WorldWideScience

Sample records for sequestration options task

  1. Sequestration Options for the West Coast States

    Energy Technology Data Exchange (ETDEWEB)

    Myer, Larry

    2006-04-30

    The West Coast Regional Carbon Sequestration Partnership (WESTCARB) is one of seven partnerships that have been established by the U.S. Department of Energy (DOE) to evaluate carbon capture and sequestration (CCS) technologies best suited for different regions of the country. The West Coast Region comprises Arizona, California, Nevada, Oregon, Washington, Alaska, and British Columbia. Led by the California Energy Commission, WESTCARB is a consortium of about 70 organizations, including state natural resource and environmental protection agencies; national laboratories and universities; private companies working on carbon dioxide (CO{sub 2}) capture, transportation, and storage technologies; utilities; oil and gas companies; nonprofit organizations; and policy/governance coordinating organizations. Both terrestrial and geologic sequestration options were evaluated in the Region during the 18-month Phase I project. A centralized Geographic Information System (GIS) database of stationary source, geologic and terrestrial sink data was developed. The GIS layer of source locations was attributed with CO{sub 2} emissions and other data and a spreadsheet was developed to estimate capture costs for the sources in the region. Phase I characterization of regional geological sinks shows that geologic storage opportunities exist in the WESTCARB region in each of the major technology areas: saline formations, oil and gas reservoirs, and coal beds. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery. The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, the potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, and the cumulative production from gas reservoirs suggests a CO{sub 2} storage capacity of 1.7 Gt. A GIS-based method for source

  2. Options for accounting carbon sequestration in German forests

    Science.gov (United States)

    Krug, Joachim; Koehl, Michael; Riedel, Thomas; Bormann, Kristin; Rueter, Sebastian; Elsasser, Peter

    2009-01-01

    Background The Accra climate change talks held from 21–27 August 2008 in Accra, Ghana, were part of an ongoing series of meetings leading up to the Copenhagen meeting in December 2009. During the meeting a set of options for accounting carbon sequestration in forestry on a post-2012 framework was presented. The options include gross-net and net-net accounting and approaches for establishing baselines. Results This article demonstrates the embedded consequences of Accra Accounting Options for the case study of German national GHG accounting. It presents the most current assessment of sequestration rates by forest management for the period 1990 – 2007, provides an outlook of future emissions and removals (up to the year 2042) as related to three different management scenarios, and shows that implementation of some Accra options may reverse sources to sinks, or sinks to sources. Conclusion The results of the study highlight the importance of elaborating an accounting system that would prioritize the climate convention goals, not national preferences. PMID:19650896

  3. Economic Screening of Geologic Sequestration Options in the United States with a Carbon Management Geographic Information System

    Energy Technology Data Exchange (ETDEWEB)

    Dahowski, Robert T.(BATTELLE (PACIFIC NW LAB)); Dooley, James J.(BATTELLE (PACIFIC NW LAB)); Brown, Daryl R.(BATTELLE (PACIFIC NW LAB)); Stephan, Alex J.(BATTELLE (PACIFIC NW LAB)); Badie I. Morsi

    2001-10-19

    Developing a carbon management strategy is a formidable task for nations as well as individual companies. It is often difficult to understand what options are available, let alone determine which may be optimal. In response to the need for a better understanding of complex carbon management options, Battelle has developed a state-of-the-art Geographic Information System (GIS) model with economic screening capability focused on carbon capture and geologic sequestration opportunities in the United States. This paper describes the development of this GIS-based economic screening model and demonstrates its use for carbon management analysis.

  4. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin

    Energy Technology Data Exchange (ETDEWEB)

    Robert Finley

    2005-09-30

    The Midwest Geological Sequestration Consortium (MGSC) has investigated the options for geological carbon dioxide (CO{sub 2}) sequestration in the 155,400-km{sup 2} (60,000-mi{sup 2}) Illinois Basin. Within the Basin, underlying most of Illinois, western Indiana, and western Kentucky, are relatively deeper and/or thinner coal resources, numerous mature oil fields, and deep salt-water-bearing reservoirs that are potentially capable of storing CO{sub 2}. The objective of this Assessment was to determine the technical and economic feasibility of using these geological sinks for long-term storage to avoid atmospheric release of CO{sub 2} from fossil fuel combustion and thereby avoid the potential for adverse climate change. The MGSC is a consortium of the geological surveys of Illinois, Indiana, and Kentucky joined by six private corporations, five professional business associations, one interstate compact, two university researchers, two Illinois state agencies, and two consultants. The purpose of the Consortium is to assess carbon capture, transportation, and storage processes and their costs and viability in the three-state Illinois Basin region. The Illinois State Geological Survey serves as Lead Technical Contractor for the Consortium. The Illinois Basin region has annual emissions from stationary anthropogenic sources exceeding 276 million metric tonnes (304 million tons) of CO{sub 2} (>70 million tonnes (77 million tons) carbon equivalent), primarily from coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year. Assessing the options for capture, transportation, and storage of the CO{sub 2} emissions within the region has been a 12-task, 2-year process that has assessed 3,600 million tonnes (3,968 million tons) of storage capacity in coal seams, 140 to 440 million tonnes (154 to 485 million tons) of capacity in mature oil reservoirs, 7,800 million tonnes (8,598 million tons) of capacity in saline

  5. Understanding Carbon Sequestration Options in the United States: Capabilities of a Carbon Management Geographic Information System

    Energy Technology Data Exchange (ETDEWEB)

    Dahowski, Robert T.; Dooley, James J.; Brown, Daryl R.; Mizoguchi, Akiyoshi; Shiozaki, Mai

    2001-04-03

    While one can discuss various sequestration options at a national or global level, the actual carbon management approach is highly site specific. In response to the need for a better understanding of carbon management options, Battelle in collaboration with Mitsubishi Corporation, has developed a state-of-the-art Geographic Information System (GIS) focused on carbon capture and sequestration opportunities in the United States. The GIS system contains information (e.g., fuel type, location, vintage, ownership, rated capacity) on all fossil-fired generation capacity in the Untied States with a rated capacity of at least 100 MW. There are also data on other CO2 sources (i.e., natural domes, gas processing plants, etc.) and associated pipelines currently serving enhanced oil recovery (EOR) projects. Data on current and prospective CO2 EOR projects include location, operator, reservoir and oil characteristics, production, and CO2 source. The system also contains information on priority deep saline aquifers and coal bed methane basins with potential for sequestering CO2. The GIS application not only enables data storage, flexible map making, and visualization capabilities, but also facilitates the spatial analyses required to solve complex linking of CO2 sources with appropriate and cost-effective sinks. A variety of screening criteria (spatial, geophysical, and economic) can be employed to identify sources and sinks most likely amenable to deployment of carbon capture and sequestration systems. The system is easily updateable, allowing it to stay on the leading edge of capture and sequestration technology as well as the ever-changing business landscape. Our paper and presentation will describe the development of this GIS and demonstrate its uses for carbon management analysis.

  6. Potential and economics of forestry options for carbon sequestration in India

    International Nuclear Information System (INIS)

    Ravindranath, N.H.; Somashekhar, B.S.

    1995-01-01

    There is a need to understand the carbon (C) sequestration potential of the forestry option and its financial implications for each country. In India the C emissions from deforestation are estimated to be nearly offset by C sequestration in forests under succession and tree plantations. India has nearly succeeded in stabilizing the area under forests and has adequate forest conservation strategies. Biomass demands for softwood, hardwood and firewood are estimated to double or treble by the year 2020. A set of forestry options were developed to meet the projected biomass needs, and keeping in mind the features of land categories available, three scenarios were developed: potential; demand-driven; and programme-driven scenarios. Adoption of the demand-driven scenario, targeted at meeting the projected biomass needs, is estimated to sequester 78 Mt of C annually after accounting for all emissions resulting from clearfelling and end use of biomass. The demand-driven scenario is estimated to offset 50% of national C emission at 1990 level. The cost per t of C sequestered for forestry options is lower than the energy options considered. The annual investment required for implementing the demand-driven scenario is estimated to be US$ 2.1 billion for six years and is shown to be feasible. Among forestry options, the ranking based on investment cost per t of C sequestered from least cost to highest cost is; natural regeneration -agro-forestry-enhanced natural regeneration ( < US$ 2.5/t C) -timber-community-forestry (US$ 3.3 to 7.3 per t of C). (Author)

  7. Macro-economic analysis of forestry options on carbon sequestration in India

    International Nuclear Information System (INIS)

    Kadekodi, Gopal K.; Ravindranath, N.H.

    1997-01-01

    There is a need to evaluate the additional spending on forestry by analysing the environmental (particularly carbon abatement), social and economic benefits. The biomass needs for India are expected to increase by two to three times by 2020. Depending upon the forest types, ownership patterns and land use patterns, feasible forestry options are identified. It is found among many supply options to be feasible to meet the 'demand based needs' with a mix of management options, species choices and organisational set up. A comparative static framework is used to analyze the macro-economic impacts. Forestry accounts for 1.84% of GNP in India. It is characterized by significant forward industrial linkages and least backward linkage. Forestry generates about 36 million person years of employment annually. India imports Rs. 15 billion worth of forest based materials annually. Implementation of the demand based forestry options can lead to a number of ecological, economic and institutional changes. The notable ones are: enhancement of C stock from 9578 to 17094 Mt and a net annual C-sequestration from 73 to 149 Mt after accounting for all emissions; a trebling of the output of forestry sector from Rs. 49 billion to Rs. 146 billion annually; an increase in GDP contribution of forestry from Rs. 32 billion to Rs. 105 billion over a period of 35 years; an increase in annual employment level by 23 million person years; emergence of forestry as a net contributor of foreign exchange through trading of forestry products; and an increase in economic value of forest capital stock by Rs. 7260 billion with a cost benefit analysis showing forestry as a profitable option. Implementation of forestry options calls for an understanding of current forest policies and barriers which are analyzed and a number of policy options are suggested

  8. Short rotation coppice with Robinia pseudoacacia L. : a land use option for carbon sequestration on reclaimed mine sites

    Energy Technology Data Exchange (ETDEWEB)

    Quinkenstein, A.; Bohm, C.; Freese, D. [Brandenburg Univ. of Technology, Cottbus (Germany). Soil Protection and Recultivation; Huttl, R.R. [Brandenburg Univ. of Technology, Cottbus (Germany). Soil Protection and Recultivation; GFZ German Research Centre for Geosciences, Potsdam (Germany)

    2010-07-01

    A study in northeast Germany has shown that the establishment of short rotation coppices (SRC) of Robinia pseudoacacia L. may be a viable option for improving farmers income on marginal soils. The plantations produce woody biomass at a fast rate for energy use. Carbon is accumulated in the harvestable biomass, as well as in the stump and the roots. These plant compartments form a long-term carbon storage pool because they can survive a harvest, stay vital at the site and continue to grow as the plant ages. As organic litter decomposes, additional carbon is sequestered under SRC as soil organic carbon. The carbon sequestration in SRC of R. pseudoacacia on mining sites within the Lower Lusatian region in northeast Germany was studied and the results were complemented with findings of current field studies conducted on reclaimed mine sites. The average above ground dry matter productivity of R. pseudoacacia was found to be 3 to 10 Mg per hectare per year, depending on the plantation age and rotation period. It has been estimated that the carbon storage within the soil accounts to a carbon sequestration of up to 6 Mg per hectare per year for a soil depth of 60 cm.

  9. Feasibility of CO2 Sequestration as a Closure Option for Underground Coal Mine

    Science.gov (United States)

    Ray, Sutapa; Dey, Kaushik

    2018-01-01

    The Kyoto Protocol, 1998, was signed by member countries to reduce greenhouse gas (GHG) emissions to a minimum acceptable level. India agreed to Kyoto Protocol since 2002 and started its research on GHG mitigation. Few researchers have carried out research work on CO2 sequestration in different rock formations. However, CO2 sequestration in abandoned mines has yet not drawn its attention largely. In the past few years or decades, a significant amount of research and development has been done on Carbon Capture and Storage (CCS) technologies, since it is a possible solution for assuring less emission of CO2 to the atmosphere from power plants and some other major industrial plants. CCS mainly involves three steps: (a) capture and compression of CO2 from source (power plants and industrial areas), (b) transportation of captured CO2 to the storage mine and (c) injecting CO2 into underground mine. CO2 is stored at an underground mine mainly in three forms: (1) adsorbed in the coals left as pillars of the mine, (2) absorbed in water through a chemical process and (3) filled in void with compressed CO2. Adsorption isotherm is a graph developed between the amounts of adsorbate adsorbed on the surface of adsorbent and the pressure at constant temperature. Various types of adsorption isotherms are available, namely, Freundlich, Langmuir and BET theory. Indian coal is different in origin from most of the international coal deposits and thus demands isotherm experiments of the same to arrive at the right adsorption isotherm. To carry out these experiments, adsorption isotherm set up is fabricated in the laboratory with a capacity to measure the adsorbed volume up to a pressure level of 100 bar. The coal samples are collected from the pillars and walls of the underground coal seam using a portable drill machine. The adsorption isotherm experiments have been carried out for the samples taken from a mine. From the adsorption isotherm experiments, Langmuir Equation is found to be

  10. Feasibility of CO2 Sequestration as a Closure Option for Underground Coal Mine

    Science.gov (United States)

    Ray, Sutapa; Dey, Kaushik

    2018-04-01

    The Kyoto Protocol, 1998, was signed by member countries to reduce greenhouse gas (GHG) emissions to a minimum acceptable level. India agreed to Kyoto Protocol since 2002 and started its research on GHG mitigation. Few researchers have carried out research work on CO2 sequestration in different rock formations. However, CO2 sequestration in abandoned mines has yet not drawn its attention largely. In the past few years or decades, a significant amount of research and development has been done on Carbon Capture and Storage (CCS) technologies, since it is a possible solution for assuring less emission of CO2 to the atmosphere from power plants and some other major industrial plants. CCS mainly involves three steps: (a) capture and compression of CO2 from source (power plants and industrial areas), (b) transportation of captured CO2 to the storage mine and (c) injecting CO2 into underground mine. CO2 is stored at an underground mine mainly in three forms: (1) adsorbed in the coals left as pillars of the mine, (2) absorbed in water through a chemical process and (3) filled in void with compressed CO2. Adsorption isotherm is a graph developed between the amounts of adsorbate adsorbed on the surface of adsorbent and the pressure at constant temperature. Various types of adsorption isotherms are available, namely, Freundlich, Langmuir and BET theory. Indian coal is different in origin from most of the international coal deposits and thus demands isotherm experiments of the same to arrive at the right adsorption isotherm. To carry out these experiments, adsorption isotherm set up is fabricated in the laboratory with a capacity to measure the adsorbed volume up to a pressure level of 100 bar. The coal samples are collected from the pillars and walls of the underground coal seam using a portable drill machine. The adsorption isotherm experiments have been carried out for the samples taken from a mine. From the adsorption isotherm experiments, Langmuir Equation is found to be

  11. Carbon sequestration.

    Science.gov (United States)

    Lal, Rattan

    2008-02-27

    Developing technologies to reduce the rate of increase of atmospheric concentration of carbon dioxide (CO2) from annual emissions of 8.6PgCyr-1 from energy, process industry, land-use conversion and soil cultivation is an important issue of the twenty-first century. Of the three options of reducing the global energy use, developing low or no-carbon fuel and sequestering emissions, this manuscript describes processes for carbon (CO2) sequestration and discusses abiotic and biotic technologies. Carbon sequestration implies transfer of atmospheric CO2 into other long-lived global pools including oceanic, pedologic, biotic and geological strata to reduce the net rate of increase in atmospheric CO2. Engineering techniques of CO2 injection in deep ocean, geological strata, old coal mines and oil wells, and saline aquifers along with mineral carbonation of CO2 constitute abiotic techniques. These techniques have a large potential of thousands of Pg, are expensive, have leakage risks and may be available for routine use by 2025 and beyond. In comparison, biotic techniques are natural and cost-effective processes, have numerous ancillary benefits, are immediately applicable but have finite sink capacity. Biotic and abiotic C sequestration options have specific nitches, are complementary, and have potential to mitigate the climate change risks.

  12. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-06-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. The technical and economic performances of the selected processes were evaluated using computer models and available literature. Using these results, the carbon sequestration potential of the three technologies was then evaluated. The results of these evaluations are given in this final report.

  13. Space station data system analysis/architecture study. Task 2: Options development, DR-5. Volume 2: Design options

    Science.gov (United States)

    1985-01-01

    The primary objective of Task 2 is the development of an information base that will support the conduct of trade studies and provide sufficient data to make key design/programmatic decisions. This includes: (1) the establishment of option categories that are most likely to influence Space Station Data System (SSDS) definition; (2) the identification of preferred options in each category; and (3) the characterization of these options with respect to performance attributes, constraints, cost and risk. This volume contains the options development for the design category. This category comprises alternative structures, configurations and techniques that can be used to develop designs that are responsive to the SSDS requirements. The specific areas discussed are software, including data base management and distributed operating systems; system architecture, including fault tolerance and system growth/automation/autonomy and system interfaces; time management; and system security/privacy. Also discussed are space communications and local area networking.

  14. Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting

    DEFF Research Database (Denmark)

    Brandao, Miguel; Levasseur, Annie; Kirschbaum, Miko U. F.

    2013-01-01

    . However, there is still no overall consensus on the most appropriate ways of considering and quantifying it. Method: This paper reviews and discusses six available methods for accounting for the potential climate impacts of carbon sequestration and temporary storage or release of biogenic carbon in LCA...... footprinting (CF) are increasingly popular tools for the environmental assessment of products, that take into account their entire life cycle. There have been significant efforts to develop robust methods to account for the benefits, if any, of sequestration and temporary storage and release of biogenic carbon...

  15. Southeast Regional Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth J. Nemeth

    2006-08-30

    The Southeast Regional Carbon Sequestration Partnership's (SECARB) Phase I program focused on promoting the development of a framework and infrastructure necessary for the validation and commercial deployment of carbon sequestration technologies. The SECARB program, and its subsequent phases, directly support the Global Climate Change Initiative's goal of reducing greenhouse gas intensity by 18 percent by the year 2012. Work during the project's two-year period was conducted within a ''Task Responsibility Matrix''. The SECARB team was successful in accomplishing its tasks to define the geographic boundaries of the region; characterize the region; identify and address issues for technology deployment; develop public involvement and education mechanisms; identify the most promising capture, sequestration, and transport options; and prepare action plans for implementation and technology validation activity. Milestones accomplished during Phase I of the project are listed below: (1) Completed preliminary identification of geographic boundaries for the study (FY04, Quarter 1); (2) Completed initial inventory of major sources and sinks for the region (FY04, Quarter 2); (3) Completed initial development of plans for GIS (FY04, Quarter 3); (4) Completed preliminary action plan and assessment for overcoming public perception issues (FY04, Quarter 4); (5) Assessed safety, regulatory and permitting issues (FY05, Quarter 1); (6) Finalized inventory of major sources/sinks and refined GIS algorithms (FY05, Quarter 2); (7) Refined public involvement and education mechanisms in support of technology development options (FY05, Quarter 3); and (8) Identified the most promising capture, sequestration and transport options and prepared action plans (FY05, Quarter 4).

  16. Negotiation of Meaning in Required and Optional Information Exchange Tasks: Discourse Issues

    Directory of Open Access Journals (Sweden)

    Zohre Mohamadi

    2015-01-01

    Full Text Available It is widely argued that different types of tasks facilitate the acquisition of communicative language to different degrees through providing different contexts for the occurrence of negotiation of meaning which is believed to have facilitative role in language acquisition. Although task based instruction provides a medium for acquiring the communicative language, it suffers from a number of oversimplifications.  The potentials of each task type in creating such a medium were not investigated in exhaustive detail, and it is left as a potentially interesting topic for further research.  This paper reports the analysis of the negotiation of meaning produced by eight intermediate EFL students engaged in required and optional information exchange tasks in dyads.  The results show that pushed output has different quality in these different task types meaning whereas required information exchange task provided a medium for more incidence of negotiation work, optional information exchange tasks engaged participants more with discourse work and led to more incidence of the clarification request as an interactional move that has a facilitative role in pushed output. Test constructors and materials developers need to take principled decisions in what to be included in the tests and texts.

  17. Drilling, Completion, and Data Collection Plans An Assessment of Geological Carbon Sequestration Options in the Illinois Basin: Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Malkewicz, Nicholas; Kirksey, Jim; Finley, Robert

    2015-05-01

    Executive Summary The Illinois Basin – Decatur Project (IBDP) is managed by the Midwest Geological Sequestration Consortium (MGSC) and is led by the Illinois State Geological Survey (ISGS) at the University of Illinois. The project site is located on the Archer Daniels Midland Company (ADM) property in Decatur, Illinois, and is a fully integrated carbon capture and storage (CCS) project that uses CO₂ captured from the ethanol-producing fermentation process at the ADM corn-processing plant (Finley et. al., 2013). IBDP has a goal of injecting one million tonnes of CO₂ into the basal sands of the Mt. Simon Sandstone over a three-year period. This is a multifaceted project, and this report details the planning and results of the drilling, completions, well testing, log data acquisition, and the Health, Safety, and Environment (HSE) aspects of the project. Three deep wells were planned for the IBDP: • The injection well: Injection Well #1 (CCS1); • The monitoring well (both in-zone and above seal): Verification Well #1 (VW1); and • The geophone monitoring well: Geophysical Monitoring Well #1 (GM1). The detailed plans for these wells are attached to the appendices of this document. The wells were drilled successfully with little deviation from the original plans. The biggest change from the plan to execution was the need to adjust for larger-than-expected loss of circulation in the Potosi section of the Knox Formation. The completions reports also attached to this document detail the well constructions as they were actually built. Injectivity testing was carried out, and the perforating plans were adjusted based on the results. Additional perforations and acidizing were performed as a result of the injectivity testing. The testing plans are detailed in this report along with the actual testing results. The injectivity testing results were used in the modeling and simulation efforts. Detailed HSE plans were developed and implemented during the planning and

  18. Communications data delivery system analysis task 2 report : high-level options for secure communications data delivery systems.

    Science.gov (United States)

    2012-05-16

    This Communications Data Delivery System Analysis Task 2 report describes and analyzes options for Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communications data delivery systems using various communication media (Dedicated Short Ra...

  19. SIMPLIFIED PREDICTIVE MODELS FOR CO₂ SEQUESTRATION PERFORMANCE ASSESSMENT RESEARCH TOPICAL REPORT ON TASK #3 STATISTICAL LEARNING BASED MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Srikanta; Schuetter, Jared

    2014-11-01

    We compare two approaches for building a statistical proxy model (metamodel) for CO₂ geologic sequestration from the results of full-physics compositional simulations. The first approach involves a classical Box-Behnken or Augmented Pairs experimental design with a quadratic polynomial response surface. The second approach used a space-filling maxmin Latin Hypercube sampling or maximum entropy design with the choice of five different meta-modeling techniques: quadratic polynomial, kriging with constant and quadratic trend terms, multivariate adaptive regression spline (MARS) and additivity and variance stabilization (AVAS). Simulations results for CO₂ injection into a reservoir-caprock system with 9 design variables (and 97 samples) were used to generate the data for developing the proxy models. The fitted models were validated with using an independent data set and a cross-validation approach for three different performance metrics: total storage efficiency, CO₂ plume radius and average reservoir pressure. The Box-Behnken–quadratic polynomial metamodel performed the best, followed closely by the maximin LHS–kriging metamodel.

  20. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP (SECARB)

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth J. Nemeth

    2004-09-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first year of its two year program. Work during the semiannual period (third and fourth quarter) of the project (April 1--September 30, 2004) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, Texas and Virginia were added during the second quarter of the project and no geographical changes occurred during the third or fourth quarter of the project. Under Task 2.0 Characterize the Region, general mapping and screening of sources and sinks has been completed, with integration and Geographical Information System (GIS) mapping ongoing. The first step focused on the macro level characterization of the region. Subsequent characterization will focus on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB has completed a preliminary assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has conducted a survey and focus group meeting to gain insight into approaches that will be taken to educate and involve the public. Task 5.0 and 6.0 will be implemented beginning October 1, 2004. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB will evaluate findings from work performed during the first year and shift the focus of the project team from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team will develop an integrated approach to implementing

  1. SOUTHEAST REGIONAL CARBON SEQUESTRATION PARTNERSHP (SECARB)

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth J. Nemeth

    2005-04-01

    The Southeast Regional Carbon Sequestration Partnership (SECARB) is on schedule and within budget projections for the work completed during the first 18-months of its two year program. Work during the semiannual period (fifth and sixth project quarters) of the project (October 1, 2004-March 31, 2005) was conducted within a ''Task Responsibility Matrix.'' Under Task 1.0 Define Geographic Boundaries of the Region, no changes occurred during the fifth or sixth quarters of the project. Under Task 2.0 Characterize the Region, refinements have been made to the general mapping and screening of sources and sinks. Integration and geographical information systems (GIS) mapping is ongoing. Characterization during this period was focused on smaller areas having high sequestration potential. Under Task 3.0 Identify and Address Issues for Technology Deployment, SECARB continues to expand upon its assessment of safety, regulatory, permitting, and accounting frameworks within the region to allow for wide-scale deployment of promising terrestrial and geologic sequestration approaches. Under Task 4.0 Develop Public Involvement and Education Mechanisms, SECARB has used results of a survey and focus group meeting to refine approaches that are being taken to educate and involve the public. Under Task 5.0 Identify the Most Promising Capture, Sequestration, and Transport Options, SECARB has evaluated findings from work performed during the first 18-months. The focus of the project team has shifted from region-wide mapping and characterization to a more detailed screening approach designed to identify the most promising opportunities. Under Task 6.0 Prepare Action Plans for Implementation and Technology Validation Activity, the SECARB team is developing an integrated approach to implementing the most promising opportunities and in setting up measurement, monitoring and verification (MMV) programs for the most promising opportunities. Milestones completed during the

  2. Status and potential of terrestrial carbon sequestration in West Virginia

    Science.gov (United States)

    Benktesh D. Sharma; Jingxin. Wang

    2011-01-01

    Terrestrial ecosystem management offers cost-effective ways to enhance carbon (C) sequestration. This study utilized C stock and C sequestration in forest and agricultural lands, abandoned mine lands, and harvested wood products to estimate the net current annual C sequestration in West Virginia. Several management options within these components were simulated using a...

  3. Site Development, Operations, and Closure Plan Topical Report 5 An Assessment of Geologic Carbon Sequestration Options in the Illinois Basin. Phase III

    Energy Technology Data Exchange (ETDEWEB)

    Finley, Robert [Univ. of Illinois, Champaign, IL (United States); Payne, William [Schlumberger Carbon Services, Houston, TX (United States); Kirksey, Jim [Univ. of Illinois, Champaign, IL (United States)

    2015-06-01

    The Midwest Geological Sequestration Consortium (MGSC) has partnered with Archer Daniels Midland Company (ADM) and Schlumberger Carbon Services to conduct a large-volume, saline reservoir storage project at ADM’s agricultural products processing complex in Decatur, Illinois. The Development Phase project, named the Illinois Basin Decatur Project (IBDP) involves the injection of 1 million tonnes of carbon dioxide (CO2) into a deep saline formation of the Illinois Basin over a three-year period. This report focuses on objectives, execution, and lessons learned/unanticipated results from the site development (relating specifically to surface equipment), operations, and the site closure plan.

  4. Risk-prone individuals prefer the wrong options on a rat version of the Iowa Gambling Task.

    Science.gov (United States)

    Rivalan, Marion; Ahmed, Serge H; Dellu-Hagedorn, Françoise

    2009-10-15

    Decision making in complex and conflicting situations, as measured in the widely used Iowa Gambling Task (IGT), can be profoundly impaired in psychiatric disorders, such as attention-deficit/hyperactivity disorder, drug addiction, and also in healthy individuals for whom immediate gratification prevails over long-term gain. The cognitive processes underlying these deficits are poorly understood, in part due to a lack of suitable animal models assessing complex decision making with good construct validity. We developed a rat gambling task analogous to the IGT that tracks, for the first time, the ongoing decision process within a single session in an operant cage. Rats could choose between various options. Disadvantageous options, as opposed to advantageous ones, offered bigger immediate food reward but were followed by longer, unpredictable penalties (time-out). The majority of rats can evaluate and deduce favorable options more or less rapidly according to task complexity, whereas others systematically choose disadvantageously. These interindividual differences are stable over time and do not depend on task difficulty or on the level of food restriction. We find that poor decision making does not result from a failure to acquire relevant information but from hypersensitivity to reward and higher risk taking in anxiogenic situations. These results suggest that rats, as well as human poor performers, share similar traits to those observed in decision-making related psychiatric disorders. These traits could constitute risk factors of developing such disorders. The rapid identification of poor decision makers using the rat gambling task should promote the discovery of the specific brain dysfunctions that cause maladapted decision making.

  5. Ecologic assessment of closure options for Savannah River Plant waste sites: Task 38, AX-681812

    International Nuclear Information System (INIS)

    1987-01-01

    Ecologic assessment of closure options is one of several analyses being documented in the EIDs (along with analysis of relative potential health risks, accident risks, and costs). This information will serve as a basis for choosing the best option for closing a particular waste facility. This report presents the methodology adopted for SRP waste site ecological assessment, and the results of its application. The results of the ecologic assessment indicated that no impacts are expected for any of the closure options at eleven sites. Significant ecologic impacts are possible at the eight waste sites or groups of waste sites including the Radioactive Waste Burial Grounds, Old TNX Seepage Basin, CMP Pits, F-Area Seepage Basins, H-Area Seepage Basins, SRL Seepage Basins, R-Reactor Seepage Basins, and L-Area Oil and Chemical Basin. 104 refs., 22 figs., 241 tabs

  6. Carbon Issues Task Force Report for the Idaho Strategic Energy Alliance

    Energy Technology Data Exchange (ETDEWEB)

    Travis L. Mcling

    2010-10-01

    The Carbon Issues Task Force has the responsibility to evaluate emissions reduction and carbon offset credit options, geologic carbon sequestration and carbon capture, terrestrial carbon sequestration on forest lands, and terrestrial carbon sequestration on agricultural lands. They have worked diligently to identify ways in which Idaho can position itself to benefit from potential carbon-related federal legislation, including identifying opportunities for Idaho to engage in carbon sequestration efforts, barriers to development of these options, and ways in which these barriers can be overcome. These are the experts to which we will turn when faced with federal greenhouse gas-related legislation and how we should best react to protect and provide for Idaho’s interests. Note that the conclusions and recommended options in this report are not intended to be exhaustive, but rather form a starting point for an informed dialogue regarding the way-forward in developing Idaho energy resources.

  7. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Bert R. Bock; Richard G. Rhudy; David E. Nichols

    2001-07-01

    In order to plan for potential CO{sub 2} mitigation mandates, utilities need better information on CO{sub 2} mitigation options, especially carbon sequestration options that involve non-utility operations. One of the major difficulties in evaluating CO{sub 2} sequestration technologies and practices, both geologic storage of captured CO{sub 2} and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This project is comparing the economics of major technologies and practices under development for CO{sub 2} sequestration, including captured CO{sub 2} storage options such as active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of biological sinks such as forests and croplands. An international group of experts has been assembled to compare on a consistent basis the economics of this diverse array of CO{sub 2} sequestration options. Designs and data collection are nearly complete for each of the CO{sub 2} sequestration options being compared. Initial spreadsheet development has begun on concepts involving storage of captured CO{sub 2}. No significant problems have been encountered, but some additional outside expertise will be accessed to supplement the team's expertise in the areas of life cycle analysis, oil and gas exploration and production, and comparing CO{sub 2} sequestration options that differ in timing and permanence of CO{sub 2} sequestration. Plans for the next reporting period are to complete data collection and a first approximation of the spreadsheet. We expect to complete this project on time and on budget.

  8. Advanced Heat Exchanger for Combustion/Gasification Task 3; Development of Ammonia Removal Options

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Magnus; Espenaes, Bengt-Goeran [TPS Termiska Processer AB, Studsvik (Sweden)

    2003-03-01

    The report contains two parts. The first part is a review on the different ammonia removal options that can be considered in gasification of solid fuels. Issues discussed are the formation of nitrogen compounds in the gasifier and measures that can be taken to reduce the formation of such compounds, gas cleaning options at high temperature, low temperature cleaning and low NO{sub x} combustion in turbine applications. The second part presents experimental work on the kinetics of decomposition of ammonia by two nickel catalysts in a simulated fuel gas. The conditions used for the most thoroughly investigated catalyst included concentrations of H{sub 2}S from 22 ppm to 800 ppm, temperature from 76 deg C to 950 deg C, and total pressure at 1, 4 and 20 bar. The influence from H{sub 2}S on the reaction rate of ammonia at atmospheric pressure was found to be qualitatively different at low and at high concentrations of sulphur. The activity decreased at increase of the H{sub 2}S concentration up to about 200 ppm. A minimum of activity was obtained at about 200-300 ppm H{sub 2}S, and the activity increased again at further increase of the H{sub 2}S content. A more detailed investigation was performed for the low concentration range up to about 200 ppm at 1 and at 4 bar. The deactivation by H{sub 2}S is only partly reversible, and the activity that is attained when H{sub 2}S is removed depends strongly on which maximum concentration the catalyst has been exposed to. The nickel catalyst was found to convert ammonia in a raw fuel gas containing about 70 ppm H{sub 2}S at nearly the same rate as would be expected from the experimental data for the synthetic gas mixtures. Thus, there is not any important retarding effect from competition with the reactions that convert tar components and hydrocarbons simultaneously. The reaction rate of NH{sub 3} was compared to the reaction rate of methane found in a previous work, using the same catalyst. It was concluded that the size of a

  9. Annex 34 : task 1 : analysis of biodiesel options : biomass-derived diesel fuels : final report

    Energy Technology Data Exchange (ETDEWEB)

    McGill, R [Oak Ridge National Laboratory, TN (United States); Aakko-Saksa, P; Nylund, N O [TransEnergy Consulting Ltd., Helsinki (Finland)

    2009-06-15

    Biofuels are derived from woody biomass, non-woody biomass, and organic wastes. The properties of vegetable oil feedstocks can have profound effects on the properties of the finished biodiesel product. However, all biodiesel fuels have beneficial effects on engine emissions. This report discussed the use of biodiesel fuels as replacements for part of the diesel fuel consumed throughout the world. Biodiesel fuels currently being produced from fatty acid esters today were reviewed, as well as some of the more advanced diesel replacement fuels. The report was produced as part of the International Energy Agency (IEA) Advanced Motor Fuels (AMF) Implementing Agreement Annex 34, and was divided into 14 sections: (1) an introduction, (2) biodiesel and biomass, (3) an explanation of biodiesel, (4) properties of finished biodiesel fuels, (5) exhaust emissions of finished biodiesel fuels and blends, (6) life-cycle emissions and energy, (7) international biodiesel (FAME) technical standards and specifications, (8) growth in production and use of biodiesel fuels, (9) biofuel refineries, (10) process technology, (11) development and status of biorefineries, (12) comparison of options to produce biobased diesel fuels, (13) barriers and gaps in knowledge, and (14) references. 113 refs., 37 tabs., 74 figs.

  10. CO2 sequestration

    International Nuclear Information System (INIS)

    Favre, E.; Jammes, L.; Guyot, F.; Prinzhofer, A.; Le Thiez, P.

    2009-01-01

    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO 2 sequestration. Five papers are reviewed: problems and solutions for the CO 2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO 2 ; CO 2 sequestration in volcanic and ultra-basic rocks; CO 2 sequestration, transport and geological storage: scientific and economical perspectives

  11. Civilian Joint Task Force’ (CJTF – A Community Security Option: A Comprehensive and Proactive Approach of Reducing Terrorism

    Directory of Open Access Journals (Sweden)

    Oluwaseun Bamidele

    2016-06-01

    Full Text Available Since the Boko Haram uprising in 2009, the Nigerian government has employed various strategies as counter-terrorism measures to stem the atrocities of the group. These strategies include amnesty negotiations, implementation of emergency law in the northeast, increase in security spending to the deployment of military force. In the midst of these security measures, the civilian Joint Task Force (JTF emerged, first as a community effort, and later as a joint effort with the security forces to help fight Boko Haram. The civilian JTF has helped recover towns and villages from Boko Haram, rescued women in the northeast and helped identify Boko Haram members shielded by some local people. Although doubts have been expressed in some quatres that the civilian JTF could transform into ethnic militias, the Boko Haram security threat neutralized by the group indicates an untapped security potential in Nigerian communities. However, one approach that has yet to be pursued is community security option. Community security option is a model built around proactive citizen-driven communal response. This article explains the role of civilian JTF and how civilian JTF can be used to investigate terrorism in Nigeria. This article will contribute to the discourse on the imperative of African-inspired mechanisms to solving African security problems.

  12. Carbon sequestration and natural longleaf pine ecosystems

    Science.gov (United States)

    Ralph S. Meldahl; John S. Kush

    2006-01-01

    A fire-maintained longleaf pine (Pinus palustris Mill.) ecosystem may offer the best option for carbon (C) sequestration among the southern pines. Longleaf is the longest living of the southern pines, and products from longleaf pine will sequester C longer than most since they are likely to be solid wood products such as structural lumber and poles....

  13. Management options for food production systems affected by a nuclear accident. Task 2 options for minimising the production of contaminated milk

    CERN Document Server

    Smith, J G; Mercer, J A; Nisbet, A F; Wilkins, B T

    2002-01-01

    This report describes an evaluation of three possible means by which the production of waste milk could be reduced following a nuclear accident. The three options studied are the reduction of contaminated pasture in the diet, the drying off of lactating dairy cattle and the slaughter of dairy cattle. The practicability of each of these is considered using criteria such as technical feasibility, capacity, cost, impact and acceptability, where appropriate. In theory reductions in waste milk arisings can be achieved with each option, however, there are a number of limitations associated with their practical application.

  14. Management options for food production systems affected by a nuclear accident. Task 2: options for minimising the production of contaminated milk

    International Nuclear Information System (INIS)

    Smith, J.G.; Nisbet, A.F.; Mercer, J.A.; Brown, J.; Wilkins, B.T.

    2002-01-01

    This report describes an evaluation of three possible means by which the production of waste milk could be reduced following a nuclear accident. The three options studied are the reduction of contaminated pasture in the diet, the drying off of lactating dairy cattle and the slaughter of dairy cattle. The practicability of each of these is considered using criteria such as technical feasibility, capacity, cost, impact and acceptability, where appropriate. In theory reductions in waste milk arisings can be achieved with each option, however, there are a number of limitations associated with their practical application. (author)

  15. Making carbon sequestration a paying proposition

    Science.gov (United States)

    Han, Fengxiang X.; Lindner, Jeff S.; Wang, Chuji

    2007-03-01

    Atmospheric carbon dioxide (CO2) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO2 emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO2 requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO2 is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO2 hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO2 loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of 11.1-13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration options

  16. Federal Control of Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Reitze, Arnold W. [Univ. of Utah, Salt Lake City, UT (United States)

    2011-04-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  17. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is

  18. Management options for food production systems affected by a nuclear accident. Task 6: landspreading as a waste disposal option for contaminated milk

    International Nuclear Information System (INIS)

    Marchant, J.K.; Nisbet, A.F.

    2002-01-01

    In the event of a nuclear accident, there may be significant quantities of agricultural produce that are contaminated with radionuclides and require disposal. The disposal of milk would be of particular concern, since the quantities of milk classed as waste could be substantial and extensive environmental damage could be caused if this was not disposed of appropriately. As part of contingency planning for potential nuclear accidents, the identification of practicable options for disposal of contaminated milk is therefore important. One of the potential options is disposal by landspreading. This report sets out the current legal position of the landspreading of contaminated milk on farmland, provides information on the current extent of landspreading by farmers and assesses the practicability of landspreading contaminated milk according to the following criteria: technical feasibility, capacity, cost, environmental impact, radiological impact and acceptability. Milk contaminated with radionuclides could be defined as a radioactive waste or an agricultural waste. If it were defined as a radioactive waste it would require disposal under the Radioactive Substances Act 1993. Decisions concerning the definition of contaminated milk area matter for the relevant government departments. In this report it was assumed that the milk would be defined as an agricultural waste. The Code of Good Agricultural Practice for the Protection of Water provides farmers with practical guidance for avoiding water pollution and the Code of Good Agricultural Practice for the Protection of Air provides them with practical guidance for avoiding air pollution. Farmers should follow both of these codes when landspreading milk. According to the Animal By-products Order, 1999 milk contaminated with radionuclides above the levels specified by the European Council at which marketing would be prohibited would constitute high risk material; landspreading would not then be permitted. This, however

  19. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES; SEMIANNUAL

    International Nuclear Information System (INIS)

    Bert R. Bock; Richard G. Rhudy; David E. Nichols

    2001-01-01

    In order to plan for potential CO(sub 2) mitigation mandates, utilities need better information on CO(sub 2) mitigation options, especially carbon sequestration options that involve non-utility operations. One of the major difficulties in evaluating CO(sub 2) sequestration technologies and practices, both geologic storage of captured CO(sub 2) and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This project is comparing the economics of major technologies and practices under development for CO(sub 2) sequestration, including captured CO(sub 2) storage options such as active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of biological sinks such as forests and croplands. An international group of experts has been assembled to compare on a consistent basis the economics of this diverse array of CO(sub 2) sequestration options. Designs and data collection are nearly complete for each of the CO(sub 2) sequestration options being compared. Initial spreadsheet development has begun on concepts involving storage of captured CO(sub 2). No significant problems have been encountered, but some additional outside expertise will be accessed to supplement the team's expertise in the areas of life cycle analysis, oil and gas exploration and production, and comparing CO(sub 2) sequestration options that differ in timing and permanence of CO(sub 2) sequestration. Plans for the next reporting period are to complete data collection and a first approximation of the spreadsheet. We expect to complete this project on time and on budget

  20. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  1. Biochar production for carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Thakkar, J.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This study examined the use of agricultural biomass for biochar production and its storage in a landfill to sequester carbon. Capturing the energy from biomass that would otherwise decay, is among the many options available to mitigate the impact of the greenhouse gas (GHG) emissions associated with fossil fuel consumption. Biochar is a solid fuel which can be produced from agricultural biomass such as wheat and barley straw. This organic solid can be produced by slow pyrolysis of straw. A conceptual techno-economic model based on actual data was used to estimate the cost of producing biochar from straw in a centralized plant. The objectives of the study were to estimate the overall delivered cost of straw to the charcoal production plant; estimate the transportation costs of charcoal to the landfill site; estimate the cost of landfill; and estimate the overall cost of carbon sequestration through a charcoal landfill. According to preliminary results, the cost of carbon sequestration through this pathway is greater than $50 per tonne of carbon dioxide.

  2. Management options for food production systems affected by a nuclear accident. Task 5: disposal of waste milk to sea

    International Nuclear Information System (INIS)

    Wilkins, B.; Woodman, R.; Nisbet, A.; Mansfield, P.

    2001-11-01

    In emergency exercises, discharge to sea is often put forward as a disposal option for waste milk, the intention being to use the outfalls for coolant water or liquid effluent at nuclear installations. However, so far the legislative constraints and the practical and scientific limitations of this option have not been fully considered. This report sets out the current legal position and evaluates the practicability of transporting milk from an affected farm to a suitable coastal facility for disposal. The effect of discharging milk into coastal water bodies has also been considered, bearing in mind that after a serious accident disposals could continue for several weeks

  3. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification

  4. Southwest Regional Partnership on Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson

    2006-03-31

    The Southwest Partnership on Carbon Sequestration completed its Phase I program in December 2005. The main objective of the Southwest Partnership Phase I project was to evaluate and demonstrate the means for achieving an 18% reduction in carbon intensity by 2012. Many other goals were accomplished on the way to this objective, including (1) analysis of CO{sub 2} storage options in the region, including characterization of storage capacities and transportation options, (2) analysis and summary of CO{sub 2} sources, (3) analysis and summary of CO{sub 2} separation and capture technologies employed in the region, (4) evaluation and ranking of the most appropriate sequestration technologies for capture and storage of CO{sub 2} in the Southwest Region, (5) dissemination of existing regulatory/permitting requirements, and (6) assessing and initiating public knowledge and acceptance of possible sequestration approaches. Results of the Southwest Partnership's Phase I evaluation suggested that the most convenient and practical ''first opportunities'' for sequestration would lie along existing CO{sub 2} pipelines in the region. Action plans for six Phase II validation tests in the region were developed, with a portfolio that includes four geologic pilot tests distributed among Utah, New Mexico, and Texas. The Partnership will also conduct a regional terrestrial sequestration pilot program focusing on improved terrestrial MMV methods and reporting approaches specific for the Southwest region. The sixth and final validation test consists of a local-scale terrestrial pilot involving restoration of riparian lands for sequestration purposes. The validation test will use desalinated waters produced from one of the geologic pilot tests. The Southwest Regional Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. These partners

  5. RANGELAND SEQUESTRATION POTENTIAL ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Lee Spangler; George F. Vance; Gerald E. Schuman; Justin D. Derner

    2012-03-31

    Rangelands occupy approximately half of the world's land area and store greater than 10% of the terrestrial biomass carbon and up to 30% of the global soil organic carbon. Although soil carbon sequestration rates are generally low on rangelands in comparison to croplands, increases in terrestrial carbon in rangelands resulting from management can account for significant carbon sequestration given the magnitude of this land resource. Despite the significance rangelands can play in carbon sequestration, our understanding remains limited. Researchers conducted a literature review to identify sustainably management practices that conserve existing rangeland carbon pools, as well as increase or restore carbon sequestration potentials for this type of ecosystem. The research team also reviewed the impact of grazing management on rangeland carbon dynamics, which are not well understood due to heterogeneity in grassland types. The literature review on the impact of grazing showed a wide variation of results, ranging from positive to negative to no response. On further review, the intensity of grazing appears to be a major factor in controlling rangeland soil organic carbon dynamics. In 2003, researchers conducted field sampling to assess the effect of several drought years during the period 1993-2002. Results suggested that drought can significantly impact rangeland soil organic carbon (SOC) levels, and therefore, carbon sequestration. Resampling was conducted in 2006; results again suggested that climatic conditions may have overridden management effects on SOC due to the ecological lag of the severe drought of 2002. Analysis of grazing practices during this research effort suggested that there are beneficial effects of light grazing compared to heavy grazing and non-grazing with respect to increased SOC and nitrogen contents. In general, carbon storage in rangelands also increases with increased precipitation, although researchers identified threshold levels of

  6. Management options for food production systems affected by a nuclear accident. Task 7: biological treatment of contaminated milk

    International Nuclear Information System (INIS)

    Nisbet, A.F.; Marchant, J.K.; Woodman, R.F.M.; Wilkins, B.T.; Mercer, J.A.

    2003-01-01

    In the event of a nuclear accident affecting the UK, regulation of contamination in the foodchain would involve both the Food Standards Agency (FSA) and the Environment Agency (EA). Restrictions would be based on intervention levels imposed by the Council of the European Communities (often referred to as Council Food Intervention Levels, CFILs). FSA would be responsible for preventing commercial foodstuffs with concentrations of radionuclides above the CFILs from entering the foodchain, while EA would regulate the storage and disposal of the waste food. Milk is particularly important in this respect because it is produced continually in large quantities in many parts of the UK. An evaluation of various options for the management of waste foodstuffs has been carried out by NRPB, with support from FSA and its predecessor, the Ministry of Agriculture, Fisheries and Food, and EA. This report describes an evaluation of the practicability of one of those options, namely the biological treatment of contaminated milk. Whole milk has a high content of organic matter and in consequence a high biochemical oxygen demand (BOD) and chemical oxygen demand (COD). If not disposed of properly, releases of whole milk into the environment can have a substantial detrimental effect because of the high BOD. Biological treatments are therefore potentially an attractive management option because the fermentation by bacteria reduces the BOD in the resultant liquid effluent. The objectives of this study were as follows: a. To compile information about the options available for the biological treatment of milk; b. To establish the legal position; c. To assess practicability in terms of technical feasibility, capacity, cost, environmental and radiological impacts and acceptability; d. To assess the radiation doses that might be received by process operators, contractors, farmers and the general public from the biological treatment of contaminated milk. The radionuclides of interest were 131II

  7. Carbon sequestration via wood burial

    Directory of Open Access Journals (Sweden)

    Zeng Ning

    2008-01-01

    Full Text Available Abstract To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 ± 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1, followed by temperate (3.7 GtC y-1 and boreal forests (2.1 GtC y-1. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC, lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market.

  8. The role of reforestation in carbon sequestration

    Science.gov (United States)

    Nave, L. E.; Walters, B. F.; Hofmeister, K.; Perry, C. H.; Mishra, U.; Domke, G. M.; Swanston, C.

    2017-12-01

    In the United States (U.S.), the maintenance of forest cover is a legal mandate for federally managed forest lands. Reforestation is one option for maintaining forest cover on managed or disturbed lands, and as a land use change can increase forest cover on previously non-forested lands, enhancing carbon (C)-based ecosystem services and functions such as the production of woody biomass for forest products and the mitigation of atmospheric CO2 pollution and climate change. Nonetheless, multiple assessments indicate that reforestation in the U.S. lags behind its potential, with continued ecosystem services and functions at risk if reforestation is not increased. In this context, there is need for multiple independent analyses that quantify the role of reforestation in C sequestration. Here, we report the findings of a large-scale data synthesis aimed at four objectives: 1) estimate C storage in major pools in forest and other land cover types; 2) quantify sources of variation in C pools; 3) compare the impacts of reforestation and afforestation on C pools; 4) assess whether results hold or diverge across ecoregions. Our data-driven analysis provides four key inferences regarding reforestation and other land use impacts on C sequestration. First, soils are the dominant C pool under all land cover types in the U.S., and spatial variation in soil C pool sizes has less to do with land cover than with other factors. Second, where historically cultivated lands are being reforested, topsoils are sequestering significant amounts of C, with the majority of reforested lands yet to reach sequestration capacity (relative to forested baseline). Third, the establishment of woody vegetation delivers immediate to multi-decadal C sequestration benefits in biomass and coarse woody debris pools, with two- to three-fold C sequestration benefits during the first several decades following planting. Fourth, opportunities to enhance C sequestration through reforestation vary among

  9. Final report, Task 4: options for on-site management of Nuclear Fuel Services, Inc. high level waste

    International Nuclear Information System (INIS)

    1978-01-01

    Two on-site management options for handling the NFS high-level waste were analyzed: in-tank cement solidification and perpetual tank storage of the liquid waste. The cost of converting the 8D4 plus 8D2 waste to a cementitious solid, including mixing, grout preparation, and transfer to tank 8D1 would require $3,651,000; the cost of cooling the solidified solid for 15 years, plus the cost of filling the rest of the tank space and annulus with grout, plus the cost of minimum surveillance are $10,002,000. Modification of tank 8D2 would be required; prior to transfer of the waste, tank 8D1 would also be modified for cooling of the grout mass. Estimated costs of perpetual tank storage (replacing the existing neutralized waste tank after 10 years, then transferring contents at 50-y intervals for 1000 y, with replacement of ventilation system and auxiliaries at 30-y intervals) would require a sinking fund of $11,039,000. The acidic 8D4 waste would be transferred at 50-y intervals. The sinking fund requirements are sensitive to the difference between the interest rate and the escalation rate, and also to the time assumed from present to the first tank replacement

  10. International Collaboration on CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Peter H. Israelsson; E. Eric Adams

    2007-06-30

    On December 4, 1997, the US Department of Energy (USDOE), the New Energy and Industrial Technology Development Organization of Japan (NEDO), and the Norwegian Research Council (NRC) entered into a Project Agreement for International Collaboration on CO{sub 2} Ocean Sequestration. Government organizations from Japan, Canada, and Australia, and a Swiss/Swedish engineering firm later joined the agreement, which outlined a research strategy for ocean carbon sequestration via direct injection. The members agreed to an initial field experiment, with the hope that if the initial experiment was successful, there would be subsequent field evaluations of increasingly larger scale to evaluate environmental impacts of sequestration and the potential for commercialization. The evolution of the collaborative effort, the supporting research, and results for the International Collaboration on CO{sub 2} Ocean Sequestration were documented in almost 100 papers and reports, including 18 peer-reviewed journal articles, 46 papers, 28 reports, and 4 graduate theses. These efforts were summarized in our project report issued January 2005 and covering the period August 23, 1998-October 23, 2004. An accompanying CD contained electronic copies of all the papers and reports. This report focuses on results of a two-year sub-task to update an environmental assessment of acute marine impacts resulting from direct ocean sequestration. The approach is based on the work of Auerbach et al. [6] and Caulfield et al. [20] to assess mortality to zooplankton, but uses updated information concerning bioassays, an updated modeling approach and three modified injection scenarios: a point release of negatively buoyant solid CO{sub 2} hydrate particles from a moving ship; a long, bottom-mounted diffuser discharging buoyant liquid CO{sub 2} droplets; and a stationary point release of hydrate particles forming a sinking plume. Results suggest that in particular the first two discharge modes could be

  11. Southeast Regional Carbon Sequestration Partnership (SECARB)

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth J. Nemeth

    2005-09-30

    greenhouse gas intensity by 18 percent by 2012. A corollary to the first objective, this objective requires the development of a broad awareness across government, industry, and the general public of sequestration issues and establishment of the technological and legal frameworks necessary to achieve the President's goal. The information developed by the SECARB team will play a vital role in achieving the President's goal for the southeastern region of the United States. (3) Evaluating options and potential opportunities for regional CO{sub 2} sequestration. This requires characterization of the region regarding the presence and location of sources of greenhouse gases (GHGs), primarily CO{sub 2}, the presence and location of potential carbon sinks and geological parameters, geographical features and environmental concerns, demographics, state and interstate regulations, and existing infrastructure.

  12. Carbon sequestration leadership forum

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The Carbon Sequestration Leadership Forum (CSLF) is an international climate change initiative that will focus on development of carbon capture and storage technologies as a means of accomplishing long-term stabilisation of greenhouse gas levels in the atmosphere. This initiative is designed to improve these technologies through coordinated research and development with international partners and private industry. Three types of cooperation are currently envisioned within the framework of the Forum: data gathering, information exchange, and joint projects. Data gathered from participating countries will be aggregated, summarised, and distributed to all of the Forum's participants. Joint projects will be identified by member nations with the Forum serving as a mechanism for bringing together government and private sector representatives from member countries. The article also reports the inaugural meeting which was held 23-25 June 2003 in Washington.

  13. Bile acid sequestrants

    DEFF Research Database (Denmark)

    Hansen, Morten; Sonne, David P; Knop, Filip K

    2014-01-01

    Bile acids are synthesized in the liver from cholesterol and have traditionally been recognized for their role in absorption of lipids and in cholesterol homeostasis. In recent years, however, bile acids have emerged as metabolic signaling molecules that are involved in the regulation of lipid...... and glucose metabolism, and possibly energy homeostasis, through activation of the bile acid receptors farnesoid X receptor (FXR) and TGR5. Bile acid sequestrants (BASs) constitute a class of drugs that bind bile acids in the intestine to form a nonabsorbable complex resulting in interruption...... of the enterohepatic circulation. This increases bile acid synthesis and consequently reduces serum low-density lipoprotein cholesterol. Also, BASs improve glycemic control in patients with type 2 diabetes. Despite a growing understanding of the impact of BASs on glucose metabolism, the mechanisms behind their glucose...

