links use a static graph representation where a snapshot of the network is analyzed to find hidden or future links. For example, similarity metric based link predictions are a common traditional approach that calculates the similarity metric for each non-connected link and sort the links based on their similarity metrics and label the links with higher similarity scores as the future links. Because people activities in social networks are dynamic and uncertainty, and the structure of the networks changes over time, using deterministic graphs for modeling and analysis of the social network may not be appropriate. In the time-series link prediction problem, the time series link occurrences are used to predict the future links In this paper, we propose a new time series link prediction based on learning automata. In the proposed algorithm for each link that must be predicted there is one learning automaton and each learning automaton tries to predict the existence or non-existence of the corresponding link. To predict the link occurrence in time T, there is a chain consists of stages 1 through T - 1 and the learning automaton passes from these stages to learn the existence or non-existence of the corresponding link. Our preliminary link prediction experiments with co-authorship and email networks have provided satisfactory results when time series link occurrences are considered.
Time Series Analysis Using Geometric Template Matching.
Frank, Jordan; Mannor, Shie; Pineau, Joelle; Precup, Doina
2013-03-01
We present a novel framework for analyzing univariate time series data. At the heart of the approach is a versatile algorithm for measuring the similarity of two segments of time series called geometric template matching (GeTeM). First, we use GeTeM to compute a similarity measure for clustering and nearest-neighbor classification. Next, we present a semi-supervised learning algorithm that uses the similarity measure with hierarchical clustering in order to improve classification performance when unlabeled training data are available. Finally, we present a boosting framework called TDEBOOST, which uses an ensemble of GeTeM classifiers. TDEBOOST augments the traditional boosting approach with an additional step in which the features used as inputs to the classifier are adapted at each step to improve the training error. We empirically evaluate the proposed approaches on several datasets, such as accelerometer data collected from wearable sensors and ECG data.
A window-based time series feature extraction method.
Katircioglu-Öztürk, Deniz; Güvenir, H Altay; Ravens, Ursula; Baykal, Nazife
2017-10-01
This study proposes a robust similarity score-based time series feature extraction method that is termed as Window-based Time series Feature ExtraCtion (WTC). Specifically, WTC generates domain-interpretable results and involves significantly low computational complexity thereby rendering itself useful for densely sampled and populated time series datasets. In this study, WTC is applied to a proprietary action potential (AP) time series dataset on human cardiomyocytes and three precordial leads from a publicly available electrocardiogram (ECG) dataset. This is followed by comparing WTC in terms of predictive accuracy and computational complexity with shapelet transform and fast shapelet transform (which constitutes an accelerated variant of the shapelet transform). The results indicate that WTC achieves a slightly higher classification performance with significantly lower execution time when compared to its shapelet-based alternatives. With respect to its interpretable features, WTC has a potential to enable medical experts to explore definitive common trends in novel datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Growth And Export Expansion In Mauritius - A Time Series Analysis ...
African Journals Online (AJOL)
Growth And Export Expansion In Mauritius - A Time Series Analysis. ... RV Sannassee, R Pearce ... Using Granger Causality tests, the short-run analysis results revealed that there is significant reciprocal causality between real export earnings ...
Methods for deconvolving sparse positive delta function series
International Nuclear Information System (INIS)
Trussell, H.J.; Schwalbe, L.A.
1981-01-01
Sparse delta function series occur as data in many chemical analyses and seismic methods. These original data are often sufficiently degraded by the recording instrument response that the individual delta function peaks are difficult to distinguish and measure. A method, which has been used to measure these peaks, is to fit a parameterized model by a nonlinear least-squares fitting algorithm. The deconvolution approaches described have the advantage of not requiring a parameterized point spread function, nor do they expect a fixed number of peaks. Two new methods are presented. The maximum power technique is reviewed. A maximum a posteriori technique is introduced. Results on both simulated and real data by the two methods are presented. The characteristics of the data can determine which method gives superior results. 5 figures
Economic Analysis in Series-Distillation Desalination
Directory of Open Access Journals (Sweden)
Mirna Rahmah Lubis
2010-06-01
Full Text Available The ability to produce potable water economically is the primary purpose of seawater desalination research. Reverse osmosis (RO and multi-stage flash (MSF cost more than potable water produced from fresh water resources. Therefore, this research investigates a high-efficiency mechanical vapor-compression distillation system that employs an improved water flow arrangement. The incoming salt concentration was 0.15% salt for brackish water and 3.5% salt for seawater, whereas the outgoing salt concentration was 1.5% and 7%, respectively. Distillation was performed at 439 K and 722 kPa for both brackish water feed and seawater feed. Water costs of the various conditions were calculated for brackish water and seawater feeds using optimum conditions considered as 25 and 20 stages, respectively. For brackish water at a temperature difference of 0.96 K, the energy requirement is 2.0 kWh/m3. At this condition, the estimated water cost is $0.39/m3 achieved with 10,000,000 gal/day distillate, 30-year bond, 5% interest rate, and $0.05/kWh electricity. For seawater at a temperature difference of 0.44 K, the energy requirement is 3.97 kWh/m3 and the estimated water cost is $0.61/m3. Greater efficiency of the vapor compression system is achieved by connecting multiple evaporators in series, rather than the traditional parallel arrangement. The efficiency results from the gradual increase of salinity in each stage of the series arrangement in comparison to parallel. Calculations using various temperature differences between boiling brine and condensing steam show the series arrangement has the greatest improvement at lower temperature differences. Keywords: desalination, dropwise condensation, mechanical-vapor compression
Time series analysis for psychological research: examining and forecasting change.
Jebb, Andrew T; Tay, Louis; Wang, Wei; Huang, Qiming
2015-01-01
Psychological research has increasingly recognized the importance of integrating temporal dynamics into its theories, and innovations in longitudinal designs and analyses have allowed such theories to be formalized and tested. However, psychological researchers may be relatively unequipped to analyze such data, given its many characteristics and the general complexities involved in longitudinal modeling. The current paper introduces time series analysis to psychological research, an analytic domain that has been essential for understanding and predicting the behavior of variables across many diverse fields. First, the characteristics of time series data are discussed. Second, different time series modeling techniques are surveyed that can address various topics of interest to psychological researchers, including describing the pattern of change in a variable, modeling seasonal effects, assessing the immediate and long-term impact of a salient event, and forecasting future values. To illustrate these methods, an illustrative example based on online job search behavior is used throughout the paper, and a software tutorial in R for these analyses is provided in the Supplementary Materials.
Time series analysis for psychological research: examining and forecasting change
Jebb, Andrew T.; Tay, Louis; Wang, Wei; Huang, Qiming
2015-01-01
Psychological research has increasingly recognized the importance of integrating temporal dynamics into its theories, and innovations in longitudinal designs and analyses have allowed such theories to be formalized and tested. However, psychological researchers may be relatively unequipped to analyze such data, given its many characteristics and the general complexities involved in longitudinal modeling. The current paper introduces time series analysis to psychological research, an analytic domain that has been essential for understanding and predicting the behavior of variables across many diverse fields. First, the characteristics of time series data are discussed. Second, different time series modeling techniques are surveyed that can address various topics of interest to psychological researchers, including describing the pattern of change in a variable, modeling seasonal effects, assessing the immediate and long-term impact of a salient event, and forecasting future values. To illustrate these methods, an illustrative example based on online job search behavior is used throughout the paper, and a software tutorial in R for these analyses is provided in the Supplementary Materials. PMID:26106341
Tool Wear Monitoring Using Time Series Analysis
Song, Dong Yeul; Ohara, Yasuhiro; Tamaki, Haruo; Suga, Masanobu
A tool wear monitoring approach considering the nonlinear behavior of cutting mechanism caused by tool wear and/or localized chipping is proposed, and its effectiveness is verified through the cutting experiment and actual turning machining. Moreover, the variation in the surface roughness of the machined workpiece is also discussed using this approach. In this approach, the residual error between the actually measured vibration signal and the estimated signal obtained from the time series model corresponding to dynamic model of cutting is introduced as the feature of diagnosis. Consequently, it is found that the early tool wear state (i.e. flank wear under 40µm) can be monitored, and also the optimal tool exchange time and the tool wear state for actual turning machining can be judged by this change in the residual error. Moreover, the variation of surface roughness Pz in the range of 3 to 8µm can be estimated by the monitoring of the residual error.
Normalization methods in time series of platelet function assays
Van Poucke, Sven; Zhang, Zhongheng; Roest, Mark; Vukicevic, Milan; Beran, Maud; Lauwereins, Bart; Zheng, Ming-Hua; Henskens, Yvonne; Lancé, Marcus; Marcus, Abraham
2016-01-01
Abstract Platelet function can be quantitatively assessed by specific assays such as light-transmission aggregometry, multiple-electrode aggregometry measuring the response to adenosine diphosphate (ADP), arachidonic acid, collagen, and thrombin-receptor activating peptide and viscoelastic tests such as rotational thromboelastometry (ROTEM). The task of extracting meaningful statistical and clinical information from high-dimensional data spaces in temporal multivariate clinical data represented in multivariate time series is complex. Building insightful visualizations for multivariate time series demands adequate usage of normalization techniques. In this article, various methods for data normalization (z-transformation, range transformation, proportion transformation, and interquartile range) are presented and visualized discussing the most suited approach for platelet function data series. Normalization was calculated per assay (test) for all time points and per time point for all tests. Interquartile range, range transformation, and z-transformation demonstrated the correlation as calculated by the Spearman correlation test, when normalized per assay (test) for all time points. When normalizing per time point for all tests, no correlation could be abstracted from the charts as was the case when using all data as 1 dataset for normalization. PMID:27428217
Volatility Analysis of Bitcoin Price Time Series
Directory of Open Access Journals (Sweden)
Lukáš Pichl
2017-12-01
Full Text Available Bitcoin has the largest share in the total capitalization of cryptocurrency markets currently reaching above 70 billion USD. In this work we focus on the price of Bitcoin in terms of standard currencies and their volatility over the last five years. The average day-to-day return throughout this period is 0.328%, amounting in exponential growth from 6 USD to over 4,000 USD per 1 BTC at present. Multi-scale analysis is performed from the level of the tick data, through the 5 min, 1 hour and 1 day scales. Distribution of trading volumes (1 sec, 1 min, 1 hour and 1 day aggregated from the Kraken BTCEUR tick data is provided that shows the artifacts of algorithmic trading (selling transactions with volume peaks distributed at integer multiples of BTC unit. Arbitrage opportunities are studied using the EUR, USD and CNY currencies. Whereas the arbitrage spread for EUR-USD currency pair is found narrow at the order of a percent, at the 1 hour sampling period the arbitrage spread for USD-CNY (and similarly EUR-CNY is found to be more substantial, reaching as high as above 5 percent on rare occasions. The volatility of BTC exchange rates is modeled using the day-to-day distribution of logarithmic return, and the Realized Volatility, sum of the squared logarithmic returns on 5-minute basis. In this work we demonstrate that the Heterogeneous Autoregressive model for Realized Volatility Andersen et al. (2007 applies reasonably well to the BTCUSD dataset. Finally, a feed-forward neural network with 2 hidden layers using 10-day moving window sampling daily return predictors is applied to estimate the next-day logarithmic return. The results show that such an artificial neural network prediction is capable of approximate capture of the actual log return distribution; more sophisticated methods, such as recurrent neural networks and LSTM (Long Short Term Memory techniques from deep learning may be necessary for higher prediction accuracy.
Centrality measures in temporal networks with time series analysis
Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Wang, Xiaojie; Yi, Dongyun
2017-05-01
The study of identifying important nodes in networks has a wide application in different fields. However, the current researches are mostly based on static or aggregated networks. Recently, the increasing attention to networks with time-varying structure promotes the study of node centrality in temporal networks. In this paper, we define a supra-evolution matrix to depict the temporal network structure. With using of the time series analysis, the relationships between different time layers can be learned automatically. Based on the special form of the supra-evolution matrix, the eigenvector centrality calculating problem is turned into the calculation of eigenvectors of several low-dimensional matrices through iteration, which effectively reduces the computational complexity. Experiments are carried out on two real-world temporal networks, Enron email communication network and DBLP co-authorship network, the results of which show that our method is more efficient at discovering the important nodes than the common aggregating method.
Metagenomics meets time series analysis: unraveling microbial community dynamics
Faust, K.; Lahti, L.M.; Gonze, D.; Vos, de W.M.; Raes, J.
2015-01-01
The recent increase in the number of microbial time series studies offers new insights into the stability and dynamics of microbial communities, from the world's oceans to human microbiota. Dedicated time series analysis tools allow taking full advantage of these data. Such tools can reveal periodic
Hybrid perturbation methods based on statistical time series models
San-Juan, Juan Félix; San-Martín, Montserrat; Pérez, Iván; López, Rosario
2016-04-01
In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of any artificial satellite or space debris object. In order to validate this methodology, we present a family of three hybrid orbit propagators formed by the combination of three different orders of approximation of an analytical theory and a statistical time series model, and analyse their capability to process the effect produced by the flattening of the Earth. The three considered analytical components are the integration of the Kepler problem, a first-order and a second-order analytical theories, whereas the prediction technique is the same in the three cases, namely an additive Holt-Winters method.
Series interconnected photovoltaic cells and method for making same
Albright, Scot P.; Chamberlin, Rhodes R.; Thompson, Roger A.
1995-01-01
A novel photovoltaic module (10) and method for constructing the same are disclosed. The module (10) includes a plurality of photovoltaic cells (12) formed on a substrate (14) and laterally separated by interconnection regions (15). Each cell (12) includes a bottom electrode (16), a photoactive layer (18) and a top electrode layer (20). Adjacent cells (12) are connected in electrical series by way of a conductive-buffer line (22). The buffer line (22) is also useful in protecting the bottom electrode (16) against severing during downstream layer cutting processes.
Short-term prediction method of wind speed series based on fractal interpolation
International Nuclear Information System (INIS)
Xiu, Chunbo; Wang, Tiantian; Tian, Meng; Li, Yanqing; Cheng, Yi
2014-01-01
Highlights: • An improved fractal interpolation prediction method is proposed. • The chaos optimization algorithm is used to obtain the iterated function system. • The fractal extrapolate interpolation prediction of wind speed series is performed. - Abstract: In order to improve the prediction performance of the wind speed series, the rescaled range analysis is used to analyze the fractal characteristics of the wind speed series. An improved fractal interpolation prediction method is proposed to predict the wind speed series whose Hurst exponents are close to 1. An optimization function which is composed of the interpolation error and the constraint items of the vertical scaling factors in the fractal interpolation iterated function system is designed. The chaos optimization algorithm is used to optimize the function to resolve the optimal vertical scaling factors. According to the self-similarity characteristic and the scale invariance, the fractal extrapolate interpolation prediction can be performed by extending the fractal characteristic from internal interval to external interval. Simulation results show that the fractal interpolation prediction method can get better prediction result than others for the wind speed series with the fractal characteristic, and the prediction performance of the proposed method can be improved further because the fractal characteristic of its iterated function system is similar to that of the predicted wind speed series
The Prediction of Teacher Turnover Employing Time Series Analysis.
Costa, Crist H.
The purpose of this study was to combine knowledge of teacher demographic data with time-series forecasting methods to predict teacher turnover. Moving averages and exponential smoothing were used to forecast discrete time series. The study used data collected from the 22 largest school districts in Iowa, designated as FACT schools. Predictions…
Time series analysis of gold production in Malaysia
Muda, Nora; Hoon, Lee Yuen
2012-05-01
Gold is a soft, malleable, bright yellow metallic element and unaffected by air or most reagents. It is highly valued as an asset or investment commodity and is extensively used in jewellery, industrial application, dentistry and medical applications. In Malaysia, gold mining is limited in several areas such as Pahang, Kelantan, Terengganu, Johor and Sarawak. The main purpose of this case study is to obtain a suitable model for the production of gold in Malaysia. The model can also be used to predict the data of Malaysia's gold production in the future. Box-Jenkins time series method was used to perform time series analysis with the following steps: identification, estimation, diagnostic checking and forecasting. In addition, the accuracy of prediction is tested using mean absolute percentage error (MAPE). From the analysis, the ARIMA (3,1,1) model was found to be the best fitted model with MAPE equals to 3.704%, indicating the prediction is very accurate. Hence, this model can be used for forecasting. This study is expected to help the private and public sectors to understand the gold production scenario and later plan the gold mining activities in Malaysia.
Interrupted time-series analysis: studying trends in neurosurgery.
Wong, Ricky H; Smieliauskas, Fabrice; Pan, I-Wen; Lam, Sandi K
2015-12-01
OBJECT Neurosurgery studies traditionally have evaluated the effects of interventions on health care outcomes by studying overall changes in measured outcomes over time. Yet, this type of linear analysis is limited due to lack of consideration of the trend's effects both pre- and postintervention and the potential for confounding influences. The aim of this study was to illustrate interrupted time-series analysis (ITSA) as applied to an example in the neurosurgical literature and highlight ITSA's potential for future applications. METHODS The methods used in previous neurosurgical studies were analyzed and then compared with the methodology of ITSA. RESULTS The ITSA method was identified in the neurosurgical literature as an important technique for isolating the effect of an intervention (such as a policy change or a quality and safety initiative) on a health outcome independent of other factors driving trends in the outcome. The authors determined that ITSA allows for analysis of the intervention's immediate impact on outcome level and on subsequent trends and enables a more careful measure of the causal effects of interventions on health care outcomes. CONCLUSIONS ITSA represents a significant improvement over traditional observational study designs in quantifying the impact of an intervention. ITSA is a useful statistical procedure to understand, consider, and implement as the field of neurosurgery evolves in sophistication in big-data analytics, economics, and health services research.
Mapping air temperature using time series analysis of LST : The SINTESI approach
Alfieri, S.M.; De Lorenzi, F.; Menenti, M.
2013-01-01
This paper presents a new procedure to map time series of air temperature (Ta) at fine spatial resolution using time series analysis of satellite-derived land surface temperature (LST) observations. The method assumes that air temperature is known at a single (reference) location such as in gridded
An evaluation of dynamic mutuality measurements and methods in cyclic time series
Xia, Xiaohua; Huang, Guitian; Duan, Na
2010-12-01
Several measurements and techniques have been developed to detect dynamic mutuality and synchronicity of time series in econometrics. This study aims to compare the performances of five methods, i.e., linear regression, dynamic correlation, Markov switching models, concordance index and recurrence quantification analysis, through numerical simulations. We evaluate the abilities of these methods to capture structure changing and cyclicity in time series and the findings of this paper would offer guidance to both academic and empirical researchers. Illustration examples are also provided to demonstrate the subtle differences of these techniques.
Yozgatligil, Ceylan; Aslan, Sipan; Iyigun, Cem; Batmaz, Inci
2013-04-01
This study aims to compare several imputation methods to complete the missing values of spatio-temporal meteorological time series. To this end, six imputation methods are assessed with respect to various criteria including accuracy, robustness, precision, and efficiency for artificially created missing data in monthly total precipitation and mean temperature series obtained from the Turkish State Meteorological Service. Of these methods, simple arithmetic average, normal ratio (NR), and NR weighted with correlations comprise the simple ones, whereas multilayer perceptron type neural network and multiple imputation strategy adopted by Monte Carlo Markov Chain based on expectation-maximization (EM-MCMC) are computationally intensive ones. In addition, we propose a modification on the EM-MCMC method. Besides using a conventional accuracy measure based on squared errors, we also suggest the correlation dimension (CD) technique of nonlinear dynamic time series analysis which takes spatio-temporal dependencies into account for evaluating imputation performances. Depending on the detailed graphical and quantitative analysis, it can be said that although computational methods, particularly EM-MCMC method, are computationally inefficient, they seem favorable for imputation of meteorological time series with respect to different missingness periods considering both measures and both series studied. To conclude, using the EM-MCMC algorithm for imputing missing values before conducting any statistical analyses of meteorological data will definitely decrease the amount of uncertainty and give more robust results. Moreover, the CD measure can be suggested for the performance evaluation of missing data imputation particularly with computational methods since it gives more precise results in meteorological time series.
Unsupervised land cover change detection: meaningful sequential time series analysis
CSIR Research Space (South Africa)
Salmon, BP
2011-06-01
Full Text Available An automated land cover change detection method is proposed that uses coarse spatial resolution hyper-temporal earth observation satellite time series data. The study compared three different unsupervised clustering approaches that operate on short...
Topic Time Series Analysis of Microblogs
2014-10-01
may be distributed more globally. Tweets on a specific topic that cluster spatially, temporally or both might be of interest to analysts, marketers ...of $ and @, with the latter only in the case that it is the only character in the token (the @ symbol is significant in its usage by Instagram in...is generated by Instagram . Topic 80, Distance: 143.2101 Top words: 1. rawr 2. ˆ0ˆ 3. kill 4. jurassic 5. dinosaur Analysis: This topic is quite
On-line analysis of reactor noise using time-series analysis
International Nuclear Information System (INIS)
McGevna, V.G.
1981-10-01
A method to allow use of time series analysis for on-line noise analysis has been developed. On-line analysis of noise in nuclear power reactors has been limited primarily to spectral analysis and related frequency domain techniques. Time series analysis has many distinct advantages over spectral analysis in the automated processing of reactor noise. However, fitting an autoregressive-moving average (ARMA) model to time series data involves non-linear least squares estimation. Unless a high speed, general purpose computer is available, the calculations become too time consuming for on-line applications. To eliminate this problem, a special purpose algorithm was developed for fitting ARMA models. While it is based on a combination of steepest descent and Taylor series linearization, properties of the ARMA model are used so that the auto- and cross-correlation functions can be used to eliminate the need for estimating derivatives. The number of calculations, per iteration varies lineegardless of the mee 0.2% yield strength displayed anisotropy, with axial and circumferential values being greater than radial. For CF8-CPF8 and CF8M-CPF8M castings to meet current ASME Code S acid fuel cells
A robust anomaly based change detection method for time-series remote sensing images
Shoujing, Yin; Qiao, Wang; Chuanqing, Wu; Xiaoling, Chen; Wandong, Ma; Huiqin, Mao
2014-03-01
Time-series remote sensing images record changes happening on the earth surface, which include not only abnormal changes like human activities and emergencies (e.g. fire, drought, insect pest etc.), but also changes caused by vegetation phenology and climate changes. Yet, challenges occur in analyzing global environment changes and even the internal forces. This paper proposes a robust Anomaly Based Change Detection method (ABCD) for time-series images analysis by detecting abnormal points in data sets, which do not need to follow a normal distribution. With ABCD we can detect when and where changes occur, which is the prerequisite condition of global change studies. ABCD was tested initially with 10-day SPOT VGT NDVI (Normalized Difference Vegetation Index) times series tracking land cover type changes, seasonality and noise, then validated to real data in a large area in Jiangxi, south of China. Initial results show that ABCD can precisely detect spatial and temporal changes from long time series images rapidly.
Time Series Factor Analysis with an Application to Measuring Money
Gilbert, Paul D.; Meijer, Erik
2005-01-01
Time series factor analysis (TSFA) and its associated statistical theory is developed. Unlike dynamic factor analysis (DFA), TSFA obviates the need for explicitly modeling the process dynamics of the underlying phenomena. It also differs from standard factor analysis (FA) in important respects: the
A Parsimonious Bootstrap Method to Model Natural Inflow Energy Series
Directory of Open Access Journals (Sweden)
Fernando Luiz Cyrino Oliveira
2014-01-01
Full Text Available The Brazilian energy generation and transmission system is quite peculiar in its dimension and characteristics. As such, it can be considered unique in the world. It is a high dimension hydrothermal system with huge participation of hydro plants. Such strong dependency on hydrological regimes implies uncertainties related to the energetic planning, requiring adequate modeling of the hydrological time series. This is carried out via stochastic simulations of monthly inflow series using the family of Periodic Autoregressive models, PAR(p, one for each period (month of the year. In this paper it is shown the problems in fitting these models by the current system, particularly the identification of the autoregressive order “p” and the corresponding parameter estimation. It is followed by a proposal of a new approach to set both the model order and the parameters estimation of the PAR(p models, using a nonparametric computational technique, known as Bootstrap. This technique allows the estimation of reliable confidence intervals for the model parameters. The obtained results using the Parsimonious Bootstrap Method of Moments (PBMOM produced not only more parsimonious model orders but also adherent stochastic scenarios and, in the long range, lead to a better use of water resources in the energy operation planning.
Stochastic Analysis : A Series of Lectures
Dozzi, Marco; Flandoli, Franco; Russo, Francesco
2015-01-01
This book presents in thirteen refereed survey articles an overview of modern activity in stochastic analysis, written by leading international experts. The topics addressed include stochastic fluid dynamics and regularization by noise of deterministic dynamical systems; stochastic partial differential equations driven by Gaussian or Lévy noise, including the relationship between parabolic equations and particle systems, and wave equations in a geometric framework; Malliavin calculus and applications to stochastic numerics; stochastic integration in Banach spaces; porous media-type equations; stochastic deformations of classical mechanics and Feynman integrals and stochastic differential equations with reflection. The articles are based on short courses given at the Centre Interfacultaire Bernoulli of the Ecole Polytechnique Fédérale de Lausanne, Switzerland, from January to June 2012. They offer a valuable resource not only for specialists, but also for other researchers and Ph.D. students in the fields o...
Inorganic chemical analysis of environmental materials—A lecture series
Crock, J.G.; Lamothe, P.J.
2011-01-01
At the request of the faculty of the Colorado School of Mines, Golden, Colorado, the authors prepared and presented a lecture series to the students of a graduate level advanced instrumental analysis class. The slides and text presented in this report are a compilation and condensation of this series of lectures. The purpose of this report is to present the slides and notes and to emphasize the thought processes that should be used by a scientist submitting samples for analyses in order to procure analytical data to answer a research question. First and foremost, the analytical data generated can be no better than the samples submitted. The questions to be answered must first be well defined and the appropriate samples collected from the population that will answer the question. The proper methods of analysis, including proper sample preparation and digestion techniques, must then be applied. Care must be taken to achieve the required limits of detection of the critical analytes to yield detectable analyte concentration (above "action" levels) for the majority of the study's samples and to address what portion of those analytes answer the research question-total or partial concentrations. To guarantee a robust analytical result that answers the research question(s), a well-defined quality assurance and quality control (QA/QC) plan must be employed. This QA/QC plan must include the collection and analysis of field and laboratory blanks, sample duplicates, and matrix-matched standard reference materials (SRMs). The proper SRMs may include in-house materials and/or a selection of widely available commercial materials. A discussion of the preparation and applicability of in-house reference materials is also presented. Only when all these analytical issues are sufficiently addressed can the research questions be answered with known certainty.
Divergent series, summability and resurgence III resurgent methods and the first Painlevé equation
Delabaere, Eric
2016-01-01
The aim of this volume is two-fold. First, to show how the resurgent methods introduced in volume 1 can be applied efficiently in a non-linear setting; to this end further properties of the resurgence theory must be developed. Second, to analyze the fundamental example of the First Painlevé equation. The resurgent analysis of singularities is pushed all the way up to the so-called “bridge equation”, which concentrates all information about the non-linear Stokes phenomenon at infinity of the First Painlevé equation. The third in a series of three, entitled Divergent Series, Summability and Resurgence, this volume is aimed at graduate students, mathematicians and theoretical physicists who are interested in divergent power series and related problems, such as the Stokes phenomenon. The prerequisites are a working knowledge of complex analysis at the first-year graduate level and of the theory of resurgence, as presented in volume 1. .
Multivariate time series analysis with R and financial applications
Tsay, Ruey S
2013-01-01
Since the publication of his first book, Analysis of Financial Time Series, Ruey Tsay has become one of the most influential and prominent experts on the topic of time series. Different from the traditional and oftentimes complex approach to multivariate (MV) time series, this sequel book emphasizes structural specification, which results in simplified parsimonious VARMA modeling and, hence, eases comprehension. Through a fundamental balance between theory and applications, the book supplies readers with an accessible approach to financial econometric models and their applications to real-worl
A cluster merging method for time series microarray with production values.
Chira, Camelia; Sedano, Javier; Camara, Monica; Prieto, Carlos; Villar, Jose R; Corchado, Emilio
2014-09-01
A challenging task in time-course microarray data analysis is to cluster genes meaningfully combining the information provided by multiple replicates covering the same key time points. This paper proposes a novel cluster merging method to accomplish this goal obtaining groups with highly correlated genes. The main idea behind the proposed method is to generate a clustering starting from groups created based on individual temporal series (representing different biological replicates measured in the same time points) and merging them by taking into account the frequency by which two genes are assembled together in each clustering. The gene groups at the level of individual time series are generated using several shape-based clustering methods. This study is focused on a real-world time series microarray task with the aim to find co-expressed genes related to the production and growth of a certain bacteria. The shape-based clustering methods used at the level of individual time series rely on identifying similar gene expression patterns over time which, in some models, are further matched to the pattern of production/growth. The proposed cluster merging method is able to produce meaningful gene groups which can be naturally ranked by the level of agreement on the clustering among individual time series. The list of clusters and genes is further sorted based on the information correlation coefficient and new problem-specific relevant measures. Computational experiments and results of the cluster merging method are analyzed from a biological perspective and further compared with the clustering generated based on the mean value of time series and the same shape-based algorithm.
Fuzzy Linear Regression for the Time Series Data which is Fuzzified with SMRGT Method
Directory of Open Access Journals (Sweden)
Seçil YALAZ
2016-10-01
Full Text Available Our work on regression and classification provides a new contribution to the analysis of time series used in many areas for years. Owing to the fact that convergence could not obtained with the methods used in autocorrelation fixing process faced with time series regression application, success is not met or fall into obligation of changing the models’ degree. Changing the models’ degree may not be desirable in every situation. In our study, recommended for these situations, time series data was fuzzified by using the simple membership function and fuzzy rule generation technique (SMRGT and to estimate future an equation has created by applying fuzzy least square regression (FLSR method which is a simple linear regression method to this data. Although SMRGT has success in determining the flow discharge in open channels and can be used confidently for flow discharge modeling in open canals, as well as in pipe flow with some modifications, there is no clue about that this technique is successful in fuzzy linear regression modeling. Therefore, in order to address the luck of such a modeling, a new hybrid model has been described within this study. In conclusion, to demonstrate our methods’ efficiency, classical linear regression for time series data and linear regression for fuzzy time series data were applied to two different data sets, and these two approaches performances were compared by using different measures.
Turbulence time series data hole filling using Karhunen-Loeve and ARIMA methods
International Nuclear Information System (INIS)
Chang, M P J L; Nazari, H; Font, C O; Gilbreath, G C; Oh, E
2007-01-01
Measurements of optical turbulence time series data using unattended instruments over long time intervals inevitably lead to data drop-outs or degraded signals. We present a comparison of methods using both Principal Component Analysis, which is also known as the Karhunen-Loeve decomposition, and ARIMA that seek to correct for these event-induced and mechanically-induced signal drop-outs and degradations. We report on the quality of the correction by examining the Intrinsic Mode Functions generated by Empirical Mode Decomposition. The data studied are optical turbulence parameter time series from a commercial long path length optical anemometer/scintillometer, measured over several hundred metres in outdoor environments
Assessing Spontaneous Combustion Instability with Nonlinear Time Series Analysis
Eberhart, C. J.; Casiano, M. J.
2015-01-01
Considerable interest lies in the ability to characterize the onset of spontaneous instabilities within liquid propellant rocket engine (LPRE) combustion devices. Linear techniques, such as fast Fourier transforms, various correlation parameters, and critical damping parameters, have been used at great length for over fifty years. Recently, nonlinear time series methods have been applied to deduce information pertaining to instability incipiency hidden in seemingly stochastic combustion noise. A technique commonly used in biological sciences known as the Multifractal Detrended Fluctuation Analysis has been extended to the combustion dynamics field, and is introduced here as a data analysis approach complementary to linear ones. Advancing, a modified technique is leveraged to extract artifacts of impending combustion instability that present themselves a priori growth to limit cycle amplitudes. Analysis is demonstrated on data from J-2X gas generator testing during which a distinct spontaneous instability was observed. Comparisons are made to previous work wherein the data were characterized using linear approaches. Verification of the technique is performed by examining idealized signals and comparing two separate, independently developed tools.
Data imputation analysis for Cosmic Rays time series
Fernandes, R. C.; Lucio, P. S.; Fernandez, J. H.
2017-05-01
The occurrence of missing data concerning Galactic Cosmic Rays time series (GCR) is inevitable since loss of data is due to mechanical and human failure or technical problems and different periods of operation of GCR stations. The aim of this study was to perform multiple dataset imputation in order to depict the observational dataset. The study has used the monthly time series of GCR Climax (CLMX) and Roma (ROME) from 1960 to 2004 to simulate scenarios of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% of missing data compared to observed ROME series, with 50 replicates. Then, the CLMX station as a proxy for allocation of these scenarios was used. Three different methods for monthly dataset imputation were selected: AMÉLIA II - runs the bootstrap Expectation Maximization algorithm, MICE - runs an algorithm via Multivariate Imputation by Chained Equations and MTSDI - an Expectation Maximization algorithm-based method for imputation of missing values in multivariate normal time series. The synthetic time series compared with the observed ROME series has also been evaluated using several skill measures as such as RMSE, NRMSE, Agreement Index, R, R2, F-test and t-test. The results showed that for CLMX and ROME, the R2 and R statistics were equal to 0.98 and 0.96, respectively. It was observed that increases in the number of gaps generate loss of quality of the time series. Data imputation was more efficient with MTSDI method, with negligible errors and best skill coefficients. The results suggest a limit of about 60% of missing data for imputation, for monthly averages, no more than this. It is noteworthy that CLMX, ROME and KIEL stations present no missing data in the target period. This methodology allowed reconstructing 43 time series.
International Nuclear Information System (INIS)
Williams, Dennis K.; Ranson, William F.
2003-01-01
One of the paradigmatic classes of problems that frequently arise in piping stress analysis discipline is the effect of local stresses created by supports and restraints attachments. Over the past 20 years, concerns have been identified by both regulatory agencies in the nuclear power industry and others in the process and chemicals industries concerning the effect of various stiff clamping arrangements on the expected life of the pipe and its various piping components. In many of the commonly utilized geometries and arrangements of pipe clamps, the elasticity problem becomes the axisymmetric stress and deformation determination in a hollow cylinder (pipe) subjected to the appropriate boundary conditions and respective loads per se. One of the geometries that serve as a pipe anchor is comprised of two pipe clamps that are bolted tightly to the pipe and affixed to a modified shoe-type arrangement. The shoe is employed for the purpose of providing an immovable base that can be easily attached either by bolting or welding to a structural steel pipe rack. Over the past 50 years, the computational tools available to the piping analyst have changed dramatically and thereby have caused the implementation of solutions to the basic problems of elasticity to change likewise. The need to obtain closed form elasticity solutions, however, has always been a driving force in engineering. The employment of symbolic calculus that is currently available through numerous software packages makes closed form solutions very economical. This paper briefly traces the solutions over the past 50 years to a variety of axisymmetric stress problems involving hollow circular cylinders employing a Fourier series representation. In the present example, a properly chosen Fourier series represent the mathematical simulation of the imposed axial displacements on the outside diametrical surface. A general solution technique is introduced for the axisymmetric discontinuity stresses resulting from an
A novel water quality data analysis framework based on time-series data mining.
Deng, Weihui; Wang, Guoyin
2017-07-01
The rapid development of time-series data mining provides an emerging method for water resource management research. In this paper, based on the time-series data mining methodology, we propose a novel and general analysis framework for water quality time-series data. It consists of two parts: implementation components and common tasks of time-series data mining in water quality data. In the first part, we propose to granulate the time series into several two-dimensional normal clouds and calculate the similarities in the granulated level. On the basis of the similarity matrix, the similarity search, anomaly detection, and pattern discovery tasks in the water quality time-series instance dataset can be easily implemented in the second part. We present a case study of this analysis framework on weekly Dissolve Oxygen time-series data collected from five monitoring stations on the upper reaches of Yangtze River, China. It discovered the relationship of water quality in the mainstream and tributary as well as the main changing patterns of DO. The experimental results show that the proposed analysis framework is a feasible and efficient method to mine the hidden and valuable knowledge from water quality historical time-series data. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series.
Marken, John P; Halleran, Andrew D; Rahman, Atiqur; Odorizzi, Laura; LeFew, Michael C; Golino, Caroline A; Kemper, Peter; Saha, Margaret S
2016-01-01
Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features.
A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series.
Directory of Open Access Journals (Sweden)
John P Marken
Full Text Available Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features.
Fractal analysis and nonlinear forecasting of indoor 222Rn time series
International Nuclear Information System (INIS)
Pausch, G.; Bossew, P.; Hofmann, W.; Steger, F.
1998-01-01
Fractal analyses of indoor 222 Rn time series were performed using different chaos theory based measurements such as time delay method, Hurst's rescaled range analysis, capacity (fractal) dimension, and Lyapunov exponent. For all time series we calculated only positive Lyapunov exponents which is a hint to chaos, while the Hurst exponents were well below 0.5, indicating antipersistent behaviour (past trends tend to reverse in the future). These time series were also analyzed with a nonlinear prediction method which allowed an estimation of the embedding dimensions with some restrictions, limiting the prediction to about three relative time steps. (orig.)
International Nuclear Information System (INIS)
Deville, J.P.
1998-01-01
Nowadays, there are a lot of surfaces analysis methods, each having its specificity, its qualities, its constraints (for instance vacuum) and its limits. Expensive in time and in investment, these methods have to be used deliberately. This article appeals to non specialists. It gives some elements of choice according to the studied information, the sensitivity, the use constraints or the answer to a precise question. After having recalled the fundamental principles which govern these analysis methods, based on the interaction between radiations (ultraviolet, X) or particles (ions, electrons) with matter, two methods will be more particularly described: the Auger electron spectroscopy (AES) and x-rays photoemission spectroscopy (ESCA or XPS). Indeed, they are the most widespread methods in laboratories, the easier for use and probably the most productive for the analysis of surface of industrial materials or samples submitted to treatments in aggressive media. (O.M.)
Prediction of solar cycle 24 using fourier series analysis
International Nuclear Information System (INIS)
Khalid, M.; Sultana, M.; Zaidi, F.
2014-01-01
Predicting the behavior of solar activity has become very significant. It is due to its influence on Earth and the surrounding environment. Apt predictions of the amplitude and timing of the next solar cycle will aid in the estimation of the several results of Space Weather. In the past, many prediction procedures have been used and have been successful to various degrees in the field of solar activity forecast. In this study, Solar cycle 24 is forecasted by the Fourier series method. Comparative analysis has been made by auto regressive integrated moving averages method. From sources, January 2008 was the minimum preceding solar cycle 24, the amplitude and shape of solar cycle 24 is approximate on monthly number of sunspots. This forecast framework approximates a mean solar cycle 24, with the maximum appearing during May 2014 (+- 8 months), with most sunspot of 98 +- 10. Solar cycle 24 will be ending in June 2020 (+- 7 months). The difference between two consecutive peak values of solar cycles (i.e. solar cycle 23 and 24 ) is 165 months(+- 6 months). (author)
Multiresolution analysis of Bursa Malaysia KLCI time series
Ismail, Mohd Tahir; Dghais, Amel Abdoullah Ahmed
2017-05-01
In general, a time series is simply a sequence of numbers collected at regular intervals over a period. Financial time series data processing is concerned with the theory and practice of processing asset price over time, such as currency, commodity data, and stock market data. The primary aim of this study is to understand the fundamental characteristics of selected financial time series by using the time as well as the frequency domain analysis. After that prediction can be executed for the desired system for in sample forecasting. In this study, multiresolution analysis which the assist of discrete wavelet transforms (DWT) and maximal overlap discrete wavelet transform (MODWT) will be used to pinpoint special characteristics of Bursa Malaysia KLCI (Kuala Lumpur Composite Index) daily closing prices and return values. In addition, further case study discussions include the modeling of Bursa Malaysia KLCI using linear ARIMA with wavelets to address how multiresolution approach improves fitting and forecasting results.
Series-parallel method of direct solar array regulation
Gooder, S. T.
1976-01-01
A 40 watt experimental solar array was directly regulated by shorting out appropriate combinations of series and parallel segments of a solar array. Regulation switches were employed to control the array at various set-point voltages between 25 and 40 volts. Regulation to within + or - 0.5 volt was obtained over a range of solar array temperatures and illumination levels as an active load was varied from open circuit to maximum available power. A fourfold reduction in regulation switch power dissipation was achieved with series-parallel regulation as compared to the usual series-only switching for direct solar array regulation.
Institute of Scientific and Technical Information of China (English)
RONG Yan-shu; TU Qi-pu
2005-01-01
It is important and necessary to get a much longer precipitation series in order to research features of drought/flood and climate change.Based on dryness and wetness grades series of 18 stations in Northern China of 533 years from 1470 to 2002, the Moving Cumulative Frequency Method (MCFM) was developed, moving average precipitation series from 1499 to 2002 were reconstructed by testing three kinds of average precipitation, and the features of climate change and dry and wet periods were researched by using reconstructed precipitation series in the present paper.The results showed that there were good relationship between the reconstructed precipitation series and the observation precipitation series since 1954 and their relative root-mean-square error were below 1.89%, that the relation between reconstructed series and the dryness and wetness grades series were nonlinear and this nonlinear relation implied that reconstructed series were reliable and could became foundation data for researching evolution of the drought and flood.Analysis of climate change upon reconstructed precipitation series revealed that although drought intensity of recent dry period from middle 1970s of 20th century until early 21st century was not the strongest in historical climate of Northern China, intensity and duration of wet period was a great deal decreasing and shortening respectively, climate evolve to aridification situation in Northern China.
Time Series Analysis of Wheat Futures Reward in China
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Different from the fact that the main researches are focused on single futures contract and lack of the comparison of different periods, this paper described the statistical characteristics of wheat futures reward time series of Zhengzhou Commodity Exchange in recent three years. Besides the basic statistic analysis, the paper used the GARCH and EGARCH model to describe the time series which had the ARCH effect and analyzed the persistence of volatility shocks and the leverage effect. The results showed that compared with that of normal one,wheat futures reward series were abnormality, leptokurtic and thick tail distribution. The study also found that two-part of the reward series had no autocorrelation. Among the six correlative series, three ones presented the ARCH effect. By using of the Auto-regressive Distributed Lag Model, GARCH model and EGARCH model, the paper demonstrates the persistence of volatility shocks and the leverage effect on the wheat futures reward time series. The results reveal that on the one hand, the statistical characteristics of the wheat futures reward are similar to the aboard mature futures market as a whole. But on the other hand, the results reflect some shortages such as the immatureness and the over-control by the government in the Chinese future market.
Methods of Multivariate Analysis
Rencher, Alvin C
2012-01-01
Praise for the Second Edition "This book is a systematic, well-written, well-organized text on multivariate analysis packed with intuition and insight . . . There is much practical wisdom in this book that is hard to find elsewhere."-IIE Transactions Filled with new and timely content, Methods of Multivariate Analysis, Third Edition provides examples and exercises based on more than sixty real data sets from a wide variety of scientific fields. It takes a "methods" approach to the subject, placing an emphasis on how students and practitioners can employ multivariate analysis in real-life sit
Track Irregularity Time Series Analysis and Trend Forecasting
Directory of Open Access Journals (Sweden)
Jia Chaolong
2012-01-01
Full Text Available The combination of linear and nonlinear methods is widely used in the prediction of time series data. This paper analyzes track irregularity time series data by using gray incidence degree models and methods of data transformation, trying to find the connotative relationship between the time series data. In this paper, GM (1,1 is based on first-order, single variable linear differential equations; after an adaptive improvement and error correction, it is used to predict the long-term changing trend of track irregularity at a fixed measuring point; the stochastic linear AR, Kalman filtering model, and artificial neural network model are applied to predict the short-term changing trend of track irregularity at unit section. Both long-term and short-term changes prove that the model is effective and can achieve the expected accuracy.
Time series analysis of monthly pulpwood use in the Northeast
James T. Bones
1980-01-01
Time series analysis was used to develop a model that depicts pulpwood use in the Northeast. The model is useful in forecasting future pulpwood requirements (short term) or monitoring pulpwood-use activity in relation to past use patterns. The model predicted a downturn in use during 1980.
Multi-granular trend detection for time-series analysis
van Goethem, A.I.; Staals, F.; Löffler, M.; Dykes, J.; Speckmann, B.
2017-01-01
Time series (such as stock prices) and ensembles (such as model runs for weather forecasts) are two important types of one-dimensional time-varying data. Such data is readily available in large quantities but visual analysis of the raw data quickly becomes infeasible, even for moderately sized data
Time series analysis in astronomy: Limits and potentialities
DEFF Research Database (Denmark)
Vio, R.; Kristensen, N.R.; Madsen, Henrik
2005-01-01
In this paper we consider the problem of the limits concerning the physical information that can be extracted from the analysis of one or more time series ( light curves) typical of astrophysical objects. On the basis of theoretical considerations and numerical simulations, we show that with no a...
Time Series Analysis of 3D Coordinates Using Nonstochastic Observations
Velsink, H.
2016-01-01
Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to formulate constraints on
Time Series Analysis of 3D Coordinates Using Nonstochastic Observations
Hiddo Velsink
2016-01-01
From the article: Abstract Adjustment and testing of a combination of stochastic and nonstochastic observations is applied to the deformation analysis of a time series of 3D coordinates. Nonstochastic observations are constant values that are treated as if they were observations. They are used to
Identification of human operator performance models utilizing time series analysis
Holden, F. M.; Shinners, S. M.
1973-01-01
The results of an effort performed by Sperry Systems Management Division for AMRL in applying time series analysis as a tool for modeling the human operator are presented. This technique is utilized for determining the variation of the human transfer function under various levels of stress. The human operator's model is determined based on actual input and output data from a tracking experiment.
Analysis and implementation of LLC-T series parallel resonant ...
African Journals Online (AJOL)
A prototype 300 W, 100 kHz converter is designed and built to experimentally demonstrate, dynamic and steady state performance for the LLC-T series parallel resonant converter. A comparative study is performed between experimental results and the simulation studies. The analysis shows that the output of converter is ...
ESTIMATING RELIABILITY OF DISTURBANCES IN SATELLITE TIME SERIES DATA BASED ON STATISTICAL ANALYSIS
Directory of Open Access Journals (Sweden)
Z.-G. Zhou
2016-06-01
Full Text Available Normally, the status of land cover is inherently dynamic and changing continuously on temporal scale. However, disturbances or abnormal changes of land cover — caused by such as forest fire, flood, deforestation, and plant diseases — occur worldwide at unknown times and locations. Timely detection and characterization of these disturbances is of importance for land cover monitoring. Recently, many time-series-analysis methods have been developed for near real-time or online disturbance detection, using satellite image time series. However, the detection results were only labelled with “Change/ No change” by most of the present methods, while few methods focus on estimating reliability (or confidence level of the detected disturbances in image time series. To this end, this paper propose a statistical analysis method for estimating reliability of disturbances in new available remote sensing image time series, through analysis of full temporal information laid in time series data. The method consists of three main steps. (1 Segmenting and modelling of historical time series data based on Breaks for Additive Seasonal and Trend (BFAST. (2 Forecasting and detecting disturbances in new time series data. (3 Estimating reliability of each detected disturbance using statistical analysis based on Confidence Interval (CI and Confidence Levels (CL. The method was validated by estimating reliability of disturbance regions caused by a recent severe flooding occurred around the border of Russia and China. Results demonstrated that the method can estimate reliability of disturbances detected in satellite image with estimation error less than 5% and overall accuracy up to 90%.
Interglacial climate dynamics and advanced time series analysis
Mudelsee, Manfred; Bermejo, Miguel; Köhler, Peter; Lohmann, Gerrit
2013-04-01
Studying the climate dynamics of past interglacials (IGs) helps to better assess the anthropogenically influenced dynamics of the current IG, the Holocene. We select the IG portions from the EPICA Dome C ice core archive, which covers the past 800 ka, to apply methods of statistical time series analysis (Mudelsee 2010). The analysed variables are deuterium/H (indicating temperature) (Jouzel et al. 2007), greenhouse gases (Siegenthaler et al. 2005, Loulergue et al. 2008, L¨ü thi et al. 2008) and a model-co-derived climate radiative forcing (Köhler et al. 2010). We select additionally high-resolution sea-surface-temperature records from the marine sedimentary archive. The first statistical method, persistence time estimation (Mudelsee 2002) lets us infer the 'climate memory' property of IGs. Second, linear regression informs about long-term climate trends during IGs. Third, ramp function regression (Mudelsee 2000) is adapted to look on abrupt climate changes during IGs. We compare the Holocene with previous IGs in terms of these mathematical approaches, interprete results in a climate context, assess uncertainties and the requirements to data from old IGs for yielding results of 'acceptable' accuracy. This work receives financial support from the Deutsche Forschungsgemeinschaft (Project ClimSens within the DFG Research Priority Program INTERDYNAMIK) and the European Commission (Marie Curie Initial Training Network LINC, No. 289447, within the 7th Framework Programme). References Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317:793. Köhler P, Bintanja R
A Comparison of Missing-Data Procedures for Arima Time-Series Analysis
Velicer, Wayne F.; Colby, Suzanne M.
2005-01-01
Missing data are a common practical problem for longitudinal designs. Time-series analysis is a longitudinal method that involves a large number of observations on a single unit. Four different missing-data methods (deletion, mean substitution, mean of adjacent observations, and maximum likelihood estimation) were evaluated. Computer-generated…
International Nuclear Information System (INIS)
Gutierrez, Rafael M.; Useche, Gina M.; Buitrago, Elias
2007-01-01
We present a procedure developed to detect stochastic and deterministic information contained in empirical time series, useful to characterize and make models of different aspects of complex phenomena represented by such data. This procedure is applied to a seismological time series to obtain new information to study and understand geological phenomena. We use concepts and methods from nonlinear dynamics and maximum entropy. The mentioned method allows an optimal analysis of the available information
Pal, Mayukha; Madhusudana Rao, P.; Manimaran, P.
2014-12-01
We apply the recently developed multifractal detrended cross-correlation analysis method to investigate the cross-correlation behavior and fractal nature between two non-stationary time series. We analyze the daily return price of gold, West Texas Intermediate and Brent crude oil, foreign exchange rate data, over a period of 18 years. The cross correlation has been measured from the Hurst scaling exponents and the singularity spectrum quantitatively. From the results, the existence of multifractal cross-correlation between all of these time series is found. We also found that the cross correlation between gold and oil prices possess uncorrelated behavior and the remaining bivariate time series possess persistent behavior. It was observed for five bivariate series that the cross-correlation exponents are less than the calculated average generalized Hurst exponents (GHE) for q0 and for one bivariate series the cross-correlation exponent is greater than GHE for all q values.
Energy Technology Data Exchange (ETDEWEB)
Weitman, J; Daaverhoeg, N; Farvolden, S
1970-07-01
In connection with fast neutron (n, {alpha}) cross section measurements a novel boron analysis method has been developed. The boron concentration is inferred from the mass spectrometrically determined number of helium atoms produced in the thermal and epithermal B-10 (n, {alpha}) reaction. The relation between helium amount and boron concentration is given, including corrections for self shielding effects and background levels. Direct and diffusion losses of helium are calculated and losses due to gettering, adsorption and HF-ionization in the release stage are discussed. A series of boron determinations is described and the results are compared with those obtained by other methods, showing excellent agreement. The lower limit of boron concentration which can be measured varies with type of sample. In e.g. steel, concentrations below 10-5 % boron in samples of 0.1-1 gram may be determined.
International Nuclear Information System (INIS)
Hashimoto, Tetsuo; Sanada, Yukihisa; Uezu, Yasuhiro
2004-01-01
A delayed coincidence method, time-interval analysis (TIA), has been applied to successive α-α decay events on the millisecond time-scale. Such decay events are part of the 220 Rn→ 216 Po (T 1/2 145 ms) (Th-series) and 219 Rn→ 215 Po (T 1/2 1.78 ms) (Ac-series). By using TIA in addition to measurement of 226 Ra (U-series) from α-spectrometry by liquid scintillation counting (LSC), two natural decay series could be identified and separated. The TIA detection efficiency was improved by using the pulse-shape discrimination technique (PSD) to reject β-pulses, by solvent extraction of Ra combined with simple chemical separation, and by purging the scintillation solution with dry N 2 gas. The U- and Th-series together with the Ac-series were determined, respectively, from alpha spectra and TIA carried out immediately after Ra-extraction. Using the 221 Fr→ 217 At (T 1/2 32.3 ms) decay process as a tracer, overall yields were estimated from application of TIA to the 225 Ra (Np-decay series) at the time of maximum growth. The present method has proven useful for simultaneous determination of three radioactive decay series in environmental samples. (orig.)
DEFF Research Database (Denmark)
Olivarius, Signe
of the transcriptome, 5’ end capture of RNA is combined with next-generation sequencing for high-throughput quantitative assessment of transcription start sites by two different methods. The methods presented here allow for functional investigation of coding as well as noncoding RNA and contribute to future...... RNAs rely on interactions with proteins, the establishment of protein-binding profiles is essential for the characterization of RNAs. Aiming to facilitate RNA analysis, this thesis introduces proteomics- as well as transcriptomics-based methods for the functional characterization of RNA. First, RNA...
Mendoza-Rosas, Ana Teresa; De la Cruz-Reyna, Servando
2008-09-01
The probabilistic analysis of volcanic eruption time series is an essential step for the assessment of volcanic hazard and risk. Such series describe complex processes involving different types of eruptions over different time scales. A statistical method linking geological and historical eruption time series is proposed for calculating the probabilities of future eruptions. The first step of the analysis is to characterize the eruptions by their magnitudes. As is the case in most natural phenomena, lower magnitude events are more frequent, and the behavior of the eruption series may be biased by such events. On the other hand, eruptive series are commonly studied using conventional statistics and treated as homogeneous Poisson processes. However, time-dependent series, or sequences including rare or extreme events, represented by very few data of large eruptions require special methods of analysis, such as the extreme-value theory applied to non-homogeneous Poisson processes. Here we propose a general methodology for analyzing such processes attempting to obtain better estimates of the volcanic hazard. This is done in three steps: Firstly, the historical eruptive series is complemented with the available geological eruption data. The linking of these series is done assuming an inverse relationship between the eruption magnitudes and the occurrence rate of each magnitude class. Secondly, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Thirdly, the linked eruption series are analyzed as a non-homogeneous Poisson process with a generalized Pareto distribution as intensity function. As an application, the method is tested on the eruption series of five active polygenetic Mexican volcanoes: Colima, Citlaltépetl, Nevado de Toluca, Popocatépetl and El Chichón, to obtain hazard estimates.
Isaacson, Eugene
1994-01-01
This excellent text for advanced undergraduates and graduate students covers norms, numerical solution of linear systems and matrix factoring, iterative solutions of nonlinear equations, eigenvalues and eigenvectors, polynomial approximation, and other topics. It offers a careful analysis and stresses techniques for developing new methods, plus many examples and problems. 1966 edition.
Qian, Xi-Yuan; Liu, Ya-Min; Jiang, Zhi-Qiang; Podobnik, Boris; Zhou, Wei-Xing; Stanley, H. Eugene
2015-06-01
When common factors strongly influence two power-law cross-correlated time series recorded in complex natural or social systems, using detrended cross-correlation analysis (DCCA) without considering these common factors will bias the results. We use detrended partial cross-correlation analysis (DPXA) to uncover the intrinsic power-law cross correlations between two simultaneously recorded time series in the presence of nonstationarity after removing the effects of other time series acting as common forces. The DPXA method is a generalization of the detrended cross-correlation analysis that takes into account partial correlation analysis. We demonstrate the method by using bivariate fractional Brownian motions contaminated with a fractional Brownian motion. We find that the DPXA is able to recover the analytical cross Hurst indices, and thus the multiscale DPXA coefficients are a viable alternative to the conventional cross-correlation coefficient. We demonstrate the advantage of the DPXA coefficients over the DCCA coefficients by analyzing contaminated bivariate fractional Brownian motions. We calculate the DPXA coefficients and use them to extract the intrinsic cross correlation between crude oil and gold futures by taking into consideration the impact of the U.S. dollar index. We develop the multifractal DPXA (MF-DPXA) method in order to generalize the DPXA method and investigate multifractal time series. We analyze multifractal binomial measures masked with strong white noises and find that the MF-DPXA method quantifies the hidden multifractal nature while the multifractal DCCA method fails.
Time series analysis of nuclear instrumentation in EBR-II
International Nuclear Information System (INIS)
Imel, G.R.
1996-01-01
Results of a time series analysis of the scaler count data from the 3 wide range nuclear detectors in the Experimental Breeder Reactor-II are presented. One of the channels was replaced, and it was desired to determine if there was any statistically significant change (ie, improvement) in the channel's response after the replacement. Data were collected from all 3 channels for 16-day periods before and after detector replacement. Time series analysis and statistical tests showed that there was no significant change after the detector replacement. Also, there were no statistically significant differences among the 3 channels, either before or after the replacement. Finally, it was determined that errors in the reactivity change inferred from subcritical count monitoring during fuel handling would be on the other of 20-30 cents for single count intervals
Time series analysis of wind speed using VAR and the generalized impulse response technique
Energy Technology Data Exchange (ETDEWEB)
Ewing, Bradley T. [Area of Information Systems and Quantitative Sciences, Rawls College of Business and Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX 79409-2101 (United States); Kruse, Jamie Brown [Center for Natural Hazard Research, East Carolina University, Greenville, NC (United States); Schroeder, John L. [Department of Geosciences and Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX (United States); Smith, Douglas A. [Department of Civil Engineering and Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX (United States)
2007-03-15
This research examines the interdependence in time series wind speed data measured in the same location at four different heights. A multiple-equation system known as a vector autoregression is proposed for characterizing the time series dynamics of wind. Additionally, the recently developed method of generalized impulse response analysis provides insight into the cross-effects of the wind series and their responses to shocks. Findings are based on analysis of contemporaneous wind speed time histories taken at 13, 33, 70 and 160 ft above ground level with a sampling rate of 10 Hz. The results indicate that wind speeds measured at 70 ft was the most variable. Further, the turbulence persisted longer at the 70-ft measurement than at the other heights. The greatest interdependence is observed at 13 ft. Gusts at 160 ft led to the greatest persistence to an 'own' shock and led to greatest persistence in the responses of the other wind series. (author)
Winter Holts Oscillatory Method: A New Method of Resampling in Time Series.
Directory of Open Access Journals (Sweden)
Muhammad Imtiaz Subhani
2016-12-01
Full Text Available The core proposition behind this research is to create innovative methods of bootstrapping that can be applied in time series data. In order to find new methods of bootstrapping, various methods were reviewed; The data of automotive Sales, Market Shares and Net Exports of the top 10 countries, which includes China, Europe, United States of America (USA, Japan, Germany, South Korea, India, Mexico, Brazil, Spain and, Canada from 2002 to 2014 were collected through various sources which includes UN Comtrade, Index Mundi and World Bank. The findings of this paper confirmed that Bootstrapping for resampling through winter forecasting by Oscillation and Average methods give more robust results than the winter forecasting by any general methods.
Nonlinear time series theory, methods and applications with R examples
Douc, Randal; Stoffer, David
2014-01-01
FOUNDATIONSLinear ModelsStochastic Processes The Covariance World Linear Processes The Multivariate Cases Numerical Examples ExercisesLinear Gaussian State Space Models Model Basics Filtering, Smoothing, and Forecasting Maximum Likelihood Estimation Smoothing Splines and the Kalman Smoother Asymptotic Distribution of the MLE Missing Data Modifications Structural Component Models State-Space Models with Correlated Errors Exercises Beyond Linear ModelsNonlinear Non-Gaussian Data Volterra Series Expansion Cumulants and Higher-Order Spectra Bilinear Models Conditionally Heteroscedastic Models Thre
Spectral Unmixing Analysis of Time Series Landsat 8 Images
Zhuo, R.; Xu, L.; Peng, J.; Chen, Y.
2018-05-01
Temporal analysis of Landsat 8 images opens up new opportunities in the unmixing procedure. Although spectral analysis of time series Landsat imagery has its own advantage, it has rarely been studied. Nevertheless, using the temporal information can provide improved unmixing performance when compared to independent image analyses. Moreover, different land cover types may demonstrate different temporal patterns, which can aid the discrimination of different natures. Therefore, this letter presents time series K-P-Means, a new solution to the problem of unmixing time series Landsat imagery. The proposed approach is to obtain the "purified" pixels in order to achieve optimal unmixing performance. The vertex component analysis (VCA) is used to extract endmembers for endmember initialization. First, nonnegative least square (NNLS) is used to estimate abundance maps by using the endmember. Then, the estimated endmember is the mean value of "purified" pixels, which is the residual of the mixed pixel after excluding the contribution of all nondominant endmembers. Assembling two main steps (abundance estimation and endmember update) into the iterative optimization framework generates the complete algorithm. Experiments using both simulated and real Landsat 8 images show that the proposed "joint unmixing" approach provides more accurate endmember and abundance estimation results compared with "separate unmixing" approach.
Notes on economic time series analysis system theoretic perspectives
Aoki, Masanao
1983-01-01
In seminars and graduate level courses I have had several opportunities to discuss modeling and analysis of time series with economists and economic graduate students during the past several years. These experiences made me aware of a gap between what economic graduate students are taught about vector-valued time series and what is available in recent system literature. Wishing to fill or narrow the gap that I suspect is more widely spread than my personal experiences indicate, I have written these notes to augment and reor ganize materials I have given in these courses and seminars. I have endeavored to present, in as much a self-contained way as practicable, a body of results and techniques in system theory that I judge to be relevant and useful to economists interested in using time series in their research. I have essentially acted as an intermediary and interpreter of system theoretic results and perspectives in time series by filtering out non-essential details, and presenting coherent accounts of wha...
Comparison of time-series registration methods in breast dynamic infrared imaging
Riyahi-Alam, S.; Agostini, V.; Molinari, F.; Knaflitz, M.
2015-03-01
Automated motion reduction in dynamic infrared imaging is on demand in clinical applications, since movement disarranges time-temperature series of each pixel, thus originating thermal artifacts that might bias the clinical decision. All previously proposed registration methods are feature based algorithms requiring manual intervention. The aim of this work is to optimize the registration strategy specifically for Breast Dynamic Infrared Imaging and to make it user-independent. We implemented and evaluated 3 different 3D time-series registration methods: 1. Linear affine, 2. Non-linear Bspline, 3. Demons applied to 12 datasets of healthy breast thermal images. The results are evaluated through normalized mutual information with average values of 0.70 ±0.03, 0.74 ±0.03 and 0.81 ±0.09 (out of 1) for Affine, Bspline and Demons registration, respectively, as well as breast boundary overlap and Jacobian determinant of the deformation field. The statistical analysis of the results showed that symmetric diffeomorphic Demons' registration method outperforms also with the best breast alignment and non-negative Jacobian values which guarantee image similarity and anatomical consistency of the transformation, due to homologous forces enforcing the pixel geometric disparities to be shortened on all the frames. We propose Demons' registration as an effective technique for time-series dynamic infrared registration, to stabilize the local temperature oscillation.
Time Series Imputation via L1 Norm-Based Singular Spectrum Analysis
Kalantari, Mahdi; Yarmohammadi, Masoud; Hassani, Hossein; Silva, Emmanuel Sirimal
Missing values in time series data is a well-known and important problem which many researchers have studied extensively in various fields. In this paper, a new nonparametric approach for missing value imputation in time series is proposed. The main novelty of this research is applying the L1 norm-based version of Singular Spectrum Analysis (SSA), namely L1-SSA which is robust against outliers. The performance of the new imputation method has been compared with many other established methods. The comparison is done by applying them to various real and simulated time series. The obtained results confirm that the SSA-based methods, especially L1-SSA can provide better imputation in comparison to other methods.
Hansen, J V; Nelson, R D
1997-01-01
Ever since the initial planning for the 1997 Utah legislative session, neural-network forecasting techniques have provided valuable insights for analysts forecasting tax revenues. These revenue estimates are critically important since agency budgets, support for education, and improvements to infrastructure all depend on their accuracy. Underforecasting generates windfalls that concern taxpayers, whereas overforecasting produces budget shortfalls that cause inadequately funded commitments. The pattern finding ability of neural networks gives insightful and alternative views of the seasonal and cyclical components commonly found in economic time series data. Two applications of neural networks to revenue forecasting clearly demonstrate how these models complement traditional time series techniques. In the first, preoccupation with a potential downturn in the economy distracts analysis based on traditional time series methods so that it overlooks an emerging new phenomenon in the data. In this case, neural networks identify the new pattern that then allows modification of the time series models and finally gives more accurate forecasts. In the second application, data structure found by traditional statistical tools allows analysts to provide neural networks with important information that the networks then use to create more accurate models. In summary, for the Utah revenue outlook, the insights that result from a portfolio of forecasts that includes neural networks exceeds the understanding generated from strictly statistical forecasting techniques. In this case, the synergy clearly results in the whole of the portfolio of forecasts being more accurate than the sum of the individual parts.
Wang, Jin; Sun, Xiangping; Nahavandi, Saeid; Kouzani, Abbas; Wu, Yuchuan; She, Mary
2014-11-01
Biomedical time series clustering that automatically groups a collection of time series according to their internal similarity is of importance for medical record management and inspection such as bio-signals archiving and retrieval. In this paper, a novel framework that automatically groups a set of unlabelled multichannel biomedical time series according to their internal structural similarity is proposed. Specifically, we treat a multichannel biomedical time series as a document and extract local segments from the time series as words. We extend a topic model, i.e., the Hierarchical probabilistic Latent Semantic Analysis (H-pLSA), which was originally developed for visual motion analysis to cluster a set of unlabelled multichannel time series. The H-pLSA models each channel of the multichannel time series using a local pLSA in the first layer. The topics learned in the local pLSA are then fed to a global pLSA in the second layer to discover the categories of multichannel time series. Experiments on a dataset extracted from multichannel Electrocardiography (ECG) signals demonstrate that the proposed method performs better than previous state-of-the-art approaches and is relatively robust to the variations of parameters including length of local segments and dictionary size. Although the experimental evaluation used the multichannel ECG signals in a biometric scenario, the proposed algorithm is a universal framework for multichannel biomedical time series clustering according to their structural similarity, which has many applications in biomedical time series management. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
International Nuclear Information System (INIS)
Alverbro, Karin
2010-01-01
Many decision-making situations today affect humans and the environment. In practice, many such decisions are made without an overall view and prioritise one or other of the two areas. Now and then these two areas of regulation come into conflict, e.g. the best alternative as regards environmental considerations is not always the best from a human safety perspective and vice versa. This report was prepared within a major project with the aim of developing a framework in which both the environmental aspects and the human safety aspects are integrated, and decisions can be made taking both fields into consideration. The safety risks have to be analysed in order to be successfully avoided and one way of doing this is to use different kinds of risk analysis methods. There is an abundance of existing methods to choose from and new methods are constantly being developed. This report describes some of the risk analysis methods currently available for analysing safety and examines the relationships between them. The focus here is mainly on human safety aspects
Nordemann, D. J. R.; Rigozo, N. R.; de Souza Echer, M. P.; Echer, E.
2008-11-01
We present here an implementation of a least squares iterative regression method applied to the sine functions embedded in the principal components extracted from geophysical time series. This method seems to represent a useful improvement for the non-stationary time series periodicity quantitative analysis. The principal components determination followed by the least squares iterative regression method was implemented in an algorithm written in the Scilab (2006) language. The main result of the method is to obtain the set of sine functions embedded in the series analyzed in decreasing order of significance, from the most important ones, likely to represent the physical processes involved in the generation of the series, to the less important ones that represent noise components. Taking into account the need of a deeper knowledge of the Sun's past history and its implication to global climate change, the method was applied to the Sunspot Number series (1750-2004). With the threshold and parameter values used here, the application of the method leads to a total of 441 explicit sine functions, among which 65 were considered as being significant and were used for a reconstruction that gave a normalized mean squared error of 0.146.
Molenaar, P.C.M.
1987-01-01
Outlines a frequency domain analysis of the dynamic factor model and proposes a solution to the problem of constructing a causal filter of lagged factor loadings. The method is illustrated with applications to simulated and real multivariate time series. The latter applications involve topographic
Time Series Analysis, Modeling and Applications A Computational Intelligence Perspective
Chen, Shyi-Ming
2013-01-01
Temporal and spatiotemporal data form an inherent fabric of the society as we are faced with streams of data coming from numerous sensors, data feeds, recordings associated with numerous areas of application embracing physical and human-generated phenomena (environmental data, financial markets, Internet activities, etc.). A quest for a thorough analysis, interpretation, modeling and prediction of time series comes with an ongoing challenge for developing models that are both accurate and user-friendly (interpretable). The volume is aimed to exploit the conceptual and algorithmic framework of Computational Intelligence (CI) to form a cohesive and comprehensive environment for building models of time series. The contributions covered in the volume are fully reflective of the wealth of the CI technologies by bringing together ideas, algorithms, and numeric studies, which convincingly demonstrate their relevance, maturity and visible usefulness. It reflects upon the truly remarkable diversity of methodological a...
Jandoc, Racquel; Burden, Andrea M; Mamdani, Muhammad; Lévesque, Linda E; Cadarette, Suzanne M
2015-08-01
To describe the use and reporting of interrupted time series methods in drug utilization research. We completed a systematic search of MEDLINE, Web of Science, and reference lists to identify English language articles through to December 2013 that used interrupted time series methods in drug utilization research. We tabulated the number of studies by publication year and summarized methodological detail. We identified 220 eligible empirical applications since 1984. Only 17 (8%) were published before 2000, and 90 (41%) were published since 2010. Segmented regression was the most commonly applied interrupted time series method (67%). Most studies assessed drug policy changes (51%, n = 112); 22% (n = 48) examined the impact of new evidence, 18% (n = 39) examined safety advisories, and 16% (n = 35) examined quality improvement interventions. Autocorrelation was considered in 66% of studies, 31% reported adjusting for seasonality, and 15% accounted for nonstationarity. Use of interrupted time series methods in drug utilization research has increased, particularly in recent years. Despite methodological recommendations, there is large variation in reporting of analytic methods. Developing methodological and reporting standards for interrupted time series analysis is important to improve its application in drug utilization research, and we provide recommendations for consideration. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Berthomier, Charles
1975-01-01
A method capable of handling the amplitude and the frequency time laws of a certain kind of geophysical signals is described here. This method is based upon the analytical signal idea of Gabor and Ville, which is constructed either in the time domain by adding an imaginary part to the real signal (in-quadrature signal), or in the frequency domain by suppressing negative frequency components. The instantaneous frequency of the initial signal is then defined as the time derivative of the phase of the analytical signal, and his amplitude, or envelope, as the modulus of this complex signal. The method is applied to three types of magnetospheric signals: chorus, whistlers and pearls. The results obtained by analog and numerical calculations are compared to results obtained by classical systems using filters, i.e. based upon a different definition of the concept of frequency. The precision with which the frequency-time laws are determined leads then to the examination of the principle of the method and to a definition of instantaneous power density spectrum attached to the signal, and to the first consequences of this definition. In this way, a two-dimensional representation of the signal is introduced which is less deformed by the analysis system properties than the usual representation, and which moreover has the advantage of being obtainable practically in real time [fr
Radhakrishnan, Srinivasan; Duvvuru, Arjun; Sultornsanee, Sivarit; Kamarthi, Sagar
2016-02-01
The cross correlation coefficient has been widely applied in financial time series analysis, in specific, for understanding chaotic behaviour in terms of stock price and index movements during crisis periods. To better understand time series correlation dynamics, the cross correlation matrices are represented as networks, in which a node stands for an individual time series and a link indicates cross correlation between a pair of nodes. These networks are converted into simpler trees using different schemes. In this context, Minimum Spanning Trees (MST) are the most favoured tree structures because of their ability to preserve all the nodes and thereby retain essential information imbued in the network. Although cross correlations underlying MSTs capture essential information, they do not faithfully capture dynamic behaviour embedded in the time series data of financial systems because cross correlation is a reliable measure only if the relationship between the time series is linear. To address the issue, this work investigates a new measure called phase synchronization (PS) for establishing correlations among different time series which relate to one another, linearly or nonlinearly. In this approach the strength of a link between a pair of time series (nodes) is determined by the level of phase synchronization between them. We compare the performance of phase synchronization based MST with cross correlation based MST along selected network measures across temporal frame that includes economically good and crisis periods. We observe agreement in the directionality of the results across these two methods. They show similar trends, upward or downward, when comparing selected network measures. Though both the methods give similar trends, the phase synchronization based MST is a more reliable representation of the dynamic behaviour of financial systems than the cross correlation based MST because of the former's ability to quantify nonlinear relationships among time
Chaotic time series analysis in economics: Balance and perspectives
International Nuclear Information System (INIS)
Faggini, Marisa
2014-01-01
The aim of the paper is not to review the large body of work concerning nonlinear time series analysis in economics, about which much has been written, but rather to focus on the new techniques developed to detect chaotic behaviours in economic data. More specifically, our attention will be devoted to reviewing some of these techniques and their application to economic and financial data in order to understand why chaos theory, after a period of growing interest, appears now not to be such an interesting and promising research area
Chaotic time series analysis in economics: Balance and perspectives
Energy Technology Data Exchange (ETDEWEB)
Faggini, Marisa, E-mail: mfaggini@unisa.it [Dipartimento di Scienze Economiche e Statistiche, Università di Salerno, Fisciano 84084 (Italy)
2014-12-15
The aim of the paper is not to review the large body of work concerning nonlinear time series analysis in economics, about which much has been written, but rather to focus on the new techniques developed to detect chaotic behaviours in economic data. More specifically, our attention will be devoted to reviewing some of these techniques and their application to economic and financial data in order to understand why chaos theory, after a period of growing interest, appears now not to be such an interesting and promising research area.
van der Krieke, Lian; Emerencia, Ando C; Bos, Elisabeth H; Rosmalen, Judith Gm; Riese, Harriëtte; Aiello, Marco; Sytema, Sjoerd; de Jonge, Peter
2015-01-01
BACKGROUND: Health promotion can be tailored by combining ecological momentary assessments (EMA) with time series analysis. This combined method allows for studying the temporal order of dynamic relationships among variables, which may provide concrete indications for intervention. However,
Methods for geochemical analysis
Baedecker, Philip A.
1987-01-01
The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.
A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method.
Yang, Jun-He; Cheng, Ching-Hsue; Chan, Chia-Pan
2017-01-01
Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir's water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir's water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.
A Time-Series Water Level Forecasting Model Based on Imputation and Variable Selection Method
Directory of Open Access Journals (Sweden)
Jun-He Yang
2017-01-01
Full Text Available Reservoirs are important for households and impact the national economy. This paper proposed a time-series forecasting model based on estimating a missing value followed by variable selection to forecast the reservoir’s water level. This study collected data from the Taiwan Shimen Reservoir as well as daily atmospheric data from 2008 to 2015. The two datasets are concatenated into an integrated dataset based on ordering of the data as a research dataset. The proposed time-series forecasting model summarily has three foci. First, this study uses five imputation methods to directly delete the missing value. Second, we identified the key variable via factor analysis and then deleted the unimportant variables sequentially via the variable selection method. Finally, the proposed model uses a Random Forest to build the forecasting model of the reservoir’s water level. This was done to compare with the listing method under the forecasting error. These experimental results indicate that the Random Forest forecasting model when applied to variable selection with full variables has better forecasting performance than the listing model. In addition, this experiment shows that the proposed variable selection can help determine five forecast methods used here to improve the forecasting capability.
International Nuclear Information System (INIS)
Bonnet, Nogl; Nuzillard, Danielle
2005-01-01
A complementary approach is proposed for analysing series of electron energy-loss spectra that can be recorded with the spectrum-line technique, across an interface for instance. This approach, called blind source separation (BSS) or independent component analysis (ICA), complements two existing methods: the spatial difference approach and multivariate statistical analysis. The principle of the technique is presented and illustrations are given through one simulated example and one real example
COMPUTER METHODS OF GENETIC ANALYSIS.
Directory of Open Access Journals (Sweden)
A. L. Osipov
2017-02-01
Full Text Available The basic statistical methods used in conducting the genetic analysis of human traits. We studied by segregation analysis, linkage analysis and allelic associations. Developed software for the implementation of these methods support.
Neutron noise analysis of BWR using time series analysis
International Nuclear Information System (INIS)
Fukunishi, Kohyu
1976-01-01
The main purpose of this paper is to give more quantitative understanding of noise source in neutron flux and to provide a useful tool for the detection and diagnosis of reactor. The space dependent effects of distributed neutron flux signals at the axial direction of two different strings are investigated by the power contribution ratio among neutron fluxes and the incoherent noise spectra of neutron fluxes derived from autoregressive spectra. The signals are measured on the medium sized commercial BWR of 460 MWe in Japan. From the obtained results, local and global noise sources in neutron flux are discussed. This method is indicated to be a useful tool for detection and diagnosis of anomalous phenomena in BWR. (orig./RW) [de
Properties of Asymmetric Detrended Fluctuation Analysis in the time series of RR intervals
Piskorski, J.; Kosmider, M.; Mieszkowski, D.; Krauze, T.; Wykretowicz, A.; Guzik, P.
2018-02-01
Heart rate asymmetry is a phenomenon by which the accelerations and decelerations of heart rate behave differently, and this difference is consistent and unidirectional, i.e. in most of the analyzed recordings the inequalities have the same directions. So far, it has been established for variance and runs based types of descriptors of RR intervals time series. In this paper we apply the newly developed method of Asymmetric Detrended Fluctuation Analysis, which so far has mainly been used with economic time series, to the set of 420 stationary 30 min time series of RR intervals from young, healthy individuals aged between 20 and 40. This asymmetric approach introduces separate scaling exponents for rising and falling trends. We systematically study the presence of asymmetry in both global and local versions of this method. In this study global means "applying to the whole time series" and local means "applying to windows jumping along the recording". It is found that the correlation structure of the fluctuations left over after detrending in physiological time series shows strong asymmetric features in both magnitude, with α+ physiological data after shuffling or with a group of symmetric synthetic time series.
The application of complex network time series analysis in turbulent heated jets
International Nuclear Information System (INIS)
Charakopoulos, A. K.; Karakasidis, T. E.; Liakopoulos, A.; Papanicolaou, P. N.
2014-01-01
In the present study, we applied the methodology of the complex network-based time series analysis to experimental temperature time series from a vertical turbulent heated jet. More specifically, we approach the hydrodynamic problem of discriminating time series corresponding to various regions relative to the jet axis, i.e., time series corresponding to regions that are close to the jet axis from time series originating at regions with a different dynamical regime based on the constructed network properties. Applying the transformation phase space method (k nearest neighbors) and also the visibility algorithm, we transformed time series into networks and evaluated the topological properties of the networks such as degree distribution, average path length, diameter, modularity, and clustering coefficient. The results show that the complex network approach allows distinguishing, identifying, and exploring in detail various dynamical regions of the jet flow, and associate it to the corresponding physical behavior. In addition, in order to reject the hypothesis that the studied networks originate from a stochastic process, we generated random network and we compared their statistical properties with that originating from the experimental data. As far as the efficiency of the two methods for network construction is concerned, we conclude that both methodologies lead to network properties that present almost the same qualitative behavior and allow us to reveal the underlying system dynamics
DEFF Research Database (Denmark)
Xu, Shenzhi; Ai, Xiaomeng; Fang, Jiakun
2017-01-01
Photovoltaic (PV) power generation has made considerable developments in recent years. But its intermittent and volatility of its output has seriously affected the security operation of the power system. In order to better understand the PV generation and provide sufficient data support...... for analysis the impacts, a novel generation method for PV power time series combining decomposition technique and Markov chain theory is presented in this paper. It digs important factors from historical data from existing PV plants and then reproduce new data with similar patterns. In detail, the proposed...... method first decomposes the PV power time series into ideal output curve, amplitude parameter series and random fluctuating component three parts. Then generating daily ideal output curve by the extraction of typical daily data, amplitude parameter series based on the Markov chain Monte Carlo (MCMC...
Time series clustering analysis of health-promoting behavior
Yang, Chi-Ta; Hung, Yu-Shiang; Deng, Guang-Feng
2013-10-01
Health promotion must be emphasized to achieve the World Health Organization goal of health for all. Since the global population is aging rapidly, ComCare elder health-promoting service was developed by the Taiwan Institute for Information Industry in 2011. Based on the Pender health promotion model, ComCare service offers five categories of health-promoting functions to address the everyday needs of seniors: nutrition management, social support, exercise management, health responsibility, stress management. To assess the overall ComCare service and to improve understanding of the health-promoting behavior of elders, this study analyzed health-promoting behavioral data automatically collected by the ComCare monitoring system. In the 30638 session records collected for 249 elders from January, 2012 to March, 2013, behavior patterns were identified by fuzzy c-mean time series clustering algorithm combined with autocorrelation-based representation schemes. The analysis showed that time series data for elder health-promoting behavior can be classified into four different clusters. Each type reveals different health-promoting needs, frequencies, function numbers and behaviors. The data analysis result can assist policymakers, health-care providers, and experts in medicine, public health, nursing and psychology and has been provided to Taiwan National Health Insurance Administration to assess the elder health-promoting behavior.
Empirical method to measure stochasticity and multifractality in nonlinear time series
Lin, Chih-Hao; Chang, Chia-Seng; Li, Sai-Ping
2013-12-01
An empirical algorithm is used here to study the stochastic and multifractal nature of nonlinear time series. A parameter can be defined to quantitatively measure the deviation of the time series from a Wiener process so that the stochasticity of different time series can be compared. The local volatility of the time series under study can be constructed using this algorithm, and the multifractal structure of the time series can be analyzed by using this local volatility. As an example, we employ this method to analyze financial time series from different stock markets. The result shows that while developed markets evolve very much like an Ito process, the emergent markets are far from efficient. Differences about the multifractal structures and leverage effects between developed and emergent markets are discussed. The algorithm used here can be applied in a similar fashion to study time series of other complex systems.
A Comparison of Various Forecasting Methods for Autocorrelated Time Series
Directory of Open Access Journals (Sweden)
Karin Kandananond
2012-07-01
Full Text Available The accuracy of forecasts significantly affects the overall performance of a whole supply chain system. Sometimes, the nature of consumer products might cause difficulties in forecasting for the future demands because of its complicated structure. In this study, two machine learning methods, artificial neural network (ANN and support vector machine (SVM, and a traditional approach, the autoregressive integrated moving average (ARIMA model, were utilized to predict the demand for consumer products. The training data used were the actual demand of six different products from a consumer product company in Thailand. Initially, each set of data was analysed using Ljung‐Box‐Q statistics to test for autocorrelation. Afterwards, each method was applied to different sets of data. The results indicated that the SVM method had a better forecast quality (in terms of MAPE than ANN and ARIMA in every category of products.
Predicting the Market Potential Using Time Series Analysis
Directory of Open Access Journals (Sweden)
Halmet Bradosti
2015-12-01
Full Text Available The aim of this analysis is to forecast a mini-market sales volume for the period of twelve months starting August 2015 to August 2016. The study is based on the monthly sales in Iraqi Dinar for a private local mini-market for the month of April 2014 to July 2015. As revealed on the graph and of course if the stagnant economic condition continues, the trend of future sales is down-warding. Based on time series analysis, the business may continue to operate and generate small revenues until August 2016. However, due to low sales volume, low profit margin and operating expenses, the revenues may not be adequate enough to produce positive net income and the business may not be able to operate afterward. The principal question rose from this is the forecasting sales in the region will be difficult where the business cycle so dynamic and revolutionary due to systematic risks and unforeseeable future.
Fractal time series analysis of postural stability in elderly and control subjects
Directory of Open Access Journals (Sweden)
Doussot Michel
2007-05-01
Full Text Available Abstract Background The study of balance using stabilogram analysis is of particular interest in the study of falls. Although simple statistical parameters derived from the stabilogram have been shown to predict risk of falls, such measures offer little insight into the underlying control mechanisms responsible for degradation in balance. In contrast, fractal and non-linear time-series analysis of stabilograms, such as estimations of the Hurst exponent (H, may provide information related to the underlying motor control strategies governing postural stability. In order to be adapted for a home-based follow-up of balance, such methods need to be robust, regardless of the experimental protocol, while producing time-series that are as short as possible. The present study compares two methods of calculating H: Detrended Fluctuation Analysis (DFA and Stabilogram Diffusion Analysis (SDA for elderly and control subjects, as well as evaluating the effect of recording duration. Methods Centre of pressure signals were obtained from 90 young adult subjects and 10 elderly subjects. Data were sampled at 100 Hz for 30 s, including stepping onto and off the force plate. Estimations of H were made using sliding windows of 10, 5, and 2.5 s durations, with windows slid forward in 1-s increments. Multivariate analysis of variance was used to test for the effect of time, age and estimation method on the Hurst exponent, while the intra-class correlation coefficient (ICC was used as a measure of reliability. Results Both SDA and DFA methods were able to identify differences in postural stability between control and elderly subjects for time series as short as 5 s, with ICC values as high as 0.75 for DFA. Conclusion Both methods would be well-suited to non-invasive longitudinal assessment of balance. In addition, reliable estimations of H were obtained from time series as short as 5 s.
Financial time series analysis based on effective phase transfer entropy
Yang, Pengbo; Shang, Pengjian; Lin, Aijing
2017-02-01
Transfer entropy is a powerful technique which is able to quantify the impact of one dynamic system on another system. In this paper, we propose the effective phase transfer entropy method based on the transfer entropy method. We use simulated data to test the performance of this method, and the experimental results confirm that the proposed approach is capable of detecting the information transfer between the systems. We also explore the relationship between effective phase transfer entropy and some variables, such as data size, coupling strength and noise. The effective phase transfer entropy is positively correlated with the data size and the coupling strength. Even in the presence of a large amount of noise, it can detect the information transfer between systems, and it is very robust to noise. Moreover, this measure is indeed able to accurately estimate the information flow between systems compared with phase transfer entropy. In order to reflect the application of this method in practice, we apply this method to financial time series and gain new insight into the interactions between systems. It is demonstrated that the effective phase transfer entropy can be used to detect some economic fluctuations in the financial market. To summarize, the effective phase transfer entropy method is a very efficient tool to estimate the information flow between systems.