  14. Environmental Externalities of Geological Carbon Sequestration Effects on Energy Scenarios

    International Nuclear Information System (INIS)

    Smekens, K.; Van der Zwaan, B.

    2004-03-01

    Geological carbon sequestration seems one of the promising options to address, in the near term, the global problem of climate change, since carbon sequestration technologies are in principle available today and their costs are expected to be affordable. Whereas extensive technological and economic feasibility studies rightly point out the large potential of this 'clean fossil fuel' option, relatively little attention has been paid so far to the detrimental environmental externalities that the sequestering of CO2 underground could entail. This paper assesses what the relevance might be of including these external effects in long-term energy planning and scenario analyses. Our main conclusion is that, while these effects are generally likely to be relatively small, carbon sequestration externalities do matter and influence the nature of future world energy supply and consumption. More importantly, since geological carbon storage (depending on the method employed) may in some cases have substantial external impacts, in terms of both environmental damage and health risks, it is recommended that extensive studies are performed to quantify these effects. This article addresses three main questions: (1) What may energy supply look like if one accounts for large-scale CO2 sequestration in the construction of long-term energy and climate change scenarios; (2) Suppose one hypothesizes a quantification of the external environmental costs of CO2 sequestration, how do then these supposed costs affect the evolution of the energy system during the 21st century; (3) Does it matter for these scenarios whether carbon sequestration damage costs are charged directly to consumers or, instead, to electricity producers?

  15. Cost evaluation of CO2 sequestration by aqueous mineral carbonation

    International Nuclear Information System (INIS)

    Huijgen, Wouter J.J.; Comans, Rob N.J.; Witkamp, Geert-Jan

    2007-01-01

    A cost evaluation of CO 2 sequestration by aqueous mineral carbonation has been made using either wollastonite (CaSiO 3 ) or steel slag as feedstock. First, the process was simulated to determine the properties of the streams as well as the power and heat consumption of the process equipment. Second, a basic design was made for the major process equipment, and total investment costs were estimated with the help of the publicly available literature and a factorial cost estimation method. Finally, the sequestration costs were determined on the basis of the depreciation of investments and variable and fixed operating costs. Estimated costs are 102 and 77 EUR/ton CO 2 net avoided for wollastonite and steel slag, respectively. For wollastonite, the major costs are associated with the feedstock and the electricity consumption for grinding and compression (54 and 26 EUR/ton CO 2 avoided, respectively). A sensitivity analysis showed that additional influential parameters in the sequestration costs include the liquid-to-solid ratio in the carbonation reactor and the possible value of the carbonated product. The sequestration costs for steel slag are significantly lower due to the absence of costs for the feedstock. Although various options for potential cost reduction have been identified, CO 2 sequestration by current aqueous carbonation processes seems expensive relative to other CO 2 storage technologies. The permanent and inherently safe sequestration of CO 2 by mineral carbonation may justify higher costs, but further cost reductions are required, particularly in view of (current) prices of CO 2 emission rights. Niche applications of mineral carbonation with a solid residue such as steel slag as feedstock and/or a useful carbonated product hold the best prospects for an economically feasible CO 2 sequestration process. (author)

  16. Quantifying carbon sequestration in forest plantations by modeling the dynamics of above and below ground carbon pools

    Science.gov (United States)

    Chris A. Maier; Kurt H. Johnsen

    2010-01-01

    Intensive pine plantation management may provide opportunities to increase carbon sequestration in the Southeastern United States. Developing management options that increase fiber production and soil carbon sequestration require an understanding of the biological and edaphic processes that control soil carbon turnover. Belowground carbon resides primarily in three...

  17. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-06-01

    The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for

  18. Carbon capture and sequestration (CCS)

    Science.gov (United States)

    2009-06-19

    Carbon capture and sequestration (or storage)known as CCShas attracted interest as a : measure for mitigating global climate change because large amounts of carbon dioxide (CO2) : emitted from fossil fuel use in the United States are potentiall...

  19. Bile acid sequestrants for cholesterol

    Science.gov (United States)

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  20. To Sequestrate or not to Sequestrate in View of the National Credit ...

    African Journals Online (AJOL)

    Keywords: Advantage of creditors; civil suit; compulsory sequestration; concursus creditorum; credit agreements; debt counsellor; debt enforcement; debt relief measures; debt restructuring; debt review; discretion of court; National Credit Act; NCA; reckless credit; Section 129 notice; sequestration; sequestration applications; ...

  1. Sequestration of CO2 in salt caverns

    International Nuclear Information System (INIS)

    Dusseault, M.B.; Rothenburg, L.; Bachu, S.

    2002-01-01

    The greenhouse effect is thought to be greatly affected by anthropogenic and naturally generated gases, such as carbon dioxide. The reduction of greenhouse gas emissions in the atmosphere could be effected through the permanent storage of carbon dioxide in dissolved salt caverns. A large number of suitable salt deposits are located in Alberta, especially the Lotsberg Salt of east-central Alberta. A major advantage of this deposit is its proximity to present and future point sources of carbon dioxide associated with fossil fuel development projects. Using the perspective of the long term fate of the stored carbon dioxide, the authors presented the characteristics of the Lotsberg Salt and the overlying strata. A high level of security against leakage and migration of the gas back to the biosphere is ensured by several features discussed in the paper. The authors propose a procedure that would be applicable for the creation, testing, and filling of a salt cavern. Achieving a long term prediction of the behavior of the cavern during slow closure, coupled to the pressure and volume behavior of the gas within the cavern represents the critical factor. The authors came up with an acceptable prediction by using a semi-analytical model. The use of salt caverns for the permanent sequestration of carbon dioxide has not yet faced technical obstacles that would prevent it. The authors argue that sequestration of carbon dioxide in salt caverns represents an environmentally acceptable option in Alberta. 11 refs., 3 figs

  2. An economic evaluation of carbon emission and carbon sequestration for the forestry sector in Malaysia

    International Nuclear Information System (INIS)

    Ismail, R.

    1995-01-01

    Forestry is an important sector in Malaysia. The long term development of the forestry sector will definitely affect the future amounts of carbon sequestration and emission of the country. This paper evaluates various forestry economic options that contribute to the reduction of carbon dioxide in the atmosphere. The analysis shows that, although forest plantation could sequester the highest amount of carbon per unit area, natural forests which are managed for sustainable timber production are the cheapest option for per-unit area carbon sequestrated. In evaluating forest options to address the issues of carbon sequestration and emission, the paper proposes that it should be assessed as an integral part of overall long term forestry development of the country which takes into account the future demands for forestry goods and services, financial resources, technology and human resource development. (Author)

  3. Model-Based Extracted Water Desalination System for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Dees, Elizabeth M. [General Electric Global Research Center, Niskayuna, NY (United States); Moore, David Roger [General Electric Global Research Center, Niskayuna, NY (United States); Li, Li [Pennsylvania State Univ., University Park, PA (United States); Kumar, Manish [Pennsylvania State Univ., University Park, PA (United States)

    2017-05-28

    Over the last 1.5 years, GE Global Research and Pennsylvania State University defined a model-based, scalable, and multi-stage extracted water desalination system that yields clean water, concentrated brine, and, optionally, salt. The team explored saline brines that ranged across the expected range for extracted water for carbon sequestration reservoirs (40,000 up to 220,000 ppm total dissolved solids, TDS). In addition, the validated the system performance at pilot scale with field-sourced water using GE’s pre-pilot and lab facilities. This project encompassed four principal tasks, in addition to Project Management and Planning: 1) identify a deep saline formation carbon sequestration site and a partner that are suitable for supplying extracted water; 2) conduct a techno-economic assessment and down-selection of pre-treatment and desalination technologies to identify a cost-effective system for extracted water recovery; 3) validate the downselected processes at the lab/pre-pilot scale; and 4) define the scope of the pilot desalination project. Highlights from each task are described below: Deep saline formation characterization The deep saline formations associated with the five DOE NETL 1260 Phase 1 projects were characterized with respect to their mineralogy and formation water composition. Sources of high TDS feed water other than extracted water were explored for high TDS desalination applications, including unconventional oil and gas and seawater reverse osmosis concentrate. Technoeconomic analysis of desalination technologies Techno-economic evaluations of alternate brine concentration technologies, including humidification-dehumidification (HDH), membrane distillation (MD), forward osmosis (FO), turboexpander-freeze, solvent extraction and high pressure reverse osmosis (HPRO), were conducted. These technologies were evaluated against conventional falling film-mechanical vapor recompression (FF-MVR) as a baseline desalination process. Furthermore, a

  4. Soil carbon sequestration and biochar as negative emission technologies.

    Science.gov (United States)

    Smith, Pete

    2016-03-01

    Despite 20 years of effort to curb emissions, greenhouse gas (GHG) emissions grew faster during the 2000s than in the 1990s, which presents a major challenge for meeting the international goal of limiting warming to deforestation, showed that all NETs have significant limits to implementation, including economic cost, energy requirements, land use, and water use. In this paper, I assess the potential for negative emissions from soil carbon sequestration and biochar addition to land, and also the potential global impacts on land use, water, nutrients, albedo, energy and cost. Results indicate that soil carbon sequestration and biochar have useful negative emission potential (each 0.7 GtCeq. yr(-1) ) and that they potentially have lower impact on land, water use, nutrients, albedo, energy requirement and cost, so have fewer disadvantages than many NETs. Limitations of soil carbon sequestration as a NET centre around issues of sink saturation and reversibility. Biochar could be implemented in combination with bioenergy with carbon capture and storage. Current integrated assessment models do not represent soil carbon sequestration or biochar. Given the negative emission potential of SCS and biochar and their potential advantages compared to other NETs, efforts should be made to include these options within IAMs, so that their potential can be explored further in comparison with other NETs for climate stabilization. © 2016 John Wiley & Sons Ltd.

  5. Energy options

    International Nuclear Information System (INIS)

    Hampton, Michael

    1999-01-01

    This chapter focuses on energy options as a means of managing exposure to energy prices. An intuitive approach to energy options is presented, and traditional definitions of call and put options are given. The relationship between options and swaps, option value and option exercises, commodity options, and option pricing are described. An end-user's guide to energy option strategy is outlined, and straight options, collars, participating swaps and collars, bull and bear spreads, and swaption are examined. Panels explaining the defining of basis risk, and discussing option pricing and the Greeks, delta hedging, managing oil options using the Black-Scholes model, caps, floors and collars, and guidelines on hedging versus speculation with options are included in the paper

  6. Algae-Based Carbon Sequestration

    Science.gov (United States)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  7. Potential and economics of CO2 sequestration

    International Nuclear Information System (INIS)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J.

    2001-01-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2 . Some techniques could be used to reduced CO 2 emission and stabilize atmospheric CO 2 concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO 2 emissions such as renewable or nuclear energy, iii) capture and store CO 2 from fossil fuels combustion, and enhance the natural sinks for CO 2 (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO 2 and to review the various options for CO 2 sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO 2 emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO 2 is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon-storing approach to agriculture, forests and land management could

  8. The economics of soil C sequestration

    Science.gov (United States)

    Alexander, P.; Paustian, K.; Smith, P.; Moran, D.

    2014-12-01

    Carbon is a critical component of soil vitality and of our ability to produce food. Carbon sequestered in soils also provides a further regulating ecosystem service, valued as the avoided damage from global climate change. We consider the demand and supply attributes that underpin and constrain the emergence of a market value for this vital global ecosystem service: markets being what economists regard as the most efficient institutions for allocating scarce resources to the supply and consumption of valuable goods. This paper considers how a potentially large global supply of soil carbon sequestration is reduced by economic and behavioural constraints that impinge on the emergence of markets, and alternative public policies that can efficiently transact demand for the service from private and public sector agents. In essence this is a case of significant market failure. In the design of alternative policy options we consider whether soil carbon mitigation is actually cost-effective relative to other measures in agriculture and elsewhere in the economy, and the nature of behavioural incentives that hinder policy options. We suggest that reducing cost and uncertainties of mitigation through soil-based measures is crucial for improving uptake. Monitoring and auditing processes will also be required to eventually facilitate wide-scale adoption of these measures.

  9. An equity assessment of introducing uncertain forest carbon sequestration in EU climate policy

    International Nuclear Information System (INIS)

    Münnich Vass, Miriam; Elofsson, Katarina; Gren, Ing-Marie

    2013-01-01

    Large emissions of greenhouse gases are expected to cause major environmental problems in the future. European policy makers have therefore declared that they aim to implement cost-efficient and fair policies to reduce carbon emissions. The purpose of this paper is to assess whether the cost of the EU policies for 2020 can be reduced through the inclusion of carbon sequestration as an abatement option while equity is also improved. The assessment is done by numerical calculations using a chance-constrained partial equilibrium model of the EU Emissions Trading Scheme and national effort-sharing targets, where forest sequestration is introduced as an uncertain abatement option. Fairness is evaluated by calculation of Gini-coefficients for six equity criteria to policy outcomes. The estimated Gini-coefficients range between 0.11 and 0.32 for the current policy, between 0.16 and 0.66 if sequestration is included and treated as certain, and between 0.19 and 0.38 when uncertainty about sequestration is taken into account and policy-makers wish to meet targets with at least 90 per cent probability. The results show that fairness is reduced when sequestration is included and that the impact is larger when sequestration is treated as certain. - Highlights: • We model EU's CO 2 emission reduction targets to 2020 for the 27 member states. • We assess the equity of including forest carbon sequestration in EU policy with six equity criteria. • A stochastic partial equilibrium model is used, in which abatement cost is minimised. • Current burden sharing within the EU is quite fair when compared with current income inequality. • The abatement cost is reduced and inequality increased when including sequestration

  10. Management options for implementing a basic and applied research program responsive to CS technology base needs. Task VIII. Review existing CS materials R and D programs

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-28

    Possibilities for setting up a basic and applied research program that would be responsive to the Conservation and Solar energy base needs are considered with emphasis on the area of materials research. Several organizational arrangements for the implementation of this basic and applied research program are described and analyzed. The key functions of the system such as resources allocation, and program coordination and management follow from two fundamental characteristics: assignment of lead responsibility (CS and the Office of Energy Research, ER); and nature of the organizational chain-of-command. Three options are categorized in terms of these two characteristics and discussed in detail. The first option retains lead responsibility in ER, with CS personnel exercising sign-off authority and filling the coordination role. Option 2 places lead responsibility with CS program office management, and utilizes the existing chain-of-command, but adds a Basic and Applied Research Division to each program office. Option 3 also places lead responsibility with CS, but within a new Office of Basic and Applied Research, which would include a Research Coordinator to manage interactions with ER, and Research Managers for each CS program area. (MCW)

  11. The United States Department of Energy's Regional Carbon Sequestration Partnerships Program Validation Phase.

    Science.gov (United States)

    Litynski, John T; Plasynski, Sean; McIlvried, Howard G; Mahoney, Christopher; Srivastava, Rameshwar D

    2008-01-01

    This paper reviews the Validation Phase (Phase II) of the Department of Energy's Regional Carbon Sequestration Partnerships initiative. In 2003, the U.S. Department of Energy created a nationwide network of seven Regional Carbon Sequestration Partnerships (RCSP) to help determine and implement the technology, infrastructure, and regulations most appropriate to promote carbon sequestration in different regions of the nation. The objectives of the Characterization Phase (Phase I) were to characterize the geologic and terrestrial opportunities for carbon sequestration; to identify CO(2) point sources within the territories of the individual partnerships; to assess the transportation infrastructure needed for future deployment; to evaluate CO(2) capture technologies for existing and future power plants; and to identify the most promising sequestration opportunities that would need to be validated through a series of field projects. The Characterization Phase was highly successful, with the following achievements: established a national network of companies and professionals working to support sequestration deployment; created regional and national carbon sequestration atlases for the United States and portions of Canada; evaluated available and developing technologies for the capture of CO(2) from point sources; developed an improved understanding of the permitting requirements that future sequestration activities will need to address as well as defined the gap in permitting requirements for large scale deployment of these technologies; created a raised awareness of, and support for, carbon sequestration as a greenhouse gas (GHG) mitigation option, both within industry and among the general public; identified the most promising carbon sequestration opportunities for future field tests; and established protocols for project implementation, accounting, and management. Economic evaluation was started and is continuing and will be a factor in project selection. During the

  12. Management options for food production systems affected by a nuclear accident. Task 3: diversion of crops grown for human consumption to animal feed

    International Nuclear Information System (INIS)

    Brown, J.; Wilkins, B.T.; Nisbet, A.F.

    2002-01-01

    This report forms part of a series describing a study to evaluate selected options for the management of food production systems affected by a nuclear accident. This report considers the scope for the redirection of contaminated foods grown for human consumption to animal feeds and addresses whether crops grown for human consumption can be used as animal feeds for animal production systems; what the likely impact on contamination levels in animal products is; whether amounts of waste food could be reduced in the event of a nuclear accident; and whether the option is acceptable to the farming industry, retail trade and consumers. The study identified that foods intended for human consumption can be used as animal feeds for beef cattle and sheep and, to a limited extent, for breeding sows but it is essential that a suitable nutritional balance is maintained. The scope to provide suitable alternative diets is, however, limited and is dependent upon the time of year at which the deposition occurs. If crops were contaminated at the relevant CFIL, not all of the alternative diets considered would result in animal products that were below the corresponding CFIL value, thus limiting any benefit in implementing the option. Except possibly in the most extreme of circumstances, this management option would not be considered acceptable by consumers or by the retail trade and farmers would only implement such a measure if there was a suitable market for the resultant produce. This work was undertaken under the Environmental Assessments Department and Emergency Response Group's Quality Management System, which has been approved by Lloyd's Register Quality Assurance to the Quality Management Standards ISO 9001:2000 and TickIT Guide Issue 5, certificate number 956546. (author)

  13. CO2 Sequestration short course

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald J. [Lawrence Berkeley National Laboratory; Cole, David R [The Ohio State University; Navrotsky, Alexandra [University of California-Davis; Bourg, Ian C [Lawrence Berkeley National Laboratory

    2014-12-08

    Given the public’s interest and concern over the impact of atmospheric greenhouse gases (GHGs) on global warming and related climate change patterns, the course is a timely discussion of the underlying geochemical and mineralogical processes associated with gas-water-mineral-interactions encountered during geological sequestration of CO2. The geochemical and mineralogical processes encountered in the subsurface during storage of CO2 will play an important role in facilitating the isolation of anthropogenic CO2 in the subsurface for thousands of years, thus moderating rapid increases in concentrations of atmospheric CO2 and mitigating global warming. Successful implementation of a variety of geological sequestration scenarios will be dependent on our ability to accurately predict, monitor and verify the behavior of CO2 in the subsurface. The course was proposed to and accepted by the Mineralogical Society of America (MSA) and The Geochemical Society (GS).

  14. Method for carbon dioxide sequestration

    Science.gov (United States)

    Wang, Yifeng; Bryan, Charles R.; Dewers, Thomas; Heath, Jason E.

    2017-12-05

    A method for geo-sequestration of a carbon dioxide includes selection of a target water-laden geological formation with low-permeability interbeds, providing an injection well into the formation and injecting supercritical carbon dioxide (SC-CO.sub.2) and water or bine into the injection well under conditions of temperature, pressure and density selected to cause the fluid to enter the formation and splinter and/or form immobilized ganglia within the formation.

  15. Carbon sequestration resulting from bottomland hardwood afforestation in the Lower Mississippi Alluvial Valley

    Science.gov (United States)

    Bertrand F. Nero; Richard P. Maiers; Janet C. Dewey; Andrew J. Londo

    2010-01-01

    Increasing abandonment of marginal agricultural lands in the Lower Mississippi Alluvial Valley (LMAV) and rising global atmospheric carbon dioxide (CO2) levels create a need for better options of achieving rapid afforestation and enhancing both below and aboveground carbon sequestration. This study examines the responses of six mixtures of bottomland hardwood species...

  16. Mechanisms of Soil Carbon Sequestration

    Science.gov (United States)

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough

  17. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan Capalbo

    2005-12-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated

  18. The impact of carbon sequestration on the production cost of electricity and hydrogen from coal and natural-gas technologies in Europe in the medium term

    International Nuclear Information System (INIS)

    Tzimas, Evangelos; Peteves, Stathis D.

    2005-01-01

    Carbon sequestration is a distinct technological option with a potential for controlling carbon emissions; it complements other measures, such as improvements in energy efficiency and utilization of renewable energy sources. The deployment of carbon sequestration technologies in electricity generation and hydrogen production will increase the production costs of these energy carriers. Our economic assessment has shown that the introduction of carbon sequestration technologies in Europe in 2020, will result in an increase in the production cost of electricity by coal and natural gas technologies of 30-55% depending on the electricity-generation technology used; gas turbines will remain the most competitive option for generating electricity; and integrated gasification combined cycle technology will become competitive. When carbon sequestration is coupled with natural-gas steam reforming or coal gasification for hydrogen production, the production cost of hydrogen will increase by 14-16%. Furthermore, natural-gas steam reforming with carbon sequestration is far more economically competitive than coal gasification

  19. Rehabilitation Options

    Science.gov (United States)

    ... Speech Pathology Occupational Therapy Art Therapy Recreational therapy Neuropsychology Home Care Options Advanced Care Planning Palliative Care ... Speech Pathology Occupational Therapy Art Therapy Recreational therapy Neuropsychology Home Care Options Advanced Care Planning Palliative Care ...

  20. Carbon sequestration R&D overview

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Justine [Office of Fossil Energy, U.S. Department of Energy (United States)

    2008-07-15

    In this presentation the author discusses over the technological options for the handling of carbon. He shows the objectives and challenges of the program of carbon sequestration of the Department of Energy of the United States, as well as a table with the annual CO{sub 2} emissions in the United States; a graph with the world-wide capacity of CO{sub 2} geologic storage and a listing with the existing projects of CCS at the moment in the world. [Spanish] En esta presentacion el autor platica sobre las opciones tecnologicas para el manejo del carbono. Muestra los objetivos y retos del programa de secuestro de carbono del Departamento de Energia de los Estados Unidos, asi como una tabla con las emisiones anuales de CO{sub 2} en los Estados Unidos; un grafico con la capacidad mundial de almacenamiento de CO{sub 2} en el subsuelo y un listado con los proyectos de CCS existentes actualmente en el mundo.

  1. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  2. Carbon sequestration in the agroecosystem

    Directory of Open Access Journals (Sweden)

    Tomáš Středa

    2008-01-01

    Full Text Available Reduction of amount CO2 is possible by carbon sequestration to the soil. Fixation potential of EU–15 agricultural land is c. 16–19 mil t C . year−1. Amount and composition of post–harvest residues is essential for carbon soil sequestration. Long–term yield series of the most planted crops (winter wheat – Triticum aestivum, spring barley – Hordeum vulgare, corn and silage maize – Zea mays, winter rape – Brassica napus, potatoes – Solanum tuberosum, sugar beet – Beta vulgaris, alfalfa – Medicago sativa, red clover – Trifolium pratense, white mustard – Sinapis alba and fiddleneck – Phacelia tanacetifolia in various agroecological conditions and growing technologies were used for carbon balance calculation. The carbon balances were calculated for main crop rotations of maize, sugar beet, cereal and potato production regions (24 crop rotations. The calculations were realized for following planting varieties: traditional, commercial, ecological and with higher rate of winter rape. All chosen crop rotations (except seven have positive carbon balance in the tillage system. Amount of fixed carbon might be increases about 30% by the use of no–tillage system. Least amount of carbon is fixed by potatoes, high amount by cereals, alfalfa and sugar beet. For a short time (months the crops sequestration of carbon is relatively high (to 4.4 t . ha−1 . year−1 or to 5.7 t . ha−1 . year−1 for no–tillage system. From the long time viewpoint (tens of years the data of humified carbon in arable soil (max 400 kg C . ha−1 . year−1 are important. Maximal carbon deficit of chosen crop rotation is 725 kg C . year−1.

  3. Carbon sequestration via wood harvest and storage: An assessment of its harvest potential

    DEFF Research Database (Denmark)

    Zeng, Ning; King, Anthony W.; Zaitchik, Ben

    2013-01-01

    A carbon sequestration strategy has recently been proposed in which a forest is actively managed, and a fraction of the wood is selectively harvested and stored to prevent decomposition. The forest serves as a ‘carbon scrubber’ or ‘carbon remover’ that provides continuous sequestration (negative ...... to be managed this way on half of the world’s forested land, or on a smaller area but with higher harvest intensity.We recommendWHS be considered part of the portfolio of climate mitigation and adaptation options that needs further research....

  4. Hurricane impacts on US forest carbon sequestration

    Science.gov (United States)

    Steven G. McNulty

    2002-01-01

    Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US Forest carbon sequestration average approximately 20 Tg (i.e. 1012 g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes...

  5. Safe and quick carbon sequestration

    International Nuclear Information System (INIS)

    Tiano, M.

    2016-01-01

    Geological sequestration of carbon dioxyde is considered as an important tool to fight global warming but long term safety is an essential issue due to the risk of accidental leakages. The CarbFix experimentation has shown the possibility to turn hundreds tons of CO 2 into inert carbonated rocks in less than 2 years. This CO 2 injection took place in basaltic rocks. Basaltic rocks allows an adequate diffusion of the gas because of its porosity and favors the acido-base chemical reaction that turns CO 2 into inert and stable carbonates. This experiment was performed with CO 2 dissolved in water in order to limit leaks, basaltic layers being naturally cracked, and to accelerate the formation of carbonates by dissolving the metal ions coming from the rocks. The important quantity of water required for this technique, limits its use to coastal sites. (A.C.)

  6. Payments for carbon sequestration to alleviate development pressure in a rapidly urbanizing region

    Science.gov (United States)

    Smith, Jordan W.; Dorning, Monica; Shoemaker, Douglas A.; Méley, Andréanne; Dupey, Lauren; Meentemeyer, Ross K.

    2017-01-01

    The purpose of this study was to determine individuals' willingness to enroll in voluntary payments for carbon sequestration programs through the use of a discrete choice experiment delivered to forest owners living in the rapidly urbanizing region surrounding Charlotte, North Carolina. We examined forest owners' willingness to enroll in payments for carbon sequestration policies under different levels of financial incentives (annual revenue), different contract lengths, and different program administrators (e.g., private companies versus a state or federal agency). We also examined the influence forest owners' sense of place had on their willingness to enroll in hypothetical programs. Our results showed a high level of ambivalence toward participating in payments for carbon sequestration programs. However, both financial incentives and contract lengths significantly influenced forest owners' intent to enroll. Neither program administration nor forest owners' sense of place influenced intent to enroll. Although our analyses indicated that payments from carbon sequestration programs are not currently competitive with the monetary returns expected from timber harvest or property sales, certain forest owners might see payments for carbon sequestration programs as a viable option for offsetting increasing tax costs as development encroaches and property values rise.

  7. Forest management and carbon sequestration in the Mediterranean region: A review

    International Nuclear Information System (INIS)

    Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Bravo, F.; Río, M. Del

    2017-01-01

    Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area. Material and methods: We review the main effects of forest management by comparing the effects of silviculture systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems), silvicultural options (thinning, rotation period, species composition), afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area. Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change. Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change

  8. Forest management and carbon sequestration in the Mediterranean region: A review

    Directory of Open Access Journals (Sweden)

    Ricardo Ruiz-Peinado

    2017-10-01

    Full Text Available Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area. Material and methods: We review the main effects of forest management by comparing the effects of silvicultural systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems, silvicultural options (thinning, rotation period, species composition, afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area. Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change. Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change

  9. Forest management and carbon sequestration in the Mediterranean region: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Bravo, F.; Río, M. Del

    2017-11-01

    Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area. Material and methods: We review the main effects of forest management by comparing the effects of silviculture systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems), silvicultural options (thinning, rotation period, species composition), afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area. Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change. Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change.

  10. Monitoring and economic factors affecting the economic viability of afforestation for carbon sequestration projects

    International Nuclear Information System (INIS)

    Robertson, Kimberly; Loza-Balbuena, Isabel; Ford-Robertson, Justin

    2004-01-01

    The Kyoto Protocol is the first step towards achieving the objectives of the United Nations Framework Convention on Climate Change and aims among others to promote 'the protection and enhancement of carbon sinks and reservoirs'. To encourage afforestation for carbon sequestration a project must be economically viable. This study uses a model to analyse the impact on project viability of a range of carbon monitoring options, international carbon credit value and discount rate, applied to a Pinus radiata afforestation project in New Zealand. Monitoring carbon in conjunction with conventional forest inventory shows the highest return. Long-term average carbon accounting has lower accounting costs, compared to annual and 5 yearly accounting, as monitoring is only required every 5-10 years until the long-term average is attained. In this study we conclude that monitoring soil carbon stocks is not economically feasible using any of the accounting methods, when carbon is valued at US$ 10/t. This conclusion may be relevant to forest carbon sequestration projects elsewhere in the world and suggests care is needed in selecting the appropriate carbon monitoring options to avoid the risk that costs could be higher than any monetary benefits from terrestrial carbon sequestration. This would remove any commercial incentive to afforest for carbon sequestration reasons and severely limit the use of forest sinks as part of any package of measures addressing the ultimate objective of the UNFCCC

  11. Budget Options

    National Research Council Canada - National Science Library

    2000-01-01

    This volume-part of the Congressional Budget Office's (CBO's) annual report to the House and Senate Committees on the Budget-is intended to help inform policymakers about options for the federal budget...

  12. Studies on enhancing carbon sequestration in soils

    International Nuclear Information System (INIS)

    Marland, G.; Garten, C.T.; Post, W.M.; West, T.O.

    2004-01-01

    Studies of carbon and nitrogen dynamics in ecosystems are leading to an understanding of the factors and mechanisms that affect the inputs to and outputs from soils and how these might be manipulated to enhance C sequestration. Both the quantity and the quality of soil C inputs influence C storage and the potential for C sequestration. Changes in tillage intensity and crop rotations can also affect C sequestration by changing the soil physical and biological conditions and by changing the amounts and types of organic inputs to the soil. Analyses of changes in soil C and N balances are being supplemented with studies of the management practices needed to manage soil carbon and the implications for fossil-fuel use, emission of other greenhouse gases (such as N 2 O and CH 4 ), and impacts on agricultural productivity. The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE) was created in 1999 to perform fundamental research that will lead to methods to enhance C sequestration as one component of a C management strategy. Research to date at one member of this consortium, Oak Ridge National Laboratory, has focused on C sequestration in soils and we begin here to draw together some of the results

  13. Shallow Carbon Sequestration Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Pendergrass, Gary; Fraley, David; Alter, William; Bodenhamer, Steven

    2013-09-30

    The potential for carbon sequestration at relatively shallow depths was investigated at four power plant sites in Missouri. Exploratory boreholes were cored through the Davis Shale confining layer into the St. Francois aquifer (Lamotte Sandstone and Bonneterre Formation). Precambrian basement contact ranged from 654.4 meters at the John Twitty Energy Center in Southwest Missouri to over 1100 meters near the Sioux Power Plant in St. Charles County. Investigations at the John Twitty Energy Center included 3D seismic reflection surveys, downhole geophysical logging and pressure testing, and laboratory analysis of rock core and water samples. Plans to perform injectivity tests at the John Twitty Energy Center, using food grade CO{sub 2}, had to be abandoned when the isolated aquifer was found to have very low dissolved solids content. Investigations at the Sioux Plant and Thomas Hill Energy Center in Randolph County found suitably saline conditions in the St. Francois. A fourth borehole in Platte County was discontinued before reaching the aquifer. Laboratory analyses of rock core and water samples indicate that the St. Charles and Randolph County sites could have storage potentials worthy of further study. The report suggests additional Missouri areas for further investigation as well.

  14. Assessing the effect of climate change on carbon sequestration in a Mexican dry forest in the Yucatan Peninsula

    Science.gov (United States)

    Z. Dai; K.D. Johnson; R.A. Birdsey; J.L. Hernandez-Stefanoni; J.M. Dupuy

    2015-01-01

    Assessing the effect of climate change on carbon sequestration in tropical forest ecosystems is important to inform monitoring, reporting, and verification (MRV) for reducing deforestation and forest degradation (REDD), and to effectively assess forest management options under climate change. Two process-based models, Forest-DNDC and Biome-BGC, with different spatial...

  15. Estimating urban forest carbon sequestration potential in the southern United States using current remote sensing imagery sources

    Science.gov (United States)

    Krista Merry; Pete Bettinger; Jacek Siry; J. Michael Bowker

    2015-01-01

    With an increased interest in reducing carbon dioxide in the atmosphere, tree planting and maintenance in urban areas has become a viable option for increasing carbon sequestration. Methods for assessing the potential for planting trees within an urban area should allow for quick, inexpensive, and accurate estimations of available land using current remote sensing...

  16. Chrysotile dissolution rates: Implications for carbon sequestration

    International Nuclear Information System (INIS)

    Thom, James G.M.; Dipple, Gregory M.; Power, Ian M.; Harrison, Anna L.

    2013-01-01

    Highlights: • Uncertainties in serpentine dissolution kinetics hinder carbon sequestration models. • A pH dependent, far from equilibrium dissolution rate law for chrysotile. • F chrysotile (mol/m 2 /s) = 10 −0.21pH−10.57 at 22 °C over pH 2–10. • Laboratory dissolution rates consistent with mine waste weathering observations. • Potential for carbon sequestration in mine tailings and aquifers is assessed. - Abstract: Serpentine minerals (e.g., chrysotile) are a potentially important medium for sequestration of CO 2 via carbonation reactions. The goals of this study are to report a steady-state, far from equilibrium chrysotile dissolution rate law and to better define what role serpentine dissolution kinetics will have in constraining rates of carbon sequestration via serpentine carbonation. The steady-state dissolution rate of chrysotile in 0.1 m NaCl solutions was measured at 22 °C and pH ranging from 2 to 8. Dissolution experiments were performed in a continuously stirred flow-through reactor with the input solutions pre-equilibrated with atmospheric CO 2 . Both Mg and Si steady-state fluxes from the chrysotile surface, and the overall chrysotile flux were regressed and the following empirical relationships were obtained: F Mg =-0.22pH-10.02;F Si =-0.19pH-10.37;F chrysotile =-0.21pH-10.57 where F Mg , F Si , and F chrysotile are the log 10 Mg, Si, and molar chrysotile fluxes in mol/m 2 /s, respectively. Element fluxes were used in reaction-path calculations to constrain the rate of CO 2 sequestration in two geological environments that have been proposed as potential sinks for anthropogenic CO 2 . Carbon sequestration in chrysotile tailings at 10 °C is approximately an order of magnitude faster than carbon sequestration in a serpentinite-hosted aquifer at 60 °C on a per kilogram of water basis. A serpentinite-hosted aquifer, however, provides a larger sequestration capacity. The chrysotile dissolution rate law determined in this study has

  17. Geological sequestration of carbon dioxide in deep saline aquifers: coupled flow-mechanical considerations

    OpenAIRE

    Rathnaweera, Tharaka Dilanka

    2017-01-01

    Global warming is an extremely crucial challenge for 21st century researchers and numerous climate change policies and mitigation options have been initiated throughout the world during the last few decades. After much research on these approaches to mitigate global climate change, CO2 sequestration has been identified as the only technology which can reduce CO2 emissions on a significant scale from fossil fuel power plants and other industrial processes like steel, cement and chemical produc...

  18. Carbon sequestration, biological diversity, and sustainable development: Integrated forest management

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, M.A. (Environmental Research Lab., Corvallis, OR (United States)); Meganck, R.A. (United Nations Environment Programme for the Wider Caribbean, Kingston (Jamaica))

    Tropical deforestation provides a significant contribution to anthropogenic increases in atmospheric CO[sub 2] concentration that may lead to global warming. Forestation and other forest management options to sequester CO[sub 2] in the tropical latitudes may fail unless they address local economic, social, environmental, and political needs of people in the developing world. Forest management is discussed in terms of three objectives: Carbon sequestration, sustainable development, and biodiversity conservation. An integrated forest management strategy of land-use planning is proposed to achieve these objectives and is centered around: Preservation of primary forest, intensified use of nontimber resources, agroforestry, and selective use of plantation forestry. 89 refs., 1 fig., 1 tab.

  19. Carbon sequestration research and development

    Energy Technology Data Exchange (ETDEWEB)

    Reichle, Dave; Houghton, John; Kane, Bob; Ekmann, Jim; and others

    1999-12-31

    Predictions of global energy use in the next century suggest a continued increase in carbon emissions and rising concentrations of carbon dioxide (CO{sub 2}) in the atmosphere unless major changes are made in the way we produce and use energy--in particular, how we manage carbon. For example, the Intergovernmental Panel on Climate Change (IPCC) predicts in its 1995 ''business as usual'' energy scenario that future global emissions of CO{sub 2} to the atmosphere will increase from 7.4 billion tonnes of carbon (GtC) per year in 1997 to approximately 26 GtC/year by 2100. IPCC also projects a doubling of atmospheric CO{sub 2} concentration by the middle of next century and growing rates of increase beyond. Although the effects of increased CO{sub 2} levels on global climate are uncertain, many scientists agree that a doubling of atmospheric CO{sub 2} concentrations could have a variety of serious environmental consequences. The goal of this report is to identify key areas for research and development (R&D) that could lead to an understanding of the potential for future use of carbon sequestration as a major tool for managing carbon emissions. Under the leadership of DOE, researchers from universities, industry, other government agencies, and DOE national laboratories were brought together to develop the technical basis for conceiving a science and technology road map. That effort has resulted in this report, which develops much of the information needed for the road map.

  20. Carbon Sequestration in Unconventional Reservoirs: Geophysical, Geochemical and Geomechanical Considerations

    Science.gov (United States)

    Zakharova, Natalia V.

    In the face of the environmental challenges presented by the acceleration of global warming, carbon capture and storage, also called carbon sequestration, may provide a vital option to reduce anthropogenic carbon dioxide emissions, while meeting the world's energy demands. To operate on a global scale, carbon sequestration would require thousands of geologic repositories that could accommodate billions of tons of carbon dioxide per year. In order to reach such capacity, various types of geologic reservoirs should be considered, including unconventional reservoirs such as volcanic rocks, fractured formations, and moderate-permeability aquifers. Unconventional reservoirs, however, are characterized by complex pore structure, high heterogeneity, and intricate feedbacks between physical, chemical and mechanical processes, and their capacity to securely store carbon emissions needs to be confirmed. In this dissertation, I present my contribution toward the understanding of geophysical, geochemical, hydraulic, and geomechanical properties of continental basalts and fractured sedimentary formations in the context of their carbon storage capacity. The data come from two characterization projects, in the Columbia River Flood Basalt in Washington and the Newark Rift Basin in New York, funded by the U.S. Department of Energy through Big Sky Carbon Sequestration Partnerships and TriCarb Consortium for Carbon Sequestration. My work focuses on in situ analysis using borehole geophysical measurements that allow for detailed characterization of formation properties on the reservoir scale and under nearly unaltered subsurface conditions. The immobilization of injected CO2 by mineralization in basaltic rocks offers a critical advantage over sedimentary reservoirs for long-term CO2 storage. Continental flood basalts, such as the Columbia River Basalt Group, possess a suitable structure for CO2 storage, with extensive reservoirs in the interflow zones separated by massive impermeable

  1. Forest managment options for sequestering carbon in Mexico

    International Nuclear Information System (INIS)

    Masera, O.R.; Bellon, M.R.; Segura, G.

    1995-01-01

    This paper identifies and examines economic response options to avoid carbon emissions and increase carbon sequestration in Mexican forests. A ''Policy'' scenario covering the years 2000, 2010 and 2030 and a ''Technical Potential'' scenario (year 2030) are developed to examine the potential carbon sequestration and costs of each response option. Benefit-cost analyses for three case studies, including management of a pulpwood plantation, a native temperate forest and a native tropical evergreen forest are presented and discussed. The study suggests that a large potential for reducing carbon emissions and increasing carbon sequestration exists in Mexican forests. However, the achievement of this potential will require important reforms to the current institutional setting of the forest sector. The management of native temperate and tropical forests offers the most promising alternatives for carbon sequestration. The cost effectiveness of commercial plantations critically depends on very high site productivity. Restoration of degraded forest lands; particularly through the establishment of energy plantations, also shows a large carbon sequestration potential. (Author)

  2. Technological Development in Carbon Sequestration at Petrobras

    Energy Technology Data Exchange (ETDEWEB)

    Castello Branco, R.; Vazquez Sebastian, G.; Murce, T.; Cunha, P.; Dino, R.; Sartori Santarosa, C.

    2007-07-01

    Petrobras defined, in its mission, the intention to act in a safe and profitable way, with social and environmental responsibility. In its vision, the company decided to be an oil and energy company, taking into account climate change mitigation. These changes were partially caused, without the company's knowledge, for many years, by the burning of fossil fuels. Among many technologies available for this mitigation, carbon sequestration is the one that, in a short space of time, can avoid the collapse of earth's climate. In order to meet this carbon sequestration challenge, there has been established, at CENPES, three strategies for its technological development: (i) establishment of a Systemic Project for Carbon Sequestration within the scope of the Environmental Technology Program - PROAMB; (ii) creation of a Group of Carbon Sequestration Technologies for Climate Change Mitigation - formation of team and qualification program, which includes the realization of the International Seminar on Carbon Sequestration and Climate Change at Petrobras in October 2006; and (iii) Implementation of the Technological Network of Technologies for Climate Change Mitigation. (auth)

  3. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2007-03-31

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2007. The specific tasks discussed include: Task 1--carbon inventory advancements; Task 2--emerging technologies for remote sensing of terrestrial carbon; Task 3--baseline method development; Task 4--third-party technical advisory panel meetings; Task 5--new project feasibility studies; and Task 6--development of new project software screening tool.

  4. Recovery and Sequestration of CO2 from Stationary Combustion Systems by Photosynthesis of Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    T. Nakamura; C.L. Senior

    2005-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October 2000 to 31 March 2005 in which PSI, Aquasearch and University of Hawaii conducted their tasks. This report discusses results of the work pertaining to five tasks: Task 1--Supply of CO2 from Power Plant Flue Gas to Photobioreactor; Task 2--Selection of Microalgae; Task 3--Optimization and Demonstration of Industrial Scale Photobioreactor; Task 4--Carbon Sequestration System Design; and Task 5--Economic Analysis. Based on the work conducted in each task summary conclusion is presented.

  5. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Ellen Hawes; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2006-09-30

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  6. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Zoe Kant; Sarah Woodhouse Murdock; Neil Sampson; Gilberto Tiepolo; Tim Pearson; Sarah Walker; Miguel Calmon

    2006-01-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  7. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon

    2006-04-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  8. THE APPLICATION AND DEVELOPMENT OF APPROPRIATE TOOLS AND TECHNOLOGIES FOR COST-EFFECTIVE CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Ellen Hawes; Zoe Kant; Miguel Calmon; Gilberto Tiepolo

    2002-09-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research projects is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: advanced videography testing; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  9. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Sarah Woodhouse Murdock; Jenny Henman; Zoe Kant; Gilberto Tiepolo; Tim Pearson; Neil Sampson; Miguel Calmon

    2005-10-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  10. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Zoe Kant; Gilberto Tiepolo; Wilber Sabido; Ellen Hawes; Jenny Henman; Miguel Calmon; Michael Ebinger

    2004-07-10

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The research described in this report occurred between July 1, 2002 and June 30, 2003. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: remote sensing for carbon analysis; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  11. SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

    2004-11-01

    The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

  12. Integrating science, economics and law into policy: The case of carbon sequestration in climate change policy

    Science.gov (United States)

    Richards, Kenneth

    in carbon sinks. Consequently, the private sector will increase the rate of return required for participation, increasing the cost of this option. Carbon sequestration can still be a major factor in a national carbon emission abatement program. However, because of the interplay of science, economics and law, the most commonly prescribed environmental policy instruments--marketable allowance and taxes--have little or no direct role to play in the implementation process.

  13. Enhanced Coal Bed Methane Recovery and CO2 Sequestration in the Powder River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2010-06-01

    Unminable coal beds are potentially large storage reservoirs for the sequestration of anthropogenic CO2 and offer the benefit of enhanced methane production, which can offset some of the costs associated with CO2 sequestration. The objective of this report is to provide a final topical report on enhanced coal bed methane recovery and CO2 sequestration to the U.S. Department of Energy in fulfillment of a Big Sky Carbon Sequestration Partnership milestone. This report summarizes work done at Idaho National Laboratory in support of Phase II of the Big Sky Carbon Sequestration Partnership. Research that elucidates the interaction of CO2 and coal is discussed with work centering on the Powder River Basin of Wyoming and Montana. Sorption-induced strain, also referred to as coal swelling/shrinkage, was investigated. A new method of obtaining sorption-induced strain was developed that greatly decreases the time necessary for data collection and increases the reliability of the strain data. As coal permeability is a strong function of sorption-induced strain, common permeability models were used to fit measured permeability data, but were found inadequate. A new permeability model was developed that can be directly applied to coal permeability data obtained under laboratory stress conditions, which are different than field stress conditions. The coal permeability model can be used to obtain critical coal parameters that can be applied in field models. An economic feasibility study of CO2 sequestration in unminable coal seams in the Powder River Basin of Wyoming was done. Economic analyses of CO2 injection options are compared. Results show that injecting flue gas to recover methane from CBM fields is marginally economical; however, this method will not significantly contribute to the need to sequester large quantities of CO2. Separating CO2 from flue gas and injecting it into the unminable coal zones of the Powder River Basin seam is currently uneconomical, but can

  14. Energy exotic options

    International Nuclear Information System (INIS)

    Kaminski, V.; Gibner, S.; Pinnamaneni, K.

    1999-01-01

    This chapter with 88 references focuses on the use of exotic options to control exposure to energy prices. Exotic options are defined, and the conversion of a standard option into an exotic option and pricing models are examined. Pricing and hedging exotic options, path-dependent options, multi-commodity options, options on the minimum-or-maximum of two commodities, compound options, digital options, hybrid and complex structures, and natural gas daily options are described. Formulas for option pricing for vanilla, barrier, compound, options on minimum or maximum of two assets, and look back options are given in an appendix

  15. The timing of biological carbon sequestration and carbon abatement in the energy sector under optimal strategies against climate risks

    International Nuclear Information System (INIS)

    Gitz, V.; Hourcade, J.Ch.; Ciais, Ph.

    2005-10-01

    This paper addresses the timing of the use of biological carbon sequestration and its capacity to alleviate the carbon constraint on the energy sector. We constructed a stochastic optimal control model balancing the costs of fossil emission abatement, the opportunity costs of lands allocated to afforestation, and the costs of uncertain climate damages. We show that a minor part of the sequestration potential should start immediately as a 'brake', slowing down both the rate of growth of concentrations and the rate of abatement in the energy sector. thus increasing the option value of the emission trajectories. But, most of the potential is put in reserve to be used as a 'safety valve' after the resolution of uncertainty, if a higher and faster decarbonization is required: sequestration cuts off the peaks of costs of fossil abatement and postpones the pivoting of the energy system by up to two decades. (authors)

  16. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept

  17. Bile acid sequestrants : more than simple resins

    NARCIS (Netherlands)

    Out, Carolien; Groen, Albert K.; Brufau, Gemma

    Purpose of review Bile acid sequestrants (BAS) have been used for more than 50 years in the treatment of hypercholesterolemia. The last decade, bile acids are emerging as integrated regulators of metabolism via induction of various signal transduction pathways. Consequently, BAS treatment may exert

  18. DOE Ocean Carbon Sequestration Research Workshop 2005

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Jorge L. [Princeton Univ., NJ (United States); Chavez, Francisco [Monterey Bay Aquarium Research Inst. (MBARI), Moss Landing, CA (United States); Maltrud, Matthew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Adams, Eric [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Arrigo, Kevin [Stanford Univ., CA (United States). Dept. of Geophysics; Barry, James [Monterey Bay Aquarium Research Inst. (MBARI), Moss Landing, CA (United States); Carmen, Kevin [Louisiana State Univ., Baton Rouge, LA (United States); Bishop, James [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bleck, Rainer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gruber, Niki [Univ. of California, Los Angeles, CA (United States); Erickson, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kennett, James [Univ. of California, Santa Barbara, CA (United States); Tsouris, Costas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tagliabue, Alessandro [Lab. of Climate and Environmental Sciences (LSCE), Gif-sur-Yvette (France); Paytan, Adina [Stanford Univ., CA (United States); Repeta, Daniel [Woods Hole Oceanographic Inst. (WHOI), Woods Hole, MA (United States); Yager, Patricia L. [Univ. of Georgia, Athens, GA (United States); Marshall, John [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Gnanadesikan, Anand [Geophysical Fluid Dynamics Lab. (GFDL), Princeton, NJ (United States)

    2007-01-11

    The purpose of this proposal was to fund a workshop to bring together the principal investigators of all the projects that were being funded under the DOE ocean carbon sequestration research program. The primary goal of the workshop was to interchange research results, to discuss ongoing research, and to identify future research priorities. In addition, we hoped to encourage the development of synergies and collaborations between the projects and to write an EOS article summarizing the results of the meeting. Appendix A summarizes the plan of the workshop as originally proposed, Appendix B lists all the principal investigators who were able to attend the workshop, Appendix C shows the meeting agenda, and Appendix D lists all the abstracts that were provided prior to the meeting. The primary outcome of the meeting was a decision to write two papers for the reviewed literature on carbon sequestration by iron fertilization, and on carbon sequestration by deep sea injection and to examine the possibility of an overview article in EOS on the topic of ocean carbon sequestration.

  19. Carbon sequestration in wood and paper products

    Science.gov (United States)

    Kenneth E. Skog; Geraldine A. Nicholson

    2000-01-01

    Recognition that increasing levels of CO2 in the atmosphere will affect the global climate has spurred research into reduction global carbon emissions and increasing carbon sequestration. The main nonhuman sources of atmospheric CO2 are animal respiration and decay of biomass. However, increases in atmospheric levels are...

  20. Temporal Considerations of Carbon Sequestration in LCA

    Science.gov (United States)

    James Salazar; Richard Bergman

    2013-01-01

    Accounting for carbon sequestration in LCA illustrates the limitations of a single global warming characterization factor. Typical cradle-to-grave LCA models all emissions from end-of-life processes and then characterizes these flows by IPCC GWP (100-yr) factors. A novel method estimates climate change impact by characterizing annual emissions with the IPCC GHG forcing...

  1. Ocean carbon sequestration by fertilization: An integrated bioeochemical assessment

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, N.; Sarmiento, J.L.; Gnandesikan, A.

    2005-05-31

    Under this grant, the authors investigated a range of issues associated with the proposal to fertilize the ocean with nutrients (such as iron) in order to increase the export of organic matter from the ocean's near surface waters and consequently increase the uptake of CO{sub 2} from the atmosphere. There are several critical scientific questions that have the potential to be make-or-break issues for this proposed carbon sequestration mechanism: (1) If iron is added to the ocean, will export of organic carbon from the surface actually occur? Clearly, if no export occurs, then there will be no sequestration. (2) if iron fertilization does lead to export of organic carbon from the surface of the ocean, how much CO{sub 2} will actually be removed from the atmosphere? Even if carbon is removed from the surface of the ocean, this does not guarantee that there will be significant removal of CO{sub 2} from the atmosphere, since the CO{sub 2} may be supplied by a realignment of dissolved inorganic carbon within the ocean. (3) What is the time scale of any sequestration that occurs? If sequestered CO{sub 2} returns to the atmosphere on a relatively short time scale, iron fertilization will not contribute significantly to slowing the growth of atmospheric CO{sub 2}. (4) Can the magnitude of sequestration be verified? If verification is extremely difficult or impossible, this option is likely to be viewed less favorably. (5) What unintended consequences might there be from fertilizing the ocean with iron? If these are severe enough, they will be a significant impact on policy decisions. Most research on carbon sequestration by fertilization has focused on the first of these issues. Although a number of in situ fertilization experiments have successfully demonstrated that the addition of iron leads to a dramatic increase in ocean productivity, the question of whether this results in enhanced export remains an open one. The primary focus of the research was on the

  2. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  3. Options theory

    International Nuclear Information System (INIS)

    Markland, J.T.

    1992-01-01

    Techniques used in conventional project appraisal are mathematically very simple in comparison to those used in reservoir modelling, and in the geosciences. Clearly it would be possible to value assets in mathematically more sophisticated ways if it were meaningful and worthwhile so to do. The DCf approach in common use has recognized limitations; the inability to select a meaningful discount rate being particularly significant. Financial Theory has advanced enormously over the last few years, along with computational techniques, and methods are beginning to appear which may change the way we do project evaluations in practice. The starting point for all of this was a paper by Black and Scholes, which asserts that almost all corporate liabilities can be viewed as options of varying degrees of complexity. Although the financial presentation may be unfamiliar to engineers and geoscientists, some of the concepts used will not be. This paper outlines, in plain English, the basis of option pricing theory for assessing the market value of a project. it also attempts to assess the future role of this type of approach in practical Petroleum Exploration and Engineering economics. Reference is made to relevant published Natural Resource literature

  4. The economics of soil C sequestration and agricultural emissions abatement

    Science.gov (United States)

    Alexander, P.; Paustian, K.; Smith, P.; Moran, D.

    2015-04-01

    Carbon is a critical component of soil vitality and is crucial to our ability to produce food. Carbon sequestered in soils also provides a further regulating ecosystem service, valued as the avoided damage from global climate change. We consider the demand and supply attributes that underpin and constrain the emergence of a market value for this vital global ecosystem service: markets being what economists regard as the most efficient institutions for allocating scarce resources to the supply and consumption of valuable goods. This paper considers how a potentially large global supply of soil carbon sequestration is reduced by economic and behavioural constraints that impinge on the emergence of markets, and alternative public policies that can efficiently transact demand for the service from private and public sector agents. In essence, this is a case of significant market failure. In the design of alternative policy options, we consider whether soil carbon mitigation is actually cost-effective relative to other measures in agriculture and elsewhere in the economy, and the nature of behavioural incentives that hinder policy options. We suggest that reducing the cost and uncertainties of mitigation through soil-based measures is crucial for improving uptake. Monitoring and auditing processes will also be required to eventually facilitate wide-scale adoption of these measures.

  5. Management of water extracted from carbon sequestration projects

    Energy Technology Data Exchange (ETDEWEB)

    Harto, C. B.; Veil, J. A. (Environmental Science Division)

    2011-03-11

    for managing very large volumes of water most of which will contain large quantities of salt and other dissolved minerals. Produced water from oil and gas production also typically contains large quantities of dissolved solids. Therefore, many of the same practices that are established and used for managing produced water also may be applicable for extracted water. This report describes the probable composition of the extracted water that is removed from the formations, options for managing the extracted water, the pros and cons of those options, and some opportunities for beneficial use of the water. Following the introductory material in Chapter 1, the report is divided into chapters covering the following topics: (Chapter 2) examines the formations that are likely candidates for CO{sub 2} sequestration and provides a general evaluation of the geochemical characteristics of the formations; (Chapter 3) makes some preliminary estimates of the volume of water that could be extracted; (Chapter 4) provides a qualitative review of many potential technologies and practices for managing extracted water and for each technology or management practice, pros and cons are provided; (Chapter 5) explores the potential costs of water management; and (Chapter 6) presents the conclusions.

  6. Carbon Sequestration in Colorado's Lands: A Spatial and Policy Analysis

    Science.gov (United States)

    Brandt, N.; Brazeau, A.; Browning, K.; Meier, R.