Application of Time Series Analysis in Determination of Lag Time in Jahanbin Basin
Directory of Open Access Journals (Sweden)
Seied Yahya Mirzaee
2005-11-01
One of the important issues that have significant role in study of hydrology of basin is determination of lag time. Lag time has significant role in hydrological studies. Quantity of rainfall related lag time depends on several factors, such as permeability, vegetation cover, catchments slope, rainfall intensity, storm duration and type of rain. Determination of lag time is important parameter in many projects such as dam design and also water resource studies. Lag time of basin could be calculated using various methods. One of these methods is time series analysis of spectral density. The analysis is based on fouries series. The time series is approximated with Sinuous and Cosines functions. In this method harmonically significant quantities with individual frequencies are presented. Spectral density under multiple time series could be used to obtain basin lag time for annual runoff and short-term rainfall fluctuation. A long lag time could be due to snowmelt as well as melting ice due to rainfalls in freezing days. In this research the lag time of Jahanbin basin has been determined using spectral density method. The catchments is subjected to both rainfall and snowfall. For short term rainfall fluctuation with a return period 2, 3, 4 months, the lag times were found 0.18, 0.5 and 0.083 month, respectively.
Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (4).
Murase, Kenya
2016-01-01
Partial differential equations are often used in the field of medical physics. In this (final) issue, the methods for solving the partial differential equations were introduced, which include separation of variables, integral transform (Fourier and Fourier-sine transforms), Green's function, and series expansion methods. Some examples were also introduced, in which the integral transform and Green's function methods were applied to solving Pennes' bioheat transfer equation and the Fourier series expansion method was applied to Navier-Stokes equation for analyzing the wall shear stress in blood vessels.Finally, the author hopes that this series will be helpful for people who engage in medical physics.
Identification of Dynamic Loads Based on Second-Order Taylor-Series Expansion Method
Li, Xiaowang; Deng, Zhongmin
2016-01-01
A new method based on the second-order Taylor-series expansion is presented to identify the structural dynamic loads in the time domain. This algorithm expresses the response vectors as Taylor-series approximation and then a series of formulas are deduced. As a result, an explicit discrete equation which associates system response, system characteristic, and input excitation together is set up. In a multi-input-multi-output (MIMO) numerical simulation study, sinusoidal excitation and white no...
Multivariate stochastic analysis for Monthly hydrological time series at Cuyahoga River Basin
zhang, L.
2011-12-01
Copula has become a very powerful statistic and stochastic methodology in case of the multivariate analysis in Environmental and Water resources Engineering. In recent years, the popular one-parameter Archimedean copulas, e.g. Gumbel-Houggard copula, Cook-Johnson copula, Frank copula, the meta-elliptical copula, e.g. Gaussian Copula, Student-T copula, etc. have been applied in multivariate hydrological analyses, e.g. multivariate rainfall (rainfall intensity, duration and depth), flood (peak discharge, duration and volume), and drought analyses (drought length, mean and minimum SPI values, and drought mean areal extent). Copula has also been applied in the flood frequency analysis at the confluences of river systems by taking into account the dependence among upstream gauge stations rather than by using the hydrological routing technique. In most of the studies above, the annual time series have been considered as stationary signal which the time series have been assumed as independent identically distributed (i.i.d.) random variables. But in reality, hydrological time series, especially the daily and monthly hydrological time series, cannot be considered as i.i.d. random variables due to the periodicity existed in the data structure. Also, the stationary assumption is also under question due to the Climate Change and Land Use and Land Cover (LULC) change in the fast years. To this end, it is necessary to revaluate the classic approach for the study of hydrological time series by relaxing the stationary assumption by the use of nonstationary approach. Also as to the study of the dependence structure for the hydrological time series, the assumption of same type of univariate distribution also needs to be relaxed by adopting the copula theory. In this paper, the univariate monthly hydrological time series will be studied through the nonstationary time series analysis approach. The dependence structure of the multivariate monthly hydrological time series will be
Remote-Sensing Time Series Analysis, a Vegetation Monitoring Tool
McKellip, Rodney; Prados, Donald; Ryan, Robert; Ross, Kenton; Spruce, Joseph; Gasser, Gerald; Greer, Randall
2008-01-01
The Time Series Product Tool (TSPT) is software, developed in MATLAB , which creates and displays high signal-to- noise Vegetation Indices imagery and other higher-level products derived from remotely sensed data. This tool enables automated, rapid, large-scale regional surveillance of crops, forests, and other vegetation. TSPT temporally processes high-revisit-rate satellite imagery produced by the Moderate Resolution Imaging Spectroradiometer (MODIS) and by other remote-sensing systems. Although MODIS imagery is acquired daily, cloudiness and other sources of noise can greatly reduce the effective temporal resolution. To improve cloud statistics, the TSPT combines MODIS data from multiple satellites (Aqua and Terra). The TSPT produces MODIS products as single time-frame and multitemporal change images, as time-series plots at a selected location, or as temporally processed image videos. Using the TSPT program, MODIS metadata is used to remove and/or correct bad and suspect data. Bad pixel removal, multiple satellite data fusion, and temporal processing techniques create high-quality plots and animated image video sequences that depict changes in vegetation greenness. This tool provides several temporal processing options not found in other comparable imaging software tools. Because the framework to generate and use other algorithms is established, small modifications to this tool will enable the use of a large range of remotely sensed data types. An effective remote-sensing crop monitoring system must be able to detect subtle changes in plant health in the earliest stages, before the effects of a disease outbreak or other adverse environmental conditions can become widespread and devastating. The integration of the time series analysis tool with ground-based information, soil types, crop types, meteorological data, and crop growth models in a Geographic Information System, could provide the foundation for a large-area crop-surveillance system that could identify
On statistical inference in time series analysis of the evolution of road safety.
Commandeur, Jacques J F; Bijleveld, Frits D; Bergel-Hayat, Ruth; Antoniou, Constantinos; Yannis, George; Papadimitriou, Eleonora
2013-11-01
Data collected for building a road safety observatory usually include observations made sequentially through time. Examples of such data, called time series data, include annual (or monthly) number of road traffic accidents, traffic fatalities or vehicle kilometers driven in a country, as well as the corresponding values of safety performance indicators (e.g., data on speeding, seat belt use, alcohol use, etc.). Some commonly used statistical techniques imply assumptions that are often violated by the special properties of time series data, namely serial dependency among disturbances associated with the observations. The first objective of this paper is to demonstrate the impact of such violations to the applicability of standard methods of statistical inference, which leads to an under or overestimation of the standard error and consequently may produce erroneous inferences. Moreover, having established the adverse consequences of ignoring serial dependency issues, the paper aims to describe rigorous statistical techniques used to overcome them. In particular, appropriate time series analysis techniques of varying complexity are employed to describe the development over time, relating the accident-occurrences to explanatory factors such as exposure measures or safety performance indicators, and forecasting the development into the near future. Traditional regression models (whether they are linear, generalized linear or nonlinear) are shown not to naturally capture the inherent dependencies in time series data. Dedicated time series analysis techniques, such as the ARMA-type and DRAG approaches are discussed next, followed by structural time series models, which are a subclass of state space methods. The paper concludes with general recommendations and practice guidelines for the use of time series models in road safety research. Copyright © 2012 Elsevier Ltd. All rights reserved.
A Filtering of Incomplete GNSS Position Time Series with Probabilistic Principal Component Analysis
Gruszczynski, Maciej; Klos, Anna; Bogusz, Janusz
2018-04-01
For the first time, we introduced the probabilistic principal component analysis (pPCA) regarding the spatio-temporal filtering of Global Navigation Satellite System (GNSS) position time series to estimate and remove Common Mode Error (CME) without the interpolation of missing values. We used data from the International GNSS Service (IGS) stations which contributed to the latest International Terrestrial Reference Frame (ITRF2014). The efficiency of the proposed algorithm was tested on the simulated incomplete time series, then CME was estimated for a set of 25 stations located in Central Europe. The newly applied pPCA was compared with previously used algorithms, which showed that this method is capable of resolving the problem of proper spatio-temporal filtering of GNSS time series characterized by different observation time span. We showed, that filtering can be carried out with pPCA method when there exist two time series in the dataset having less than 100 common epoch of observations. The 1st Principal Component (PC) explained more than 36% of the total variance represented by time series residuals' (series with deterministic model removed), what compared to the other PCs variances (less than 8%) means that common signals are significant in GNSS residuals. A clear improvement in the spectral indices of the power-law noise was noticed for the Up component, which is reflected by an average shift towards white noise from - 0.98 to - 0.67 (30%). We observed a significant average reduction in the accuracy of stations' velocity estimated for filtered residuals by 35, 28 and 69% for the North, East, and Up components, respectively. CME series were also subjected to analysis in the context of environmental mass loading influences of the filtering results. Subtraction of the environmental loading models from GNSS residuals provides to reduction of the estimated CME variance by 20 and 65% for horizontal and vertical components, respectively.
International Nuclear Information System (INIS)
Corana, A.; Bortolan, G.; Casaleggio, A.
2004-01-01
We present and compare two automatic methods for dimension estimation from time series. Both methods, based on conceptually different approaches, work on the derivative of the bi-logarithmic plot of the correlation integral versus the correlation length (log-log plot). The first method searches for the most probable dimension values (MPDV) and associates to each of them a possible scaling region. The second one searches for the most flat intervals (MFI) in the derivative of the log-log plot. The automatic procedures include the evaluation of the candidate scaling regions using two reliability indices. The data set used to test the methods consists of time series from known model attractors with and without the addition of noise, structured time series, and electrocardiographic signals from the MIT-BIH ECG database. Statistical analysis of results was carried out by means of paired t-test, and no statistically significant differences were found in the large majority of the trials. Consistent results are also obtained dealing with 'difficult' time series. In general for a more robust and reliable estimate, the use of both methods may represent a good solution when time series from complex systems are analyzed. Although we present results for the correlation dimension only, the procedures can also be used for the automatic estimation of generalized q-order dimensions and pointwise dimension. We think that the proposed methods, eliminating the need of operator intervention, allow a faster and more objective analysis, thus improving the usefulness of dimension analysis for the characterization of time series obtained from complex dynamical systems
STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS
Energy Technology Data Exchange (ETDEWEB)
Scargle, Jeffrey D. [Space Science and Astrobiology Division, MS 245-3, NASA Ames Research Center, Moffett Field, CA 94035-1000 (United States); Norris, Jay P. [Physics Department, Boise State University, 2110 University Drive, Boise, ID 83725-1570 (United States); Jackson, Brad [The Center for Applied Mathematics and Computer Science, Department of Mathematics, San Jose State University, One Washington Square, MH 308, San Jose, CA 95192-0103 (United States); Chiang, James, E-mail: jeffrey.d.scargle@nasa.gov [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States)
2013-02-20
This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piecewise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by Arias-Castro et al. In the spirit of Reproducible Research all of the code and data necessary to reproduce all of the figures in this paper are included as supplementary material.
Time series analysis of brain regional volume by MR image
International Nuclear Information System (INIS)
Tanaka, Mika; Tarusawa, Ayaka; Nihei, Mitsuyo; Fukami, Tadanori; Yuasa, Tetsuya; Wu, Jin; Ishiwata, Kiichi; Ishii, Kenji
2010-01-01
The present study proposed a methodology of time series analysis of volumes of frontal, parietal, temporal and occipital lobes and cerebellum because such volumetric reports along the process of individual's aging have been scarcely presented. Subjects analyzed were brain images of 2 healthy males and 18 females of av. age of 69.0 y, of which T1-weighted 3D SPGR (spoiled gradient recalled in the steady state) acquisitions with a GE SIGNA EXCITE HD 1.5T machine were conducted for 4 times in the time series of 42-50 months. The image size was 256 x 256 x (86-124) voxels with digitization level 16 bits. As the template for the regions, the standard gray matter atlas (icbn452 a tlas p robability g ray) and its labeled one (icbn.Labels), provided by UCLA Laboratory of Neuro Imaging, were used for individual's standardization. Segmentation, normalization and coregistration were performed with the MR imaging software SPM8 (Statistic Parametric Mapping 8). Volumes of regions were calculated as their voxel ratio to the whole brain voxel in percent. It was found that the regional volumes decreased with aging in all above lobes examined and cerebellum in average percent per year of -0.11, -0.07, -0.04, -0.02, and -0.03, respectively. The procedure for calculation of the regional volumes, which has been manually operated hitherto, can be automatically conducted for the individual brain using the standard atlases above. (T.T.)
Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations
Scargle, Jeffrey D.; Norris, Jay P.; Jackson, Brad; Chiang, James
2013-01-01
This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it-an improved and generalized version of Bayesian Blocks [Scargle 1998]-that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piece- wise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by [Arias-Castro, Donoho and Huo 2003]. In the spirit of Reproducible Research [Donoho et al. (2008)] all of the code and data necessary to reproduce all of the figures in this paper are included as auxiliary material.
STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS
International Nuclear Information System (INIS)
Scargle, Jeffrey D.; Norris, Jay P.; Jackson, Brad; Chiang, James
2013-01-01
This paper addresses the problem of detecting and characterizing local variability in time series and other forms of sequential data. The goal is to identify and characterize statistically significant variations, at the same time suppressing the inevitable corrupting observational errors. We present a simple nonparametric modeling technique and an algorithm implementing it—an improved and generalized version of Bayesian Blocks—that finds the optimal segmentation of the data in the observation interval. The structure of the algorithm allows it to be used in either a real-time trigger mode, or a retrospective mode. Maximum likelihood or marginal posterior functions to measure model fitness are presented for events, binned counts, and measurements at arbitrary times with known error distributions. Problems addressed include those connected with data gaps, variable exposure, extension to piecewise linear and piecewise exponential representations, multivariate time series data, analysis of variance, data on the circle, other data modes, and dispersed data. Simulations provide evidence that the detection efficiency for weak signals is close to a theoretical asymptotic limit derived by Arias-Castro et al. In the spirit of Reproducible Research all of the code and data necessary to reproduce all of the figures in this paper are included as supplementary material.
Anatomy of the ICDS series: A bibliometric analysis
International Nuclear Information System (INIS)
Cardona, Manuel; Marx, Werner
2007-01-01
In this article, the proceedings of the International Conferences on Defects in Semiconductors (ICDS) have been analyzed by bibliometric methods. The papers of these conferences have been published as articles in regular journals or special proceedings journals and in books with diverse publishers. The conference name/title changed several times. Many of the proceedings did not appear in the so-called 'source journals' covered by the Thomson/ISI citation databases, in particular by the Science Citation Index (SCI). But the number of citations within these source journals can be determined using the Cited Reference Search mode under the Web of Science (WoS) and the SCI offered by the host STN International. The search functions of both systems were needed to select the papers published as different document types and to cover the full time span of the series. The most cited ICDS papers were identified, and the overall numbers of citations as well as the time-dependent impact of these papers, of single conferences, and of the complete series, was established. The complete of citing papers was analyzed with respect to the countries of the citing authors, the citing journals, and the ISI subject categories
Comparison of transfer entropy methods for financial time series
He, Jiayi; Shang, Pengjian
2017-09-01
There is a certain relationship between the global financial markets, which creates an interactive network of global finance. Transfer entropy, a measurement for information transfer, offered a good way to analyse the relationship. In this paper, we analysed the relationship between 9 stock indices from the U.S., Europe and China (from 1995 to 2015) by using transfer entropy (TE), effective transfer entropy (ETE), Rényi transfer entropy (RTE) and effective Rényi transfer entropy (ERTE). We compared the four methods in the sense of the effectiveness for identification of the relationship between stock markets. In this paper, two kinds of information flows are given. One reveals that the U.S. took the leading position when in terms of lagged-current cases, but when it comes to the same date, China is the most influential. And ERTE could provide superior results.
Directory of Open Access Journals (Sweden)
T.E. Danova
2016-06-01
Full Text Available The results of the investigations of a transformed series of reconstructed air temperature data for the central part of Greenland with an increment of 30 years have been presented. Stationarization of a ~ 50,000-years’ series of the reconstructed air temperature in the central part of Greenland according to ice core data has been performed using mathematical expectation. To obtain mathematical expectation estimation, the smoothing procedure by the methods of moving average and wavelet analysis has been carried out. Fourier’s transformation has been applied repeatedly to the stationarized series with changing the averaging time in the process of smoothing. Three averaging time values have been selected for the investigations: ~ 400–500 years, ~ 2,000 years, and ~ 4,000 years. Stationarization of the reconstructed temperature series with the help of wavelet transformation showed the best results when applying the averaging time of ~ 400 and ~ 2000 years, the trends well characterize the initial temperature series, there-by revealing the main patterns of its dynamics. Using the period with the averaging time of ~ 4,000 years showed the worst result: significant events of the main temperature series were lost in the process of averaging. The obtained results well correspond to cycling known to be inherent to the climatic system of the planet; the detected modes of 1,470 ± 500 years are comparable to the Dansgaard–Oeschger and Bond oscillations.
International Nuclear Information System (INIS)
Munoz-Diosdado, A
2005-01-01
We analyzed databases with gait time series of adults and persons with Parkinson, Huntington and amyotrophic lateral sclerosis (ALS) diseases. We obtained the staircase graphs of accumulated events that can be bounded by a straight line whose slope can be used to distinguish between gait time series from healthy and ill persons. The global Hurst exponent of these series do not show tendencies, we intend that this is because some gait time series have monofractal behavior and others have multifractal behavior so they cannot be characterized with a single Hurst exponent. We calculated the multifractal spectra, obtained the spectra width and found that the spectra of the healthy young persons are almost monofractal. The spectra of ill persons are wider than the spectra of healthy persons. In opposition to the interbeat time series where the pathology implies loss of multifractality, in the gait time series the multifractal behavior emerges with the pathology. Data were collected from healthy and ill subjects as they walked in a roughly circular path and they have sensors in both feet, so we have one time series for the left foot and other for the right foot. First, we analyzed these time series separately, and then we compared both results, with direct comparison and with a cross correlation analysis. We tried to find differences in both time series that can be used as indicators of equilibrium problems
Energy Technology Data Exchange (ETDEWEB)
Munoz-Diosdado, A [Department of Mathematics, Unidad Profesional Interdisciplinaria de Biotecnologia, Instituto Politecnico Nacional, Av. Acueducto s/n, 07340, Mexico City (Mexico)
2005-01-01
We analyzed databases with gait time series of adults and persons with Parkinson, Huntington and amyotrophic lateral sclerosis (ALS) diseases. We obtained the staircase graphs of accumulated events that can be bounded by a straight line whose slope can be used to distinguish between gait time series from healthy and ill persons. The global Hurst exponent of these series do not show tendencies, we intend that this is because some gait time series have monofractal behavior and others have multifractal behavior so they cannot be characterized with a single Hurst exponent. We calculated the multifractal spectra, obtained the spectra width and found that the spectra of the healthy young persons are almost monofractal. The spectra of ill persons are wider than the spectra of healthy persons. In opposition to the interbeat time series where the pathology implies loss of multifractality, in the gait time series the multifractal behavior emerges with the pathology. Data were collected from healthy and ill subjects as they walked in a roughly circular path and they have sensors in both feet, so we have one time series for the left foot and other for the right foot. First, we analyzed these time series separately, and then we compared both results, with direct comparison and with a cross correlation analysis. We tried to find differences in both time series that can be used as indicators of equilibrium problems.
Discontinuous conduction mode analysis of phase-modulated series ...
Indian Academy of Sciences (India)
modulated dc–dc series resonant converter (SRC) operating in discontinuous conduction mode (DCM). The conventional fundamental harmonic approximation technique is extended for a non-ideal series resonant tank to clarify the limitations of ...
Donges, Jonathan; Heitzig, Jobst; Beronov, Boyan; Wiedermann, Marc; Runge, Jakob; Feng, Qing Yi; Tupikina, Liubov; Stolbova, Veronika; Donner, Reik; Marwan, Norbert; Dijkstra, Henk; Kurths, Jürgen
2016-04-01
We introduce the pyunicorn (Pythonic unified complex network and recurrence analysis toolbox) open source software package for applying and combining modern methods of data analysis and modeling from complex network theory and nonlinear time series analysis. pyunicorn is a fully object-oriented and easily parallelizable package written in the language Python. It allows for the construction of functional networks such as climate networks in climatology or functional brain networks in neuroscience representing the structure of statistical interrelationships in large data sets of time series and, subsequently, investigating this structure using advanced methods of complex network theory such as measures and models for spatial networks, networks of interacting networks, node-weighted statistics, or network surrogates. Additionally, pyunicorn provides insights into the nonlinear dynamics of complex systems as recorded in uni- and multivariate time series from a non-traditional perspective by means of recurrence quantification analysis, recurrence networks, visibility graphs, and construction of surrogate time series. The range of possible applications of the library is outlined, drawing on several examples mainly from the field of climatology. pyunicorn is available online at https://github.com/pik-copan/pyunicorn. Reference: J.F. Donges, J. Heitzig, B. Beronov, M. Wiedermann, J. Runge, Q.-Y. Feng, L. Tupikina, V. Stolbova, R.V. Donner, N. Marwan, H.A. Dijkstra, and J. Kurths, Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package, Chaos 25, 113101 (2015), DOI: 10.1063/1.4934554, Preprint: arxiv.org:1507.01571 [physics.data-an].
Adult Craniopharyngioma: Case Series, Systematic Review, and Meta-Analysis.
Dandurand, Charlotte; Sepehry, Amir Ali; Asadi Lari, Mohammad Hossein; Akagami, Ryojo; Gooderham, Peter
2017-12-18
The optimal therapeutic approach for adult craniopharyngioma remains controversial. Some advocate for gross total resection (GTR), while others advocate for subtotal resection followed by adjuvant radiotherapy (STR + XRT). To conduct a systematic review and meta-analysis assessing the rate of recurrence in the follow-up of 3 yr in adult craniopharyngioma stratified by extent of resection and presence of adjuvant radiotherapy. MEDLINE (1946-July 1, 2016) and EMBASE (1980-June 30, 2016) were systematically reviewed. From1975 to 2013, 33 patients were treated with initial surgical resection for adult onset craniopharyngioma at our center and were reviewed for inclusion in this study. Data from 22 patients were available for inclusion as a case series in the systematic review. Eligible studies (n = 21) were identified from the literature in addition to a case series of our institutional experience. Three groups were available for analysis: GTR, STR + XRT, and STR. The rates of recurrence were 17%, 27%, and 45%, respectively. The risk of developing recurrence was significant for GTR vs STR (odds ratio [OR]: 0.24, 95% confidence interval [CI]: 0.15-0.38) and STR + XRT vs STR (OR: 0.20, 95% CI: 0.10-0.41). Risk of recurrence after GTR vs STR + XRT did not reach significance (OR: 0.63, 95% CI: 0.33-1.24, P = .18). This is the first and largest systematic review focusing on the rate of recurrence in adult craniopharyngioma. Although the rates of recurrence are favoring GTR, difference in risk of recurrence did not reach significance. This study provides guidance to clinicians and directions for future research with the need to stratify outcomes per treatment modalities. Copyright © 2017 by the Congress of Neurological Surgeons
Hayashi, Hideaki; Shibanoki, Taro; Shima, Keisuke; Kurita, Yuichi; Tsuji, Toshio
2015-12-01
This paper proposes a probabilistic neural network (NN) developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model with a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into an NN, which is named a time-series discriminant component network (TSDCN), so that parameters of dimensionality reduction and classification can be obtained simultaneously as network coefficients according to a backpropagation through time-based learning algorithm with the Lagrange multiplier method. The TSDCN is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. The validity of the TSDCN is demonstrated for high-dimensional artificial data and electroencephalogram signals in the experiments conducted during the study.
BiGGEsTS: integrated environment for biclustering analysis of time series gene expression data
Directory of Open Access Journals (Sweden)
Madeira Sara C
2009-07-01
Full Text Available Abstract Background The ability to monitor changes in expression patterns over time, and to observe the emergence of coherent temporal responses using expression time series, is critical to advance our understanding of complex biological processes. Biclustering has been recognized as an effective method for discovering local temporal expression patterns and unraveling potential regulatory mechanisms. The general biclustering problem is NP-hard. In the case of time series this problem is tractable, and efficient algorithms can be used. However, there is still a need for specialized applications able to take advantage of the temporal properties inherent to expression time series, both from a computational and a biological perspective. Findings BiGGEsTS makes available state-of-the-art biclustering algorithms for analyzing expression time series. Gene Ontology (GO annotations are used to assess the biological relevance of the biclusters. Methods for preprocessing expression time series and post-processing results are also included. The analysis is additionally supported by a visualization module capable of displaying informative representations of the data, including heatmaps, dendrograms, expression charts and graphs of enriched GO terms. Conclusion BiGGEsTS is a free open source graphical software tool for revealing local coexpression of genes in specific intervals of time, while integrating meaningful information on gene annotations. It is freely available at: http://kdbio.inesc-id.pt/software/biggests. We present a case study on the discovery of transcriptional regulatory modules in the response of Saccharomyces cerevisiae to heat stress.
Bellman, Richard Ernest
1970-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Studies in astronomical time series analysis. I - Modeling random processes in the time domain
Scargle, J. D.
1981-01-01
Several random process models in the time domain are defined and discussed. Attention is given to the moving average model, the autoregressive model, and relationships between and combinations of these models. Consideration is then given to methods for investigating pulse structure, procedures of model construction, computational methods, and numerical experiments. A FORTRAN algorithm of time series analysis has been developed which is relatively stable numerically. Results of test cases are given to study the effect of adding noise and of different distributions for the pulse amplitudes. A preliminary analysis of the light curve of the quasar 3C 272 is considered as an example.
Modeling activity patterns of wildlife using time-series analysis.
Zhang, Jindong; Hull, Vanessa; Ouyang, Zhiyun; He, Liang; Connor, Thomas; Yang, Hongbo; Huang, Jinyan; Zhou, Shiqiang; Zhang, Zejun; Zhou, Caiquan; Zhang, Hemin; Liu, Jianguo
2017-04-01
The study of wildlife activity patterns is an effective approach to understanding fundamental ecological and evolutionary processes. However, traditional statistical approaches used to conduct quantitative analysis have thus far had limited success in revealing underlying mechanisms driving activity patterns. Here, we combine wavelet analysis, a type of frequency-based time-series analysis, with high-resolution activity data from accelerometers embedded in GPS collars to explore the effects of internal states (e.g., pregnancy) and external factors (e.g., seasonal dynamics of resources and weather) on activity patterns of the endangered giant panda ( Ailuropoda melanoleuca ). Giant pandas exhibited higher frequency cycles during the winter when resources (e.g., water and forage) were relatively poor, as well as during spring, which includes the giant panda's mating season. During the summer and autumn when resources were abundant, pandas exhibited a regular activity pattern with activity peaks every 24 hr. A pregnant individual showed distinct differences in her activity pattern from other giant pandas for several months following parturition. These results indicate that animals adjust activity cycles to adapt to seasonal variation of the resources and unique physiological periods. Wavelet coherency analysis also verified the synchronization of giant panda activity level with air temperature and solar radiation at the 24-hr band. Our study also shows that wavelet analysis is an effective tool for analyzing high-resolution activity pattern data and its relationship to internal and external states, an approach that has the potential to inform wildlife conservation and management across species.
A prediction method based on wavelet transform and multiple models fusion for chaotic time series
International Nuclear Information System (INIS)
Zhongda, Tian; Shujiang, Li; Yanhong, Wang; Yi, Sha
2017-01-01
In order to improve the prediction accuracy of chaotic time series, a prediction method based on wavelet transform and multiple models fusion is proposed. The chaotic time series is decomposed and reconstructed by wavelet transform, and approximate components and detail components are obtained. According to different characteristics of each component, least squares support vector machine (LSSVM) is used as predictive model for approximation components. At the same time, an improved free search algorithm is utilized for predictive model parameters optimization. Auto regressive integrated moving average model (ARIMA) is used as predictive model for detail components. The multiple prediction model predictive values are fusion by Gauss–Markov algorithm, the error variance of predicted results after fusion is less than the single model, the prediction accuracy is improved. The simulation results are compared through two typical chaotic time series include Lorenz time series and Mackey–Glass time series. The simulation results show that the prediction method in this paper has a better prediction.
Analysis of Land Subsidence Monitoring in Mining Area with Time-Series Insar Technology
Sun, N.; Wang, Y. J.
2018-04-01
Time-series InSAR technology has become a popular land subsidence monitoring method in recent years, because of its advantages such as high accuracy, wide area, low expenditure, intensive monitoring points and free from accessibility restrictions. In this paper, we applied two kinds of satellite data, ALOS PALSAR and RADARSAT-2, to get the subsidence monitoring results of the study area in two time periods by time-series InSAR technology. By analyzing the deformation range, rate and amount, the time-series analysis of land subsidence in mining area was realized. The results show that InSAR technology could be used to monitor land subsidence in large area and meet the demand of subsidence monitoring in mining area.
Directory of Open Access Journals (Sweden)
Guo Zheng-Hong
2016-01-01
Full Text Available In this article, the Sumudu transform series expansion method is used to handle the local fractional Laplace equation arising in the steady fractal heat-transfer problem via local fractional calculus.
A multiple-scale power series method for solving nonlinear ordinary differential equations
Directory of Open Access Journals (Sweden)
Chein-Shan Liu
2016-02-01
Full Text Available The power series solution is a cheap and effective method to solve nonlinear problems, like the Duffing-van der Pol oscillator, the Volterra population model and the nonlinear boundary value problems. A novel power series method by considering the multiple scales $R_k$ in the power term $(t/R_k^k$ is developed, which are derived explicitly to reduce the ill-conditioned behavior in the data interpolation. In the method a huge value times a tiny value is avoided, such that we can decrease the numerical instability and which is the main reason to cause the failure of the conventional power series method. The multiple scales derived from an integral can be used in the power series expansion, which provide very accurate numerical solutions of the problems considered in this paper.
Definition of distance for nonlinear time series analysis of marked point process data
Energy Technology Data Exchange (ETDEWEB)
Iwayama, Koji, E-mail: koji@sat.t.u-tokyo.ac.jp [Research Institute for Food and Agriculture, Ryukoku Univeristy, 1-5 Yokotani, Seta Oe-cho, Otsu-Shi, Shiga 520-2194 (Japan); Hirata, Yoshito; Aihara, Kazuyuki [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)
2017-01-30
Marked point process data are time series of discrete events accompanied with some values, such as economic trades, earthquakes, and lightnings. A distance for marked point process data allows us to apply nonlinear time series analysis to such data. We propose a distance for marked point process data which can be calculated much faster than the existing distance when the number of marks is small. Furthermore, under some assumptions, the Kullback–Leibler divergences between posterior distributions for neighbors defined by this distance are small. We performed some numerical simulations showing that analysis based on the proposed distance is effective. - Highlights: • A new distance for marked point process data is proposed. • The distance can be computed fast enough for a small number of marks. • The method to optimize parameter values of the distance is also proposed. • Numerical simulations indicate that the analysis based on the distance is effective.
Detrended fluctuation analysis based on higher-order moments of financial time series
Teng, Yue; Shang, Pengjian
2018-01-01
In this paper, a generalized method of detrended fluctuation analysis (DFA) is proposed as a new measure to assess the complexity of a complex dynamical system such as stock market. We extend DFA and local scaling DFA to higher moments such as skewness and kurtosis (labeled SMDFA and KMDFA), so as to investigate the volatility scaling property of financial time series. Simulations are conducted over synthetic and financial data for providing the comparative study. We further report the results of volatility behaviors in three American countries, three Chinese and three European stock markets by using DFA and LSDFA method based on higher moments. They demonstrate the dynamics behaviors of time series in different aspects, which can quantify the changes of complexity for stock market data and provide us with more meaningful information than single exponent. And the results reveal some higher moments volatility and higher moments multiscale volatility details that cannot be obtained using the traditional DFA method.
Time Series Analysis of the Quasar PKS 1749+096
Lam, Michael T.; Balonek, T. J.
2011-01-01
Multiple timescales of variability are observed in quasars at a variety of wavelengths, the nature of which is not fully understood. In 2007 and 2008, the quasar 1749+096 underwent two unprecedented optical outbursts, reaching a brightness never before seen in our twenty years of monitoring. Much lower level activity had been seen prior to these two outbursts. We present an analysis of the timescales of variability over the two regimes using a variety of statistical techniques. An IDL software package developed at Colgate University over the summer of 2010, the Quasar User Interface (QUI), provides effective computation of four time series functions for analyzing underlying trends present in generic, discretely sampled data sets. Using the Autocorrelation Function, Structure Function, and Power Spectrum, we are able to quickly identify possible variability timescales. QUI is also capable of computing the Cross-Correlation Function for comparing variability at different wavelengths. We apply these algorithms to 1749+096 and present our analysis of the timescales for this object. Funding for this project was received from Colgate University, the Justus and Jayne Schlichting Student Research Fund, and the NASA / New York Space Grant.
TIME SERIES ANALYSIS ON STOCK MARKET FOR TEXT MINING CORRELATION OF ECONOMY NEWS
Directory of Open Access Journals (Sweden)
Sadi Evren SEKER
2014-01-01
Full Text Available This paper proposes an information retrieval methodfor the economy news. Theeffect of economy news, are researched in the wordlevel and stock market valuesare considered as the ground proof.The correlation between stock market prices and economy news is an already ad-dressed problem for most of the countries. The mostwell-known approach is ap-plying the text mining approaches to the news and some time series analysis tech-niques over stock market closing values in order toapply classification or cluster-ing algorithms over the features extracted. This study goes further and tries to askthe question what are the available time series analysis techniques for the stockmarket closing values and which one is the most suitable? In this study, the newsand their dates are collected into a database and text mining is applied over thenews, the text mining part has been kept simple with only term frequency – in-verse document frequency method. For the time series analysis part, we havestudied 10 different methods such as random walk, moving average, acceleration,Bollinger band, price rate of change, periodic average, difference, momentum orrelative strength index and their variation. In this study we have also explainedthese techniques in a comparative way and we have applied the methods overTurkish Stock Market closing values for more than a2 year period. On the otherhand, we have applied the term frequency – inversedocument frequency methodon the economy news of one of the high-circulatingnewspapers in Turkey.
Analysis of time series and size of equivalent sample
International Nuclear Information System (INIS)
Bernal, Nestor; Molina, Alicia; Pabon, Daniel; Martinez, Jorge
2004-01-01
In a meteorological context, a first approach to the modeling of time series is to use models of autoregressive type. This allows one to take into account the meteorological persistence or temporal behavior, thereby identifying the memory of the analyzed process. This article seeks to pre-sent the concept of the size of an equivalent sample, which helps to identify in the data series sub periods with a similar structure. Moreover, in this article we examine the alternative of adjusting the variance of the series, keeping in mind its temporal structure, as well as an adjustment to the covariance of two time series. This article presents two examples, the first one corresponding to seven simulated series with autoregressive structure of first order, and the second corresponding to seven meteorological series of anomalies of the air temperature at the surface in two Colombian regions
Lepot, M.J.; Aubin, Jean Baptiste; Clemens, F.H.L.R.
2017-01-01
A thorough review has been performed on interpolation methods to fill gaps in time-series, efficiency criteria, and uncertainty quantifications. On one hand, there are numerous available methods: interpolation, regression, autoregressive, machine learning methods, etc. On the other hand, there are
Wang, Wen-Chuan; Chau, Kwok-Wing; Cheng, Chun-Tian; Qiu, Lin
2009-08-01
SummaryDeveloping a hydrological forecasting model based on past records is crucial to effective hydropower reservoir management and scheduling. Traditionally, time series analysis and modeling is used for building mathematical models to generate hydrologic records in hydrology and water resources. Artificial intelligence (AI), as a branch of computer science, is capable of analyzing long-series and large-scale hydrological data. In recent years, it is one of front issues to apply AI technology to the hydrological forecasting modeling. In this paper, autoregressive moving-average (ARMA) models, artificial neural networks (ANNs) approaches, adaptive neural-based fuzzy inference system (ANFIS) techniques, genetic programming (GP) models and support vector machine (SVM) method are examined using the long-term observations of monthly river flow discharges. The four quantitative standard statistical performance evaluation measures, the coefficient of correlation ( R), Nash-Sutcliffe efficiency coefficient ( E), root mean squared error (RMSE), mean absolute percentage error (MAPE), are employed to evaluate the performances of various models developed. Two case study river sites are also provided to illustrate their respective performances. The results indicate that the best performance can be obtained by ANFIS, GP and SVM, in terms of different evaluation criteria during the training and validation phases.
DEFF Research Database (Denmark)
Sørup, Hjalte Jomo Danielsen; Georgiadis, Stylianos; Gregersen, Ida Bülow
2017-01-01
Urban water infrastructure has very long planning horizons, and planning is thus very dependent on reliable estimates of the impacts of climate change. Many urban water systems are designed using time series with a high temporal resolution. To assess the impact of climate change on these systems......, similarly high-resolution precipitation time series for future climate are necessary. Climate models cannot at their current resolutions provide these time series at the relevant scales. Known methods for stochastic downscaling of climate change to urban hydrological scales have known shortcomings...... in constructing realistic climate-changed precipitation time series at the sub-hourly scale. In the present study we present a deterministic methodology to perturb historical precipitation time series at the minute scale to reflect non-linear expectations to climate change. The methodology shows good skill...
Radial artery pulse waveform analysis based on curve fitting using discrete Fourier series.
Jiang, Zhixing; Zhang, David; Lu, Guangming
2018-04-19
Radial artery pulse diagnosis has been playing an important role in traditional Chinese medicine (TCM). For its non-invasion and convenience, the pulse diagnosis has great significance in diseases analysis of modern medicine. The practitioners sense the pulse waveforms in patients' wrist to make diagnoses based on their non-objective personal experience. With the researches of pulse acquisition platforms and computerized analysis methods, the objective study on pulse diagnosis can help the TCM to keep up with the development of modern medicine. In this paper, we propose a new method to extract feature from pulse waveform based on discrete Fourier series (DFS). It regards the waveform as one kind of signal that consists of a series of sub-components represented by sine and cosine (SC) signals with different frequencies and amplitudes. After the pulse signals are collected and preprocessed, we fit the average waveform for each sample using discrete Fourier series by least squares. The feature vector is comprised by the coefficients of discrete Fourier series function. Compared with the fitting method using Gaussian mixture function, the fitting errors of proposed method are smaller, which indicate that our method can represent the original signal better. The classification performance of proposed feature is superior to the other features extracted from waveform, liking auto-regression model and Gaussian mixture model. The coefficients of optimized DFS function, who is used to fit the arterial pressure waveforms, can obtain better performance in modeling the waveforms and holds more potential information for distinguishing different psychological states. Copyright © 2018 Elsevier B.V. All rights reserved.
Gopinath, Kaundinya; Krishnamurthy, Venkatagiri; Lacey, Simon; Sathian, K
2018-02-01
In a recent study Eklund et al. have shown that cluster-wise family-wise error (FWE) rate-corrected inferences made in parametric statistical method-based functional magnetic resonance imaging (fMRI) studies over the past couple of decades may have been invalid, particularly for cluster defining thresholds less stringent than p functions (sACFs) of fMRI data had been modeled incorrectly to follow a Gaussian form, whereas empirical data suggest otherwise. Hence, the residuals from general linear model (GLM)-based fMRI activation estimates in these studies may not have possessed a homogenously Gaussian sACF. Here we propose a method based on the assumption that heterogeneity and non-Gaussianity of the sACF of the first-level GLM analysis residuals, as well as temporal autocorrelations in the first-level voxel residual time-series, are caused by unmodeled MRI signal from neuronal and physiological processes as well as motion and other artifacts, which can be approximated by appropriate decompositions of the first-level residuals with principal component analysis (PCA), and removed. We show that application of this method yields GLM residuals with significantly reduced spatial correlation, nearly Gaussian sACF and uniform spatial smoothness across the brain, thereby allowing valid cluster-based FWE-corrected inferences based on assumption of Gaussian spatial noise. We further show that application of this method renders the voxel time-series of first-level GLM residuals independent, and identically distributed across time (which is a necessary condition for appropriate voxel-level GLM inference), without having to fit ad hoc stochastic colored noise models. Furthermore, the detection power of individual subject brain activation analysis is enhanced. This method will be especially useful for case studies, which rely on first-level GLM analysis inferences.
Kennedy, Curtis E; Turley, James P
2011-10-24
Thousands of children experience cardiac arrest events every year in pediatric intensive care units. Most of these children die. Cardiac arrest prediction tools are used as part of medical emergency team evaluations to identify patients in standard hospital beds that are at high risk for cardiac arrest. There are no models to predict cardiac arrest in pediatric intensive care units though, where the risk of an arrest is 10 times higher than for standard hospital beds. Current tools are based on a multivariable approach that does not characterize deterioration, which often precedes cardiac arrests. Characterizing deterioration requires a time series approach. The purpose of this study is to propose a method that will allow for time series data to be used in clinical prediction models. Successful implementation of these methods has the potential to bring arrest prediction to the pediatric intensive care environment, possibly allowing for interventions that can save lives and prevent disabilities. We reviewed prediction models from nonclinical domains that employ time series data, and identified the steps that are necessary for building predictive models using time series clinical data. We illustrate the method by applying it to the specific case of building a predictive model for cardiac arrest in a pediatric intensive care unit. Time course analysis studies from genomic analysis provided a modeling template that was compatible with the steps required to develop a model from clinical time series data. The steps include: 1) selecting candidate variables; 2) specifying measurement parameters; 3) defining data format; 4) defining time window duration and resolution; 5) calculating latent variables for candidate variables not directly measured; 6) calculating time series features as latent variables; 7) creating data subsets to measure model performance effects attributable to various classes of candidate variables; 8) reducing the number of candidate features; 9
Multivariate analysis: models and method
International Nuclear Information System (INIS)
Sanz Perucha, J.
1990-01-01
Data treatment techniques are increasingly used since computer methods result of wider access. Multivariate analysis consists of a group of statistic methods that are applied to study objects or samples characterized by multiple values. A final goal is decision making. The paper describes the models and methods of multivariate analysis
Multivariate analysis methods in physics
International Nuclear Information System (INIS)
Wolter, M.
2007-01-01
A review of multivariate methods based on statistical training is given. Several multivariate methods useful in high-energy physics analysis are discussed. Selected examples from current research in particle physics are discussed, both from the on-line trigger selection and from the off-line analysis. Also statistical training methods are presented and some new application are suggested [ru
Methods in algorithmic analysis
Dobrushkin, Vladimir A
2009-01-01
…helpful to any mathematics student who wishes to acquire a background in classical probability and analysis … This is a remarkably beautiful book that would be a pleasure for a student to read, or for a teacher to make into a year's course.-Harvey Cohn, Computing Reviews, May 2010
Communication Network Analysis Methods.
Farace, Richard V.; Mabee, Timothy
This paper reviews a variety of analytic procedures that can be applied to network data, discussing the assumptions and usefulness of each procedure when applied to the complexity of human communication. Special attention is paid to the network properties measured or implied by each procedure. Factor analysis and multidimensional scaling are among…
ON THE FOURIER AND WAVELET ANALYSIS OF CORONAL TIME SERIES
International Nuclear Information System (INIS)
Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J.