    2017-12-01

    Managing landscapes to enhance terrestrial carbon sequestration has significant potential to mitigate climate change. While a previous carbon baseline assessment in Colorado has been published (Conant et al, 2007), our study pulls from the existing literature to conduct an updated baseline assessment of carbon stocks and a unique review of carbon policies in Colorado. Through a multi-level spatial analysis based in GIS and informed by a literature review, we established a carbon stock baseline and ran four land use and carbon stock projection scenarios using Monte Carlo simulations. We identified 11 key policy recommendations for improving Colorado's carbon stocks, and evaluated each using Bardach's policy matrix approach (Bardach, 2012). We utilized a series of case studies to support our policy recommendations. We found that Colorado's lands have a carbon stock of 3,334 MMT CO2eq, with Forests and Woodlands holding the largest stocks, at 1,490 and 774 MMT CO2eq respectively. Avoided conversion of all Grasslands, Forests, and Wetlands in Colorado projected over 40 years would increase carbon stocks by 32 MMT CO2eq, 1,053 MMT CO2eq, and 36 MMT CO2eq, respectively. Over the 40-year study period, Forests and Woodlands areas are projected to shrink while Shrublands and Developed areas are projected to grow. Those projections suggest sizable increases in area of future wildfires and development in Colorado. We found that numerous policy opportunities to sequester carbon exist at different jurisdictional levels and across land cover types. The largest opportunities were found in state-level policies and policies impacting Forests, Grasslands, and Wetlands. The passage of statewide emission reduction legislation has the highest potential to impact carbon sequestration, although political and administrative feasibility of this option are relatively low. This study contributes to the broader field of carbon sequestration literature by examining the nexus of carbon stocks

  7. Historical forest baselines reveal potential for continued carbon sequestration

    Science.gov (United States)

    Rhemtulla, Jeanine M.; Mladenoff, David J.; Clayton, Murray K.

    2009-01-01

    One-third of net CO2 emissions to the atmosphere since 1850 are the result of land-use change, primarily from the clearing of forests for timber and agriculture, but quantifying these changes is complicated by the lack of historical data on both former ecosystem conditions and the extent and spatial configuration of subsequent land use. Using fine-resolution historical survey records, we reconstruct pre-EuroAmerican settlement (1850s) forest carbon in the state of Wisconsin, examine changes in carbon after logging and agricultural conversion, and assess the potential for future sequestration through forest recovery. Results suggest that total above-ground live forest carbon (AGC) fell from 434 TgC before settlement to 120 TgC at the peak of agricultural clearing in the 1930s and has since recovered to approximately 276 TgC. The spatial distribution of AGC, however, has shifted significantly. Former savanna ecosystems in the south now store more AGC because of fire suppression and forest ingrowth, despite the fact that most of the region remains in agriculture, whereas northern forests still store much less carbon than before settlement. Across the state, continued sequestration in existing forests has the potential to contribute an additional 69 TgC. Reforestation of agricultural lands, in particular, the formerly high C-density forests in the north-central region that are now agricultural lands less optimal than those in the south, could contribute 150 TgC. Restoring historical carbon stocks across the landscape will therefore require reassessing overall land-use choices, but a range of options can be ranked and considered under changing needs for ecosystem services. PMID:19369213

  8. Potential and economics of CO{sub 2} sequestration; Sequestration du CO{sub 2}: faisabilite et cout

    Energy Technology Data Exchange (ETDEWEB)

    Jean-Baptiste, Ph.; Ciais, Ph.; Orr, J. [CEA Saclay, 91 - Gif sur Yvette (France). Direction des Sciences de la Matiere; Ducroux, R. [Centre d' Initiative et de Recherche sur l' Energie et l' Environnement, CIRENE, 91 - Palaiseau (France)

    2001-07-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO{sub 2}. Some techniques could be used to reduced CO{sub 2} emission and stabilize atmospheric CO{sub 2} concentration, including i) energy savings and energy efficiency, ii) switch to lower carbon content fuels (natural gas) and use energy sources with zero CO{sub 2} emissions such as renewable or nuclear energy, iii) capture and store CO{sub 2} from fossil fuels combustion, and enhance the natural sinks for CO{sub 2} (forests, soils, ocean...). The purpose of this report is to provide an overview of the technology and cost for capture and storage of CO{sub 2} and to review the various options for CO{sub 2} sequestration by enhancing natural carbon sinks. Some of the factors which will influence application, including environmental impact, cost and efficiency, are discussed. Capturing CO{sub 2} and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology, however, substantial R and D is needed to improve available technology and to lower the cost. Applicable to large CO{sub 2} emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to about 30% of the global anthropic CO{sub 2} emission, it represents a valuable tool in the baffle against global warming. About 50% of the anthropic CO{sub 2} is being naturally absorbed by the biosphere and the ocean. The 'natural assistance' provided by these two large carbon reservoirs to the mitigation of climate change is substantial. The existing natural sinks could be enhanced by deliberate action. Given the known and likely environmental consequences, which could be very damaging indeed, enhancing ocean sinks does not appears as a satisfactory option. In contrast, the promotion of land sinks through demonstrated carbon

  9. Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands

    International Nuclear Information System (INIS)

    Olsson, Alexander; Campana, Pietro Elia; Lind, Mårten; Yan, Jinyue

    2014-01-01

    Highlights: • A generic method for climate change mitigation feasibility of PVWPS is developed. • Restoration of degraded lands in China has large climate change mitigation potential. • PV produces excess electricity included in the mitigation potential of the system. • The benefit is higher than if the PV were to produce electricity for the grid only. - Abstract: The climate change mitigation potential of irrigation powered by a photovoltaic water pumping system (PVWPS) to restore degraded grasslands has been investigated using the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories for Agriculture, Forestry and Other Land Use. The purpose of this study is to develop a generic and simple method to estimate the climate change mitigation benefit of a PVWPS. The possibility to develop carbon credits for the carbon offset markets has also been studied comparing carbon sequestration in grasslands to other carbon sequestration projects. The soil carbon sequestration following irrigation of the grassland is calculated as an annual increase in the soil organic carbon pool. The PVWPS can also generate an excess of electricity when irrigation is not needed and the emissions reductions due to substitution of grid electricity give additional climate change mitigation potential. The results from this study show that the carbon sequestration and emissions reductions benefits per land area using a PVWPS for irrigating grasslands are comparable to other carbon sequestration options such as switching to no-till practice. Soil carbon in irrigated grasslands is increased with over 60% relative to severely degraded grasslands and if nitrogen fixing species are introduced the increase in soil organic carbon can be almost 80%. Renewable electricity generation by the PVWPS will further increase the mitigation benefit of the system with 70–90%. When applying the methodology developed in this paper to a case in Qinghai, China

  10. Contemplating future energy options

    International Nuclear Information System (INIS)

    Pooley, D.

    2005-01-01

    All political parties in the UK accept that we should move away from our reliance on fossil fuels towards a much greater use of alternative energy technologies. Nuclear power is one of these but finds minimal support in the political spectrum. The article reviews the European Commission's Advisory Group on Energy submission to the EC's report entitled 'Key Tasks for European Energy R and D'. The 'strength and weaknesses' of the various 'alternative energy' systems (including nuclear power) are summarised and then the key R and D tasks which, if they are carried out successfully, should make the eight selected technologies significantly more attractive. However, the message here is clear enough: there are no easy options, only a range of very imperfect possibilities, despite what enthusiastic proponents of each may say. Nuclear fission is certainly one of the most attractive options available, but the industry needs to continue to strive to eliminate the possibility of significant off-site releases, whether caused by plant failure or by human error or intention, and to prove beyond reasonable doubt the safety of high-level radioactive waste disposal. (author)

  11. Carbon dioxide sequestration by mineral carbonation. Feasibility of enhanced natural weathering as a CO2 emission reduction technology

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.

    2007-01-01

    /or thermal activation). The only available pre-treatment option that has proven to be energetically and potentially economically feasible is conventional grinding. In Chapter 2 the mechanisms of aqueous steel slag carbonation are studied experimentally. Process variables, such as particle size, temperature, and carbon dioxide pressure are systematically varied and their influence on the carbonation rate is investigated. In Chapter 3 the mechanisms of aqueous steel slag carbonation are further investigated, together with the environmental properties of the (carbonated) steel slag. In Chapter 4, the mechanisms of aqueous wollastonite carbonation as a possible carbon dioxide sequestration process are investigated experimentally by systematic variation of the reaction temperature, CO2 pressure, particle size, reaction time, liquid-to-solid ratio, and agitation power. The obtained insight in the reaction mechanisms in Chapter 2 - 4 is used as the (experimental) basis for the energetic and economic assessment of CO2 sequestration by mineral carbonation in Chapters 5 and 6. The energy consumption of a mineral carbonation plant causes extra CO2 emissions and, thereby, reduces the net amount of CO2 sequestered by the process. Chapter 5 studies the energetic CO2 sequestration efficiency of the aqueous mineral carbonation in dependence of various process variables using either wollastonite or steel slag as feedstock. A flowsheet of a mineral carbonation plant is designed and the process is simulated to determine the properties of streams as well as the power and heat consumption of the process equipment. In Chapter 6 a cost evaluation of CO2 sequestration by aqueous mineral carbonation is presented, using either wollastonite or steel slag as feedstock. On the basis of a basic design of the major process equipment, the total investment costs are estimated with the help of publicly available literature and a factorial cost estimation method. Subsequently, the sequestration costs are

  12. Decarbonization and sequestration for mitigating global warming

    International Nuclear Information System (INIS)

    Steinberg, M.

    2000-01-01

    Mitigating the global warming greenhouse effect while maintaining a fossil fuel economy, requires improving efficiency of utilization of fossil fuels, use of high hydrogen content fossil fuels, decarbonization of fossil fuels, and sequestering of carbon and CO 2 applied to all the sectors of the economy, electric power generation, transportation, and industrial, and domestic power and heat generation. Decarbonization means removal of carbon as C or CO 2 either before or after fossil fuel combustion and sequestration means disposal of the recovered C or CO 2 including its utilization. Removal and recovery of CO 2 from power generation plants and sequestration in the ocean represents one possibility of making a major impact on reducing CO 2 emissions to the atmosphere. This paper will briefly review the progress made in ocean disposal and present some alternative schemes. (author)

  13. INTERNATIONAL COLLABORATION ON CO2 SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    H.J. Herzog; E.E. Adams

    2000-08-23

    The specific objective of our project on CO{sub 2} ocean sequestration is to investigate its technical feasibility and to improve the understanding of any associated environmental impacts. Our ultimate goal is to minimize any impacts associated with the eventual use of ocean carbon sequestration to reduce greenhouse gas concentrations in the atmosphere. The project will continue through March 31, 2002, with a field experiment to take place in the summer of 2001 off the Kona Coast of Hawaii. At GHGT-4 in Interlaken, we presented a paper detailing our plans. The purpose of this paper is to present an update on our progress to date and our plans to complete the project. The co-authors of this paper are members of the project's Technical Committee, which has been formed to supervise the technical aspects and execution of this project.

  14. Response comment: Carbon sequestration on Mars

    Science.gov (United States)

    Edwards, Christopher; Ehlmann, Bethany L.

    2016-01-01

    Martian atmospheric pressure has important implications for the past and present habitability of the planet, including the timing and causes of environmental change. The ancient Martian surface is strewn with evidence for early water bound in minerals (e.g., Ehlmann and Edwards, 2014) and recorded in surface features such as large catastrophically created outflow channels (e.g., Carr, 1979), valley networks (Hynek et al., 2010; Irwin et al., 2005), and crater lakes (e.g., Fassett and Head, 2008). Using orbital spectral data sets coupled with geologic maps and a set of numerical spectral analysis models, Edwards and Ehlmann (2015) constrained the amount of atmospheric sequestration in early Martian rocks and found that the majority of this sequestration occurred prior to the formation of the early Hesperian/late Noachian valley networks (Fassett and Head, 2011; Hynek et al., 2010), thus implying the atmosphere was already thin by the time these surface-water-related features were formed.

  15. Marine sequestration of carbon in bacterial metabolites.

    Science.gov (United States)

    Lechtenfeld, Oliver J; Hertkorn, Norbert; Shen, Yuan; Witt, Matthias; Benner, Ronald

    2015-03-31

    Linking microbial metabolomics and carbon sequestration in the ocean via refractory organic molecules has been hampered by the chemical complexity of dissolved organic matter (DOM). Here, using bioassay experiments and ultra-high resolution metabolic profiling, we demonstrate that marine bacteria rapidly utilize simple organic molecules and produce exometabolites of remarkable molecular and structural diversity. Bacterial DOM is similar in chemical composition and structural complexity to naturally occurring DOM in sea water. An appreciable fraction of bacterial DOM has molecular and structural properties that are consistent with those of refractory molecules in the ocean, indicating a dominant role for bacteria in shaping the refractory nature of marine DOM. The rapid production of chemically complex and persistent molecules from simple biochemicals demonstrates a positive feedback between primary production and refractory DOM formation. It appears that carbon sequestration in diverse and structurally complex dissolved molecules that persist in the environment is largely driven by bacteria.

  16. Intralobar pulmonary sequestration: a case report

    International Nuclear Information System (INIS)

    Nacif, Marcelo Souto; Miranda, Bruno Jose de Pinho; Caramel, Juliana Mauro; Jauregui, Gustavo Federico; Santos, Alair Augusto Sarmet Moreira Damas dos

    2001-01-01

    We report the case of a 49-year-old patient with repeated lung infections. Chest x-rays showed a mass in the posterior basal segment of the right lung. Angio tomography and 3D reconstructions showed a blood supply coming from the descending aorta. The analysis of the surgical specimen confirmed the occurrence of intra lobar pulmonary sequestration with a cavitation filled with mucus. (author)

  17. Integrating Steel Production with Mineral Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Klaus Lackner; Paul Doby; Tuncel Yegulalp; Samuel Krevor; Christopher Graves

    2008-05-01

    The objectives of the project were (i) to develop a combination iron oxide production and carbon sequestration plant that will use serpentine ores as the source of iron and the extraction tailings as the storage element for CO2 disposal, (ii) the identification of locations within the US where this process may be implemented and (iii) to create a standardized process to characterize the serpentine deposits in terms of carbon disposal capacity and iron and steel production capacity. The first objective was not accomplished. The research failed to identify a technique to accelerate direct aqueous mineral carbonation, the limiting step in the integration of steel production and carbon sequestration. Objective (ii) was accomplished. It was found that the sequestration potential of the ultramafic resource surfaces in the US and Puerto Rico is approximately 4,647 Gt of CO2 or over 500 years of current US production of CO2. Lastly, a computer model was developed to investigate the impact of various system parameters (recoveries and efficiencies and capacities of different system components) and serpentinite quality as well as incorporation of CO2 from sources outside the steel industry.

  18. Carbon sequestration by Australian tidal marshes

    KAUST Repository

    Macreadie, Peter I.

    2017-03-10

    Australia\\'s tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia\\'s tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha-1 (range 14-963 Mg OC ha-1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha-1 yr-1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia\\'s 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2-equivalent value of $USD7.19 billion. Annual sequestration is 0.75 Tg OC yr-1, with a CO2-equivalent value of $USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes.

  19. Possible impacts of sequestration on federal research

    Science.gov (United States)

    Showstack, Randy

    2012-10-01

    U.S. federal research and development (R&D) activities could be reduced by up to $57.5 billion, or 8.4%, through 2017 because of automatic reductions in U.S. federal funding, referred to as sequestration, that are set to begin in January 2013 under the 2011 Budget Control Act. That is according to a 27 September analysis by the American Association for the Advancement of Science (AAAS). If defense R&D is pulled from the equation, sequestration could cut nondefense R&D by $50.8 billion, or 17.2% through that same time period, according to AAAS. Under an equal allocation scenario, the Department of Energy could lose $4.6 billion for R&D over that time period, the National Science Foundation could lose $2.1 billion for R&D, and NASA could lose $3.5 billion, according to the analysis, which also notes that states could be hit hard by decreased federal R&D spending. Congressional leaders currently are looking into how to avoid sequestration. For more information, see http://www.aaas.org/news/releases/2012/0928sequester.shtml.

  20. Carbon Sequestration in Terrestrial Ecosystems: A Status Report on R and D Progress

    International Nuclear Information System (INIS)

    Jacobs, G.K.

    2001-01-01

    Sequestration of carbon in terrestrial ecosystems is a low-cost option that may be available in the near-term to mitigate increasing atmospheric CO(sub 2) concentrations, while providing additional benefits. Storing carbon in terrestrial ecosystems can be achieved through maintenance of standing aboveground biomass, utilization of aboveground biomass in long-lived products, or protection of carbon (organic and inorganic) compounds present in soils. There are potential co-benefits from efforts to sequester carbon in terrestrial ecosystems. For example, long-lived valuable products (wood) are produced, erosion would be reduced, soil productivity could be improved through increased capacity to retain water and nutrients, and marginal lands could be improved and riparian ecosystems restored. Another unique feature of the terrestrial sequestration option is that it is the only option that is ''reversible'' should it become desirable or permissible. For example, forests that are created are thus investments which could be harvested should CO(sub 2) emissions be reduced in other ways to acceptable levels 50-100 years from now

  1. The Midwest Regional Carbon Sequestration Partnership (MRCSP)

    Energy Technology Data Exchange (ETDEWEB)

    James J. Dooley; Robert Dahowski; Casie Davidson

    2005-12-01

    This final report summarizes the Phase I research conducted by the Midwest regional Carbon Sequestration Partnership (MRCSP). The Phase I effort began in October 2003 and the project period ended on September 31, 2005. The MRCSP is a public/private partnership led by Battelle with the mission of identifying the technical, economic, and social issues associated with implementation of carbon sequestration technologies in its seven state geographic region (Indiana, Kentucky, Maryland, Michigan, Ohio, Pennsylvania, and West Virginia) and identifying viable pathways for their deployment. It is one of seven partnerships that together span most of the U.S. and parts of Canada that comprise the U.S. Department of Energy's (DOE's) Regional Carbon Sequestration Program led by DOE's national Energy Technology Laboratory (NETL). The MRCSP Phase I research was carried out under DOE Cooperative Agreement No. DE-FC26-03NT41981. The total value of Phase I was $3,513,513 of which the DOE share was $2,410,967 or 68.62%. The remainder of the cost share was provided in varying amounts by the rest of the 38 members of MRCSP's Phase I project. The next largest cost sharing participant to DOE in Phase I was the Ohio Coal Development Office within the Ohio Air Quality Development Authority (OCDO). OCDO's contribution was $100,000 and was contributed under Grant Agreement No. CDO/D-02-17. In this report, the MRCSP's research shows that the seven state MRCSP region is a major contributor to the U. S. economy and also to total emissions of CO2, the most significant of the greenhouse gases thought to contribute to global climate change. But, the research has also shown that the region has substantial resources for sequestering carbon, both in deep geological reservoirs (geological sequestration) and through improved agricultural and land management practices (terrestrial sequestration). Geological reservoirs, especially deep saline reservoirs, offer the potential

  2. India's Unfinished Telecom Tasks

    Indian Academy of Sciences (India)

    India's Telecom Story is now well known · Indian Operators become an enviable force · At the same time · India Amongst the Leaders · Unfinished Tasks as Operators · LightGSM ON: Innovation for Rural Area from Midas · Broadband Access Options for India · Broadband driven by DSL: still too slow · Is Wireless the answer?

  3. Intralobar pulmonary sequestration: a masquarader in tuberculosis prevalent population

    International Nuclear Information System (INIS)

    Ashraf, A.; Iqbal, M.

    2009-01-01

    Intra pulmonary sequestration is a rare congenital disorder that is characterized by malformation of pulmonary tissue having no connection to normal tracheobronchial tree and pulmonary arteries. This is a case history of 20 years old man initially misdiagnosed as Tuberculosis and later diagnosis of intra-lobar pulmonary sequestration was confirmed. There are few reports of this rare disorder globally and we are reporting the first case of Intrapulmonary Sequestration in Pakistan. (author)

  4. Technical Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Zoe Kant; Patrick Gonzalez

    2009-01-07

    The Nature Conservancy participated in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project was 'Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration'. The objectives of the project were to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Final Technical Report discusses the results of the six tasks that The Nature Conservancy undertook to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between July 1st 2001 and July 10th 2008. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. The project occurred in two phases. The first was a focused exploration of specific carbon measurement and monitoring methodologies and pre-selected carbon sequestration opportunities. The second was a more systematic and comprehensive approach to compare various competing measurement and monitoring methodologies, and assessment of a variety of carbon sequestration opportunities in order to find those that are the lowest cost with the greatest combined carbon and other

  5. Integrated mangrove-shrimp cultivation: Potential for blue carbon sequestration.

    Science.gov (United States)

    Ahmed, Nesar; Thompson, Shirley; Glaser, Marion

    2018-05-01

    Globally, shrimp farming has had devastating effects on mangrove forests. However, mangroves are the most carbon-rich forests, with blue carbon (i.e., carbon in coastal and marine ecosystems) emissions seriously augmented due to devastating effects on mangrove forests. Nevertheless, integrated mangrove-shrimp cultivation has emerged as a part of the potential solution to blue carbon emissions. Integrated mangrove-shrimp farming is also known as organic aquaculture if deforested mangrove area does not exceed 50% of the total farm area. Mangrove destruction is not permitted in organic aquaculture and the former mangrove area in parts of the shrimp farm shall be reforested to at least 50% during a period of maximum 5 years according to Naturland organic aquaculture standards. This article reviews integrated mangrove-shrimp cultivation that can help to sequester blue carbon through mangrove restoration, which can be an option for climate change mitigation. However, the adoption of integrated mangrove-shrimp cultivation could face several challenges that need to be addressed in order to realize substantial benefits from blue carbon sequestration.

  6. Technical Progress Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Ben Poulter; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon; Gilberto Tiepolo

    2006-06-30

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. Work is being carried out in Brazil, Belize, Chile, Peru and the USA.

  7. Pryce type I sequestration: no mosquito shooting.

    Science.gov (United States)

    Barik, Ramachandra; Patnaik, Amar Narayan; Malempati, Amaresh Rao; Nemani, Lalita

    2015-06-01

    We report a case of a 40-year-old woman with congenital dual arterial supply to an otherwise normal left lower lobe, causing hyperperfusion lung injury. In addition to near normal pulmonary arterial supply, the lower lobe of the left lung received a systemic arterial supply from the descending thoracic aorta. The patient was successfully managed by surgical ligation of the systemic arterial supply without lobectomy. We discuss when to defer lobectomy in Pryce type I sequestration. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  8. CO2, the promises of geological sequestration

    International Nuclear Information System (INIS)

    Rouat, S.

    2006-01-01

    Trapping part of the world CO 2 effluents in the deep underground is a profitable and ecological way to limit the global warming. This digest paper presents the different ways of CO 2 sequestration (depleted oil and gas fields, unexploited coal seams, saline aquifers), the other possible solutions for CO 2 abatement (injection in the bottom of the ocean, conversion into carbonates by injection into basic rocks, fixation by photosynthesis thanks to micro-algae cultivation), and takes stock of the experiments in progress (Snoehvit field in Norway, European project Castor). (J.S.)

  9. CARBON SEQUESTRATION ON SURFACE MINE LANDS

    Energy Technology Data Exchange (ETDEWEB)

    Donald H. Graves; Christopher Barton; Richard Sweigard; Richard Warner

    2005-06-22

    An area planted in 2004 on Bent Mountain in Pike County was shifted to the Department of Energy project to centralize an area to become a demonstration site. An additional 98.3 acres were planted on Peabody lands in western Kentucky and Bent Mountain to bring the total area under study by this project to 556.5 acres as indicated in Table 2. Major efforts this quarter include the implementation of new plots that will examine the influence of differing geologic material on tree growth and survival, water quality and quantity and carbon sequestration. Normal monitoring and maintenance was conducted and additional instrumentation was installed to monitor the new areas planted.

  10. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-03-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  11. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-12-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 July to 30 September 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  12. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Steven M. Masutani

    2001-08-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  13. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Takashi Nakamura

    2003-04-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2002 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on feasibility demonstration of direct feeding of coal combustion gas to microalgae. Aquasearch continued their effort on selection and characterization of microalgae suitable for CO{sub 2} sequestration. University of Hawaii continued effort on system optimization of the CO{sub 2} sequestration system.

  14. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-01-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report is the summary first year report covering the reporting period 1 October 2000 to 30 September 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO{sub 2} sequestration. University of Hawaii initiated effort on system optimization of the CO{sub 2} sequestration system.

  15. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    International Nuclear Information System (INIS)

    Dr. T. Nakamura; Dr. Miguel Olaizola; Dr. Stephen M. Masutani

    2002-01-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO(sub 2) from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 October to 31 December 2001 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work conducted during the previous reporting period, PSI initiated work on the component optimization work. Aquasearch continued their effort on selection of microalgae suitable for CO(sub 2) sequestration. University of Hawaii initiated effort on system optimization of the CO(sub 2) sequestration system

  16. Modelisation du stock de biomasse et dynamique de sequestration ...

    African Journals Online (AJOL)

    Mots clés: Jatropha curcas, séquestration, carbone, Bénin, Afrique de l'Ouest. English Title: Biomass stock modeling and dynamics of mineral and carbon sequestration of Jatropha curcas L. under different soil types in Benin. English Abstract. In West Africa, carbon sequestration function of Jatropha curcas shrubs and their ...

  17. Sequestration of arsenic in ombrotrophic peatlands

    Science.gov (United States)

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  18. CARBON SEQUESTRATION: A METHODS COMPARATIVE ANALYSIS

    International Nuclear Information System (INIS)

    Christopher J. Koroneos; Dimitrios C. Rovas

    2008-01-01

    All human activities are related with the energy consumption. Energy requirements will continue to rise, due to the modern life and the developing countries growth. Most of the energy demand emanates from fossil fuels. Fossil fuels combustion has negative environmental impacts, with the CO 2 production to be dominating. The fulfillment of the Kyoto protocol criteria requires the minimization of CO 2 emissions. Thus the management of the CO 2 emissions is an urgent matter. The use of appliances with low energy use and the adoption of an energy policy that prevents the unnecessary energy use, can play lead to the reduction of carbon emissions. A different route is the introduction of ''clean'' energy sources, such as renewable energy sources. Last but not least, the development of carbon sequestration methods can be promising technique with big future potential. The objective of this work is the analysis and comparison of different carbon sequestration and deposit methods. Ocean deposit, land ecosystems deposit, geological formations deposit and radical biological and chemical approaches will be analyzed

  19. A case of intralobar pulmonary sequestration

    International Nuclear Information System (INIS)

    Misawa, Takuo; Hongo, Minoru; Okubo, Shinichi; Yamada, Hiroyoshi; Matsuoka, Ken; Soga, Naoko; Kono, Jun; Kusama, Shozo

    1985-01-01

    A 57-year-old female was admitted to our hospital, complaining of hemoptysis. On auscultation, moist rales were audible at the lower portion of left posterior chest. Plain chest roentgenogram showed a round shadow in the left lower lung field. Computed tomography with contrast enhancement revealed an abnormal structure which was contiguous to a strand structure. Dynamic scanning demonstrated opacification of the strand structure and that of the greater part of the abnormal structure during peak opacification of the descending aorta. A part of the abnormal structure was opacified during the same phase as the opacification of the right ventricle and pulmonary artery. A diagnosis of intralobar pulmonary sequestration associated with pulmonary arterio-venous malformation was confirmed by thoracic aortography and left pulmonary arteriography. The hemoptysis was found to be caused by chronic bronchitis. It was emphasized that dynamic computed tomography is very useful to diagnose intralobar pulmonary sequestration and to assess the presence of pulmonary arterio-venous malformation. In addition, it is of particular interest that this case cannot be assigned to any category of Pryce's classification although it resembles both type I and IV. (author)

  20. Double-Difference Tomography for Sequestration MVA

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Erik

    2008-12-31

    Analysis of synthetic data was performed to determine the most cost-effective tomographic monitoring system for a geologic carbon sequestration injection site. Double-difference tomographic inversion was performed on 125 synthetic data sets: five stages of CO2 plume growth, five seismic event regions, and five geophone arrays. Each resulting velocity model was compared quantitatively to its respective synthetic velocity model to determine an accuracy value. The results were examined to determine a relationship between cost and accuracy in monitoring, verification, and accounting applications using double-difference tomography. The geophone arrays with widely-varying geophone locations, both laterally and vertically, performed best. Additionally, double difference seismic tomography was performed using travel time data from a carbon sequestration site at the Aneth oil field in southeast Utah as part of a Department of Energy initiative on monitoring, verification, and accounting (MVA) of sequestered CO2. A total of 1,211 seismic events were recorded from a borehole array consisting of 22 geophones. Artificial velocity models were created to determine the ease with which different CO2 plume locations and sizes can be detected. Most likely because of the poor geophone arrangement, a low velocity zone in the Desert Creek reservoir can only be detected when regions of test site containing the highest ray path coverage are considered. MVA accuracy and precision may be improved through the use of a receiver array that provides more comprehensive ray path coverage.

  1. Treatment Options for Retinoblastoma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other places in the body. Treatment Option Overview Key Points There are different types of ...

  2. Enhanced Performance Assessment System (EPAS) for carbon sequestration.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifeng; Sun, Amy Cha-Tien; McNeish, Jerry A. (Sandia National Laboratories, Livermore, CA); Dewers, Thomas A.; Hadgu, Teklu; Jove-Colon, Carlos F.

    2010-09-01

    Carbon capture and sequestration (CCS) is an option to mitigate impacts of atmospheric carbon emission. Numerous factors are important in determining the overall effectiveness of long-term geologic storage of carbon, including leakage rates, volume of storage available, and system costs. Recent efforts have been made to apply an existing probabilistic performance assessment (PA) methodology developed for deep nuclear waste geologic repositories to evaluate the effectiveness of subsurface carbon storage (Viswanathan et al., 2008; Stauffer et al., 2009). However, to address the most pressing management, regulatory, and scientific concerns with subsurface carbon storage (CS), the existing PA methodology and tools must be enhanced and upgraded. For example, in the evaluation of a nuclear waste repository, a PA model is essentially a forward model that samples input parameters and runs multiple realizations to estimate future consequences and determine important parameters driving the system performance. In the CS evaluation, however, a PA model must be able to run both forward and inverse calculations to support optimization of CO{sub 2} injection and real-time site monitoring as an integral part of the system design and operation. The monitoring data must be continually fused into the PA model through model inversion and parameter estimation. Model calculations will in turn guide the design of optimal monitoring and carbon-injection strategies (e.g., in terms of monitoring techniques, locations, and time intervals). Under the support of Laboratory-Directed Research & Development (LDRD), a late-start LDRD project was initiated in June of Fiscal Year 2010 to explore the concept of an enhanced performance assessment system (EPAS) for carbon sequestration and storage. In spite of the tight time constraints, significant progress has been made on the project: (1) Following the general PA methodology, a preliminary Feature, Event, and Process (FEP) analysis was performed for

  3. Sequestrated thrombolysis: Comparative evaluation in vivo

    International Nuclear Information System (INIS)

    Roy, Sumit; Laerum, Frode; Brosstad, Frank; Kvernebo, Knut; Sakariassen, Kjell S.

    2000-01-01

    Purpose: Lysis of a thrombus is a function of the local concentration of thrombolytic enzymes. This study was designed to determine in a porcine model of acute deep vein thrombosis (DVT) whether perithrombic sequestration of small volumes of a concentrated enzyme solution can accelerate the process of thrombolysis.Methods: DVT was induced in both hind limbs using a previously described technique (n=32). Thirty minutes later the animal was heparinized and unilateral thrombolysis was attempted using 8 mg recombinant tissue plasminogen activator (rt-PA); saline was administered in the opposite leg. For conventional high-volume infusion (CI) (n=5) rt-PA (0.067 mg/ml) was infused at l ml/min. For sequestrated thrombolysis the external iliac vein was endoluminally occluded, and rt-PA (0.25 mg/ml) administered either for proximal injection (ST-P) (n=5). as a bolus every 3 min through a microcatheter placed via the balloon catheter, or for transthrombic injection (ST-T) (n=5), as a bolus every 3 min through a Katzen wire in the balloon catheter. At autopsy, the thrombus mass in the iliofemoral veins was measured, and the extent of residual thrombosis in the venous tributaries graded at four sites. From these data a thrombolysis score was calculated.Results: One pig died before thrombolysis could be performed. Only with ST-T was residual thrombus mass in the test limb normalized to control, residual thrombus index (RTF), consistently less than unity. The median RTI of this group was 0.50 (range 0.39-0.97) compared with 1.22 (0.64-1.38) for ST-P and 0.88 (0.37-1.13) for CI. Compared with contralateral controls, a lower grade of residual thrombosis in tributaries was observed in test limbs at more venous sites with ST-T (8/20; 95% confidence interval 5-13) and ST-P (9/20; confidence interval 5-13) than with CI (2/20; confidence interval 0-5) (p=0.04). A trend toward lower thrombolysis scores was observed with ST-T (p=0.08). Systemic fibrinogenolysis was not observed in any of

  4. CO{sub 2} sequestration; Sequestration du CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Acket, C

    2008-04-15

    The carbon dioxide is the main gas associated to the human activity, generating consequences on the greenhouse effect. By the use of fossil fuels, the human activity generates each year, about 26 milliards of tons. Only the half of theses releases is absorbed by the nature, the rest reinforces the greenhouse effect. To reduce the emissions two actions are proposed: a better energy consumption and the development of technologies which do not produce, or weakly, greenhouse effect gases. Another way is studied: the carbon sequestration and geological storage. This document details the different technologies of sequestration, the transport and the underground storage. It discusses also the economical and legislative aspects, providing examples and projects. (A.L.B.)

  5. Exploring the Role of Plant Genetics to Enhance Soil Carbon Sequestration in Hybrid Poplar Plantations

    Science.gov (United States)

    Wullschleger, S. D.; Garten, C. T.; Classen, A. T.

    2008-12-01

    Atmospheric CO2 concentrations have increased in recent decades and are projected to increase even further during the coming century. These projections have prompted scientists and policy-makers to consider how plants and soils can be used to stabilize CO2 concentrations. Although storing carbon in terrestrial ecosystems represents an attractive near-term option for mitigating rising atmospheric CO2 concentrations, enhancing the sequestration potential of managed systems will require advancements in understanding the fundamental mechanisms that control rates of carbon transfer and turnover in plants and soils. To address this challenge, a mathematical model was constructed to evaluate how changes in particular plant traits and management practices could affect soil carbon storage beneath hybrid poplar (Populus) plantations. The model was built from four sub-models that describe aboveground biomass, root biomass, soil carbon dynamics, and soil nitrogen transformations for trees growing throughout a user-defined rotation. Simulations could be run over one or multiple rotations. A sensitivity analysis of the model indicated changes in soil carbon storage were affected by variables that could be linked to hybrid poplar traits like rates of aboveground production, partitioning of carbon to coarse and fine roots, and rates of root decomposition. A higher ratio of belowground to aboveground production was especially important and correlated directly with increased soil carbon storage. Faster decomposition rates for coarse and fine dead roots resulted in a greater loss of carbon to the atmosphere as CO2 and less residual organic carbon for transfer to the fast soil carbon pool. Hence, changes in root chemistry that prolonged dead root decomposition rates, a trait that is under potential genetic control, were predicted to increase soil carbon storage via higher soil carbon inputs. Nitrogen limitation of both aboveground biomass production and soil carbon sequestration was

  6. Australian Asian Options

    OpenAIRE

    Manuel Moreno; Javier F. Navas

    2003-01-01

    We study European options on the ratio of the stock price to its average and viceversa. Some of these options are traded in the Australian Stock Exchange since 1992, thus we call them Australian Asian options. For geometric averages, we obtain closed-form expressions for option prices. For arithmetic means, we use different approximations that produce very similar results.

  7. Options with Extreme Strikes

    Directory of Open Access Journals (Sweden)

    Lingjiong Zhu

    2015-07-01

    Full Text Available In this short paper, we study the asymptotics for the price of call options for very large strikes and put options for very small strikes. The stock price is assumed to follow the Black–Scholes models. We analyze European, Asian, American, Parisian and perpetual options and conclude that the tail asymptotics for these option types fall into four scenarios.

  8. Carbon Sequestration and Optimal Climate Policy

    International Nuclear Information System (INIS)

    Grimaud, Andre; Rouge, Luc

    2009-01-01

    We present an endogenous growth model in which the use of a non-renewable natural resource generates carbon-dioxide emissions that can be partly sequestered. This approach breaks with the systematic link between resource use and pollution emission. The accumulated stock of remaining emissions has a negative impact on household utility and corporate productivity. While sequestration quickens the optimal extraction rate, it can also generate higher emissions in the short run. It also has an adverse effect on economic growth. We study the impact of a carbon tax: the level of the tax has an effect in our model, its optimal level is positive, and it can be interpreted ex post as a decreasing ad valorem tax on the resource

  9. Cascade enzymatic reactions for efficient carbon sequestration.

    Science.gov (United States)

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A case of intralobar pulmonary sequestration

    International Nuclear Information System (INIS)

    Hongo, Minoru; Kambayashi, TakayukiF; Okubo, Shinichi

    1983-01-01

    A 41 year-old male was admitted to our hospital, complaining of slight fever, dry cough and general fatigue. On auscultation, bubbling rales were audible at the mid to lower portion of left posterior chest. Plain chest roentgenogram showed multiple cystic shadows with an air-fluid level in the left lower lobe. An abnormal finger-like shadow, which extended from the left hemidiaphragm to the multiple cysts, was found on lateral chest tomogram. Bronchogram revealed cystic dilatation of left B6 and B10. Computed tomogram with contrast enhancement demonstrated multiple cysts and an abnormal round-shaped structure, consisted of high density material, in the left lower lung. At the level of 12 mm below the round-shaped structure, an abnormal finger-like structure contiguous to the thoracic descending aorta was demonstrated. The density of these abnormal structures was 80 Hounsfield units, which was the same as that of the descending aorta. Thoracic aortogram disclosed an abnormal artery arising from the thoracic descending aorta, just above the left hemidiaphragm, which proceeded to the left lower lung horizontally, and extended to superior direction and divided into multiple branches. These vessels drained into the left atrium via left lower pulmonary vein. Diagnosis of intralobar pulmonary sequestration was confirmed by operation and consequently, the sequestered lung and the abnormal artery were successfully removed. It is emphasized that computed tomography with contrast enhancement is useful to detect the abnormal artery of pulmonary sequestration and that this method should be used to evaluate the vascular relationship of lung lesions. (author)

  11. Assessing ocean alkalinity for carbon sequestration

    Science.gov (United States)

    Renforth, Phil; Henderson, Gideon

    2017-09-01

    Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many

  12. An Overview of Geologic Carbon Sequestration Potential in California

    Energy Technology Data Exchange (ETDEWEB)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

  13. Dopamine Modulates Option Generation for Behavior.

    Science.gov (United States)

    Ang, Yuen-Siang; Manohar, Sanjay; Plant, Olivia; Kienast, Annika; Le Heron, Campbell; Muhammed, Kinan; Hu, Michele; Husain, Masud

    2018-05-21

    Animals make innumerable decisions every day, each of which involves evaluating potential options for action. But how are options generated? Although much is now known about decision making when a fixed set of potential options is provided, surprisingly little progress has been made on self-generated options. Some researchers have proposed that such abilities might be modulated by dopamine. Here, we used a new measure of option generation that is quantitative, objective, and culture fair to investigate how humans generate different behavioral options. Participants were asked to draw as many different paths (options) as they could between two points within a fixed time. Healthy individuals (n = 96) exhibited a trade-off between uniqueness (how individually different their options were) and fluency (number of options), generating either many similar or few unique options. To assess influence of dopamine, we first examined patients with Parkinson's disease (n = 35) ON and OFF their dopaminergic medication and compared them to elderly healthy controls (n = 34). Then we conducted a double-blind, placebo-controlled crossover study of the D2 agonist cabergoline in healthy older people (n = 29). Across both studies, dopamine increased fluency but diminished overall uniqueness of options generated, due to the effect of fluency trading off with uniqueness. Crucially, however, when this trade-off was corrected for, dopamine was found to increase uniqueness for any given fluency. Three carefully designed control studies showed that performance on our option-generation task was not related to executing movements, planning actions, or selecting between generated options. These findings show that dopamine plays an important role in modulating option generation. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  14. Exploration of public acceptance regarding CO2 underground sequestration technologies

    International Nuclear Information System (INIS)

    Uno, M.; Tokushige, K.; Mori, Y.; Furukawa, A.

    2005-01-01

    Mechanisms for gaining public acceptance of carbon dioxide (CO 2 ) aquifer sequestration were investigated through the use of questionnaires and focus group interviews. The study was performed as part of a CO 2 sequestration technology promotion project in Japan. The questionnaire portion of the study was conducted to determine public opinions and the extent of public awareness of CO 2 sequestration technologies. Questionnaires were distributed to undergraduate students majoring in environmental sociology. Participants were provided with newspaper articles related to CO 2 sequestration. The focus group study was conducted to obtain qualitative results to complement findings from the questionnaire survey. Results of the survey suggested that many participants were not particularly concerned about global warming, and had almost no knowledge about CO 2 sequestration. The opinions of some students were influenced by an awareness of similar types of facilities located near their homes. Attitudes were also influenced by the newspaper articles provided during the focus group sessions. However, many older participants did not trust information presented to them in newspaper format. Results suggested that many people identified afforestation as an alternative technology to CO 2 sequestration, and tended to think of CO 2 in negative terms as it contributed to global warming. Some participants assumed that CO 2 was harmful. The majority of respondents agreed with the development of CO 2 sequestration technologies as part of a program of alternative emissions abatement technologies. The provision of detailed information concerning CO 2 sequestration did not completely remove anxieties concerning the technology's potential negative impacts. It was concluded that a confident communications strategy is needed to persuade Japanese residents of the need to implement CO 2 sequestration technologies. 11 refs., 2 figs

  15. PV water pumping for carbon sequestration in dry land agriculture

    International Nuclear Information System (INIS)

    Olsson, Alexander; Campana, Pietro Elia; Lind, Mårten; Yan, Jinyue

    2015-01-01

    Highlights: • A novel model for carbon sequestration in dry land agriculture is developed. • We consider the water-food-energy-climate nexus to assess carbon sequestration. • Using water for carbon sequestration should be assessed critically. • Co-benefits of carbon sequestration should be included in the assessment. • Moisture feedback is part of the nexus model. - Abstract: This paper suggests a novel model for analysing carbon sequestration activities in dry land agriculture considering the water-food-energy-climate nexus. The paper is based on our on-going studies on photovoltaic water pumping (PVWP) systems for irrigation of grasslands in China. Two carbon sequestration projects are analysed in terms of their water productivity and carbon sequestration potential. It is concluded that the economic water productivity, i.e. how much water that is needed to produce an amount of grass, of grassland restoration is low and that there is a need to include several of the other co-benefits to justify the use of water for climate change mitigation. The co-benefits are illustrated in a nexus model including (1) climate change mitigation, (2) water availability, (3) downstream water impact, (4) energy security, (5) food security and (6) moisture recycling. We argue for a broad approach when analysing water for carbon sequestration. The model includes energy security and food security together with local and global water concerns. This makes analyses of dry land carbon sequestration activities more relevant and accurate. Without the nexus approach, the co-benefits of grassland restoration tend to be diminished

  16. Export from Seagrass Meadows Contributes to Marine Carbon Sequestration

    KAUST Repository

    Duarte, Carlos M.; Krause-Jensen, Dorte

    2017-01-01

    Seagrasses export a substantial portion of their primary production, both in particulate and dissolved organic form, but the fate of this export production remains unaccounted for in terms of seagrass carbon sequestration. Here we review available evidence on the fate of seagrass carbon export to conclude that this represents a significant contribution to carbon sequestration, both in sediments outside seagrass meadows and in the deep sea. The evidence presented implies that the contribution of seagrass meadows to carbon sequestration has been underestimated by only including carbon burial within seagrass sediments.

  17. Export from Seagrass Meadows Contributes to Marine Carbon Sequestration

    KAUST Repository

    Duarte, Carlos M.

    2017-01-17

    Seagrasses export a substantial portion of their primary production, both in particulate and dissolved organic form, but the fate of this export production remains unaccounted for in terms of seagrass carbon sequestration. Here we review available evidence on the fate of seagrass carbon export to conclude that this represents a significant contribution to carbon sequestration, both in sediments outside seagrass meadows and in the deep sea. The evidence presented implies that the contribution of seagrass meadows to carbon sequestration has been underestimated by only including carbon burial within seagrass sediments.

  18. [Research methods of carbon sequestration by soil aggregates: a review].

    Science.gov (United States)

    Chen, Xiao-Xia; Liang, Ai-Zhen; Zhang, Xiao-Ping

    2012-07-01

    To increase soil organic carbon content is critical for maintaining soil fertility and agricultural sustainable development and for mitigating increased greenhouse gases and the effects of global climate change. Soil aggregates are the main components of soil, and have significant effects on soil physical and chemical properties. The physical protection of soil organic carbon by soil aggregates is the important mechanism of soil carbon sequestration. This paper reviewed the organic carbon sequestration by soil aggregates, and introduced the classic and current methods in studying the mechanisms of carbon sequestration by soil aggregates. The main problems and further research trends in this study field were also discussed.

  19. Airline energy conservation options : summary options

    Science.gov (United States)

    1973-07-27

    In late May, 1973 the task of determining and evaluating measures for conserving fuel consumed by the airline industry was undertaken. This task was a part of the larger effort conducted by the Transportation Systems Center to determine measures that...

  20. Analysis of the carbon sequestration costs of afforestation and reforestation agroforestry practices and the use of cost curves to evaluate their potential for implementation of climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Arturo Balderas [Environment Department, University of York, YO10 5DD (United Kingdom); Instituto Tecnologico y de Estudios Superiores de Occidente (ITESO), Tlaquepaque CP (Mexico); Technology and Sustainable Development Section, Center for Clean Technology and Environmental Policy, University of Twente/CSTM, P.O. Box 217, 7500 AE Enschede (Netherlands); Marchant, Rob; Smart, James C.R. [Environment Department, University of York, YO10 5DD (United Kingdom); Lovett, Jon C. [Environment Department, University of York, YO10 5DD (United Kingdom); Technology and Sustainable Development Section, Center for Clean Technology and Environmental Policy, University of Twente/CSTM, P.O. Box 217, 7500 AE Enschede (Netherlands); Tipper, Richard [Ecometrica, Edinburgh, EH9 1PJ (United Kingdom)

    2010-01-15

    Carbon sequestration in forest sinks is an important strategy to remove greenhouse gases and to mitigate climate change; however its implementation has been limited under the Clean Development Mechanism of the Kyoto Protocol which has not created the incentives for widespread implementation. The objective of this paper is to analyze the sequestration costs of agroforestry afforestation and reforestation projects (ARPs) following a partial market equilibrium using average cost curves and economic break even analysis to identify the supply costs. The modelling done in this work contrasts the voluntary and clean development mechanism transaction costs. Data is based on the voluntary project, Scolel Te, being implemented in Mexico. Cost curves are developed for seven different sequestration options considering transaction and implementation costs; information from agricultural production in Chiapas Mexico is used to integrate opportunity costs of two agroforestry practices suggesting that sequestration costs may follow a 'U' shape, with an initial reduction due to economies of scale and a subsequent increase caused by high opportunity costs. The widespread implementation of agroforestry options not requiring complete land conversion (e.g. living fences and coffee under shade) might be cost effective strategies not generating high opportunity costs. Results also suggest that payments in the early years of the project and lower transaction costs favour the development of ARPs in the voluntary market especially in marginal rural areas with high discount rates. (author)

  1. Recovery Act: Geologic Sequestration Training and Research

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Peter; Esposito, Richard; Theodorou, Konstantinos; Hannon, Michael; Lamplugh, Aaron; Ellison, Kirk

    2013-06-30

    Work under the project entitled "Geologic Sequestration Training and Research," was performed by the University of Alabama at Birmingham and Southern Company from December 1, 2009, to June 30, 2013. The emphasis was on training of students and faculty through research on topics central to further development, demonstration, and commercialization of carbon capture, utilization, and storage (CCUS). The project had the following components: (1) establishment of a laboratory for measurement of rock properties, (2) evaluation of the sealing capacity of caprocks, (3) evaluation of porosity, permeability, and storage capacity of reservoirs, (4) simulation of CO{sub 2} migration and trapping in storage reservoirs and seepage through seal layers, (5) education and training of students through independent research on rock properties and reservoir simulation, and (6) development of an advanced undergraduate/graduate level course on coal combustion and gasification, climate change, and carbon sequestration. Four graduate students and one undergraduate student participated in the project. Two were awarded Ph.D. degrees for their work, the first in December 2010 and the second in August 2013. A third graduate student has proposed research on an advanced technique for measurement of porosity and permeability, and has been admitted to candidacy for the Ph.D. The fourth graduate student is preparing his proposal for research on CCUS and solid waste management. The undergraduate student performed experimental measurements on caprock and reservoir rock samples and received his B.S.M.E. degree in May 2012. The "Caprock Integrity Laboratory," established with support from the present project, is fully functional and equipped for measurement of porosity, permeability, minimum capillary displacement pressure, and effective permeability to gas in the presence of wetting phases. Measurements are made at ambient temperature and under reservoir conditions, including supercritical CO{sub 2

  2. Implications of observed and simulated soil carbon sequestration for management options in corn-based rotations

    Science.gov (United States)

    Managing cropping systems to sequester soil organic carbon (SOC) improves soil health and a system’s resiliency to impacts of changing climate. Our objectives were to 1) monitor SOC from a bio-energy cropping study in central Pennsylvania that included a corn-soybean-alfalfa rotation, switchgrass, a...

  3. Implications of observed and simulated soil carbon sequestration for management options in corn-based rotations

    Science.gov (United States)

    Managing cropping systems to sequester soil organic carbon (SOC) improves soil health and a system’s resiliency to impacts of changing climate. Our objectives were to 1) monitor SOC from a bio-energy cropping study in central Pennsylvania that included a corn-soybean-alfalfa rotation, switchgrass, ...

  4. Physical and Biological Regulation of Carbon Sequestration in Tidal Marshes

    Science.gov (United States)

    Morris, J. T.; Callaway, J.

    2017-12-01

    The rate of carbon sequestration in tidal marshes is regulated by complex feedbacks among biological and physical factors including the rate of sea-level rise (SLR), biomass production, tidal amplitude, and the concentration of suspended sediment. We used the Marsh Equilibrium Model (MEM) to explore the effects on C-sequestration across a wide range of permutations of these variables. C-sequestration increased with the rate of SLR to a maximum, then down to a vanishing point at higher SLR when marshes convert to mudflats. An acceleration in SLR will increase C-sequestration in marshes that can keep pace, but at high rates of SLR this is only possible with high biomass and suspended sediment concentrations. We found that there were no feasible solutions at SLR >13 mm/yr for permutations of variables that characterize the great majority of tidal marshes, i.e., the equilibrium elevation exists below the lower vertical limit for survival of marsh vegetation. The rate of SLR resulting in maximum C-sequestration varies with biomass production. C-sequestration rates at SLR=1 mm/yr averaged only 36 g C m-2 yr-1, but at the highest maximum biomass tested (5000 g/m2) the mean C-sequestration reached 399 g C m-2 yr-1 at SLR = 14 mm/yr. The empirical estimate of C-sequestration in a core dated 50-years overestimates the theoretical long-term rate by 34% for realistic values of decomposition rate and belowground production. The overestimate of the empirical method arises from the live and decaying biomass contained within the carbon inventory above the marker horizon, and overestimates were even greater for shorter surface cores.

  5. The biodiversity cost of carbon sequestration in tropical savanna

    OpenAIRE

    Abreu, Rodolfo C. R.; Hoffmann, William A.; Vasconcelos, Heraldo L.; Pilon, Natashi A.; Rossatto, Davi R.; Durigan, Giselda

    2017-01-01

    Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. ...

  6. Torsed pulmonary sequestration presenting as a painful chest mass

    International Nuclear Information System (INIS)

    Shah, Ricki; Carver, Terrence W.; Rivard, Douglas C.

    2010-01-01

    Pulmonary sequestration is a congenital abnormality that can be divided into intralobar or extralobar types. Both types are characterized by pulmonary tissue that does not communicate with the bronchial tree or pulmonary arteries and typically has its arterial supply arising from the descending aorta. We report a case of an 11-year-old girl with extralobar sequestration who presented with torsion causing abdominal pain and pleuritic chest pain. (orig.)

  7. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  8. Using CaO- and MgO-rich industrial waste streams for carbon sequestration

    International Nuclear Information System (INIS)

    Stolaroff, Joshuah K.; Lowry, Gregory V.; Keith, David W.

    2005-01-01

    To prevent rapid climate change, it will be necessary to reduce net anthropogenic CO 2 emissions drastically. This likely will require imposition of a tax or tradable permit scheme that creates a subsidy for negative emissions. Here, we examine possible niche markets in the cement and steel industries where it is possible to generate a limited supply of negative emissions (carbon storage or sequestration) cost-effectively. Ca(OH) 2 and CaO from steel slag or concrete waste can be dissolved in water and reacted with CO 2 in ambient air to capture and store carbon safely and permanently in the form of stable carbonate minerals (CaCO 3 ). The kinetics of Ca dissolution for various particle size fractions of ground steel slag and concrete were measured in batch experiments. The majority of available Ca was found to dissolve on a time scale of hours, which was taken to be sufficiently fast for use in an industrial process. An overview of the management options for steel slag and concrete waste is presented, which indicates how their use for carbon sequestration might be integrated into existing industrial processes. Use of the materials in a carbon sequestration scheme does not preclude subsequent use and is likely to add value by removing the undesirable qualities of water absorption and expansion from the products. Finally, an example scheme is presented which could be built and operated with current technology to sequester CO 2 with steel slag or concrete waste. Numerical models and simple calculations are used to establish the feasibility and estimate the operating parameters of the scheme. The operating cost is estimated to be US$8/t-CO 2 sequestered. The scheme would be important as an early application of technology for capturing CO 2 directly from ambient air

  9. Traditional preventive treatment options

    DEFF Research Database (Denmark)

    Longbottom, C; Ekstrand, K; Zero, D

    2009-01-01

    Preventive treatment options can be divided into primary, secondary and tertiary prevention techniques, which can involve patient- or professionally applied methods. These include: oral hygiene (instruction), pit and fissure sealants ('temporary' or 'permanent'), fluoride applications (patient...... options....

  10. Breast Cancer: Treatment Options

    Science.gov (United States)

    ... Breast Cancer > Breast Cancer: Treatment Options Request Permissions Breast Cancer: Treatment Options Approved by the Cancer.Net Editorial ... can be addressed as quickly as possible. Recurrent breast cancer If the cancer does return after treatment for ...

  11. Terrestrial Carbon Sequestration: Analysis of Terrestrial Carbon Sequestration at Three Contaminated Sites Remediated and Revitalized with Soil Amendments

    Science.gov (United States)

    This paper provides EPA's analysis of the data to determine carbon sequestration rates at three diverse sites that differ in geography/location, weather, soil properties, type of contamination, and age.