2016-01-01
Using Fourier and wavelet analysis, we critically re-assess the significance of our detection of periodic pulsations in coronal loops. We show that the proper identification of the frequency dependence and statistical properties of the different components of the power spectra provides a strong argument against the common practice of data detrending, which tends to produce spurious detections around the cut-off frequency of the filter. In addition, the white and red noise models built into the widely used wavelet code of Torrence and Compo cannot, in most cases, adequately represent the power spectra of coronal time series, thus also possibly causing false positives. Both effects suggest that several reports of periodic phenomena should be re-examined. The Torrence and Compo code nonetheless effectively computes rigorous confidence levels if provided with pertinent models of mean power spectra, and we describe the appropriate manner in which to call its core routines. We recall the meaning of the default confidence levels output from the code, and we propose new Monte-Carlo-derived levels that take into account the total number of degrees of freedom in the wavelet spectra. These improvements allow us to confirm that the power peaks that we detected have a very low probability of being caused by noise.
ON THE FOURIER AND WAVELET ANALYSIS OF CORONAL TIME SERIES
Energy Technology Data Exchange (ETDEWEB)
Auchère, F.; Froment, C.; Bocchialini, K.; Buchlin, E.; Solomon, J., E-mail: frederic.auchere@ias.u-psud.fr [Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Bât. 121, F-91405 Orsay (France)
2016-07-10
Using Fourier and wavelet analysis, we critically re-assess the significance of our detection of periodic pulsations in coronal loops. We show that the proper identification of the frequency dependence and statistical properties of the different components of the power spectra provides a strong argument against the common practice of data detrending, which tends to produce spurious detections around the cut-off frequency of the filter. In addition, the white and red noise models built into the widely used wavelet code of Torrence and Compo cannot, in most cases, adequately represent the power spectra of coronal time series, thus also possibly causing false positives. Both effects suggest that several reports of periodic phenomena should be re-examined. The Torrence and Compo code nonetheless effectively computes rigorous confidence levels if provided with pertinent models of mean power spectra, and we describe the appropriate manner in which to call its core routines. We recall the meaning of the default confidence levels output from the code, and we propose new Monte-Carlo-derived levels that take into account the total number of degrees of freedom in the wavelet spectra. These improvements allow us to confirm that the power peaks that we detected have a very low probability of being caused by noise.
Complementing Gender Analysis Methods.
Kumar, Anant
2016-01-01
The existing gender analysis frameworks start with a premise that men and women are equal and should be treated equally. These frameworks give emphasis on equal distribution of resources between men and women and believe that this will bring equality which is not always true. Despite equal distribution of resources, women tend to suffer and experience discrimination in many areas of their lives such as the power to control resources within social relationships, and the need for emotional security and reproductive rights within interpersonal relationships. These frameworks believe that patriarchy as an institution plays an important role in women's oppression, exploitation, and it is a barrier in their empowerment and rights. Thus, some think that by ensuring equal distribution of resources and empowering women economically, institutions like patriarchy can be challenged. These frameworks are based on proposed equality principle which puts men and women in competing roles. Thus, the real equality will never be achieved. Contrary to the existing gender analysis frameworks, the Complementing Gender Analysis framework proposed by the author provides a new approach toward gender analysis which not only recognizes the role of economic empowerment and equal distribution of resources but suggests to incorporate the concept and role of social capital, equity, and doing gender in gender analysis which is based on perceived equity principle, putting men and women in complementing roles that may lead to equality. In this article the author reviews the mainstream gender theories in development from the viewpoint of the complementary roles of gender. This alternative view is argued based on existing literature and an anecdote of observations made by the author. While criticizing the equality theory, the author offers equity theory in resolving the gender conflict by using the concept of social and psychological capital.
Advances in time series methods and applications the A. Ian McLeod festschrift
Stanford, David; Yu, Hao
2016-01-01
This volume reviews and summarizes some of A. I. McLeod's significant contributions to time series analysis. It also contains original contributions to the field and to related areas by participants of the festschrift held in June 2014 and friends of Dr. McLeod. Covering a diverse range of state-of-the-art topics, this volume well balances applied and theoretical research across fourteen contributions by experts in the field. It will be of interest to researchers and practitioners in time series, econometricians, and graduate students in time series or econometrics, as well as environmental statisticians, data scientists, statisticians interested in graphical models, and researchers in quantitative risk management.
A unified nonlinear stochastic time series analysis for climate science.
Moon, Woosok; Wettlaufer, John S
2017-03-13
Earth's orbit and axial tilt imprint a strong seasonal cycle on climatological data. Climate variability is typically viewed in terms of fluctuations in the seasonal cycle induced by higher frequency processes. We can interpret this as a competition between the orbitally enforced monthly stability and the fluctuations/noise induced by weather. Here we introduce a new time-series method that determines these contributions from monthly-averaged data. We find that the spatio-temporal distribution of the monthly stability and the magnitude of the noise reveal key fingerprints of several important climate phenomena, including the evolution of the Arctic sea ice cover, the El Nio Southern Oscillation (ENSO), the Atlantic Nio and the Indian Dipole Mode. In analogy with the classical destabilising influence of the ice-albedo feedback on summertime sea ice, we find that during some time interval of the season a destabilising process operates in all of these climate phenomena. The interaction between the destabilisation and the accumulation of noise, which we term the memory effect, underlies phase locking to the seasonal cycle and the statistical nature of seasonal predictability.
Time-series-analysis techniques applied to nuclear-material accounting
International Nuclear Information System (INIS)
Pike, D.H.; Morrison, G.W.; Downing, D.J.
1982-05-01
This document is designed to introduce the reader to the applications of Time Series Analysis techniques to Nuclear Material Accountability data. Time series analysis techniques are designed to extract information from a collection of random variables ordered by time by seeking to identify any trends, patterns, or other structure in the series. Since nuclear material accountability data is a time series, one can extract more information using time series analysis techniques than by using other statistical techniques. Specifically, the objective of this document is to examine the applicability of time series analysis techniques to enhance loss detection of special nuclear materials. An introductory section examines the current industry approach which utilizes inventory differences. The error structure of inventory differences is presented. Time series analysis techniques discussed include the Shewhart Control Chart, the Cumulative Summation of Inventory Differences Statistics (CUSUM) and the Kalman Filter and Linear Smoother
Time series analysis of pressure fluctuation in gas-solid fluidized beds
Directory of Open Access Journals (Sweden)
C. Alberto S. Felipe
2004-09-01
Full Text Available The purpose of the present work was to study the differentiation of states of typical fluidization (single bubble, multiple bubble and slugging in a gas-solid fluidized bed, using spectral analysis of pressure fluctuation time series. The effects of the method of measuring (differential and absolute pressure fluctuations and the axial position of the probes in the fluidization column on the identification of each of the regimes studied were evaluated. Fast Fourier Transform (FFT was the mathematic tool used to analysing the data of pressure fluctuations, which expresses the behavior of a time series in the frequency domain. Results indicated that the plenum chamber was a place for reliable measurement and that care should be taken in measurement in the dense phase. The method allowed fluid dynamic regimes to be differentiated by their dominant frequency characteristics.
Flood Frequency Analysis For Partial Duration Series In Ganjiang River Basin
zhangli, Sun; xiufang, Zhu; yaozhong, Pan
2016-04-01
Accurate estimation of flood frequency is key to effective, nationwide flood damage abatement programs. The partial duration series (PDS) method is widely used in hydrologic studies because it considers all events above a certain threshold level as compared to the annual maximum series (AMS) method, which considers only the annual maximum value. However, the PDS has a drawback in that it is difficult to define the thresholds and maintain an independent and identical distribution of the partial duration time series; this drawback is discussed in this paper. The Ganjiang River is the seventh largest tributary of the Yangtze River, the longest river in China. The Ganjiang River covers a drainage area of 81,258 km2 at the Wanzhou hydrologic station as the basin outlet. In this work, 56 years of daily flow data (1954-2009) from the Wanzhou station were used to analyze flood frequency, and the Pearson-III model was employed as the hydrologic probability distribution. Generally, three tasks were accomplished: (1) the threshold of PDS by percentile rank of daily runoff was obtained; (2) trend analysis of the flow series was conducted using PDS; and (3) flood frequency analysis was conducted for partial duration flow series. The results showed a slight upward trend of the annual runoff in the Ganjiang River basin. The maximum flow with a 0.01 exceedance probability (corresponding to a 100-year flood peak under stationary conditions) was 20,000 m3/s, while that with a 0.1 exceedance probability was 15,000 m3/s. These results will serve as a guide to hydrological engineering planning, design, and management for policymakers and decision makers associated with hydrology.
The Real-time Frequency Spectrum Analysis of Neutron Pulse Signal Series
International Nuclear Information System (INIS)
Tang Yuelin; Ren Yong; Wei Biao; Feng Peng; Mi Deling; Pan Yingjun; Li Jiansheng; Ye Cenming
2009-01-01
The frequency spectrum analysis of neutron pulse signal is a very important method in nuclear stochastic signal processing Focused on the special '0' and '1' of neutron pulse signal series, this paper proposes new rotation-table and realizes a real-time frequency spectrum algorithm under 1G Hz sample rate based on PC with add, address and SSE. The numerical experimental results show that under the count rate of 3X10 6 s -1 , this algorithm is superior to FFTW in time-consumption and can meet the real-time requirement of frequency spectrum analysis. (authors)
Analysis of complex time series using refined composite multiscale entropy
International Nuclear Information System (INIS)
Wu, Shuen-De; Wu, Chiu-Wen; Lin, Shiou-Gwo; Lee, Kung-Yen; Peng, Chung-Kang
2014-01-01
Multiscale entropy (MSE) is an effective algorithm for measuring the complexity of a time series that has been applied in many fields successfully. However, MSE may yield an inaccurate estimation of entropy or induce undefined entropy because the coarse-graining procedure reduces the length of a time series considerably at large scales. Composite multiscale entropy (CMSE) was recently proposed to improve the accuracy of MSE, but it does not resolve undefined entropy. Here we propose a refined composite multiscale entropy (RCMSE) to improve CMSE. For short time series analyses, we demonstrate that RCMSE increases the accuracy of entropy estimation and reduces the probability of inducing undefined entropy.
Identification of Dynamic Loads Based on Second-Order Taylor-Series Expansion Method
Directory of Open Access Journals (Sweden)
Xiaowang Li
2016-01-01
Full Text Available A new method based on the second-order Taylor-series expansion is presented to identify the structural dynamic loads in the time domain. This algorithm expresses the response vectors as Taylor-series approximation and then a series of formulas are deduced. As a result, an explicit discrete equation which associates system response, system characteristic, and input excitation together is set up. In a multi-input-multi-output (MIMO numerical simulation study, sinusoidal excitation and white noise excitation are applied on a cantilever beam, respectively, to illustrate the effectiveness of this algorithm. One also makes a comparison between the new method and conventional state space method. The results show that the proposed method can obtain a more accurate identified force time history whether the responses are polluted by noise or not.
Improved time series prediction with a new method for selection of model parameters
International Nuclear Information System (INIS)
Jade, A M; Jayaraman, V K; Kulkarni, B D
2006-01-01
A new method for model selection in prediction of time series is proposed. Apart from the conventional criterion of minimizing RMS error, the method also minimizes the error on the distribution of singularities, evaluated through the local Hoelder estimates and its probability density spectrum. Predictions of two simulated and one real time series have been done using kernel principal component regression (KPCR) and model parameters of KPCR have been selected employing the proposed as well as the conventional method. Results obtained demonstrate that the proposed method takes into account the sharp changes in a time series and improves the generalization capability of the KPCR model for better prediction of the unseen test data. (letter to the editor)
Verger, Aleixandre; Baret, F.; Weiss, M.; Kandasamy, S.; Vermote, E.
2013-01-01
Consistent, continuous, and long time series of global biophysical variables derived from satellite data are required for global change research. A novel climatology fitting approach called CACAO (Consistent Adjustment of the Climatology to Actual Observations) is proposed to reduce noise and fill gaps in time series by scaling and shifting the seasonal climatological patterns to the actual observations. The shift and scale CACAO parameters adjusted for each season allow quantifying shifts in the timing of seasonal phenology and inter-annual variations in magnitude as compared to the average climatology. CACAO was assessed first over simulated daily Leaf Area Index (LAI) time series with varying fractions of missing data and noise. Then, performances were analyzed over actual satellite LAI products derived from AVHRR Long-Term Data Record for the 1981-2000 period over the BELMANIP2 globally representative sample of sites. Comparison with two widely used temporal filtering methods-the asymmetric Gaussian (AG) model and the Savitzky-Golay (SG) filter as implemented in TIMESAT-revealed that CACAO achieved better performances for smoothing AVHRR time series characterized by high level of noise and frequent missing observations. The resulting smoothed time series captures well the vegetation dynamics and shows no gaps as compared to the 50-60% of still missing data after AG or SG reconstructions. Results of simulation experiments as well as confrontation with actual AVHRR time series indicate that the proposed CACAO method is more robust to noise and missing data than AG and SG methods for phenology extraction.
Energy Technology Data Exchange (ETDEWEB)
Niehof, Jonathan T.; Morley, Steven K.
2012-01-01
We review and develop techniques to determine associations between series of discrete events. The bootstrap, a nonparametric statistical method, allows the determination of the significance of associations with minimal assumptions about the underlying processes. We find the key requirement for this method: one of the series must be widely spaced in time to guarantee the theoretical applicability of the bootstrap. If this condition is met, the calculated significance passes a reasonableness test. We conclude with some potential future extensions and caveats on the applicability of these methods. The techniques presented have been implemented in a Python-based software toolkit.
Residual power series method for fractional Sharma-Tasso-Olever equation
Directory of Open Access Journals (Sweden)
Amit Kumar
2016-02-01
Full Text Available In this paper, we introduce a modified analytical approximate technique to obtain solution of time fractional Sharma-Tasso-Olever equation. First, we present an alternative framework of the Residual power series method (RPSM which can be used simply and effectively to handle nonlinear fractional differential equations arising in several physical phenomena. This method is basically based on the generalized Taylor series formula and residual error function. A good result is found between our solution and the given solution. It is shown that the proposed method is reliable, efficient and easy to implement on all kinds of fractional nonlinear problems arising in science and technology.
STOCHASTIC METHODS IN RISK ANALYSIS
Directory of Open Access Journals (Sweden)
Vladimíra OSADSKÁ
2017-06-01
Full Text Available In this paper, we review basic stochastic methods which can be used to extend state-of-the-art deterministic analytical methods for risk analysis. We can conclude that the standard deterministic analytical methods highly depend on the practical experience and knowledge of the evaluator and therefore, the stochastic methods should be introduced. The new risk analysis methods should consider the uncertainties in input values. We present how large is the impact on the results of the analysis solving practical example of FMECA with uncertainties modelled using Monte Carlo sampling.
Local Fractional Series Expansion Method for Solving Wave and Diffusion Equations on Cantor Sets
Directory of Open Access Journals (Sweden)
Ai-Min Yang
2013-01-01
Full Text Available We proposed a local fractional series expansion method to solve the wave and diffusion equations on Cantor sets. Some examples are given to illustrate the efficiency and accuracy of the proposed method to obtain analytical solutions to differential equations within the local fractional derivatives.
International Nuclear Information System (INIS)
Tang You-Fu; Liu Shu-Lin; Jiang Rui-Hong; Liu Ying-Hui
2013-01-01
We study the correlation between detrended fluctuation analysis (DFA) and the Lempel-Ziv complexity (LZC) in nonlinear time series analysis in this paper. Typical dynamic systems including a logistic map and a Duffing model are investigated. Moreover, the influence of Gaussian random noise on both the DFA and LZC are analyzed. The results show a high correlation between the DFA and LZC, which can quantify the non-stationarity and the nonlinearity of the time series, respectively. With the enhancement of the random component, the exponent a and the normalized complexity index C show increasing trends. In addition, C is found to be more sensitive to the fluctuation in the nonlinear time series than α. Finally, the correlation between the DFA and LZC is applied to the extraction of vibration signals for a reciprocating compressor gas valve, and an effective fault diagnosis result is obtained
Advances in Antithetic Time Series Analysis : Separating Fact from Artifact
Directory of Open Access Journals (Sweden)
Dennis Ridley
2016-01-01
Full Text Available The problem of biased time series mathematical model parameter estimates is well known to be insurmountable. When used to predict future values by extrapolation, even a de minimis bias will eventually grow into a large bias, with misleading results. This paper elucidates how combining antithetic time series' solves this baffling problem of bias in the fitted and forecast values by dynamic bias cancellation. Instead of growing to infinity, the average error can converge to a constant. (original abstract
Geomechanical time series and its singularity spectrum analysis
Czech Academy of Sciences Publication Activity Database
Lyubushin, Alexei A.; Kaláb, Zdeněk; Lednická, Markéta
2012-01-01
Roč. 47, č. 1 (2012), s. 69-77 ISSN 1217-8977 R&D Projects: GA ČR GA105/09/0089 Institutional research plan: CEZ:AV0Z30860518 Keywords : geomechanical time series * singularity spectrum * time series segmentation * laser distance meter Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.347, year: 2012 http://www.akademiai.com/content/88v4027758382225/fulltext.pdf
Empirical mode decomposition and long-range correlation analysis of sunspot time series
International Nuclear Information System (INIS)
Zhou, Yu; Leung, Yee
2010-01-01
Sunspots, which are the best known and most variable features of the solar surface, affect our planet in many ways. The number of sunspots during a period of time is highly variable and arouses strong research interest. When multifractal detrended fluctuation analysis (MF-DFA) is employed to study the fractal properties and long-range correlation of the sunspot series, some spurious crossover points might appear because of the periodic and quasi-periodic trends in the series. However many cycles of solar activities can be reflected by the sunspot time series. The 11-year cycle is perhaps the most famous cycle of the sunspot activity. These cycles pose problems for the investigation of the scaling behavior of sunspot time series. Using different methods to handle the 11-year cycle generally creates totally different results. Using MF-DFA, Movahed and co-workers employed Fourier truncation to deal with the 11-year cycle and found that the series is long-range anti-correlated with a Hurst exponent, H, of about 0.12. However, Hu and co-workers proposed an adaptive detrending method for the MF-DFA and discovered long-range correlation characterized by H≈0.74. In an attempt to get to the bottom of the problem in the present paper, empirical mode decomposition (EMD), a data-driven adaptive method, is applied to first extract the components with different dominant frequencies. MF-DFA is then employed to study the long-range correlation of the sunspot time series under the influence of these components. On removing the effects of these periods, the natural long-range correlation of the sunspot time series can be revealed. With the removal of the 11-year cycle, a crossover point located at around 60 months is discovered to be a reasonable point separating two different time scale ranges, H≈0.72 and H≈1.49. And on removing all cycles longer than 11 years, we have H≈0.69 and H≈0.28. The three cycle-removing methods—Fourier truncation, adaptive detrending and the
Directory of Open Access Journals (Sweden)
Mathieu Lepot
2017-10-01
Full Text Available A thorough review has been performed on interpolation methods to fill gaps in time-series, efficiency criteria, and uncertainty quantifications. On one hand, there are numerous available methods: interpolation, regression, autoregressive, machine learning methods, etc. On the other hand, there are many methods and criteria to estimate efficiencies of these methods, but uncertainties on the interpolated values are rarely calculated. Furthermore, while they are estimated according to standard methods, the prediction uncertainty is not taken into account: a discussion is thus presented on the uncertainty estimation of interpolated/extrapolated data. Finally, some suggestions for further research and a new method are proposed.
[Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (2)].
Murase, Kenya
2015-01-01
In this issue, symbolic methods for solving differential equations were firstly introduced. Of the symbolic methods, Laplace transform method was also introduced together with some examples, in which this method was applied to solving the differential equations derived from a two-compartment kinetic model and an equivalent circuit model for membrane potential. Second, series expansion methods for solving differential equations were introduced together with some examples, in which these methods were used to solve Bessel's and Legendre's differential equations. In the next issue, simultaneous differential equations and various methods for solving these differential equations will be introduced together with some examples in medical physics.
Basic methods of isotope analysis
International Nuclear Information System (INIS)
Ochkin, A.V.; Rozenkevich, M.B.
2000-01-01
The bases of the most applied methods of the isotope analysis are briefly presented. The possibilities and analytical characteristics of the mass-spectrometric, spectral, radiochemical and special methods of the isotope analysis, including application of the magnetic resonance, chromatography and refractometry, are considered [ru
R/S method for evaluation of pollutant time series in environmental quality assessment
Directory of Open Access Journals (Sweden)
Bu Quanmin
2008-12-01
Full Text Available The significance of the fluctuation and randomness of the time series of each pollutant in environmental quality assessment is described for the first time in this paper. A comparative study was made of three different computing methods: the same starting point method, the striding averaging method, and the stagger phase averaging method. All of them can be used to calculate the Hurst index, which quantifies fluctuation and randomness. This study used real water quality data from Shazhu monitoring station on Taihu Lake in Wuxi, Jiangsu Province. The results show that, of the three methods, the stagger phase averaging method is best for calculating the Hurst index of a pollutant time series from the perspective of statistical regularity.
Time series analysis of infrared satellite data for detecting thermal anomalies: a hybrid approach
Koeppen, W. C.; Pilger, E.; Wright, R.
2011-07-01
We developed and tested an automated algorithm that analyzes thermal infrared satellite time series data to detect and quantify the excess energy radiated from thermal anomalies such as active volcanoes. Our algorithm enhances the previously developed MODVOLC approach, a simple point operation, by adding a more complex time series component based on the methods of the Robust Satellite Techniques (RST) algorithm. Using test sites at Anatahan and Kīlauea volcanoes, the hybrid time series approach detected ~15% more thermal anomalies than MODVOLC with very few, if any, known false detections. We also tested gas flares in the Cantarell oil field in the Gulf of Mexico as an end-member scenario representing very persistent thermal anomalies. At Cantarell, the hybrid algorithm showed only a slight improvement, but it did identify flares that were undetected by MODVOLC. We estimate that at least 80 MODIS images for each calendar month are required to create good reference images necessary for the time series analysis of the hybrid algorithm. The improved performance of the new algorithm over MODVOLC will result in the detection of low temperature thermal anomalies that will be useful in improving our ability to document Earth's volcanic eruptions, as well as detecting low temperature thermal precursors to larger eruptions.
Time Series Analysis of Wheat flour Price Shocks in Pakistan: A Case Analysis
Asad Raza Abdi; Ali Hassan Halepoto; Aisha Bashir Shah; Faiz M. Shaikh
2013-01-01
The current research investigates the wheat flour Price Shocks in Pakistan: A case analysis. Data was collected by using secondary sources by using Time series Analysis, and data were analyzed by using SPSS-20 version. It was revealed that the price of wheat flour increases from last four decades, and trend of price shocks shows that due to certain market variation and supply and demand shocks also play a positive relationship in price shocks in the wheat prices. It was further revealed th...
Time series modeling for analysis and control advanced autopilot and monitoring systems
Ohtsu, Kohei; Kitagawa, Genshiro
2015-01-01
This book presents multivariate time series methods for the analysis and optimal control of feedback systems. Although ships’ autopilot systems are considered through the entire book, the methods set forth in this book can be applied to many other complicated, large, or noisy feedback control systems for which it is difficult to derive a model of the entire system based on theory in that subject area. The basic models used in this method are the multivariate autoregressive model with exogenous variables (ARX) model and the radial bases function net-type coefficients ARX model. The noise contribution analysis can then be performed through the estimated autoregressive (AR) model and various types of autopilot systems can be designed through the state–space representation of the models. The marine autopilot systems addressed in this book include optimal controllers for course-keeping motion, rolling reduction controllers with rudder motion, engine governor controllers, noise adaptive autopilots, route-tracki...
R package imputeTestbench to compare imputations methods for univariate time series
Bokde, Neeraj; Kulat, Kishore; Beck, Marcus W; Asencio-Cortés, Gualberto
2016-01-01
This paper describes the R package imputeTestbench that provides a testbench for comparing imputation methods for missing data in univariate time series. The imputeTestbench package can be used to simulate the amount and type of missing data in a complete dataset and compare filled data using different imputation methods. The user has the option to simulate missing data by removing observations completely at random or in blocks of different sizes. Several default imputation methods are includ...
[Series: Utilization of Differential Equations and Methods for Solving Them in Medical Physics (1)].
Murase, Kenya
2014-01-01
Utilization of differential equations and methods for solving them in medical physics are presented. First, the basic concept and the kinds of differential equations were overviewed. Second, separable differential equations and well-known first-order and second-order differential equations were introduced, and the methods for solving them were described together with several examples. In the next issue, the symbolic and series expansion methods for solving differential equations will be mainly introduced.
Energy Technology Data Exchange (ETDEWEB)
Moauro, F. [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Energia
1995-03-01
This paper reports a short term analysis of the Italian demand for energy fonts and a check of a statistic model supposing the industrial demand for energy fonts as a function of prices and production, according to neoclassic neoclassic micro economic theory. To this pourpose monthly time series of industrial consumption of main energy fonts in 6 sectors, industrial production indexes in the same sectors and indexes of energy prices (coal, natural gas, oil products, electricity) have been used. The statistic methodology refers to modern analysis of time series and specifically to transfer function models. These ones permit rigorous identification and representation of the most important dynamic relations between dependent variables (production and prices), as relation of an input-output system. The results have shown an important positive correlation between energy consumption with prices. Furthermore, it has been shown the reliability of forecasts and their use as monthly energy indicators.
Time series analysis of soil Radon-222 recorded at Kutch region, Gujarat, India
International Nuclear Information System (INIS)
Madhusudan Rao, K.; Rastogi, B.K.; Barman, Chiranjib; Chaudhuri, Hirok
2013-01-01
Kutch region in Gujarat lies in a seismic vulnerable zone (seismic zone-v). After the devastating Bhuj earthquake (7.7M) of January 26, 2001 in the Kutch region several researcher focused their attention to monitor geophysical and geochemical precursors for earthquakes in the region. In order to find out the possible geochemical precursory signals for earthquake events, we monitored radioactive gas radon-222 in sub surface soil gas at Kutch region. We have analysed the recorded soil radon-222 time series by means of nonlinear techniques such as FFT power spectral analysis, empirical mode decomposition, multi-fractal analysis along with other linear statistical methods. Some fascinating and fruitful results originated out the nonlinear analysis of the said time series have been discussed in the present paper. The entire analytical method aided us to recognize the nature and pattern of soil radon-222 emanation process. Moreover the recording and statistical and non-linear analysis of soil radon data at Kutch region will assist us to understand the preparation phase of an imminent seismic event in the region. (author)
Unstable Periodic Orbit Analysis of Histograms of Chaotic Time Series
International Nuclear Information System (INIS)
Zoldi, S.M.
1998-01-01
Using the Lorenz equations, we have investigated whether unstable periodic orbits (UPOs) associated with a strange attractor may predict the occurrence of the robust sharp peaks in histograms of some experimental chaotic time series. Histograms with sharp peaks occur for the Lorenz parameter value r=60.0 but not for r=28.0 , and the sharp peaks for r=60.0 do not correspond to a histogram derived from any single UPO. However, we show that histograms derived from the time series of a non-Axiom-A chaotic system can be accurately predicted by an escape-time weighting of UPO histograms. copyright 1998 The American Physical Society
Analysis of Data from a Series of Events by a Geometric Process Model
Institute of Scientific and Technical Information of China (English)
Yeh Lam; Li-xing Zhu; Jennifer S. K. Chan; Qun Liu
2004-01-01
Geometric process was first introduced by Lam[10,11]. A stochastic process {Xi, i = 1, 2,…} is called a geometric process (GP) if, for some a > 0, {ai-1Xi, i = 1, 2,…} forms a renewal process. In thispaper, the GP is used to analyze the data from a series of events. A nonparametric method is introduced forthe estimation of the three parameters in the GP. The limiting distributions of the three estimators are studied.Through the analysis of some real data sets, the GP model is compared with other three homogeneous andnonhomogeneous Poisson models. It seems that on average the GP model is the best model among these fourmodels in analyzing the data from a series of events.
Development of analysis software for radiation time-series data with the use of visual studio 2005
International Nuclear Information System (INIS)
Hohara, Sin-ya; Horiguchi, Tetsuo; Ito, Shin
2008-01-01
Time-Series Analysis supplies a new vision that conventional analysis methods such as energy spectroscopy haven't achieved ever. However, application of time-series analysis to radiation measurements needs much effort in software and hardware development. By taking advantage of Visual Studio 2005, we developed an analysis software, 'ListFileConverter', for time-series radiation measurement system called as 'MPA-3'. The software is based on graphical user interface (GUI) architecture that enables us to save a large amount of operation time in the analysis, and moreover to make an easy-access to special file structure of MPA-3 data. In this paper, detailed structure of ListFileConverter is fully explained, and experimental results for counting capability of MPA-3 hardware system and those for neutron measurements with our UTR-KINKI reactor are also given. (author)
Homotopy analysis method for neutron diffusion calculations
International Nuclear Information System (INIS)
Cavdar, S.
2009-01-01
The Homotopy Analysis Method (HAM), proposed in 1992 by Shi Jun Liao and has been developed since then, is based on a fundamental concept in differential geometry and topology, the homotopy. It has proved useful for problems involving algebraic, linear/non-linear, ordinary/partial differential and differential-integral equations being an analytic, recursive method that provides a series sum solution. It has the advantage of offering a certain freedom for the choice of its arguments such as the initial guess, the auxiliary linear operator and the convergence control parameter, and it allows us to effectively control the rate and region of convergence of the series solution. HAM is applied for the fixed source neutron diffusion equation in this work, which is a part of our research motivated by the question of whether methods for solving the neutron diffusion equation that yield straightforward expressions but able to provide a solution of reasonable accuracy exist such that we could avoid analytic methods that are widely used but either fail to solve the problem or provide solutions through many intricate expressions that are likely to contain mistakes or numerical methods that require powerful computational resources and advanced programming skills due to their very nature or intricate mathematical fundamentals. Fourier basis are employed for expressing the initial guess due to the structure of the problem and its boundary conditions. We present the results in comparison with other widely used methods of Adomian Decomposition and Variable Separation.
Dynamic Factor Analysis of Nonstationary Multivariate Time Series.
Molenaar, Peter C. M.; And Others
1992-01-01
The dynamic factor model proposed by P. C. Molenaar (1985) is exhibited, and a dynamic nonstationary factor model (DNFM) is constructed with latent factor series that have time-varying mean functions. The use of a DNFM is illustrated using data from a television viewing habits study. (SLD)
Koopman Operator Framework for Time Series Modeling and Analysis
Surana, Amit
2018-01-01
We propose an interdisciplinary framework for time series classification, forecasting, and anomaly detection by combining concepts from Koopman operator theory, machine learning, and linear systems and control theory. At the core of this framework is nonlinear dynamic generative modeling of time series using the Koopman operator which is an infinite-dimensional but linear operator. Rather than working with the underlying nonlinear model, we propose two simpler linear representations or model forms based on Koopman spectral properties. We show that these model forms are invariants of the generative model and can be readily identified directly from data using techniques for computing Koopman spectral properties without requiring the explicit knowledge of the generative model. We also introduce different notions of distances on the space of such model forms which is essential for model comparison/clustering. We employ the space of Koopman model forms equipped with distance in conjunction with classical machine learning techniques to develop a framework for automatic feature generation for time series classification. The forecasting/anomaly detection framework is based on using Koopman model forms along with classical linear systems and control approaches. We demonstrate the proposed framework for human activity classification, and for time series forecasting/anomaly detection in power grid application.
Probabilistic methods for rotordynamics analysis
Wu, Y.-T.; Torng, T. Y.; Millwater, H. R.; Fossum, A. F.; Rheinfurth, M. H.
1991-01-01
This paper summarizes the development of the methods and a computer program to compute the probability of instability of dynamic systems that can be represented by a system of second-order ordinary linear differential equations. Two instability criteria based upon the eigenvalues or Routh-Hurwitz test functions are investigated. Computational methods based on a fast probability integration concept and an efficient adaptive importance sampling method are proposed to perform efficient probabilistic analysis. A numerical example is provided to demonstrate the methods.
Complexity analysis of the turbulent environmental fluid flow time series
Mihailović, D. T.; Nikolić-Đorić, E.; Drešković, N.; Mimić, G.
2014-02-01
We have used the Kolmogorov complexities, sample and permutation entropies to quantify the randomness degree in river flow time series of two mountain rivers in Bosnia and Herzegovina, representing the turbulent environmental fluid, for the period 1926-1990. In particular, we have examined the monthly river flow time series from two rivers (the Miljacka and the Bosnia) in the mountain part of their flow and then calculated the Kolmogorov complexity (KL) based on the Lempel-Ziv Algorithm (LZA) (lower-KLL and upper-KLU), sample entropy (SE) and permutation entropy (PE) values for each time series. The results indicate that the KLL, KLU, SE and PE values in two rivers are close to each other regardless of the amplitude differences in their monthly flow rates. We have illustrated the changes in mountain river flow complexity by experiments using (i) the data set for the Bosnia River and (ii) anticipated human activities and projected climate changes. We have explored the sensitivity of considered measures in dependence on the length of time series. In addition, we have divided the period 1926-1990 into three subintervals: (a) 1926-1945, (b) 1946-1965, (c) 1966-1990, and calculated the KLL, KLU, SE, PE values for the various time series in these subintervals. It is found that during the period 1946-1965, there is a decrease in their complexities, and corresponding changes in the SE and PE, in comparison to the period 1926-1990. This complexity loss may be primarily attributed to (i) human interventions, after the Second World War, on these two rivers because of their use for water consumption and (ii) climate change in recent times.
Analysis of Precision of Activation Analysis Method
DEFF Research Database (Denmark)
Heydorn, Kaj; Nørgaard, K.
1973-01-01
The precision of an activation-analysis method prescribes the estimation of the precision of a single analytical result. The adequacy of these estimates to account for the observed variation between duplicate results from the analysis of different samples and materials, is tested by the statistic T...
Lhermitte, S.; Tips, M.; Verbesselt, J.; Jonckheere, I.; Van Aardt, J.; Coppin, Pol
2005-10-01
Large-scale wild fires have direct impacts on natural ecosystems and play a major role in the vegetation ecology and carbon budget. Accurate methods for describing post-fire development of vegetation are therefore essential for the understanding and monitoring of terrestrial ecosystems. Time series analysis of satellite imagery offers the potential to quantify these parameters with spatial and temporal accuracy. Current research focuses on the potential of time series analysis of SPOT Vegetation S10 data (1999-2001) to quantify the vegetation recovery of large-scale burns detected in the framework of GBA2000. The objective of this study was to provide quantitative estimates of the spatio-temporal variation of vegetation recovery based on remote sensing indicators. Southern Africa was used as a pilot study area, given the availability of ground and satellite data. An automated technique was developed to extract consistent indicators of vegetation recovery from the SPOT-VGT time series. Reference areas were used to quantify the vegetation regrowth by means of Regeneration Indices (RI). Two kinds of recovery indicators (time and value- based) were tested for RI's of NDVI, SR, SAVI, NDWI, and pure band information. The effects of vegetation structure and temporal fire regime features on the recovery indicators were subsequently analyzed. Statistical analyses were conducted to assess whether the recovery indicators were different for different vegetation types and dependent on timing of the burning season. Results highlighted the importance of appropriate reference areas and the importance of correct normalization of the SPOT-VGT data.
Li, Shuying; Zhuang, Jun; Shen, Shifei
2017-07-01
In recent years, various types of terrorist attacks occurred, causing worldwide catastrophes. According to the Global Terrorism Database (GTD), among all attack tactics, bombing attacks happened most frequently, followed by armed assaults. In this article, a model for analyzing and forecasting the conditional probability of bombing attacks (CPBAs) based on time-series methods is developed. In addition, intervention analysis is used to analyze the sudden increase in the time-series process. The results show that the CPBA increased dramatically at the end of 2011. During that time, the CPBA increased by 16.0% in a two-month period to reach the peak value, but still stays 9.0% greater than the predicted level after the temporary effect gradually decays. By contrast, no significant fluctuation can be found in the conditional probability process of armed assault. It can be inferred that some social unrest, such as America's troop withdrawal from Afghanistan and Iraq, could have led to the increase of the CPBA in Afghanistan, Iraq, and Pakistan. The integrated time-series and intervention model is used to forecast the monthly CPBA in 2014 and through 2064. The average relative error compared with the real data in 2014 is 3.5%. The model is also applied to the total number of attacks recorded by the GTD between 2004 and 2014. © 2016 Society for Risk Analysis.
Work-related accidents among the Iranian population: a time series analysis, 2000–2011
Karimlou, Masoud; Imani, Mehdi; Hosseini, Agha-Fatemeh; Dehnad, Afsaneh; Vahabi, Nasim; Bakhtiyari, Mahmood
2015-01-01
Background Work-related accidents result in human suffering and economic losses and are considered as a major health problem worldwide, especially in the economically developing world. Objectives To introduce seasonal autoregressive moving average (ARIMA) models for time series analysis of work-related accident data for workers insured by the Iranian Social Security Organization (ISSO) between 2000 and 2011. Methods In this retrospective study, all insured people experiencing at least one work-related accident during a 10-year period were included in the analyses. We used Box–Jenkins modeling to develop a time series model of the total number of accidents. Results There was an average of 1476 accidents per month (1476·05±458·77, mean±SD). The final ARIMA (p,d,q) (P,D,Q)s model for fitting to data was: ARIMA(1,1,1)×(0,1,1)12 consisting of the first ordering of the autoregressive, moving average and seasonal moving average parameters with 20·942 mean absolute percentage error (MAPE). Conclusions The final model showed that time series analysis of ARIMA models was useful for forecasting the number of work-related accidents in Iran. In addition, the forecasted number of work-related accidents for 2011 explained the stability of occurrence of these accidents in recent years, indicating a need for preventive occupational health and safety policies such as safety inspection. PMID:26119774
Directory of Open Access Journals (Sweden)
Ai-Min Yang
2014-01-01
Full Text Available We use the local fractional series expansion method to solve the Klein-Gordon equations on Cantor sets within the local fractional derivatives. The analytical solutions within the nondifferential terms are discussed. The obtained results show the simplicity and efficiency of the present technique with application to the problems of the liner differential equations on Cantor sets.
Directory of Open Access Journals (Sweden)
SURE KÖME
2014-12-01
Full Text Available In this paper, we investigated the effect of Magnus Series Expansion Method on homogeneous stiff ordinary differential equations with different stiffness ratios. A Magnus type integrator is used to obtain numerical solutions of two different examples of stiff problems and exact and approximate results are tabulated. Furthermore, absolute error graphics are demonstrated in detail.
Accuracy and Sensitivity of a Method of Jump Detection, Evaluated by Simulated Time Series
Czech Academy of Sciences Publication Activity Database
Chapanov, Y.; Ron, Cyril; Vondrák, Jan
2017-01-01
Roč. 14, č. 1 (2017), s. 73-82 ISSN 1214-9705 R&D Projects: GA ČR GA13-15943S Institutional support: RVO:67985815 Keywords : time series * data jump detection * high-sensitive method Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 0.699, year: 2016
Hof, AL; Boom, H; Robinson, C; Rutten, W; Neuman, M; Wijkstra, H
1997-01-01
With a newly developed Controlled-Release Ergometer the complete characteristic of the series elastic component can be measured in human muscles. Previous estimates were based on the resonance method: muscle elasticity was assessed from the resonance frequency of the muscle elasticity connected to a
Analysis of the gamma spectra of the uranium, actinium, and thorium decay series
International Nuclear Information System (INIS)
Momeni, M.H.
1981-09-01
This report describes the identification of radionuclides in the uranium, actinium, and thorium series by analysis of gamma spectra in the energy range of 40 to 1400 keV. Energies and absolute efficiencies for each gamma line were measured by means of a high-resolution germanium detector and compared with those in the literature. A gamma spectroscopy method, which utilizes an on-line computer for deconvolution of spectra, search and identification of each line, and estimation of activity for each radionuclide, was used to analyze soil and uranium tailings, and ore
Nonlinear programming analysis and methods
Avriel, Mordecai
2012-01-01
This text provides an excellent bridge between principal theories and concepts and their practical implementation. Topics include convex programming, duality, generalized convexity, analysis of selected nonlinear programs, techniques for numerical solutions, and unconstrained optimization methods.
Chemical methods of rock analysis
National Research Council Canada - National Science Library
Jeffery, P. G; Hutchison, D
1981-01-01
A practical guide to the methods in general use for the complete analysis of silicate rock material and for the determination of all those elements present in major, minor or trace amounts in silicate...
Directory of Open Access Journals (Sweden)
Jun Bi
2018-04-01
Full Text Available Battery electric vehicles (BEVs reduce energy consumption and air pollution as compared with conventional vehicles. However, the limited driving range and potential long charging time of BEVs create new problems. Accurate charging time prediction of BEVs helps drivers determine travel plans and alleviate their range anxiety during trips. This study proposed a combined model for charging time prediction based on regression and time-series methods according to the actual data from BEVs operating in Beijing, China. After data analysis, a regression model was established by considering the charged amount for charging time prediction. Furthermore, a time-series method was adopted to calibrate the regression model, which significantly improved the fitting accuracy of the model. The parameters of the model were determined by using the actual data. Verification results confirmed the accuracy of the model and showed that the model errors were small. The proposed model can accurately depict the charging time characteristics of BEVs in Beijing.
Shirota, Yukari; Hashimoto, Takako; Fitri Sari, Riri
2018-03-01
It has been very significant to visualize time series big data. In the paper we shall discuss a new analysis method called “statistical shape analysis” or “geometry driven statistics” on time series statistical data in economics. In the paper, we analyse the agriculture, value added and industry, value added (percentage of GDP) changes from 2000 to 2010 in Asia. We handle the data as a set of landmarks on a two-dimensional image to see the deformation using the principal components. The point of the analysis method is the principal components of the given formation which are eigenvectors of its bending energy matrix. The local deformation can be expressed as the set of non-Affine transformations. The transformations give us information about the local differences between in 2000 and in 2010. Because the non-Affine transformation can be decomposed into a set of partial warps, we present the partial warps visually. The statistical shape analysis is widely used in biology but, in economics, no application can be found. In the paper, we investigate its potential to analyse the economic data.
International Nuclear Information System (INIS)
Thireou, Trias; Rubio Guivernau, Jose Luis; Atlamazoglou, Vassilis; Ledesma, Maria Jesus; Pavlopoulos, Sotiris; Santos, Andres; Kontaxakis, George
2006-01-01
A realistic dynamic positron-emission tomography (PET) thoracic study was generated, using the 4D NURBS-based (non-uniform rational B-splines) cardiac-torso (NCAT) phantom and a sophisticated model of the PET imaging process, simulating two solitary pulmonary nodules. Three data reduction and blind source separation methods were applied to the simulated data: principal component analysis, independent component analysis and similarity mapping. All methods reduced the initial amount of image data to a smaller, comprehensive and easily managed set of parametric images, where structures were separated based on their different kinetic characteristics and the lesions were readily identified. The results indicate that the above-mentioned methods can provide an accurate tool for the support of both visual inspection and subsequent detailed kinetic analysis of the dynamic series via compartmental or non-compartmental models
Quantitative analysis method for ship construction quality
Directory of Open Access Journals (Sweden)
FU Senzong
2017-03-01
Full Text Available The excellent performance of a ship is assured by the accurate evaluation of its construction quality. For a long time, research into the construction quality of ships has mainly focused on qualitative analysis due to a shortage of process data, which results from limited samples, varied process types and non-standardized processes. Aiming at predicting and controlling the influence of the construction process on the construction quality of ships, this article proposes a reliability quantitative analysis flow path for the ship construction process and fuzzy calculation method. Based on the process-quality factor model proposed by the Function-Oriented Quality Control (FOQC method, we combine fuzzy mathematics with the expert grading method to deduce formulations calculating the fuzzy process reliability of the ordinal connection model, series connection model and mixed connection model. The quantitative analysis method is applied in analyzing the process reliability of a ship's shaft gear box installation, which proves the applicability and effectiveness of the method. The analysis results can be a useful reference for setting key quality inspection points and optimizing key processes.