  12. PRN 94-9: Announcing the Formation of Two Industry-Wide Task Forces: Agricultural Reentry Task Force and Outdoor Residential Exposure Task Force

    Science.gov (United States)

    This Notice announces two industry-wide Task Forces being formed in response to generic exposure data requirements. It contains EPA's policy on a registrant's options for, and responsibilities when joining Task Force as a way to satisfy data requirements.

  13. CO{sub 2} sequestration technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ketzer, Marcelo [Brazilian Carbon Storage Research Center (Brazil)

    2008-07-15

    In this presentation the importance of the capture and sequestration of CO{sub 2} is outlined for the reduction of gas discharges of greenhouse effect; then the principles of CO{sub 2} storage in geologic formations are reviewed; afterwards, the analogs for the CO{sub 2} storage are commented, such as the storage of the acid gas, the natural gas storage and the natural CO{sub 2} deposits. Also it is spoken on the CO{sub 2} storage in coal, in water-bearing saline deposits and in oil fields, and finally the subject of the safety and monitoring of the CO{sub 2} storage is reviewed. [Spanish] En esta presentacion se expone la importancia de la captura y secuestro de CO{sub 2} para la reduccion de emisiones de gases de efecto invernadero; luego se tratan los principios de almacenamiento de CO{sub 2} en formaciones geologicas; despues se comentan los analogos para el almacenamiento de CO{sub 2} como el almacenamiento del gas acido, el almacenamiento de gas natural y los yacimientos naturales de CO{sub 2}. Tambien se habla sobre el almacenamiento de CO{sub 2} en carbon, acuiferos salinos y yacimientos petroliferos y por ultimo se toca el tema de la seguridad y monitoreo del almacenamiento de CO{sub 2}.

  14. Natural CO2 Analogs for Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Scott H. Stevens; B. Scott Tye

    2005-07-31

    The report summarizes research conducted at three naturally occurring geologic CO{sub 2} fields in the US. The fields are natural analogs useful for the design of engineered long-term storage of anthropogenic CO{sub 2} in geologic formations. Geologic, engineering, and operational databases were developed for McElmo Dome in Colorado; St. Johns Dome in Arizona and New Mexico; and Jackson Dome in Mississippi. The three study sites stored a total of 2.4 billion t (46 Tcf) of CO{sub 2} equivalent to 1.5 years of power plant emissions in the US and comparable in size with the largest proposed sequestration projects. The three CO{sub 2} fields offer a scientifically useful range of contrasting geologic settings (carbonate vs. sandstone reservoir; supercritical vs. free gas state; normally pressured vs. overpressured), as well as different stages of commercial development (mostly undeveloped to mature). The current study relied mainly on existing data provided by the CO{sub 2} field operator partners, augmented with new geochemical data. Additional study at these unique natural CO{sub 2} accumulations could further help guide the development of safe and cost-effective design and operation methods for engineered CO{sub 2} storage sites.

  15. Carbon Capture and Sequestration- A Review

    Science.gov (United States)

    Sood, Akash; Vyas, Savita

    2017-08-01

    The Drastic increase of CO2 emission in the last 30 years is due to the combustion of fossil fuels and it causes a major change in the environment such as global warming. In India, the emission of fossil fuels is developed in the recent years. The alternate energy sources are not sufficient to meet the values of this emission reduction and the framework of climate change demands the emission reduction, the CCS technology can be used as a mitigation tool which evaluates the feasibility for implementation of this technology in India. CCS is a process to capture the carbon dioxide from large sources like fossil fuel station to avoid the entrance of CO2 in the atmosphere. IPCC accredited this technology and its path for mitigation for the developing countries. In this paper, we present the technologies of CCS with its development and external factors. The main goal of this process is to avoid the release the CO2 into the atmosphere and also investigates the sequestration and mitigation technologies of carbon.

  16. Alliance for Sequestration Training, Outreach, Research & Education

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Hilary [Univ. of Texas, Austin, TX (United States). Inst. for Geophysics Jackson School of Geosciences

    2013-12-31

    The Sequestration Training, Outreach, Research and Education (STORE) Alliance at The University of Texas at Austin completed its activity under Department of Energy Funding (DE-FE0002254) on September 1, 2013. The program began as a partnership between the Institute for Geophysics, the Bureau of Economic Geology and the Petroleum and Geosystems Engineering Department at UT. The initial vision of the program was to promote better understanding of CO2 utilization and storage science and engineering technology through programs and opportunities centered on training, outreach, research and technology transfer, and education. With over 8,000 hrs of formal training and education (and almost 4,500 of those hours awarded as continuing education credits) to almost 1,100 people, STORE programs and activities have provided benefits to the Carbon Storage Program of the Department of Energy by helping to build a skilled workforce for the future CCS and larger energy industry, and fostering scientific public literacy needed to continue the U.S. leadership position in climate change mitigation and energy technologies and application. Now in sustaining mode, the program is housed at the Center for Petroleum and Geosystems Engineering, and benefits from partnerships with the Gulf Coast Carbon Center, TOPCORP and other programs at the university receiving industry funding.

  17. Distributed Energy Implementation Options

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Chandralata N [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-13

    This presentation covers the options for implementing distributed energy projects. It distinguishes between options available for distributed energy that is government owned versus privately owned, with a focus on the privately owned options including Energy Savings Performance Contract Energy Sales Agreements (ESPC ESAs). The presentation covers the new ESPC ESA Toolkit and other Federal Energy Management Program resources.

  18. The sequestration switch. Removing industrial CO2 by direct ocean absorption

    International Nuclear Information System (INIS)

    Ametistova, Lioudmila; Briden, James; Twidell, John

    2002-01-01

    This review paper considers direct injection of industrial CO 2 emissions into the mid-water oceanic column below 500 m depth. Such a process is a potential candidate for switching atmospheric carbon emissions directly to long term sequestration, thereby relieving the intermediate atmospheric burden. Given sufficient research justification, the argument is that harmful impact in both the Atmosphere and the biologically rich upper marine layer could be reduced. The paper aims to estimate the role that active intervention, through direct ocean CO 2 storage, could play and to outline further research and assessment for the strategy to be a viable option for climate change mitigation. The attractiveness of direct ocean injection lies in its bypassing of the Atmosphere and upper marine region, its relative permanence, its practicability using existing technologies and its quantification. The difficulties relate to the uncertainty of some fundamental scientific issues, such as plume dynamics, lowered pH of the exposed waters and associated ecological impact, the significant energy penalty associated with the necessary engineering plant and the uncertain costs. Moreover, there are considerable uncertainties regarding related international marine law. Development of the process would require acceptance of the evidence for climate change, strict requirements for large industrial consumers of fossil fuel to reduce CO 2 emissions into the Atmosphere and scientific evidence for the overall beneficial impact of ocean sequestration

  19. TANK SPACE OPTIONS REPORT

    International Nuclear Information System (INIS)

    Willis, W.L.; Ahrendt, M.R.

    2009-01-01

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  20. Making carbon dioxide sequestration feasible: Toward federal regulation of CO2 sequestration pipelines

    International Nuclear Information System (INIS)

    Mack, Joel; Endemann, Buck

    2010-01-01

    As the United States moves closer to a national climate change policy, it will have to focus on a variety of factors affecting the manner in which the country moves toward a future with a substantially lower carbon footprint. In addition to encouraging renewable energy, smart grid, clean fuels and other technologies, the United States will need to make substantial infrastructure investments in a variety of industries. Among the significant contributors to the current carbon footprint in the United States is the use of coal as a major fuel for the generation of electricity. One of the most important technologies that the United States can employ to reduce its carbon footprint is to sequester the carbon dioxide ('CO 2 ') from coal-fired power plants. This article focuses on the legal and policy issues surrounding a critical piece of the necessary sequestration infrastructure: CO 2 pipelines that will carry CO 2 from where it is removed from fuel or waste gas streams to where it will be sequestered. Ultimately, this article recommends developing a federally regulated CO 2 pipeline program to foster the implementation of carbon sequestration technology.

  1. Vegetation carbon sequestration in Chinese forests from 2010 to 2050.

    Science.gov (United States)

    He, Nianpeng; Wen, Ding; Zhu, Jianxing; Tang, Xuli; Xu, Li; Zhang, Li; Hu, Huifeng; Huang, Mei; Yu, Guirui

    2017-04-01

    Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in China's forest vegetation. The model used the field measurement data of 3161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in China's forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr -1 with a 95% confidence interval of 0.28-0.42 Pg C yr -1 , which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6-8% of China's future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policymakers for designing afforestation strategies and forest C trade in China. © 2016 John Wiley & Sons Ltd.

  2. Geomechanical issues of anthropogenic CO2 sequestration in exploited gas fields

    International Nuclear Information System (INIS)

    Ferronato, Massimiliano; Gambolati, Giuseppe; Janna, Carlo; Teatini, Pietro

    2010-01-01

    Anthropogenic CO 2 sequestration in deep geological formations may represent a viable option to fulfil the requirements of the 1997 Kyoto protocol on the reduction of greenhouse gas emissions. Scenarios of CO 2 sequestration through three injection wells in an exploited gas field located in the Po sedimentary basin (Italy) are simulated with the final target to understand the geomechanical consequences of the injection of carbon dioxide. Investigated scenarios include, as a hypothetical case, the long-term injection of CO 2 until the initial reservoir pressure is exceeded by as much as 40% over a period of about 100 years. The process is analyzed from the geomechanical point of view using a finite element-interface element (FE-IE) model with the following main issues addressed: (1) prediction of the possible land vertical uplift and corresponding impact on the ground infrastructures; (2) evaluation of the stress state induced in the reservoir formation with the possible generation of fractures and (3) a risk analysis for the activation of existing faults. The geomechanical constitutive law of the Northern Adriatic basin relying on the radioactive marker interpretation is implemented into the FE model, while an elasto-plastic relationship based on the Mohr-Coulomb criterion is used for the IE reproducing the fault behaviour. The in situ stress prior to the gas field exploitation is compressive with the principal horizontal stress in the direction perpendicular to the major faults equal to the vertical stress. The results show that the ground surface rebound due to the overpressure generated by the CO 2 sequestration partially mitigates the land subsidence experienced by the area because of the previous gas field depletion with differential displacements that are confined within the safety bounds suggested in the literature for the surface infrastructures. Activation of a few faults lying close to the northern reservoir boundary points to a slip of a couple of

  3. Carbon sequestration by young Norway spruce monoculture

    Science.gov (United States)

    Pokorny, R.; Rajsnerova, P.; Kubásek, J.

    2012-04-01

    Many studies have been focused on allometry, wood-mass inventory, carbon (C) sequestration, and biomass expansion factors as the first step for the evaluation of C sinks of different plant ecosystems. To identify and quantify these terrestrial C sinks, and evaluate CO2 human-induced emissions on the other hand, information for C balance accounting (for impletion of commitment to Kyoto protocol) are currently highly needed. Temperate forest ecosystems have recently been identified as important C sink. Carbon sink might be associated with environmental changes (elevated [CO2], air temperature, N deposition etc.) and large areas of managed fast-growing young forests. Norway spruce (Pice abies L. Karst) is the dominant tree species (35%) in Central European forests. It covers 55 % of the total forested area in the Czech Republic, mostly at high altitudes. In this contribution we present C sequestration by young (30-35 year-old) Norway spruce monocultures in highland (650-700 m a.s.l., AT- mean annual temperature: 6.9 ° C; P- annual amount of precipitation: 700 mm; GL- growing season duration: 150 days) and mountain (850-900 m a.s.l.; AT of 5.5 ° C; P of 1300 mm; and GL of 120 days) areas and an effect of a different type of thinning. However, the similar stem diameter at the breast height and biomass proportions among above-ground tree organs were obtained in the both localities; the trees highly differ in their height, above-ground organ's biomass values and total above ground biomass, particularly in stem. On the total mean tree biomass needle, branch and stem biomass participated by 22 %, 24 % and 54 % in highland, and by 19 %, 23 % and 58 % in mountain area, respectively. Silvicultural management affects mainly structure, density, and tree species composition of the stand. Therefore, dendrometric parameters of a tree resulted from genotype, growth conditions and from management history as well. Low type of thinning (LT; common in highland) stimulates rather tree

  4. Potential for geological sequestration of CO{sub 2} in Switzerland - Final report; Studie zur Abschaetzung des Potenzials fuer CO{sub 2}-Sequestrierung in der Schweiz - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, L. W.; Chevalier, G. [Institut fuer Geologie, Universitaet Bern, Bern (Switzerland); Leu, W. [Geoform AG, Geologische Beratungen und Studien, Villeneuve (former Minusio) (Switzerland)

    2010-08-15

    One approach to dispose of the greenhouse gas CO{sub 2} is to inject it into deep, porous geological formations, where is remains safely trapped over periods of many millennia. This report evaluates the potential for this option within Switzerland, based on a literature review. Only geological criteria for CO{sub 2} sequestration are taken into account, following international best-practice principles for reservoir safety. Simultaneous consideration of nine geological attributes (including faulting and natural seismicity) allows the sequestration potential to be mapped at a resolution of a few km{sup 2}, using a scale between 0 (negligible potential) and 1 (high potential). It is concluded that the crystalline rocks of the Alps and the sediments underlying the valleys of Valais, Ticino and Grisons are unsuitable for CO{sub 2} sequestration. However, the sedimentary rocks below the Central Plateau (and to lesser extent below the Jura Chain), locally show moderate to very good potential. At least four formations of porous sandstones and limestones (saline aquifers) underlie large areas of the Plateau within the technically favoured depth interval of 800-2500 m. Approximately 5000 km{sup 2} of the Plateau (mostly in the sector Fribourg-Olten-Lucerne) exhibits sequestration potentials above 0.6, offering a theoretical (unproven) storage capacity for approximately 2680 million tonnes of CO{sub 2}. From a purely geological point of view these results are promising. Although the high potentials do not guarantee the feasibility of CO{sub 2} sequestration, they serve as guides to areas that warrant detailed investigation. If this CO{sub 2} storage option is pursued in Switzerland, then more detailed geological investigations and a pilot study would be necessary to prove its feasibility. The assessed risks, leakage-monitoring procedures and non-geological criteria (proximity to CO{sub 2} point-sources, economics, conflicts of use of the subsurface, etc.) would have to be

  5. Treatment for unstable pulmonary sequestration injury in patient with severe blunt trauma: A case report.

    Science.gov (United States)

    Hiraki, Sakiko; Okada, Yohei; Arai, Yusuke; Ishii, Wataru; Iiduka, Ryoji

    2017-08-01

    Pulmonary sequestration is a congenital malformation characterized by nonfunctioning tissue not communicating with the tracheobronchial tree. As the blood pressure in the artery feeding the sequestrated lung tissue is higher than that in the normal pulmonary artery, the risk of massive hemorrhage in pulmonary sequestration is high. We herein present the first case of a severe blunt trauma patient with unstable pulmonary sequestration injury. The mechanism of pulmonary sequestration injury is vastly different than that of injury to normal lung. We suggest that proximal feeding artery embolization should be performed before surgical intervention in patients with massive hemorrhage of pulmonary sequestration due to severe chest trauma.

  6. Pawnee Nation Energy Option Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-31

    In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Based on the request of Pawnee Nation’s Energy Task Force the research team, consisting Tribal personnel and Summit Blue Consulting, focused on a review of renewable energy resource development potential, funding sources and utility organizational along with energy savings options. Elements of the energy demand forecasting and characterization and demand side options review remained in the scope of work, but were only addressed at a high level. Description of Activities Performed Renewable Energy Resource Development Potential The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Energy Efficiency Options While this was not a major focus of the project, the research team highlighted common strategies for reducing energy use in buildings. The team also discussed the benefits of adopting a building energy code and

  7. ECONOMIC EVALUATION OF CO2 STORAGE AND SINK ENHANCEMENT OPTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Bert Bock; Richard Rhudy; Howard Herzog; Michael Klett; John Davison; Danial G. De La Torre Ugarte; Dale Simbeck

    2003-02-01

    This project developed life-cycle costs for the major technologies and practices under development for CO{sub 2} storage and sink enhancement. The technologies evaluated included options for storing captured CO{sub 2} in active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of carbon sequestration in forests and croplands. The capture costs for a nominal 500 MW{sub e} integrated gasification combined cycle plant from an earlier study were combined with the storage costs from this study to allow comparison among capture and storage approaches as well as sink enhancements.

  8. Options for including nitrogen management in climate policy

    International Nuclear Information System (INIS)

    Erisman, J.W.

    2010-12-01

    The outline of the presentation is as follows: Climate change and nitrogen; Nitrogen and climate interlinkages; Options for nitrogen management; Report, workshop and IPCC; and Conclusions. The concluding remarks are: Fertilizing the biosphere with reactive nitrogen compounds lead to ecosystem, health, water and climate impacts; Nitrogen deposition can lead to additional carbon sequestration and to impacts on biodiversity and ecosystem services; Nitrogen addition to the biosphere might have a net cooling effect of 1 W/m 2 ; Life Cycle Analysis is needed to show the full impact; and Nitrogen management is essential for the environment and can have a positive effect on the net GHG exchange.

  9. Pulmonary sequestration: diagnosis with three dimensional reconstruction using spiral CT

    International Nuclear Information System (INIS)

    Nie Yongkang; Zhao Shaohong; Cai Zulong; Yang Li; Zhao Hong; Zhang Ailian; Huang Hui

    2003-01-01

    Objective: To evaluate the role of three dimensional (3D) reconstruction using spiral CT in the diagnosis of pulmonary sequestration. Methods: Ten patients with pulmonary sequestration were analyzed. The diagnoses were confirmed by angiography in 2 patients, by operation in 2 patients, and by CT angiography in 6 patients. All patients were examined with Philips SR 7000 or GE Lightspeed Plus scanner. CT images were transferred to a workstation and 3D reconstruction was performed. All images were reviewed and analyzed by two radiologists. Results: Among 10 patients, the pulmonary sequestration was in the right lower lobe in 1 patient and in the left lower lobe in 9 patients. Anomalous systemic arteries originated from thoracic aorta in 8 patients and from celiac artery in 2 patients. On plain CT scan, there were 4 patients with patchy opacities, 3 patients with hilar mass accompanying vascular engorgement and profusion in adjacent parenchyma, 2 patients with finger-like appendage surrounded by hyper-inflated lung, and 1 patient with lung mass-like lesion. Enhanced CT revealed anomalous systemic arteries in 9 patients and drainage vein in 7 patients. Maximum intensity projection (MIP) and curvilinear reconstruction could depict the abnormal systemic artery and drainage vein in sequestration. Surface shadow display (SSD) and volume rendering (VR) could delineate the anomalous systemic artery. Conclusion: 3D reconstruction with enhanced spiral CT can depict anomalous systemic artery and drainage vein and it is the first method of choice in diagnosing pulmonary sequestration

  10. Biologically Enhanced Carbon Sequestration: Research Needs and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis; Oldenburg, Curtis M.; Torn, Margaret S.

    2008-03-21

    Fossil fuel combustion, deforestation, and biomass burning are the dominant contributors to increasing atmospheric carbon dioxide (CO{sub 2}) concentrations and global warming. Many approaches to mitigating CO{sub 2} emissions are being pursued, and among the most promising are terrestrial and geologic carbon sequestration. Recent advances in ecology and microbial biology offer promising new possibilities for enhancing terrestrial and geologic carbon sequestration. A workshop was held October 29, 2007, at Lawrence Berkeley National Laboratory (LBNL) on Biologically Enhanced Carbon Sequestration (BECS). The workshop participants (approximately 30 scientists from California, Illinois, Oregon, Montana, and New Mexico) developed a prioritized list of research needed to make progress in the development of biological enhancements to improve terrestrial and geologic carbon sequestration. The workshop participants also identified a number of areas of supporting science that are critical to making progress in the fundamental research areas. The purpose of this position paper is to summarize and elaborate upon the findings of the workshop. The paper considers terrestrial and geologic carbon sequestration separately. First, we present a summary in outline form of the research roadmaps for terrestrial and geologic BECS. This outline is elaborated upon in the narrative sections that follow. The narrative sections start with the focused research priorities in each area followed by critical supporting science for biological enhancements as prioritized during the workshop. Finally, Table 1 summarizes the potential significance or 'materiality' of advances in these areas for reducing net greenhouse gas emissions.

  11. [Seagrass ecosystems: contributions to and mechanisms of carbon sequestration].

    Science.gov (United States)

    Qiu, Guang-Long; Lin, Hsing-Juh; Li, Zong-Shan; Fan, Hang-Qing; Zhou, Hao-Lang; Liu, Guo-Hua

    2014-06-01

    The ocean's vegetated habitats, in particular seagrasses, mangroves and salt marshes, each capture and store a comparable amount of carbon per year, forming the Earth's blue carbon sinks, the most intense carbon sinks on the planet. Seagrass meadows, characterized by high primary productivity, efficient water column filtration and sediment stability, have a pronounced capacity for carbon sequestration. This is enhanced by low decomposition rates in anaerobic seagrass sediments. The carbon captured by seagrass meadows contributes significantly to the total blue carbon. At a global scale, seagrass ecosystems are carbon sink hot spots and have profound influences on the global carbon cycle. This importance combined with the many other functions of seagrass meadows places them among the most valuable ecosystems in the world. Unfortunately, seagrasses are declining globally at an alarming rate owing to anthropogenic disturbances and climate change, making them also among the most threatened ecosystems on the Earth. The role of coastal systems in carbon sequestration has received far too little attention and thus there are still many uncertainties in evaluating carbon sequestration of global seagrass meadows accurately. To better assess the carbon sequestration of global seagrass ecosystems, a number of scientific issues should be considered with high priorities: 1) more accurate measurements of seagrass coverage at national and global levels; 2) more comprehensive research into species- and location-specific carbon sequestration efficiencies; 3) in-depth exploration of the effects of human disturbance and global climate change on carbon capture and storage by seagrass ecosystems.

  12. Black carbon sequestration as an alternative to bioenergy

    International Nuclear Information System (INIS)

    Fowles, Malcolm

    2007-01-01

    Most policy and much research concerning the application of biomass to reduce global warming gas emissions has concentrated either on increasing the Earth's reservoir of biomass or on substituting biomass for fossil fuels, with or without CO 2 sequestration. Suggested approaches entail varied risks of impermanence, delay, high costs, and unknowable side-effects. An under-researched alternative approach is to extract from biomass black (elemental) carbon, which can be permanently sequestered as mineral geomass and may be relatively advantageous in terms of those risks. This paper reviews salient features of black carbon sequestration and uses a high-level quantitative model to compare the approach with the alternative use of biomass to displace fossil fuels. Black carbon has been demonstrated to produce significant benefits when sequestered in agricultural soil, apparently without bad side-effects. Black carbon sequestration appears to be more efficient in general than energy generation, in terms of atmospheric carbon saved per unit of biomass; an exception is where biomass can efficiently displace coal-fired generation. Black carbon sequestration can reasonably be expected to be relatively quick and cheap to apply due to its short value chain and known technology. However, the model is sensitive to several input variables, whose values depend heavily on local conditions. Because characteristics of black carbon sequestration are only known from limited geographical contexts, its worldwide potential will not be known without multiple streams of research, replicated in other contexts. (author)

  13. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    The Albany Research Center (ARC) of the U.S. Dept. of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. Other participants in this Program include the Los Alamos National Laboratory, Arizona State University, Science Applications International Corporation, and the DOE National Energy Technology Laboratory. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. This slurry is reacted with supercritical carbon dioxide (CO2) to produce magnesite (MgCO3). The CO2 is dissolved in water to form carbonic acid (H2CO3), which dissociates to H+ and HCO3 -. The H+ reacts with the mineral, liberating Mg2+ cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO2 pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185?C and a partial pressure of CO2 (PCO2) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction

  14. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, W.K.; Dahlin, D.C.; Nilsen, D.N.; Walters, R.P.; Turner, P.C.

    2000-07-01

    The Albany Research Center (ARC) of the US Department of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite and member (mg{sub 2}SiO{sub 4})], or serpentine [Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}]. This slurry is reacted with supercritical carbon dioxide (CO{sub 2}) to produce magnesite (MgCO{sub 3}). The CO{sub 2} is dissolved in water to form carbonic acid (H{sub 2}CO{sub 3}), which dissociates to H{sup +} and HCO{sub 3}{sup {minus}}. The H{sup +} reacts with the mineral, liberating Mg{sup 2+} cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO{sub 2} pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185 C and a partial pressure of CO{sub 2} (P{sub CO{sub 2}}) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction conditions, have achieved roughly 83% conversion of heat treated serpentine

  15. Assessment of Brine Management for Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Hanna M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Borgia, Andrea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; McKone, Thomas E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2013-06-13

    Geologic carbon sequestration (GCS) is the injection of carbon dioxide (CO2), typically captured from stationary emission sources, into deep geologic formations to prevent its entry into the atmosphere. Active pilot facilities run by regional United States (US) carbon sequestration partnerships inject on the order of one million metric tonnes (mt) CO2 annually while the US electric power sector emits over 2000 million mt-CO2 annually. GCS is likely to play an increasing role in US carbon mitigation initiatives, but scaling up GCS poses several challenges. Injecting CO2 into sedimentary basins raises fluid pressure in the pore space, which is typically already occupied by naturally occurring, or native, brine. The resulting elevated pore pressures increase the likelihood of induced seismicity, of brine or CO2 escaping into potable groundwater resources, and of CO2 escaping into the atmosphere. Brine extraction is one method for pressure management, in which brine in the injection formation is brought to the surface through extraction wells. Removal of the brine makes room for the CO2 and decreases pressurization. Although the technology required for brine extraction is mature, this form of pressure management will only be applicable if there are cost-­effective and sustainable methods of disposing of the extracted brine. Brine extraction, treatment, and disposal may increase the already substantial capital, energy, and water demands of Carbon dioxide Capture and Sequestration (CCS). But, regionally specific brine management strategies may be able to treat the extracted water as a source of revenue, energy, and water to subsidize CCS costs, while minimizing environmental impacts. By this approach, value from the extracted water would be recovered before disposing of any resulting byproducts. Until a price is placed on carbon, we expect that utilities and other CO2 sources will be

  16. RECOVERY AND SEQUESTRATION OF CO2 FROM STATIONARY COMBUSTION SYSTEMS BY PHOTOSYNTHESIS OF MICROALGAE

    Energy Technology Data Exchange (ETDEWEB)

    Takashi Nakamura

    2004-11-01

    Most of the anthropogenic emissions of carbon dioxide result from the combustion of fossil fuels for energy production. Photosynthesis has long been recognized as a means, at least in theory, to sequester anthropogenic carbon dioxide. Aquatic microalgae have been identified as fast growing species whose carbon fixing rates are higher than those of land-based plants by one order of magnitude. Physical Sciences Inc. (PSI), Aquasearch, and the Hawaii Natural Energy Institute at the University of Hawaii are jointly developing technologies for recovery and sequestration of CO{sub 2} from stationary combustion systems by photosynthesis of microalgae. The research is aimed primarily at demonstrating the ability of selected species of microalgae to effectively fix carbon from typical power plant exhaust gases. This report covers the reporting period 1 April to 30 June 2004 in which PSI, Aquasearch and University of Hawaii conducted their tasks. Based on the work during the previous reporting period, Aquasearch run further, pilot and full scale, carbon sequestration tests with actual propane combustion gases utilizing two different strains of microalgae. Aquasearch continued testing modifications to the coal combustor to allow for longer-term burns. Aquasearch also tested an alternative cell separation technology. University of Hawaii performed experiments at the Mera Pharmaceuticals facility in Kona in mid June to obtain data on the carbon venting rate out of the photobioreactor; gas venting rates were measured with an orifice flow meter and gas samples were collected for GC analysis to determine the carbon content of the vented gases.

  17. U.S. Department of Energy's Regional Carbon Sequestration Partnership Program: Overview

    Science.gov (United States)

    Litynski, J.; Plasynski, S.; Spangler, L.; Finley, R.; Steadman, E.; Ball, D.; Nemeth, K.J.; McPherson, B.; Myer, L.

    2009-01-01

    The U.S. Department of Energy (DOE) has formed a nationwide network of seven regional partnerships to help determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. The Regional Carbon Sequestration Partnerships (RCSPs) are tasked with determining the most suitable technologies, regulations, and infrastructure for carbon capture, transport, and storage in their areas of the country and parts of Canada. The seven partnerships include more than 350 state agencies, universities, national laboratories, private companies, and environmental organizations, spanning 42 states, two Indian nations, and four Canadian provinces. The Regional Partnerships initiative is being implemented in three phases: ???Characterization Phase (2003-2005): The objective was to collect data on CO2 sources and sinks and develop the human capital to support and enable future carbon sequestration field tests and deployments. The completion of this Phase was marked by release of the Carbon Sequestration Atlas of the United States and Canada-Version 1 which included a common methodology for capacity assessment and reported over 3,000GT of storage capacity in saline formations, depleted oil and gas fields, and coal seams.???Validation Phase (2005-2009): The objective is to plan and implement small-scale (1??million tons of CO2) Carbon Capture and Storage (CCS) projects, which will demonstrate that large volumes of CO2 can be injected safely, permanently, and economically into geologic formations representative of large storage capacity. Even though the RCSP Program is being implemented in three phases, it should be viewed as an integrated whole, with many of the goals and objectives transitioning from one phase to the next. Accomplishments and results from the Characterization Phase have helped to refine goals and activities in the Validation and Deployment Phases. The RCSP Program encourages and requires open information sharing among

  18. U.S. Department of Energy's Regional Carbon Sequestration Partnership Program: Overview

    Science.gov (United States)

    Litynski, J.; Plasynski, S.; Spangler, L.; Finley, R.; Steadman, E.; Ball, D.; Nemeth, K.J.; McPherson, B.; Myer, L.

    2009-01-01

    The U.S. Department of Energy (DOE) has formed a nationwide network of seven regional partnerships to help determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. The Regional Carbon Sequestration Partnerships (RCSPs) are tasked with determining the most suitable technologies, regulations, and infrastructure for carbon capture, transport, and storage in their areas of the country and parts of Canada. The seven partnerships include more than 350 state agencies, universities, national laboratories, private companies, and environmental organizations, spanning 42 states, two Indian nations, and four Canadian provinces. The Regional Partnerships initiative is being implemented in three phases: ???Characterization Phase (2003-2005): The objective was to collect data on CO2 sources and sinks and develop the human capital to support and enable future carbon sequestration field tests and deployments. The completion of this Phase was marked by release of the Carbon Sequestration Atlas of the United States and Canada-Version 1 which included a common methodology for capacity assessment and reported over 3,000GT of storage capacity in saline formations, depleted oil and gas fields, and coal seams.???Validation Phase (2005-2009): The objective is to plan and implement small-scale (partnerships are currently conducting over 20 small-scale geologic field tests and 11 terrestrial field tests.???Development Phase (2008-2018): The primary objective is the development of large-scale (>1??million tons of CO2) Carbon Capture and Storage (CCS) projects, which will demonstrate that large volumes of CO2 can be injected safely, permanently, and economically into geologic formations representative of large storage capacity. Even though the RCSP Program is being implemented in three phases, it should be viewed as an integrated whole, with many of the goals and objectives transitioning from one phase to the next. Accomplishments

  19. Pulmonary sequestrations of the upper lobe in children: Three presentations

    International Nuclear Information System (INIS)

    Hoeffel, J.C.; Bernard, C.; Didier, F.; Bretagne, M.C.; Gautry, P.; Olive, D.; Prevot, J.; Pernot, C.; Hopital des Enfants, 54 - Vandoeuvre-les-Nancy; Hopital des Enfants, 54 - Vandoeuvre-les-Nancy; Hopital des Enfants, 54 - Vandoeuvre-les-Nancy

    1986-01-01

    Pulmonary sequestrations are congenital abnormalities where nonfunctioning lung tissue receives its vascular supply from the systemic circulation (thoracic or abdominal aorta). It is necessary to establish the diagnosis in childhood when the lesions are uncomplicated. The authors present three cases of sequestration of the apex (2 extralobar and 1 atypical) with the main clinical and radiological features. Sequestrations in the upper lobe are rare, and the usual site is the left lower lobe. Plain X-rays show a dense opacity, sometimes with an air-fluid level: angiography is currently the best mean for definitive diagnosis; however, computed tomography will probably be very useful in the future. Differential diagnosis includes tumours of the superior mediastinum (neurogenic tumours, digestive duplication, bronchogenic cysts, pheochromocytoma and hydatid cysts). (orig.) [de

  20. Micromotor-Based Biomimetic Carbon Dioxide Sequestration: Towards Mobile Microscrubbers.

    Science.gov (United States)

    Uygun, Murat; Singh, Virendra V; Kaufmann, Kevin; Uygun, Deniz A; de Oliveira, Severina D S; Wang, Joseph

    2015-10-26

    We describe a mobile CO2 scrubbing platform that offers a greatly accelerated biomimetic sequestration based on a self-propelled carbonic anhydrase (CA) functionalized micromotor. The CO2 hydration capability of CA is coupled with the rapid movement of catalytic micromotors, and along with the corresponding fluid dynamics, results in a highly efficient mobile CO2 scrubbing microsystem. The continuous movement of CA and enhanced mass transport of the CO2 substrate lead to significant improvements in the sequestration efficiency and speed over stationary immobilized or free CA platforms. This system is a promising approach to rapid and enhanced CO2 sequestration platforms for addressing growing concerns over the buildup of greenhouse gas. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mineral CO2 sequestration in alkaline solid residues

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2004-12-01

    Mineral carbonation is a promising sequestration route for the permanent and safe storage of carbon dioxide. In addition to calcium- or magnesium-containing primary minerals, suitable alkaline solid residues can be used as feedstock. The use of alkaline residues has several advantages, such as their availability close to CO2 sources and their higher reactivity for carbonation than primary minerals. In addition, the environmental quality of residues can potentially be improved by carbonation. In this study, key factors of the mineral CO2 sequestration process are identified, their influence on the carbonation process is examined, and environmental properties of the reaction products with regard to their possible beneficial utilization are investigated. The use of alkaline solid residues forms a potentially attractive alternative for the first mineral sequestration plants

  2. Carbon Sequestration on Surface Mine Lands

    Energy Technology Data Exchange (ETDEWEB)

    Donald Graves; Christopher Barton; Richard Sweigard; Richard Warner; Carmen Agouridis

    2006-03-31

    reclamation practice. In addition, experiments were integrated within the reforestation effort to address specific questions pertaining to sequestration of carbon (C) on these sites.

  3. State and Regional Control of Geological Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Reitze, Arnold [Univ. of Utah, Salt Lake City, UT (United States); Durrant, Marie [Univ. of Utah, Salt Lake City, UT (United States)

    2011-03-01

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­and-trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

  4. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    Science.gov (United States)

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region. © 2015 John Wiley & Sons Ltd.

  5. Development and validation of a testing protocol for carbon sequestration using a controlled environment.

    Science.gov (United States)

    2012-05-01

    Carbon footprints, carbon credits and associated carbon sequestration techniques are rapidly becoming part : of how environmental mitigation business is conducted, not only in Texas but globally. Terrestrial carbon : sequestration is the general term...

  6. CRADA Carbon Sequestration in Soils and Commercial Products

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, G.K.

    2002-01-31

    ORNL, through The Consortium for Research on Enhancing Carbon Sequestration in Terrestrial Ecosystems (CSiTE), collaborated with The Village Botanica, Inc. (VB) on a project investigating carbon sequestration in soils and commercial products from a new sustainable crop developed from perennial Hibiscus spp. Over 500 pre-treated samples were analyzed for soil carbon content. ORNL helped design a sampling scheme for soils during the planting phase of the project. Samples were collected and prepared by VB and analyzed for carbon content by ORNL. The project did not progress to a Phase II proposal because VB declined to prepare the required proposal.

  7. Mouse-tracking evidence for parallel anticipatory option evaluation.

    Science.gov (United States)

    Cranford, Edward A; Moss, Jarrod

    2017-12-23

    In fast-paced, dynamic tasks, the ability to anticipate the future outcome of a sequence of events is crucial to quickly selecting an appropriate course of action among multiple alternative options. There are two classes of theories that describe how anticipation occurs. Serial theories assume options are generated and evaluated one at a time, in order of quality, whereas parallel theories assume simultaneous generation and evaluation. The present research examined the option evaluation process during a task designed to be analogous to prior anticipation tasks, but within the domain of narrative text comprehension. Prior research has relied on indirect, off-line measurement of the option evaluation process during anticipation tasks. Because the movement of the hand can provide a window into underlying cognitive processes, online metrics such as continuous mouse tracking provide more fine-grained measurements of cognitive processing as it occurs in real time. In this study, participants listened to three-sentence stories and predicted the protagonists' final action by moving a mouse toward one of three possible options. Each story was presented with either one (control condition) or two (distractor condition) plausible ending options. Results seem most consistent with a parallel option evaluation process because initial mouse trajectories deviated further from the best option in the distractor condition compared to the control condition. It is difficult to completely rule out all possible serial processing accounts, although the results do place constraints on the time frame in which a serial processing explanation must operate.

  8. The origins of options.

    Science.gov (United States)

    Smaldino, Paul E; Richerson, Peter J

    2012-01-01

    Most research on decision making has focused on how human or animal decision makers choose between two or more options, posed in advance by the researchers. The mechanisms by which options are generated for most decisions, however, are not well understood. Models of sequential search have examined the trade-off between continued exploration and choosing one's current best option, but still cannot explain the processes by which new options are generated. We argue that understanding the origins of options is a crucial but untapped area for decision making research. We explore a number of factors which influence the generation of options, which fall broadly into two categories: psycho-biological and socio-cultural. The former category includes factors such as perceptual biases and associative memory networks. The latter category relies on the incredible human capacity for culture and social learning, which doubtless shape not only our choices but the options available for choice. Our intention is to start a discussion that brings us closer toward understanding the origins of options.

  9. Americal options analyzed differently

    NARCIS (Netherlands)

    Nieuwenhuis, J.W.

    2003-01-01

    In this note we analyze in a discrete-time context and with a finite outcome space American options starting with the idea that every tradable should be a martingale under a certain measure. We believe that in this way American options become more understandable to people with a good working

  10. Traffic Light Options

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte

    This paper introduces, prices, and analyzes traffic light options. The traffic light option is an innovative structured OTC derivative developed independently by several London-based investment banks to suit the needs of Danish life and pension (L&P) companies, which must comply with the traffic...... 2006, and supervisory authorities in many other European countries have implemented similar regulation. Traffic light options are therefore likely to attract the attention of a wider audience of pension fund managers in the future. Focusing on the valuation of the traffic light option we set up a Black...... light scenarios. These stress scenarios entail drops in interest rates as well as in stock prices, and traffic light options are thus designed to pay off and preserve sufficient capital when interest rates and stock prices fall simultaneously. Sweden's FSA implemented a traffic light system in January...

  11. Traffic Light Options

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte

    2007-01-01

    This paper introduces, prices, and analyzes traffic light options. The traffic light option is an innovative structured OTC derivative developed independently by several London-based investment banks to suit the needs of Danish life and pension (L&P) companies, which must comply with the traffic...... 2006, and supervisory authorities in many other European countries have implemented similar regulation. Traffic light options are therefore likely to attract the attention of a wider audience of pension fund managers in the future. Focusing on the valuation of the traffic light option we set up a Black...... light scenarios. These stress scenarios entail drops in interest rates as well as in stock prices, and traffic light options are thus designed to pay off and preserve sufficient capital when interest rates and stock prices fall simultaneously. Sweden's FSA implemented a traffic light system in January...

  12. 75 FR 75059 - Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    2010-12-01

    ... Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide; Final Rule #0;#0;Federal Register... Mandatory Reporting of Greenhouse Gases: Injection and Geologic Sequestration of Carbon Dioxide AGENCY... greenhouse gas monitoring and reporting from facilities that conduct geologic sequestration of carbon dioxide...

  13. 75 FR 33613 - Notice of the Carbon Sequestration-Geothermal Energy-Science Joint Workshop

    Science.gov (United States)

    2010-06-14

    ... Energy, DOE. ACTION: Notice of the Carbon Sequestration--Geothermal Energy--Science Joint Workshop... Fossil Energy-Carbon Sequestration Program will be holding a joint workshop on Common Research Themes for...-- http://www.geothermal.energy.gov . DATES: The Carbon Sequestration--Geothermal Energy--Science Joint...

  14. Polish Toxic Currency Options

    Directory of Open Access Journals (Sweden)

    Waldemar Gontarski

    2009-06-01

    Full Text Available Toxic currency options are defined on the basis of the opposition to the nature (essence of an option contract, which is justified in terms of norms founded on the general law clause of characteristics (nature of a relation (which represents an independent premise for imposing restrictions on the freedom of contracts. So-understood toxic currency options are unlawful. Indeed they contravene iuris cogentis regulations. These include for instance option contracts, which are concluded with a bank, if the bank has not informed about option risk before concluding the contract; or the barrier options, which focus only on the protection of bank’s interests. Therefore, such options may appear to be invalid. Therefore, performing contracts for toxic currency options may be qualified as a criminal mismanagement. For the sake of security, the manager should then take into consideration filing a claim for stating invalidity (which can be made in a court verdict. At the same time, if the supervisory board member in a commercial company, who can also be a subject to mismanagement offences, commits an omission involving lack of reaction (for example, if he/she fails to notify of the suspected offence committed by the management board members acting to the company’s detriment when the management board makes the company conclude option contracts which are charged with absolute invalidity the supervisory board member so acting may be considered to act to the company’s detriment. In the most recent Polish jurisprudence and judicature the standard of a “good host” is treated to be the last resort for determining whether the manager’s powers resulting from criminal regulations were performed. The manager of the exporter should not, as a rule, issue any options. Issuing options always means assuming an obligation. In the case of currency put options it is an absolute obligation to purchase a given amount in euro at exchange rate set in advance. On the

  15. 2005 resource options report

    International Nuclear Information System (INIS)

    Morris, T.

    2005-01-01

    This resource options report (ROR) fulfils regulatory requirements in British Columbia's two-year resource planning process. It identifies a wide range of resources and technologies that could be used to meet BC Hydro's future electricity demand. As such, it facilitates a transparent public review of resource options which include both supply-side and demand-side options. The resource options that will be used in the 2005 integrated electricity plan (IEP) were characterized. This ROR also documents where there is a general agreement or disagreement on the resource type characterization, based on the First Nations and Stakeholder engagement. BC Hydro used current information to provide realistic ranges on volume and cost to characterize environmental and social attributes. The BC Hydro system was modelled to assess the benefit and cost of various resource options. The information resulting from this ROR and IEP will help in making decisions on how to structure competitive acquisition calls and to determine the level of transmission services needed to advance certain BC Hydro projects. The IEP forecasts the nature and quantity of domestic resources required over the next 20 years. A strategic direction on how those needs will be met has been created to guide the management of BC Hydro's energy resources. Supply-side options include near-commercial technologies such as energy storage, ocean waves, tidal, fuel cells and integrated coal gasification combined cycle technology. Supply-side options also include natural gas, coal, biomass, geothermal, wind, and hydro. 120 refs., 39 tabs., 21 figs., 6 appendices

  16. JOINT ECONOMIC AND ENVIRONMENTAL OPTIMIZATION OF HYBRID POWER SUPPLY FOR LARGE SCALE RO-DESALINATION PLANT: WITH AND WITHOUT CO2 SEQUESTRATION

    Directory of Open Access Journals (Sweden)

    EMAN A. TORA

    2016-07-01

    Full Text Available In this paper, a multi- objective optimization approach is introduced to define a hybrid power supply system for a large scale RO- desalination plant. The target is to integrate a number of locally available energy resources to generate the electricity demand of the RO- desalination plant with minimizing both the electricity generation cost and the greenhouse gas emissions whereby carbon dioxide sequestration may be an option. The considered energy resources and technologies are wind turbines, solar PV, combined cycles with natural gas turbines, combined cycles with coal gasification, pulverized coal with flue gas desulfurization, and biomass combined heat and power CHP. These variable energy resources are investigated under different constraints on the renewable energy contribution. Likewise, the effect of carbon dioxide sequestration is included. Accordingly, five scenarios have been analyzed. Trade- offs between the minimum electricity generation cost and the minimum greenhouse gas emissions have been determined and represented in Pareto curves using the constraint method (. The results highlight that among the studied fossil fuel technologies, the integrated combined cycle natural gas turbines can provide considerable fraction of the needed power supply. Likewise, wind turbines are the most effective technology among renewable energy options. When CO2 sequestration applied, the costs increase and significant changes in the optimum combination of renewable energy resources have been monitored. In that case, solar PV starts to appreciably compete. The optimum mix of energy resources extends to include biomass CHP as well.

  17. Quantification of the sequestration of indium 111 labelled platelets

    International Nuclear Information System (INIS)

    Najean, Y.; Picard, N.; Dufour, V.; Rain, J.D.

    1988-01-01

    A simple method is proposed for an accurate quantification of the splenic and/or hepatic sequestration of the 111 In-labelled platelets. It could be allow a better prediction of the efficiency of splenectomy in idiopathic thrombocytopenic purpura [fr

  18. Soil Carbon Sequestration and the Greenhouse Effect (2nd Edition)

    Science.gov (United States)

    This volume is a second edition of the book “Soil Carbon Sequestration and The Greenhouse Effect”. The first edition was published in 2001 as SSSA Special Publ. #57. The present edition is an update of the concepts, processes, properties, practices and the supporting data. All chapters are new co...

  19. The effect of soil fauna on carbon sequestration in soil

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Pižl, Václav; Kaneda, Satoshi; Šimek, Miloslav

    2008-01-01

    Roč. 10, - (2008) ISSN 1029-7006. [EGU General Assembly 2008. 13.04.2008-18.04.2008, Vienna] Institutional research plan: CEZ:AV0Z60660521 Keywords : soil fauna * carbon sequestration * soil Subject RIV: EH - Ecology, Behaviour

  20. Geothermal energy combined with CO2 sequestration : An additional benefit

    NARCIS (Netherlands)

    Salimi, H.; Wolf, K.H.A.A.; Bruining, J.

    2012-01-01

    In this transition period from a fossil-fuel based society to a sustainable-energy society, it is expected that CO2 capture and subsequent sequestration in geological formations plays a major role in reducing greenhouse gas emissions. An alternative for CO2 emission reduction is to partially replace

  1. Intralobar bronchopulmonary sequestration in the newborn - a congenital malformation

    International Nuclear Information System (INIS)

    Laurin, S.; Haegerstrand, I.

    1999-01-01

    Background. Intralobar sequestration (ILS) has been suggested to be an acquired lesion. However, we have observed several young infants who had ILS. Objectives. Since this fact seems to indicate a congenital origin, we reviewed our experience. Material and methods. A retrospective review of bronchopulmonary sequestration from the Departments of Radiology and Pathology in Lund between 1964 and 1997. Results. We identified seven infants or young children with a diagnosis of intralobar sequestration. In each patient, the ILS was present before recurrent infection developed. Five had chest X-rays as neonates, one at 3 months and one at 11 months of age. All but one showed an abnormality on their first chest X-ray, consistent with sequestration. Six of the ILS were verified at angiography; all seven were surgically removed. Two of the children with ILS also had congenital cystic adenomatoid malformation (CCAM). Three children had both ILS and scimitar syndrome. Conclusions. The fact that ILS was present in seven newborn and young infants indicates that this lesion is, at least in some patients, a congenital malformation. (orig.)

  2. Pulmonary sequestration with histologic changes of cystic adenomatoid malformation

    International Nuclear Information System (INIS)

    Morin, C.; Filiatrault, D.; Russo, P.

    1989-01-01

    Pulmonary sequestration and congenital cystic adenomatoid malformation (CCAM) are two infrequent congenital pulmonary diseases. The combination of these two entities is rare. We report a case where the antenatal ultrasonography showed a left pulmonary mass suggesting CCAM. The US done after birth revealed an aberrant vascularisation. Pathologic examination confirmed the association of both lesions. (orig.)

  3. Cost Evaluation of CO2 Sequestration by Aqueous Mineral Carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2007-01-01

    A cost evaluation of CO2 sequestration by aqueous mineral carbonation has been made using either wollastonite (CaSiO3) or steel slag as feedstock. First, the process was simulated to determine the properties of the streams as well as the power and heat consumption of the process equipment. Second, a

  4. Metal ion sequestration: An exciting dimension for molecularly ...

    African Journals Online (AJOL)

    The use of a tight binding macrocyclic ligand to complex a metal ion so that this serves as receptee on the Molecularly Imprinted Polymer (MIP) receptor as described here affords a sequestration route for a targeted metal ion, with potential for environmental remediation and restoration applications. Ethylene glycol ...

  5. Mayamontana coccolobae (Basidiomycota), a new sequestrate taxon from Belize

    Science.gov (United States)

    Michael A. Castellano; James M. Trappe; D. Jean Lodge

    2007-01-01

    A new semi-hypogeous, sequestrate genus and species in the Basidiomycota is described from the Maya Mountains of Belize, where it was fruiting in association with Coccoloba belizensis. Mayamontana coccolobae is characterized by small, bright orange basidiomata with a friable, loculate, red-orange to red gleba and bilaterally...

  6. Climate change and carbon sequestration opportunities on national forests

    Science.gov (United States)

    R.L. Deal

    2010-01-01

    Deforestation globally accounts for about 20 percent of total greenhouse gas emissions. One of the major forestry challenges in the United States is reducing the loss of forest land from development. Foresters have a critical role to play in forest management and carbon sequestration to reduce greenhouse gas emissions, and forestry can be part of the solution. A recent...

  7. A Sustainability Initiative to Quantify Carbon Sequestration by Campus Trees

    Science.gov (United States)

    Cox, Helen M.

    2012-01-01

    Over 3,900 trees on a university campus were inventoried by an instructor-led team of geography undergraduates in order to quantify the carbon sequestration associated with biomass growth. The setting of the project is described, together with its logistics, methodology, outcomes, and benefits. This hands-on project provided a team of students…

  8. Using Biomass to Improve Site Quality and Carbon Sequestration

    Science.gov (United States)

    Bryce J. Stokes; Felipe G. Sanchez; Emily A. Carter

    1998-01-01

    The future demands on forest lands are a concern because of reduced productivity, especially on inherently poor sites, sites with long-depleted soils, or those soils that bear repeated, intensive short rotations. Forests are also an important carbon sink and, when well managed, can make even more significant contributions to sequestration and to reduction of greenhouse...

  9. Diagnosis of arterial sequestration using multidetector CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Yu Hong, E-mail: yuhong.2002@hotmail.com [Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003 (China); Li Huimin, E-mail: lihuiminphd@163.com [Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003 (China); Liu Shiyuan, E-mail: cjr.liushiyuan@vip.163.com [Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003 (China); Xiao Xiangsheng, E-mail: cjr.xxsh@vip.163.com [Department of Radiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003 (China)

    2010-11-15

    Background: Arterial sequestration is a rare congenital disorder. The diagnostic evaluation of this condition using multidetector computerized tomography (MDCT) has not been described previously. The purpose of this study was to describe the characteristic features of this disorder and to assess the use of MDCT in visualizing the characteristic anatomic features. Methods: We retrospectively reviewed the records of seven patients with anomalous systemic blood supply to left lower lobe of the lung. All the patients had undergone MDCT angiography. To evaluate the lung parenchyma, bronchial branching pattern, and vascular anatomy, four series of images were systematically reconstructed as follows: contiguous transverse CT scans viewed at mediastinal and pulmonary window settings, oblique coronal and sagittal maximum intensity projections (MIP), multiplanar reconstruction (MPR), and three-dimensional volume-rendered images (VR) of airway and thoracic vascular structures. Results: All 7 cases had isolated and tortuous arterial anatomy from the descending thoracic aorta to the basal segment of the left lower lobe; however, variable distribution of branches was observed. Characteristic findings of anomalous systemic arterial (ASA) supply were distinct from those seen in other pulmonary sequestration syndromes and were well visualized by the use of noninvasive MDCT. Conclusion: Complex CT findings allow clear imaging of arterial sequestration and the ASA blood supply; MDCT angiography has demonstrated its value and accuracy in diagnosing this condition, obviating the use of digital subtraction angiography and magnetic resonance angiography for the diagnosis of arterial sequestration.

  10. Diagnosis of arterial sequestration using multidetector CT angiography

    International Nuclear Information System (INIS)

    Yu Hong; Li Huimin; Liu Shiyuan; Xiao Xiangsheng

    2010-01-01

    Background: Arterial sequestration is a rare congenital disorder. The diagnostic evaluation of this condition using multidetector computerized tomography (MDCT) has not been described previously. The purpose of this study was to describe the characteristic features of this disorder and to assess the use of MDCT in visualizing the characteristic anatomic features. Methods: We retrospectively reviewed the records of seven patients with anomalous systemic blood supply to left lower lobe of the lung. All the patients had undergone MDCT angiography. To evaluate the lung parenchyma, bronchial branching pattern, and vascular anatomy, four series of images were systematically reconstructed as follows: contiguous transverse CT scans viewed at mediastinal and pulmonary window settings, oblique coronal and sagittal maximum intensity projections (MIP), multiplanar reconstruction (MPR), and three-dimensional volume-rendered images (VR) of airway and thoracic vascular structures. Results: All 7 cases had isolated and tortuous arterial anatomy from the descending thoracic aorta to the basal segment of the left lower lobe; however, variable distribution of branches was observed. Characteristic findings of anomalous systemic arterial (ASA) supply were distinct from those seen in other pulmonary sequestration syndromes and were well visualized by the use of noninvasive MDCT. Conclusion: Complex CT findings allow clear imaging of arterial sequestration and the ASA blood supply; MDCT angiography has demonstrated its value and accuracy in diagnosing this condition, obviating the use of digital subtraction angiography and magnetic resonance angiography for the diagnosis of arterial sequestration.

  11. Computational Modeling of the Geologic Sequestration of Carbon Dioxide

    Science.gov (United States)

    Geologic sequestration of CO2 is a component of C capture and storage (CCS), an emerging technology for reducing CO2 emissions to the atmosphere, and involves injection of captured CO2 into deep subsurface formations. Similar to the injection of hazardous wastes, before injection...

  12. Carbon sequestration potential for forage and pasture systems

    Science.gov (United States)

    Grassland soils represent a large reservoir of organic and inorganic carbon. Regionally, grasslands are annual CO2 sources or sinks depending on crop and soil management, current soil organic carbon (SOC) concentration and climate. Land management changes (LMC) impact SOC sequestration rate, the du...

  13. Terrestrial biological carbon sequestration: science for enhancement and implementation

    Science.gov (United States)

    Wilfred M. Post; James E. Amonette; Richard Birdsey; Charles T. Jr. Garten; R. Cesar Izaurralde; Philip Jardine; Julie Jastrow; Rattan Lal; Gregg. Marland

    2009-01-01

    The purpose of this chapter is to review terrestrial biological carbon sequestration and evaluate the potential carbon storage capacity if present and new techniques are more aggressively utilized. Photosynthetic CO2 capture from the atmosphere and storage of the C in aboveground and belowground biomass and in soil organic and inorganic forms can...

  14. La foret classee d'Atakpame: diversite, typologie, sequestration de ...

    African Journals Online (AJOL)

    This study assesses the woodlands diversity in Atakpamé classified forest (FCA) of Togo and their potential carbon sequestration. The FCA, an important production source of diversified products and very useful for riparian populations survival is weakened. FCA is subject to various anthropogenic pressures that affect ...