Visibility graph analysis of heart rate time series and bio-marker of congestive heart failure
Bhaduri, Anirban; Bhaduri, Susmita; Ghosh, Dipak
2017-09-01
Study of RR interval time series for Congestive Heart Failure had been an area of study with different methods including non-linear methods. In this article the cardiac dynamics of heart beat are explored in the light of complex network analysis, viz. visibility graph method. Heart beat (RR Interval) time series data taken from Physionet database [46, 47] belonging to two groups of subjects, diseased (congestive heart failure) (29 in number) and normal (54 in number) are analyzed with the technique. The overall results show that a quantitative parameter can significantly differentiate between the diseased subjects and the normal subjects as well as different stages of the disease. Further, the data when split into periods of around 1 hour each and analyzed separately, also shows the same consistent differences. This quantitative parameter obtained using the visibility graph analysis thereby can be used as a potential bio-marker as well as a subsequent alarm generation mechanism for predicting the onset of Congestive Heart Failure.
Modeling Philippine Stock Exchange Composite Index Using Time Series Analysis
Gayo, W. S.; Urrutia, J. D.; Temple, J. M. F.; Sandoval, J. R. D.; Sanglay, J. E. A.
2015-06-01
This study was conducted to develop a time series model of the Philippine Stock Exchange Composite Index and its volatility using the finite mixture of ARIMA model with conditional variance equations such as ARCH, GARCH, EG ARCH, TARCH and PARCH models. Also, the study aimed to find out the reason behind the behaviorof PSEi, that is, which of the economic variables - Consumer Price Index, crude oil price, foreign exchange rate, gold price, interest rate, money supply, price-earnings ratio, Producers’ Price Index and terms of trade - can be used in projecting future values of PSEi and this was examined using Granger Causality Test. The findings showed that the best time series model for Philippine Stock Exchange Composite index is ARIMA(1,1,5) - ARCH(1). Also, Consumer Price Index, crude oil price and foreign exchange rate are factors concluded to Granger cause Philippine Stock Exchange Composite Index.
Automated preparation of Kepler time series of planet hosts for asteroseismic analysis
DEFF Research Database (Denmark)
Handberg, R.; Lund, M. N.
2014-01-01
. In this paper we present the KASOC Filter, which is used to automatically prepare data from the Kepler/K2 mission for asteroseismic analyses of solar-like planet host stars. The methods are very effective at removing unwanted signals of both instrumental and planetary origins and produce significantly cleaner......One of the tasks of the Kepler Asteroseismic Science Operations Center (KASOC) is to provide asteroseismic analyses on Kepler Objects of Interest (KOIs). However, asteroseismic analysis of planetary host stars presents some unique complications with respect to data preprocessing, compared to pure...... asteroseismic targets. If not accounted for, the presence of planetary transits in the photometric time series often greatly complicates or even hinders these asteroseismic analyses. This drives the need for specialised methods of preprocessing data to make them suitable for asteroseismic analysis...
Time series analysis of the behavior of brazilian natural rubber
Directory of Open Access Journals (Sweden)
Antônio Donizette de Oliveira
2009-03-01
Full Text Available The natural rubber is a non-wood product obtained of the coagulation of some lattices of forest species, being Hevea brasiliensis the main one. Native from the Amazon Region, this species was already known by the Indians before the discovery of America. The natural rubber became a product globally valued due to its multiple applications in the economy, being its almost perfect substitute the synthetic rubber derived from the petroleum. Similarly to what happens with other countless products the forecast of future prices of the natural rubber has been object of many studies. The use of models of forecast of univariate timeseries stands out as the more accurate and useful to reduce the uncertainty in the economic decision making process. This studyanalyzed the historical series of prices of the Brazilian natural rubber (R$/kg, in the Jan/99 - Jun/2006 period, in order tocharacterize the rubber price behavior in the domestic market; estimated a model for the time series of monthly natural rubberprices; and foresaw the domestic prices of the natural rubber, in the Jul/2006 - Jun/2007 period, based on the estimated models.The studied models were the ones belonging to the ARIMA family. The main results were: the domestic market of the natural rubberis expanding due to the growth of the world economy; among the adjusted models, the ARIMA (1,1,1 model provided the bestadjustment of the time series of prices of the natural rubber (R$/kg; the prognosis accomplished for the series supplied statistically adequate fittings.
International Nuclear Information System (INIS)
Dong, Xiangyuan; Guo, Shuqing
2008-01-01
In this paper, a novel image reconstruction method for electrical capacitance tomography (ECT) based on the combined series and parallel model is presented. A regularization technique is used to obtain a stabilized solution of the inverse problem. Also, the adaptive coefficient of the combined model is deduced by numerical optimization. Simulation results indicate that it can produce higher quality images when compared to the algorithm based on the parallel or series models for the cases tested in this paper. It provides a new algorithm for ECT application
Dynamical analysis and visualization of tornadoes time series.
Directory of Open Access Journals (Sweden)
António M Lopes
Full Text Available In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.
Dynamical analysis and visualization of tornadoes time series.
Lopes, António M; Tenreiro Machado, J A
2015-01-01
In this paper we analyze the behavior of tornado time-series in the U.S. from the perspective of dynamical systems. A tornado is a violently rotating column of air extending from a cumulonimbus cloud down to the ground. Such phenomena reveal features that are well described by power law functions and unveil characteristics found in systems with long range memory effects. Tornado time series are viewed as the output of a complex system and are interpreted as a manifestation of its dynamics. Tornadoes are modeled as sequences of Dirac impulses with amplitude proportional to the events size. First, a collection of time series involving 64 years is analyzed in the frequency domain by means of the Fourier transform. The amplitude spectra are approximated by power law functions and their parameters are read as an underlying signature of the system dynamics. Second, it is adopted the concept of circular time and the collective behavior of tornadoes analyzed. Clustering techniques are then adopted to identify and visualize the emerging patterns.
Directory of Open Access Journals (Sweden)
Benoit Parmentier
2014-12-01
Full Text Available Characterizing biophysical changes in land change areas over large regions with short and noisy multivariate time series and multiple temporal parameters remains a challenging task. Most studies focus on detection rather than the characterization, i.e., the manner by which surface state variables are altered by the process of changes. In this study, a procedure is presented to extract and characterize simultaneous temporal changes in MODIS multivariate times series from three surface state variables the Normalized Difference Vegetation Index (NDVI, land surface temperature (LST and albedo (ALB. The analysis involves conducting a seasonal trend analysis (STA to extract three seasonal shape parameters (Amplitude 0, Amplitude 1 and Amplitude 2 and using principal component analysis (PCA to contrast trends in change and no-change areas. We illustrate the method by characterizing trends in burned and unburned pixels in Alaska over the 2001–2009 time period. Findings show consistent and meaningful extraction of temporal patterns related to fire disturbances. The first principal component (PC1 is characterized by a decrease in mean NDVI (Amplitude 0 with a concurrent increase in albedo (the mean and the annual amplitude and an increase in LST annual variability (Amplitude 1. These results provide systematic empirical evidence of surface changes associated with one type of land change, fire disturbances, and suggest that STA with PCA may be used to characterize many other types of land transitions over large landscape areas using multivariate Earth observation time series.
Swain, Sushree Diptimayee; Ray, Pravat Kumar; Mohanty, K. B.
2016-06-01
This research paper discover the design of a shunt Passive Power Filter (PPF) in Hybrid Series Active Power Filter (HSAPF) that employs a novel analytic methodology which is superior than FFT analysis. This novel approach consists of the estimation, detection and classification of the signals. The proposed method is applied to estimate, detect and classify the power quality (PQ) disturbance such as harmonics. This proposed work deals with three methods: the harmonic detection through wavelet transform method, the harmonic estimation by Kalman Filter algorithm and harmonic classification by decision tree method. From different type of mother wavelets in wavelet transform method, the db8 is selected as suitable mother wavelet because of its potency on transient response and crouched oscillation at frequency domain. In harmonic compensation process, the detected harmonic is compensated through Hybrid Series Active Power Filter (HSAPF) based on Instantaneous Reactive Power Theory (IRPT). The efficacy of the proposed method is verified in MATLAB/SIMULINK domain and as well as with an experimental set up. The obtained results confirm the superiority of the proposed methodology than FFT analysis. This newly proposed PPF is used to make the conventional HSAPF more robust and stable.
A Fourier-series-based kernel-independent fast multipole method
International Nuclear Information System (INIS)
Zhang Bo; Huang Jingfang; Pitsianis, Nikos P.; Sun Xiaobai
2011-01-01
We present in this paper a new kernel-independent fast multipole method (FMM), named as FKI-FMM, for pairwise particle interactions with translation-invariant kernel functions. FKI-FMM creates, using numerical techniques, sufficiently accurate and compressive representations of a given kernel function over multi-scale interaction regions in the form of a truncated Fourier series. It provides also economic operators for the multipole-to-multipole, multipole-to-local, and local-to-local translations that are typical and essential in the FMM algorithms. The multipole-to-local translation operator, in particular, is readily diagonal and does not dominate in arithmetic operations. FKI-FMM provides an alternative and competitive option, among other kernel-independent FMM algorithms, for an efficient application of the FMM, especially for applications where the kernel function consists of multi-physics and multi-scale components as those arising in recent studies of biological systems. We present the complexity analysis and demonstrate with experimental results the FKI-FMM performance in accuracy and efficiency.
International Nuclear Information System (INIS)
Zhang, Wenchao; Tan, Sichao; Gao, Puzhen; Wang, Zhanwei; Zhang, Liansheng; Zhang, Hong
2014-01-01
Highlights: • Natural circulation flow instabilities in rolling motion are studied. • The method of non-linear time series analysis is used. • Non-linear evolution characteristic of flow instability is analyzed. • Irregular complex flow oscillations are chaotic oscillations. • The effect of rolling parameter on the threshold of chaotic oscillation is studied. - Abstract: Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions were studied by the method of non-linear time series analysis. Experimental flow time series of different dimensionless power and rolling parameters were analyzed based on phase space reconstruction theory. Attractors which were reconstructed in phase space and the geometric invariants, including correlation dimension, Kolmogorov entropy and largest Lyapunov exponent, were determined. Non-linear characteristics of natural circulation flow instabilities under rolling motion conditions was studied based on the results of the geometric invariant analysis. The results indicated that the values of the geometric invariants first increase and then decrease as dimensionless power increases which indicated the non-linear characteristics of the system first enhance and then weaken. The irregular complex flow oscillation is typical chaotic oscillation because the value of geometric invariants is at maximum. The threshold of chaotic oscillation becomes larger as the rolling frequency or rolling amplitude becomes big. The main influencing factors that influence the non-linear characteristics of the natural circulation system under rolling motion are thermal driving force, flow resistance and the additional forces caused by rolling motion. The non-linear characteristics of the natural circulation system under rolling motion changes caused by the change of the feedback and coupling degree among these influencing factors when the dimensionless power or rolling parameters changes
Papacharalampous, Georgia; Tyralis, Hristos; Koutsoyiannis, Demetris
2018-02-01
We investigate the predictability of monthly temperature and precipitation by applying automatic univariate time series forecasting methods to a sample of 985 40-year-long monthly temperature and 1552 40-year-long monthly precipitation time series. The methods include a naïve one based on the monthly values of the last year, as well as the random walk (with drift), AutoRegressive Fractionally Integrated Moving Average (ARFIMA), exponential smoothing state-space model with Box-Cox transformation, ARMA errors, Trend and Seasonal components (BATS), simple exponential smoothing, Theta and Prophet methods. Prophet is a recently introduced model inspired by the nature of time series forecasted at Facebook and has not been applied to hydrometeorological time series before, while the use of random walk, BATS, simple exponential smoothing and Theta is rare in hydrology. The methods are tested in performing multi-step ahead forecasts for the last 48 months of the data. We further investigate how different choices of handling the seasonality and non-normality affect the performance of the models. The results indicate that: (a) all the examined methods apart from the naïve and random walk ones are accurate enough to be used in long-term applications; (b) monthly temperature and precipitation can be forecasted to a level of accuracy which can barely be improved using other methods; (c) the externally applied classical seasonal decomposition results mostly in better forecasts compared to the automatic seasonal decomposition used by the BATS and Prophet methods; and (d) Prophet is competitive, especially when it is combined with externally applied classical seasonal decomposition.
Schaefer, Alexander; Brach, Jennifer S; Perera, Subashan; Sejdić, Ervin
2014-01-30
The time evolution and complex interactions of many nonlinear systems, such as in the human body, result in fractal types of parameter outcomes that exhibit self similarity over long time scales by a power law in the frequency spectrum S(f)=1/f(β). The scaling exponent β is thus often interpreted as a "biomarker" of relative health and decline. This paper presents a thorough comparative numerical analysis of fractal characterization techniques with specific consideration given to experimentally measured gait stride interval time series. The ideal fractal signals generated in the numerical analysis are constrained under varying lengths and biases indicative of a range of physiologically conceivable fractal signals. This analysis is to complement previous investigations of fractal characteristics in healthy and pathological gait stride interval time series, with which this study is compared. The results of our analysis showed that the averaged wavelet coefficient method consistently yielded the most accurate results. Class dependent methods proved to be unsuitable for physiological time series. Detrended fluctuation analysis as most prevailing method in the literature exhibited large estimation variances. The comparative numerical analysis and experimental applications provide a thorough basis for determining an appropriate and robust method for measuring and comparing a physiologically meaningful biomarker, the spectral index β. In consideration of the constraints of application, we note the significant drawbacks of detrended fluctuation analysis and conclude that the averaged wavelet coefficient method can provide reasonable consistency and accuracy for characterizing these fractal time series. Copyright © 2013 Elsevier B.V. All rights reserved.
Seismic design and analysis methods
International Nuclear Information System (INIS)
Varpasuo, P.
1993-01-01
Seismic load is in many areas of the world the most important loading situation from the point of view of structural strength. Taking this into account it is understandable, that there has been a strong allocation of resources in the seismic analysis during the past ten years. In this study there are three areas of the center of gravity: (1) Random vibrations; (2) Soil-structure interaction and (3) The methods for determining structural response. The solution of random vibration problems is clarified with the aid of applications in this study and from the point of view of mathematical treatment and mathematical formulations it is deemed sufficient to give the relevant sources. In the soil-structure interaction analysis the focus has been the significance of frequency dependent impedance functions. As a result it was obtained, that the description of the soil with the aid of frequency dependent impedance functions decreases the structural response and it is thus always the preferred method when compared to more conservative analysis types. From the methods to determine the C structural response the following four were tested: (1) The time history method; (2) The complex frequency-response method; (3) Response spectrum method and (4) The equivalent static force method. The time history appeared to be the most accurate method and the complex frequency-response method did have the widest area of application. (orig.). (14 refs., 35 figs.)
Chaos in Electronic Circuits: Nonlinear Time Series Analysis
Energy Technology Data Exchange (ETDEWEB)
Wheat, Jr., Robert M. [Kennedy Western Univ., Cheyenne, WY (United States)
2003-07-01
Chaos in electronic circuits is a phenomenon that has been largely ignored by engineers, manufacturers, and researchers until the early 1990’s and the work of Chua, Matsumoto, and others. As the world becomes more dependent on electronic devices, the detrimental effects of non-normal operation of these devices becomes more significant. Developing a better understanding of the mechanisms involved in the chaotic behavior of electronic circuits is a logical step toward the prediction and prevention of any potentially catastrophic occurrence of this phenomenon. Also, a better understanding of chaotic behavior, in a general sense, could potentially lead to better accuracy in the prediction of natural events such as weather, volcanic activity, and earthquakes. As a first step in this improvement of understanding, and as part of the research being reported here, methods of computer modeling, identifying and analyzing, and producing chaotic behavior in simple electronic circuits have been developed. The computer models were developed using both the Alternative Transient Program (ATP) and Spice, the analysis techniques have been implemented using the C and C++ programming languages, and the chaotically behaving circuits developed using “off the shelf” electronic components.
Time-Series Analysis of Supergranule Characterstics at Solar Minimum
Williams, Peter E.; Pesnell, W. Dean
2013-01-01
Sixty days of Doppler images from the Solar and Heliospheric Observatory (SOHO) / Michelson Doppler Imager (MDI) investigation during the 1996 and 2008 solar minima have been analyzed to show that certain supergranule characteristics (size, size range, and horizontal velocity) exhibit fluctuations of three to five days. Cross-correlating parameters showed a good, positive correlation between supergranulation size and size range, and a moderate, negative correlation between size range and velocity. The size and velocity do exhibit a moderate, negative correlation, but with a small time lag (less than 12 hours). Supergranule sizes during five days of co-temporal data from MDI and the Solar Dynamics Observatory (SDO) / Helioseismic Magnetic Imager (HMI) exhibit similar fluctuations with a high level of correlation between them. This verifies the solar origin of the fluctuations, which cannot be caused by instrumental artifacts according to these observations. Similar fluctuations are also observed in data simulations that model the evolution of the MDI Doppler pattern over a 60-day period. Correlations between the supergranule size and size range time-series derived from the simulated data are similar to those seen in MDI data. A simple toy-model using cumulative, uncorrelated exponential growth and decay patterns at random emergence times produces a time-series similar to the data simulations. The qualitative similarities between the simulated and the observed time-series suggest that the fluctuations arise from stochastic processes occurring within the solar convection zone. This behavior, propagating to surface manifestations of supergranulation, may assist our understanding of magnetic-field-line advection, evolution, and interaction.
Durbin, J.; Koopman, S.J.M.
1998-01-01
The analysis of non-Gaussian time series using state space models is considered from both classical and Bayesian perspectives. The treatment in both cases is based on simulation using importance sampling and antithetic variables; Monte Carlo Markov chain methods are not employed. Non-Gaussian
Year Ahead Demand Forecast of City Natural Gas Using Seasonal Time Series Methods
Directory of Open Access Journals (Sweden)
Mustafa Akpinar
2016-09-01
Full Text Available Consumption of natural gas, a major clean energy source, increases as energy demand increases. We studied specifically the Turkish natural gas market. Turkey’s natural gas consumption increased as well in parallel with the world‘s over the last decade. This consumption growth in Turkey has led to the formation of a market structure for the natural gas industry. This significant increase requires additional investments since a rise in consumption capacity is expected. One of the reasons for the consumption increase is the user-based natural gas consumption influence. This effect yields imbalances in demand forecasts and if the error rates are out of bounds, penalties may occur. In this paper, three univariate statistical methods, which have not been previously investigated for mid-term year-ahead monthly natural gas forecasting, are used to forecast natural gas demand in Turkey’s Sakarya province. Residential and low-consumption commercial data is used, which may contain seasonality. The goal of this paper is minimizing more or less gas tractions on mid-term consumption while improving the accuracy of demand forecasting. In forecasting models, seasonality and single variable impacts reinforce forecasts. This paper studies time series decomposition, Holt-Winters exponential smoothing and autoregressive integrated moving average (ARIMA methods. Here, 2011–2014 monthly data were prepared and divided into two series. The first series is 2011–2013 monthly data used for finding seasonal effects and model requirements. The second series is 2014 monthly data used for forecasting. For the ARIMA method, a stationary series was prepared and transformation process prior to forecasting was done. Forecasting results confirmed that as the computation complexity of the model increases, forecasting accuracy increases with lower error rates. Also, forecasting errors and the coefficients of determination values give more consistent results. Consequently
Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory
Wang, Na; Li, Dong; Wang, Qiwen
2012-12-01
The visibility graph approach and complex network theory provide a new insight into time series analysis. The inheritance of the visibility graph from the original time series was further explored in the paper. We found that degree distributions of visibility graphs extracted from Pseudo Brownian Motion series obtained by the Frequency Domain algorithm exhibit exponential behaviors, in which the exponential exponent is a binomial function of the Hurst index inherited in the time series. Our simulations presented that the quantitative relations between the Hurst indexes and the exponents of degree distribution function are different for different series and the visibility graph inherits some important features of the original time series. Further, we convert some quarterly macroeconomic series including the growth rates of value-added of three industry series and the growth rates of Gross Domestic Product series of China to graphs by the visibility algorithm and explore the topological properties of graphs associated from the four macroeconomic series, namely, the degree distribution and correlations, the clustering coefficient, the average path length, and community structure. Based on complex network analysis we find degree distributions of associated networks from the growth rates of value-added of three industry series are almost exponential and the degree distributions of associated networks from the growth rates of GDP series are scale free. We also discussed the assortativity and disassortativity of the four associated networks as they are related to the evolutionary process of the original macroeconomic series. All the constructed networks have “small-world” features. The community structures of associated networks suggest dynamic changes of the original macroeconomic series. We also detected the relationship among government policy changes, community structures of associated networks and macroeconomic dynamics. We find great influences of government
Cerebral venous sinus thrombosis on MRI: A case series analysis
Directory of Open Access Journals (Sweden)
Sanjay M Khaladkar
2014-01-01
Full Text Available Background: Cerebral venous sinus thrombosis (CVST is a rare form of stroke seen in young and middle aged group, especially in women due to thrombus of dural venous sinuses and can cause acute neurological deterioration with increased morbidity and mortality if not diagnosed in early stage. Neurological deficit occurs due to focal or diffuse cerebral edema and venous non-hemorrhagic or hemorrhagic infarct. Aim and Objectives: To assess/evaluate the role of Magnetic Resonance Imaging (MRI and Magnetic Resonance Venography (MRV as an imaging modality for early diagnosis of CVST and to study patterns of venous thrombosis, in detecting changes in brain parenchyma and residual effects of CVST using MRI. Materials and Methods: Retrospective descriptive analysis of 40 patients of CVST diagnosed on MRI brain and MRV was done. Results: 29/40 (72.5% were males and 11/40 (27.5% were females. Most of the patients were in the age group of 21-40 years (23/40-57.5%. Most of the patients 16/40 (40% presented within 7 days. No definite cause of CVST was found in 24 (60% patients in spite of detailed history. In 36/40 (90% of cases major sinuses were involved, deep venous system were involved in 7/40 (17.5% cases, superficial cortical vein was involved in 1/40 (2.5% cases. Analysis of stage of thrombus (acute, subacute, chronic was done based on its appearance on T1 and T2WI. 31/40 (77.5% patients showed complete absence of flow on MRV, while 9/40 (22.5% cases showed partial flow on MR venogram. Brain parenchyma was normal in 20/40 (50% patients while 6/40 (15% cases had non-hemorrhagic infarct and 14/40 (35% patients presented with hemorrhagic infarct. Conclusion: Our study concluded that MRI brain with MRV is sensitive in diagnosing both direct signs (evidence of thrombus inside the affected veins and indirect signs (parenchymal changes of CVST and their follow up.
Forecasting malaria cases using climatic factors in delhi, India: a time series analysis.
Kumar, Varun; Mangal, Abha; Panesar, Sanjeet; Yadav, Geeta; Talwar, Richa; Raut, Deepak; Singh, Saudan
2014-01-01
Background. Malaria still remains a public health problem in developing countries and changing environmental and climatic factors pose the biggest challenge in fighting against the scourge of malaria. Therefore, the study was designed to forecast malaria cases using climatic factors as predictors in Delhi, India. Methods. The total number of monthly cases of malaria slide positives occurring from January 2006 to December 2013 was taken from the register maintained at the malaria clinic at Rural Health Training Centre (RHTC), Najafgarh, Delhi. Climatic data of monthly mean rainfall, relative humidity, and mean maximum temperature were taken from Regional Meteorological Centre, Delhi. Expert modeler of SPSS ver. 21 was used for analyzing the time series data. Results. Autoregressive integrated moving average, ARIMA (0,1,1) (0,1,0)(12), was the best fit model and it could explain 72.5% variability in the time series data. Rainfall (P value = 0.004) and relative humidity (P value = 0.001) were found to be significant predictors for malaria transmission in the study area. Seasonal adjusted factor (SAF) for malaria cases shows peak during the months of August and September. Conclusion. ARIMA models of time series analysis is a simple and reliable tool for producing reliable forecasts for malaria in Delhi, India.
Discontinuous conduction mode analysis of phase-modulated series ...
Indian Academy of Sciences (India)
Utsab Kundu
domain analysis; frequency domain analysis; critical load resistance. 1. Introduction ... DCMSRC design process, requiring repeated circuit simu- lations for design ... Structured derivation of Av is presented, ..... System specifications. L. C r. Lm.
Spatially adaptive mixture modeling for analysis of FMRI time series.
Vincent, Thomas; Risser, Laurent; Ciuciu, Philippe
2010-04-01
Within-subject analysis in fMRI essentially addresses two problems, the detection of brain regions eliciting evoked activity and the estimation of the underlying dynamics. In Makni et aL, 2005 and Makni et aL, 2008, a detection-estimation framework has been proposed to tackle these problems jointly, since they are connected to one another. In the Bayesian formalism, detection is achieved by modeling activating and nonactivating voxels through independent mixture models (IMM) within each region while hemodynamic response estimation is performed at a regional scale in a nonparametric way. Instead of IMMs, in this paper we take advantage of spatial mixture models (SMM) for their nonlinear spatial regularizing properties. The proposed method is unsupervised and spatially adaptive in the sense that the amount of spatial correlation is automatically tuned from the data and this setting automatically varies across brain regions. In addition, the level of regularization is specific to each experimental condition since both the signal-to-noise ratio and the activation pattern may vary across stimulus types in a given brain region. These aspects require the precise estimation of multiple partition functions of underlying Ising fields. This is addressed efficiently using first path sampling for a small subset of fields and then using a recently developed fast extrapolation technique for the large remaining set. Simulation results emphasize that detection relying on supervised SMM outperforms its IMM counterpart and that unsupervised spatial mixture models achieve similar results without any hand-tuning of the correlation parameter. On real datasets, the gain is illustrated in a localizer fMRI experiment: brain activations appear more spatially resolved using SMM in comparison with classical general linear model (GLM)-based approaches, while estimating a specific parcel-based HRF shape. Our approach therefore validates the treatment of unsmoothed fMRI data without fixed GLM
Univariate Time Series Prediction of Solar Power Using a Hybrid Wavelet-ARMA-NARX Prediction Method
Energy Technology Data Exchange (ETDEWEB)
Nazaripouya, Hamidreza; Wang, Yubo; Chu, Chi-Cheng; Pota, Hemanshu; Gadh, Rajit
2016-05-02
This paper proposes a new hybrid method for super short-term solar power prediction. Solar output power usually has a complex, nonstationary, and nonlinear characteristic due to intermittent and time varying behavior of solar radiance. In addition, solar power dynamics is fast and is inertia less. An accurate super short-time prediction is required to compensate for the fluctuations and reduce the impact of solar power penetration on the power system. The objective is to predict one step-ahead solar power generation based only on historical solar power time series data. The proposed method incorporates discrete wavelet transform (DWT), Auto-Regressive Moving Average (ARMA) models, and Recurrent Neural Networks (RNN), while the RNN architecture is based on Nonlinear Auto-Regressive models with eXogenous inputs (NARX). The wavelet transform is utilized to decompose the solar power time series into a set of richer-behaved forming series for prediction. ARMA model is employed as a linear predictor while NARX is used as a nonlinear pattern recognition tool to estimate and compensate the error of wavelet-ARMA prediction. The proposed method is applied to the data captured from UCLA solar PV panels and the results are compared with some of the common and most recent solar power prediction methods. The results validate the effectiveness of the proposed approach and show a considerable improvement in the prediction precision.
Dakos, Vasilis; Carpenter, Stephen R.; Brock, William A.; Ellison, Aaron M.; Guttal, Vishwesha; Ives, Anthony R.; Kéfi, Sonia; Livina, Valerie; Seekell, David A.; van Nes, Egbert H.; Scheffer, Marten
2012-01-01
Many dynamical systems, including lakes, organisms, ocean circulation patterns, or financial markets, are now thought to have tipping points where critical transitions to a contrasting state can happen. Because critical transitions can occur unexpectedly and are difficult to manage, there is a need for methods that can be used to identify when a critical transition is approaching. Recent theory shows that we can identify the proximity of a system to a critical transition using a variety of so-called ‘early warning signals’, and successful empirical examples suggest a potential for practical applicability. However, while the range of proposed methods for predicting critical transitions is rapidly expanding, opinions on their practical use differ widely, and there is no comparative study that tests the limitations of the different methods to identify approaching critical transitions using time-series data. Here, we summarize a range of currently available early warning methods and apply them to two simulated time series that are typical of systems undergoing a critical transition. In addition to a methodological guide, our work offers a practical toolbox that may be used in a wide range of fields to help detect early warning signals of critical transitions in time series data. PMID:22815897
The Analysis Of Personality Disorder On Two Characters In The Animation Series Black Rock Shooter
Ramadhana, Rizki Andrian
2015-01-01
The title of this thesis is The Analysis of Personality Disorder on Two Characters in the Animation Series “Black Rock Shooter” which discusses about the personality disorder of two characters from this series; they are Kagari Izuriha and Yomi Takanashi. The animation series Black Rock Shooter is chosen as the source of data because this animation has psychological genre and represents the complexity of human relationship, especially when build up a friendship. It is because human is a social...
Time series analysis of reference crop evapotranspiration for Bokaro District, Jharkhand, India
Directory of Open Access Journals (Sweden)
Gautam Ratnesh
2016-09-01
Full Text Available Evapotranspiration is the one of the major role playing element in water cycle. More accurate measurement and forecasting of Evapotranspiration would enable more efficient water resources management. This study, is therefore, particularly focused on evapotranspiration modelling and forecasting, since forecasting would provide better information for optimal water resources management. There are numerous techniques of evapotranspiration forecasting that include autoregressive (AR and moving average (MA, autoregressive moving average (ARMA, autoregressive integrated moving average (ARIMA, Thomas Feiring, etc. Out of these models ARIMA model has been found to be more suitable for analysis and forecasting of hydrological events. Therefore, in this study ARIMA models have been used for forecasting of mean monthly reference crop evapotranspiration by stochastic analysis. The data series of 102 years i.e. 1224 months of Bokaro District were used for analysis and forecasting. Different order of ARIMA model was selected on the basis of autocorrelation function (ACF and partial autocorrelation (PACF of data series. Maximum likelihood method was used for determining the parameters of the models. To see the statistical parameter of model, best fitted model is ARIMA (0, 1, 4 (0, 1, 112.
A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series
Patel, Ameera X.; Kundu, Prantik; Rubinov, Mikail; Jones, P. Simon; Vértes, Petra E.; Ersche, Karen D.; Suckling, John; Bullmore, Edward T.
2014-01-01
The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N = 22) and a new dataset on adults with stimulant drug dependence (N = 40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www
A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series.
Patel, Ameera X; Kundu, Prantik; Rubinov, Mikail; Jones, P Simon; Vértes, Petra E; Ersche, Karen D; Suckling, John; Bullmore, Edward T
2014-07-15
The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N=22) and a new dataset on adults with stimulant drug dependence (N=40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www
Sasmita, Yoga; Darmawan, Gumgum
2017-08-01
This research aims to evaluate the performance of forecasting by Fourier Series Analysis (FSA) and Singular Spectrum Analysis (SSA) which are more explorative and not requiring parametric assumption. Those methods are applied to predicting the volume of motorcycle sales in Indonesia from January 2005 to December 2016 (monthly). Both models are suitable for seasonal and trend component data. Technically, FSA defines time domain as the result of trend and seasonal component in different frequencies which is difficult to identify in the time domain analysis. With the hidden period is 2,918 ≈ 3 and significant model order is 3, FSA model is used to predict testing data. Meanwhile, SSA has two main processes, decomposition and reconstruction. SSA decomposes the time series data into different components. The reconstruction process starts with grouping the decomposition result based on similarity period of each component in trajectory matrix. With the optimum of window length (L = 53) and grouping effect (r = 4), SSA predicting testing data. Forecasting accuracy evaluation is done based on Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The result shows that in the next 12 month, SSA has MAPE = 13.54 percent, MAE = 61,168.43 and RMSE = 75,244.92 and FSA has MAPE = 28.19 percent, MAE = 119,718.43 and RMSE = 142,511.17. Therefore, to predict volume of motorcycle sales in the next period should use SSA method which has better performance based on its accuracy.
Approximate k-NN delta test minimization method using genetic algorithms: Application to time series
Mateo, F; Gadea, Rafael; Sovilj, Dusan
2010-01-01
In many real world problems, the existence of irrelevant input variables (features) hinders the predictive quality of the models used to estimate the output variables. In particular, time series prediction often involves building large regressors of artificial variables that can contain irrelevant or misleading information. Many techniques have arisen to confront the problem of accurate variable selection, including both local and global search strategies. This paper presents a method based on genetic algorithms that intends to find a global optimum set of input variables that minimize the Delta Test criterion. The execution speed has been enhanced by substituting the exact nearest neighbor computation by its approximate version. The problems of scaling and projection of variables have been addressed. The developed method works in conjunction with MATLAB's Genetic Algorithm and Direct Search Toolbox. The goodness of the proposed methodology has been evaluated on several popular time series examples, and also ...
Directory of Open Access Journals (Sweden)
Pavel Zaskalicky
2008-01-01
Full Text Available Reluctance stepper motors are becoming to be very attractive transducer to conversion of electric signal to the mechanical position. Due to its simple construction is reluctance machine considered a very reliable machine which not requiring any maintenance. Present paper proposes a mathematical method of an analytical calculus of a phase current and electromagnetic torque of the motor via Fourier series. Saturation effect and winding reluctance are neglected.
Forecasting with quantitative methods the impact of special events in time series
Nikolopoulos, Konstantinos
2010-01-01
Abstract Quantitative methods are very successful for producing baseline forecasts of time series; however these models fail to forecast neither the timing nor the impact of special events such as promotions or strikes. In most of the cases the timing of such events is not known so they are usually referred as shocks (economics) or special events (forecasting). Sometimes the timing of such events is known a priori (i.e. a future promotion); but even then the impact of the forthcom...
WANG, D.; Wang, Y.; Zeng, X.
2017-12-01
Accurate, fast forecasting of hydro-meteorological time series is presently a major challenge in drought and flood mitigation. This paper proposes a hybrid approach, Wavelet De-noising (WD) and Rank-Set Pair Analysis (RSPA), that takes full advantage of a combination of the two approaches to improve forecasts of hydro-meteorological time series. WD allows decomposition and reconstruction of a time series by the wavelet transform, and hence separation of the noise from the original series. RSPA, a more reliable and efficient version of Set Pair Analysis, is integrated with WD to form the hybrid WD-RSPA approach. Two types of hydro-meteorological data sets with different characteristics and different levels of human influences at some representative stations are used to illustrate the WD-RSPA approach. The approach is also compared to three other generic methods: the conventional Auto Regressive Integrated Moving Average (ARIMA) method, Artificial Neural Networks (ANNs) (BP-error Back Propagation, MLP-Multilayer Perceptron and RBF-Radial Basis Function), and RSPA alone. Nine error metrics are used to evaluate the model performance. The results show that WD-RSPA is accurate, feasible, and effective. In particular, WD-RSPA is found to be the best among the various generic methods compared in this paper, even when the extreme events are included within a time series.
Detecting method for crude oil price fluctuation mechanism under different periodic time series
International Nuclear Information System (INIS)
Gao, Xiangyun; Fang, Wei; An, Feng; Wang, Yue
2017-01-01
Highlights: • We proposed the concept of autoregressive modes to indicate the fluctuation patterns. • We constructed transmission networks for studying the fluctuation mechanism. • There are different fluctuation mechanism under different periodic time series. • Only a few types of autoregressive modes control the fluctuations in crude oil price. • There are cluster effects during the fluctuation mechanism of autoregressive modes. - Abstract: Current existing literatures can characterize the long-term fluctuation of crude oil price time series, however, it is difficult to detect the fluctuation mechanism specifically under short term. Because each fluctuation pattern for one short period contained in a long-term crude oil price time series have dynamic characteristics of diversity; in other words, there exhibit various fluctuation patterns in different short periods and transmit to each other, which reflects the reputedly complicate and chaotic oil market. Thus, we proposed an incorporated method to detect the fluctuation mechanism, which is the evolution of the different fluctuation patterns over time from the complex network perspective. We divided crude oil price time series into segments using sliding time windows, and defined autoregressive modes based on regression models to indicate the fluctuation patterns of each segment. Hence, the transmissions between different types of autoregressive modes over time form a transmission network that contains rich dynamic information. We then capture transmission characteristics of autoregressive modes under different periodic time series through the structure features of the transmission networks. The results indicate that there are various autoregressive modes with significantly different statistical characteristics under different periodic time series. However, only a few types of autoregressive modes and transmission patterns play a major role in the fluctuation mechanism of the crude oil price, and these
Directory of Open Access Journals (Sweden)
Dennis A Dean
Full Text Available We present a novel approach for analyzing biological time-series data using a context-free language (CFL representation that allows the extraction and quantification of important features from the time-series. This representation results in Hierarchically AdaPtive (HAP analysis, a suite of multiple complementary techniques that enable rapid analysis of data and does not require the user to set parameters. HAP analysis generates hierarchically organized parameter distributions that allow multi-scale components of the time-series to be quantified and includes a data analysis pipeline that applies recursive analyses to generate hierarchically organized results that extend traditional outcome measures such as pharmacokinetics and inter-pulse interval. Pulsicons, a novel text-based time-series representation also derived from the CFL approach, are introduced as an objective qualitative comparison nomenclature. We apply HAP to the analysis of 24 hours of frequently sampled pulsatile cortisol hormone data, which has known analysis challenges, from 14 healthy women. HAP analysis generated results in seconds and produced dozens of figures for each participant. The results quantify the observed qualitative features of cortisol data as a series of pulse clusters, each consisting of one or more embedded pulses, and identify two ultradian phenotypes in this dataset. HAP analysis is designed to be robust to individual differences and to missing data and may be applied to other pulsatile hormones. Future work can extend HAP analysis to other time-series data types, including oscillatory and other periodic physiological signals.
Xie, Hong-Bo; Dokos, Socrates
2013-01-01
A new method, namely fuzzy central tendency measure (fCTM) analysis, that could enable measurement of the variability of a time series, is presented in this study. Tests on simulated data sets show that fCTM is superior to the conventional central tendency measure (CTM) in several respects, including improved relative consistency and robustness to noise. The proposed fCTM method was applied to electromyograph (EMG) signals recorded during sustained isometric contraction for tracking local muscle fatigue. The results showed that the fCTM increased significantly during the development of muscle fatigue, and it was more sensitive to the fatigue phenomenon than mean frequency (MNF), the most commonly-used muscle fatigue indicator.
Time Series in Education: The Analysis of Daily Attendance in Two High Schools
Koopmans, Matthijs
2011-01-01
This presentation discusses the use of a time series approach to the analysis of daily attendance in two urban high schools over the course of one school year (2009-10). After establishing that the series for both schools were stationary, they were examined for moving average processes, autoregression, seasonal dependencies (weekly cycles),…
Time-series analysis of Nigeria rice supply and demand: Error ...
African Journals Online (AJOL)
The study examined a time-series analysis of Nigeria rice supply and demand with a view to determining any long-run equilibrium between them using the Error Correction Model approach (ECM). The data used for the study represents the annual series of 1960-2007 (47 years) for rice supply and demand in Nigeria, ...
Chaos analysis of the electrical signal time series evoked by acupuncture
International Nuclear Information System (INIS)
Wang Jiang; Sun Li; Fei Xiangyang; Zhu Bing
2007-01-01
This paper employs chaos theory to analyze the time series of electrical signal which are evoked by different acupuncture methods applied to the Zusanli point. The phase space is reconstructed and the embedding parameters are obtained by the mutual information and Cao's methods. Subsequently, the largest Lyapunov exponent is calculated. From the analyses we can conclude that the time series are chaotic. In addition, differences between various acupuncture methods are discussed
Chaos analysis of the electrical signal time series evoked by acupuncture
Energy Technology Data Exchange (ETDEWEB)
Wang Jiang [School of Electrical Engineering, Tianjin University, Tianjin 300072 (China)]. E-mail: jiangwang@tju.edu.cn; Sun Li [School of Electrical Engineering, Tianjin University, Tianjin 300072 (China); Fei Xiangyang [School of Electrical Engineering, Tianjin University, Tianjin 300072 (China); Zhu Bing [Institute of Acupuncture and Moxibustion, China Academy of Traditional Chinese Medicine, Beijing 100700 (China)
2007-08-15
This paper employs chaos theory to analyze the time series of electrical signal which are evoked by different acupuncture methods applied to the Zusanli point. The phase space is reconstructed and the embedding parameters are obtained by the mutual information and Cao's methods. Subsequently, the largest Lyapunov exponent is calculated. From the analyses we can conclude that the time series are chaotic. In addition, differences between various acupuncture methods are discussed.
Taxation in Public Education. Analysis and Bibliography Series, No. 12.
Ross, Larry L.
Intended for both researchers and practitioners, this analysis and bibliography cites approximately 100 publications on educational taxation, including general texts and reports, statistical reports, taxation guidelines, and alternative proposals for taxation. Topics covered in the analysis section include State and Federal aid, urban and suburban…
Energy Technology Data Exchange (ETDEWEB)
Pardo-Iguzquiza, E.; Rodriguez-Tovar, F. J.
2013-06-01
In geosciences the sampling of a time series tends to afford uneven results, sometimes because the sampling itself is random or because of hiatuses or even completely missing data or due to difficulties involved in the conversion of data from a spatial to a time scale when the sedimentation rate was not constant. Whatever the case, the best solution does not lie in interpolation but rather in resorting to a method that deals with the irregular data. We show here how the use of the smoothed Lomb-Scargle periodogram is both a practical and efficient choice. We describe the effects on the estimated power spectrum of the type of irregular sampling, the number of data, interpolation, and the presence of drift. We propose the permutation test as being an efficient way of calculating statistical confidence levels. By applying the Lomb-Scargle periodogram to a synthetic series with a known spectral content we are able to confirm the validity of this method in the face of the difficulties mentioned above. A case study with real data, including hiatuses, representing the thickness of the annual banding in a stalagmite, is chosen to demonstrate an application using the statistical and physical interpretation of spectral peaks. (Author)
Directory of Open Access Journals (Sweden)
Yolcu Ufuk
2016-06-01
Full Text Available Fuzzy time series methods based on the fuzzy set theory proposed by Zadeh (1965 was first introduced by Song and Chissom (1993. Since fuzzy time series methods do not have the assumptions that traditional time series do and have effective forecasting performance, the interest on fuzzy time series approaches is increasing rapidly. Fuzzy time series methods have been used in almost all areas, such as environmental science, economy and finance. The concepts of labour force participation and unemployment have great importance in terms of both the economy and sociology of countries. For this reason there are many studies on their forecasting. In this study, we aim to forecast the labour force participation and unemployment rate in Poland and Turkey using different fuzzy time series methods.