  15. Microbial Contribution to Organic Carbon Sequestration in Mineral Soil

    Science.gov (United States)

    Soil productivity and sustainability are dependent on soil organic matter (SOM). Our understanding on how organic inputs to soil from microbial processes become converted to SOM is still limited. This study aims to understand how microbes affect carbon (C) sequestration and the formation of recalcit...

  16. ESTIMATION OF CARBON SEQUESTRATION BY RUSSIAN FORESTS: GEOSPATIAL ISSUE

    Directory of Open Access Journals (Sweden)

    N. V. Malysheva

    2017-01-01

    Full Text Available Сategories of carbon sequestration assessment for Russian forests are identified by GIS toolkit. Those are uniform by bioclimatic and site-specific conditions strata corresponding to modern version of bioclimatic forest district division. Stratification of forests at early stage substantially reduces the ambiguity of the evaluation because phytomass conversion sequestration capacity and expansion factor dependent on site-specific condition for calculating of forest carbon sink are absolutely necessary. Forest management units were linked to strata. Biomass conversion and expansion factor for forest carbon sink assessment linked to the strata were recalculated for forest management units. All operations were carried out with GIS analytical toolkit due to accessible functionalities. Units for forest carbon storage inventory and forest carbon balance calculation were localized. Production capacity parameters and forest carbon sequestration capacity have been visualized on maps complied by ArcGIS. Based on spatially-explicit information, we have found out that the greatest annual rates of forest’s carbon accumulation in Russian forests fall into mixed coniferous-deciduous forests of European-Ural part of Russia to Kaliningrad, Smolensk and Briansk Regions, coniferous-deciduous forests close to the boundary of Khabarovsk Region and Primorskij Kray in the Far East, as well as separate forest management units of Kabardino-Balkariya NorthCaucasian mountain area. The geospatial visualization of carbon sequestration by Russian forests and carbon balance assessment has been given.

  17. Expensing options solves nothing.

    Science.gov (United States)

    Sahlman, William A

    2002-12-01

    The use of stock options for executive compensation has become a lightning rod for public anger, and it's easy to see why. Many top executives grew hugely rich on the back of the gains they made on their options, profits they've been able to keep even as the value they were supposed to create disappeared. The supposed scam works like this: Current accounting regulations let companies ignore the cost of option grants on their income statements, so they can award valuable option packages without affecting reported earnings. Not charging the cost of the grants supposedly leads to overstated earnings, which purportedly translate into unrealistically high share prices, permitting top executives to realize big gains when they exercise their options. If an accounting anomaly is the problem, then the solution seems obvious: Write off executive share options against the current year's revenues. The trouble is, Sahlman writes, expensing option grants won't give us a more accurate view of earnings, won't add any information not already included in the financial statements, and won't even lead to equal treatment of different forms of executive pay. Far worse, expensing evades the real issue, which is whether compensation (options and other-wise) does what it's supposed to do--namely, help a company recruit, retain, and provide the right people with appropriate performance incentives. Any performance-based compensation system has the potential to encourage cheating. Only ethical management, sensible governance, adequate internal control systems, and comprehensive disclosure will save the investor from disaster. If, Sahlman warns, we pass laws that require the expensing of options, thinking that's fixed the fundamental flaws in corporate America's accounting, we will have missed a golden opportunity to focus on the much more extensive defects in the present system.

  18. Early Option Exercise

    DEFF Research Database (Denmark)

    Heje Pedersen, Lasse; Jensen, Mads Vestergaard

    A classic result by Merton (1973) is that, except just before expiration or dividend payments, one should never exercise a call option and never convert a convertible bond. We show theoretically that this result is overturned when investors face frictions. Early option exercise can be optimal when...... it reduces short-sale costs, transaction costs, or funding costs. We provide consistent empirical evidence, documenting billions of dollars of early exercise for options and convertible bonds using unique data on actual exercise decisions and frictions. Our model can explain as much as 98% of early exercises...

  19. Early Option Exercise

    DEFF Research Database (Denmark)

    Jensen, Mads Vestergaard; Heje Pedersen, Lasse

    2016-01-01

    A classic result by Merton (1973) is that, except just before expiration or dividend payments, one should never exercise a call option and never convert a convertible bond. We show theoretically that this result is overturned when investors face frictions. Early option exercise can be optimal when...... it reduces short-sale costs, transaction costs, or funding costs. We provide consistent empirical evidence, documenting billions of dollars of early exercise for options and convertible bonds using unique data on actual exercise decisions and frictions. Our model can explain as much as 98% of early exercises...

  20. Regulating forest rotation to increase CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Gong, P.; Kristroem, B.

    1999-06-01

    Previous studies have shown that the optimal forest rotation age increases considerably if the benefits of CO{sub 2} sequestration are included in rotation decisions. While these studies provide some guidelines for managing public forests, private forest owners may not choose the socially optimal rotation age. This paper discusses a regulation measure to increase CO{sub 2} sequestration in privately owned forests. The regulation problem is treated as a sequential game, where the regulator chooses a subsidy scheme and forest owners respond by changing rotation ages. A private forest owner receives a subsidy at the time of harvesting if he/she changes the rotation age towards the socially optimal one. The subsidy is proportional to the associated change in timber yield. The forest owner`s objective is to maximize the net present value of after-tax timber production profits and subsidies. The regulator`s decision problem is to find the subsidy rate that maximizes the net benefits of implementing the policy (the net of increased CO{sub 2} sequestration benefits, subsidy costs, and changes in forestry taxation income). Empirical results for Swedish examples show that the optimal subsidy rate is sensitive to the marginal benefit of CO{sub 2} sequestration, the social discount rate, and site quality. The optimal subsidy rate is found to be significantly lower than the marginal benefit of CO{sub 2} sequestration. With the proposed subsidy scheme, private forest owners will choose rotation ages longer than the Faustmann rotation, but significantly shorter than the socially optimal rotation age 21 refs, 6 tabs. Arbetsrapport 272

  1. Reduced carbon sequestration potential of biochar in acidic soil.

    Science.gov (United States)

    Sheng, Yaqi; Zhan, Yu; Zhu, Lizhong

    2016-12-01

    Biochar application in soil has been proposed as a promising method for carbon sequestration. While factors affecting its carbon sequestration potential have been widely investigated, the number of studies on the effect of soil pH is limited. To investigate the carbon sequestration potential of biochar across a series of soil pH levels, the total carbon emission, CO 2 release from inorganic carbon, and phospholipid fatty acids (PLFAs) of six soils with various pH levels were compared after the addition of straw biochar produced at different pyrolysis temperatures. The results show that the acidic soils released more CO 2 (1.5-3.5 times higher than the control) after the application of biochar compared with neutral and alkaline soils. The degradation of both native soil organic carbon (SOC) and biochar were accelerated. More inorganic CO 2 release in acidic soil contributed to the increased degradation of biochar. Higher proportion of gram-positive bacteria in acidic soil (25%-36%) was responsible for the enhanced biochar degradation and simultaneously co-metabolism of SOC. In addition, lower substrate limitation for bacteria, indicated by higher C-O stretching after the biochar application in the acidic soil, also caused more CO 2 release. In addition to the soil pH, other factors such as clay contents and experimental duration also affected the phsico-chemical and biotic processes of SOC dynamics. Gram-negative/gram-positive bacteria ratio was found to be negatively related to priming effects, and suggested to serve as an indicator for priming effect. In general, the carbon sequestration potential of rice-straw biochar in soil reduced along with the decrease of soil pH especially in a short-term. Given wide spread of acidic soils in China, carbon sequestration potential of biochar may be overestimated without taking into account the impact of soil pH. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Thermometers: Understand the Options

    Science.gov (United States)

    ... the options Thermometers come in a variety of styles. Understand the different types of thermometers and how ... MA. Fever in infants and children: Pathophysiology and management. http://www.uptodate.com/home. Accessed July 23, ...

  3. The role of nuclear power in the option zero emission technologies for fossil fuels

    International Nuclear Information System (INIS)

    Corak, Z.

    2006-01-01

    The energy sector is one of the main sources of greenhouse gas (GHG) emissions particularly carbon dioxide (CO2) increasing concerns due to their potential risk to induce global warming and climate change. The Parties having signed the Kyoto Protocol in December 1997, committed to decrease their GHG emissions. The Protocol states that countries shall undertake promotion, research, development and increased use of new and renewable forms of energy, of carbon dioxide sequestration technologies and of advanced and innovative environmentally sound technologies. The one significant option that is not specifically mentioned is nuclear energy which is essentially carbon-free. There are a number of technical options that could help reducing, or at least slowing the increase of, GHG emissions from the energy sector. The list of options includes: improving the efficiency of energy conversion and end-use processes; shifting to less carbon intensive energy sources (e.g. shifting from coal to natural gas); developing carbon-free or low-carbon energy sources; and carbon sequestration (e.g. planting forests or capturing and storing carbon dioxide). It must be pointed out that nuclear power is one of the few options that are currently available on the market, competitive in a number of countries, especially if global costs to society of alternative options are considered; practically carbon-free; and sustainable at large-scale deployment. The nuclear power could play significant role in alleviating the risk of global climate change. The main objective of the article is to present sequestration options, their cost evaluation as well as comparation with alternative possibilities of nuclear energy production. (author)

  4. Estimating Soil Organic Carbon Sequestration in Rice Paddies as Influenced by Climate Change under Scenario A2 and B2 of an i-EPIC model of Thailand

    Directory of Open Access Journals (Sweden)

    Noppol Arunrat

    2014-01-01

    Full Text Available Carbon sequestration in soils constitutes an important option that can be used to reduce CO2 emissions to the atmosphere and reduce environmental impacts. Soil organic carbon (SOC is both a source of carbon release and a sink for carbon sequestration. Our objectives in this study were to validate the interactive Environmental Policy Impact Calculator (i-EPIC model version 0509, as well as to estimate SOC sequestration under climate change scenarios A2 and B2 SRES emission scenarios in Thailand. The SOC estimated by i-EPIC was compared with data from the Office of Soil Resources Survey and Research, Land Development Department. The results indicated that performance testing of i-EPIC is able to estimate SOC. Validation of SOC proved to be satisfactory with a resulting root mean square error (RMSE % value of 34.60. The SOC content showed a decreasing trend under B2 and A2 climate scenarios (average 0.87% and 0.85%, respectively compared to the reference from 2007 (average 0.92%. Stepwise regression analysis also revealed that carbon from residue decomposition, biomass pool carbon, and the total change of the carbon pool were directly correlated with the SOC (R2= 0.99, p< 0.01. Furthermore, the change from rain supplied water to irrigation also resulted in an increase of carbon inputs but a decrease in the SOC sequestered during the 2007-2017 period. Regression analyses indicated that soil carbon sequestration responds linearly to carbon input. Significant changes in carbon input as well as decreases in SOC levels were observed as temperature and precipitation increased. Based on the testing and analysis, we concluded that i-EPIC is capable of reliably simulating effects of climate change on SOC sequestration. Based on the results, this knowledge and information can increase effectiveness in the promotion of integrated rice management for rice production in Thailand.

  5. Options for human intrusion

    International Nuclear Information System (INIS)

    Bauser, M.; Williams, R.

    1993-01-01

    This paper addresses options for dealing with human intrusion in terms of performance requirements and repository siting and design requirements. Options are presented, along with the advantages and disadvantages of certain approaches. At the conclusion, a conceptual approach is offered emphasizing both the minimization of subjective judgements concerning future human activity, and specification of repository requirements to minimize the likelihood of human intrusion and any resulting, harmful effects should intrusion occur

  6. An evaluation of greenhouse gas mitigation options for coal-fired power plants in the US Great Lakes States

    International Nuclear Information System (INIS)

    Froese, Robert E.; Shonnard, David R.; Miller, Chris A.; Koers, Ken P.; Johnson, Dana M.

    2010-01-01

    We assessed options for mitigating greenhouse gas emissions from electricity generation in the US Great Lakes States, a region heavily dependent on coal-fired power plants. A proposed 600 MW power plant in northern Lower Michigan, USA provided context for our evaluation. Options to offset fossil CO 2 emissions by 20% included biomass fuel substitution from (1) forest residuals, (2) short-rotation woody crops, or (3) switchgrass; (4) biologic sequestration in forest plantations; and (5) geologic sequestration using CO 2 capture. Review of timber product output data, land cover data, and expected energy crop productivity on idle agriculture land within 120 km of the plant revealed that biomass from forestry residuals has the potential to offset 6% and from energy crops 27% of the annual fossil fuel requirement. Furthermore, annual forest harvest in the region is only 26% of growth and the surplus represents a large opportunity for forest products and bioenergy applications. We used Life Cycle Assessment (LCA) to compare mitigation options, using fossil energy demand and greenhouse gas emissions per unit electricity generation as criteria. LCA results revealed that co-firing with forestry residuals is the most attractive option and geologic sequestration is the least attractive option, based on the two criteria. Biologic sequestration is intermediate but likely infeasible because of very large land area requirements. Our study revealed that biomass feedstock potentials from land and forest resources are not limiting mitigation activities, but the most practical approach is likely a combination of options that optimize additional social, environmental and economic criteria.

  7. Nevada Transportation Options Study

    International Nuclear Information System (INIS)

    P. GEHNER; E.M. WEAVER; L. FOSSUM

    2006-01-01

    This study performs a cost and schedule analysis of three Nevada Transportation options that support waste receipt at the repository. Based on the U.S. Department of Energy preference for rail transportation in Nevada (given in the Final Environmental Impact Statement), it has been assumed that a branch rail line would be constructed to support waste receipt at the repository. However, due to potential funding constraints, it is uncertain when rail will be available. The three Nevada Transportation options have been developed to meet a varying degree of requirements for transportation and to provide cost variations used in meeting the funding constraints given in the Technical Direction Letter guidelines for this study. The options include combinations of legal-weight truck, heavy-haul truck, and rail. Option 1 uses a branch rail line that would support initial waste receipt at the repository in 2010. Rail transportation would be the primary mode, supplemented by legal weight trucks. This option provides the highest level of confidence in cost and schedule, lowest public visibility, greatest public acceptability, lowest public dose, and is the recommended option for support of waste receipt. The completion of rail by 2010 will require spending approximately $800 million prior to 2010. Option 2 uses a phased rail approach to address a constrained funding scenario. To meet funding constraints, Option 2 uses a phased approach to delay high cost activities (final design and construction) until after initial waste receipt in 2010. By doing this, approximately 95 percent of the cost associated with completion of a branch rail line is deferred until after 2010. To support waste receipt until a branch rail line is constructed in Nevada, additional legal-weight truck shipments and heavy-haul truck shipments (on a limited basis for naval spent nuclear fuel) would be used to meet the same initial waste receipt rates as in Option 1. Use of heavy-haul shipments in the absence

  8. Options Study - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2010-09-01

    The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to

  9. Treatment for unstable pulmonary sequestration injury in patient with severe blunt trauma: A case report

    Directory of Open Access Journals (Sweden)

    Sakiko Hiraki

    2017-08-01

    Full Text Available Case: Pulmonary sequestration is a congenital malformation characterized by nonfunctioning tissue not communicating with the tracheobronchial tree. As the blood pressure in the artery feeding the sequestrated lung tissue is higher than that in the normal pulmonary artery, the risk of massive hemorrhage in pulmonary sequestration is high. We herein present the first case of a severe blunt trauma patient with unstable pulmonary sequestration injury. Outcome and conclusion: The mechanism of pulmonary sequestration injury is vastly different than that of injury to normal lung. We suggest that proximal feeding artery embolization should be performed before surgical intervention in patients with massive hemorrhage of pulmonary sequestration due to severe chest trauma. Keywords: Blunt trauma, Coil embolization, Massive hemorrhage, Pulmonary sequestration

  10. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES TASK 4, BIOMASS GASIFICATION-BASED PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Martha L. Rollins; Les Reardon; David Nichols; Patrick Lee; Millicent Moore; Mike Crim; Robert Luttrell; Evan Hughes

    2002-04-01

    Biomass derived energy currently accounts for about 3 quads of total primary energy use in the United States. Of this amount, about 0.8 quads are used for power generation. Several biomass energy production technologies exist today which contribute to this energy mix. Biomass combustion technologies have been the dominant source of biomass energy production, both historically and during the past two decades of expansion of modern biomass energy in the U. S. and Europe. As a research and development activity, biomass gasification has usually been the major emphasis as a method of more efficiently utilizing the energy potential of biomass, particularly wood. Numerous biomass gasification technologies exist today in various stages of development. Some are simple systems, while others employ a high degree of integration for maximum energy utilization. The purpose of this study is to conduct a technical and economic comparison of up to three biomass gasification technologies, including the carbon dioxide emissions reduction potential of each. To accomplish this, a literature search was first conducted to determine which technologies were most promising based on a specific set of criteria. During this reporting period, the technical and economic performances of the selected processes were evaluated using computer models and available literature. The results of these evaluations are summarized in this report.

  11. Treatment Options for Wilms Tumor

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... come back) after it has been treated. Treatment Option Overview Key Points There are different types of ...

  12. Treatment Options for Myelodysplastic Syndromes

    Science.gov (United States)

    ... special light. Certain factors affect prognosis and treatment options. The prognosis (chance of recovery) and treatment options ... age and general health of the patient. Treatment Option Overview Key Points There are different types of ...

  13. Treatment Option Overview (Prostate Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  14. Treatment Option Overview (Myelodysplastic Syndromes)

    Science.gov (United States)

    ... special light. Certain factors affect prognosis and treatment options. The prognosis (chance of recovery) and treatment options ... age and general health of the patient. Treatment Option Overview Key Points There are different types of ...

  15. Treatment Option Overview (Esophageal Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  16. Treatment Option Overview (Childhood Rhabdomyosarcoma)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  17. Treatment Option Overview (Penile Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  18. Treatment Option Overview (Vulvar Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  19. Treatment Option Overview (Pancreatic Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  20. Treatment Option Overview (Adrenocortical Carcinoma)

    Science.gov (United States)

    ... affect the prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  1. Treatment Options for Childhood Rhabdomyosarcoma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  2. Treatment Options for Kaposi Sarcoma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  3. Treatment Options for Childhood Craniopharyngioma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... the brain where it was first found. Treatment Option Overview Key Points There are different types of ...

  4. Carbon Capture and Sequestration. Potential Environmental Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, P.; Santillo, D. [Greenpeace Research Laboratories, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS (United Kingdom)

    2003-02-01

    Over the last few years, understanding of the profound implications of anthropogenically driven climate change has grown. In turn, this has fuelled research into options to mitigate likely impacts. Approaches involving the capture of carbon dioxide and its storage in geological formations, or in marine waters, have generated a raft of proposed solutions. The scale of some of these proposals is such that they will exert impacts of global significance in their own right. Proposals fall into two broad categories: (1) storage of liquid CO2 or products of reacted CO2 into intermediate/deep oceanic waters. and (2) storage of liquid CO2 into sub-seabed or terrestrial geological formations. For the most part, while the technical feasibility of these schemata has been widely explored, the same is not true of their ecological implications. In the case of deep/intermediate oceanic waters, poor baseline understanding of the associated ecosystems is a considerable impediment to any reliable predictive assessment of likely impacts of carbon dioxide storage in these systems. Disruption of marine microbiological processes and degradation of benthic ecosystems, including those with high levels of endemicity, have been identified as potentially serious impacts. Similarly, the physiology, ecology and likely responses of micro-organisms present in targeted geological formations require evaluation prior to any consideration of the use of such formations for storage of CO2. In addition, the impacts of any leakage to surface need also to be considered. Accordingly this paper explores current uncertainties and detailed informational needs related to ocean and geological storage of fossil fuel-derived CO2. Particular emphasis is placed upon the ecological impacts of these proposals in relation to existing and emergent understanding of deep water/soil ecosystems and the indeterminacies attached to this understanding.

  5. Efficient Pricing of Early : Exercise and Exotic Options Based on Fourier Cosine Expansions

    NARCIS (Netherlands)

    Zhang, B.

    2012-01-01

    In the financial world, two tasks are of prime importance: model calibration and portfolio hedging. For both tasks, efficient option pricing is necessary, particularly for the calibration where many options with different strike prices and different maturities need to be priced at the same time.

  6. Red cell survival and sequestration in acute intermittent porphyria

    International Nuclear Information System (INIS)

    Nawalkha, P.L.; Soni, S.G.; Agrawal, V.K.; Misra, S.N.

    1980-01-01

    Life span and sequestration of red cells have been studied in twenty one proved cases of acute intermittent porphyria of different age and sex group from Bikaner District, Rajasthan State (India). Chromium-51 labelled red cells were used in the study and the excess count method of Bughe Jones and Szur was used to calculate the index of sequestration. The mean apparent half survival time of erythrocytes in the control subjects was 25.9 +- 2.9 (S.D.) days and the same in the prophyria patients was 27.0 +- 3.8 days. This shows that the life span of red cells is normal in both the patient and the control. Excess destruction of red blood cells was found to take place in either spleen or liver in the disease and no excess accumulation of erythrocytes occurred over spleen as compared to liver. (M.G.B.)

  7. Erosion of soil organic carbon: implications for carbon sequestration

    Science.gov (United States)

    Van Oost, Kristof; Van Hemelryck, Hendrik; Harden, Jennifer W.; McPherson, B.J.; Sundquist, E.T.

    2009-01-01

    Agricultural activities have substantially increased rates of soil erosion and deposition, and these processes have a significant impact on carbon (C) mineralization and burial. Here, we present a synthesis of erosion effects on carbon dynamics and discuss the implications of soil erosion for carbon sequestration strategies. We demonstrate that for a range of data-based parameters from the literature, soil erosion results in increased C storage onto land, an effect that is heterogeneous on the landscape and is variable on various timescales. We argue that the magnitude of the erosion term and soil carbon residence time, both strongly influenced by soil management, largely control the strength of the erosion-induced sink. In order to evaluate fully the effects of soil management strategies that promote carbon sequestration, a full carbon account must be made that considers the impact of erosion-enhanced disequilibrium between carbon inputs and decomposition, including effects on net primary productivity and decomposition rates.

  8. Trace metal mobilization in an experimental carbon sequestration scenario

    Energy Technology Data Exchange (ETDEWEB)

    Marcon, Virginia [University of Wyoming, Geology and Geophysics, Laramie, WY. 82070 (United States); Kaszuba, John [University of Wyoming, Geology and Geophysics, Laramie, WY. 82070 (United States); Univeristy of Wyoming, School of Energy Resources, Larmaie, WY. 82070 (United States)

    2013-07-01

    Mobilizing trace metals with injection of supercritical CO{sub 2} into deep saline aquifers is a concern for geologic carbon sequestration. Hydrothermal experiments investigate the release of harmful metals from two zones of a sequestration injection reservoir: at the cap-rock-reservoir boundary and deeper within the reservoir, away from the cap-rock. In both systems, Cd, Cr, Cu, Pb, and Zn behave in a similar manner, increasing in concentration with injection, but subsequently decreasing in concentration over time. SEM images and geochemical models indicate initial dissolution of minerals and precipitation of Ca-Mg-Fe carbonates, metal sulfides (i.e. Fe, As, Ag, and Co sulfides), and anhydrite in both systems. The results suggest that Ba, Cu, and Zn will not be contaminants of concern, but Pb, Fe, and As may require careful attention. (authors)

  9. Carbon storage and sequestration by trees in VIT University campus

    Science.gov (United States)

    Saral, A. Mary; SteffySelcia, S.; Devi, Keerthana

    2017-11-01

    The present study addresses carbon storage and sequestration by trees grown in VIT University campus, Vellore. Approximately twenty trees were selected from Woodstockarea. The above ground biomass and below ground biomass were calculated. The above ground biomass includes non-destructive anddestructive sampling. The Non-destructive method includes the measurement of height of thetree and diameter of the tree. The height of the tree is calculated using Total Station instrument and diameter is calculated using measuring tape. In the destructive method the weight of samples (leaves) and sub-samples (fruits, flowers) of the tree were considered. To calculate the belowground biomass soil samples are taken and analyzed. The results obtained were used to predict the carbon storage. It was found that out of twenty tree samples Millingtonia hortensis which is commonly known as Cork tree possess maximum carbon storage (14.342kg/tree) and carbon sequestration (52.583kg/tree) respectively.

  10. Occurrence and sequestration of toxins in food chains.

    Science.gov (United States)

    Mebs, D

    1998-11-01

    Animals may acquire toxicity by absorbing toxic compounds from their food, e.g. from plants or other animals. Sequestration and accumulation of toxins may provide protection from predators, which learn to avoid this prey because of unpleasant experiences such as bitter taste. This is a common phenomenon in marine as well as in terrestrial ecosystems. Moreover, toxins may enter food chains where they accumulate reaching high, often lethal concentrations. Palytoxin which had been primarily detected in marine zoanthids (Palythoa sp.), occurs also in a wide range of other animals, e.g. in sponges, corals, shellfish, polychaetes and crustaceans, but also in fish, which feed on crustaceans and zoanthids as well. These animals exhibit a high resistance to the toxin's action. The mechanisms which protect the Na+, K+-ATPase of their cell membranes, the primary target of palytoxin, is unknown. Sequestration of the toxin by other animals may cause health problems due to food poisoning.

  11. 20 CFR 416.2035 - Optional supplementation: Additional State options.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Optional supplementation: Additional State options. 416.2035 Section 416.2035 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL... § 416.2035 Optional supplementation: Additional State options. (a) Residency requirement. A State or...

  12. Novel preventive treatment options

    DEFF Research Database (Denmark)

    Longbottom, C; Ekstrand, K; Zero, D

    2009-01-01

    A number of novel preventive treatment options which, as with traditional methods, can be differentiated into 3 categories of prevention (primary, secondary and tertiary), have been and are being currently investigated. Those reviewed are either commercially available or appear relatively close...... of these techniques show considerable promise and dentists should be aware of these developments and follow their progress, the evidence for each of these novel preventive treatment options is currently insufficient to make widespread recommendations. Changes in dental practice should be explored to see how oral...

  13. Tank Space Options Report

    International Nuclear Information System (INIS)

    BOYLES, V.C.

    2001-01-01

    A risk-based priority for the retrieval of Hanford Site waste from the 149 single-shell tanks (SSTs) has been adopted as a result of changes to the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1997) negotiated in 2000. Retrieval of the first three tanks in the retrieval sequence fills available capacity in the double-shell tanks (DSTs) by 2007. As a result, the HFFACO change established a milestone (M-45-12-TO1) requiring the determination of options that could increase waste storage capacity for single-shell tank waste retrieval. The information will be considered in future negotiations. This document fulfills the milestone requirement. This study presents options that were reviewed for the purpose of increasing waste storage capacity. Eight options are identified that have the potential for increasing capacity from 5 to 10 million gallons, thus allowing uninterrupted single-shell tank retrieval until the planned Waste Treatment Plant begins processing substantial volumes of waste from the double-shell tanks in 2009. The cost of implementing these options is estimated to range from less than $1 per gallon to more than $14 per gallon. Construction of new double-shell tanks is estimated to cost about $63 per gallon. Providing 5 to 10 million gallons of available double-shell tank space could enable early retrieval of 5 to 9 high-risk single-shell tanks beyond those identified for retrieval by 2007. These tanks are A-101, AX-101, AX-103, BY-102, C-107, S-105, S-106, S-108, and S-109 (Garfield et al. 2000). This represents a potential to retrieve approximately 14 million total curies, including 3,200 curies of long-lived mobile radionuclides. The results of the study reflect qualitative analyses conducted to identify promising options. The estimated costs are rough-order-of magnitude and, therefore, subject to change. Implementing some of the options would represent a departure from the current baseline and may adversely impact the

  14. Alternative energy options

    International Nuclear Information System (INIS)

    Bennett, K.F.

    1983-01-01

    It is accepted that coal will continue to play the major role in the supply of energy to the country for the remainder of the century. In this paper, however, emphasis has been directed to those options which could supplement coal in an economic and technically sound manner. The general conclusion is that certain forms of solar energy hold the most promise and it is in this direction that research, development and implementation programmes should be directed. Tidal energy, fusion energy, geothermal energy, hydrogen energy and fuel cells are also discussed as alternative energy options

  15. Thermal test options

    International Nuclear Information System (INIS)

    Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

    1993-02-01

    Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods

  16. Lighting Options for Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W.S.

    1991-04-01

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  17. Carbon Sequestration Leadership Forum - the way forward for CCS

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-01

    The June 2003 issue of Ecoal briefly outlined events at the inaugural meeting of the Carbon Sequestration Leadership Forum (CSLF) held in Northern Virginia, USA between 23 and 25 June. This featured details on the CSLF Charter, the structure of the Forum, and specific coal industry recommendations to the CSLF. This report provides a more detailed account of issues covered at and arising from the meeting. 2 figs.

  18. The value of carbon sequestration and storage in coastal habitats

    Science.gov (United States)

    Beaumont, N. J.; Jones, L.; Garbutt, A.; Hansom, J. D.; Toberman, M.

    2014-01-01

    Coastal margin habitats are globally significant in terms of their capacity to sequester and store carbon, but their continuing decline, due to environmental change and human land use decisions, is reducing their capacity to provide this ecosystem service. In this paper the UK is used as a case study area to develop methodologies to quantify and value the ecosystem service of blue carbon sequestration and storage in coastal margin habitats. Changes in UK coastal habitat area between 1900 and 2060 are documented, the long term stocks of carbon stored by these habitats are calculated, and the capacity of these habitats to sequester CO2 is detailed. Changes in value of the carbon sequestration service of coastal habitats are then projected for 2000-2060 under two scenarios, the maintenance of the current state of the habitat and the continuation of current trends of habitat loss. If coastal habitats are maintained at their current extent, their sequestration capacity over the period 2000-2060 is valued to be in the region of £1 billion UK sterling (3.5% discount rate). However, if current trends of habitat loss continue, the capacity of the coastal habitats both to sequester and store CO2 will be significantly reduced, with a reduction in value of around £0.25 billion UK sterling (2000-2060; 3.5% discount rate). If loss-trends due to sea level rise or land reclamation worsen, this loss in value will be greater. This case study provides valuable site specific information, but also highlights global issues regarding the quantification and valuation of carbon sequestration and storage. Whilst our ability to value ecosystem services is improving, considerable uncertainty remains. If such ecosystem valuations are to be incorporated with confidence into national and global policy and legislative frameworks, it is necessary to address this uncertainty. Recommendations to achieve this are outlined.

  19. Biochar for soil fertility and natural carbon sequestration

    Science.gov (United States)

    Rostad, C.E.; Rutherford, D.W.

    2011-01-01

    Biochar is charcoal (similar to chars generated by forest fires) that is made for incorporation into soils to increase soil fertility while providing natural carbon sequestration. The incorporation of biochar into soils can preserve and enrich soils and also slow the rate at which climate change is affecting our planet. Studies on biochar, such as those cited by this report, are applicable to both fire science and soil science.

  20. Technological learning for carbon capture and sequestration technologies

    International Nuclear Information System (INIS)

    Riahi, Keywan; Rubin, Edward S.; Taylor, Margaret R.; Schrattenholzer, Leo; Hounshell, David

    2004-01-01

    This paper analyzes potentials of carbon capture and sequestration technologies (CCT) in a set of long-term energy-economic-environmental scenarios based on alternative assumptions for technological progress of CCT. In order to get a reasonable guide to future technological progress in managing CO 2 emissions, we review past experience in controlling sulfur dioxide (SO 2 ) emissions from power plants. By doing so, we quantify a 'learning curve' for CCT, which describes the relationship between the improvement of costs due to accumulation of experience in CCT construction. We incorporate the learning curve into the energy-modeling framework MESSAGE-MACRO and develop greenhouse gas emissions scenarios of economic, demographic, and energy demand development, where alternative policy cases lead to the stabilization of atmospheric CO 2 concentrations at 550 parts per million by volume (ppmv) by the end of the 21st century. We quantify three types of contributors to the carbon emissions mitigation: (1) demand reductions due to the increased price of energy, (2) fuel switching primarily away from coal, and (3) carbon capture and sequestration from fossil fuels. Due to the assumed technological learning, costs of the emissions reduction for CCT drop rapidly and in parallel with the massive introduction of CCT on the global scale. Compared to scenarios based on static cost assumptions for CCT, the contribution of carbon sequestration is about 50% higher in the case of learning, resulting in cumulative sequestration of CO 2 ranging from 150 to 250 billion (10 9 ) tons with carbon during the 21st century. Also, carbon values (tax) across scenarios (to meet the 550 ppmv carbon concentration constraint) are between 2% and 10% lower in the case of learning for CCT by 2100. The results illustrate that assumptions on technological change are a critical determinant of future characteristics of the energy system, indicating the importance of long-term technology policies in

  1. Intralobar bronchopulmonary sequestration: A case and brief review

    Directory of Open Access Journals (Sweden)

    Majumdar U

    2018-06-01

    Full Text Available Objective: Bronchopulmonary sequestration is a rare congenital abnormality of the lower respiratory tract, seen mostly in children but often in adults. The term implies a mass of lung tissue that has no function and lacks normal communication with the rest of the tracheobronchial tree. Case: A 40-year-old man presented with acute onset of left flank pain for 4 hours. He was born in Yemen and emigrated to the US in 1998; at that time, he had been tested for tuberculosis which was negative. In this admission, he met systemic inflammatory response (SIRS criteria and had basilar crackles in the left lower lobe of the lung. CT scan revealed a cavitary lesion with air-fluid level in the left lower lobe airspace. There was systemic arterial blood supply to this region arising off the celiac axis. He was diagnosed with an infected intralobar bronchopulmonary sequestration and underwent video-assisted thoracoscopic wedge resection. On follow up 3 months later, he was doing well. Discussion: Pulmonary sequestration is a rare congenital anomaly of a mass of lung tissue, which can have cystic changes and is a very important differential diagnosis of cavities in the lung. Confirmation of diagnosis is by visualization of a systemic vessel supplying sequestrated pulmonary, and this is accomplished by contrast-enhanced CT scan, MRI or invasive angiography. Conclusion: The delay in diagnosis in our patient was due to falling prey to anchoring and availability biases and chasing the diagnosis of tuberculosis in a patient from Yemen with a lower lobe cavitation.

  2. Molecular and Metabolic Mechanisms of Carbon Sequestration in Marine Thrombolites

    Science.gov (United States)

    Mobberley, Jennifer

    2013-01-01

    The overall goal of my dissertation project has been to examine the molecular processes underlying carbon sequestration in lithifying microbial ecosystems, known as thrombolitic mats, and assess their feasibility for use in bioregenerative life support systems. The results of my research and education efforts funded by the Graduate Student Researchers Program can be summarized in four peer-reviewed research publication, one educational publication, two papers in preparation, and six research presentations at local and national science meetings (see below for specific details).

  3. Potential Hydrogeomechanical Impacts of Geological CO2 Sequestration

    Science.gov (United States)

    McPherson, B. J.; Haerer, D.; Han, W.; Heath, J.; Morse, J.

    2006-12-01

    Long-term sequestration of anthropogenic "greenhouse gases" such as CO2 is a proposed approach to managing climate change. Deep brine reservoirs in sedimentary basins are possible sites for sequestration, given their ubiquitous nature. We used a mathematical sedimentary basin model, including coupling of multiphase CO2-groundwater flow and rock deformation, to evaluate residence times in possible brine reservoir storage sites, migration patterns and rates away from such sites, and effects of CO2 injection on fluid pressures and rock strain. Study areas include the Uinta and Paradox basins of Utah, the San Juan basin of New Mexico, and the Permian basin of west Texas. Regional-scale hydrologic and mechanical properties, including the presence of fracture zones, were calibrated using laboratory and field data. Our initial results suggest that, in general, long-term (~100 years or more) sequestration in deep brine reservoirs is possible, if guided by robust structural and hydrologic data. However, specific processes must be addressed to characterize and minimize risks. In addition to CO2 migration from target sequestration reservoirs into other reservoirs or to the land surface, another environmental issue is displacement of brines into freshwater aquifers. We evaluated the potential for such unintended aquifer contamination by displacement of brines out of adjacent sealing layers such as marine shales. Results suggest that sustained injection of CO2 may incur significant brine displacement out of adjacent sealing layers, depending on the injection history, initial brine composition, and hydrologic properties of both reservoirs and seals. Model simulations also suggest that as injection-induced overpressures migrate, effective stresses may follow this migration under some conditions, as will associated rock strain. Such "strain migration" may lead to induced or reactivated fractures or faults, but can be controlled through reservoir engineering.

  4. Environmental non-government organizations' perceptions of geologic sequestration

    International Nuclear Information System (INIS)

    Wong-Parodi, Gabrielle; Ray, Isha; Farrell, Alexander E

    2008-01-01

    Environmental non-governmental organizations (NGOs) have been influential in shaping public perceptions of environmental problems, their causes and potential solutions. Over the last decade, carbon capture and storage (CCS) has emerged as a potentially important technological response to climate change. In this paper we investigate how leading US NGOs perceive geologic sequestration, a potentially controversial part of CCS. We examine how and why their perceptions and strategies might differ, and if and how they plan to shape public perceptions of geologic sequestration. We approach these questions through semi-structured interviews with representatives from a range of NGOs, supplemented by content analysis of their documents. We find that while all the NGOs are committed to combating climate change, their views on CCS as a mitigation strategy vary considerably. We find that these views are correlated with NGOs' histories of activism and advocacy, as well as with their sources of funding. Overall, most of these NGOs accept the necessity of geologic sequestration, while only a small fraction do not

  5. Carbon sequestration, optimum forest rotation and their environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Kula, Erhun, E-mail: erhun.kula@bahcesehir.edu.tr [Department of Economics, Bahcesehir University, Besiktas, Istanbul (Turkey); Gunalay, Yavuz, E-mail: yavuz.gunalay@bahcesehir.edu.tr [Department of Business Studies, Bahcesehir University, Besiktas, Istanbul (Turkey)

    2012-11-15

    Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost-benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. The results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO{sub 2}. Consequently this finding must be considered in any carbon accounting calculations. - Highlights: Black-Right-Pointing-Pointer Carbon sequestration in forestry is an environmental benefit. Black-Right-Pointing-Pointer It moderates the problem of global warming. Black-Right-Pointing-Pointer It prolongs the gestation period in harvesting. Black-Right-Pointing-Pointer This paper uses British data in less favoured districts for growing Sitka spruce species.

  6. CT imaging of splenic sequestration in sickle cell disease

    International Nuclear Information System (INIS)

    Sheth, S.; Piomelli, S.; Ruzal-Shapiro, C.; Berdon, W.E.

    2000-01-01

    Pooling of blood in the spleen is a frequent occurrence in children with sickle cell diseases, particularly in the first few years of life, resulting in what is termed ''splenic sequestration crisis.'' The spectrum of severity in this syndrome is wide, ranging from mild splenomegaly to massive enlargement, circulatory collapse, and even death. The diagnosis is usually clinical, based on the enlargement of the spleen with a drop in hemoglobin level by >2 g/dl, and it is rare that imaging studies are ordered. However, in the patient who presents to the emergency department with non-specific findings of an acute abdomen, it is important to recognize the appearance of sequestration on imaging studies. We studied seven patients utilizing contrast-enhanced CT scans and found two distinct patterns - multiple, peripheral, non-enhancing low-density areas or large, diffuse areas of low density in the majority of the splenic tissue. Although radiological imaging is not always necessary to diagnose splenic sequestration, in those situations where this diagnosis is not immediately obvious, it makes an important clarifying contribution. (orig.)

  7. Community perceptions of carbon sequestration: insights from California

    International Nuclear Information System (INIS)

    Wong-Parodi, Gabrielle; Ray, Isha

    2009-01-01

    Over the last decade, many energy experts have supported carbon sequestration as a viable technological response to climate change. Given the potential importance of sequestration in US energy policy, what might explain the views of communities that may be directly impacted by the siting of this technology? To answer this question, we conducted focus groups in two communities who were potentially pilot project sites for California's DOE-funded West Coast Regional Partnership (WESTCARB). We find that communities want a voice in defining the risks to be mitigated as well as the justice of the procedures by which the technology is implemented. We argue that a community's sense of empowerment is key to understanding its range of carbon sequestration opinions, where 'empowerment' includes the ability to mitigate community-defined risks of the technology. This sense of empowerment protects the community against the downside risk of government or corporate neglect, a risk that is rarely identified in risk assessments but that should be factored into assessment and communication strategies.

  8. Peatland geoengineering: an alternative approach to terrestrial carbon sequestration.

    Science.gov (United States)

    Freeman, Christopher; Fenner, Nathalie; Shirsat, Anil H

    2012-09-13

    Terrestrial and oceanic ecosystems contribute almost equally to the sequestration of ca 50 per cent of anthropogenic CO(2) emissions, and already play a role in minimizing our impact on Earth's climate. On land, the majority of the sequestered carbon enters soil carbon stores. Almost one-third of that soil carbon can be found in peatlands, an area covering just 2-3% of the Earth's landmass. Peatlands are thus well established as powerful agents of carbon capture and storage; the preservation of archaeological artefacts, such as ancient bog bodies, further attest to their exceptional preservative properties. Peatlands have higher carbon storage densities per unit ecosystem area than either the oceans or dry terrestrial systems. However, despite attempts over a number of years at enhancing carbon capture in the oceans or in land-based afforestation schemes, no attempt has yet been made to optimize peatland carbon storage capacity or even to harness peatlands to store externally captured carbon. Recent studies suggest that peatland carbon sequestration is due to the inhibitory effects of phenolic compounds that create an 'enzymic latch' on decomposition. Here, we propose to harness that mechanism in a series of peatland geoengineering strategies whereby molecular, biogeochemical, agronomical and afforestation approaches increase carbon capture and long-term sequestration in peat-forming terrestrial ecosystems.

  9. Multi-slice spiral CT diagnosis of arterial sequestration

    International Nuclear Information System (INIS)

    Yu Hong; Li Huimin; Liu Shiyuan; Xiao Xiangsheng

    2010-01-01

    Objective: The purpose of this study was to present the characteristic features on MSCT angiography of arterial sequestration. Methods: The MSCT images of 5 patients with arterial sequestration were retrospectively reviewed. All patients underwent MSCT contrast-enhanced angiography. 3D rendering was made to evaluate the lung parenchyma, bronchial system, and vascular anatomy. Results: All 5 cases demonstrated the anomalous systemic artery (ASA) as an isolated and tortuous artery arising from the descending thoracic aorta, taking a sigmoid course and running along with airway, entering the basal segments of the left lowed lobe. The inferior pulmonary vein (IPV) was significantly engorged. The typical AS was diagnosed in 4 patients. Its ASA intercrossed with the IPV and two branches entering segments 7 and 8 over the IPV, and two branches entering segments 9 and 10 under the IPV. The volume of involved lung shrunk with the artery markedly engorged. A characteristic avascular section was found between the pulmonary artery supplying area and the ASA supplying area, and the bronchi did not accompany the arteries. One was diagnosed atypical AS because of coexistence with bronchial atresia. Conclusion: The arterial sequestration had characteristic MSCT findings. The typical type can be definitely diagnosed, but the atypical type needs further three-dimensional analysis. (authors)

  10. Mesoscale carbon sequestration site screening and CCS infrastructure analysis.

    Science.gov (United States)

    Keating, Gordon N; Middleton, Richard S; Stauffer, Philip H; Viswanathan, Hari S; Letellier, Bruce C; Pasqualini, Donatella; Pawar, Rajesh J; Wolfsberg, Andrew V

    2011-01-01

    We explore carbon capture and sequestration (CCS) at the meso-scale, a level of study between regional carbon accounting and highly detailed reservoir models for individual sites. We develop an approach to CO(2) sequestration site screening for industries or energy development policies that involves identification of appropriate sequestration basin, analysis of geologic formations, definition of surface sites, design of infrastructure, and analysis of CO(2) transport and storage costs. Our case study involves carbon management for potential oil shale development in the Piceance-Uinta Basin, CO and UT. This study uses new capabilities of the CO(2)-PENS model for site screening, including reservoir capacity, injectivity, and cost calculations for simple reservoirs at multiple sites. We couple this with a model of optimized source-sink-network infrastructure (SimCCS) to design pipeline networks and minimize CCS cost for a given industry or region. The CLEAR(uff) dynamical assessment model calculates the CO(2) source term for various oil production levels. Nine sites in a 13,300 km(2) area have the capacity to store 6.5 GtCO(2), corresponding to shale-oil production of 1.3 Mbbl/day for 50 years (about 1/4 of U.S. crude oil production). Our results highlight the complex, nonlinear relationship between the spatial deployment of CCS infrastructure and the oil-shale production rate.

  11. Biophysical risks to carbon sequestration and storage in Australian drylands.

    Science.gov (United States)

    Nolan, Rachael H; Sinclair, Jennifer; Eldridge, David J; Ramp, Daniel

    2018-02-15

    Carbon abatement schemes that reduce land clearing and promote revegetation are now an important component of climate change policy globally. There is considerable potential for these schemes to operate in drylands which are spatially extensive. However, projects in these environments risk failure through unplanned release of stored carbon to the atmosphere. In this review, we identify factors that may adversely affect the success of vegetation-based carbon abatement projects in dryland ecosystems, evaluate their likelihood of occurrence, and estimate the potential consequences for carbon storage and sequestration. We also evaluate management strategies to reduce risks posed to these carbon abatement projects. Identified risks were primarily disturbances, including unplanned fire, drought, and grazing. Revegetation projects also risk recruitment failure, thereby failing to reach projected rates of sequestration. Many of these risks are dependent on rainfall, which is highly variable in drylands and susceptible to further variation under climate change. Resprouting vegetation is likely to be less vulnerable to disturbance and have faster recovery rates upon release from disturbance. We conclude that there is a strong impetus for identifying management strategies and risk reduction mechanisms for carbon abatement projects. Risk mitigation would be enhanced by effective co-ordination of mitigation strategies at scales larger than individual abatement project boundaries, and by implementing risk assessment throughout project planning and implementation stages. Reduction of risk is vital for maximising carbon sequestration of individual projects and for reducing barriers to the establishment of new projects entering the market. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Long-term nitrogen regulation of forest carbon sequestration

    Science.gov (United States)

    Yang, Y.; Luo, Y.

    2009-12-01

    It is well established that nitrogen (N) limits plant production but unclear how N regulates long-term terrestrial carbon (C) sequestration in response to rising atmospheric C dioxide (CO2)(Luo et al., 2004). Most experimental evidence on C-N interactions is primarily derived from short-term CO2 manipulative studies (e.g. Oren et al., 2001; Reich et al., 2006a), which abruptly increase C inputs into ecosystems and N demand from soil while atmospheric CO2 concentration in the real world is gradually increasing over time (Luo & Reynolds, 1999). It is essential to examine long-term N regulations of C sequestration in natural ecosystems. Here we present results of a synthesis of more than 100 studies on long-term C-N interactions during secondary succession. C significantly accumulates in plant, litter and forest floor in most studies, and in mineral soil in one-third studies during stand development. Substantial increases in C stock are tightly coupled with N accretion. The C: N ratio in plant increases with stand age in most cases, but remains relatively constant in litter, forest floor and mineral soil. Our results suggest that natural ecosystems could have the intrinsic capacity to maintain long-term C sequestration through external N accrual, high N use efficiency, and efficient internal N cycling.

  13. Carbon sequestration, optimum forest rotation and their environmental impact

    International Nuclear Information System (INIS)

    Kula, Erhun; Gunalay, Yavuz

    2012-01-01

    Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost–benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. The results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO 2 . Consequently this finding must be considered in any carbon accounting calculations. - Highlights: ► Carbon sequestration in forestry is an environmental benefit. ► It moderates the problem of global warming. ► It prolongs the gestation period in harvesting. ► This paper uses British data in less favoured districts for growing Sitka spruce species.

  14. CO2 sequestration using principles of shell formation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Woo; Jang, Young-Nam [CO2 Sequestration Research Department, Korea Institute of Geoscience and Mineral Resources (Korea, Republic of); Lee, Si-Hyun; Lim, Kyoung-Soo; Jeong, Soon-Kwan [Energy Conservation Research Department of Clean Energy System Research Center, Korea Institute of Energy Research (Korea, Republic of)

    2011-06-15

    The biomimetic sequestration of carbon dioxide to reduce the CO2 emitted into the atmosphere is introduced in this paper. Bivalve shells are used as a good model of CO2 sequestration in this paper, because the shell is derived from the calcium ions and CO2 in seawater. Carbonic anhydrase, hemocyte from diseased shell (HDS) and extrapallial fluid (EFP) are involved in shell formation. This paper compares the soluble protein extracted from Crassostrea gigas with bovine carbonic anhydrase II in terms of their ability to promote CO2 hydration and the production of calcium precipitates. The result demonstrates that HDS has more functional groups to bind calcium ions in aqueous systems, and a different process of calcium precipitation, than does bovine carbonic anhydrase II. To understand molecular weight and secondary protein structure, mass-spectroscopic analysis (MALDI-TOF) and circular dichroism (CD) analysis were used. With regard to EPF, EPF related to shell formation is composed of several fractions and plays a role in sequestration of CO2.

  15. Global patterns of aboveground carbon stock and sequestration in mangroves

    Directory of Open Access Journals (Sweden)

    GUSTAVO C.D. ESTRADA

    Full Text Available ABSTRACT In order to contribute to understand the factors that control the provisioning of the ecosystem service of carbon storage by mangroves, data on carbon stock and sequestration in the aboveground biomass (AGB from 73 articles were averaged and tested for the dependence on latitude, climatic parameters, physiographic types and age. Global means of carbon stock (78.0 ± 64.5 tC.ha-1 and sequestration (2.9 ± 2.2 tC.ha-1.yr-1 showed that mangroves are among the forest ecosystems with greater capacity of carbon storage in AGB per area. On the global scale, carbon stock increases toward the equator (R²=0.22 and is dependent on 13 climatic parameters, which can be integrated in the following predictive equation: Carbon Stock in AGB = -16.342 + (8.341 x Isothermality + (0.021 x Annual Precipitation [R²=0.34; p < 0.05]. It was shown that almost 70% of carbon stock variability is explained by age. Carbon stock and sequestration also vary according to physiographic types, indicating the importance of hydroperiod and edaphic parameters to the local variability of carbon stock. By demonstrating the contribution of local and regional-global factors to carbon stock, this study provides information to the forecast of the effects of future climate changes and local anthropogenic forcings on this ecosystem service.

  16. Pawnee Nation Energy Option Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Matlock, M.; Kersey, K.; Riding In, C.

    2009-07-21

    Pawnee Nation of Oklahoma Energy Option Analyses In 2003, the Pawnee Nation leadership identified the need for the tribe to comprehensively address its energy issues. During a strategic energy planning workshop a general framework was laid out and the Pawnee Nation Energy Task Force was created to work toward further development of the tribe’s energy vision. The overarching goals of the “first steps” project were to identify the most appropriate focus for its strategic energy initiatives going forward, and to provide information necessary to take the next steps in pursuit of the “best fit” energy options. Description of Activities Performed The research team reviewed existing data pertaining to the availability of biomass (focusing on woody biomass, agricultural biomass/bio-energy crops, and methane capture), solar, wind and hydropower resources on the Pawnee-owned lands. Using these data, combined with assumptions about costs and revenue streams, the research team performed preliminary feasibility assessments for each resource category. The research team also reviewed available funding resources and made recommendations to Pawnee Nation highlighting those resources with the greatest potential for financially-viable development, both in the near-term and over a longer time horizon. Findings and Recommendations Due to a lack of financial incentives for renewable energy, particularly at the state level, combined mediocre renewable energy resources, renewable energy development opportunities are limited for Pawnee Nation. However, near-term potential exists for development of solar hot water at the gym, and an exterior wood-fired boiler system at the tribe’s main administrative building. Pawnee Nation should also explore options for developing LFGTE resources in collaboration with the City of Pawnee. Significant potential may also exist for development of bio-energy resources within the next decade. Pawnee Nation representatives should closely monitor

  17. Mixed waste management options

    International Nuclear Information System (INIS)

    Owens, C.B.; Kirner, N.P.

    1992-01-01

    Currently, limited storage and treatment capacity exists for commercial mixed waste streams. No commercial mixed waste disposal is available, and it has been estimated that if and when commercial mixed waste disposal becomes available, the costs will be high. If high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and management options. Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition) no migration petition) and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly. Another option for mixed waste management that is being explored is the feasibility of Department of Energy (DOE) accepting commercial mixed waste for treatment, storage, and disposal. A study has been completed that analyzes DOE treatment capacity in comparison with commercial mixed waste streams. (author)

  18. Strategic growth options

    NARCIS (Netherlands)

    Kulatilaka, N.; Perotti, E.C.

    1998-01-01

    We provide a strategic rationale for growth options under uncertainty and imperfect corn-petition. In a market with strategic competition, investment confers a greater capability to take advantage of future growth opportunities. This strategic advantage leads to the capture of a greater share of the

  19. New Options, Old Concerns.

    Science.gov (United States)

    O'Neil, John

    1996-01-01

    Will greater school choice result in more responsive, higher quality schools and happier parents? Or will proliferating options further sort students and families by race, social class, and special interest? Increasingly, education is viewed as a private good. If parents become autonomous, self-interested consumers, erosion of common purposes and…

  20. Heterogeneity and option pricing

    NARCIS (Netherlands)

    Benninga, Simon; Mayshar, Joram

    2000-01-01

    An economy with agents having constant yet heterogeneous degrees of relative risk aversion prices assets as though there were a single decreasing relative risk aversion pricing representative agent. The pricing kernel has fat tails and option prices do not conform to the Black-Scholes formula.

  1. Option Pricing and Momentum

    NARCIS (Netherlands)

    Rodriguez, J.C.

    2007-01-01

    If managers are reluctant to fully adjust dividends to changes in earnings, stock returns and changes in the dividend yield will tend to be negatively correlated. When this is the case, stock returns will exhibit positive autocorrelation, or mo- mentum. This paper studies the pricing of options in

  2. Idaho's Energy Options

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Neilson

    2006-03-01

    This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

  3. Development of an Intelligent Monitoring System for Geological Carbon Sequestration (GCS) Systems

    Science.gov (United States)

    Sun, A. Y.; Jeong, H.; Xu, W.; Hovorka, S. D.; Zhu, T.; Templeton, T.; Arctur, D. K.

    2016-12-01

    To provide stakeholders timely evidence that GCS repositories are operating safely and efficiently requires integrated monitoring to assess the performance of the storage reservoir as the CO2 plume moves within it. As a result, GCS projects can be data intensive, as a result of proliferation of digital instrumentation and smart-sensing technologies. GCS projects are also resource intensive, often requiring multidisciplinary teams performing different monitoring, verification, and accounting (MVA) tasks throughout the lifecycle of a project to ensure secure containment of injected CO2. How to correlate anomaly detected by a certain sensor to events observed by other devices to verify leakage incidents? How to optimally allocate resources for task-oriented monitoring if reservoir integrity is in question? These are issues that warrant further investigation before real integration can take place. In this work, we are building a web-based, data integration, assimilation, and learning framework for geologic carbon sequestration projects (DIAL-GCS). DIAL-GCS will be an intelligent monitoring system (IMS) for automating GCS closed-loop management by leveraging recent developments in high-throughput database, complex event processing, data assimilation, and machine learning technologies. Results will be demonstrated using realistic data and model derived from a GCS site.

  4. Uncertainties in relation to CO2 capture and sequestration. Preliminary results. Working Paper

    International Nuclear Information System (INIS)

    Gielen, D.