The Timeseries Toolbox - A Web Application to Enable Accessible, Reproducible Time Series Analysis
Veatch, W.; Friedman, D.; Baker, B.; Mueller, C.
2017-12-01
The vast majority of data analyzed by climate researchers are repeated observations of physical process or time series data. This data lends itself of a common set of statistical techniques and models designed to determine trends and variability (e.g., seasonality) of these repeated observations. Often, these same techniques and models can be applied to a wide variety of different time series data. The Timeseries Toolbox is a web application designed to standardize and streamline these common approaches to time series analysis and modeling with particular attention to hydrologic time series used in climate preparedness and resilience planning and design by the U. S. Army Corps of Engineers. The application performs much of the pre-processing of time series data necessary for more complex techniques (e.g. interpolation, aggregation). With this tool, users can upload any dataset that conforms to a standard template and immediately begin applying these techniques to analyze their time series data.
Stock price forecasting based on time series analysis
Chi, Wan Le
2018-05-01
Using the historical stock price data to set up a sequence model to explain the intrinsic relationship of data, the future stock price can forecasted. The used models are auto-regressive model, moving-average model and autoregressive-movingaverage model. The original data sequence of unit root test was used to judge whether the original data sequence was stationary. The non-stationary original sequence as a first order difference needed further processing. Then the stability of the sequence difference was re-inspected. If it is still non-stationary, the second order differential processing of the sequence is carried out. Autocorrelation diagram and partial correlation diagram were used to evaluate the parameters of the identified ARMA model, including coefficients of the model and model order. Finally, the model was used to forecast the fitting of the shanghai composite index daily closing price with precision. Results showed that the non-stationary original data series was stationary after the second order difference. The forecast value of shanghai composite index daily closing price was closer to actual value, indicating that the ARMA model in the paper was a certain accuracy.
Industrial electricity demand for Turkey: A structural time series analysis
International Nuclear Information System (INIS)
Dilaver, Zafer; Hunt, Lester C.
2011-01-01
This research investigates the relationship between Turkish industrial electricity consumption, industrial value added and electricity prices in order to forecast future Turkish industrial electricity demand. To achieve this, an industrial electricity demand function for Turkey is estimated by applying the structural time series technique to annual data over the period 1960 to 2008. In addition to identifying the size and significance of the price and industrial value added (output) elasticities, this technique also uncovers the electricity Underlying Energy Demand Trend (UEDT) for the Turkish industrial sector and is, as far as is known, the first attempt to do this. The results suggest that output and real electricity prices and a UEDT all have an important role to play in driving Turkish industrial electricity demand. Consequently, they should all be incorporated when modelling Turkish industrial electricity demand and the estimated UEDT should arguably be considered in future energy policy decisions concerning the Turkish electricity industry. The output and price elasticities are estimated to be 0.15 and - 0.16 respectively, with an increasing (but at a decreasing rate) UEDT and based on the estimated equation, and different forecast assumptions, it is predicted that Turkish industrial electricity demand will be somewhere between 97 and 148 TWh by 2020. -- Research Highlights: → Estimated output and price elasticities of 0.15 and -0.16 respectively. → Estimated upward sloping UEDT (i.e. energy using) but at a decreasing rate. → Predicted Turkish industrial electricity demand between 97 and 148 TWh in 2020.
Methodology Series Module 6: Systematic Reviews and Meta-analysis.
Setia, Maninder Singh
2016-01-01
Systematic reviews and meta-analysis have become an important of biomedical literature, and they provide the "highest level of evidence" for various clinical questions. There are a lot of studies - sometimes with contradictory conclusions - on a particular topic in literature. Hence, as a clinician, which results will you believe? What will you tell your patient? Which drug is better? A systematic review or a meta-analysis may help us answer these questions. In addition, it may also help us understand the quality of the articles in literature or the type of studies that have been conducted and published (example, randomized trials or observational studies). The first step it to identify a research question for systematic review or meta-analysis. The next step is to identify the articles that will be included in the study. This will be done by searching various databases; it is important that the researcher should search for articles in more than one database. It will also be useful to form a group of researchers and statisticians that have expertise in conducting systematic reviews and meta-analysis before initiating them. We strongly encourage the readers to register their proposed review/meta-analysis with PROSPERO. Finally, these studies should be reported according to the Preferred Reporting Items for Systematic Reviews and Meta-analysis checklist.
Series: Practical guidance to qualitative research. Part 3: Sampling, data collection and analysis.
Moser, Albine; Korstjens, Irene
2018-12-01
In the course of our supervisory work over the years, we have noticed that qualitative research tends to evoke a lot of questions and worries, so-called frequently asked questions (FAQs). This series of four articles intends to provide novice researchers with practical guidance for conducting high-quality qualitative research in primary care. By 'novice' we mean Master's students and junior researchers, as well as experienced quantitative researchers who are engaging in qualitative research for the first time. This series addresses their questions and provides researchers, readers, reviewers and editors with references to criteria and tools for judging the quality of qualitative research papers. The second article focused on context, research questions and designs, and referred to publications for further reading. This third article addresses FAQs about sampling, data collection and analysis. The data collection plan needs to be broadly defined and open at first, and become flexible during data collection. Sampling strategies should be chosen in such a way that they yield rich information and are consistent with the methodological approach used. Data saturation determines sample size and will be different for each study. The most commonly used data collection methods are participant observation, face-to-face in-depth interviews and focus group discussions. Analyses in ethnographic, phenomenological, grounded theory, and content analysis studies yield different narrative findings: a detailed description of a culture, the essence of the lived experience, a theory, and a descriptive summary, respectively. The fourth and final article will focus on trustworthiness and publishing qualitative research.
SWOT ANALYSIS ON SAMPLING METHOD
Directory of Open Access Journals (Sweden)
CHIS ANCA OANA
2014-07-01
Full Text Available Audit sampling involves the application of audit procedures to less than 100% of items within an account balance or class of transactions. Our article aims to study audit sampling in audit of financial statements. As an audit technique largely used, in both its statistical and nonstatistical form, the method is very important for auditors. It should be applied correctly for a fair view of financial statements, to satisfy the needs of all financial users. In order to be applied correctly the method must be understood by all its users and mainly by auditors. Otherwise the risk of not applying it correctly would cause loose of reputation and discredit, litigations and even prison. Since there is not a unitary practice and methodology for applying the technique, the risk of incorrectly applying it is pretty high. The SWOT analysis is a technique used that shows the advantages, disadvantages, threats and opportunities. We applied SWOT analysis in studying the sampling method, from the perspective of three players: the audit company, the audited entity and users of financial statements. The study shows that by applying the sampling method the audit company and the audited entity both save time, effort and money. The disadvantages of the method are difficulty in applying and understanding its insight. Being largely used as an audit method and being a factor of a correct audit opinion, the sampling method’s advantages, disadvantages, threats and opportunities must be understood by auditors.
A Two-Dimensional Solar Tracking Stationary Guidance Method Based on Feature-Based Time Series
Directory of Open Access Journals (Sweden)
Keke Zhang
2018-01-01
Full Text Available The amount of satellite energy acquired has a direct impact on operational capacities of the satellite. As for practical high functional density microsatellites, solar tracking guidance design of solar panels plays an extremely important role. Targeted at stationary tracking problems incurred in a new system that utilizes panels mounted in the two-dimensional turntable to acquire energies to the greatest extent, a two-dimensional solar tracking stationary guidance method based on feature-based time series was proposed under the constraint of limited satellite attitude coupling control capability. By analyzing solar vector variation characteristics within an orbit period and solar vector changes within the whole life cycle, such a method could be adopted to establish a two-dimensional solar tracking guidance model based on the feature-based time series to realize automatic switching of feature-based time series and stationary guidance under the circumstance of different β angles and the maximum angular velocity control, which was applicable to near-earth orbits of all orbital inclination. It was employed to design a two-dimensional solar tracking stationary guidance system, and a mathematical simulation for guidance performance was carried out in diverse conditions under the background of in-orbit application. The simulation results show that the solar tracking accuracy of two-dimensional stationary guidance reaches 10∘ and below under the integrated constraints, which meet engineering application requirements.
Visser, H.; Molenaar, J.
1995-05-01
The detection of trends in climatological data has become central to the discussion on climate change due to the enhanced greenhouse effect. To prove detection, a method is needed (i) to make inferences on significant rises or declines in trends, (ii) to take into account natural variability in climate series, and (iii) to compare output from GCMs with the trends in observed climate data. To meet these requirements, flexible mathematical tools are needed. A structural time series model is proposed with which a stochastic trend, a deterministic trend, and regression coefficients can be estimated simultaneously. The stochastic trend component is described using the class of ARIMA models. The regression component is assumed to be linear. However, the regression coefficients corresponding with the explanatory variables may be time dependent to validate this assumption. The mathematical technique used to estimate this trend-regression model is the Kaiman filter. The main features of the filter are discussed.Examples of trend estimation are given using annual mean temperatures at a single station in the Netherlands (1706-1990) and annual mean temperatures at Northern Hemisphere land stations (1851-1990). The inclusion of explanatory variables is shown by regressing the latter temperature series on four variables: Southern Oscillation index (SOI), volcanic dust index (VDI), sunspot numbers (SSN), and a simulated temperature signal, induced by increasing greenhouse gases (GHG). In all analyses, the influence of SSN on global temperatures is found to be negligible. The correlations between temperatures and SOI and VDI appear to be negative. For SOI, this correlation is significant, but for VDI it is not, probably because of a lack of volcanic eruptions during the sample period. The relation between temperatures and GHG is positive, which is in agreement with the hypothesis of a warming climate because of increasing levels of greenhouse gases. The prediction performance of
Time series analysis of diverse extreme phenomena: universal features
Eftaxias, K.; Balasis, G.
2012-04-01
The field of study of complex systems holds that the dynamics of complex systems are founded on universal principles that may used to describe a great variety of scientific and technological approaches of different types of natural, artificial, and social systems. We suggest that earthquake, epileptic seizures, solar flares, and magnetic storms dynamics can be analyzed within similar mathematical frameworks. A central property of aforementioned extreme events generation is the occurrence of coherent large-scale collective behavior with very rich structure, resulting from repeated nonlinear interactions among the corresponding constituents. Consequently, we apply the Tsallis nonextensive statistical mechanics as it proves an appropriate framework in order to investigate universal principles of their generation. First, we examine the data in terms of Tsallis entropy aiming to discover common "pathological" symptoms of transition to a significant shock. By monitoring the temporal evolution of the degree of organization in time series we observe similar distinctive features revealing significant reduction of complexity during their emergence. Second, a model for earthquake dynamics coming from a nonextensive Tsallis formalism, starting from first principles, has been recently introduced. This approach leads to an energy distribution function (Gutenberg-Richter type law) for the magnitude distribution of earthquakes, providing an excellent fit to seismicities generated in various large geographic areas usually identified as seismic regions. We show that this function is able to describe the energy distribution (with similar non-extensive q-parameter) of solar flares, magnetic storms, epileptic and earthquake shocks. The above mentioned evidence of a universal statistical behavior suggests the possibility of a common approach for studying space weather, earthquakes and epileptic seizures.
Real analysis series, functions of several variables, and applications
Laczkovich, Miklós
2017-01-01
This book develops the theory of multivariable analysis, building on the single variable foundations established in the companion volume, Real Analysis: Foundations and Functions of One Variable. Together, these volumes form the first English edition of the popular Hungarian original, Valós Analízis I & II, based on courses taught by the authors at Eötvös Loránd University, Hungary, for more than 30 years. Numerous exercises are included throughout, offering ample opportunities to master topics by progressing from routine to difficult problems. Hints or solutions to many of the more challenging exercises make this book ideal for independent study, or further reading. Intended as a sequel to a course in single variable analysis, this book builds upon and expands these ideas into higher dimensions. The modular organization makes this text adaptable for either a semester or year-long introductory course. Topics include: differentiation and integration of functions of several variables; infinite numerica...
Analysis of engineering cycles thermodynamics and fluid mechanics series
Haywood, R W
1980-01-01
Analysis of Engineering Cycles, Third Edition, deals principally with an analysis of the overall performance, under design conditions, of work-producing power plants and work-absorbing refrigerating and gas-liquefaction plants, most of which are either cyclic or closely related thereto. The book is organized into two parts, dealing first with simple power and refrigerating plants and then moving on to more complex plants. The principal modifications in this Third Edition arise from the updating and expansion of material on nuclear plants and on combined and binary plants. In view of increased
Meshgi, Ali; Schmitter, Petra; Babovic, Vladan; Chui, Ting Fong May
2014-11-01
Developing reliable methods to estimate stream baseflow has been a subject of interest due to its importance in catchment response and sustainable watershed management. However, to date, in the absence of complex numerical models, baseflow is most commonly estimated using statistically derived empirical approaches that do not directly incorporate physically-meaningful information. On the other hand, Artificial Intelligence (AI) tools such as Genetic Programming (GP) offer unique capabilities to reduce the complexities of hydrological systems without losing relevant physical information. This study presents a simple-to-use empirical equation to estimate baseflow time series using GP so that minimal data is required and physical information is preserved. A groundwater numerical model was first adopted to simulate baseflow for a small semi-urban catchment (0.043 km2) located in Singapore. GP was then used to derive an empirical equation relating baseflow time series to time series of groundwater table fluctuations, which are relatively easily measured and are physically related to baseflow generation. The equation was then generalized for approximating baseflow in other catchments and validated for a larger vegetation-dominated basin located in the US (24 km2). Overall, this study used GP to propose a simple-to-use equation to predict baseflow time series based on only three parameters: minimum daily baseflow of the entire period, area of the catchment and groundwater table fluctuations. It serves as an alternative approach for baseflow estimation in un-gauged systems when only groundwater table and soil information is available, and is thus complementary to other methods that require discharge measurements.
Grimm, C. A.
This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…
Numerical simulation of stratified shear flow using a higher order Taylor series expansion method
Energy Technology Data Exchange (ETDEWEB)
Iwashige, Kengo; Ikeda, Takashi [Hitachi, Ltd. (Japan)
1995-09-01
A higher order Taylor series expansion method is applied to two-dimensional numerical simulation of stratified shear flow. In the present study, central difference scheme-like method is adopted for an even expansion order, and upwind difference scheme-like method is adopted for an odd order, and the expansion order is variable. To evaluate the effects of expansion order upon the numerical results, a stratified shear flow test in a rectangular channel (Reynolds number = 1.7x10{sup 4}) is carried out, and the numerical velocity and temperature fields are compared with experimental results measured by laser Doppler velocimetry thermocouples. The results confirm that the higher and odd order methods can simulate mean velocity distributions, root-mean-square velocity fluctuations, Reynolds stress, temperature distributions, and root-mean-square temperature fluctuations.
Using functional data analysis to analyze ecological series data
Background/Question/MethodsA frequent goal in ecology is to understand the relationships among biological organisms and their environment. Most field data are collected as scalar measurements, such that observations are recorded as a collection of datums. The observations are t...
A Fast Multi-layer Subnetwork Connection Method for Time Series InSAR Technique
Directory of Open Access Journals (Sweden)
WU Hong'an
2016-10-01
Full Text Available Nowadays, times series interferometric synthetic aperture radar (InSAR technique has been widely used in ground deformation monitoring, especially in urban areas where lots of stable point targets can be detected. However, in standard time series InSAR technique, affected by atmospheric correlation distance and the threshold of linear model coherence, the Delaunay triangulation for connecting point targets can be easily separated into many discontinuous subnetworks. Thus it is difficult to retrieve ground deformation in non-urban areas. In order to monitor ground deformation in large areas efficiently, a novel multi-layer subnetwork connection (MLSC method is proposed for connecting all subnetworks. The advantage of the method is that it can quickly reduce the number of subnetworks with valid edges layer-by-layer. This method is compared with the existing complex network connecting mehod. The experimental results demonstrate that the data processing time of the proposed method is only 32.56% of the latter one.
A New Modified Histogram Matching Normalization for Time Series Microarray Analysis.
Astola, Laura; Molenaar, Jaap
2014-07-01
Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on continuous time ODE model. We propose an alternative normalization method that is better suited for network inference from time series data.
A New Modified Histogram Matching Normalization for Time Series Microarray Analysis
Directory of Open Access Journals (Sweden)
Laura Astola
2014-07-01
Full Text Available Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on continuous time ODE model. We propose an alternative normalization method that is better suited for network inference from time series data.
Şenol, Mehmet; Alquran, Marwan; Kasmaei, Hamed Daei
2018-06-01
In this paper, we present analytic-approximate solution of time-fractional Zakharov-Kuznetsov equation. This model demonstrates the behavior of weakly nonlinear ion acoustic waves in a plasma bearing cold ions and hot isothermal electrons in the presence of a uniform magnetic field. Basic definitions of fractional derivatives are described in the Caputo sense. Perturbation-iteration algorithm (PIA) and residual power series method (RPSM) are applied to solve this equation with success. The convergence analysis is also presented for both methods. Numerical results are given and then they are compared with the exact solutions. Comparison of the results reveal that both methods are competitive, powerful, reliable, simple to use and ready to apply to wide range of fractional partial differential equations.
Time series analysis of aerobic bacterial flora during Miso fermentation.
Onda, T; Yanagida, F; Tsuji, M; Shinohara, T; Yokotsuka, K
2003-01-01
This article reports a microbiological study of aerobic mesophilic bacteria that are present during the fermentation process of Miso. Aerobic bacteria were enumerated and isolated from Miso during fermentation and divided into nine groups using traditional phenotypic tests. The strains were identified by biochemical analysis and 16S rRNA sequence analysis. They were identified as Bacillus subtilis, B. amyloliquefaciens, Kocuria kristinae, Staphylococcus gallinarum and S. kloosii. All strains were sensitive to the bacteriocins produced by the lactic acid bacteria isolated from Miso. The dominant species among the undesirable species throughout the fermentation process were B. subtilis and B. amyloliquefaciens. It is suggested that bacteriocin-producing lactic acid bacteria are effective in the growth prevention of aerobic bacteria in Miso. This study has provided useful information for controlling of bacterial flora during Miso fermentation.
Curceac, S.; Ternynck, C.; Ouarda, T.
2015-12-01
Over the past decades, a substantial amount of research has been conducted to model and forecast climatic variables. In this study, Nonparametric Functional Data Analysis (NPFDA) methods are applied to forecast air temperature and wind speed time series in Abu Dhabi, UAE. The dataset consists of hourly measurements recorded for a period of 29 years, 1982-2010. The novelty of the Functional Data Analysis approach is in expressing the data as curves. In the present work, the focus is on daily forecasting and the functional observations (curves) express the daily measurements of the above mentioned variables. We apply a non-linear regression model with a functional non-parametric kernel estimator. The computation of the estimator is performed using an asymmetrical quadratic kernel function for local weighting based on the bandwidth obtained by a cross validation procedure. The proximities between functional objects are calculated by families of semi-metrics based on derivatives and Functional Principal Component Analysis (FPCA). Additionally, functional conditional mode and functional conditional median estimators are applied and the advantages of combining their results are analysed. A different approach employs a SARIMA model selected according to the minimum Akaike (AIC) and Bayessian (BIC) Information Criteria and based on the residuals of the model. The performance of the models is assessed by calculating error indices such as the root mean square error (RMSE), relative RMSE, BIAS and relative BIAS. The results indicate that the NPFDA models provide more accurate forecasts than the SARIMA models. Key words: Nonparametric functional data analysis, SARIMA, time series forecast, air temperature, wind speed
A Radial Basis Function Approach to Financial Time Series Analysis
1993-12-01
consequently this approach is at the core of a large fraction of the portfolio management systems today. The Capital Asset Pricing Model ( CAPM ). due...representation used by each method. but of course a critical concern is how to actually estimate the parameters of the models. To sonic extent these...model fitting unseen data nicely depends critically on maintaining a balance between the number of data points used for estimation and the number of
Flows method in global analysis
International Nuclear Information System (INIS)
Duong Minh Duc.
1994-12-01
We study the gradient flows method for W r,p (M,N) where M and N are Riemannian manifold and r may be less than m/p. We localize some global analysis problem by constructing gradient flows which only change the value of any u in W r,p (M,N) in a local chart of M. (author). 24 refs
Cluster analysis of activity-time series in motor learning
DEFF Research Database (Denmark)
Balslev, Daniela; Nielsen, Finn Årup; Frutiger, Sally A.
2002-01-01
Neuroimaging studies of learning focus on brain areas where the activity changes as a function of time. To circumvent the difficult problem of model selection, we used a data-driven analytic tool, cluster analysis, which extracts representative temporal and spatial patterns from the voxel...... practice-related activity in a fronto-parieto-cerebellar network, in agreement with previous studies of motor learning. These voxels were separated from a group of voxels showing an unspecific time-effect and another group of voxels, whose activation was an artifact from smoothing. Hum. Brain Mapping 15...
Nonlinear Analysis of Time Series in Genome-Wide Linkage Disequilibrium Data
Hernández-Lemus, Enrique; Estrada-Gil, Jesús K.; Silva-Zolezzi, Irma; Fernández-López, J. Carlos; Hidalgo-Miranda, Alfredo; Jiménez-Sánchez, Gerardo
2008-02-01
The statistical study of large scale genomic data has turned out to be a very important tool in population genetics. Quantitative methods are essential to understand and implement association studies in the biomedical and health sciences. Nevertheless, the characterization of recently admixed populations has been an elusive problem due to the presence of a number of complex phenomena. For example, linkage disequilibrium structures are thought to be more complex than their non-recently admixed population counterparts, presenting the so-called ancestry blocks, admixed regions that are not yet smoothed by the effect of genetic recombination. In order to distinguish characteristic features for various populations we have implemented several methods, some of them borrowed or adapted from the analysis of nonlinear time series in statistical physics and quantitative physiology. We calculate the main fractal dimensions (Kolmogorov's capacity, information dimension and correlation dimension, usually named, D0, D1 and D2). We also have made detrended fluctuation analysis and information based similarity index calculations for the probability distribution of correlations of linkage disequilibrium coefficient of six recently admixed (mestizo) populations within the Mexican Genome Diversity Project [1] and for the non-recently admixed populations in the International HapMap Project [2]. Nonlinear correlations showed up as a consequence of internal structure within the haplotype distributions. The analysis of these correlations as well as the scope and limitations of these procedures within the biomedical sciences are discussed.
Schaefer, Alexander; Brach, Jennifer S.; Perera, Subashan; Sejdić, Ervin
2013-01-01
Background The time evolution and complex interactions of many nonlinear systems, such as in the human body, result in fractal types of parameter outcomes that exhibit self similarity over long time scales by a power law in the frequency spectrum S(f) = 1/fβ. The scaling exponent β is thus often interpreted as a “biomarker” of relative health and decline. New Method This paper presents a thorough comparative numerical analysis of fractal characterization techniques with specific consideration given to experimentally measured gait stride interval time series. The ideal fractal signals generated in the numerical analysis are constrained under varying lengths and biases indicative of a range of physiologically conceivable fractal signals. This analysis is to complement previous investigations of fractal characteristics in healthy and pathological gait stride interval time series, with which this study is compared. Results The results of our analysis showed that the averaged wavelet coefficient method consistently yielded the most accurate results. Comparison with Existing Methods: Class dependent methods proved to be unsuitable for physiological time series. Detrended fluctuation analysis as most prevailing method in the literature exhibited large estimation variances. Conclusions The comparative numerical analysis and experimental applications provide a thorough basis for determining an appropriate and robust method for measuring and comparing a physiologically meaningful biomarker, the spectral index β. In consideration of the constraints of application, we note the significant drawbacks of detrended fluctuation analysis and conclude that the averaged wavelet coefficient method can provide reasonable consistency and accuracy for characterizing these fractal time series. PMID:24200509
Evaluating disease management program effectiveness: an introduction to time-series analysis.
Linden, Ariel; Adams, John L; Roberts, Nancy
2003-01-01
Currently, the most widely used method in the disease management (DM) industry for evaluating program effectiveness is referred to as the "total population approach." This model is a pretest-posttest design, with the most basic limitation being that without a control group, there may be sources of bias and/or competing extraneous confounding factors that offer a plausible rationale explaining the change from baseline. Furthermore, with the current inclination of DM programs to use financial indicators rather than program-specific utilization indicators as the principal measure of program success, additional biases are introduced that may cloud evaluation results. This paper presents a non-technical introduction to time-series analysis (using disease-specific utilization measures) as an alternative, and more appropriate, approach to evaluating DM program effectiveness than the current total population approach.
Nonlinear Analysis on Cross-Correlation of Financial Time Series by Continuum Percolation System
Niu, Hongli; Wang, Jun
We establish a financial price process by continuum percolation system, in which we attribute price fluctuations to the investors’ attitudes towards the financial market, and consider the clusters in continuum percolation as the investors share the same investment opinion. We investigate the cross-correlations in two return time series, and analyze the multifractal behaviors in this relationship. Further, we study the corresponding behaviors for the real stock indexes of SSE and HSI as well as the liquid stocks pair of SPD and PAB by comparison. To quantify the multifractality in cross-correlation relationship, we employ multifractal detrended cross-correlation analysis method to perform an empirical research for the simulation data and the real markets data.
Age of Saurashtra miliolites by U-Th decay series methods: possible implications to their origin
International Nuclear Information System (INIS)
Hussain, N.; Bhandari, N.; Ramanathan, K.R.; Somayajulu, B.L.K.
1980-01-01
The miliolite deposits of Saurashtra have been dated by 234 U, 230 Th, 231 Pa and 14 C methods. Concordant ages of approximately 10 5 years using the U decay series isotopes are obtained which agree with the ages of the coral reefs of Okha-Dwaraka coast suggesting a contemporaneous origin for both. The lower 14 C ages (<= 40,000 years) may be due to a recent influx of seawater or ground water. Quartz and clay minerals together constitute only <= 10% by weight, as such the aeolin characteristics of quartz grains may not be relevant to the origin of the miliolites. (auth.)
The partial duration series method in regional index-flood modeling
DEFF Research Database (Denmark)
Madsen, Henrik; Rosbjerg, Dan
1997-01-01
A regional index-flood method based on the partial duration series model is introduced. The model comprises the assumptions of a Poisson-distributed number of threshold exceedances and generalized Pareto (GP) distributed peak magnitudes. The regional T-year event estimator is based on a regional...... estimator is superior to the at-site estimator even in extremely heterogenous regions, the performance of the regional estimator being relatively better in regions with a negative shape parameter. When the record length increases, the relative performance of the regional estimator decreases, but it is still...
A SPIRAL-BASED DOWNSCALING METHOD FOR GENERATING 30 M TIME SERIES IMAGE DATA
Directory of Open Access Journals (Sweden)
B. Liu
2017-09-01
Full Text Available The spatial detail and updating frequency of land cover data are important factors influencing land surface dynamic monitoring applications in high spatial resolution scale. However, the fragmentized patches and seasonal variable of some land cover types (e. g. small crop field, wetland make it labor-intensive and difficult in the generation of land cover data. Utilizing the high spatial resolution multi-temporal image data is a possible solution. Unfortunately, the spatial and temporal resolution of available remote sensing data like Landsat or MODIS datasets can hardly satisfy the minimum mapping unit and frequency of current land cover mapping / updating at the same time. The generation of high resolution time series may be a compromise to cover the shortage in land cover updating process. One of popular way is to downscale multi-temporal MODIS data with other high spatial resolution auxiliary data like Landsat. But the usual manner of downscaling pixel based on a window may lead to the underdetermined problem in heterogeneous area, result in the uncertainty of some high spatial resolution pixels. Therefore, the downscaled multi-temporal data can hardly reach high spatial resolution as Landsat data. A spiral based method was introduced to downscale low spatial and high temporal resolution image data to high spatial and high temporal resolution image data. By the way of searching the similar pixels around the adjacent region based on the spiral, the pixel set was made up in the adjacent region pixel by pixel. The underdetermined problem is prevented to a large extent from solving the linear system when adopting the pixel set constructed. With the help of ordinary least squares, the method inverted the endmember values of linear system. The high spatial resolution image was reconstructed on the basis of high spatial resolution class map and the endmember values band by band. Then, the high spatial resolution time series was formed with these
Regularization of the Fourier series of discontinuous functions by various summation methods
Energy Technology Data Exchange (ETDEWEB)
Ahmad, S.S.; Beghi, L. (Padua Univ. (Italy). Seminario Matematico)
1983-07-01
In this paper the regularization by various summation methods of the Fourier series of functions containing discontinuities of the first and second kind are studied and the results of the numerical analyses referring to some typical periodic functions are presented. In addition to the Cesaro and Lanczos weightings, a new (i.e. cosine) weighting for accelerating the convergence rate is proposed. A comparison with the results obtained by Garibotti and Massaro with the punctual Pade approximants (PPA) technique in case of a periodic step function is also carried out.
Age of Saurashtra miliolites by U-Th decay series methods: possible implications to their origin
Energy Technology Data Exchange (ETDEWEB)
Hussain, N; Bhandari, N; Ramanathan, K R; Somayajulu, B L.K. [Physical Research Lab., Ahmedabad (India)
1980-03-01
The miliolite deposits of Saurashtra have been dated by /sup 234/U, /sup 230/Th, /sup 231/Pa and /sup 14/C methods. Concordant ages of approximately 10/sup 5/ years using the U decay series isotopes are obtained which agree with the ages of the coral reefs of Okha-Dwaraka coast suggesting a contemporaneous origin for both. The lower /sup 14/C ages (<= 40,000 years) may be due to a recent influx of seawater or ground water. Quartz and clay minerals together constitute only <= 10% by weight, as such the aeolin characteristics of quartz grains may not be relevant to the origin of the miliolites.
Analysis of series resistance effects on forward I - V and C - V characteristics of mis type diodes
International Nuclear Information System (INIS)
Altindal, S.; Tekeli, Z.; Karadeniz, S.; Tugluoglu, N.; Ercan, I.
2002-01-01
In order to determine the series resistance R s , we have followed Lie et al., Cheung et al. and Kang et al., from the plot of I vs dV/dLn(I) which was linear curve over a wide range of current values at each temperature. The values of Rs were obtained from the slope of the linear parts of the curves and then the series resistance at each temperature has been evaluated at Ln(I) vs (V-IR s ) curves. The curves are linear over a wide range of voltage. The most reliable values of ideality factor n and reverse saturation current Is were then determined. In addition to role of series resistance on the C-V and G-V characteristics of diode have been investigated. Both C-V and G-V measurements show that the measured capacitance and conductance seriously varies with applied bias and frequency due to presence of R s . The density of interface states, barrier height and series resistance from the forward bias I-V characteristics using this method agrees very well with that obtained from the capacitance technique. It is clear that ignoring the series resistance (device with high series resistance) can lead to significant errors in the analysis of the I-V-T, C-V-f and G-V-f characteristics
A Reception Analysis on the Youth Audiences of TV Series in Marivan
Directory of Open Access Journals (Sweden)
Omid Karimi
2014-03-01
Full Text Available The aim of this article is to describe the role of foreign media as the agitators of popular culture. For that with reception analysis it’s pay to describe decoding of youth audiences about this series. Globalization theory and Reception in Communication theory are formed the theoretical system of current article. The methodology in this research is qualitative one, and two techniques as in-depth interview and observation are used for data collection. The results show different people based on individual features, social and cultural backgrounds have inclination toward special characters and identify with them. This inclination so far the audience fallow the series because of his/her favorite character. Also there is a great compatibility between audience backgrounds and their receptions. A number of audience have criticized the series and point out the negative consequences on its society. However, seeing the series continue; really they prefer watching series enjoying to risks of it.
Financing Human Development for Sectorial Growth: A Time Series Analysis
Directory of Open Access Journals (Sweden)
Shobande Abdul Olatunji
2017-06-01
Full Text Available The role which financing human development plays in fostering the sectorial growth of an economy cannot be undermined. It is a key instrument which can be utilized to alleviate poverty, create employment and ensure the sustenance of economic growth and development. Thus financing human development for sectorial growth has taken the center stage of economic growth and development strategies in most countries. In a constructive effort to examine the in-depth relationship between the variables in the Nigerian space, this paper provides evidence on the impact of financing human development and sectorial growth in Nigeria between 1982 and 2016, using the Johansen co-integration techniques to test for co-integration among the variables and the Vector Error Correction Model (VECM to ascertain the speed of adjustment of the variables to their long run equilibrium position. The analysis shows that a long and short run relationship exists between financing human capital development and sectorial growth during the period reviewed. Therefore, the paper argues that for an active foundation for sustainable sectorial growth and development, financing human capital development across each unit is urgently required through increased budgetary allocation for both health and educational sectors since they are key components of human capital development in a nation.
Hip disarticulation - case series analysis and literature review
Directory of Open Access Journals (Sweden)
Diogo Lino Moura
Full Text Available ABSTRACT OBJECTIVE: To present a retrospective study of 16 patients submitted to hip disarticulation. METHODS: During the period of 16 years, 16 patients who underwent hip disarticulation were identified. All of them were studied based on clinical records regarding the gender, age at surgery, disarticulation cause, postoperative complications, mortality rates and functional status after hip disarticulation. RESULTS: Hip disarticulation was performed electively in most cases and urgently in only three cases. The indications had the following origins: infection (n = 6, tumor (n = 6, trauma (n = 3, and ischemia (n = 2. The mean post-surgery survival was 200.5 days. The survival rates were 6875% after six months, 5625% after one year, and 50% after three years. The mortality rates were higher in disarticulations with traumatic (66.7% and tumoral (60% causes. Regarding the eight patients who survived, half of them ambulate with crutches and without prosthesis, 25% walk with limb prosthesis, and 25% are bedridden. Complications and mortality were higher in the cases of urgent surgery, and in those with traumatic and tumoral causes. CONCLUSION: Hip disarticulation is a major ablative surgery with obvious implications for limb functionality, as well as high rates of complications and mortality. However, when performed at the correct time and with proper indication, this procedure can be life-saving and can ensure the return to the home environment with a certain degree of quality of life.
International Work-Conference on Time Series
Pomares, Héctor; Valenzuela, Olga
2017-01-01
This volume of selected and peer-reviewed contributions on the latest developments in time series analysis and forecasting updates the reader on topics such as analysis of irregularly sampled time series, multi-scale analysis of univariate and multivariate time series, linear and non-linear time series models, advanced time series forecasting methods, applications in time series analysis and forecasting, advanced methods and online learning in time series and high-dimensional and complex/big data time series. The contributions were originally presented at the International Work-Conference on Time Series, ITISE 2016, held in Granada, Spain, June 27-29, 2016. The series of ITISE conferences provides a forum for scientists, engineers, educators and students to discuss the latest ideas and implementations in the foundations, theory, models and applications in the field of time series analysis and forecasting. It focuses on interdisciplinary and multidisciplinary rese arch encompassing the disciplines of comput...
Directory of Open Access Journals (Sweden)
Ivan Arismendi
2017-12-01
Full Text Available Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs, to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels between April and August (2015–2016. We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%, but a portion of them showed one or more shifts among states (17%. We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.
Arismendi, Ivan; Dunham, Jason B.; Heck, Michael; Schultz, Luke; Hockman-Wert, David
2017-01-01
Intermittent and ephemeral streams represent more than half of the length of the global river network. Dryland freshwater ecosystems are especially vulnerable to changes in human-related water uses as well as shifts in terrestrial climates. Yet, the description and quantification of patterns of flow permanence in these systems is challenging mostly due to difficulties in instrumentation. Here, we took advantage of existing stream temperature datasets in dryland streams in the northwest Great Basin desert, USA, to extract critical information on climate-sensitive patterns of flow permanence. We used a signal detection technique, Hidden Markov Models (HMMs), to extract information from daily time series of stream temperature to diagnose patterns of stream drying. Specifically, we applied HMMs to time series of daily standard deviation (SD) of stream temperature (i.e., dry stream channels typically display highly variable daily temperature records compared to wet stream channels) between April and August (2015–2016). We used information from paired stream and air temperature data loggers as well as co-located stream temperature data loggers with electrical resistors as confirmatory sources of the timing of stream drying. We expanded our approach to an entire stream network to illustrate the utility of the method to detect patterns of flow permanence over a broader spatial extent. We successfully identified and separated signals characteristic of wet and dry stream conditions and their shifts over time. Most of our study sites within the entire stream network exhibited a single state over the entire season (80%), but a portion of them showed one or more shifts among states (17%). We provide recommendations to use this approach based on a series of simple steps. Our findings illustrate a successful method that can be used to rigorously quantify flow permanence regimes in streams using existing records of stream temperature.
Cerebral Venous-Sinus Thrombosis: A Case Series Analysis
Directory of Open Access Journals (Sweden)
Nahid Ashjazadeh
2011-09-01
Full Text Available Background: Cerebral venous-sinus thrombosis is an uncommon form but important cause of stroke, especially in young-aged women. Methods: We performed a retrospective descriptive-analytical study in which 124 patients with cerebral venous-sinus thrombosis, who referred to Nemazee Hospital, Shiraz University of Medical Sciences from January 2000 to March 2008, were included, and their demographic, etiologic, radiological and prognostic characteristics were evaluated. Results: The patients' mean age was 34.01±10.25. Eighty seven (70.16% were women and 37 (29.83% were men. The most frequent clinical manifestations were headache, papilledema and seizures. Fifty seven (65.51% women took oral contraceptive pills. Twenty of 57 women (35.08% took the pill longer than one month to be able to fast in Ramadan or perform the Hajj ceremonies. In the mean time they developed cerebral venous-sinus thrombosis. Superior sagital sinus, with or without lateral sinuses, was the most involved area (70.96%. High mortality and morbidity rates (14.51% and 35.48%, respectively were found in patients. Poor prognostic factors at the time of admission were stupor and coma (P=0.001 and evidence of hemorrhage in primary CT scan (P=0.005. Conclusion: Taking oral contraceptive pills was a main factor associated with cerebral venous-sinus thrombosis. Clinical manifestations, prognostic factors, common involved sinuses and image findings of this study were similar to those of other studies. Health care policy makers should design a plan to warn susceptible women of the risk of cerebral venous-sinus thrombosis, and to educate them the ways to prevent it
Magri, Alphonso William
This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression
International Nuclear Information System (INIS)
Wang, H Y; Li, Z Y; Gao, Z H; Wu, J J; Sun, B; Li, C L
2014-01-01
Land condition assessment is a basic prerequisite for finding the degradation of a territory, which might lead to desertification under climatic and human pressures. The temporal change in vegetation productivity is a key indicator of land degradation. In this paper, taking the Otindag Sandy Land as a case, the mean normalized difference vegetation index (NDVI a ), net primary production (NPP) and vegetation rain use efficiency (RUE) dynamic trends during 2001–2010 were analysed. The Mann-Kendall test and the Correlation Analysis method were used and their sensitivities to land degradation were evaluated. The results showed that the three vegetation indicators (NDVI a , NPP and RUE) showed a downward trend with the two methods in the past 10 years and the land was degraded. For the analysis of the three vegetation indicators (NDVI a , NPP and RUE), it indicated a decreasing trend in 62.57%, 74.16% and 88.56% of the study area according to the Mann-Kendall test and in 57.85%, 68.38% and 85.29% according to the correlation analysis method. However, the change trends were not significant, the significant trends at the 95% confidence level only accounted for a small proportion. Analysis of NDVI a , NPP and RUE series showed a significant decreasing trend in 9.21%, 4.81% and 6.51% with the Mann-Kendall test. The NPP change trends showed obvious positive link with the precipitation in the study area. While the effect of the inter-annual variation of the precipitation for RUE was small, the vegetation RUE can provide valuable insights into the status of land condition and had best sensitivity to land degradation
Hayashi, Hideaki; Shima, Keisuke; Shibanoki, Taro; Kurita, Yuichi; Tsuji, Toshio
2013-01-01
This paper outlines a probabilistic neural network developed on the basis of time-series discriminant component analysis (TSDCA) that can be used to classify high-dimensional time-series patterns. TSDCA involves the compression of high-dimensional time series into a lower-dimensional space using a set of orthogonal transformations and the calculation of posterior probabilities based on a continuous-density hidden Markov model that incorporates a Gaussian mixture model expressed in the reduced-dimensional space. The analysis can be incorporated into a neural network so that parameters can be obtained appropriately as network coefficients according to backpropagation-through-time-based training algorithm. The network is considered to enable high-accuracy classification of high-dimensional time-series patterns and to reduce the computation time taken for network training. In the experiments conducted during the study, the validity of the proposed network was demonstrated for EEG signals.
Data Analysis Methods for Paleogenomics
DEFF Research Database (Denmark)
Avila Arcos, Maria del Carmen
(Danmarks Grundforskningfond) 'Centre of Excellence in GeoGenetics' grant, with additional funding provided by the Danish Council for Independent Research 'Sapere Aude' programme. The thesis comprises five chapters, all of which represent different projects that involved the analysis of massive amounts......, thanks to the introduction of NGS and the implementation of data analysis methods specific for each project. Chapters 1 to 3 have been published in peer-reviewed journals and Chapter 4 is currently in review. Chapter 5 consists of a manuscript describing initial results of an ongoing research project......The work presented in this thesis is the result of research carried out during a three-year PhD at the Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, under supervision of Professor Tom Gilbert. The PhD was funded by the Danish National Research Foundation...
Digital spectral analysis parametric, non-parametric and advanced methods
Castanié, Francis
2013-01-01
Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a
An Active Power Sharing Method among Distributed Energy Sources in an Islanded Series Micro-Grid
Directory of Open Access Journals (Sweden)
Wei-Man Yang
2014-11-01
Full Text Available Active power-sharing among distributed energy sources (DESs is not only an important way to realize optimal operation of micro-grids, but also the key to maintaining stability for islanded operation. Due to the unique configuration of series micro-grids (SMGs, the power-sharing method adopted in an ordinary AC, DC, and hybrid AC/DC system cannot be directly applied into SMGs. Power-sharing in one SMG with multiple DESs involves two aspects. On the one hand, capacitor voltage stability based on an energy storage system (ESS in the DC link must be complemented. Actually, this is a problem of power allocation between the generating unit and the ESS in the DES; an extensively researched, similar problem has been grid-off distributed power generation, for which there are good solutions. On the other hand, power-sharing among DESs should be considered to optimize the operation of a series micro-grid. In this paper, a novel method combining master control with auxiliary control is proposed. Master action of a quasi-proportional resonant controller is responsible for stability of the islanded SMG; auxiliary action based on state of charge (SOC realizes coordinated allocation of load power among the source. At the same time, it is important to ensure that the auxiliary control does not influence the master action.
Castro-Schilo, Laura; Ferrer, Emilio
2013-01-01
We illustrate the idiographic/nomothetic debate by comparing 3 approaches to using daily self-report data on affect for predicting relationship quality and breakup. The 3 approaches included (a) the first day in the series of daily data; (b) the mean and variability of the daily series; and (c) parameters from dynamic factor analysis, a…
Xia, Li C; Steele, Joshua A; Cram, Jacob A; Cardon, Zoe G; Simmons, Sheri L; Vallino, Joseph J; Fuhrman, Jed A; Sun, Fengzhu
2011-01-01
The increasing availability of time series microbial community data from metagenomics and other molecular biological studies has enabled the analysis of large-scale microbial co-occurrence and association networks. Among the many analytical techniques available, the Local Similarity Analysis (LSA) method is unique in that it captures local and potentially time-delayed co-occurrence and association patterns in time series data that cannot otherwise be identified by ordinary correlation analysis. However LSA, as originally developed, does not consider time series data with replicates, which hinders the full exploitation of available information. With replicates, it is possible to understand the variability of local similarity (LS) score and to obtain its confidence interval. We extended our LSA technique to time series data with replicates and termed it extended LSA, or eLSA. Simulations showed the capability of eLSA to capture subinterval and time-delayed associations. We implemented the eLSA technique into an easy-to-use analytic software package. The software pipeline integrates data normalization, statistical correlation calculation, statistical significance evaluation, and association network construction steps. We applied the eLSA technique to microbial community and gene expression datasets, where unique time-dependent associations were identified. The extended LSA analysis technique was demonstrated to reveal statistically significant local and potentially time-delayed association patterns in replicated time series data beyond that of ordinary correlation analysis. These statistically significant associations can provide insights to the real dynamics of biological systems. The newly designed eLSA software efficiently streamlines the analysis and is freely available from the eLSA homepage, which can be accessed at http://meta.usc.edu/softs/lsa.
Cooling load calculation by the radiant time series method - effect of solar radiation models
Energy Technology Data Exchange (ETDEWEB)
Costa, Alexandre M.S. [Universidade Estadual de Maringa (UEM), PR (Brazil)], E-mail: amscosta@uem.br
2010-07-01
In this work was analyzed numerically the effect of three different models for solar radiation on the cooling load calculated by the radiant time series' method. The solar radiation models implemented were clear sky, isotropic sky and anisotropic sky. The radiant time series' method (RTS) was proposed by ASHRAE (2001) for replacing the classical methods of cooling load calculation, such as TETD/TA. The method is based on computing the effect of space thermal energy storage on the instantaneous cooling load. The computing is carried out by splitting the heat gain components in convective and radiant parts. Following the radiant part is transformed using time series, which coefficients are a function of the construction type and heat gain (solar or non-solar). The transformed result is added to the convective part, giving the instantaneous cooling load. The method was applied for investigate the influence for an example room. The location used was - 23 degree S and 51 degree W and the day was 21 of January, a typical summer day in the southern hemisphere. The room was composed of two vertical walls with windows exposed to outdoors with azimuth angles equals to west and east directions. The output of the different models of solar radiation for the two walls in terms of direct and diffuse components as well heat gains were investigated. It was verified that the clear sky exhibited the less conservative (higher values) for the direct component of solar radiation, with the opposite trend for the diffuse component. For the heat gain, the clear sky gives the higher values, three times higher for the peek hours than the other models. Both isotropic and anisotropic models predicted similar magnitude for the heat gain. The same behavior was also verified for the cooling load. The effect of room thermal inertia was decreasing the cooling load during the peak hours. On the other hand the higher thermal inertia values are the greater for the non peak hours. The effect
International Nuclear Information System (INIS)
Suzuki, Kiyotaka; Matsuzawa, Hitoshi; Watanabe, Masaki; Nakada, Tsutomu; Nakayama, Naoki; Kwee, I.L.
2003-01-01
Dynamic contrast enhanced magnetic resonance imaging (dynamic MRI) represents a MRI version of non-diffusible tracer methods, the main clinical use of which is the physiological construction of what is conventionally referred to as perfusion images. The raw data utilized for constructing MRI perfusion images are time series of pixel signal alterations associated with the passage of a gadolinium containing contrast agent. Such time series are highly compatible with independent component analysis (ICA), a novel statistical signal processing technique capable of effectively separating a single mixture of multiple signals into their original independent source signals (blind separation). Accordingly, we applied ICA to dynamic MRI time series. The technique was found to be powerful, allowing for hitherto unobtainable assessment of regional cerebral hemodynamics in vivo. (author)
Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng
2015-01-01
The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.
CROSAT: A digital computer program for statistical-spectral analysis of two discrete time series
International Nuclear Information System (INIS)
Antonopoulos Domis, M.
1978-03-01
The program CROSAT computes directly from two discrete time series auto- and cross-spectra, transfer and coherence functions, using a Fast Fourier Transform subroutine. Statistical analysis of the time series is optional. While of general use the program is constructed to be immediately compatible with the ICL 4-70 and H316 computers at AEE Winfrith, and perhaps with minor modifications, with any other hardware system. (author)
Adjustment method for embedded metrology engine in an EM773 series microcontroller.
Blazinšek, Iztok; Kotnik, Bojan; Chowdhury, Amor; Kačič, Zdravko
2015-09-01
This paper presents the problems of implementation and adjustment (calibration) of a metrology engine embedded in NXP's EM773 series microcontroller. The metrology engine is used in a smart metering application to collect data about energy utilization and is controlled with the use of metrology engine adjustment (calibration) parameters. The aim of this research is to develop a method which would enable the operators to find and verify the optimum parameters which would ensure the best possible accuracy. Properly adjusted (calibrated) metrology engines can then be used as a base for variety of products used in smart and intelligent environments. This paper focuses on the problems encountered in the development, partial automatisation, implementation and verification of this method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Shu-Huai Zhang
2017-05-01
Full Text Available Considering the effects of isolation and high efficiency, a series-resonant DC-DC converter (L-L-C type, with two inductors and a capacitor has been introduced into a residential photovoltaic (PV generation and storage system in this work, and a voltage gain curve upwarp drifting problem was found. In this paper, the reason of upwarp drifting in the voltage gain curve is given, and a new changing topological control method to solve the voltage regulation problem under light load conditions is proposed. Firstly, the ideal and actual first harmonic approximation (FHA models are given, and this drifting problem is ascribed to the multiple peaks of higher-order resonance between resonant tank and parasitic capacitors. Then the paper presents the pulse-frequency-modulation (PFM driver signals control method to translate the full-bridge LLC into a half-bridge LLC converter, and with this method the voltage gain could easily be reduced by half. Based on this method, the whole voltage and resonant current sharing control methods in on-line and off-line mode are proposed. The parameters design and optimization methods are also discussed in detail. Finally, a residential PV system platform based on the proposed parallel 7-kW full-bridge LLC converter is built to verify the proposed control method and theoretical analysis.
Discrete Data Qualification System and Method Comprising Noise Series Fault Detection
Fulton, Christopher; Wong, Edmond; Melcher, Kevin; Bickford, Randall
2013-01-01
A Sensor Data Qualification (SDQ) function has been developed that allows the onboard flight computers on NASA s launch vehicles to determine the validity of sensor data to ensure that critical safety and operational decisions are not based on faulty sensor data. This SDQ function includes a novel noise series fault detection algorithm for qualification of the output data from LO2 and LH2 low-level liquid sensors. These sensors are positioned in a launch vehicle s propellant tanks in order to detect propellant depletion during a rocket engine s boost operating phase. This detection capability can prevent the catastrophic situation where the engine operates without propellant. The output from each LO2 and LH2 low-level liquid sensor is a discrete valued signal that is expected to be in either of two states, depending on whether the sensor is immersed (wet) or exposed (dry). Conventional methods for sensor data qualification, such as threshold limit checking, are not effective for this type of signal due to its discrete binary-state nature. To address this data qualification challenge, a noise computation and evaluation method, also known as a noise fault detector, was developed to detect unreasonable statistical characteristics in the discrete data stream. The method operates on a time series of discrete data observations over a moving window of data points and performs a continuous examination of the resulting observation stream to identify the presence of anomalous characteristics. If the method determines the existence of anomalous results, the data from the sensor is disqualified for use by other monitoring or control functions.
Wang, Dong; Borthwick, Alistair G; He, Handan; Wang, Yuankun; Zhu, Jieyu; Lu, Yuan; Xu, Pengcheng; Zeng, Xiankui; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin
2018-01-01
Accurate, fast forecasting of hydro-meteorological time series is presently a major challenge in drought and flood mitigation. This paper proposes a hybrid approach, wavelet de-noising (WD) and Rank-Set Pair Analysis (RSPA), that takes full advantage of a combination of the two approaches to improve forecasts of hydro-meteorological time series. WD allows decomposition and reconstruction of a time series by the wavelet transform, and hence separation of the noise from the original series. RSPA, a more reliable and efficient version of Set Pair Analysis, is integrated with WD to form the hybrid WD-RSPA approach. Two types of hydro-meteorological data sets with different characteristics and different levels of human influences at some representative stations are used to illustrate the WD-RSPA approach. The approach is also compared to three other generic methods: the conventional Auto Regressive Integrated Moving Average (ARIMA) method, Artificial Neural Networks (ANNs) (BP-error Back Propagation, MLP-Multilayer Perceptron and RBF-Radial Basis Function), and RSPA alone. Nine error metrics are used to evaluate the model performance. Compared to three other generic methods, the results generated by WD-REPA model presented invariably smaller error measures which means the forecasting capability of the WD-REPA model is better than other models. The results show that WD-RSPA is accurate, feasible, and effective. In particular, WD-RSPA is found to be the best among the various generic methods compared in this paper, even when the extreme events are included within a time series. Copyright © 2017 Elsevier Inc. All rights reserved.
An Interactive Analysis of Hyperboles in a British TV Series: Implications For EFL Classes
Sert, Olcay
2008-01-01
This paper, part of an ongoing study on the analysis of hyperboles in a British TV series, reports findings drawing upon a 90,000 word corpus. The findings are compared to the ones from CANCODE (McCarthy and Carter 2004), a five-million word corpus of spontaneous speech, in order to identify similarities between the two. The analysis showed that…
The application of time series models to cloud field morphology analysis
Chin, Roland T.; Jau, Jack Y. C.; Weinman, James A.
1987-01-01
A modeling method for the quantitative description of remotely sensed cloud field images is presented. A two-dimensional texture modeling scheme based on one-dimensional time series procedures is adopted for this purpose. The time series procedure used is the seasonal autoregressive, moving average (ARMA) process in Box and Jenkins. Cloud field properties such as directionality, clustering and cloud coverage can be retrieved by this method. It has been demonstrated that a cloud field image can be quantitatively defined by a small set of parameters and synthesized surrogates can be reconstructed from these model parameters. This method enables cloud climatology to be studied quantitatively.
COMPETITIVE INTELLIGENCE ANALYSIS - SCENARIOS METHOD
Directory of Open Access Journals (Sweden)
Ivan Valeriu
2014-07-01
Full Text Available Keeping a company in the top performing players in the relevant market depends not only on its ability to develop continually, sustainably and balanced, to the standards set by the customer and competition, but also on the ability to protect its strategic information and to know in advance the strategic information of the competition. In addition, given that economic markets, regardless of their profile, enable interconnection not only among domestic companies, but also between domestic companies and foreign companies, the issue of economic competition moves from the national economies to the field of interest of regional and international economic organizations. The stakes for each economic player is to keep ahead of the competition and to be always prepared to face market challenges. Therefore, it needs to know as early as possible, how to react to others’ strategy in terms of research, production and sales. If a competitor is planning to produce more and cheaper, then it must be prepared to counteract quickly this movement. Competitive intelligence helps to evaluate the capabilities of competitors in the market, legally and ethically, and to develop response strategies. One of the main goals of the competitive intelligence is to acknowledge the role of early warning and prevention of surprises that could have a major impact on the market share, reputation, turnover and profitability in the medium and long term of a company. This paper presents some aspects of competitive intelligence, mainly in terms of information analysis and intelligence generation. Presentation is theoretical and addresses a structured method of information analysis - scenarios method – in a version that combines several types of analysis in order to reveal some interconnecting aspects of the factors governing the activity of a company.
Series: Practical guidance to qualitative research. Part 3: Sampling, data collection and analysis
Moser, Albine; Korstjens, Irene
2018-01-01
Abstract In the course of our supervisory work over the years, we have noticed that qualitative research tends to evoke a lot of questions and worries, so-called frequently asked questions (FAQs). This series of four articles intends to provide novice researchers with practical guidance for conducting high-quality qualitative research in primary care. By ‘novice’ we mean Master’s students and junior researchers, as well as experienced quantitative researchers who are engaging in qualitative research for the first time. This series addresses their questions and provides researchers, readers, reviewers and editors with references to criteria and tools for judging the quality of qualitative research papers. The second article focused on context, research questions and designs, and referred to publications for further reading. This third article addresses FAQs about sampling, data collection and analysis. The data collection plan needs to be broadly defined and open at first, and become flexible during data collection. Sampling strategies should be chosen in such a way that they yield rich information and are consistent with the methodological approach used. Data saturation determines sample size and will be different for each study. The most commonly used data collection methods are participant observation, face-to-face in-depth interviews and focus group discussions. Analyses in ethnographic, phenomenological, grounded theory, and content analysis studies yield different narrative findings: a detailed description of a culture, the essence of the lived experience, a theory, and a descriptive summary, respectively. The fourth and final article will focus on trustworthiness and publishing qualitative research. PMID:29199486
Improved vertical streambed flux estimation using multiple diurnal temperature methods in series
Irvine, Dylan J.; Briggs, Martin A.; Cartwright, Ian; Scruggs, Courtney; Lautz, Laura K.
2017-01-01
Analytical solutions that use diurnal temperature signals to estimate vertical fluxes between groundwater and surface water based on either amplitude ratios (Ar) or phase shifts (Δϕ) produce results that rarely agree. Analytical solutions that simultaneously utilize Ar and Δϕ within a single solution have more recently been derived, decreasing uncertainty in flux estimates in some applications. Benefits of combined (ArΔϕ) methods also include that thermal diffusivity and sensor spacing can be calculated. However, poor identification of either Ar or Δϕ from raw temperature signals can lead to erratic parameter estimates from ArΔϕ methods. An add-on program for VFLUX 2 is presented to address this issue. Using thermal diffusivity selected from an ArΔϕ method during a reliable time period, fluxes are recalculated using an Ar method. This approach maximizes the benefits of the Ar and ArΔϕ methods. Additionally, sensor spacing calculations can be used to identify periods with unreliable flux estimates, or to assess streambed scour. Using synthetic and field examples, the use of these solutions in series was particularly useful for gaining conditions where fluxes exceeded 1 m/d.
Linden, Ariel
2018-05-11
Interrupted time series analysis (ITSA) is an evaluation methodology in which a single treatment unit's outcome is studied serially over time and the intervention is expected to "interrupt" the level and/or trend of that outcome. ITSA is commonly evaluated using methods which may produce biased results if model assumptions are violated. In this paper, treatment effects are alternatively assessed by using forecasting methods to closely fit the preintervention observations and then forecast the post-intervention trend. A treatment effect may be inferred if the actual post-intervention observations diverge from the forecasts by some specified amount. The forecasting approach is demonstrated using the effect of California's Proposition 99 for reducing cigarette sales. Three forecast models are fit to the preintervention series-linear regression (REG), Holt-Winters (HW) non-seasonal smoothing, and autoregressive moving average (ARIMA)-and forecasts are generated into the post-intervention period. The actual observations are then compared with the forecasts to assess intervention effects. The preintervention data were fit best by HW, followed closely by ARIMA. REG fit the data poorly. The actual post-intervention observations were above the forecasts in HW and ARIMA, suggesting no intervention effect, but below the forecasts in the REG (suggesting a treatment effect), thereby raising doubts about any definitive conclusion of a treatment effect. In a single-group ITSA, treatment effects are likely to be biased if the model is misspecified. Therefore, evaluators should consider using forecast models to accurately fit the preintervention data and generate plausible counterfactual forecasts, thereby improving causal inference of treatment effects in single-group ITSA studies. © 2018 John Wiley & Sons, Ltd.
Risk assessment of environmentally influenced airway diseases based on time-series analysis.
Herbarth, O
1995-09-01
Threshold values are of prime importance in providing a sound basis for public health decisions. A key issue is determining threshold or maximum exposure values for pollutants and assessing their potential health risks. Environmental epidemiology could be instrumental in assessing these levels, especially since the assessment of ambient exposures involves relatively low concentrations of pollutants. This paper presents a statistical method that allows the determination of threshold values as well as the assessment of the associated risk using a retrospective, longitudinal study design with a prospective follow-up. Morbidity data were analyzed using the Fourier method, a time-series analysis that is based on the assumption of a high temporal resolution of the data. This method eliminates time-dependent responses like temporal inhomogeneity and pseudocorrelation. The frequency of calls for respiratory distress conditions to the regional Mobile Medical Emergency Service (MMES) in the city of Leipzig were investigated. The entire population of Leipzig served as a pool for data collection. In addition to the collection of morbidity data, air pollution measurements were taken every 30 min for the entire study period using sulfur dioxide as the regional indicator variable. This approach allowed the calculation of a dose-response curve for respiratory diseases and air pollution indices in children and adults. Significantly higher morbidities were observed above a 24-hr mean value of 0.6 mg SO2/m3 air for children and 0.8 mg SO2/m3 for adults.(ABSTRACT TRUNCATED AT 250 WORDS)
Introduction to Time Series Modeling
Kitagawa, Genshiro
2010-01-01
In time series modeling, the behavior of a certain phenomenon is expressed in relation to the past values of itself and other covariates. Since many important phenomena in statistical analysis are actually time series and the identification of conditional distribution of the phenomenon is an essential part of the statistical modeling, it is very important and useful to learn fundamental methods of time series modeling. Illustrating how to build models for time series using basic methods, "Introduction to Time Series Modeling" covers numerous time series models and the various tools f
Directory of Open Access Journals (Sweden)
Frederic D Sigoillot
Full Text Available Automated time-lapse microscopy can visualize proliferation of large numbers of individual cells, enabling accurate measurement of the frequency of cell division and the duration of interphase and mitosis. However, extraction of quantitative information by manual inspection of time-lapse movies is too time-consuming to be useful for analysis of large experiments.Here we present an automated time-series approach that can measure changes in the duration of mitosis and interphase in individual cells expressing fluorescent histone 2B. The approach requires analysis of only 2 features, nuclear area and average intensity. Compared to supervised learning approaches, this method reduces processing time and does not require generation of training data sets. We demonstrate that this method is as sensitive as manual analysis in identifying small changes in interphase or mitotic duration induced by drug or siRNA treatment.This approach should facilitate automated analysis of high-throughput time-lapse data sets to identify small molecules or gene products that influence timing of cell division.
Schultz, Michael; Verbesselt, Jan; Herold, Martin; Avitabile, Valerio
2013-10-01
Researchers who use remotely sensed data can spend half of their total effort analysing prior data. If this data preprocessing does not match the application, this time spent on data analysis can increase considerably and can lead to inaccuracies. Despite the existence of a number of methods for pre-processing Landsat time series, each method has shortcomings, particularly for mapping forest changes under varying illumination, data availability and atmospheric conditions. Based on the requirements of mapping forest changes as defined by the United Nations (UN) Reducing Emissions from Forest Degradation and Deforestation (REDD) program, the accurate reporting of the spatio-temporal properties of these changes is necessary. We compared the impact of three fundamentally different radiometric preprocessing techniques Moderate Resolution Atmospheric TRANsmission (MODTRAN), Second Simulation of a Satellite Signal in the Solar Spectrum (6S) and simple Dark Object Subtraction (DOS) on mapping forest changes using Landsat time series data. A modification of Breaks For Additive Season and Trend (BFAST) monitor was used to jointly map the spatial and temporal agreement of forest changes at test sites in Ethiopia and Viet Nam. The suitability of the pre-processing methods for the occurring forest change drivers was assessed using recently captured Ground Truth and high resolution data (1000 points). A method for creating robust generic forest maps used for the sampling design is presented. An assessment of error sources has been performed identifying haze as a major source for time series analysis commission error.
Gravimetric and titrimetric methods of analysis
International Nuclear Information System (INIS)
Rives, R.D.; Bruks, R.R.
1983-01-01
Gravimetric and titrimetric methods of analysis are considered. Methods of complexometric titration are mentioned, as well as methods of increasing sensitivity in titrimetry. Gravimetry and titrimetry are applied during analysis for traces of geological materials
Gualandi, Adriano; Serpelloni, Enrico; Elina Belardinelli, Maria; Bonafede, Maurizio; Pezzo, Giuseppe; Tolomei, Cristiano
2015-04-01
A critical point in the analysis of ground displacement time series, as those measured by modern space geodetic techniques (primarly continuous GPS/GNSS and InSAR) is the development of data driven methods that allow to discern and characterize the different sources that generate the observed displacements. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows to reduce the dimensionality of the data space maintaining most of the variance of the dataset explained. It reproduces the original data using a limited number of Principal Components, but it also shows some deficiencies, since PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem. The recovering and separation of the different sources that generate the observed ground deformation is a fundamental task in order to provide a physical meaning to the possible different sources. PCA fails in the BSS problem since it looks for a new Euclidean space where the projected data are uncorrelated. Usually, the uncorrelation condition is not strong enough and it has been proven that the BSS problem can be tackled imposing on the components to be independent. The Independent Component Analysis (ICA) is, in fact, another popular technique adopted to approach this problem, and it can be used in all those fields where PCA is also applied. An ICA approach enables us to explain the displacement time series imposing a fewer number of constraints on the model, and to reveal anomalies in the data such as transient deformation signals. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, we use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources
Suhaila, Jamaludin; Yusop, Zulkifli
2017-06-01
Most of the trend analysis that has been conducted has not considered the existence of a change point in the time series analysis. If these occurred, then the trend analysis will not be able to detect an obvious increasing or decreasing trend over certain parts of the time series. Furthermore, the lack of discussion on the possible factors that influenced either the decreasing or the increasing trend in the series needs to be addressed in any trend analysis. Hence, this study proposes to investigate the trends, and change point detection of mean, maximum and minimum temperature series, both annually and seasonally in Peninsular Malaysia and determine the possible factors that could contribute to the significance trends. In this study, Pettitt and sequential Mann-Kendall (SQ-MK) tests were used to examine the occurrence of any abrupt climate changes in the independent series. The analyses of the abrupt changes in temperature series suggested that most of the change points in Peninsular Malaysia were detected during the years 1996, 1997 and 1998. These detection points captured by Pettitt and SQ-MK tests are possibly related to climatic factors, such as El Niño and La Niña events. The findings also showed that the majority of the significant change points that exist in the series are related to the significant trend of the stations. Significant increasing trends of annual and seasonal mean, maximum and minimum temperatures in Peninsular Malaysia were found with a range of 2-5 °C/100 years during the last 32 years. It was observed that the magnitudes of the increasing trend in minimum temperatures were larger than the maximum temperatures for most of the studied stations, particularly at the urban stations. These increases are suspected to be linked with the effect of urban heat island other than El Niño event.
International Nuclear Information System (INIS)
Brar, Gurinder Singh; Hari, Yogeshwar; Williams, Dennis K.
2013-01-01
This paper presents the comparison of a reliability technique that employs a Fourier series representation of random axisymmetric and asymmetric imperfections in a cylindrical pressure vessel subjected to an axial end load and external pressure, with evaluations prescribed by the ASME Boiler and Pressure Vessel Code, Section VIII, Division 2 Rules. The ultimate goal of the reliability technique described herein is to predict the critical buckling load associated with the subject cylindrical pressure vessel. Initial geometric imperfections are shown to have a significant effect on the calculated load carrying capacity of the vessel. Fourier decomposition was employed to interpret imperfections as structural features that can be easily related to various other types of defined imperfections. The initial functional description of the imperfections consists of an axisymmetric portion and a deviant portion, which are availed in the form of a double Fourier series. Fifty simulated shells generated by the Monte Carlo technique are employed in the final prediction of the critical buckling load. The representation of initial geometrical imperfections in the cylindrical pressure vessel requires the determination of respective Fourier coefficients. Multi-mode analyses are expanded to evaluate a large number of potential buckling modes for both predefined geometries in combination with asymmetric imperfections as a function of position within the given cylindrical shell. The probability of the ultimate buckling stress exceeding a predefined threshold stress is also calculated. The method and results described herein are in stark contrast to the “knockdown factor” approach as applied to compressive stress evaluations currently utilized in industry. Further effort is needed to improve on the current design rules regarding column buckling of large diameter pressure vessels subjected to an axial end load and external pressure designed in accordance with ASME Boiler and
Directory of Open Access Journals (Sweden)
Sun Huan
2016-01-01
Full Text Available In this paper, we use the Laplace transform series expansion method to find the analytical solution for the local fractional heat-transfer equation defined on Cantor sets via local fractional calculus.
A time series approach to inferring groundwater recharge using the water table fluctuation method
Crosbie, Russell S.; Binning, Philip; Kalma, Jetse D.
2005-01-01
The water table fluctuation method for determining recharge from precipitation and water table measurements was originally developed on an event basis. Here a new multievent time series approach is presented for inferring groundwater recharge from long-term water table and precipitation records. Additional new features are the incorporation of a variable specific yield based upon the soil moisture retention curve, proper accounting for the Lisse effect on the water table, and the incorporation of aquifer drainage so that recharge can be detected even if the water table does not rise. A methodology for filtering noise and non-rainfall-related water table fluctuations is also presented. The model has been applied to 2 years of field data collected in the Tomago sand beds near Newcastle, Australia. It is shown that gross recharge estimates are very sensitive to time step size and specific yield. Properly accounting for the Lisse effect is also important to determining recharge.
"Rehabilitation schools for scoliosis" thematic series: describing the methods and results
Directory of Open Access Journals (Sweden)
Grivas Theodoros B
2010-12-01
Full Text Available Abstract The Scoliosis Rehabilitation model begins with the correct diagnosis and evaluation of the patient, to make treatment decisions oriented to the patient. The treatment is based on observation, education, scoliosis specific exercises, and bracing. The state of research in the field of conservative treatment is insufficient. There is some evidence supporting scoliosis specific exercises as a part of the rehabilitation treatment, however, the evidence is poor and the different methods are not known by most of the scientific community. The only way to improve the knowledge and understanding of the different physiotherapy methodologies (specific exercises, integrated into the whole rehabilitation program, is to establish a single and comprehensive source of information about it. This is what the SCOLIOSIS Journal is going to do through the "Rehabilitation Schools for Scoliosis" Thematic Series, where technical papers coming from the different schools will be published.
The ab initio model potential method. Second series transition metal elements
International Nuclear Information System (INIS)
Barandiaran, Z.; Seijo, L.; Huzinaga, S.
1990-01-01
The ab initio core method potential model (AIMP) has already been presented in its nonrelativistic version and applied to the main group and first series transition metal elements [J. Chem. Phys. 86, 2132 (1987); 91, 7011 (1989)]. In this paper we extend the AIMP method to include relativistic effects within the Cowan--Griffin approximation and we present relativistic Zn-like core model potentials and valence basis sets, as well as their nonrelativistic Zn-like core and Kr-like core counterparts. The pilot molecular calculations on YO, TcO, AgO, and AgH reveal that the 4p orbital is indeed a core orbital only at the end part of the series, whereas the 4s orbital can be safely frozen from Y to Cd. The all-electron and model potential results agree in 0.01--0.02 A in R e and 25--50 cm -1 in bar ν e if the same type of valence part of the basis set is used. The comparison of the relativistic results on AgH with those of the all-electron Dirac--Fock calculations by Lee and McLean is satisfactory: the absolute value of R e is reproduced within the 0.01 A margin and the relativistic contraction of 0.077 A is also very well reproduced (0.075 A). Finally, the relative magnitude of the effects of the core orbital change, mass--velocity potential, and Darwin potential on the net relativistic effects are analyzed in the four molecules studied
Efficient Transfer Entropy Analysis of Non-Stationary Neural Time Series
Vicente, Raul; Díaz-Pernas, Francisco J.; Wibral, Michael
2014-01-01
Information theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of these processes to estimate associated probability density functions. To obtain these necessary observations, available estimators typically assume stationarity of processes to allow pooling of observations over time. This assumption however, is a major obstacle to the application of these estimators in neuroscience as observed processes are often non-stationary. As a solution, Gomez-Herrero and colleagues theoretically showed that the stationarity assumption may be avoided by estimating transfer entropy from an ensemble of realizations. Such an ensemble of realizations is often readily available in neuroscience experiments in the form of experimental trials. Thus, in this work we combine the ensemble method with a recently proposed transfer entropy estimator to make transfer entropy estimation applicable to non-stationary time series. We present an efficient implementation of the approach that is suitable for the increased computational demand of the ensemble method's practical application. In particular, we use a massively parallel implementation for a graphics processing unit to handle the computationally most heavy aspects of the ensemble method for transfer entropy estimation. We test the performance and robustness of our implementation on data from numerical simulations of stochastic processes. We also demonstrate the applicability of the ensemble method to magnetoencephalographic data. While we mainly evaluate the proposed method for neuroscience data, we expect it to be applicable in a variety of fields that are concerned with the analysis of information transfer in complex biological, social, and
Mayaud, C; Wagner, T; Benischke, R; Birk, S
2014-04-16
The Lurbach karst system (Styria, Austria) is drained by two major springs and replenished by both autogenic recharge from the karst massif itself and a sinking stream that originates in low permeable schists (allogenic recharge). Detailed data from two events recorded during a tracer experiment in 2008 demonstrate that an overflow from one of the sub-catchments to the other is activated if the discharge of the main spring exceeds a certain threshold. Time series analysis (autocorrelation and cross-correlation) was applied to examine to what extent the various available methods support the identification of the transient inter-catchment flow observed in this binary karst system. As inter-catchment flow is found to be intermittent, the evaluation was focused on single events. In order to support the interpretation of the results from the time series analysis a simplified groundwater flow model was built using MODFLOW. The groundwater model is based on the current conceptual understanding of the karst system and represents a synthetic karst aquifer for which the same methods were applied. Using the wetting capability package of MODFLOW, the model simulated an overflow similar to what has been observed during the tracer experiment. Various intensities of allogenic recharge were employed to generate synthetic discharge data for the time series analysis. In addition, geometric and hydraulic properties of the karst system were varied in several model scenarios. This approach helps to identify effects of allogenic recharge and aquifer properties in the results from the time series analysis. Comparing the results from the time series analysis of the observed data with those of the synthetic data a good agreement was found. For instance, the cross-correlograms show similar patterns with respect to time lags and maximum cross-correlation coefficients if appropriate hydraulic parameters are assigned to the groundwater model. The comparable behaviors of the real and the
Spectral analysis of time series of events: effect of respiration on heart rate in neonates
International Nuclear Information System (INIS)
Van Drongelen, Wim; Williams, Amber L; Lasky, Robert E
2009-01-01
Certain types of biomedical processes such as the heart rate generator can be considered as signals that are sampled by the occurring events, i.e. QRS complexes. This sampling property generates problems for the evaluation of spectral parameters of such signals. First, the irregular occurrence of heart beats creates an unevenly sampled data set which must either be pre-processed (e.g. by using trace binning or interpolation) prior to spectral analysis, or analyzed with specialized methods (e.g. Lomb's algorithm). Second, the average occurrence of events determines the Nyquist limit for the sampled time series. Here we evaluate different types of spectral analysis of recordings of neonatal heart rate. Coupling between respiration and heart rate and the detection of heart rate itself are emphasized. We examine both standard and data adaptive frequency bands of heart rate signals generated by models of coupled oscillators and recorded data sets from neonates. We find that an important spectral artifact occurs due to a mirror effect around the Nyquist limit of half the average heart rate. Further we conclude that the presence of respiratory coupling can only be detected under low noise conditions and if a data-adaptive respiratory band is used
Statistical Analysis of fMRI Time-Series: A Critical Review of the GLM Approach
Directory of Open Access Journals (Sweden)
Martin M Monti
2011-03-01
Full Text Available Functional Magnetic Resonance Imaging (fMRI is one of the most widely used tools to study the neural underpinnings of human cognition. Standard analysis of fMRI data relies on a General Linear Model (GLM approach to separate stimulus induced signals from noise. Crucially, this approach relies on a number of assumptions about the data which, for inferences to be valid, must be met. The current paper reviews the GLM approach to analysis of fMRI time-series, focusing in particular on the degree to which such data abides by the assumptions of the GLM framework, and on the methods that have been developed to correct for any violation of those assumptions. Rather than biasing estimates of effect size, the major consequence of non-conformity to the assumptions is to introduce bias into estimates of the variance, thus affecting test statistics, power and false positive rates. Furthermore, this bias can have pervasive effects on both individual subject and group-level statistics, potentially yielding qualitatively different results across replications, especially after the thresholding procedures commonly used for inference-making.
Directory of Open Access Journals (Sweden)
Ju Zhang
2017-12-01
Full Text Available The objective of this study was to illustrate the temporal variation of runoff and sediment of loess tilled slopes under successive rainfall conditions. Loess tilled slopes with four microtopography types (straight cultivated slope, artificial backhoe, artificial digging, and contour tillage under five slope gradients (5°, 10°, 15°, 20°, 25° were simulated and a rainfall intensity of 60 mm/h was adopted. The temporal trends of runoff and sediment yield were predicted based on the Rescaled Range (R/S analysis method. The results indicate that the Hurst indices of runoff time series and sediment time series are higher than 0.5, and a long-term positive correlation exists between the future and the past. This means that runoff and sediment of loess tilled slopes in the future will have the same trends as in the past. The results obtained by the classical R/S analysis method were the same as those of the modified R/S analysis method. The rationality and reliability of the R/S analysis method were further identified and the method can be used for predicting the trend of runoff and sediment yield. The correlation between the microtopography and the Hurst indices of the runoff and sediment yield time series, as well as between the slopes and the Hurst indices, were tested, and the result was that there was no significant correlation between them. The microtopography and slopes cannot affect the correlation and continuity of runoff and sediment yield time series. This study provides an effective method for predicting variations in the trends of runoff and sediment yield on loess tilled slopes.
Predicting hepatitis B monthly incidence rates using weighted Markov chains and time series methods.
Shahdoust, Maryam; Sadeghifar, Majid; Poorolajal, Jalal; Javanrooh, Niloofar; Amini, Payam
2015-01-01
Hepatitis B (HB) is a major global mortality. Accurately predicting the trend of the disease can provide an appropriate view to make health policy disease prevention. This paper aimed to apply three different to predict monthly incidence rates of HB. This historical cohort study was conducted on the HB incidence data of Hamadan Province, the west of Iran, from 2004 to 2012. Weighted Markov Chain (WMC) method based on Markov chain theory and two time series models including Holt Exponential Smoothing (HES) and SARIMA were applied on the data. The results of different applied methods were compared to correct percentages of predicted incidence rates. The monthly incidence rates were clustered into two clusters as state of Markov chain. The correct predicted percentage of the first and second clusters for WMC, HES and SARIMA methods was (100, 0), (84, 67) and (79, 47) respectively. The overall incidence rate of HBV is estimated to decrease over time. The comparison of results of the three models indicated that in respect to existing seasonality trend and non-stationarity, the HES had the most accurate prediction of the incidence rates.
Time Series Data Analysis of Wireless Sensor Network Measurements of Temperature.
Bhandari, Siddhartha; Bergmann, Neil; Jurdak, Raja; Kusy, Branislav
2017-05-26
Wireless sensor networks have gained significant traction in environmental signal monitoring and analysis. The cost or lifetime of the system typically depends on the frequency at which environmental phenomena are monitored. If sampling rates are reduced, energy is saved. Using empirical datasets collected from environmental monitoring sensor networks, this work performs time series analyses of measured temperature time series. Unlike previous works which have concentrated on suppressing the transmission of some data samples by time-series analysis but still maintaining high sampling rates, this work investigates reducing the sampling rate (and sensor wake up rate) and looks at the effects on accuracy. Results show that the sampling period of the sensor can be increased up to one hour while still allowing intermediate and future states to be estimated with interpolation RMSE less than 0.2 °C and forecasting RMSE less than 1 °C.
Gavrishchaka, Valeriy; Senyukova, Olga; Davis, Kristina
2015-01-01
Previously, we have proposed to use complementary complexity measures discovered by boosting-like ensemble learning for the enhancement of quantitative indicators dealing with necessarily short physiological time series. We have confirmed robustness of such multi-complexity measures for heart rate variability analysis with the emphasis on detection of emerging and intermittent cardiac abnormalities. Recently, we presented preliminary results suggesting that such ensemble-based approach could be also effective in discovering universal meta-indicators for early detection and convenient monitoring of neurological abnormalities using gait time series. Here, we argue and demonstrate that these multi-complexity ensemble measures for gait time series analysis could have significantly wider application scope ranging from diagnostics and early detection of physiological regime change to gait-based biometrics applications.
DEFF Research Database (Denmark)
Ibsen, Lars Bo; Barari, Amin; Kimiaeifar, Amin
2010-01-01
of calculations. Results obtained by max–min are compared with Homotopy Analysis Method (HAM), energy balance and numerical solution and it is shown that, simply one term is enough to obtain a highly accurate result in contrast to HAM with just one term in series solution. Finally, the phase plane to show...... the stability of systems is plotted and discussed....
Wu, Zi Yi; Xie, Ping; Sang, Yan Fang; Gu, Hai Ting
2018-04-01
The phenomenon of jump is one of the importantly external forms of hydrological variabi-lity under environmental changes, representing the adaption of hydrological nonlinear systems to the influence of external disturbances. Presently, the related studies mainly focus on the methods for identifying the jump positions and jump times in hydrological time series. In contrast, few studies have focused on the quantitative description and classification of jump degree in hydrological time series, which make it difficult to understand the environmental changes and evaluate its potential impacts. Here, we proposed a theatrically reliable and easy-to-apply method for the classification of jump degree in hydrological time series, using the correlation coefficient as a basic index. The statistical tests verified the accuracy, reasonability, and applicability of this method. The relationship between the correlation coefficient and the jump degree of series were described using mathematical equation by derivation. After that, several thresholds of correlation coefficients under different statistical significance levels were chosen, based on which the jump degree could be classified into five levels: no, weak, moderate, strong and very strong. Finally, our method was applied to five diffe-rent observed hydrological time series, with diverse geographic and hydrological conditions in China. The results of the classification of jump degrees in those series were closely accorded with their physically hydrological mechanisms, indicating the practicability of our method.
Directory of Open Access Journals (Sweden)
Ibgtc Bowala
2017-06-01
Full Text Available With the rapid growth of financial markets, analyzers are paying more attention on predictions. Stock data are time series data, with huge amounts. Feasible solution for handling the increasing amount of data is to use a cluster for parallel processing, and Hadoop parallel computing platform is a typical representative. There are various statistical models for forecasting time series data, but accurate clusters are a pre-requirement. Clustering analysis for time series data is one of the main methods for mining time series data for many other analysis processes. However, general clustering algorithms cannot perform clustering for time series data because series data has a special structure and a high dimensionality has highly co-related values due to high noise level. A novel model for time series clustering is presented using BIRCH, based on piecewise SVD, leading to a novel dimension reduction approach. Highly co-related features are handled using SVD with a novel approach for dimensionality reduction in order to keep co-related behavior optimal and then use BIRCH for clustering. The algorithm is a novel model that can handle massive time series data. Finally, this new model is successfully applied to real stock time series data of Yahoo finance with satisfactory results.
Xiong, Lihua; Jiang, Cong; Du, Tao
2014-01-01
Time-varying moments models based on Pearson Type III and normal distributions respectively are built under the generalized additive model in location, scale and shape (GAMLSS) framework to analyze the nonstationarity of the annual runoff series of the Weihe River, the largest tributary of the Yellow River. The detection of nonstationarities in hydrological time series (annual runoff, precipitation and temperature) from 1960 to 2009 is carried out using a GAMLSS model, and then the covariate analysis for the annual runoff series is implemented with GAMLSS. Finally, the attribution of each covariate to the nonstationarity of annual runoff is analyzed quantitatively. The results demonstrate that (1) obvious change-points exist in all three hydrological series, (2) precipitation, temperature and irrigated area are all significant covariates of the annual runoff series, and (3) temperature increase plays the main role in leading to the reduction of the annual runoff series in the study basin, followed by the decrease of precipitation and the increase of irrigated area.
Zhang, Hong; Zhang, Sheng; Wang, Ping; Qin, Yuzhe; Wang, Huifeng
2017-07-01
Particulate matter with aerodynamic diameter below 10 μm (PM 10 ) forecasting is difficult because of the uncertainties in describing the emission and meteorological fields. This paper proposed a wavelet-ARMA/ARIMA model to forecast the short-term series of the PM 10 concentrations. It was evaluated by experiments using a 10-year data set of daily PM 10 concentrations from 4 stations located in Taiyuan, China. The results indicated the following: (1) PM 10 concentrations of Taiyuan had a decreasing trend during 2005 to 2012 but increased in 2013. PM 10 concentrations had an obvious seasonal fluctuation related to coal-fired heating in winter and early spring. (2) Spatial differences among the four stations showed that the PM 10 concentrations in industrial and heavily trafficked areas were higher than those in residential and suburb areas. (3) Wavelet analysis revealed that the trend variation and the changes of the PM 10 concentration of Taiyuan were complicated. (4) The proposed wavelet-ARIMA model could be efficiently and successfully applied to the PM 10 forecasting field. Compared with the traditional ARMA/ARIMA methods, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. Wavelet analysis can filter noisy signals and identify the variation trend and the fluctuation of the PM 10 time-series data. Wavelet decomposition and reconstruction reduce the nonstationarity of the PM 10 time-series data, and thus improve the accuracy of the prediction. This paper proposed a wavelet-ARMA/ARIMA model to forecast the PM 10 time series. Compared with the traditional ARMA/ARIMA method, this wavelet-ARMA/ARIMA method could effectively reduce the forecasting error, improve the prediction accuracy, and realize multiple-time-scale prediction. The proposed model could be efficiently and successfully applied to the PM 10 forecasting field.
Directory of Open Access Journals (Sweden)
Youngsun Kim
2017-05-01
Full Text Available The most common structure used for current transformers (CTs consists of secondary windings around a ferromagnetic core past the primary current being measured. A CT used as a surge protection device (SPD may experience large inrushes of current, like surges. However, when a large current flows into the primary winding, measuring the magnitude of the current is difficult because the ferromagnetic core becomes magnetically saturated. Several approaches to reduce the saturation effect are described in the literature. A Rogowski coil is representative of several devices that measure large currents. It is an electrical device that measures alternating current (AC or high-frequency current. However, such devices are very expensive in application. In addition, the volume of a CT must be increased to measure sufficiently large currents, but for installation spaces that are too small, other methods must be used. To solve this problem, it is necessary to analyze the magnetic field and electromotive force (EMF characteristics when designing a CT. Thus, we proposed an analysis method for the CT under an inrush current using the time-domain finite element method (TDFEM. The input source current of a surge waveform is expanded by a Fourier series to obtain an instantaneous value. An FEM model of the device is derived in a two-dimensional system and coupled with EMF circuits. The time-derivative term in the differential equation is solved in each time step by the finite difference method. It is concluded that the proposed algorithm is useful for analyzing CT characteristics, including the field distribution. Consequently, the proposed algorithm yields a reference for obtaining the effects of design parameters and magnetic materials for special shapes and sizes before the CT is designed and manufactured.