    2003-03-01

    This paper has been presented at an expert meeting on CO2 capture technology learning at the IEA headquarters, January 24th, 2003. The electricity sector is a key source of CO2 emissions and a strong increase of emissions is forecast in a business-as-usual scenario. A range of strategies have been proposed to reduce these emissions. This paper focuses on one of the promising strategies, CO2 capture and storage. The future role of CO2 capture in the electricity sector has been assessed, using the Energy Technology Perspectives model (ETP). Technology data have been collected and reviewed in cooperation with the IEA Greenhouse Gas R and D implementing agreement and other expert groups. CO2 capture and sequestration is based on relatively new technology. Therefore, its characteristics and its future role in the energy system is subject to uncertainties, as for any new technology. The analysis suggests that the choice of a reference electricity production technology and the characteristics of the CO2 storage option constitute the two main uncertainties, apart from a large number of other factors of lesser importance. Based on the choices made cost estimates can range from less than zero USD for coal fired power plants to more than 150 USD per ton of CO2 for gas fired power plants. The results suggest that learning effects are important, but they do not affect the CO2 capture costs significantly, other uncertainties dominate the cost estimates. The ETP model analysis, where choices are based on the ideal market hypothesis and rational price based decision making, suggest up to 18% of total global electricity production will be equipped with CO2 capture by 2040, in case of a penalty of 50 US$ per ton of CO2. However this high penetration is only achieved in case coal fired IGCC-SOFC power plants are developed successfully. Without such technology only a limited amount of CO2 is captured from gas fired power plants. Higher penalties may result in a higher share of CO2

  5. Surface monitoring of microseismicity at the Decatur, Illinois, CO2 sequestration demonstration site

    Science.gov (United States)

    Kaven, Joern; Hickman, Stephen H.; McGarr, Arthur F.; Ellsworth, William L.

    2015-01-01

    Sequestration of CO2 into subsurface reservoirs can play an important role in limiting future emission of CO2 into the atmosphere (e.g., Benson and Cole, 2008). For geologic sequestration to become a viable option to reduce greenhouse gas emissions, large-volume injection of supercritical CO2 into deep sedimentary formations is required. These formations offer large pore volumes and good pore connectivity and are abundant (Bachu, 2003; U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013). However, hazards associated with injection of CO2 into deep formations require evaluation before widespread sequestration can be adopted safely (Zoback and Gorelick, 2012). One of these hazards is the potential to induce seismicity on pre-existing faults or fractures. If these faults or fractures are large and critically stressed, seismic events can occur with magnitudes large enough to pose a hazard to surface installations and, possibly more critical, the seal integrity of the cap rock. The Decatur, Illinois, carbon capture and storage (CCS) demonstration site is the first, and to date, only CCS project in the United States that injects a large volume of supercritical CO2 into a regionally extensive, undisturbed saline formation. The first phase of the Decatur CCS project was completed in November 2014 after injecting a million metric tons of supercritical CO2 over three years. This phase was led by the Illinois State Geological Survey (ISGS) and included seismic monitoring using deep borehole sensors, with a few sensors installed within the injection horizon. Although the deep borehole network provides a more comprehensive seismic catalog than is presented in this paper, these deep data are not publically available. We contend that for monitoring induced microseismicity as a possible seismic hazard and to elucidate the general patterns of microseismicity, the U.S. Geological Survey (USGS) surface and shallow borehole network described below

  6. Mycorrhizae Alter Toxin Sequestration and Performance of Two Specialist Herbivores

    Directory of Open Access Journals (Sweden)

    Amanda R. Meier

    2018-04-01

    Full Text Available Multitrophic species interactions are shaped by both top-down and bottom-up factors. Belowground symbionts of plants, such as arbuscular mycorrhizal fungi (AMF, can alter the strength of these forces by altering plant phenotype. For example, AMF-mediated changes in foliar toxin and nutrient concentrations may influence herbivore growth and fecundity. In addition, many specialist herbivores sequester toxins from their host plants to resist natural enemies, and the extent of sequestration varies with host plant secondary chemistry. Therefore, by altering plant phenotype, AMF may affect both herbivore performance and their resistance to natural enemies. We examined how inoculation of plants with AMF influences toxin sequestration and performance of two specialist herbivores feeding upon four milkweed species (Asclepias incarnata, A. curassavica, A. latifolia, A. syriaca. We raised aphids (Aphis nerii and caterpillars (Danaus plexippus on plants for 6 days in a fully factorial manipulation of milkweed species and level of AMF inoculation (zero, medium, and high. We then assessed aphid and caterpillar sequestration of toxins (cardenolides and performance, and measured defensive and nutritive traits of control plants. Aphids and caterpillars sequestered higher concentrations of cardenolides from plants inoculated with AMF across all milkweed species. Aphid per capita growth rates and aphid body mass varied non-linearly with increasing AMF inoculum availability; across all milkweed species, aphids had the lowest performance under medium levels of AMF availability and highest performance under high AMF availability. In contrast, caterpillar survival varied strongly with AMF availability in a plant species-specific manner, and caterpillar growth was unaffected by AMF. Inoculation with AMF increased foliar cardenolide concentrations consistently among milkweed species, but altered aboveground biomasses and foliar phosphorous concentrations in a plant

  7. THERMODYNAMIC ANALYSIS OF CARBON SEQUESTRATION METHODS IN LIGNITE POWER PLANTS

    International Nuclear Information System (INIS)

    Koroneos J. Christopher; Sakiltzis Christos; Rovas C. Dimitrios

    2008-01-01

    The green house effect is a very pressing issue of our times due to the big impact it will have in the future of life in our planet. The temperature increase of the earth which is the major impact of the greenhouse effect may change forever the climate and the way of life in many countries. It may lead to the reduction of agricultural production and at the end to famine, in several nations. The minimization of CO2 emissions and the introduction of new energy sources is the only solution to the catastrophe that is coming if inaction prevails. The objective of this work is to analyze the methods of the CO2 removal from the flue gases of power plants that use solid fuels. It is especially fit to the Greek conditions where the main fuel used is lignite. Three methods have been examined and compared thermodynamically. These are: (a) Removal of CO2 from the flue gas stream by absorption, (b) The combustion of lignite with pure oxygen and (c) The gasification of lignite. The lignite used in the analysis is the Greek lignite, produced at the Western Macedonia mines. The power plant, before carbon sequestration, has an efficiency of 39%, producing 330MW of electric power. After sequestration, the CO2 is compressed to pressures between 80-110 atm, before its final disposal. In the first method, the sequestration of CO2 is done utilizing a catalyst. The operation requires electricity and high thermal load which is received from low pressure steam extracted from the turbines. Additionally, electricity is required for the compression of the CO2 to 100 bars. This leads to a lower efficiency of the power plant by by 13%. In the second method, the lignite combustion is done with pure O2 produced at an air separation unit. The flue gasses are made up of CO2 and water vapor. This method requires electricity for carbon dioxide compression and the Air Separation unit, thus, the power plant efficiency is lowered by 26%. In the lignite gasification method, the products are a mixture of

  8. Analysis and Comparison of Carbon Capture & Sequestration Policies

    Science.gov (United States)

    Burton, E.; Ezzedine, S. M.; Reed, J.; Beyer, J. H.; Wagoner, J. L.

    2010-12-01

    Several states and countries have adopted or are in the process of crafting policies to enable geologic carbon sequestration projects. These efforts reflect the recognition that existing statutory and regulatory frameworks leave ambiguities or gaps that elevate project risk for private companies considering carbon sequestration projects, and/or are insufficient to address a government’s mandate to protect the public interest. We have compared the various approaches that United States’ state and federal governments have taken to provide regulatory frameworks to address carbon sequestration. A major purpose of our work is to inform the development of any future legislation in California, should it be deemed necessary to meet the goals of Assembly Bill 1925 (2006) to accelerate the adoption of cost-effective geologic sequestration strategies for the long-term management of industrial carbon dioxide in the state. Our analysis shows a diverse issues are covered by adopted and proposed carbon capture and sequestration (CCS) legislation and that many of the new laws focus on defining regulatory frameworks for underground injection of CO2, ambiguities in property issues, or assigning legal liability. While these approaches may enable the progress of early projects, future legislation requires a longer term and broader view that includes a quantified integration of CCS into a government’s overall climate change mitigation strategy while considering potentially counterproductive impacts on CCS of other climate change mitigation strategies. Furthermore, legislation should be crafted in the context of a vision for CCS as an economically viable and widespread industry. While an important function of new CCS legislation is enabling early projects, it must be kept in mind that applying the same laws or protocols in the future to a widespread CCS industry may result in business disincentives and compromise of the public interest in mitigating GHG emissions. Protection of the

  9. Integration of carbon capture and sequestration and renewable resource technologies for sustainable energy supply in the transportation sector

    International Nuclear Information System (INIS)

    Kim, Minsoo; Won, Wangyun; Kim, Jiyong

    2017-01-01

    Highlights: • Integration of carbon capture and sequestration and renewable resource technologies. • A new superstructure-based optimization model to identify the energy supply system. • Model validation via application study of the future transportation sector in Korea. - Abstract: In this study, a new design for a sustainable energy system was developed by integrating two technology frameworks: the renewable resource-based energy supply and the conventional (fossil fuel) resource-based energy production coupled with carbon capture and sequestration. To achieve this goal, a new superstructure-based optimization model was proposed using mixed-integer linear programming to identify the optimal combination of these technologies that minimizes the total daily cost, subject to various practical and logical constraints. The performance of the proposed model was validated via an application study of the future transportation sector in Korea. By considering six different scenarios that combined varying crude oil/natural gas prices and environmental regulation options, the optimal configuration of the energy supply system was identified, and the major cost drivers and their sensitivities were analyzed. It was shown that conventional resource-based energy production was preferred if crude oil and natural gas prices were low, even though environmental regulation was considered. Environmental regulation caused an increase in the total daily cost by an average of 26.4%, mainly due to CO_2 capture cost.

  10. CO2 emissions abatement and geologic sequestration - industrial innovations and stakes - status of researches in progress

    International Nuclear Information System (INIS)

    2005-01-01

    This colloquium was jointly organized by the French institute of petroleum (IFP), the French agency of environmental and energy mastery (Ademe) and the geological and mining research office (BRGM). This press kit makes a status of the advances made in CO 2 emissions abatement and geological sequestration: technological advances of CO 2 capture and sequestration, geological reservoir dimensioning with respect to the problem scale, duration of such an interim solution, CO 2 emissions abatement potentialities of geological sequestration, regulatory, economical and financial implications, international stakes of greenhouse gas emissions. This press kit comprises a press release about the IFP-Ademe-BRGM colloquium, a slide presentation about CO 2 abatement and sequestration, and four papers: a joint IFP-Ademe-BRGM press conference, IFP's answers to CO 2 emissions abatement, Ademe's actions in CO 2 abatement and sequestration, and BRGM's experience in CO 2 sequestration and climatic change expertise. (J.S.)

  11. Exploring decoy effects on computerized task preferences in rhesus monkeys (Macaca mulatta.

    Directory of Open Access Journals (Sweden)

    Audrey E. Parrish

    2018-05-01

    Full Text Available The asymmetric dominance effect or decoy effect emerges when a third inferior option is introduced to a choice set. The decoy option, although typically not chosen, impacts relative preference for the original two options. This decisional bias stands in contrast with rational choice theory, which dictates that choice behavior should remain consistent for the original options with the addition of different alternatives to a choice set such as the decoy. In the current study, we assessed the decoy effect in rhesus monkeys using a computerized task battery that introduced two different computerized tasks, including a matching-to-sample task and a psychomotor task called PURSUIT. Decoy tasks were designed such that they were inferior versions of these original task options, requiring longer time to completion (via slowed cursor speeds and subsequently reduced reinforcement rates. Monkeys learned to associate unique icons for each task (including for decoy tasks, and used these icons to select their preferred task from a choice set of two to three task options. Monkeys learned to perform all tasks, but did not show evidence of the decoy effect using this task preference paradigm. We discuss the role of initial task preference (and task biases, task type (symbolic vs. perceptual, and decoy effect sizes in light of these findings. We contrast the current results to previous findings of the decoy effect in rhesus monkeys using a perceptual paradigm as well as to other evidence of the decoy effect in non-primate animal species.

  12. Risky business: rhesus monkeys exhibit persistent preferences for risky options.

    Science.gov (United States)

    Xu, Eric R; Kralik, Jerald D

    2014-01-01

    Rhesus monkeys have been shown to prefer risky over safe options in experiential decision-making tasks. These findings might be due, however, to specific contextual factors, such as small amounts of fluid reward and minimal costs for risk-taking. To better understand the factors affecting decision-making under risk in rhesus monkeys, we tested multiple factors designed to increase the stakes including larger reward amounts, distinct food items rather than fluid reward, a smaller number of trials per session, and risky options with greater variation that also included non-rewarded outcomes. We found a consistent preference for risky options, except when the expected value of the safe option was greater than the risky option. Thus, with equivalent mean utilities between the safe and risky options, rhesus monkeys appear to have a robust preference for the risky options in a broad range of circumstances, akin to the preferences found in human children and some adults in similar tasks. One account for this result is that monkeys make their choices based on the salience of the largest payoff, without integrating likelihood and value across trials. A related idea is that they fail to override an impulsive tendency to select the option with the potential to obtain the highest possible outcome. Our results rule out strict versions of both accounts and contribute to an understanding of the diversity of risky decision-making among primates.

  13. U.S. Department of Energy's regional carbon sequestration partnership initiative: Update on validation and development phases

    Science.gov (United States)

    Rodosta, T.; Litynski, J.; Plasynski, S.; Spangler, L.; Finley, R.; Steadman, E.; Ball, D.; Gerald, H.; McPherson, B.; Burton, E.; Vikara, D.

    2011-01-01

    The U.S. Department of Energy (DOE) is the lead federal agency for the development and deployment of carbon sequestration technologies. The Regional Carbon Sequestration Partnerships (RCSPs) are the mechanism DOE utilizes to prove the technology and to develop human capital, stakeholder networks, information for regulatory policy, best practices documents and training to work toward the commercialization of carbon capture and storage (CCS). The RCSPs are tasked with determining the most suitable technologies, regulations, and infrastructure for carbon capture, transport, and storage in their respective geographic areas of responsibility. The seven partnerships include more than 400 state agencies, universities, national laboratories, private companies, and environmental organizations, spanning 43 states and four Canadian provinces. The Regional Partnerships Initiative is being implemented in three phases: Characterization, Validation, and Development. The initial Characterization Phase began in 2003 and was completed in 2005 and focused on characterization of CO2 storage potential within each region. It was followed by the Validation Phase, which began in 2005 and is nearing completion in 2011. The focus of the Validation Phase has been on small-scale field tests throughout the seven partnerships in various formation types such as saline, oil-bearing, and coal seams. The Validation Phase has characterized suitable CO2 storage reservoirs and identified the need for comprehensive legal and regulatory frameworks to enable commercial-scale CCS deployment. Finally, the Development Phase will consist of a series of large-scale, one-million-ton, injection tests throughout the United States and Canada. The objective of these large-scale tests is to identify the regulatory path or challenges in permitting CCS projects, to demonstrate the technology can inject CO2 safely, and to verify its permanence in geologic formations in preparation for the commercialization of geologic

  14. ATR Spent Fuel Options Study

    International Nuclear Information System (INIS)

    Connolly, Michael James; Bean, Thomas E.; Brower, Jeffrey O.; Luke, Dale E.; Patterson, M. W.; Robb, Alan K.; Sindelar, Robert; Smith, Rebecca E.; Tonc, Vincent F.; Tripp, Julia L.; Winston, Philip L.

    2017-01-01

    The Advanced Test Reactor (ATR) is a materials and fuels test nuclear reactor that performs irradiation services for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Naval Reactors, the National Nuclear Security Administration (NNSA), and other research programs. ATR achieved initial criticality in 1967 and is expected to operate in support of needed missions until the year 2050 or beyond. It is anticipated that ATR will generate approximately 105 spent nuclear fuel (SNF) elements per year through the year 2050. Idaho National Laboratory (INL) currently stores 2,008 ATR SNF elements in dry storage, 976 in wet storage, and expects to have 1,000 elements in wet storage before January 2017. A capability gap exists at INL for long-term (greater than the year 2050) management, in compliance with the Idaho Settlement Agreement (ISA), of ATR SNF until a monitored retrievable geological repository is open. INL has significant wet and dry storage capabilities that are owned by the DOE Office of Environmental Management (EM) and operated and managed by Fluor Idaho, which include the Idaho Nuclear Technology and Engineering Center's (INTEC's) CPP-666, CPP-749, and CPP-603. In addition, INL has other capabilities owned by DOE-NE and operated and managed by Battelle Energy Alliance, LLC (BEA), which are located at the Materials and Fuel Complex (MFC). Additional storage capabilities are located on the INL Site at the Naval Reactors Facility (NRF). Current INL SNF management planning, as defined in the Fluor Idaho contract, shows INTEC dry fuel storage, which is currently used for ATR SNF, will be nearly full after transfer of an additional 1,000 ATR SNF from wet storage. DOE-NE tasked BEA with identifying and analyzing options that have the potential to fulfill this capability gap. BEA assembled a team comprised of SNF management experts from Fluor Idaho, Savannah River Site (SRS), INL/BEA, and the MITRE Corp with an objective of developing and analyzing

  15. ATR Spent Fuel Options Study

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, Michael James [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bean, Thomas E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Brower, Jeffrey O. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Luke, Dale E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Patterson, M. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robb, Alan K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sindelar, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tonc, Vincent F. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tripp, Julia L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Winston, Philip L. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The Advanced Test Reactor (ATR) is a materials and fuels test nuclear reactor that performs irradiation services for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Naval Reactors, the National Nuclear Security Administration (NNSA), and other research programs. ATR achieved initial criticality in 1967 and is expected to operate in support of needed missions until the year 2050 or beyond. It is anticipated that ATR will generate approximately 105 spent nuclear fuel (SNF) elements per year through the year 2050. Idaho National Laboratory (INL) currently stores 2,008 ATR SNF elements in dry storage, 976 in wet storage, and expects to have 1,000 elements in wet storage before January 2017. A capability gap exists at INL for long-term (greater than the year 2050) management, in compliance with the Idaho Settlement Agreement (ISA), of ATR SNF until a monitored retrievable geological repository is open. INL has significant wet and dry storage capabilities that are owned by the DOE Office of Environmental Management (EM) and operated and managed by Fluor Idaho, which include the Idaho Nuclear Technology and Engineering Center’s (INTEC’s) CPP-666, CPP-749, and CPP-603. In addition, INL has other capabilities owned by DOE-NE and operated and managed by Battelle Energy Alliance, LLC (BEA), which are located at the Materials and Fuel Complex (MFC). Additional storage capabilities are located on the INL Site at the Naval Reactors Facility (NRF). Current INL SNF management planning, as defined in the Fluor Idaho contract, shows INTEC dry fuel storage, which is currently used for ATR SNF, will be nearly full after transfer of an additional 1,000 ATR SNF from wet storage. DOE-NE tasked BEA with identifying and analyzing options that have the potential to fulfill this capability gap. BEA assembled a team comprised of SNF management experts from Fluor Idaho, Savannah River Site (SRS), INL/BEA, and the MITRE Corp with an objective of developing and analyzing

  16. Treatment of Pulmonary Sequestrations by Means of Endovascular Embolization: Future or Fashion?

    Directory of Open Access Journals (Sweden)

    Jeroen Diks

    2011-01-01

    Full Text Available Bronchopulmonary sequestration is a rare malformation of the lower respiratory tract. Several methods of treatment have been described since the first publication. We present two cases of female adult patients with bronchopulmonary sequestration. In the first patient an unsuccessful attempt to treat the bronchopulmonary sequestration by means of arterial embolization is described. She was subsequently treated by means of surgical resection, which was the primary treatment for the second patient. Although endovascular techniques are becoming promising, in our opinion surgical resection remains the unique treatment for bronchopulmonary sequestration.

  17. Carbon dioxide (CO2) sequestration in deep saline aquifers and formations: Chapter 3

    Science.gov (United States)

    Rosenbauer, Robert J.; Thomas, Burt

    2010-01-01

    Carbon dioxide (CO2) capture and sequestration in geologic media is one among many emerging strategies to reduce atmospheric emissions of anthropogenic CO2. This chapter looks at the potential of deep saline aquifers – based on their capacity and close proximity to large point sources of CO2 – as repositories for the geologic sequestration of CO2. The petrochemical characteristics which impact on the suitability of saline aquifers for CO2 sequestration and the role of coupled geochemical transport models and numerical tools in evaluating site feasibility are also examined. The full-scale commercial CO2 sequestration project at Sleipner is described together with ongoing pilot and demonstration projects.

  18. ANALYSIS OF URBAN FOREST CARBON SEQUESTRATION CAPACITY: A CASE STUDY OF ZENGDU, SUIZHOU

    Directory of Open Access Journals (Sweden)

    X. Yu

    2017-09-01

    Full Text Available Carbon-fixing and oxygen-releasing is an important content of forest ecosystem serving in city. Analysis of forest ecosystem carbon sequestration capacity can provide scientific reference for urban forest management strategies. Taking Zengdu of Suizhou as an example, CITYGREEN model was applied to calculate the carbon sequestration benefits of urban forest ecosystem in this paper. And the carbon sequestration potential of urban forest ecosystem following the returning of farmland to forest land is also evaluated. The results show that forest area, percent tree cover, and the structure of forest land were the major factors reflecting regional carbon sequestration capacity.

  19. Carbon Sequestration and Forest Management at DoD Installations: An Exploratory Study

    National Research Council Canada - National Science Library

    Barker, Jerry

    1995-01-01

    .... The primary purpose of this report is to explore the influence of management practices such as tree harvesting, deforestation, and reforestation on carbon sequestration potential by DOD forests...

  20. Management options of varicoceles

    Directory of Open Access Journals (Sweden)

    Peter Chan

    2011-01-01

    Full Text Available Varicocele is one of the most common causes of male infertility. Treatment options for varicoceles includes open varicocelectomy performed at various anatomical levels. Laparoscopic varicocelectomy has been established to be a safe and effective treatment for varicoceles. Robotic surgery has been introduced recently as an alternative surgical option for varicocelectomy. Microsurgical varicocelectomy has gained increasing popularity among experts in male reproductive medicine as the treatment of choice for varicocele because of its superior surgical outcomes. There is a growing volume of literature in the recent years on minimal invasive varicocele treatment with percutaneous retrograde and anterograde venous embolization/sclerotherapy. In this review, we will discuss the advantages and limitations associated with each treatment modality for varicoceles. Employment of these advanced techniques of varicocelectomy can provide a safe and effective approach aiming to eliminate varicocele, preserve testicular function and, in a substantial number of men, increase semen quality and the likelihood of pregnancy.

  1. Energy options?; Energie opties?

    Energy Technology Data Exchange (ETDEWEB)

    Van Sark, W. (ed.)

    2006-05-15

    March 2006 the so-called Options Document was published by the Energy research Centre of the Netherlands (ECN) and the Netherlands Environmental Assessment Agency (MNP). The document is an overview of technical options to reduce energy consumption and emission of greenhouse gases up to 2020. Next to a brief summary of the document a few reactions and comments on the contents of the document are given. [Dutch] Maart 2006 publiceerde het Energieonderzoek Centrum Nederland (ECN) en het Milieu- en Natuurplanbureau (MNP) het zogenaamde Optiedocument energie en emissies 2010-2020. Daarin wordt een overzicht gegeven van de technische mogelijkheden voor vermindering van het energieverbruik en de uitstoot van broeikasgassen en luchtverontreinigende stoffen tot 2020. Naast een korte samenvatting van het document worden enkele reacties gegeven op de inhoud.

  2. Evaluating technology service options.

    Science.gov (United States)

    Blumberg, D F

    1997-05-01

    Four service and support options are available to healthcare organizations for maintaining their growth arsenals of medical and information technology. These options include maintaining and servicing all equipment using a facility-based biomedical engineering and MIS service department; using a combination of facility-based service and subcontracted service; expanding facility-based biomedical and MIS service departments to provide service to other healthcare organizations to achieve economies of scale; and outsourcing all maintenance, repair, and technical support services. Independent service companies and original equipment manufacturers (OEMs) are offering healthcare organizations a wider array of service and support capabilities than ever before. However, some health systems have successfully developed their own independent service organizations to take care of their own--and other healthcare organizations'--service and support needs.

  3. Optioner eller betingede aktier?

    DEFF Research Database (Denmark)

    Bechmann, Ken L.; Thorsell, Christopher

    2016-01-01

    Incitamentsaflønning – og herunder især aktieaflønning – fortsætter med at tiltrække sig stor opmærksomhed fra en lang række sider. Et spørgsmål, der ofte diskuteres, er selskabernes anvendelse af aktieaflønning, dvs. aflønning med optioner, betingede aktier o. lign. Diskussionerne har blandt andet...

  4. Shungnak Energy Configuration Options.

    Energy Technology Data Exchange (ETDEWEB)

    Rosewater, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Power systems in rural Alaska villages face a unique combination of challenges that can increase the cost of energy and lowers energy supply reliability. In the case of the remote village of Shungnak, diesel and heating fuel is either shipped in by barge or flown in by aircraft. This report presents a technical analysis of several energy infrastructure upgrade and modification options to reduce the amount of fuel consumed by the community of Shungnak. Reducing fuel usage saves money and makes the village more resilient to disruptions in fuel supply. The analysis considers demand side options, such as energy efficiency, alongside the installation of wind and solar power generation options. Some novel approaches are also considered including battery energy storage and the use of electrical home heating stoves powered by renewable generation that would otherwise be spilled and wasted. This report concludes with specific recommendations for Shungnak based on economic factors, and fuel price sensitivity. General conclusions are also included to support future work analyzing similar energy challenges in remote arctic regions.

  5. The safeguards options study

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D. [Los Alamos National Lab., NM (United States); Olsen, A.P.; Roche, C.T.; Rudolph, R.R. [Argonne National Lab., IL (United States); Bieber, A.M.; Lemley, J. [Brookhaven National Lab., Upton, NY (United States); Filby, E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq`s obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state.

  6. The safeguards options study

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D.; Olsen, A.P.; Roche, C.T.; Rudolph, R.R.; Bieber, A.M.; Lemley, J.; Filby, E.

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq's obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state

  7. Strength Reduction of Coal Pillar after CO2 Sequestration in Abandoned Coal Mines

    Directory of Open Access Journals (Sweden)

    Qiuhao Du

    2017-02-01

    Full Text Available CO2 geosequestration is currently considered to be the most effective and economical method to dispose of artificial greenhouse gases. There are a large number of coal mines that will be scrapped, and some of them are located in deep formations in China. CO2 storage in abandoned coal mines will be a potential option for greenhouse gas disposal. However, CO2 trapping in deep coal pillars would induce swelling effects of coal matrix. Adsorption-induced swelling not only modifies the volume and permeability of coal mass, but also causes the basic physical and mechanical properties changing, such as elastic modulus and Poisson ratio. It eventually results in some reduction in pillar strength. Based on the fractional swelling as a function of time and different loading pressure steps, the relationship between volumetric stress and adsorption pressure increment is acquired. Eventually, this paper presents a theory model to analyze the pillar strength reduction after CO2 adsorption. The model provides a method to quantitatively describe the interrelation of volumetric strain, swelling stress, and mechanical strength reduction after gas adsorption under the condition of step-by-step pressure loading and the non-Langmuir isothermal model. The model might have a significantly important implication for predicting the swelling stress and mechanical behaviors of coal pillars during CO2 sequestration in abandoned coal mines.

  8. Methods and apparatus for measuring small leaks from carbon dioxide sequestration facilities

    Science.gov (United States)

    Nelson, Jr., David D.; Herndon, Scott C.

    2018-01-02

    In one embodiment, a CO.sub.2 leak detection instrument detects leaks from a site (e.g., a CO.sub.2 sequestration facility) using rapid concentration measurements of CO.sub.2, O.sub.2 and optionally water concentration that are achieved, for example, using laser spectroscopy (e.g. direct absorption laser spectroscopy). Water vapor in the sample gas may not be removed, or only partially removed. The sample gas may be collected using a multiplexed inlet assembly from a plurality of locations. CO.sub.2 and O.sub.2 concentrations may be corrected based on the water concentration. A resulting dataset of the CO.sub.2 and O.sub.2 concentrations is analyzed over time intervals to detect any changes in CO.sub.2 concentration that are not anti-correlated with O.sub.2 concentration, and to identify a potential CO.sub.2 leak in response thereto. The analysis may include determining eddy covariance flux measurements of sub-surface potential carbon.

  9. The importance of rapid, disturbance-induced losses in carbon management and sequestration

    Science.gov (United States)

    Breshears, D.D.; Allen, Craig D.

    2002-01-01

    Management of terrestrial carbon fluxes is being proposed as a means of increasing the amount of carbon sequestered in the terrestrial biosphere. This approach is generally viewed only as an interim strategy for the coming decades while other longer-term strategies are developed and implemented — the most important being the direct reduction of carbon emissions. We are concerned that the potential for rapid, disturbance-induced losses may be much greater than is currently appreciated, especially by the decision-making community. Here we wish to: (1) highlight the complex and threshold-like nature of disturbances — such as fire and drought, as well as the erosion associated with each — that could lead to carbon losses; (2) note the global extent of ecosystems that are at risk of such disturbance-induced carbon losses; and (3) call for increased consideration of and research on the mechanisms by which large, rapid disturbance-induced losses of terrestrial carbon could occur. Our lack of ability as a scientific community to predict such ecosystem dynamics is precluding the effective consideration of these processes into strategies and policies related to carbon management and sequestration. Consequently, scientists need to do more to improve quantification of these potential losses and to integrate them into sound, sustainable policy options.

  10. Olivine Dissolution in Seawater: Implications for CO2 Sequestration through Enhanced Weathering in Coastal Environments

    Science.gov (United States)

    2017-01-01

    Enhanced weathering of (ultra)basic silicate rocks such as olivine-rich dunite has been proposed as a large-scale climate engineering approach. When implemented in coastal environments, olivine weathering is expected to increase seawater alkalinity, thus resulting in additional CO2 uptake from the atmosphere. However, the mechanisms of marine olivine weathering and its effect on seawater–carbonate chemistry remain poorly understood. Here, we present results from batch reaction experiments, in which forsteritic olivine was subjected to rotational agitation in different seawater media for periods of days to months. Olivine dissolution caused a significant increase in alkalinity of the seawater with a consequent DIC increase due to CO2 invasion, thus confirming viability of the basic concept of enhanced silicate weathering. However, our experiments also identified several important challenges with respect to the detailed quantification of the CO2 sequestration efficiency under field conditions, which include nonstoichiometric dissolution, potential pore water saturation in the seabed, and the potential occurrence of secondary reactions. Before enhanced weathering of olivine in coastal environments can be considered an option for realizing negative CO2 emissions for climate mitigation purposes, these aspects need further experimental assessment. PMID:28281750

  11. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    2008-08-01

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the

  12. Option generation in decision making: ideation beyond memory retrieval.

    Science.gov (United States)

    Del Missier, Fabio; Visentini, Mimì; Mäntylä, Timo

    2014-01-01

    According to prescriptive decision theories, the generation of options for choice is a central aspect of decision making. A too narrow representation of the problem may indeed limit the opportunity to evaluate promising options. However, despite the theoretical and applied significance of this topic, the cognitive processes underlying option generation are still unclear. In particular, while a cued recall account of option generation emphasizes the role of memory and executive control, other theoretical proposals stress the importance of ideation processes based on various search and thinking processes. Unfortunately, relevant behavioral evidence on the cognitive processes underlying option generation is scattered and inconclusive. In order to reach a better understanding, we carried out an individual-differences study employing a wide array of cognitive predictors, including measures of episodic memory, semantic memory, cognitive control, and ideation fluency. The criterion tasks consisted of three different poorly-structured decision-making scenarios, and the participants were asked to generate options to solve these problems. The main criterion variable of the study was the number of valid options generated, but also the diversity and the quality of generated options were examined. The results showed that option generation fluency and diversity in the context of ill-structured decision making are supported by ideation ability even after taking into account the effects of individual differences in several other aspects of cognitive functioning. Thus, ideation processes, possibly supported by search and thinking processes, seem to contribute to option generation beyond basic associative memory retrieval. The findings of the study also indicate that generating more options may have multifaceted consequences for choice, increasing the quality of the best option generated but decreasing the mean quality of the options in the generated set.

  13. Option generation in decision making: Ideation beyond memory retrieval

    Directory of Open Access Journals (Sweden)

    Fabio eDel Missier

    2015-01-01

    Full Text Available According to prescriptive decision theories, the generation of options for choice is a central aspect of decision making. A too narrow representation of the problem may indeed limit the opportunity to evaluate promising options. However, despite the theoretical and applied significance of this topic, the cognitive processes underlying option generation are still unclear. In particular, while a cued recall account of option generation emphasizes the role of memory and executive control, other theoretical proposals stress the importance of ideation processes based on various search and thinking processes. Unfortunately, relevant behavioral evidence on the cognitive processes underlying option generation is scattered and inconclusive. In order to reach a better understanding, we carried out an individual-differences study employing a wide array of cognitive predictors, including measures of episodic memory, semantic memory, cognitive control, and ideation fluency. The criterion tasks consisted of three different poorly-structured decision-making scenarios, and the participants were asked to generate options to solve these problems. The main criterion variable of the study was the number of valid options generated, but also the diversity and the quality of generated options were examined. The results showed that option generation fluency and diversity in the context of ill-structured decision making are supported by ideation ability even after taking into account the effects of individual differences in several other aspects of cognitive functioning. Thus, ideation processes, possibly supported by search and thinking processes, seem to contribute to option generation beyond basic associative memory retrieval. The findings of the study also indicate that generating more options may have multifaceted consequences for choice, increasing the quality of the best option generated but decreasing the mean quality of the options in the generated set.

  14. Southwest Regional Partnership on Carbon Sequestration Phase II

    Energy Technology Data Exchange (ETDEWEB)

    James Rutledge

    2011-02-01

    The Southwest Regional Partnership (SWP) on Carbon Sequestration designed and deployed a medium-scale field pilot test of geologic carbon dioxide (CO2) sequestration in the Aneth oil field. Greater Aneth oil field, Utah's largest oil producer, was discovered in 1956 and has produced over 455 million barrels of oil (72 million m3). Located in the Paradox Basin of southeastern Utah, Greater Aneth is a stratigraphic trap producing from the Pennsylvanian Paradox Formation. Because it represents an archetype oil field of the western U.S., Greater Aneth was selected as one of three geologic pilots to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration under the auspices of the SWP on Carbon Sequestration, sponsored by the U.S. Department of Energy. The pilot demonstration focuced on the western portion of the Aneth Unit as this area of the field was converted from waterflood production to CO2 EOR starting in late 2007. The Aneth Unit is in the northwestern part of the field and has produced 149 million barrels (24 million m3) of the estimated 450 million barrels (71.5 million m3) of the original oil in place - a 33% recovery rate. The large amount of remaining oil makes the Aneth Unit ideal to demonstrate both CO2 storage capacity and EOR by CO2 flooding. This report summarizes the geologic characterization research, the various field monitoring tests, and the development of a geologic model and numerical simulations conducted for the Aneth demonstration project. The Utah Geological Survey (UGS), with contributions from other Partners, evaluated how the surface and subsurface geology of the Aneth Unit demonstration site will affect sequestration operations and engineering strategies. The UGS-research for the project are summarized in Chapters 1 through 7, and includes (1) mapping the surface geology including stratigraphy, faulting, fractures, and deformation bands, (2) describing the local Jurassic and Cretaceous stratigraphy, (3) mapping the

  15. Deliberating emission reduction options

    Energy Technology Data Exchange (ETDEWEB)

    Dowd, A. M.; Rodriguez, M.; Jeanneret, T. [Commonwealth Scientific and Industrial Research Organisation CSIRO, 37 Graham Rd, Highett VIC 3190 (Australia); De Best-Waldhober, M.; Straver, K.; Mastop, J.; Paukovic, M. [Energy research Centre of the Netherlands ECN, Policy Studies, Amsterdam (Netherlands)

    2012-06-15

    For more than 20 years there has been a concerted international effort toward addressing climate change. International conventions, such as the United Nations Foreign Convention on Climate Change (UNFCCC; ratified in 1994), have been established by committed nations seeking to address global climate change through the reduction of greenhouse gases emitted into the Earth's atmosphere (Global CCS Institute, 2011). Long recognised as the most crucial of the greenhouse gases to impact global warming, the majority of carbon dioxide's anthropogenic global emissions are directly related to fuel combustion of which both Australia and the Netherlands' energy production is significantly reliant. Both these nations will need to consider many opinions and make hard decisions if alternative energy options are to be implemented at the scale that is required to meet international emission targets. The decisions that are required not only need to consider the many options available but also their consequences. Along with politicians, policy developers and industry, the general public also need to be active participants in deciding which energy options, and their subsequent consequences, are acceptable for implementation at the national level. Access to balanced and factual information is essential in establishing informed opinions on the many policy options available. Past research has used several methods to measure public perceptions and opinions yet for complex issues, such as emission reduction, some of these methods have shown to be problematic. For example, semi structured interviews can provide data that is flexible and context rich yet is does also come with the limitations such as it seldom provides a practical assessment that can be utilised from researcher to researcher, across disciplines and public participation techniques. Surveys on the other hand usually address these limitations but surveys that do not encourage comparison of information or ask participants to

  16. Deliberating emission reduction options

    Energy Technology Data Exchange (ETDEWEB)

    Dowd, A.M.; Rodriguez, M.; Jeanneret, T. [Commonwealth Scientific and Industrial Research Organisation CSIRO, 37 Graham Rd, Highett VIC 3190 (Australia); De Best-Waldhober, M.; Straver, K.; Mastop, J.; Paukovic, M. [Energy research Centre of the Netherlands ECN, Policy Studies, Amsterdam (Netherlands)

    2012-06-15

    For more than 20 years there has been a concerted international effort toward addressing climate change. International conventions, such as the United Nations Foreign Convention on Climate Change (UNFCCC; ratified in 1994), have been established by committed nations seeking to address global climate change through the reduction of greenhouse gases emitted into the Earth's atmosphere (Global CCS Institute, 2011). Long recognised as the most crucial of the greenhouse gases to impact global warming, the majority of carbon dioxide's anthropogenic global emissions are directly related to fuel combustion of which both Australia and the Netherlands' energy production is significantly reliant. Both these nations will need to consider many opinions and make hard decisions if alternative energy options are to be implemented at the scale that is required to meet international emission targets. The decisions that are required not only need to consider the many options available but also their consequences. Along with politicians, policy developers and industry, the general public also need to be active participants in deciding which energy options, and their subsequent consequences, are acceptable for implementation at the national level. Access to balanced and factual information is essential in establishing informed opinions on the many policy options available. Past research has used several methods to measure public perceptions and opinions yet for complex issues, such as emission reduction, some of these methods have shown to be problematic. For example, semi structured interviews can provide data that is flexible and context rich yet is does also come with the limitations such as it seldom provides a practical assessment that can be utilised from researcher to researcher, across disciplines and public participation techniques. Surveys on the other hand usually address these limitations but surveys that do not encourage comparison of information or ask

  17. Greenhouse gas emissions reduction from fossil fuels: options and prospects

    International Nuclear Information System (INIS)

    McDonald, M.M.

    1999-01-01

    If levels of carbon dioxide in the atmosphere are to be stabilized over the next 50 years, net emissions from the use of fossil fuels have to be reduced. One concept worth exploring is the removal of carbon dioxide from plant flue gases and disposing of it in a manner that sequesters it from the atmosphere. A number of technologies, which are either commercially available or under development, promise to make this concept viable. The question of where to dispose of the carbon dioxide removed is not the limiting factor, given the potential for use in enhanced hydrocarbon production as well as other geological disposal options. In the longer term, fossil fuel use will significantly decline, but these extraction and sequestration technologies can provide the time for the transition to take place in a manner which causes least impact to the economies of the world. (author)

  18. Management options to reduce the carbon footprint of livestock products

    DEFF Research Database (Denmark)

    Hermansen, John Erik; Kristensen, Troels

    2011-01-01

    Livestock products carry a large carbon footprint compared with other foods, and thus there is a need to focus on how to reduce it. The major contributing factors are emissions related to feed use and manure handling as well as the nature of the land required to produce the feed in question. We can....... Basically, it is important to make sure that all beneficial interactions in the livestock system are optimized instead of focusing only on animal productivity. There is an urgent need to arrive at a sound framework for considering the interaction between land use and carbon footprints of foods....... conclude that the most important mitigation options include - better feed conversion at the system level, - use of feeds that increase soil carbon sequestration versus carbon emission, - ensure that the manure produced substitutes for synthetic fertilizer, and - use manure for bio-energy production...

  19. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    Science.gov (United States)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  20. Carbon sequestration in sinks. An overview of potential and costs

    Energy Technology Data Exchange (ETDEWEB)

    Kolshus, Hans H.

    2001-07-01

    Prior to the resumed climate negotiations in Bonn in July this year, it was thought that an agreement on the unresolved crunch issues of the Kyoto Protocol was unrealistic. This was primarily due to the US withdrawal from the Kyoto Protocol, and the failure of the previous climate negotiations that stranded mainly because of disagreement on the inclusion of land use, land-use change, and forestry (LULUCF) activities. The LULUCF issue is controversial in the climate negotiations, but an agreement has now been reached. This paper explores the possible contribution of LULUCF activities in promoting greenhouse gas emissions reductions. A survey on the literature of the potential and cost of LULUCF activities is therefore central. Analysis of the recent climate negotiations is also important. It is clear that the potential for carbon sequestration is large, but there are large variations in the estimates as factors such as land availability and the rate of carbon uptake complicate the calculations. There are also variations in the costs estimates, and economic analysis of LULUCF projects are not easily compared as no standard method of analysis has emerged and come into wide use. Despite the difficulties in comparing the costs of carbon sequestration, it is clear that it is a relatively inexpensive measure. Even though the potential for carbon sequestration is large, its role in reducing emissions of greenhouse gases (GHG) is limited by the Kyoto Protocol. The recent climate negotiations in Bonn and Marrakesh have specified the modalities, rules and guidelines relating to LULUCF activities. One of the main outcomes is that Japan, Canada and Russia are allowed large inclusions of sinks in their GHG emission accounts. (author)

  1. Effects of forest fertilization on C sequestration and GHG emissions

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, C.E.; Grayston, S.J.; Basiliko, N.; Seely, B.A.; Weetman, G.F. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Sciences; Bull, G.Q.; Northway, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Resources Management; Mohn, W.W. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Microbiology and Immunology

    2005-07-01

    This study evaluated the potential to create carbon credits from the increased storage in all carbon pools on the forest landscape. It was conducted in response to the Kyoto Protocol provision which allows the inclusion of carbon sinks. The productivity of Canada's forest landbase is limited by availability of nutrients, particularly nitrogen (N). Studies have shown that forest fertilization not only increases productivity of many forest type, but offers the associated benefit of increased carbon (C) sequestration in biomass. There is increasing evidence that N fertilization will also increase C sequestration in soil organic matter, since higher N availability appears to interfere with litter decomposition causing more C to become humified. Many long-term fertilization experiments in British Columbia have provided an opportunity to quantify the effects of N addition on C sequestration in vegetation and soil organic matter. It was noted that determining the effects of fertilization on emission of nitrous oxides (N{sub 2}O) and consumption of methane (CH{sub 4}) is critical since the greenhouse warming potential of these gases is much greater than that of carbon dioxide (CO{sub 2}). This study also used state-of-the-art molecular methods to identify the soil microorganisms responsible for N{sub 2}O production and CH{sub 4} oxidation in order to determine the complex and often contradictory effects of fertilizers on N{sub 2}O emission and CH{sub 4} oxidation in forest soils. The actual N{sub 2}O, CO{sub 2}, and CH{sub 4} fluxes from these soils were also measured. The main objective of the project was the development of microbial indicators as tools to detect soil GHG emission activity.

  2. Carbon sequestration in sinks. An overview of potential and costs

    International Nuclear Information System (INIS)

    Kolshus, Hans H.

    2001-01-01

    Prior to the resumed climate negotiations in Bonn in July this year, it was thought that an agreement on the unresolved crunch issues of the Kyoto Protocol was unrealistic. This was primarily due to the US withdrawal from the Kyoto Protocol, and the failure of the previous climate negotiations that stranded mainly because of disagreement on the inclusion of land use, land-use change, and forestry (LULUCF) activities. The LULUCF issue is controversial in the climate negotiations, but an agreement has now been reached. This paper explores the possible contribution of LULUCF activities in promoting greenhouse gas emissions reductions. A survey on the literature of the potential and cost of LULUCF activities is therefore central. Analysis of the recent climate negotiations is also important. It is clear that the potential for carbon sequestration is large, but there are large variations in the estimates as factors such as land availability and the rate of carbon uptake complicate the calculations. There are also variations in the costs estimates, and economic analysis of LULUCF projects are not easily compared as no standard method of analysis has emerged and come into wide use. Despite the difficulties in comparing the costs of carbon sequestration, it is clear that it is a relatively inexpensive measure. Even though the potential for carbon sequestration is large, its role in reducing emissions of greenhouse gases (GHG) is limited by the Kyoto Protocol. The recent climate negotiations in Bonn and Marrakesh have specified the modalities, rules and guidelines relating to LULUCF activities. One of the main outcomes is that Japan, Canada and Russia are allowed large inclusions of sinks in their GHG emission accounts. (author)

  3. Mineral CO2 sequestration by steel slag carbonation

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2005-12-01

    Mineral CO2 sequestration, i.e., carbonation of alkaline silicate Ca/Mg minerals, analogous to natural weathering processes, is a possible technology for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline Ca-rich industrial residues are presented as a possible feedstock for mineral CO2 sequestration. These materials are cheap, available near large point sources of CO2, and tend to react relatively rapidly with CO2 due to their chemical instability. Ground steel slag was carbonated in aqueous suspensions to study its reaction mechanisms. Process variables, such as particle size, temperature, carbon dioxide pressure, and reaction time, were systematically varied, and their influence on the carbonation rate was investigated. The maximum carbonation degree reached was 74% of the Ca content in 30 min at 19 bar pressure, 100C, and a particle size of <38 μm. The two must important factors determining the reaction rare are particle size (<2 mm to <38 μm) and reaction temperature (25-225C). The carbonation reaction was found to occur in two steps: (1) leaching of calcium from the steel slag particles into the solution; (2) precipitation of calcite on the surface of these particles. The first step and, more in particular, the diffusion of calcium through the solid matrix toward the surface appeared to be the rate-determining reaction step, The Ca diffusion was found to be hindered by the formation of a CaCO3-coating and a Ca-depleted silicate zona during the carbonation process. Research on further enhancement of the reaction rate, which would contribute to the development of a cost-effective CO2-sequestration process, should focus particularly on this mechanism

  4. Effects of forest fertilization on C sequestration and GHG emissions

    International Nuclear Information System (INIS)

    Prescott, C.E.; Grayston, S.J.; Basiliko, N.; Seely, B.A.; Weetman, G.F.; Bull, G.Q.; Northway, S.; Mohn, W.W.

    2005-01-01

    This study evaluated the potential to create carbon credits from the increased storage in all carbon pools on the forest landscape. It was conducted in response to the Kyoto Protocol provision which allows the inclusion of carbon sinks. The productivity of Canada's forest landbase is limited by availability of nutrients, particularly nitrogen (N). Studies have shown that forest fertilization not only increases productivity of many forest type, but offers the associated benefit of increased carbon (C) sequestration in biomass. There is increasing evidence that N fertilization will also increase C sequestration in soil organic matter, since higher N availability appears to interfere with litter decomposition causing more C to become humified. Many long-term fertilization experiments in British Columbia have provided an opportunity to quantify the effects of N addition on C sequestration in vegetation and soil organic matter. It was noted that determining the effects of fertilization on emission of nitrous oxides (N 2 O) and consumption of methane (CH 4 ) is critical since the greenhouse warming potential of these gases is much greater than that of carbon dioxide (CO 2 ). This study also used state-of-the-art molecular methods to identify the soil microorganisms responsible for N 2 O production and CH 4 oxidation in order to determine the complex and often contradictory effects of fertilizers on N 2 O emission and CH 4 oxidation in forest soils. The actual N 2 O, CO 2 , and CH 4 fluxes from these soils were also measured. The main objective of the project was the development of microbial indicators as tools to detect soil GHG emission activity

  5. Reaction mechanisms for enhancing carbon dioxide mineral sequestration

    Science.gov (United States)

    Jarvis, Karalee Ann

    Increasing global temperature resulting from the increased release of carbon dioxide into the atmosphere is one of the greatest problems facing society. Nevertheless, coal plants remain the largest source of electrical energy and carbon dioxide gas. For this reason, researchers are searching for methods to reduce carbon dioxide emissions into the atmosphere from the combustion of coal. Mineral sequestration of carbon dioxide reacted in electrolyte solutions at 185°C and 2200 psi with olivine (magnesium silicate) has been shown to produce environmentally benign carbonates. However, to make this method feasible for industrial applications, the reaction rate needs to be increased. Two methods were employed to increase the rate of mineral sequestration: reactant composition and concentration were altered independently in various runs. The products were analyzed with complete combustion for total carbon content. Crystalline phases in the product were analyzed with Debye-Scherrer X-ray powder diffraction. To understand the reaction mechanism, single crystals of San Carlos Olivine were reacted in two solutions: (0.64 M NaHCO3/1 M NaCl) and (5.5 M KHCO3) and analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and fluctuation electron microscopy (FEM) to study the surface morphology, atomic crystalline structure, composition and amorphous structure. From solution chemistry studies, it was found that increasing the activity of the bicarbonate ion increased the conversion rate of carbon dioxide to magnesite. The fastest conversion, 60% conversion in one hour, occurred in a solution of 5.5 M KHCO3. The reaction product particles, magnesium carbonate, significantly increased in both number density and size on the coupon when the bicarbonate ion activity was increased. During some experiments reaction vessel corrosion also altered the mineral sequestration mechanism. Nickel ions from vessel

  6. On leakage and seepage from geological carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

    2002-07-18

    Geologic carbon sequestration is one strategy for reducing the rate of increase of global atmospheric carbon dioxide (CO{sub 2} ) concentrations (IEA, 1997; Reichle, 2000). As used here, the term geologic carbon sequestration refers to the direct injection of supercritical CO{sub 2} deep into subsurface target formations. These target formations will typically be either depleted oil and gas reservoirs, or brine-filled permeable formations referred to here as brine formations. Injected CO{sub 2} will tend to be trapped by one or more of the following mechanisms: (1) permeability trapping, for example when buoyant supercritical CO{sub 2} rises until trapped by a confining caprock; (2) solubility trapping, for example when CO{sub 2} dissolves into the aqueous phase in water-saturated formations, or (3) mineralogic trapping, such as occurs when CO{sub 2} reacts to produce stable carbonate minerals. When CO{sub 2} is trapped in the subsurface by any of these mechanisms, it is effectively sequestered away from the atmosphere where it would otherwise act as a greenhouse gas. The purpose of this report is to summarize our work aimed at quantifying potential CO{sub 2} seepage due to leakage from geologic carbon sequestration sites. The approach we take is to present first the relevant properties of CO{sub 2} over the range of conditions from the deep subsurface to the vadose zone (Section 2), and then discuss conceptual models for how leakage might occur (Section 3). The discussion includes consideration of gas reservoir and natural gas storage analogs, along with some simple estimates of seepage based on assumed leakage rates. The conceptual model discussion provides the background for the modeling approach wherein we focus on simulating transport in the vadose zone, the last potential barrier to CO{sub 2} seepage (Section 4). Because of the potentially wide range of possible properties of actual future geologic sequestration sites, we carry out sensitivity analyses by

  7. Going With the Flow: An Aid in Detecting and Differentiating Bronchopulmonary Sequestrations and Hybrid Lesions.

    Science.gov (United States)

    Oliver, Edward R; DeBari, Suzanne E; Giannone, Mariann M; Pogoriler, Jennifer E; Johnson, Ann M; Horii, Steven C; Gebb, Juliana S; Howell, Lori J; Adzick, N Scott; Coleman, Beverly G

    2018-02-01

    To assess the ability of prenatal ultrasound (US) in identifying systemic feeding arteries in bronchopulmonary sequestrations and hybrid lesions and report the ability of US in classifying bronchopulmonary sequestrations as intralobar or extralobar. Institutional Review Board-approved radiology and clinical database searches from 2008 to 2015 were performed for prenatal lung lesions with final diagnoses of bronchopulmonary sequestrations or hybrid lesions. All patients had detailed US examinations, and most patients had ultrafast magnetic resonance imaging (MRI). Lesion location, size, and identification of systemic feeding arteries and draining veins were assessed with US. The study consisted of 102 bronchopulmonary sequestrations and 86 hybrid lesions. The median maternal age was 30 years. The median gestational age was 22 weeks 5 days. Of bronchopulmonary sequestrations, 66 had surgical pathologic confirmation, and 100 had postnatal imaging. Bronchopulmonary sequestration locations were intrathoracic (n = 77), intra-abdominal (n = 19), and transdiaphragmatic (n = 6). Of hybrid lesions, 84 had surgical pathologic confirmation, and 83 had postnatal imaging. Hybrid lesion locations were intrathoracic (n = 84) and transdiaphragmatic (n = 2). Ultrasound correctly identified systemic feeding arteries in 86 of 102 bronchopulmonary sequestrations and 79 of 86 hybrid lesions. Of patients who underwent MRI, systemic feeding arteries were reported in 62 of 92 bronchopulmonary sequestrations and 56 of 81 hybrid lesions. Ultrasound identified more systemic feeding arteries than MRI in both bronchopulmonary sequestrations and hybrid lesions (P < .01). Magnetic resonance imaging identified systemic feeding arteries that US did not in only 2 cases. In cases in which both systemic feeding arteries and draining veins were identified, US could correctly predict intrathoracic lesions as intralobar or extralobar in 44 of 49 bronchopulmonary sequestrations and

  8. Treatment Options for Actinic Keratosis

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) depends mostly on ... helped by lip balm or petroleum jelly . Treatment Option Overview Key Points There are different types of ...

  9. Treatment Option Overview (Vaginal Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) depends on the ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  10. Treatment Option Overview (Anal Cancer)

    Science.gov (United States)

    ... affect the prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) depends on the ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  11. Pricing American and Asian Options

    OpenAIRE

    Pat Muldowney

    2015-01-01

    An analytic method for pricing American call options is provided; followed by an empirical method for pricing Asian call options. The methodology is the pricing theory presented in "A Modern Theory of Random Variation", by Patrick Muldowney, 2012.

  12. The information content of options

    OpenAIRE

    Navon, Yonatan

    2017-01-01

    The objective of this thesis is to examine the information content of stock options in financial markets. A key question in financial economics is how information diffuses across markets and how quickly it is reflected in security prices. This thesis aims at exploring this question by investigating the informational role that options play in financial markets. This is achieved by exploring the joint cross section of option and bond prices, the informational role of options in seasoned equity ...

  13. Balancing of solar heating options

    NARCIS (Netherlands)

    Veltkamp, W.B.; van Koppen, C.W.J.; Ouden, den C.