Kim, Youngsun
2017-05-01
The most common structure used for current transformers (CTs) consists of secondary windings around a ferromagnetic core past the primary current being measured. A CT used as a surge protection device (SPD) may experience large inrushes of current, like surges. However, when a large current flows into the primary winding, measuring the magnitude of the current is difficult because the ferromagnetic core becomes magnetically saturated. Several approaches to reduce the saturation effect are described in the literature. A Rogowski coil is representative of several devices that measure large currents. It is an electrical device that measures alternating current (AC) or high-frequency current. However, such devices are very expensive in application. In addition, the volume of a CT must be increased to measure sufficiently large currents, but for installation spaces that are too small, other methods must be used. To solve this problem, it is necessary to analyze the magnetic field and electromotive force (EMF) characteristics when designing a CT. Thus, we proposed an analysis method for the CT under an inrush current using the time-domain finite element method (TDFEM). The input source current of a surge waveform is expanded by a Fourier series to obtain an instantaneous value. An FEM model of the device is derived in a two-dimensional system and coupled with EMF circuits. The time-derivative term in the differential equation is solved in each time step by the finite difference method. It is concluded that the proposed algorithm is useful for analyzing CT characteristics, including the field distribution. Consequently, the proposed algorithm yields a reference for obtaining the effects of design parameters and magnetic materials for special shapes and sizes before the CT is designed and manufactured.
Farmer, William H.; Archfield, Stacey A.; Over, Thomas M.; Hay, Lauren E.; LaFontaine, Jacob H.; Kiang, Julie E.
2015-01-01
Effective and responsible management of water resources relies on a thorough understanding of the quantity and quality of available water. Streamgages cannot be installed at every location where streamflow information is needed. As part of its National Water Census, the U.S. Geological Survey is planning to provide streamflow predictions for ungaged locations. In order to predict streamflow at a useful spatial and temporal resolution throughout the Nation, efficient methods need to be selected. This report examines several methods used for streamflow prediction in ungaged basins to determine the best methods for regional and national implementation. A pilot area in the southeastern United States was selected to apply 19 different streamflow prediction methods and evaluate each method by a wide set of performance metrics. Through these comparisons, two methods emerged as the most generally accurate streamflow prediction methods: the nearest-neighbor implementations of nonlinear spatial interpolation using flow duration curves (NN-QPPQ) and standardizing logarithms of streamflow by monthly means and standard deviations (NN-SMS12L). It was nearly impossible to distinguish between these two methods in terms of performance. Furthermore, neither of these methods requires significantly more parameterization in order to be applied: NN-SMS12L requires 24 regional regressions—12 for monthly means and 12 for monthly standard deviations. NN-QPPQ, in the application described in this study, required 27 regressions of particular quantiles along the flow duration curve. Despite this finding, the results suggest that an optimal streamflow prediction method depends on the intended application. Some methods are stronger overall, while some methods may be better at predicting particular statistics. The methods of analysis presented here reflect a possible framework for continued analysis and comprehensive multiple comparisons of methods of prediction in ungaged basins (PUB
Directory of Open Access Journals (Sweden)
L. Jia
2011-03-01
Full Text Available Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe River basin in northwestern China. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional irrigation systems in the lower reach. In this study, the response of vegetation in the Ejina Oasis in the lower reach of the Heihe River to the water yield of the upper catchment was analyzed by time series analysis of monthly observations of precipitation in the upper and lower catchment, river streamflow downstream of the modern irrigation schemes and satellite observations of vegetation index. Firstly, remotely sensed NDVI data acquired by Terra-MODIS are used to monitor the vegetation dynamic for a seven years period between 2000 and 2006. Due to cloud-contamination, atmospheric influence and different solar and viewing angles, however, the quality and consistence of time series of remotely sensed NDVI data are degraded. A Fourier Transform method – the Harmonic Analysis of Time Series (HANTS algorithm – is used to reconstruct cloud- and noise-free NDVI time series data from the Terra-MODIS NDVI dataset. Modification is made on HANTS by adding additional parameters to deal with large data gaps in yearly time series in combination with a Temporal-Similarity-Statistics (TSS method developed in this study to seek for initial values for the large gap periods. Secondly, the same Fourier Transform method is used to model time series of the vegetation phenology. The reconstructed cloud-free NDVI time series data are used to study the relationship between the water availability (i.e. the local precipitation and upstream water yield and the evolution of vegetation conditions in Ejina Oasis from 2000 to 2006. Anomalies in precipitation, streamflow, and vegetation index are detected by comparing each year with the average year. The results showed that
Feigin, A. M.; Mukhin, D.; Volodin, E. M.; Gavrilov, A.; Loskutov, E. M.
2013-12-01
The new method of decomposition of the Earth's climate system into well separated spatial-temporal patterns ('climatic modes') is discussed. The method is based on: (i) generalization of the MSSA (Multichannel Singular Spectral Analysis) [1] for expanding vector (space-distributed) time series in basis of spatial-temporal empirical orthogonal functions (STEOF), which makes allowance delayed correlations of the processes recorded in spatially separated points; (ii) expanding both real SST data, and longer by several times SST data generated numerically, in STEOF basis; (iii) use of the numerically produced STEOF basis for exclusion of 'too slow' (and thus not represented correctly) processes from real data. The application of the method allows by means of vector time series generated numerically by the INM RAS Coupled Climate Model [2] to separate from real SST anomalies data [3] two climatic modes possessing by noticeably different time scales: 3-5 and 9-11 years. Relations of separated modes to ENSO and PDO are investigated. Possible applications of spatial-temporal climatic patterns concept to prognosis of climate system evolution is discussed. 1. Ghil, M., R. M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, et al. (2002) "Advanced spectral methods for climatic time series", Rev. Geophys. 40(1), 3.1-3.41. 2. http://83.149.207.89/GCM_DATA_PLOTTING/GCM_INM_DATA_XY_en.htm 3. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/
International Nuclear Information System (INIS)
Jafri, Y.Z.; Kamal, L.
2007-01-01
Various statistical techniques was used on five-year data from 1998-2002 of average humidity, rainfall, maximum and minimum temperatures, respectively. The relationships to regression analysis time series (RATS) were developed for determining the overall trend of these climate parameters on the basis of which forecast models can be corrected and modified. We computed the coefficient of determination as a measure of goodness of fit, to our polynomial regression analysis time series (PRATS). The correlation to multiple linear regression (MLR) and multiple linear regression analysis time series (MLRATS) were also developed for deciphering the interdependence of weather parameters. Spearman's rand correlation and Goldfeld-Quandt test were used to check the uniformity or non-uniformity of variances in our fit to polynomial regression (PR). The Breusch-Pagan test was applied to MLR and MLRATS, respectively which yielded homoscedasticity. We also employed Bartlett's test for homogeneity of variances on a five-year data of rainfall and humidity, respectively which showed that the variances in rainfall data were not homogenous while in case of humidity, were homogenous. Our results on regression and regression analysis time series show the best fit to prediction modeling on climatic data of Quetta, Pakistan. (author)
Bayesian near-boundary analysis in basic macroeconomic time series models
M.D. de Pooter (Michiel); F. Ravazzolo (Francesco); R. Segers (René); H.K. van Dijk (Herman)
2008-01-01
textabstractSeveral lessons learnt from a Bayesian analysis of basic macroeconomic time series models are presented for the situation where some model parameters have substantial posterior probability near the boundary of the parameter region. This feature refers to near-instability within dynamic
DEFF Research Database (Denmark)
Nasri, Amin; Eriksson, Robert; Ghandhar, Mehrdad
2014-01-01
This paper proposes an approach based on trajectory sensitivity analysis (TSA) to find most suitable placement of series compensators in the power system. The main objective is to maximize the benefit of these devices in order to enhance the rotor angle stability. This approach is formulated...
Directory of Open Access Journals (Sweden)
Peter Dzurko
2007-01-01
Full Text Available Operation states analysis of a series-parallel converter working above resonance frequency is described in the paper. Principal equations are derived for individual operation states. On the basis of them the diagrams are made out. The diagrams give the complex image of the converter behaviour for individual circuit parameters. The waveforms may be utilised at designing the inverter individual parts.
Haddock, Shelley A.; MacPhee, David; Zimmerman, Toni Schindler
2001-01-01
Content analysis of 23 American Association for Marriage and Family Therapy Master Series tapes was used to determine how well feminist behaviors have been incorporated into ideal family therapy practice. Feminist behaviors were infrequent, being evident in fewer than 3% of time blocks in event sampling and 10 of 39 feminist behaviors of the…
Harmonic analysis of dense time series of landsat imagery for modeling change in forest conditions
Barry Tyler. Wilson
2015-01-01
This study examined the utility of dense time series of Landsat imagery for small area estimation and mapping of change in forest conditions over time. The study area was a region in north central Wisconsin for which Landsat 7 ETM+ imagery and field measurements from the Forest Inventory and Analysis program are available for the decade of 2003 to 2012. For the periods...
Economic Conditions and the Divorce Rate: A Time-Series Analysis of the Postwar United States.
South, Scott J.
1985-01-01
Challenges the belief that the divorce rate rises during prosperity and falls during economic recessions. Time-series regression analysis of postwar United States reveals small but positive effects of unemployment on divorce rate. Stronger influences on divorce rates are changes in age structure and labor-force participation rate of women.…
Operation Analysis of the Series-Parallel Resonant Converter Working above Resonance Frequency
Directory of Open Access Journals (Sweden)
Peter Dzurko
2006-01-01
Full Text Available The present article deals with theoretical analysis of operation of a series-parallel converter working above resonance frequency. Derived are principal equations for individual operation intervals. Based on these made out are waveforms of individual quantities during both the inverter operation at load and no-load operation. The waveforms may be utilised at designing the inverter individual parts.
Analysis methods (from 301 to 351)
International Nuclear Information System (INIS)
Analysis methods of materials used in the nuclear field (uranium, plutonium and their compounds, zirconium, magnesium, water...) and determination of impurities. Only reliable methods are selected [fr
Method for nonlinear exponential regression analysis
Junkin, B. G.
1972-01-01
Two computer programs developed according to two general types of exponential models for conducting nonlinear exponential regression analysis are described. Least squares procedure is used in which the nonlinear problem is linearized by expanding in a Taylor series. Program is written in FORTRAN 5 for the Univac 1108 computer.
Dissolved organic nitrogen dynamics in the North Sea: A time series analysis (1995-2005)
Van Engeland, T.; Soetaert, K.E.R.; Knuijt, A.; Laane, R.W.P.M.; Middelburg, J.J.
2010-01-01
Dissolved organic nitrogen (DON) dynamics in the North Sea was explored by means of long-term time series of nitrogen parameters from the Dutch national monitoring program. Generally, the data quality was good with little missing data points. Different imputation methods were used to verify the
A new modified histogram matching normalization for time series microarray analysis
Astola, L.J.; Molenaar, J.
2014-01-01
Microarray data is often utilized in inferring regulatory networks. Quantile normalization (QN) is a popular method to reduce array-to-array variation. We show that in the context of time series measurements QN may not be the best choice for this task, especially not if the inference is based on
Time-variant power spectral analysis of heart-rate time series by ...
Indian Academy of Sciences (India)
Frequency domain representation of a short-term heart-rate time series (HRTS) signal is a popular method for evaluating the cardiovascular control system. The spectral parameters, viz. percentage power in low frequency band (%PLF), percentage power in high frequency band (%PHF), power ratio of low frequency to high ...
Analysis of financial time series using multiscale entropy based on skewness and kurtosis
Xu, Meng; Shang, Pengjian
2018-01-01
There is a great interest in studying dynamic characteristics of the financial time series of the daily stock closing price in different regions. Multi-scale entropy (MSE) is effective, mainly in quantifying the complexity of time series on different time scales. This paper applies a new method for financial stability from the perspective of MSE based on skewness and kurtosis. To better understand the superior coarse-graining method for the different kinds of stock indexes, we take into account the developmental characteristics of the three continents of Asia, North America and European stock markets. We study the volatility of different financial time series in addition to analyze the similarities and differences of coarsening time series from the perspective of skewness and kurtosis. A kind of corresponding relationship between the entropy value of stock sequences and the degree of stability of financial markets, were observed. The three stocks which have particular characteristics in the eight piece of stock sequences were discussed, finding the fact that it matches the result of applying the MSE method to showing results on a graph. A comparative study is conducted to simulate over synthetic and real world data. Results show that the modified method is more effective to the change of dynamics and has more valuable information. The result is obtained at the same time, finding the results of skewness and kurtosis discrimination is obvious, but also more stable.
[Insulinoma of the pancreas: analysis of a clinical series of 30 cases].
Andronesi, D; Andronesi, A; Tonea, A; Andrei, S; Herlea, V; Lupescu, I; Ionescu-Târgovişte, C; Coculescu, M; Fica, S; Ionescu, M; Gheorghe, C; Popescu, I
2009-01-01
Insulinoma is the most frequent neuroendocrine pancreatic tumor and is the main cause for hypoglicemia due to endogenous hyperinsulinism. We performed an analysis of a clinical series in order to study the clinical and biological spectrum of presentation, the preoperatory imagistic diagnosis and results of the surgical approach. Between 1986-2009, 30 patients with symptoms suggesting an insulinoma were hospitalized in our department. Preoperatory localization of insulinomas was possible in 16 patients. The most sensitive imagistic methods were ecoendoscopy and magnetic resonance. Intraoperatory ultrasound was performed in 16 patients and its sensitivity in detection of insulinomas was 93%; the combination between intraoperative ultrasound and manual exploration of pancreas by the surgeon reached a 100% sensitivity. Before the intraoperatory ultrasound was used the tumor excision was predominantly done by extensive pancreatic resection, while after this was available in our centre more conservative (enucleo-resection) procedures were chosen. In 1 patient the resection was done by laparoscopy, and in 1 patient by robotic surgery. The dimensions of the tumor were less than 2 cm in most of the patients; 2 had nesidioblastosis and 2 had multiple insulinomas; all 28 patients proved to have benign insulinomas at histological specimens. Following surgery, the symptoms disappear in all patients. The most common complication following extensive pancreatic resections was acute pancreatitis, while after enucleation pancreatic fistula occurred more frequently. Due to small dimensions, the preoperative diagnosis of insulinomas is usually difficult, ecoendoscopy being the most sensitive method. Intraoperative ultrasound is essential for insulinoma localization and for chosing the optimal type of excision. Enucleation is the resection method to be chosen whenever this it is technical possible. In benign insulinomas the prognosis is excellent, surgical resection being curative in
Li, Yue; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Yue Li; Jha, Devesh K; Ray, Asok; Wettergren, Thomas A; Wettergren, Thomas A; Li, Yue; Ray, Asok; Jha, Devesh K
2018-06-01
This paper presents information-theoretic performance analysis of passive sensor networks for detection of moving targets. The proposed method falls largely under the category of data-level information fusion in sensor networks. To this end, a measure of information contribution for sensors is formulated in a symbolic dynamics framework. The network information state is approximately represented as the largest principal component of the time series collected across the network. To quantify each sensor's contribution for generation of the information content, Markov machine models as well as x-Markov (pronounced as cross-Markov) machine models, conditioned on the network information state, are constructed; the difference between the conditional entropies of these machines is then treated as an approximate measure of information contribution by the respective sensors. The x-Markov models represent the conditional temporal statistics given the network information state. The proposed method has been validated on experimental data collected from a local area network of passive sensors for target detection, where the statistical characteristics of environmental disturbances are similar to those of the target signal in the sense of time scale and texture. A distinctive feature of the proposed algorithm is that the network decisions are independent of the behavior and identity of the individual sensors, which is desirable from computational perspectives. Results are presented to demonstrate the proposed method's efficacy to correctly identify the presence of a target with very low false-alarm rates. The performance of the underlying algorithm is compared with that of a recent data-driven, feature-level information fusion algorithm. It is shown that the proposed algorithm outperforms the other algorithm.
DTI analysis methods : Voxel-based analysis
Van Hecke, Wim; Leemans, Alexander; Emsell, Louise
2016-01-01
Voxel-based analysis (VBA) of diffusion tensor imaging (DTI) data permits the investigation of voxel-wise differences or changes in DTI metrics in every voxel of a brain dataset. It is applied primarily in the exploratory analysis of hypothesized group-level alterations in DTI parameters, as it does
Bayesian methods for data analysis
Carlin, Bradley P.
2009-01-01
Approaches for statistical inference Introduction Motivating Vignettes Defining the Approaches The Bayes-Frequentist Controversy Some Basic Bayesian Models The Bayes approach Introduction Prior Distributions Bayesian Inference Hierarchical Modeling Model Assessment Nonparametric Methods Bayesian computation Introduction Asymptotic Methods Noniterative Monte Carlo Methods Markov Chain Monte Carlo Methods Model criticism and selection Bayesian Modeling Bayesian Robustness Model Assessment Bayes Factors via Marginal Density Estimation Bayes Factors
Substoichiometric method in the simple radiometric analysis
International Nuclear Information System (INIS)
Ikeda, N.; Noguchi, K.
1979-01-01
The substoichiometric method is applied to simple radiometric analysis. Two methods - the standard reagent method and the standard sample method - are proposed. The validity of the principle of the methods is verified experimentally in the determination of silver by the precipitation method, or of zinc by the ion-exchange or solvent-extraction method. The proposed methods are simple and rapid compared with the conventional superstoichiometric method. (author)
Directory of Open Access Journals (Sweden)
Jie You
2015-01-01
Full Text Available OBJECTIVES: To investigate an unusual outbreak of tetrodotoxin poisoning in Leizhou, southeast China, a case series analysis was conducted to identify the source of illness. METHODS: A total of 22 individuals experienced symptoms of poisoning, including tongue numbness, dizziness, nausea and limb numbness and weakness. Two toxic species, Amoya caninus and Yongeichthys nebulosus, were morphologically identified from the batches of gobies consumed by the patients. Tetrodotoxin levels in the blood and Goby fish samples were detected using liquid chromatography-tandem mass spectrometry. RESULTS: The tetrodotoxin levels in the remaining cooked Goby fish were determined to be 2090.12 µg/kg. For Amoya caninus, the toxicity levels were 1858.29 µg/kg in the muscle and 1997.19 µg/kg in the viscera and for Yongeichthys nebulosus, they were 2783.00 µg/kg in the muscle and 2966.21 µg/kg in the viscera. CONCLUSION: This outbreak demonstrates an underestimation of the risk of Goby fish poisoning. Furthermore, the relationships among the toxic species, climates and marine algae present should be clarified in the future.
Mapping Mountain Pine Beetle Mortality through Growth Trend Analysis of Time-Series Landsat Data
Directory of Open Access Journals (Sweden)
Lu Liang
2014-06-01
Full Text Available Disturbances are key processes in the carbon cycle of forests and other ecosystems. In recent decades, mountain pine beetle (MPB; Dendroctonus ponderosae outbreaks have become more frequent and extensive in western North America. Remote sensing has the ability to fill the data gaps of long-term infestation monitoring, but the elimination of observational noise and attributing changes quantitatively are two main challenges in its effective application. Here, we present a forest growth trend analysis method that integrates Landsat temporal trajectories and decision tree techniques to derive annual forest disturbance maps over an 11-year period. The temporal trajectory component successfully captures the disturbance events as represented by spectral segments, whereas decision tree modeling efficiently recognizes and attributes events based upon the characteristics of the segments. Validated against a point set sampled across a gradient of MPB mortality, 86.74% to 94.00% overall accuracy was achieved with small variability in accuracy among years. In contrast, the overall accuracies of single-date classifications ranged from 37.20% to 75.20% and only become comparable with our approach when the training sample size was increased at least four-fold. This demonstrates that the advantages of this time series work flow exist in its small training sample size requirement. The easily understandable, interpretable and modifiable characteristics of our approach suggest that it could be applicable to other ecoregions.
Comparison on the Analysis on PM10 Data based on Average and Extreme Series
Directory of Open Access Journals (Sweden)
Mohd Amin Nor Azrita
2018-01-01
Full Text Available The main concern in environmental issue is on extreme phenomena (catastrophic instead of common events. However, most statistical approaches are concerned primarily with the centre of a distribution or on the average value rather than the tail of the distribution which contains the extreme observations. The concept of extreme value theory affords attention to the tails of distribution where standard models are proved unreliable to analyse extreme series. High level of particulate matter (PM10 is a common environmental problem which causes various impacts to human health and material damages. If the main concern is on extreme events, then extreme value analysis provides the best result with significant evidence. The monthly average and monthly maxima PM10 data for Perlis from 2003 to 2014 were analysed. Forecasting for average data is made by Holt-Winters method while return level determine the predicted value of extreme events that occur on average once in a certain period. The forecasting from January 2015 to December 2016 for average data found that the highest forecasted value is 58.18 (standard deviation 18.45 on February 2016 while return level achieved 253.76 units for 24 months (2015-2016 return periods.
ANALYSIS OF TIME SERIES FOR THE CURRENCY PAIR CROATIAN KUNA / EURO
Directory of Open Access Journals (Sweden)
Marko Martinović
2017-01-01
Full Text Available The domestic currency Croatian kuna (HRK was introduced in May 1995. To date, the Croatian National Bank (HNB, as a regulator and formulator of monetary policy in Croatia has operated a policy of stable exchange rate, typically referenced to the formal currency of the European Union euro (EUR. From the date of introduction of the euro 01/01/1999 until 01/01/2016 the value of the currency pair HRK / EUR changed in value by only 4.25% (HNB. Although the value of the Croatian kuna is relatively stable, there are some fluctuations on an annual level (e.g. in the last few years because of the global crisis as well as on periodic levels within a year. The aim of this paper is to show the movement of the value of the currency pair since the beginning of 2002 to the present day (the time curve, analyze the correctness, trends and periodicity (seasonal behavior, if any exist.The research will be done using the method of Time Series Analysis, assuming that the external (global economy and internal factors (economic policy remain similar or the same. According to the results, further assessment of price developments in the period followed will be made by using the obtained predicative models. In the event that the curve contains the component of periodicity, the observed patterns will be studied further.
Forecasting Container Throughput at the Doraleh Port in Djibouti through Time Series Analysis
Mohamed Ismael, Hawa; Vandyck, George Kobina
The Doraleh Container Terminal (DCT) located in Djibouti has been noted as the most technologically advanced container terminal on the African continent. DCT's strategic location at the crossroads of the main shipping lanes connecting Asia, Africa and Europe put it in a unique position to provide important shipping services to vessels plying that route. This paper aims to forecast container throughput through the Doraleh Container Port in Djibouti by Time Series Analysis. A selection of univariate forecasting models has been used, namely Triple Exponential Smoothing Model, Grey Model and Linear Regression Model. By utilizing the above three models and their combination, the forecast of container throughput through the Doraleh port was realized. A comparison of the different forecasting results of the three models, in addition to the combination forecast is then undertaken, based on commonly used evaluation criteria Mean Absolute Deviation (MAD) and Mean Absolute Percentage Error (MAPE). The study found that the Linear Regression forecasting Model was the best prediction method for forecasting the container throughput, since its forecast error was the least. Based on the regression model, a ten (10) year forecast for container throughput at DCT has been made.
A population based time series analysis of asthma hospitalisations in Ontario, Canada: 1988 to 2000
Directory of Open Access Journals (Sweden)
Upshur Ross EG
2001-08-01
Full Text Available Abstract Background Asthma is a common yet incompletely understood health problem associated with a high morbidity burden. A wide variety of seasonally variable environmental stimuli such as viruses and air pollution are believed to influence asthma morbidity. This study set out to examine the seasonal patterns of asthma hospitalisations in relation to age and gender for the province of Ontario over a period of 12 years. Methods A retrospective, population-based study design was used to assess temporal patterns in hospitalisations for asthma from April 1, 1988 to March 31, 2000. Approximately 14 million residents of Ontario eligible for universal healthcare coverage during this time were included for analysis. Time series analyses were conducted on monthly aggregations of hospitalisations. Results There is strong evidence of an autumn peak and summer trough seasonal pattern occurring every year over the 12-year period (Fisher-Kappa (FK = 23.93, p > 0.01; Bartlett Kolmogorov Smirnov (BKS = 0.459, p Conclusions A clear and consistent seasonal pattern was observed in this study for asthma hospitalisations. These findings have important implications for the development of effective management and prevention strategies.
Krstacic, Goran; Krstacic, Antonija; Smalcelj, Anton; Milicic, Davor; Jembrek-Gostovic, Mirjana
2007-04-01
Dynamic analysis techniques may quantify abnormalities in heart rate variability (HRV) based on nonlinear and fractal analysis (chaos theory). The article emphasizes clinical and prognostic significance of dynamic changes in short-time series applied on patients with coronary heart disease (CHD) during the exercise electrocardiograph (ECG) test. The subjects were included in the series after complete cardiovascular diagnostic data. Series of R-R and ST-T intervals were obtained from exercise ECG data after sampling digitally. The range rescaled analysis method determined the fractal dimension of the intervals. To quantify fractal long-range correlation's properties of heart rate variability, the detrended fluctuation analysis technique was used. Approximate entropy (ApEn) was applied to quantify the regularity and complexity of time series, as well as unpredictability of fluctuations in time series. It was found that the short-term fractal scaling exponent (alpha(1)) is significantly lower in patients with CHD (0.93 +/- 0.07 vs 1.09 +/- 0.04; P chaos theory during the exercise ECG test point out the multifractal time series in CHD patients who loss normal fractal characteristics and regularity in HRV. Nonlinear analysis technique may complement traditional ECG analysis.
Directory of Open Access Journals (Sweden)
Jiran L.
2016-06-01
Full Text Available Thick-walled tubes made from isotropic and anisotropic materials are subjected to an internal pressure while the semi-analytical method is employed to investigate their elastic deformations. The contribution and novelty of this method is that it works universally for different loads, different boundary conditions, and different geometry of analyzed structures. Moreover, even when composite material is considered, the method requires no simplistic assumptions. The method uses a curvilinear tensor calculus and it works with the analytical expression of the total potential energy while the unknown displacement functions are approximated by using appropriate series expansion. Fourier and Taylor series expansion are involved into analysis in which they are tested and compared. The main potential of the proposed method is in analyses of wound composite structures when a simple description of the geometry is made in a curvilinear coordinate system while material properties are described in their inherent Cartesian coordinate system. Validations of the introduced semi-analytical method are performed by comparing results with those obtained from three-dimensional finite element analysis (FEA. Calculations with Fourier series expansion show noticeable disagreement with results from the finite element model because Fourier series expansion is not able to capture the course of radial deformation. Therefore, it can be used only for rough estimations of a shape after deformation. On the other hand, the semi-analytical method with Fourier Taylor series expansion works very well for both types of material. Its predictions of deformations are reliable and widely exploitable.
Sensitivity analysis of machine-learning models of hydrologic time series
O'Reilly, A. M.
2017-12-01
Sensitivity analysis traditionally has been applied to assessing model response to perturbations in model parameters, where the parameters are those model input variables adjusted during calibration. Unlike physics-based models where parameters represent real phenomena, the equivalent of parameters for machine-learning models are simply mathematical "knobs" that are automatically adjusted during training/testing/verification procedures. Thus the challenge of extracting knowledge of hydrologic system functionality from machine-learning models lies in their very nature, leading to the label "black box." Sensitivity analysis of the forcing-response behavior of machine-learning models, however, can provide understanding of how the physical phenomena represented by model inputs affect the physical phenomena represented by model outputs.As part of a previous study, hybrid spectral-decomposition artificial neural network (ANN) models were developed to simulate the observed behavior of hydrologic response contained in multidecadal datasets of lake water level, groundwater level, and spring flow. Model inputs used moving window averages (MWA) to represent various frequencies and frequency-band components of time series of rainfall and groundwater use. Using these forcing time series, the MWA-ANN models were trained to predict time series of lake water level, groundwater level, and spring flow at 51 sites in central Florida, USA. A time series of sensitivities for each MWA-ANN model was produced by perturbing forcing time-series and computing the change in response time-series per unit change in perturbation. Variations in forcing-response sensitivities are evident between types (lake, groundwater level, or spring), spatially (among sites of the same type), and temporally. Two generally common characteristics among sites are more uniform sensitivities to rainfall over time and notable increases in sensitivities to groundwater usage during significant drought periods.
Application of the Allan Variance to Time Series Analysis in Astrometry and Geodesy: A Review.
Malkin, Zinovy
2016-04-01
The Allan variance (AVAR) was introduced 50 years ago as a statistical tool for assessing the frequency standards deviations. For the past decades, AVAR has increasingly been used in geodesy and astrometry to assess the noise characteristics in geodetic and astrometric time series. A specific feature of astrometric and geodetic measurements, as compared with clock measurements, is that they are generally associated with uncertainties; thus, an appropriate weighting should be applied during data analysis. In addition, some physically connected scalar time series naturally form series of multidimensional vectors. For example, three station coordinates time series X, Y, and Z can be combined to analyze 3-D station position variations. The classical AVAR is not intended for processing unevenly weighted and/or multidimensional data. Therefore, AVAR modifications, namely weighted AVAR (WAVAR), multidimensional AVAR (MAVAR), and weighted multidimensional AVAR (WMAVAR), were introduced to overcome these deficiencies. In this paper, a brief review is given of the experience of using AVAR and its modifications in processing astrogeodetic time series.
Social network analysis of character interaction in the Stargate and Star Trek television series
Tan, Melody Shi Ai; Ujum, Ephrance Abu; Ratnavelu, Kuru
This paper undertakes a social network analysis of two science fiction television series, Stargate and Star Trek. Television series convey stories in the form of character interaction, which can be represented as “character networks”. We connect each pair of characters that exchanged spoken dialogue in any given scene demarcated in the television series transcripts. These networks are then used to characterize the overall structure and topology of each series. We find that the character networks of both series have similar structure and topology to that found in previous work on mythological and fictional networks. The character networks exhibit the small-world effects but found no significant support for power-law. Since the progression of an episode depends to a large extent on the interaction between each of its characters, the underlying network structure tells us something about the complexity of that episode’s storyline. We assessed the complexity using techniques from spectral graph theory. We found that the episode networks are structured either as (1) closed networks, (2) those containing bottlenecks that connect otherwise disconnected clusters or (3) a mixture of both.
Low-derivative operators of the Standard Model effective field theory via Hilbert series methods
Energy Technology Data Exchange (ETDEWEB)
Lehman, Landon; Martin, Adam [Department of Physics, University of Notre Dame,Nieuwland Science Hall, Notre Dame, IN 46556 (United States)
2016-02-12
In this work, we explore an extension of Hilbert series techniques to count operators that include derivatives. For sufficiently low-derivative operators, we conjecture an algorithm that gives the number of invariant operators, properly accounting for redundancies due to the equations of motion and integration by parts. Specifically, the conjectured technique can be applied whenever there is only one Lorentz invariant for a given partitioning of derivatives among the fields. At higher numbers of derivatives, equation of motion redundancies can be removed, but the increased number of Lorentz contractions spoils the subtraction of integration by parts redundancies. While restricted, this technique is sufficient to automatically recreate the complete set of invariant operators of the Standard Model effective field theory for dimensions 6 and 7 (for arbitrary numbers of flavors). At dimension 8, the algorithm does not automatically generate the complete operator set; however, it suffices for all but five classes of operators. For these remaining classes, there is a well defined procedure to manually determine the number of invariants. Assuming our method is correct, we derive a set of 535 dimension-8 N{sub f}=1 operators.
ROS evaluation for a series of CNTs and their derivatives using an ESR method with DMPO
International Nuclear Information System (INIS)
Tsuruoka, S; Noguchi, T; Endo, M; Tristan, F; Terrones, M; Takeuchi, K; Koyama, K; Usui, Y; Matsumoto, H; Saito, N; Porter, D W; Castranova, V
2013-01-01
Carbon nanotubes (CNTs) are important materials in advanced industries. It is a concern that pulmonary exposure to CNTs may induce carcinogenic responses. It has been recently reported that CNTs scavenge ROS though non-carbon fibers generate ROS. A comprehensive evaluation of ROS scavenging using various kinds of CNTs has not been demonstrated well. The present work specifically investigates ROS scavenging capabilities with a series of CNTs and their derivatives that were physically treated, and with the number of commercially available CNTs. CNT concentrations were controlled at 0.2 through 0.6 wt%. The ROS scavenging rate was measured by ESR with DMPO. Interestingly, the ROS scavenging rate was not only influenced by physical treatments, but was also dependent on individual manufacturing methods. Ratio of CNTs to DMPO/ hydrogen peroxide is a key parameter to obtain appropriate ROS quenching results for comparison of CNTs. The present results suggest that dangling bonds are not a sole factor for scavenging, and electron transfer on the CNT surface is not clearly determined to be the sole mechanism to explain ROS scavenging.
ROS evaluation for a series of CNTs and their derivatives using an ESR method with DMPO.
Tsuruoka, S; Takeuchi, K; Koyama, K; Noguchi, T; Endo, M; Tristan, F; Terrones, M; Matsumoto, H; Saito, N; Usui, Y; Porter, D W; Castranova, V
Carbon nanotubes (CNTs) are important materials in advanced industries. It is a concern that pulmonary exposure to CNTs may induce carcinogenic responses. It has been recently reported that CNTs scavenge ROS though non-carbon fibers generate ROS. A comprehensive evaluation of ROS scavenging using various kinds of CNTs has not been demonstrated well. The present work specifically investigates ROS scavenging capabilities with a series of CNTs and their derivatives that were physically treated, and with the number of commercially available CNTs. CNT concentrations were controlled at 0.2 through 0.6 wt%. The ROS scavenging rate was measured by ESR with DMPO. Interestingly, the ROS scavenging rate was not only influenced by physical treatments, but was also dependent on individual manufacturing methods. Ratio of CNTs to DMPO/ hydrogen peroxide is a key parameter to obtain appropriate ROS quenching results for comparison of CNTs. The present results suggest that dangling bonds are not a sole factor for scavenging, and electron transfer on the CNT surface is not clearly determined to be the sole mechanism to explain ROS scavenging.
Low-derivative operators of the Standard Model effective field theory via Hilbert series methods
International Nuclear Information System (INIS)
Lehman, Landon; Martin, Adam
2016-01-01
In this work, we explore an extension of Hilbert series techniques to count operators that include derivatives. For sufficiently low-derivative operators, we conjecture an algorithm that gives the number of invariant operators, properly accounting for redundancies due to the equations of motion and integration by parts. Specifically, the conjectured technique can be applied whenever there is only one Lorentz invariant for a given partitioning of derivatives among the fields. At higher numbers of derivatives, equation of motion redundancies can be removed, but the increased number of Lorentz contractions spoils the subtraction of integration by parts redundancies. While restricted, this technique is sufficient to automatically recreate the complete set of invariant operators of the Standard Model effective field theory for dimensions 6 and 7 (for arbitrary numbers of flavors). At dimension 8, the algorithm does not automatically generate the complete operator set; however, it suffices for all but five classes of operators. For these remaining classes, there is a well defined procedure to manually determine the number of invariants. Assuming our method is correct, we derive a set of 535 dimension-8 N_f=1 operators.
International Nuclear Information System (INIS)
Zedgenidze, G.A.; Narkevich, K.Ya.
1987-01-01
To substantiate the expediency of choosing either vizualization method, a comparative analysis of advantages and disadvantages of roentgen computerized tomography (CT) and ultrasonic investigation (UI) has been performed. Conditions of using CT and UI in developing countries emphasising on organizational and technical and esepecially clinical-diagnostic aspects of this problem have been analysed as well. A manual on clinical indications and correct CT and UI use from the point of view of methodology has been compiled
Chemical methods of rock analysis
National Research Council Canada - National Science Library
Jeffery, P. G; Hutchison, D
1981-01-01
.... Such methods include those based upon spectrophotometry, flame emission spectrometry and atomic absorption spectroscopy, as well as gravimetry, titrimetry and the use of ion-selective electrodes...
Loredo, Thomas; Budavari, Tamas; Scargle, Jeffrey D.
2018-01-01
This presentation provides an overview of open-source software packages addressing two challenging classes of astrostatistics problems. (1) CUDAHM is a C++ framework for hierarchical Bayesian modeling of cosmic populations, leveraging graphics processing units (GPUs) to enable applying this computationally challenging paradigm to large datasets. CUDAHM is motivated by measurement error problems in astronomy, where density estimation and linear and nonlinear regression must be addressed for populations of thousands to millions of objects whose features are measured with possibly complex uncertainties, potentially including selection effects. An example calculation demonstrates accurate GPU-accelerated luminosity function estimation for simulated populations of $10^6$ objects in about two hours using a single NVIDIA Tesla K40c GPU. (2) Time Series Explorer (TSE) is a collection of software in Python and MATLAB for exploratory analysis and statistical modeling of astronomical time series. It comprises a library of stand-alone functions and classes, as well as an application environment for interactive exploration of times series data. The presentation will summarize key capabilities of this emerging project, including new algorithms for analysis of irregularly-sampled time series.
Temporal trend of carpal tunnel release surgery: a population-based time series analysis.
Directory of Open Access Journals (Sweden)
Naif Fnais
Full Text Available BACKGROUND: Carpal tunnel release (CTR is among the most common hand surgeries, although little is known about its pattern. In this study, we aimed to investigate temporal trends, age and gender variation and current practice patterns in CTR surgeries. METHODS: We conducted a population-based time series analysis among over 13 million residents of Ontario, who underwent operative management for carpal tunnel syndrome (CTS from April 1, 1992 to March 31, 2010 using administrative claims data. RESULTS: The primary analysis revealed a fairly stable procedure rate of approximately 10 patients per 10,000 population per year receiving CTRs without any significant, consistent temporal trend (p = 0.94. Secondary analyses revealed different trends in procedure rates according to age. The annual procedure rate among those age >75 years increased from 22 per 10,000 population at the beginning of the study period to over 26 patients per 10,000 population (p<0.01 by the end of the study period. CTR surgical procedures were approximately two-fold more common among females relative to males (64.9% vs. 35.1 respectively; p<0.01. Lastly, CTR procedures are increasingly being conducted in the outpatient setting while procedures in the inpatient setting have been declining steadily - the proportion of procedures performed in the outpatient setting increased from 13% to over 30% by 2010 (p<0.01. CONCLUSION: Overall, CTR surgical-procedures are conducted at a rate of approximately 10 patients per 10,000 population annually with significant variation with respect to age and gender. CTR surgical procedures in ambulatory-care facilities may soon outpace procedure rates in the in-hospital setting.
Directory of Open Access Journals (Sweden)
Levi Lopes Teixeira
2015-12-01
Full Text Available Time series forecasting is widely used in various areas of human knowledge, especially in the planning and strategic direction of companies. The success of this task depends on the forecasting techniques applied. In this paper, a hybrid approach to project time series is suggested. To validate the methodology, a time series already modeled by other authors was chosen, allowing the comparison of results. The proposed methodology includes the following techniques: wavelet shrinkage, wavelet decomposition at level r, and artificial neural networks (ANN. Firstly, a time series to be forecasted is submitted to the proposed wavelet filtering method, which decomposes it to components of trend and linear residue. Then, both are decomposed via level r wavelet decomposition, generating r + 1 Wavelet Components (WCs for each one; and then each WC is individually modeled by an ANN. Finally, the predictions for all WCs are linearly combined, producing forecasts to the underlying time series. For evaluating purposes, the time series of Canadian Lynx has been used, and all results achieved by the proposed method were better than others in existing literature.
Directory of Open Access Journals (Sweden)
Cristinel Mortici
2015-01-01
Full Text Available In this survey we present our recent results on analysis of gamma function and related functions. The results obtained are in the theory of asymptotic analysis, approximation of gamma and polygamma functions, or in the theory of completely monotonic functions. The motivation of this first part is the work of C. Mortici [Product Approximations via Asymptotic Integration Amer. Math. Monthly 117 (2010 434-441] where a simple strategy for constructing asymptotic series is presented. The classical asymptotic series associated to Stirling, Wallis, Glaisher-Kinkelin are rediscovered. In the second section we discuss some new inequalities related to Landau constants and we establish some asymptotic formulas.
Probabilistic methods in combinatorial analysis
Sachkov, Vladimir N
2014-01-01
This 1997 work explores the role of probabilistic methods for solving combinatorial problems. These methods not only provide the means of efficiently using such notions as characteristic and generating functions, the moment method and so on but also let us use the powerful technique of limit theorems. The basic objects under investigation are nonnegative matrices, partitions and mappings of finite sets, with special emphasis on permutations and graphs, and equivalence classes specified on sequences of finite length consisting of elements of partially ordered sets; these specify the probabilist
Methods in quantitative image analysis.
Oberholzer, M; Ostreicher, M; Christen, H; Brühlmann, M
1996-05-01
The main steps of image analysis are image capturing, image storage (compression), correcting imaging defects (e.g. non-uniform illumination, electronic-noise, glare effect), image enhancement, segmentation of objects in the image and image measurements. Digitisation is made by a camera. The most modern types include a frame-grabber, converting the analog-to-digital signal into digital (numerical) information. The numerical information consists of the grey values describing the brightness of every point within the image, named a pixel. The information is stored in bits. Eight bits are summarised in one byte. Therefore, grey values can have a value between 0 and 256 (2(8)). The human eye seems to be quite content with a display of 5-bit images (corresponding to 64 different grey values). In a digitised image, the pixel grey values can vary within regions that are uniform in the original scene: the image is noisy. The noise is mainly manifested in the background of the image. For an optimal discrimination between different objects or features in an image, uniformity of illumination in the whole image is required. These defects can be minimised by shading correction [subtraction of a background (white) image from the original image, pixel per pixel, or division of the original image by the background image]. The brightness of an image represented by its grey values can be analysed for every single pixel or for a group of pixels. The most frequently used pixel-based image descriptors are optical density, integrated optical density, the histogram of the grey values, mean grey value and entropy. The distribution of the grey values existing within an image is one of the most important characteristics of the image. However, the histogram gives no information about the texture of the image. The simplest way to improve the contrast of an image is to expand the brightness scale by spreading the histogram out to the full available range. Rules for transforming the grey value
Angeler, David G; Viedma, Olga; Moreno, José M
2009-11-01
Time lag analysis (TLA) is a distance-based approach used to study temporal dynamics of ecological communities by measuring community dissimilarity over increasing time lags. Despite its increased use in recent years, its performance in comparison with other more direct methods (i.e., canonical ordination) has not been evaluated. This study fills this gap using extensive simulations and real data sets from experimental temporary ponds (true zooplankton communities) and landscape studies (landscape categories as pseudo-communities) that differ in community structure and anthropogenic stress history. Modeling time with a principal coordinate of neighborhood matrices (PCNM) approach, the canonical ordination technique (redundancy analysis; RDA) consistently outperformed the other statistical tests (i.e., TLAs, Mantel test, and RDA based on linear time trends) using all real data. In addition, the RDA-PCNM revealed different patterns of temporal change, and the strength of each individual time pattern, in terms of adjusted variance explained, could be evaluated, It also identified species contributions to these patterns of temporal change. This additional information is not provided by distance-based methods. The simulation study revealed better Type I error properties of the canonical ordination techniques compared with the distance-based approaches when no deterministic component of change was imposed on the communities. The simulation also revealed that strong emphasis on uniform deterministic change and low variability at other temporal scales is needed to result in decreased statistical power of the RDA-PCNM approach relative to the other methods. Based on the statistical performance of and information content provided by RDA-PCNM models, this technique serves ecologists as a powerful tool for modeling temporal change of ecological (pseudo-) communities.