    1984-01-01

    In the field of energy conservation many options are presently competing. This study aims at providing more rational criteria for selection between these options.The options considered are; insulation of the walls, regeneration of the heat in the waste air, double glazing, attached sunspace at the

  14. Stock option repricing in Europe

    NARCIS (Netherlands)

    Sauer, M.; Sautner, Z.

    2008-01-01

    This paper investigates the link between option repricing, firm performance and corporate governance in Europe. Our sample consists of 77 European firms that repriced their stock option between 1987 and 2003. We document that option repricing is mainly a phenomenon for young and fast growing firms

  15. CARBON SEQUESTRATION AND PLANT COMMUNITY DYNAMICS FOLLOWING REFORESTATION OF TROPICAL PASTURE.

    Science.gov (United States)

    WHENDEE L. SILVER; LARA M. KUEPPERS; ARIEL E. LUGO; REBECCA OSTERTAG; VIRGINIA MATZEK

    2004-01-01

    Conversion of abandoned cattle pastures to secondary forests and plantations in the tropics has been proposed as a means to increase rates of carbon (C) sequestration from the atmosphere and enhance local biodiversity. We used a long-term tropical reforestation project (55–61 yr) to estimate rates of above- and belowground C sequestration and to investigate the impact...

  16. Carbon sequestration in the U.S. forest sector from 1990 to 2010

    Science.gov (United States)

    Peter B. Woodbury; James E. Smith; Linda S. Heath

    2007-01-01

    Forest inventory data supplemented with data from intensive research sites and models were used to estimate carbon stocks and sequestration rates in U.S. forests, including effects of land use change. Data on the production of wood products and emission from decomposition were used to estimate carbon stocks and sequestration rates in wood products and landfills. From...

  17. Assessing net carbon sequestration on urban and community forests of northern New England, USA

    Science.gov (United States)

    Daolan Zheng; Mark J. Ducey; Linda S. Heath

    2013-01-01

    Urban and community forests play an important role in the overall carbon budget of the USA. Accurately quantifying carbon sequestration by these forests can provide insight for strategic planning to mitigate greenhouse gas effects on climate change. This study provides a new methodology to estimate net forest carbon sequestration (FCS) in urban and community lands of...

  18. Using silviculture to influence carbon sequestration in southern Appalachian spruce-fir forests

    Science.gov (United States)

    Patrick T. Moore; R. Justin DeRose; James N. Long; Helga. van Miegroet

    2012-01-01

    Enhancement of forest growth through silvicultural modification of stand density is one strategy for increasing carbon (C) sequestration. Using the Fire and Fuels Extension of the Forest Vegetation Simulator, the effects of even-aged, uneven-aged and no-action management scenarios on C sequestration in a southern Appalachian red spruce-Fraser fir forest were modeled....

  19. Yield and soil carbon sequestration in grazed pastures sown with two or five forage species

    Science.gov (United States)

    Increasing plant species richness is often associated with an increase in productivity and associated ecosystem services such as soil C sequestration. In this paper we report on a nine-year experiment to evaluate the relative forage production and C sequestration potential of grazed pastures sown to...

  20. Soil carbon sequestration potential in semi-arid grasslands in the conservation reserve program

    Science.gov (United States)

    The Conservation Reserve Program (CRP) in the USA plays a major role in carbon (C) sequestration to help mitigate rising CO2 levels and climate change. The Southern High Plains (SHP) region contains N900.000 ha enrolled in CRP, but a regionally specific C sequestration rate has not been studied, and...

  1. Achalasia: Treatment Options Revisited

    Directory of Open Access Journals (Sweden)

    Willemijntje A Hoogerwerf

    2000-01-01

    Full Text Available The aim of all current forms of treatment of achalasia is to enable the patient to eat without disabling symptoms such as dysphagia, regurgitation, coughing or choking. Historically, this has been accomplished by mechanical disruption of the lower esophageal sphincter fibres, either by means of pneumatic dilation (PD or by open surgical myotomy. The addition of laparoscopic myotomy and botulinum toxin (BTX injection to the therapeutic armamentarium has triggered a recent series of reviews to determine the optimal therapeutic approach. Both PD and BTX have excellent short term (less than three months efficacy in the majority of patients. New data have been published that suggest that PD and BTX (with repeat injections can potentially obtain long term efficacy. PD is still considered the first-line treatment by most physicians; its main disadvantage is risk of perforation. BTX injection is evolving as an excellent, safe option for patients who are considered high risk for more invasive procedures. Laparoscopic myotomy with combined antireflux surgery is an increasingly attractive option in younger patients with achalasia, but long term follow-up studies are required to establish its efficacy and the potential for reflux-related sequelae.

  2. Retrieval options study

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    This Retrieval Options Study is part of the systems analysis activities of the Office of Nuclear Waste Isolation to develop the scientific and technological bases for radioactive waste repositories in various geologic media. The study considers two waste forms, high level waste and spent fuel, and defines various classes of waste retrieval and recovery. A methodology and data base are developed which allow the relative evaluation of retrieval and recovery costs and the following technical criteria: safety; technical feasibility; ease of retrieval; probable intact retrieval time; safeguards; monitoring; criticality; and licensability. A total of 505 repository options are defined and the cost and technical criteria evaluated utilizing a combination of facts and engineering judgments. The repositories evaluated are selected combinations of the following parameters: Geologic Media (salt, granite, basalt, shale); Retrieval Time after Emplacement (5 and 25 years); Emplacement Design (nominal hole, large hole, carbon steel canister, corrosion resistant canister, backfill in hole, nominal sleeves, thick wall sleeves); Emplacement Configuration (single vertical, multiple vertical, single horizontal, multiple horizontal, vaults; Thermal Considerations; (normal design, reduced density, once-through ventilation, recirculated ventilation); Room Backfill; (none, run-of-mine, early, 5 year delay, 25 year delay, decommissioned); and Rate of Retrieval; (same as emplacement, variably slower depending on repository/canister condition).

  3. Retrieval options study

    International Nuclear Information System (INIS)

    1980-03-01

    This Retrieval Options Study is part of the systems analysis activities of the Office of Nuclear Waste Isolation to develop the scientific and technological bases for radioactive waste repositories in various geologic media. The study considers two waste forms, high level waste and spent fuel, and defines various classes of waste retrieval and recovery. A methodology and data base are developed which allow the relative evaluation of retrieval and recovery costs and the following technical criteria: safety; technical feasibility; ease of retrieval; probable intact retrieval time; safeguards; monitoring; criticality; and licensability. A total of 505 repository options are defined and the cost and technical criteria evaluated utilizing a combination of facts and engineering judgments. The repositories evaluated are selected combinations of the following parameters: Geologic Media (salt, granite, basalt, shale); Retrieval Time after Emplacement (5 and 25 years); Emplacement Design (nominal hole, large hole, carbon steel canister, corrosion resistant canister, backfill in hole, nominal sleeves, thick wall sleeves); Emplacement Configuration (single vertical, multiple vertical, single horizontal, multiple horizontal, vaults; Thermal Considerations; (normal design, reduced density, once-through ventilation, recirculated ventilation); Room Backfill; (none, run-of-mine, early, 5 year delay, 25 year delay, decommissioned); and Rate of Retrieval;

  4. The biodiversity cost of carbon sequestration in tropical savanna.

    Science.gov (United States)

    Abreu, Rodolfo C R; Hoffmann, William A; Vasconcelos, Heraldo L; Pilon, Natashi A; Rossatto, Davi R; Durigan, Giselda

    2017-08-01

    Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha -1 year -1 since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation.

  5. Lead sequestration and species redistribution during soil organic matter decomposition

    Science.gov (United States)

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  6. Offsetting China's CO2 Emissions by Soil Carbon Sequestration

    International Nuclear Information System (INIS)

    Lal, R.

    2004-01-01

    Fossil fuel emissions of carbon (C) in China in 2000 was about 1 Pg/yr, which may surpass that of the U.S. (1.84 Pg C) by 2020. Terrestrial C pool of China comprises about 35 to 60 Pg in the forest and 120 to 186 Pg in soils. Soil degradation is a major issue affecting 145 Mha by different degradative processes, of which 126 Mha are prone to accelerated soil erosion. Similar to world soils, agricultural soils of China have also lost 30 to 50% or more of the antecedent soil organic carbon (SOC) pool. Some of the depleted SOC pool can be re-sequestered through restoration of degraded soils, and adoption of recommended management practices. The latter include conversion of upland crops to multiple cropping and rice paddies, adoption of integrated nutrient management (INM) strategies, incorporation of cover crops in the rotations cycle and adoption of conservation-effective systems including conservation tillage. A crude estimated potential of soil C sequestration in China is 119 to 226 Tg C/y of SOC and 7 to 138 Tg C/y for soil inorganic carbon (SIC) up to 50 years. The total potential of soil C sequestration is about 12 Pg, and this potential can offset about 25% of the annual fossil fuel emissions in China

  7. Epigenetic reversion of breast carcinoma phenotype is accompaniedby DNA sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sandal, Tone; Valyi-Nagy, Klara; Spencer, Virginia A.; Folberg,Robert; Bissell, Mina J.; Maniotis, Andrew J.

    2006-07-19

    The importance of microenvironment and context in regulation of tissue-specific genes is finally well established. DNA exposure to, or sequestration from, nucleases can be used to detect differences in higher order chromatin structure in intact cells without disturbing cellular or tissue architecture. To investigate the relationship between chromatin organization and tumor phenotype, we utilized an established 3-D assay where normal and malignant human breast cells can be easily distinguished by the morphology of the structures they make (acinus-like vs tumor-like, respectively). We show that these phenotypes can be distinguished also by sensitivity to AluI digestion where the malignant cells are resistant to digestion relative to non-malignant cells. Reversion of the T4-2 breast cancer cells by either cAMP analogs, or a phospatidylinositol 3-kinase (P13K) inhibitor not only reverted the phenotype, but also the chromatin sensitivity to AluI. By using different cAMP-analogs, we show that the cAMP-induced phenotypic reversion, polarization, and shift in DNA organization act through a cAMP-dependent-protein-kinase A-coupled signaling pathway. Importantly, inhibitory antibody to fibronectin also reverted the malignant phenotype, polarized the acini, and changed chromatin sequestration. These experiments show not only that modifying the tumor microenvironment can alter the organization of tumor cells but also that architecture of the tissues and the global chromatin organization are coupled and yet highly plastic.

  8. Phylogenetic variation of phytolith carbon sequestration in bamboos.

    Science.gov (United States)

    Li, Beilei; Song, Zhaoliang; Li, Zimin; Wang, Hailong; Gui, Renyi; Song, Ruisheng

    2014-04-16

    Phytoliths, the amorphous silica deposited in plant tissues, can occlude organic carbon (phytolith-occluded carbon, PhytOC) during their formation and play a significant role in the global carbon balance. This study explored phylogenetic variation of phytolith carbon sequestration in bamboos. The phytolith content in bamboo varied substantially from 4.28% to 16.42%, with the highest content in Sasa and the lowest in Chimonobambusa, Indocalamus and Acidosasa. The mean PhytOC production flux and rate in China's bamboo forests were 62.83 kg CO2 ha(-1) y(-1) and 4.5 × 10(8)kg CO2 y(-1), respectively. This implies that 1.4 × 10(9) kg CO2 would be sequestered in world's bamboo phytoliths because the global bamboo distribution area is about three to four times higher than China's bamboo. Therefore, both increasing the bamboo area and selecting high phytolith-content bamboo species would increase the sequestration of atmospheric CO2 within bamboo phytoliths.

  9. Lithological control on phytolith carbon sequestration in moso bamboo forests.

    Science.gov (United States)

    Li, Beilei; Song, Zhaoliang; Wang, Hailong; Li, Zimin; Jiang, Peikun; Zhou, Guomo

    2014-06-11

    Phytolith-occluded carbon (PhytOC) is a stable carbon (C) fraction that has effects on long-term global C balance. Here, we report the phytolith and PhytOC accumulation in moso bamboo leaves developed on four types of parent materials. The results show that PhytOC content of moso bamboo varies with parent material in the order of granodiorite (2.0 g kg(-1)) > granite (1.6 g kg(-1)) > basalt (1.3 g kg(-1)) > shale (0.7 g kg(-1)). PhytOC production flux of moso bamboo on four types of parent materials varies significantly from 1.0 to 64.8 kg CO₂ ha(-1) yr(-1), thus a net 4.7 × 10(6) -310.8 × 10(6) kg CO₂ yr(-1) would be sequestered by moso bamboo phytoliths in China. The phytolith C sequestration rate in moso bamboo of China will continue to increase in the following decades due to nationwide bamboo afforestation/reforestation, demonstrating the potential of bamboo in regulating terrestrial C balance. Management practices such as afforestation of bamboo in granodiorite area and granodiorite powder amendment may further enhance phytolith C sequestration through bamboo plants.

  10. Seagrass restoration enhances "blue carbon" sequestration in coastal waters.

    Science.gov (United States)

    Greiner, Jill T; McGlathery, Karen J; Gunnell, John; McKee, Brent A

    2013-01-01

    Seagrass meadows are highly productive habitats that provide important ecosystem services in the coastal zone, including carbon and nutrient sequestration. Organic carbon in seagrass sediment, known as "blue carbon," accumulates from both in situ production and sedimentation of particulate carbon from the water column. Using a large-scale restoration (>1700 ha) in the Virginia coastal bays as a model system, we evaluated the role of seagrass, Zosteramarina, restoration in carbon storage in sediments of shallow coastal ecosystems. Sediments of replicate seagrass meadows representing different age treatments (as time since seeding: 0, 4, and 10 years), were analyzed for % carbon, % nitrogen, bulk density, organic matter content, and ²¹⁰Pb for dating at 1-cm increments to a depth of 10 cm. Sediment nutrient and organic content, and carbon accumulation rates were higher in 10-year seagrass meadows relative to 4-year and bare sediment. These differences were consistent with higher shoot density in the older meadow. Carbon accumulation rates determined for the 10-year restored seagrass meadows were 36.68 g C m⁻² yr⁻¹. Within 12 years of seeding, the restored seagrass meadows are expected to accumulate carbon at a rate that is comparable to measured ranges in natural seagrass meadows. This the first study to provide evidence of the potential of seagrass habitat restoration to enhance carbon sequestration in the coastal zone.

  11. Sequestration of carbon dioxide and production of biomolecules using cyanobacteria.

    Science.gov (United States)

    Upendar, Ganta; Singh, Sunita; Chakrabarty, Jitamanyu; Chandra Ghanta, Kartik; Dutta, Susmita; Dutta, Abhishek

    2018-07-15

    A cyanobacterial strain, Synechococcus sp. NIT18, has been applied to sequester CO 2 using sodium carbonate as inorganic carbon source due to its efficiency of CO 2 bioconversion and high biomass production. The biomass obtained is used for the extraction of biomolecules - protein, carbohydrate and lipid. The main objective of the study is to maximize the biomass and biomolecules production with CO 2 sequestration using cyanobacterial strain cultivated under different concentrations of CO 2 (5-20%), pH (7-11) and inoculum size (5-12.5%) within a statistical framework. Maximum sequestration of CO 2 and maximum productivities of protein, carbohydrate and lipid are 71.02%, 4.9 mg/L/day, 6.7 mg/L/day and 1.6 mg/L/day respectively, at initial CO 2 concentration: 10%, pH: 9 and inoculum size: 12.5%. Since flue gas contains 10-15% CO 2 and the present strain is able to sequester CO 2 in this range, the strain could be considered as a useful tool for CO 2 mitigation for greener world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Tailings and mineral carbonation : the potential for atmospheric CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Rollo, H.A. [Lorax Environmental Services Ltd., Vancouver, BC (Canada); Jamieson, H.E. [Queen' s Univ., Kingston, ON (Canada). Dept. of Geological Sciences and Geological Engineering; Lee, C.A. [Dillon Consulting Ltd., Cambridge, ON (Canada)

    2009-02-15

    Carbon dioxide (CO{sub 2}) sequestration includes geological storage, ocean storage, organic storage, and mineral storage (mineral carbonation). This presentation discussed tailings and mineral carbonation and the potential for atmospheric CO{sub 2} sequestration. In particular, it outlined CO{sub 2} sequestration and presented a history of investigations. The Ekati Diamond Mine was discussed with particular reference to its location, geology, and processing. Other topics that were presented included mineralogy; water chemistry; modeling results; and estimates of annual CO{sub 2} sequestration. Conclusions and implications were also presented. It was concluded that ore processing at mines with ultramafic host rocks have the potential to partially offset CO{sub 2} emissions. In addition, it was found that existing tailings at ultramafic deposits may be viable source materials for CO{sub 2} sequestration by mineral carbonation. tabs., figs.

  13. Intralobar bronchopulmonary sequestration with large aberrant vessel presenting as recurrent pneumonias

    International Nuclear Information System (INIS)

    Noomani, A.Z.; Toori, K.U.

    2014-01-01

    Bronchopulmonary sequestration is a rare congenital malformation of the lower respiratory tract comprising of a nonfunctioning lung tissue mass that lacks normal communication with the tracheobronchial tree. The diagnosis may be easily missed as many of the symptoms of bronchopulmonary sequestration overlap with that of other pulmonary diseases. Bronchopulmonary sequestration can be complicated by recurrent infections, hemorrhage and malignant transformation and, therefore, needs to be timely diagnosed and resected to decrease both morbidity and mortality. A high degree of suspicion in the differential diagnosis helps diagnose the positive cases. The parenchymal abnormalities associated with bronchopulmonary sequestration are best visualized using computed tomography, although their appearance is variable. We report the case of a 14 years old boy with intralobar bronchopulmonary sequestration with the sole manifestation of recurrent pneumonias. (author)

  14. Radiological diagnosis of pulmonary sequestration: review of six cases, including one bilateral

    International Nuclear Information System (INIS)

    Brito Pacheco, E.M. de; Cazerta, N.M.G.; Marins, J.L.C.; Prando, A.

    1989-01-01

    Radiological diagnosis of pulmonary sequestration: review of six cases, including one bilateral. Pulmonary sequestration is an uncommon disorder consisting of aberrant pulmonary tissue that has no normal connection with the bronchial tree or with the pulmonary arteries, but is supplied by a systemic artery which usually arises from the aorta. Six cases of pulmonary sequestration are presented and the radiological manifestation of this rare congenital disorder are discussed. These sequestrations were intralobar/unilateral in four patients, extralobar/unilateral in one and extralobar/bilateral in the other patient. Special attention is given to the extremely uncommon bilateral sequestration. To our knowledge only four cases of this form of disease has been described in the literature. (author) [pt

  15. Flexible Training Strategy (National Task Force on Medical Staffing)

    OpenAIRE

    Department of Health (Ireland)

    2003-01-01

    Flexible Training Strategy (National Task Force on Medical Staffing) The Flexible Training Strategy, while endorsing flexible/part-time options recognises that the preferred option for the majority of doctors-in-training and consultants is most likely to continue to be full-time training and work. Click here to download PDF

  16. Simulating carbon sequestration using cellular automata and land use assessment for Karaj, Iran

    Science.gov (United States)

    Khatibi, Ali; Pourebrahim, Sharareh; Mokhtar, Mazlin Bin

    2018-06-01

    Carbon sequestration has been proposed as a means of slowing the atmospheric and marine accumulation of greenhouse gases. This study used observed and simulated land use/cover changes to investigate and predict carbon sequestration rates in the city of Karaj. Karaj, a metropolis of Iran, has undergone rapid population expansion and associated changes in recent years, and these changes make it suitable for use as a case study for rapidly expanding urban areas. In particular, high quality agricultural space, green space and gardens have rapidly transformed into industrial, residential and urban service areas. Five classes of land use/cover (residential, agricultural, rangeland, forest and barren areas) were considered in the study; vegetation and soil samples were taken from 20 randomly selected locations. The level of carbon sequestration was determined for the vegetation samples by calculating the amount of organic carbon present using the dry plant weight method, and for soil samples by using the method of Walkley and Black. For each area class, average values of carbon sequestration in vegetation and soil samples were calculated to give a carbon sequestration index. A cellular automata approach was used to simulate changes in the classes. Finally, the carbon sequestration indices were combined with simulation results to calculate changes in carbon sequestration for each class. It is predicted that, in the 15 year period from 2014 to 2029, much agricultural land will be transformed into residential land, resulting in a severe reduction in the level of carbon sequestration. Results from this study indicate that expansion of forest areas in urban counties would be an effective means of increasing the levels of carbon sequestration. Finally, future opportunities to include carbon sequestration into the simulation of land use/cover changes are outlined.

  17. Optional Defaultable Markets

    Directory of Open Access Journals (Sweden)

    Mohamed N. Abdelghani

    2017-10-01

    Full Text Available The paper deals with defaultable markets, one of the main research areas of mathematical finance. It proposes a new approach to the theory of such markets using techniques from the calculus of optional stochastic processes on unusual probability spaces, which was not presented before. The paper is a foundation paper and contains a number of fundamental results on modeling of defaultable markets, pricing and hedging of defaultable claims and results on the probability of default under such conditions. Moreover, several important examples are presented: a new pricing formula for a defaultable bond and a new pricing formula for credit default swap. Furthermore, some results on the absence of arbitrage for markets on unusual probability spaces and markets with default are also provided.

  18. Automotive turbogenerator design options

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, C. [ITC, San Diego, CA (United States); McDonald, C. [McDonald Thermal Engineering, La Jolla, CA (United States)

    1998-12-31

    For the small turbogenerator to find reception in the hybrid electric automotive market its major features must be dominated by the following considerations, low cost, high performance, low emissions, compact size and high reliability. Not meeting the first two criteria has been the nemesis of earlier attempts to introduce the small gas turbine for automotive service. With emphasis on the design for low cost and high performance, this paper presents several turbogenerator design flowpath configuration options for the major engine components. The projected evolution from today`s state-of-the-art all metallic engines, to advanced technology ceramic units for service in the early decade of the 21st century, is the major topic of this paper. (author)

  19. The Gel Generator option

    International Nuclear Information System (INIS)

    Boyd, R.E.

    1999-01-01

    The development of a national policy for guaranteeing an ample supply of 99m Tc to nuclear medicine, involves issues which go beyond the means by which radioactivation is achieved. Indeed, in such an exercise the pragmatic dictates of business and the sensitivities of politics must also be taken into account. Furthermore where a preference towards the nuclear reactor or the potential of cyclotrons is being questioned, the debate is incomplete if the only options that are considered are the fission-based 99 Mo generator versus the direct cyclotron production of 99m Tc. There is a third option (also neutron γ-based), an alternative to the fission 99 Mo generator, which ought not be overlooked. The application of low specific activity (n,γ) 99 Mo to a new type of generator, the Gel Generator, has been the focus of much research, particularly in Australia and more recently in China. After the initial concept had been established in the laboratory, the Australian researchers then undertook a comprehensive program of tests on the Gel Generator to assess its potential, either in the clinical laboratory or the centralised radiopharmacy, for supplying 99m Tc suitable for nuclear medicine. The outcome of this program was a clear indication that the Gel Generator innovation had the capability to provide both technical and economic advantages to the nuclear medicine industry. These advantages are described. Since that time the Gel Generator has been selected for routine use in China where it now satisfies more than 30% of the 99m Tc demand. (author)

  20. Anthropogenic Impacts on Biological Carbon Sequestration in the Coastal Waters

    Science.gov (United States)

    Jiao, N.

    2016-02-01

    The well-known biological mechanism for carbon sequestration in the ocean is the biological pump (BP) which is driven by primary production initially in the surface water and then dependent on particulate organic carbon sinking process in the water column. In contrast microbial carbon pump (MCP) depends on microbial transformation of dissolved organic carbon (DOC) to refractory DOC (RDOC).Although the BP and the MCP are distinct mechanisms, they are intertwined. Both mechanisms should be considered regarding maximum sequestration of carbon in the ocean. Recent studies have showed that excess nutrients could facilitate the uptake of DOC and enhance both bacterial production and respiration. Bacterial growth efficiency increases with increasing nitrogen concentration to certain levels and then decreases thereafter, while the remaining DOC in the water usually decreases with increasing nitrogen concentration, suggesting that excess nitrogen could simulate uptake of DOC in the environment and thus have negative impacts on the ocean DOC storage.This is somehow against the case of the BP which is known to increase with increasing availability of nutrients. Another responsible factor is the nature of algal products. If it is labile, the organic carbon cannot be preserved in the environment.On top of that, labile organic carbon has priming effects for river discharged semi-labile DOC for bacterial respiration.That is, labile organic matter will become the incubator for bacteria. While bacteria respire DOC into CO2, they consume oxygen, and finally result in hypoxia. Under anoxic condition, anaerobic bacteria successively work on the rest of the organic carbon and produce harmful gasses such as methane and H2S. Such story did have happened during geological events in the history of the earth. The above processes not only result in ecological disasters but also reduce the capacity of carbon sequestration in the ocean. To achieve maximum carbon sinks, both BP and MCP should

  1. Final Report - "CO2 Sequestration in Cell Biomass of Chlorobium Thiosulfatophilum"

    Energy Technology Data Exchange (ETDEWEB)

    James L. Gaddy, PhD; Ching-Whan Ko, PhD

    2009-05-04

    World carbon dioxide emissions from the combustion of fossil fuels have increased at a rate of about 3 percent per year during the last 40 years to over 24 billion tons today. While a number of methods have been proposed and are under study for dealing with the carbon dioxide problem, all have advantages as well as disadvantages which limit their application. The anaerobic bacterium Chlorobium thiosulfatophilum uses hydrogen sulfide and carbon dioxide to produce elemental sulfur and cell biomass. The overall objective of this project is to develop a commercial process for the biological sequestration of carbon dioxide and simultaneous conversion of hydrogen sulfide to elemental sulfur. The Phase I study successfully demonstrated the technical feasibility of utilizing this bacterium for carbon dioxide sequestration and hydrogen sulfide conversion to elemental sulfur by utilizing the bacterium in continuous reactor studies. Phase II studies involved an advanced research and development to develop the engineering and scale-up parameters for commercialization of the technology. Tasks include culture isolation and optimization studies, further continuous reactor studies, light delivery systems, high pressure studies, process scale-up, a market analysis and economic projections. A number of anaerobic and aerobic microorgansims, both non-photosynthetic and photosynthetic, were examined to find those with the fastest rates for detailed study to continuous culture experiments. C. thiosulfatophilum was selected for study to anaerobically produce sulfur and Thiomicrospira crunogena waws selected for study to produce sulfate non-photosynthetically. Optimal conditions for growth, H2S and CO2 comparison, supplying light and separating sulfur were defined. The design and economic projections show that light supply for photosynthetic reactions is far too expensive, even when solar systems are considered. However, the aerobic non-photosynthetic reaction to produce sulfate with T

  2. Transportation Options | Climate Neutral Research Campuses | NREL

    Science.gov (United States)

    Transportation Options Transportation Options Transportation to, from, and within a research campus from business travel often enlarge the footprint more than expected. To understand options for climate

  3. Carbon flows and economic evaluation of mitigation options in Tanzania's forest sector

    International Nuclear Information System (INIS)

    Makundi, W.; Okiting'ati, Aku

    1995-01-01

    This paper presents estimates of the rate of forest use, deforestation and forest degradation, as well as the corresponding carbon flows, in the Tanzanian forest sector. It is estimated that the country lost 525,000 ha of forests in 1990, with associated committed emissions of 31.5 Mt carbon (MtC), and 7.05 MtC of committed carbon sequestration. The paper then describes the possible response options in the forest sector to mitigate GHG emissions, and evaluates the most stable subset of these - i.e. forest conservation, woodfuel plantations and agroforestry. The conservation options were found to cost an average of US$1.27 per tonne of carbon (tC) conserved. Five options for fuelwood plantations and agroforestry, with two different ownership regimes were evaluated. Each one of the options gives a positive net present value at low rates of discount, ranging from U.S.$1.06 to 3.4/tC of avoided emissions at 0% discount rate. At 10% discount, the eucalyptus and maize option has a highest PNV of U.S.$1.73/tC, and the government plantation gives a negative PNV (loss) of U.S.$ 0.13 tC sequestered. The options with a private/community type of ownership scheme fared better than government run options. This conclusion also held true when ranking the options by the BRAC indicator, with the government fuelwood plantation ranked the lowest, and the private agroforestry option of eucalyptus and corn performing best. The mitigation options evaluated here show that the forest sector in Tanzania has one of the most cost-effective GHG mitigation opportunities in the world, and they are within the development aspirations of the country. (Author)

  4. Reactor design considerations in mineral sequestration of carbon dioxide

    International Nuclear Information System (INIS)

    Ityokumbul, M.T.; Chander, S.; O'Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.

    2001-01-01

    One of the promising approaches to lowering the anthropogenic carbon dioxide levels in the atmosphere is mineral sequestration. In this approach, the carbon dioxide reacts with alkaline earth containing silicate minerals forming magnesium and/or calcium carbonates. Mineral carbonation is a multiphase reaction process involving gas, liquid and solid phases. The effective design and scale-up of the slurry reactor for mineral carbonation will require careful delineation of the rate determining step and how it changes with the scale of the reactor. The shrinking core model was used to describe the mineral carbonation reaction. Analysis of laboratory data indicates that the transformations of olivine and serpentine are controlled by chemical reaction and diffusion through an ash layer respectively. Rate parameters for olivine and serpentine carbonation are estimated from the laboratory data

  5. The Carbon Sequestration Potential of Tree Crop Plantations

    DEFF Research Database (Denmark)

    Kongsager, Rico; Napier, Jonas; Mertz, Ole

    2013-01-01

    -wood products to meet domestic and international market requirements at the same time. Financial compensation for such plantations could potentially be covered by the Clean Development Mechanism under the United Nations Framework Convention on Climate Change (FCCC) Kyoto Protocol, but its suitability has also...... been suggested for integration into REDD+(reducing emissions from deforestation, forest degradation and enhancement of forest C stocks) currently being negotiated under the United Nations FCCC. We assess the aboveground C sequestration potential of four major plantation crops – cocoa (Theobroma cacao......), oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and orange (Citrus sinesis) – cultivated in the tropics. Measurements were conducted in Ghana and allometric equations were applied to estimate biomass. The largest C potential was found in the rubber plantations (214 tC/ha). Cocoa (65 t...

  6. Animals as an indicator of carbon sequestration and valuable landscapes

    Directory of Open Access Journals (Sweden)

    Jan Szyszko

    2011-05-01

    Full Text Available Possibilities of the assessment of a landscape with the use of succession development stages, monitored with the value of the Mean Individual Biomass (MIB of carabid beetles and the occurrence of bird species are discussed on the basis of an example from Poland. Higher variability of the MIB value in space signifies a greater biodiversity. Apart from the variability of MIB, it is suggested to adopt the occurrence of the following animals as indicators, (in the order of importance, representing underlying valuable landscapes: black stork, lesser spotted eagle, white-tailed eagle, wolf, crane and white stork. The higher number of these species and their greater density indicate a higher value of the landscape for biodiversity and ecosystem services, especially carbon sequestration. All these indicators may be useful to assess measures for sustainable land use.

  7. CO2 capture and sequestration: the association's point of view

    International Nuclear Information System (INIS)

    2009-01-01

    This document gives an overview of the opinion of the FNE (France Nature Environnement), a French association involved in the protection of the environment, about the idea of developing technologies enabling the capturing and sequestrating of carbon dioxide. It outlines that industries are considering such technologies as the adequate solution as they would allow a development of activities while limiting greenhouse gas releases. But the FNE has an opposite point of view; advantages and limitations of this technology are thus discussed (reduction of greenhouse gas emissions but with an increase of energy consumption, industrial hazards, mobilization of large financial resources). The principles under which such technologies could be used and financed in some specific situations and under precise conditions are then discussed. Notably, it stresses the importance of a limitation of public financing, of participation and communication, of judicial guarantees

  8. Fluid characterization for miscible EOR projects and CO2 sequestration

    DEFF Research Database (Denmark)

    Jessen, Kristian; Stenby, Erling Halfdan

    2007-01-01

    Accurate performance prediction of miscible enhanced-oil-recovery (EOR) projects or CO, sequestration in depleted oil and gas reservoirs relies in part on the ability of an equation-of-state (EOS) model to adequately represent the properties of a wide range of mixtures of the resident fluid...... in the data reduction and demonstrate that for some gas/oil systems, swelling tests do not contribute to a more accurate prediction of multicontact miscibility. Finally, we report on the impact that use of EOS models based on different characterization procedures can have on recovery predictions from dynamic...... and the injected fluid(s). The mixtures that form when gas displaces oil in a porous medium will, in many cases, differ significantly from compositions created in swelling tests and other standard pressure/volume/temperature (PVT) experiments. Multicontact experiments (e.g., slimtube displacements) are often used...

  9. Carbon sequestration in a re-established wetland

    DEFF Research Database (Denmark)

    Philippsen, Bente; Hoffmann, Carl Christian; Olsen, Jesper

    , it was brought back to its original meandering course (between Brobyværk and Lyndelse, 4.6 km of straight channel were remeandered to 6 km of natural channel with 16 meander bows) and 125 ha of wetlands were restored. One of the expected benefits of this operation is the increased sequestration of carbon...... does not yield the time of deposition, but rather indicate the source of the carbon. A complicating factor are reservoir ages of plants contributing to the sediment organic matter. Therefore, we also radiocarbon dated aquatic and terrestrial vegetation. Surprisingly, not only aquatic, but also meadow...... plants such as soft rush, rough bluegrass and meadowsweet have considerable reservoir effects. CO2 from decaying vegetation seems to be an important carbon source for some meadow plants, mimicking a canopy effect in the open land....

  10. Forest and wood products role in carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, R.N.

    1997-12-31

    An evaluation of the use of U.S. forests and forest products for carbon emission mitigation is presented. The current role of forests in carbon sequestration is described in terms of regional differences and forest management techniques. The potential for increasing carbon storage by converting marginal crop and pasture land, increasing timberland growth, reducing wildfire losses, and changing timber harvest methods is examined. Post-harvest carbon flows, environmental impacts of wood products, biomass energy crops, and increased use of energy-conserving trees are reviewed for their potential in reducing or offsetting carbon emissions. It is estimated that these techniques could offset 20 to 40 percent of the carbon emitted annually in the U.S. 39 refs., 5 tabs.

  11. Effect of bile acid sequestrants on glycaemic control

    DEFF Research Database (Denmark)

    Hansen, Morten; Sonne, David Peick; Mikkelsen, Kristian Hallundbæk

    2012-01-01

    of hypercholesterolaemia: colestipol, cholestyramine and colesevelam. The BAS colestimide/colestilan is used in Japan. Colesevelam was recently approved by the FDA for the treatment of T2DM. We plan to provide a systematic review with meta-analysis of the glucose-lowering effect of BASs with the aim to evaluate......In addition to the lipid-lowering effect of bile acid sequestrants (BASs), they also lower blood glucose and, therefore, could be beneficial in the treatment of patients with type 2 diabetes mellitus (T2DM). Three oral BASs are approved by the US Food and Drug Administration (FDA) for the treatment...... their potential as glucose-lowering agents in patients with T2DM....

  12. Factors Affecting the Rate of Penetration of Large-Scale Electricity Technologies: The Case of Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    James R. McFarland; Howard J. Herzog

    2007-05-14

    This project falls under the Technology Innovation and Diffusion topic of the Integrated Assessment of Climate Change Research Program. The objective was to better understand the critical variables that affect the rate of penetration of large-scale electricity technologies in order to improve their representation in integrated assessment models. We conducted this research in six integrated tasks. In our first two tasks, we identified potential factors that affect penetration rates through discussions with modeling groups and through case studies of historical precedent. In the next three tasks, we investigated in detail three potential sets of critical factors: industrial conditions, resource conditions, and regulatory/environmental considerations. Research to assess the significance and relative importance of these factors involved the development of a microeconomic, system dynamics model of the US electric power sector. Finally, we implemented the penetration rate models in an integrated assessment model. While the focus of this effort is on carbon capture and sequestration technologies, much of the work will be applicable to other large-scale energy conversion technologies.

  13. Mars Earth Return Vehicle (MERV) Propulsion Options

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.; Burke, Laura; Fincannon, James; Warner, Joe; Williams, Glenn; Parkey, Thomas; Colozza, Tony; Fittje, Jim; Martini, Mike; hide

    2010-01-01

    The COMPASS Team was tasked with the design of a Mars Sample Return Vehicle. The current Mars sample return mission is a joint National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) mission, with ESA contributing the launch vehicle for the Mars Sample Return Vehicle. The COMPASS Team ran a series of design trades for this Mars sample return vehicle. Four design options were investigated: Chemical Return /solar electric propulsion (SEP) stage outbound, all-SEP, all chemical and chemical with aerobraking. The all-SEP and Chemical with aerobraking were deemed the best choices for comparison. SEP can eliminate both the Earth flyby and the aerobraking maneuver (both considered high risk by the Mars Sample Return Project) required by the chemical propulsion option but also require long low thrust spiral times. However this is offset somewhat by the chemical/aerobrake missions use of an Earth flyby and aerobraking which also take many months. Cost and risk analyses are used to further differentiate the all-SEP and Chemical/Aerobrake options.

  14. Imaging approach to the diagnosis of pulmonary sequestration

    International Nuclear Information System (INIS)

    Hang, J.D.; Guo, Q.Y.; Chen, C.X.; Chen, L.Y.

    1996-01-01

    Purpose: To describe the characteristic features of pulmonary sequestration (PS), to evaluate the usefulness of various imaging modalities, and to find a rational approach to accurate diagnosis. Material and Methods: Twenty-four patients with PS proved by operation and pathology were reviewed retrospectively. Plain chest films were done in all patients, bronchography in 3, sonography in 14, CT in 6 (including CT angiography in 1 case), MR in 8 (including MR angiography in 1 case) and aortography in 12 (including DSA in 1 case). Results: Plain chest films demonstrated a solid mass in 14 patients and a cystic mass in 10. Bronchograms showed displacement of adjacent bronchi with no filling of contrast medium within the lesion in 2 cases, while another case had a blind intermediate portion of the right bronchus (hypoplasia of middle and lower lobes associated with extralobar sequestration). Sonography demonstrated a solid lung mass in 12 cases and a solid mass with cystic areas in 2, and detected vessel-like structures within the mass or in its surroundings in 12. Doppler analysis showed arterial spectral wave confirming a feeding artery. CT revealed a solid mass in all patients, a mass with low density area in 4, and emphysema surrounding the mass in 3. MR imaging depicted anomalous arteries in all patients and venous drainage in 4 cases. Aortography demonstrated anomalous systemic arterial supply to the PS in all patients. In this series, 21 cases (87.5%) were correctly diagnosed preoperatively by the imaging modalities. Conclusion: Plain chest films can provide a diagnostic due to PS. Sonography, CT and MR are helpful for showing arterial blood supply and for making a definite diagnosis. We recommend a rational imaging approach for the diagnosis of PS. (orig.)

  15. Global carbon sequestration in tidal, saline wetland soils

    Science.gov (United States)

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  16. The role of renewable bioenergy in carbon dioxide sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, C.M. [Hawaii Natural Energy Inst., Honolulu, HI (United States)

    1993-12-31

    The use of renewable resources represents a sound approach to producing clean energy and reducing the dependence on diminishing reserves of fossil fuels. Unfortunately, the widespread interest in renewable energy in the 1970s, spurred by escalating fossil fuel prices, subsided with the collapse of energy prices in the mid 1980s. Today, it is largely to reverse alarming environmental trends, particularly the buildup of atmospheric carbon dioxide, rather than to reduce the cost of energy, that renewable energy resources are being pursued. This discussion focuses on a specific class of renewable energy resources - biomass. Unlike most other classes of renewable energy touted for controlling atmospheric carbon dioxide concentrations, e.g., hydro, direct solar, wind, geothermal, and ocean thermal, which produce usable forms of energy while generating little or no carbon dioxide emissions, bioenergy almost always involves combustion and therefore generates carbon dioxide; however, if used on a sustained basis, bio-energy would not contribute to the build-up of atmospheric carbon dioxide because the amount released in combustion would be balanced by that taken up via photosynthesis. It is in that context, i.e., sustained production of biomass as a modern energy carrier, rather than reforestation for carbon sequestration, that biomass is being discussed here, since biomass can play a much greater role in controlling global warming by displacing fossil fuels than by being used strictly for carbon sequestration (partly because energy crop production can reduce fossil carbon dioxide emissions indefinitely, whereas under the reforestation strategy, carbon dioxide abatement ceases at forest maturity).

  17. Distribution characteristics of liquid sequestration in rats with sepsis

    Directory of Open Access Journals (Sweden)

    Bin LI

    2012-03-01

    Full Text Available Objective To investigate the distribution characteristics of organs with liquid sequestration during fluid resuscitation in rats with sepsis. Methods Fifty male Wistar rats were randomly divided into five groups: control group (n=10, sepsis group (n=10, crystalloid group (n=10, albumin group (n=10, and artificial colloid (HAES group (n=10. The sepsis model was reproduced by cecal ligation and puncture. The mean arterial pressure was monitored with carotid artery intubation. Twelve hours after fluid infusion by micro-infusion pump via the femoral vein, tissues from the heart, liver, lungs, kidney (right, and small intestine were harvested to observe the pathological changes and calculate the tissue water content. Results The water content of every visceral tissue was higher in the sepsis group than in the control group (P < 0.05; the water content in the heart, liver, and lung tissues was higher in the albumin group than in the crystalloid group (P < 0.05. The water content in both albumin and crystalloid groups was higher than that in the sepsis group (P < 0.05. Moreover, the water content in the heart, liver, and lungs in the HAES group was lower than that in the crystalloid and albumin groups (P < 0.05. Cellular injuries were more severe in the heart, liver, and lungs than in the intestine and kidney in the crystalloid group and albumin group under electron-microscope. Conclusion Liquid sequestration exists mainly in the lungs, heart, and liver of rats with sepsis during fluid resuscitation. The phenomenon is less evident in the kidney and small intestine. Artificial colloid can reduce capillary leak with a good volume expansion effect.

  18. Geomechanical Response of Jointed Caprock During CO2 Geological Sequestration

    Science.gov (United States)

    Newell, P.; Martinez, M. J.; Bishop, J. E.

    2014-12-01

    Geological sequestration of CO2 refers to the injection of supercritical CO2 into deep reservoirs trapped beneath a low-permeability caprock formation. Maintaining caprock integrity during the injection process is the most important factor for a successful injection. In this work we evaluate the potential for jointed caprock during injection scenarios using coupled three-dimensional multiphase flow and geomechanics modeling. Evaluation of jointed/fractured caprock systems is of particular concern to CO2 sequestration because creation or reactivation of joints (mechanical damage) can lead to enhanced pathways for leakage. In this work, we use an equivalent continuum approach to account for the joints within the caprock. Joint's aperture and non-linear stiffness of the caprock will be updated dynamically based on the effective normal stress. Effective permeability field will be updated based on the joints' aperture creating an anisotropic permeability field throughout the caprock. This feature would add another coupling between the solid and fluid in addition to basic Terzaghi's effective stress concept. In this study, we evaluate the impact of the joint's orientation and geometry of caprock and reservoir layers on geomechanical response of the CO2 geological systems. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function

    Energy Technology Data Exchange (ETDEWEB)

    Lubowski, Ruben N.; Plantinga, Andrew J.; Stavins, Robert N.

    2001-01-01

    Increased attention by policy makers to the threat of global climate change has brought with it considerable interest in the possibility of encouraging the expansion of forest area as a means of sequestering carbon dioxide. The marginal costs of carbon sequestration or, equivalently, the carbon sequestration supply function will determine the ultimate effects and desirability of policies aimed at enhancing carbon uptake. In particular, marginal sequestration costs are the critical statistic for identifying a cost-effective policy mix to mitigate net carbon dioxide emissions. We develop a framework for conducting an econometric analysis of land use for the forty-eight contiguous United States and employing it to estimate the carbon sequestration supply function. By estimating the opportunity costs of land on the basis of econometric evidence of landowners' actual behavior, we aim to circumvent many of the shortcomings of previous sequestration cost assessments. By conducting the first nationwide econometric estimation of sequestration costs, endogenizing prices for land-based commodities, and estimating land-use transition probabilities in a framework that explicitly considers the range of land-use alternatives, we hope to provide better estimates eventually of the true costs of large-scale carbon sequestration efforts. In this way, we seek to add to understanding of the costs and potential of this strategy for addressing the threat of global climate change.

  20. Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function; FINAL

    International Nuclear Information System (INIS)

    Lubowski, Ruben N.; Plantinga, Andrew J.; Stavins, Robert N.

    2001-01-01

    Increased attention by policy makers to the threat of global climate change has brought with it considerable interest in the possibility of encouraging the expansion of forest area as a means of sequestering carbon dioxide. The marginal costs of carbon sequestration or, equivalently, the carbon sequestration supply function will determine the ultimate effects and desirability of policies aimed at enhancing carbon uptake. In particular, marginal sequestration conts are the critical statistic for identifying a cost-effective policy mix to mitigate net carbon dioxide emissions. We develop a framework for conducting an econometric analysis of land use for the forty-eight contiguous United States and employing it to estimate the carbon sequestration supply function. By estimating the opportunity costs of land on the basis of econometric evidence of landowners' actual behavior, we aim to circumvent many of the shortcomings of previous sequestration cost assessments. By conducting the first nationwide econometric estimation of sequestration costs, endogenizing prices for land-based commodities, and estimating land-use transition probabilities in a framework that explicitly considers the range of land-use alternatives, we hope to provide better estimates eventually of the true costs of large-scale carbon sequestration efforts. In this way, we seek to add to understanding of the costs and potential of this strategy for addressing the threat of global climate change

  1. Option-implied term structures

    OpenAIRE

    Vogt, Erik

    2014-01-01

    The illiquidity of long-maturity options has made it difficult to study the term structures of option spanning portfolios. This paper proposes a new estimation and inference framework for these option-implied term structures that addresses long-maturity illiquidity. By building a sieve estimator around the risk-neutral valuation equation, the framework theoretically justifies (fat-tailed) extrapolations beyond truncated strikes and between observed maturities while remaining nonparametric. Ne...

  2. Portfolio insurance using traded options

    OpenAIRE

    Machado-Santos, Carlos

    2001-01-01

    Literature concerning the institutional use of options indicates that the main purpose of option trading is to provide investors with the opportunity to create return distributions previously unavailable, considering that options provide the means to manipulate portfolio returns. In such a context, this study intends to analyse the returns of insured portfolios generated by hedging strategies on underlying stock portfolios. Because dynamic hedging is too expensive, we have hedged the stock po...

  3. Synroc processing options

    International Nuclear Information System (INIS)

    Rozsa, R.B.; Hoenig, C.L.

    1981-01-01

    Synroc is a titanate-based ceramic material currently being developed for immobilizing high-level nuclear reactor wastes in solid form. Synroc D is a unique variation of Synroc. It can contain the high-level defense wastes, particularly those in storage at the Savannah River Plant. In this report, we review the early development of the initial Synroc process, discuss modification and other options that simplify it overall, and recommend the future direction of research and development in the processing area. A reference Synroc process is described briefly and contrasted with the Savannah River Laboratory glass-based reference case. Preliminary engineering layouts show Synroc to be a more complex processing operation and, thus, more expensive than the glass-based process. However, we believe that simplifications, which will significantly reduce the cost difference, are possible. Further research and development will continue in the areas of slurry processing, fluidized bed calcination, and mineralization. This last will use sintering, hot uniaxial pressing, or hot isostatic pressing

  4. Nuclear technology options

    International Nuclear Information System (INIS)

    Salvatores, Massimo

    2013-01-01

    Different strategies and motivations in different countries have led to diverse options. In Europe the SNETP (Sustainable Nuclear Energy Technology Platform) has the objective of developing R&D supporting GEN-II (present) and GEN-III nuclear systems under development; allowing sustainability and minimisation of waste burden, promoting advanced Gen-IV Fast Reactors; and accounting for a Nuclear Cogeneration Industrial Initiative. A remarkable initiative in the USA has been the promotion of small modular reactors (SMRs) – at less than 300 MWe in capacity, much smaller than typical reactors – which can be an ideal choice for (remote) areas which cannot support a larger reactor. Compact scalable design offers a host of potential safety, construction and economic benefits. More “upbeat” strategies are expected in other areas of the world where significant increase in nuclear energy demand is predicted in the next decades. If this growth materialises, future fuel cycles characteristics, feasibility and acceptability will be crucial. This paper will discuss different scenarios for future fuel cycles, resources optimisation and/or waste minimization, the range from full fast reactor deployment to phase-out, management of spent nuclear fuel and the significant potential benefits of advanced cycles. The next 45 years will be dominated by deployment of standard large or medium size plants operating for 60 years. Available resources do allow it. However, fuel cycle will be a growing and most challenging issue and early assessments will be needed for public acceptance and policy decisions.

  5. Optional carbon capture

    Energy Technology Data Exchange (ETDEWEB)

    Alderson, T.; Scott, S.; Griffiths, J. [Jacobs Engineering, London (United Kingdom)

    2007-07-01

    In the case of IGCC power plants, carbon capture can be carried out before combustion. The carbon monoxide in the syngas is catalytically shifted to carbon dioxide and then captured in a standard gas absorption system. However, the insertion of a shift converter into an existing IGCC plant with no shift would mean a near total rebuild of the gasification waste heat recovery, gas treatment system and HRSG, with only the gasifier and gas turbine retaining most of their original features. To reduce the extent, cost and time taken for the revamping, the original plant could incorporate the shift, and the plant would then be operated without capture to advantage, and converted to capture mode of operation when commercially appropriate. This paper examines this concept of placing a shift converter into an IGCC plant before capture is required, and operating the same plant first without and then later with CO{sub 2} capture in a European context. The advantages and disadvantages of this 'capture ready' option are discussed. 6 refs., 2 figs., 4 tabs.

  6. Treatment Options for Narcolepsy.

    Science.gov (United States)

    Barateau, Lucie; Lopez, Régis; Dauvilliers, Yves

    2016-05-01

    Narcolepsy type 1 and narcolepsy type 2 are central disorders of hypersomnolence. Narcolepsy type 1 is characterized by excessive daytime sleepiness and cataplexy and is associated with hypocretin-1 deficiency. On the other hand, in narcolepsy type 2, cerebrospinal fluid hypocretin-1 levels are normal and cataplexy absent. Despite major advances in our understanding of narcolepsy mechanisms, its current management is only symptomatic. Treatment options may vary from a single drug that targets several symptoms, or multiple medications that each treats a specific symptom. In recent years, narcolepsy treatment has changed with the widespread use of modafinil/armodafinil for daytime sleepiness, antidepressants (selective serotonin and dual serotonin and noradrenalin reuptake inhibitors) for cataplexy, and sodium oxybate for both symptoms. Other psychostimulants can also be used, such as methylphenidate, pitolisant and rarely amphetamines, as third-line therapy. Importantly, clinically relevant subjective and objective measures of daytime sleepiness are required to monitor the treatment efficacy and to provide guidance on whether the treatment goals are met. Associated symptoms and comorbid conditions, such as hypnagogic/hypnopompic hallucinations, sleep paralysis, disturbed nighttime sleep, unpleasant dreams, REM- and non REM-related parasomnias, depressive symptoms, overweight/obesity, and obstructive sleep apnea, should also be taken into account and managed, if required. In the near future, the efficacy of new wake-promoting drugs, anticataplectic agents, hypocretin replacement therapy and immunotherapy at the early stages of the disease should also be evaluated.

  7. Freight Advanced Traveler Information System (FRATIS) Dallas-Fort Worth : software architecture design and implementation options.

    Science.gov (United States)

    2013-05-01

    This document describes the Software Architecture Design and Implementation Options for FRATIS : system. The demonstration component of this task will serve to test the technical feasibility of the : FRATIS prototype while also facilitating the colle...

  8. Perpetual Cancellable American Call Option

    OpenAIRE

    Emmerling, Thomas J.

    2010-01-01

    This paper examines the valuation of a generalized American-style option known as a Game-style call option in an infinite time horizon setting. The specifications of this contract allow the writer to terminate the call option at any point in time for a fixed penalty amount paid directly to the holder. Valuation of a perpetual Game-style put option was addressed by Kyprianou (2004) in a Black-Scholes setting on a non-dividend paying asset. Here, we undertake a similar analysis for the perpetua...

  9. Option price and market instability

    Science.gov (United States)

    Baaquie, Belal E.; Yu, Miao

    2017-04-01

    An option pricing formula, for which the price of an option depends on both the value of the underlying security as well as the velocity of the security, has been proposed in Baaquie and Yang (2014). The FX (foreign exchange) options price was empirically studied in Baaquie et al., (2014), and it was found that the model in general provides an excellent fit for all strike prices with a fixed model parameters-unlike the Black-Scholes option price Hull and White (1987) that requires the empirically determined implied volatility surface to fit the option data. The option price proposed in Baaquie and Cao Yang (2014) did not fit the data during the crisis of 2007-2008. We make a hypothesis that the failure of the option price to fit data is an indication of the market's large deviation from its near equilibrium behavior due to the market's instability. Furthermore, our indicator of market's instability is shown to be more accurate than the option's observed volatility. The market prices of the FX option for various currencies are studied in the light of our hypothesis.

  10. System analysis of CO_2 sequestration from biomass cogeneration plants (Bio-CHP-CCS). Technology, economic efficiency, sustainability

    International Nuclear Information System (INIS)

    Hartmann, Claus

    2014-10-01

    In the present work a system analysis is carried out to determine the extent to which a combination of the three areas of energetic biomass use, combined heat and power (CHP) and CO_2 sequestration (CCS - Carbon Capture and Storage) is fundamentally possible and meaningful. The term ''CO_2 sequestration'' refers to the process chain from CO_2 capture, CO_2 transport and CO_2 storage. While the use of biomass in combined heat and power plants is a common practice, CO_2 sequestration (based on fossil fuels) is at the research and development stage. A combination of CCS with biomass has so far been little studied, a combination with combined heat and power plants has not been investigated at all. The two technologies for the energetic use of biomass and cogeneration represent fixed variables in the energy system of the future in the planning of the German federal government. According to the lead scenario of the Federal Ministry of the Environment, electricity generation from biomass is to be almost doubled from 2008 to 2020. At the same time, the heat generated in cogeneration is to be trebled [cf. Nitsch and Wenzel, 2009, p. 10]. At the same time, the CCS technology is to be used in half of all German coal-fired power plants until 2030 [cf. Krassuki et al., 2009, p. 17]. The combination of biomass and CCS also represents an option which is conceivable for the German federal policy [cf. Bundestag, 2008b, p. 4]. In addition, the CCS technology will provide very good export opportunities for the German economy in the future [cf. Federal Government, 2010, p. 20]. The combination of biomass combined heat and power plants with CCS offers the interesting opportunity to actively remove CO_2 from the atmosphere as a future climate protection instrument by means of CO_2 neutrality. Therefore, in the energy concept of the German federal government called for a storage project for industrial or biogenic CO_2 emissions to be established until 2020, as well as the use of CO_2 as

  11. The Potential for Carbon Sequestration in the United States

    National Research Council Canada - National Science Library

    Tawil, Natalie

    2007-01-01

    .... Options for doing that include not only curbing activities that generate emissions but also sequestering CO2 for example, by encouraging its absorption from the atmosphere into vegetation and soil...

  12. Collaboration under the International Partnership for the Hydrogen Economy (IPHE) and the Carbon Sequestration Leadership Forum (CSLF)

    Energy Technology Data Exchange (ETDEWEB)

    Neff, H.J. [Forschungszentrum Juelich (Germany)

    2005-06-01

    The objectives and achievements of the International Partnership for the Hydrogen Economy (IPHE) and the Carbon Sequestration Leadership Forum (CSLF) will be described. Both are agreements between governments and aim at identifying and promoting potential areas of bilateral and multilateral collaboration on new and advanced energy technologies. The IPHE has analysed priorities for international collaboration in research, development, demonstration and utilisation of hydrogen equipment in five areas: hydrogen production, fuel cells, hydrogen storage, codes and standards, socio-economic research. A report on such options is available and a series of IPHE conferences and workshops will pave the way to concrete collaboration projects. The CSLF is focused on development of improved cost-effective technologies for the cost-efficient capture and safe, long-term storage of carbon dioxide (CO{sub 2}) for fossil power plants. The mission of the CSLF is to facilitate the development and deployment of such technologies via collaborative efforts that address key technical issues, as well as economic, and environmental challenges. The CSLF also promotes awareness and champion legal, regulatory, financial, and institutional environments conducive to such technologies. The CSLF has worked out a Technology Roadmap as a guide for the CSLF and its Members that describes possible routes to future CO2 capture, transport and storage needs. Included are modules on the current status of these technologies, ongoing activities in CO{sub 2} capture, transport and storage, and identification of technology gaps and non-technology needs that should be addressed over the next decade. The Technology Roadmap indicates areas where the CSLF can add value through international collaborative effort. Both, hydrogen technologies and CO2 sequestration, are closely connected and will serve an overall strategic framework with clean fossil fuels as a key element of a sustainable energy portfolio

  13. Treatment Option Overview (Myelodysplastic/Myeloproliferative Neoplasms)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ...

  14. Probabilistic methods in exotic option pricing

    NARCIS (Netherlands)

    Anderluh, J.H.M.

    2007-01-01

    The thesis presents three ways of calculating the Parisian option price as an illustration of probabilistic methods in exotic option pricing. Moreover options on commidities are considered and double-sided barrier options in a compound Poisson framework.

  15. Considerations in forecasting the demand for carbon sequestration and biotic storage technologies

    Energy Technology Data Exchange (ETDEWEB)

    Trexler, M.C. [Trexler and Associates, Inc., Portland, OR (United States)

    1997-12-31

    The Intergovernmental Panel on Climate Change (IPCC) has identified forestry and other land-use based mitigation measures as possible sources and sinks of greenhouse gases. An overview of sequestration and biotic storage is presented, and the potential impacts of the use of carbon sequestration as a mitigation technology are briefly noted. Carbon sequestration is also compare to other mitigation technologies. Biotic mitigation technologies are concluded to be a legitimate and potentially important part of greenhouse gas mitigation due to their relatively low costs, ancillary benefits, and climate impact. However, not all biotic mitigation techniques perfectly match the idealized definition of a mitigation measure, and policies are becoming increasingly biased against biotic technologies.

  16. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Brian; Matthews, Vince

    2013-09-30

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  17. Carbon capture and sequestration (CCS) technological innovation system in China: Structure, function evaluation and policy implication

    International Nuclear Information System (INIS)

    Lai Xianjin; Ye Zhonghua; Xu Zhengzhong; Husar Holmes, Maja; Henry Lambright, W.

    2012-01-01

    Carbon capture and sequestration (CCS) can be an important technology option for China in addressing global climate change and developing clean energy technologies. Promoted by international climate conventions and supported by government research and development programs, an increasing number of CCS pilot and demonstration projects have been launched in China. In this study, we analyze the structure of China’s CCS effort from a technological innovation system (TIS) perspective. Within this system, key socio-political components, including institutions, actor-networks, and technology development, are examined to evaluate the state of the innovation system. The study assessed the perceived capacity of seven functional areas of the CCS innovation system through a survey of key CCS actors and stakeholders. The findings suggest that China’s CCS innovation system has a strong functional capacity for knowledge and technology development. It is significantly weaker in the innovative functions of knowledge diffusion, market formation, facilitating entrepreneurs and new entrants into the CCS market. Based on the evaluation of China’s technological innovation system to develop CCS, the article articulates specific public policies to formulate a more robust innovation system to traverse the “valley of death” from research and development to commercial deployment and accelerate energy innovation in China. - Highlights: ► We analyze and evaluate China’s CCS innovation system from TIS perspective. ► Strong and systematic CCS innovation system structure has come into being in China. ► The system has acquired high knowledge development and accumulation. ► Weak innovation functions are identified: market creation, guidance, etc. ► Public policies are needed to improve the innovation system performance.

  18. Geochemical monitoring for potential environmental impacts of geologic sequestration of CO2

    Science.gov (United States)

    Kharaka, Yousif K.; Cole, David R.; Thordsen, James J.; Gans, Kathleen D.; Thomas, Randal B.

    2013-01-01

    Carbon dioxide sequestration is now considered an important component of the portfolio of options for reducing greenhouse gas emissions to stabilize their atmospheric levels at values that would limit global temperature increases to the target of 2 °C by the end of the century (Pacala and Socolow 2004; IPCC 2005, 2007; Benson and Cook 2005; Benson and Cole 2008; IEA 2012; Romanak et al. 2013). Increased anthropogenic emissions of CO2 have raised its atmospheric concentrations from about 280 ppmv during pre-industrial times to ~400 ppmv today, and based on several defined scenarios, CO2 concentrations are projected to increase to values as high as 1100 ppmv by 2100 (White et al. 2003; IPCC 2005, 2007; EIA 2012; Global CCS Institute 2012). An atmospheric CO2 concentration of 450 ppmv is generally the accepted level that is needed to limit global temperature increases to the target of 2 °C by the end of the century. This temperature limit likely would moderate the adverse effects related to climate change that could include sea-level rise from the melting of alpine glaciers and continental ice sheets and from the ocean warming; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; and changes in the amount, timing, and distribution of rain, snow, and runoff (IPCC 2007; Sundquist et al. 2009; IEA 2012). Rising atmospheric CO2 concentrations are also increasing the amount of CO2 dissolved in ocean water lowering its pH from 8.1 to 8.0, with potentially disruptive effects on coral reefs, plankton and marine ecosystems (Adams and Caldeira 2008; Schrag 2009; Sundquist et al. 2009). Sedimentary basins in general and deep saline aquifers in particular are being investigated as possible repositories for the large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes (Hitchon 1996; Benson and Cole 2008; Verma and Warwick 2011).

  19. Bayesian Option Pricing Framework with Stochastic Volatility for FX Data

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2016-12-01

    Full Text Available The application of stochastic volatility (SV models in the option pricing literature usually assumes that the market has sufficient option data to calibrate the model’s risk-neutral parameters. When option data are insufficient or unavailable, market practitioners must estimate the model from the historical returns of the underlying asset and then transform the resulting model into its risk-neutral equivalent. However, the likelihood function of an SV model can only be expressed in a high-dimensional integration, which makes the estimation a highly challenging task. The Bayesian approach has been the classical way to estimate SV models under the data-generating (physical probability measure, but the transformation from the estimated physical dynamic into its risk-neutral counterpart has not been addressed. Inspired by the generalized autoregressive conditional heteroskedasticity (GARCH option pricing approach by Duan in 1995, we propose an SV model that enables us to simultaneously and conveniently perform Bayesian inference and transformation into risk-neutral dynamics. Our model relaxes the normality assumption on innovations of both return and volatility processes, and our empirical study shows that the estimated option prices generate realistic implied volatility smile shapes. In addition, the volatility premium is almost flat across strike prices, so adding a few option data to the historical time series of the underlying asset can greatly improve the estimation of option prices.

  20. Sequestering CO2 in the Ocean: Options and Consequences

    Science.gov (United States)

    Rau, G. H.; Caldeira, K.

    2002-12-01

    The likelihood of negative climate and environmental impacts associated with increasing atmospheric CO2 has prompted serious consideration of various CO2 mitigation strategies. Among these are methods of capturing and storing of CO2 in the ocean. Two approaches that have received the most attention in this regard have been i) ocean fertilization to enhanced biological uptake and fixation of CO2, and ii) the chemical/mechanical capture and injection of CO2 into the deep ocean. Both methods seek to enhance or speed up natural mechanisms of CO2 uptake and storage by the ocean, namely i) the biological CO2 "pump" or ii) the passive diffusion of CO2 into the surface ocean and subsequent mixing into the deep sea. However, as will be reviewed, concerns about the capacity and effectiveness of either strategy in long-term CO2 sequestration have been raised. Both methods are not without potentially significant environmental impacts, and the costs of CO2 capture and injection (option ii) are currently prohibitive. An alternate method of ocean CO2 sequestration would be to react and hydrate CO2 rich waste gases (e.g., power plant flue gas) with seawater and to subsequently neutralize the resulting carbonic acid with limestone to produce calcium and bicarbonate ions in solution. This approach would simply speed up the CO2 uptake and sequestration that naturally (but very slowly) occurs via global carbonate weathering. This would avoid much of the increased acidity associated with direct CO2 injection while obviating the need for costly CO2 separation and capture. The addition of the resulting bicarbonate- and carbonate-rich solution to the ocean would help to counter the decrease in pH and carbonate ion concentration, and hence loss of biological calcification that is presently occurring as anthropogenic CO2 invades the ocean from the atmosphere. However, as with any approach to CO2 mitigation, the costs, impacts, risks, and benefits of this method need to be better understood

  1. The Effects of Framing Vocational Choices on Young Adults' Sets of Career Options

    Science.gov (United States)

    Feldman, Daniel C.; Whitcomb, Kathleen M.

    2005-01-01

    Purpose: The present paper examines the effects of two decision-framing inductions on young adults' set of career options: first, whether young adults use abilities or interests as the grounds for their vocational choices and, second, whether young adults approach the decision-making task by including all career options to which they feel…

  2. Analysis of Options Contract, Option Pricing in Agricultural Products

    Directory of Open Access Journals (Sweden)

    H. Tamidy

    2016-03-01

    Full Text Available Introduction: Risk is an essential component in the production and sale of agricultural products. Due to the nature of agricultural products, the people who act in this area including farmers and businesspersons encounter unpredictable fluctuations of prices. On the other hand, the firms that process agricultural products also face fluctuation of price of agricultural inputs. Given that the Canola is considered as one of the inputs of product processing factories, control of unpredictable fluctuations of the price of this product would increase the possibility of correct decision making for farmers and managers of food processing industries. The best available tool for control and management of the price risk is the use of future markets and options. It is evident that the pricing is the main pillar in every trade. Therefore, offering a fair price for the options will be very important. In fact, options trading in the options market create cost insurance stopped. In this way, which can reduce the risks of deflation created in the future, if the person entitled to the benefits of the price increase occurs in the future. Unlike the futures, market where the seller had to deliver the product on time, in the options market, there is no such compulsion. In addition, this is one of the strengths of this option contract, because if there is not enough product for delivery to the futures market as result of chilling, in due course, the farmers suffer, but in the options market there will be a loss. In this study, the setup options of rape, as a product, as well as inputs has been paid for industry. Materials and Methods: In this section. The selection criteria of the disposal of asset base for valuation of European put options and call option is been introduced. That for obtain this purpose, some characteristics of the goods must considered: 1-Unpredictable fluctuations price of underlying asset 2 -large underlying asset cash market 3- The possibility

  3. Cognitive task analysis

    NARCIS (Netherlands)

    Schraagen, J.M.C.

    2000-01-01

    Cognitive task analysis is defined as the extension of traditional task analysis techniques to yield information about the knowledge, thought processes and goal structures that underlie observable task performance. Cognitive task analyses are conducted for a wide variety of purposes, including the

  4. Bounds for Asian basket options

    Science.gov (United States)

    Deelstra, Griselda; Diallo, Ibrahima; Vanmaele, Michèle

    2008-09-01

    In this paper we propose pricing bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework. We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151-168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3-33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55-57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51-90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1-52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity.

  5. Nuclear Option in Korea

    International Nuclear Information System (INIS)

    Han, K. I.

    2002-01-01

    With sixteen(16) operating nuclear units in Korea, the share of nuclear power generation reached 41% of the total electric power generation as of December 2000. A prediction is that it would further increase to 44.5% by year 2015 according to the national long term power development plan. Four units are currently under construction with 6 more units in order. With little domestic energy resource and increasing energy demand to support national economic growth, Korea has chosen nuclear power as one of the major energy sources to ensure stable power supply and to promote energy self-sufficiency. It has been recognized that nuclear power in Korea is not a selective option but rather a necessity. The Korean nuclear power development started with construction of a 600 MWe size reactor that was designed and constructed by foreign vendors. As the national grid capacity became larger, the size of nuclear units increased to 1000 MWe class. In the mean time, the need for nuclear technology self-reliance grew not only in operation and maintenance but also in construction, manufacturing and design. For this, a nuclear technology self-reliance program has been embarked with the support of the Government and utility, and the 1000 MWe class KSNP(Korean Standard Nuclear Power Plant) has been developed. The KSNPs are currently being designed, manufactured, constructed and operated by relevant Korean entities themselves. To fit into a larger capacity national grid and also to improve nuclear economic competitiveness, the 1400 MWe class KNGR(Korean Next Generation Reactor) design has been developed uprating the 1000 MWe KSNP design. Its construction project is currently under contract negotiation, and is planned to be finished by 2010. In the mean time, to be ready for future electric power market deregulation, the 600 MWe class small KSNP design is being developed downsizing the KSNP. A modular small size reactor, SMART(System Integrated Modular Advanced Reactor) is also being

  6. Aluminum industry options paper

    International Nuclear Information System (INIS)

    1999-10-01

    In 1990, Canada's producers of aluminum (third largest in the world) emitted 10 million tonnes of carbon dioxide and equivalent, corresponding to 6.4 tonnes of greenhouse gas intensity per tonne of aluminum. In 2000, the projection is that on a business-as-usual (BAU) basis Canadian producers now producing 60 per cent more aluminum than in 1990, will emit 10.7 million tonnes of carbon dioxide and equivalent, corresponding to a GHG intensity of 4.2 tonnes per tonne of aluminum. This improvement is due to production being based largely on hydro-electricity, and partly because in general, Canadian plants are modern, with technology that is relatively GHG-friendly. The Aluminum Association of Canada estimates that based on anticipated production, and under a BAU scenario, GHG emissions from aluminum production will rise by 18 per cent by 2010 and by 30 per cent by 2020. GHG emissions could be reduced below the BAU forecast first, by new control and monitoring systems at some operations at a cost of $4.5 to 7.5 million per smelter. These systems could reduce carbon dioxide equivalent emissions by 0.8 million tonnes per year. A second alternative would require installation of breaker feeders which would further reduce perfluorocarbon (PFC) emissions by 0.9 million tonnes of carbon dioxide equivalent. Cost of the breakers feeders would be in the order of $200 million per smelter. The third option calls for the the shutting down of some of the smelters with older technology by 2015. In this scenario GHG emissions would be reduced by 2010 by 0.8 million tonnes per year of carbon dioxide equivalent. However, the cost in this case would be about $1.36 billion. The industry would support measures that would encourage the first two sets of actions, which would produce GHG emissions from aluminum production in Canada of about 10.2 million tonnes per year of carbon dioxide equivalent, or about two per cent above 1990 levels with double the aluminum production of 1990. Credit for

  7. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process

    NARCIS (Netherlands)

    Huijgen, W.J.J.; Witkamp, G.J.; Comans, R.N.J.

    2006-01-01

    The mechanisms of aqueous wollastonite carbonation as a possible carbon dioxide sequestration process were investigated experimentally by systematic variation of the reaction temperature, CO2 pressure, particle size, reaction time, liquid to solid ratio and agitation power. The carbonation reaction

  8. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration

    KAUST Repository

    Zhu, Xiuping; Logan, Bruce E.

    2014-01-01

    Mineral carbonation can be used for CO2 sequestration, but the reaction rate is slow. In order to accelerate mineral carbonation, acid generated in a microbial electrolysis desalination and chemical-production cell (MEDCC) was examined to dissolve

  9. A new look at ocean carbon remineralization for estimating deepwater sequestration

    DEFF Research Database (Denmark)

    Guidi, L.; Legendre, L.; Reygondeau, Gabriel

    2015-01-01

    provinces, where these estimates range between -50 and +100% of the commonly used globally uniform remineralization value. We apply the regionalized values to satellite-derived estimates of upper ocean POC export to calculate regionalized and ocean-wide deep carbon fluxes and sequestration. The resulting....... These results stress that variable remineralization and sequestration depth should be used to model ocean carbon sequestration and feedback on the atmosphere......The "biological carbon pump" causes carbon sequestration in deep waters by downward transfer of organic matter, mostly as particles. This mechanism depends to a great extent on the uptake of CO2 by marine plankton in surface waters and subsequent sinking of particulate organic carbon (POC) through...

  10. [Computed tomography semiotics of osteonecrosis and sequestration in chronic hematogenic osteomyelitis].

    Science.gov (United States)

    D'iachkova, G V; Mitina, Iu L

    2007-01-01

    Based on the data of computed tomography, radiography and densitometry in 39 patients the authors describe in detail the signs of osteonecrosis and sequestration of different localization and extension.

  11. Carbon Sequestration in Dryland and Irrigated Agroecosystems: Quantification at Different Scales for Improved Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Shashi B. [Univ. of Nebraska, Lincoln, NE (United States); Cassman, Kenneth G. [Univ. of Nebraska, Lincoln, NE (United States); Arkebauer, Timothy J. [Univ. of Nebraska, Lincoln, NE (United States); Hubbard, Kenneth G. [Univ. of Nebraska, Lincoln, NE (United States); Knops, Johannes M. [Univ. of Nebraska, Lincoln, NE (United States); Suyker, Andrew E. [Univ. of Nebraska, Lincoln, NE (United States)

    2012-09-14

    The overall objective of this research is to improve our basic understanding of the biophysical processes that govern C sequestration in major rainfed and irrigated agroecosystems in the north-central USA.

  12. Chronic idiopathic thrombocytopenic purpura (ITP): site of platelet sequestration and results of splenectomy

    International Nuclear Information System (INIS)

    Gugliotta, L.; Guarini, A.; Motta, M.R.; Bachetti, G.; Tura, S.; Isacchi, G.; Ciccone, F.; Lattarini, C.; Mazzucconi, M.G.; Mandelli, F.; Baccarani, M.

    1981-01-01

    51 Cr-platelet kinetics study was performed in 197 patients with chronic ITP after corticosteroid therapy had failed to induce a long lasting remission. The incidence of splenic, spleno-hepatic, hepatic and diffuse platelet sequestration site was 58%, 17%, 6% and 19%, respectively. Splenic and spleno-hepatic sequestration sites were more frequent in patients less than 30 years old and in patients with a platelet count lower than 50 x 10 9 /l. 111 patients were splenectomized shortly after the study. Normalization of the platelet count was obtained more frequently in patients with splenic and spleno-hepatic sequestration than in the others. Labelled platelet sequestration site was the best predictor of the outcome of splenectomy. Platelet kinetics is a non-invasive investigation that should be performed early after the diagnosis of chronic ITP in all patients eligible for splenectomy. (author)

  13. Soil carbon sequestration is a climate stabilization wedge: comments on Sommer and Bossio (2014).

    Science.gov (United States)

    Lassaletta, Luis; Aguilera, Eduardo

    2015-04-15

    Sommer and Bossio (2014) model the potential soil organic carbon (SOC) sequestration in agricultural soils (croplands and grasslands) during the next 87 years, concluding that this process cannot be considered as a climate stabilization wedge. We argue, however, that the amounts of SOC potentially sequestered in both scenarios (pessimistic and optimistic) fulfil the requirements for being considered as wedge because in both cases at least 25 GtC would be sequestered during the next 50 years. We consider that it is precisely in the near future, and meanwhile other solutions are developed, when this stabilization effort is most urgent even if after some decades the sequestration rate is significantly reduced. Indirect effects of SOC sequestration on mitigation could reinforce the potential of this solution. We conclude that the sequestration of organic carbon in agricultural soils as a climate change mitigation tool still deserves important attention for scientists, managers and policy makers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Second generation CO2 FEP analysis: Cassifcarbon sequestration scenario identification framework

    NARCIS (Netherlands)

    Yavuz, F.T.; Tilburg, T. van; Pagnier, H.

    2008-01-01

    A novel scenario analysis framework has been created, called Carbon Sequestration Scenario Identification Framework (CASSIF). This framework addresses containment performance defined by the three major categories: well, fault and seal integrity. The relevant factors that influence the integrity are

  15. High-Performance Modeling of Carbon Dioxide Sequestration by Coupling Reservoir Simulation and Molecular Dynamics

    KAUST Repository

    Bao, Kai; Yan, Mi; Allen, Rebecca; Salama, Amgad; Lu, Ligang; Jordan, Kirk E.; Sun, Shuyu; Keyes, David E.

    2015-01-01

    The present work describes a parallel computational framework for carbon dioxide (CO2) sequestration simulation by coupling reservoir simulation and molecular dynamics (MD) on massively parallel high-performance-computing (HPC) systems

  16. Consequences of co-benefits for the efficient design of carbon sequestration programs

    International Nuclear Information System (INIS)

    Feng, H.; Kling, C.L.

    2005-01-01

    The social efficiency of private carbon markets that also included trading in agricultural soil carbon sequestration with significant associated co-benefits were considered. Three topics related to the presence of co-benefits that sequester carbon were examined: (1) the consequences of co-benefits from carbon sinks and carbon abatement technology on the efficiency of carbon markets; (2) the efficient supply of carbon sequestration and co-benefits when there is spatial heterogeneity; and (3) the consequences of the presence of a carbon market when there is also a government supported conservation program. Co-benefits from carbon sinks and abatement were considered in relation to the socially efficient level of sequestration. The supply of carbon sequestration and co-benefits were then considered when fields differed in their potential to provide carbon and other environmental benefits. An empirical example of the economic characteristics of carbon sequestration and co-benefits in the Upper Mississippi River Basin was presented, in which the sequestration practice of land retirement with planting of perennial grasses was examined. Two sets of figures were used to illustrate the relationship between the cost of carbon sequestration and its marginal co-benefits: the marginal cost and the marginal co-benefits of carbon sequestration in a carbon market; and the marginal cost of carbon sequestration under a policy designed to maximize a bundle of environmental benefits. It was demonstrated that the relationship between carbon and its associated co-benefits will affect the efficiency of policy instruments designed for carbon sequestration. It was recommended that policy-makers consider that there are already a multitude of existing conservation programmes that result in significant carbon sequestration in many countries, and that nascent carbon markets are emerging in countries that have not ratified the Kyoto Protocol. The efficient level and location of carbon

  17. Near-term deployment of carbon capture and sequestration from biorefineries in the United States.

    Science.gov (United States)

    Sanchez, Daniel L; Johnson, Nils; McCoy, Sean T; Turner, Peter A; Mach, Katharine J

    2018-05-08

    Capture and permanent geologic sequestration of biogenic CO 2 emissions may provide critical flexibility in ambitious climate change mitigation. However, most bioenergy with carbon capture and sequestration (BECCS) technologies are technically immature or commercially unavailable. Here, we evaluate low-cost, commercially ready CO 2 capture opportunities for existing ethanol biorefineries in the United States. The analysis combines process engineering, spatial optimization, and lifecycle assessment to consider the technical, economic, and institutional feasibility of near-term carbon capture and sequestration (CCS). Our modeling framework evaluates least cost source-sink relationships and aggregation opportunities for pipeline transport, which can cost-effectively transport small CO 2 volumes to suitable sequestration sites; 216 existing US biorefineries emit 45 Mt CO 2 annually from fermentation, of which 60% could be captured and compressed for pipeline transport for under $25/tCO 2 A sequestration credit, analogous to existing CCS tax credits, of $60/tCO 2 could incent 30 Mt of sequestration and 6,900 km of pipeline infrastructure across the United States. Similarly, a carbon abatement credit, analogous to existing tradeable CO 2 credits, of $90/tCO 2 can incent 38 Mt of abatement. Aggregation of CO 2 sources enables cost-effective long-distance pipeline transport to distant sequestration sites. Financial incentives under the low-carbon fuel standard in California and recent revisions to existing federal tax credits suggest a substantial near-term opportunity to permanently sequester biogenic CO 2 This financial opportunity could catalyze the growth of carbon capture, transport, and sequestration; improve the lifecycle impacts of conventional biofuels; support development of carbon-negative fuels; and help fulfill the mandates of low-carbon fuel policies across the United States. Copyright © 2018 the Author(s). Published by PNAS.

  18. CO2 geological sequestration: state of art in Italy and abroad

    International Nuclear Information System (INIS)

    Quattrocchi, Fedora; Bencini, Roberto

    2005-01-01

    This paper proposes a wide scenario on the state of art in Italy and abroad of industrial CO 2 geological sequestration, with particular attention to Weyburn Project. Geochemical monitoring techniques are described, mentioning also geophysical monitoring techniques for CO 2 injected into the soil. Critical choices and objections in Italy to a complete use of clean fossil fuels, hydrogen carrier, clean coal technologies: all of these approaches require geological sequestration of CO 2 [it

  19. How sequestration cuts affect primary care physicians and graduate medical education.

    Science.gov (United States)

    Chauhan, Bindiya; Coffin, Janis

    2013-01-01

    On April 1, 2013, sequestration cuts went into effect impacting Medicare physician payments, graduate medical education, and many other healthcare agencies. The cuts range from 2% to 5%, affecting various departments and organizations. There is already a shortage of primary care physicians in general, not including rural or underserved areas, with limited grants for advanced training. The sequestration cuts negatively impact the future of many primary care physicians and hinder the care many Americans will receive over time.

  20. Analysis of ex situ processes of CO2 sequestration. Final report

    International Nuclear Information System (INIS)

    Touze, S.; Bourgeois, F.; Baranger, P.; Durst, P.

    2004-01-01

    The aim of this study is to bring quantitative elements to evaluate the validation of the CO 2 mineral sequestration to limit the greenhouse effect gases. This analysis aims to calculate the CO 2 accounting of the system (internal energy production balance the energy expend) sequestrated CO 2 and produced CO 2 . The first part detailed the possible experimental solutions. Then two carbonation processes, direct and indirect, have been chosen of the analysis. (A.L.B.)

  1. [Estimation of soil carbon sequestration potential in typical steppe of Inner Mongolia and associated uncertainty].

    Science.gov (United States)

    Wang, Wei; Wu, Jian-Guo; Han, Xing-Guo

    2012-01-01

    Based on the measurements in the enclosure and uncontrolled grazing plots in the typical steppe of Xilinguole, Inner Mongolia, this paper studied the soil carbon storage and carbon sequestration in the grasslands dominated by Leymus chinensis, Stipa grandis, and Stipa krylovii, respectively, and estimated the regional scale soil carbon sequestration potential in the heavily degraded grassland after restoration. At local scale, the annual soil carbon sequestration in the three grasslands all decreased with increasing year of enclosure. The soil organic carbon storage was significantly higher in the grasslands dominated by L. chinensis and Stipa grandis than in that dominated by Stipa krylovii, but the latter had much higher soil carbon sequestration potential, because of the greater loss of soil organic carbon during the degradation process due to overgrazing. At regional scale, the soil carbon sequestration potential at the depth of 0-20 cm varied from -0.03 x 10(4) to 3.71 x 10(4) kg C x a(-1), and the total carbon sequestration potential was 12.1 x 10(8) kg C x a(-1). Uncertainty analysis indicated that soil gravel content had less effect on the estimated carbon sequestration potential, but the estimation errors resulted from the spatial interpolation of climate data could be about +/- 4.7 x 10(9) kg C x a(-1). In the future, if the growth season precipitation in this region had an average variation of -3.2 mm x (10 a)(-1), the soil carbon sequestration potential would be de- creased by 1.07 x 10(8) kg C x (10 a)(-1).

  2. Dynamics and climate change mitigation potential of soil organic carbon sequestration.

    Science.gov (United States)

    Sommer, Rolf; Bossio, Deborah

    2014-11-01

    When assessing soil organic carbon (SOC) sequestration and its climate change (CC) mitigation potential at global scale, the dynamic nature of soil carbon storage and interventions to foster it should be taken into account. Firstly, adoption of SOC-sequestration measures will take time, and reasonably such schemes could only be implemented gradually at large-scale. Secondly, if soils are managed as carbon sinks, then SOC will increase only over a limited time, up to the point when a new SOC equilibrium is reached. This paper combines these two processes and predicts potential SOC sequestration dynamics in agricultural land at global scale and the corresponding CC mitigation potential. Assuming that global governments would agree on a worldwide effort to gradually change land use practices towards turning agricultural soils into carbon sinks starting 2014, the projected 87-year (2014-2100) global SOC sequestration potential of agricultural land ranged between 31 and 64 Gt. This is equal to 1.9-3.9% of the SRES-A2 projected 87-year anthropogenic emissions. SOC sequestration would peak 2032-33, at that time reaching 4.3-8.9% of the projected annual SRES-A2 emission. About 30 years later the sequestration rate would have reduced by half. Thus, SOC sequestration is not a C wedge that could contribute increasingly to mitigating CC. Rather, the mitigation potential is limited, contributing very little to solving the climate problem of the coming decades. However, we deliberately did not elaborate on the importance of maintaining or increasing SOC for sustaining soil health, agro-ecosystem functioning and productivity; an issue of global significance that deserves proper consideration irrespectively of any potential additional sequestration of SOC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. FEASIBILITY OF LARGE-SCALE OCEAN CO2 SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Peter Brewer; Dr. James Barry

    2002-09-30

    We have continued to carry out creative small-scale experiments in the deep ocean to investigate the science underlying questions of possible future large-scale deep-ocean CO{sub 2} sequestration as a means of ameliorating greenhouse gas growth rates in the atmosphere. This project is closely linked to additional research funded by the DoE Office of Science, and to support from the Monterey Bay Aquarium Research Institute. The listing of project achievements here over the past year reflects these combined resources. Within the last project year we have: (1) Published a significant workshop report (58 pages) entitled ''Direct Ocean Sequestration Expert's Workshop'', based upon a meeting held at MBARI in 2001. The report is available both in hard copy, and on the NETL web site. (2) Carried out three major, deep ocean, (3600m) cruises to examine the physical chemistry, and biological consequences, of several liter quantities released on the ocean floor. (3) Carried out two successful short cruises in collaboration with Dr. Izuo Aya and colleagues (NMRI, Osaka, Japan) to examine the fate of cold (-55 C) CO{sub 2} released at relatively shallow ocean depth. (4) Carried out two short cruises in collaboration with Dr. Costas Tsouris, ORNL, to field test an injection nozzle designed to transform liquid CO{sub 2} into a hydrate slurry at {approx}1000m depth. (5) In collaboration with Prof. Jill Pasteris (Washington University) we have successfully accomplished the first field test of a deep ocean laser Raman spectrometer for probing in situ the physical chemistry of the CO{sub 2} system. (6) Submitted the first major paper on biological impacts as determined from our field studies. (7) Submitted a paper on our measurements of the fate of a rising stream of liquid CO{sub 2} droplets to Environmental Science & Technology. (8) Have had accepted for publication in Eos the first brief account of the laser Raman spectrometer success. (9) Have had two

  4. The United States Department of Energy's Regional Carbon Sequestration Partnerships Program Validation Phase

    Energy Technology Data Exchange (ETDEWEB)

    Litynski, J.T.; Plasynski, S.; McIlvried, H.G.; Mahoney, C.; Srivastava, R.D. [US DOE, Morgantown, WV (United States). National Energy Technology Laboratory

    2008-01-15

    This paper reviews the Validation Phase (Phase II) of the Department of Energy's Regional Carbon Sequestration Partnerships initiative. During the Validation Phase, the seven regional partnerships will put the knowledge learned during the Characterization Phase into practice through field tests that will validate carbon sequestration technologies that are best suited to their respective regions of the country. These tests will verify technologies developed through DOE's core R&D effort and enable implementation of CO{sub 2} sequestration on a large scale, should that become necessary. Pilot projects will have a site-specific focus to test technology; assess formation storage capacity and injectivity; validate and refine existing CO{sub 2} formation models used to determine the transport and fate of CO{sub 2} in the formation; demonstrate the integrity of geologic seals to contain CO{sub 2}; validate monitoring, mitigation, and verification (MMV) technologies; define project costs and compare costs of alternatives; assess potential operational and long-term storage risks; address regulatory requirements; and engage and evaluate public acceptance of sequestration technologies. Field validation tests involving both sequestration in geologic formations and terrestrial sequestration are being developed. The results from the Validation Phase will help to confirm the estimates made during the Characterization Phase and will be used to update the regional atlases and NatCarb.

  5. Maintenance of a living understory enhances soil carbon sequestration in subtropical orchards.

    Science.gov (United States)

    Liu, Zhanfeng; Lin, Yongbiao; Lu, Hongfang; Ding, Mingmao; Tan, Yaowen; Xu, Shejin; Fu, Shenglei

    2013-01-01

    Orchard understory represents an important component of the orchards, performing numerous functions related to soil quality, water relations and microclimate, but little attention has been paid on its effect on soil C sequestration. In the face of global climate change, fruit producers also require techniques that increase carbon (C) sequestration in a cost-effective manner. Here we present a case study to compare the effects of understory management (sod culture vs. clean tillage) on soil C sequestration in four subtropical orchards. The results of a 10-year study indicated that the maintenance of sod significantly enhanced the soil C stock in the top 1 m of orchard soils. Relative to clean tillage, sod culture increased annual soil C sequestration by 2.85 t C ha(-1), suggesting that understory management based on sod culture offers promising potential for soil carbon sequestration. Considering that China has the largest area of orchards in the world and that few of these orchards currently have sod understories, the establishment and maintenance of sod in orchards can help China increase C sequestration and greatly contribute to achieving CO2 reduction targets at a regional scale and potentially at a national scale.

  6. The Amnesiac Lookback Option: Selectively Monitored Lookback Options and Cryptocurrencies

    Directory of Open Access Journals (Sweden)

    Ho-Chun Herbert Chang

    2018-05-01

    Full Text Available This study proposes a strategy to make the lookback option cheaper and more practical, and suggests the use of its properties to reduce risk exposure in cryptocurrency markets through blockchain enforced smart contracts and correct for informational inefficiencies surrounding prices and volatility. This paper generalizes partial, discretely-monitored lookback options that dilute premiums by selecting a subset of specified periods to determine payoff, which we call amnesiac lookback options. Prior literature on discretely-monitored lookback options considers the number of periods and assumes equidistant lookback periods in pricing partial lookback options. This study by contrast considers random sampling of lookback periods and compares resulting payoff of the call, put and spread options under floating and fixed strikes. Amnesiac lookbacks are priced with Monte Carlo simulations of Gaussian random walks under equidistant and random periods. Results are compared to analytic and binomial pricing models for the same derivatives. Simulations show diminishing marginal increases to the fair price as the number of selected periods is increased. The returns correspond to a Hill curve whose parameters are set by interest rate and volatility. We demonstrate over-pricing under equidistant monitoring assumptions with error increasing as the lookback periods decrease. An example of a direct implication for event trading is when shock is forecasted but its timing uncertain, equidistant sampling produces a lower error on the true maximum than random choice. We conclude that the instrument provides an ideal space for investors to balance their risk, and as a prime candidate to hedge extreme volatility. We discuss the application of the amnesiac lookback option and path-dependent options to cryptocurrencies and blockchain commodities in the context of smart contracts.

  7. Separation and capture of CO2 from large stationary sources and sequestration in geological formations--coalbeds and deep saline aquifers.

    Science.gov (United States)

    White, Curt M; Strazisar, Brian R; Granite, Evan J; Hoffman, James S; Pennline, Henry W

    2003-06-01

    The topic of global warming as a result of increased atmospheric CO2 concentration is arguably the most important environmental issue that the world faces today. It is a global problem that will need to be solved on a global level. The link between anthropogenic emissions of CO2 with increased atmospheric CO2 levels and, in turn, with increased global temperatures has been well established and accepted by the world. International organizations such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) have been formed to address this issue. Three options are being explored to stabilize atmospheric levels of greenhouse gases (GHGs) and global temperatures without severely and negatively impacting standard of living: (1) increasing energy efficiency, (2) switching to less carbon-intensive sources of energy, and (3) carbon sequestration. To be successful, all three options must be used in concert. The third option is the subject of this review. Specifically, this review will cover the capture and geologic sequestration of CO2 generated from large point sources, namely fossil-fuel-fired power gasification plants. Sequestration of CO2 in geological formations is necessary to meet the President's Global Climate Change Initiative target of an 18% reduction in GHG intensity by 2012. Further, the best strategy to stabilize the atmospheric concentration of CO2 results from a multifaceted approach where sequestration of CO2 into geological formations is combined with increased efficiency in electric power generation and utilization, increased conservation, increased use of lower carbon-intensity fuels, and increased use of nuclear energy and renewables. This review covers the separation and capture of CO2 from both flue gas and fuel gas using wet scrubbing technologies, dry regenerable sorbents, membranes, cryogenics, pressure and temperature swing adsorption, and other advanced concepts. Existing

  8. Exotic Options: a Chooser Option and its Pricing

    Directory of Open Access Journals (Sweden)

    Raimonda Martinkutė-Kaulienė

    2012-12-01

    Full Text Available Financial instruments traded in the markets and investors’ situation in such markets are getting more and more complex. This leads to more complex derivative structures used for hedging that are harder to analyze and which risk is harder managed. Because of the complexity of these instruments, the basic characteristics of many exotic options may sometimes be not clearly understood. Most scientific studies have been focused on developing models for pricing various types of exotic options, but it is important to study their unique characteristics and to understand them correctly in order to use them in proper market situations. The paper examines main aspects of options, emphasizing the variety of exotic options and their place in financial markets and risk management process. As the exact valuation of exotic options is quite difficult, the article deals with the theoretical and practical aspects of pricing of chooser options that suggest a broad range of usage and application in different market conditions. The calculations made in the article showed that the price of the chooser is closely correlated with the choice time and low correlated with its strike price. So the first mentioned factor should be taken into consideration when making appropriate hedging and investing decisions.

  9. 48 CFR 552.217-71 - Notice Regarding Option(s).

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Notice Regarding Option(s... Notice Regarding Option(s). As prescribed in 517.208(b), insert the following provision: Notice Regarding Option(s) (NOV 1992) The General Services Administration (GSA) has included an option to [Insert...

  10. Carbon dioxide sequestration in oil sands tailings streams

    Energy Technology Data Exchange (ETDEWEB)

    Mikula, R.; Afara, M.; Namsechi, B.; Demko, B.; Wong, P. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre

    2010-07-01

    This PowerPoint presentation discussed the use of carbon dioxide (CO{sub 2}) as an oil sands tailings process aid and investigated its role in maximizing recycle water availability by rapid consolidation of the transition zone. The potential for CO{sub 2} sequestration was also investigated. CO{sub 2} composite tailings (CT) pilot plants were discussed and the results of cylinder tests and water chemistry analyses were presented. Issues related to physical entrapment, ionic trapping, and mineral trapping were discussed. The study showed that carbonic acid lowers pH, dissolving calcite and dolomite. Aluminum hydroxide groups on the clay surface reacted to produce water and Al{sup 3+} and Na+. Increased bicarbonate and calcium resulted in precipitated calcite. The reduction of a transition zone from 6 to 3 meters increased the available recycle water by 15 mm{sup 3} in a 5 km{sup 2} recycle water pond. Optimum CO{sub 2} additions to whole tailings are now being investigated. tabs., figs.

  11. Enhanced oil recovery & carbon sequestration building on successful experience

    Energy Technology Data Exchange (ETDEWEB)

    Stern, Fred [BEPC (United States)

    2008-07-15

    In this paper it is spoken of the experiences in the capture and sequestration of CO{sub 2} in the companies Basin Electric Power Cooperative (BEPC) and Dakota Gasification Company (DGC); their by-products are mentioned and what these companies are making to control the CO{sub 2} emissions. Their challenges to compress CO{sub 2} are presented and how they have reduced the CO{sub 2} emissions in the DGC of the 2000 to the 2008; how they use CO{sub 2} to enhance the oil recovery and which are their challenges in the CO{sub 2} transport. [Spanish] En esta ponencia se habla de las experiencias en la captura y secuestro de CO{sub 2} en las empresas Basin Electic Power Cooperative (BEPC) y Dakota Gasification Campany (DGC); se mencionan sus subproductos y que estan haciendo estas empresas para controlar las emisiones de CO{sub 2}. Se presentan sus retos para comprimir CO{sub 2} y como han reducido las emisiones de CO{sub 2} en la DGC del 2000 al 2008; como utilizan el CO{sub 2} para mejorar la recuperacion de petroleo y sus cuales son retos en el transporte de CO{sub 2}.

  12. Substantial role of macroalgae in marine carbon sequestration

    KAUST Repository

    Krause-Jensen, Dorte; Duarte, Carlos M.

    2016-01-01

    Vegetated coastal habitats have been identified as important carbon sinks. In contrast to angiosperm-based habitats such as seagrass meadows, salt marshes and mangroves, marine macroalgae have largely been excluded from discussions of marine carbon sinks. Macroalgae are the dominant primary producers in the coastal zone, but they typically do not grow in habitats that are considered to accumulate large stocks of organic carbon. However, the presence of macroalgal carbon in the deep sea and sediments, where it is effectively sequestered from the atmosphere, has been reported. A synthesis of these data suggests that macroalgae could represent an important source of the carbon sequestered in marine sediments and the deep ocean. We propose two main modes for the transport of macroalgae to the deep ocean and sediments: macroalgal material drifting through submarine canyons, and the sinking of negatively buoyant macroalgal detritus. A rough estimate suggests that macroalgae could sequester about 173 TgC yr â '1 (with a range of 61-268 TgC yr â '1) globally. About 90% of this sequestration occurs through export to the deep sea, and the rest through burial in coastal sediments. This estimate exceeds that for carbon sequestered in angiosperm-based coastal habitats.

  13. Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation

    Directory of Open Access Journals (Sweden)

    Carolina M. Medeiros Da Cunha

    2017-11-01

    Full Text Available Autologous chondrocyte transplantation for cartilage repair still has unsatisfactory clinical outcomes because of inter-donor variability and poor cartilage quality formation. Re-differentiation of monolayer-expanded human chondrocytes is not easy in the absence of potent morphogens. The Vascular Endothelial Growth Factor (VEGF plays a master role in angiogenesis and in negatively regulating cartilage growth by stimulating vascular invasion and ossification. Therefore, we hypothesized that its sole microenvironmental blockade by either VEGF sequestration by soluble VEGF receptor-2 (Flk-1 or by antiangiogenic hyperbranched peptides could improve chondrogenesis of expanded human nasal chondrocytes (NC freshly seeded on collagen scaffolds. Chondrogenesis of several NC donors was assessed either in vitro or ectopically in nude mice. VEGF blockade appeared not to affect NC in vitro differentiation, whereas it efficiently inhibited blood vessel ingrowth in vivo. After 8 weeks, in vivo glycosaminoglycan deposition was approximately two-fold higher when antiangiogenic approaches were used, as compared to the control group. Our data indicates that the inhibition of VEGF signaling, independently of the specific implementation mode, has profound effects on in vivo NC chondrogenesis, even in the absence of chondroinductive signals during prior culture or at the implantation site.

  14. Still needed data for successful deep CO2 sequestration

    International Nuclear Information System (INIS)

    Ulmer, Gene C.

    2013-01-01

    Despite chemical knowledge about CO 2 that extends back centuries, some data bases are still evolving that are needed to predict even the sub-critical CO 2 behavior down the geothermal gradient's P- and T-values which will be encountered in sequestration utilizing deep mines and wells. These needed data include IR-spectral interpretations of CO 2 molecular structure as P and T change; the unraveling of the Joule Thomson coefficient (heating or cooling?) that changes algebraic polarity around 10 6 Pa; more exact equations of state (EOS) that correlate to potential CO 2 polarity changes in molecular structure; newer EOS than those that have currently been derived by templating directly measured data; and focus is needed on the EOS-derived properties, like fugacity. Also, natural analogues like (1) the carbonate stability in metamorphic silicate-carbonation facies and (2) Lake Nyos aqueous geochemistry with concern about the potential redox-equilibria-predicted presence of CO (and graphite), as well as CO 2 . (authors)

  15. Substantial role of macroalgae in marine carbon sequestration

    KAUST Repository

    Krause-Jensen, Dorte

    2016-09-12

    Vegetated coastal habitats have been identified as important carbon sinks. In contrast to angiosperm-based habitats such as seagrass meadows, salt marshes and mangroves, marine macroalgae have largely been excluded from discussions of marine carbon sinks. Macroalgae are the dominant primary producers in the coastal zone, but they typically do not grow in habitats that are considered to accumulate large stocks of organic carbon. However, the presence of macroalgal carbon in the deep sea and sediments, where it is effectively sequestered from the atmosphere, has been reported. A synthesis of these data suggests that macroalgae could represent an important source of the carbon sequestered in marine sediments and the deep ocean. We propose two main modes for the transport of macroalgae to the deep ocean and sediments: macroalgal material drifting through submarine canyons, and the sinking of negatively buoyant macroalgal detritus. A rough estimate suggests that macroalgae could sequester about 173 TgC yr â \\'1 (with a range of 61-268 TgC yr â \\'1) globally. About 90% of this sequestration occurs through export to the deep sea, and the rest through burial in coastal sediments. This estimate exceeds that for carbon sequestered in angiosperm-based coastal habitats.

  16. Carbon Capture and Sequestration: A Regulatory Gap Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln Davies; Kirsten Uchitel; John Ruple; Heather Tanana

    2012-04-30

    Though a potentially significant climate change mitigation strategy, carbon capture and sequestration (CCS) remains mired in demonstration and development rather than proceeding to full-scale commercialization. Prior studies have suggested numerous reasons for this stagnation. This Report seeks to empirically assess those claims. Using an anonymous opinion survey completed by over 200 individuals involved in CCS, it concludes that there are four primary barriers to CCS commercialization: (1) cost, (2) lack of a carbon price, (3) liability risks, and (4) lack of a comprehensive regulatory regime. These results largely confirm previous work. They also, however, expose a key barrier that prior studies have overlooked: the need for comprehensive, rather than piecemeal, CCS regulation. The survey data clearly show that the CCS community sees this as one of the most needed incentives for CCS deployment. The community also has a relatively clear idea of what that regulation should entail: a cooperative federalism approach that directly addresses liability concerns and that generally does not upset traditional lines of federal-state authority.

  17. Ocean Fertilization for Sequestration of Carbon Dioxide from the Atmosphere

    Science.gov (United States)

    Boyd, Philip W.

    The ocean is a major sink for both preindustrial and anthropogenic carbon dioxide. Both physically and biogeochemically driven pumps, termed the solubility and biological pump, respectively Fig.5.1) are responsible for the majority of carbon sequestration in the ocean's interior [1]. The solubility pump relies on ocean circulation - specifically the impact of cooling of the upper ocean at high latitudes both enhances the solubility of carbon dioxide and the density of the waters which sink to great depth (the so-called deepwater formation) and thereby sequester carbon in the form of dissolved inorganic carbon (Fig.5.1). The biological pump is driven by the availability of preformed plant macronutrients such as nitrate or phosphate which are taken up by phytoplankton during photosynthetic carbon fixation. A small but significant proportion of this fixed carbon sinks into the ocean's interior in the form of settling particles, and in order to maintain equilibrium carbon dioxide from the atmosphere is transferred across the air-sea interface into the ocean (the so-called carbon drawdown) thereby decreasing atmospheric carbon dioxide (Fig.5.1).Fig.5.1

  18. Carbon Sequestration in Olivine and Basalt Powder Packed Beds.

    Science.gov (United States)

    Xiong, Wei; Wells, Rachel K; Giammar, Daniel E

    2017-02-21

    Fractures and pores in basalt could provide substantial pore volume and surface area of reactive minerals for carbonate mineral formation in geologic carbon sequestration. In many fractures solute transport will be limited to diffusion, and opposing chemical gradients that form as a result of concentration differences can lead to spatial distribution of silicate mineral dissolution and carbonate mineral precipitation. Glass tubes packed with grains of olivine or basalt with different grain sizes and compositions were used to explore the identity and spatial distribution of carbonate minerals that form in dead-end one-dimensional diffusion-limited zones that are connected to a larger reservoir of water in equilibrium with 100 bar CO 2 at 100 °C. Magnesite formed in experiments with olivine, and Mg- and Ca-bearing siderite formed in experiments with flood basalt. The spatial distribution of carbonates varied between powder packed beds with different powder sizes. Packed beds of basalt powder with large specific surface areas sequestered more carbon per unit basalt mass than powder with low surface area. The spatial location and extent of carbonate mineral formation can influence the overall ability of fractured basalt to sequester carbon.

  19. Task demand, task management, and teamwork

    Energy Technology Data Exchange (ETDEWEB)

    Braarud, Per Oeivind; Brendryen, Haavar

    2001-03-15

    The current approach to mental workload assessment in process control was evaluated in 3 previous HAMMLAB studies, by analysing the relationship between workload related measures and performance. The results showed that subjective task complexity rating was related to team's control room performance, that mental effort (NASA-TLX) was weakly related to performance, and that overall activity level was unrelated to performance. The results support the argument that general cognitive measures, i.e., mental workload, are weakly related to performance in the process control domain. This implies that other workload concepts than general mental workload are needed for valid assessment of human reliability and for valid assessment of control room configurations. An assessment of task load in process control suggested that how effort is used to handle task demand is more important then the level of effort invested to solve the task. The report suggests two main workload related concepts with a potential as performance predictors in process control: task requirements, and the work style describing how effort is invested to solve the task. The task requirements are seen as composed of individual task demand and team demand. In a similar way work style are seen as composed of individual task management and teamwork style. A framework for the development of the concepts is suggested based on a literature review and experiences from HAMMLAB research. It is suggested that operational definitions of workload concepts should be based on observable control room behaviour, to assure a potential for developing performance-shaping factors. Finally an explorative analysis of teamwork measures and performance in one study indicated that teamwork concepts are related to performance. This lends support to the suggested development of team demand and teamwork style as elements of a framework for the analysis of workload in process control. (Author)

  20. Option Pricing using Realized Volatility

    DEFF Research Database (Denmark)

    Stentoft, Lars Peter

    dynamics to be used for option pricing purposes in this framework, and we show that our model explains some of the mispricings found when using traditional option pricing models based on interdaily data. We then show explicitly that a Generalized Autoregressive Conditional Heteroskedastic model with Normal...... Inverse Gaussian distributed innovations is the corresponding benchmark model when only daily data is used. Finally, we perform an empirical analysis using stock options for three large American companies, and we show that in all cases our model performs significantly better than the corresponding...... benchmark model estimated on return data alone. Hence the paper provides evidence on the value of using high frequency data for option pricing purposes....

  1. Treatment Option Overview (Ewing Sarcoma)

    Science.gov (United States)

    ... Ewing Sarcoma Treatment Osteosarcoma Treatment Research Ewing Sarcoma Treatment (PDQ®)–Patient Version General Information About Ewing Sarcoma ... started or in another part of the body. Treatment Option Overview Key Points There are different types ...

  2. Treatment Option Overview (Kaposi Sarcoma)

    Science.gov (United States)

    ... Treatment Childhood Vascular Tumors Treatment Research Kaposi Sarcoma Treatment (PDQ®)–Patient Version General Information About Kaposi Sarcoma ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  3. 77 FR 25319 - Commodity Options

    Science.gov (United States)

    2012-04-27

    ..., merchants, SDs, commodity funds, futures industry organizations, academics and think tanks, a U.S... particular (i.e., optionality in a contract settling by physical delivery that is used to meet varying demand...

  4. Antihistamines: Understanding Your OTC Options

    Science.gov (United States)

    ... CorrectlyPain Relievers: Understanding Your OTC OptionsAntacids and Acid Reducers: OTC Relief for Heartburn and Acid RefluxOTC Cough ... Loss and Diet Plans Nutrients and Nutritional Info Sugar and Sugar Substitutes Exercise and Fitness Exercise Basics ...

  5. FS65 Disposition Option Report

    Energy Technology Data Exchange (ETDEWEB)

    Wenz, Tracy R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-25

    This report outlines the options for dispositioning the MOX fuel stored in FS65 containers at LANL. Additional discussion regarding the support equipment for loading and unloading the FS65 transport containers is included at the end of the report.

  6. Essential Tremor (ET): Surgical Options

    Science.gov (United States)

    ... option for severe depression, epilepsy, Tourette’s syndrome, stroke, addiction, and dementia. Top Focused Ultrasound Thalamotomy The FDA ... ultrasound but in a very different way. This technology uses multiple beams of sound focused in on ...

  7. Optimizing geologic CO2 sequestration by injection in deep saline formations below oil reservoirs

    International Nuclear Information System (INIS)

    Han, Weon Shik; McPherson, Brian J.

    2009-01-01

    The purpose of this research is to present a best-case paradigm for geologic CO 2 storage: CO 2 injection and sequestration in saline formations below oil reservoirs. This includes the saline-only section below the oil-water contact (OWC) in oil reservoirs, a storage target neglected in many current storage capacity assessments. This also includes saline aquifers (high porosity and permeability formations) immediately below oil-bearing formations. While this is a very specific injection target, we contend that most, if not all, oil-bearing basins in the US contain a great volume of such strata, and represent a rather large CO 2 storage capacity option. We hypothesize that these are the best storage targets in those basins. The purpose of this research is to evaluate this hypothesis. We quantitatively compared CO 2 behavior in oil reservoirs and brine formations by examining the thermophysical properties of CO 2 , CO 2 -brine, and CO 2 -oil in various pressure, temperature, and salinity conditions. In addition, we compared the distribution of gravity number (N), which characterizes a tendency towards buoyancy-driven CO 2 migration, and mobility ratio (M), which characterizes the impeded CO 2 migration, in oil reservoirs and brine formations. Our research suggests competing advantages and disadvantages of CO 2 injection in oil reservoirs vs. brine formations: (1) CO 2 solubility in oil is significantly greater than in brine (over 30 times); (2) the tendency of buoyancy-driven CO 2 migration is smaller in oil reservoirs because density contrast between oil and CO 2 is smaller than it between brine and oil (the approximate density contrast between CO 2 and crude oil is ∼100 kg/m 3 and between CO 2 and brine is ∼350 kg/m 3 ); (3) the increased density of oil and brine due to the CO 2 dissolution is not significant (about 7-15 kg/m 3 ); (4) the viscosity reduction of oil due to CO 2 dissolution is significant (from 5790 to 98 mPa s). We compared these competing

  8. Perpetual American options within CTRWs

    Science.gov (United States)

    Montero, Miquel

    2008-06-01

    Continuous-time random walks are a well suited tool for the description of market behaviour at the smallest scale: the tick-to-tick evolution. We will apply this kind of market model to the valuation of perpetual American options: derivatives with no maturity that can be exercised at any time. Our approach leads to option prices that fulfill financial formulas when canonical assumptions on the dynamics governing the process are made, but it is still suitable for more exotic market conditions.

  9. Perpetual American options within CTRW's

    OpenAIRE

    Montero, Miquel

    2007-01-01

    Continuous-time random walks are a well suited tool for the description of market behaviour at the smallest scale: the tick-to-tick evolution. We will apply this kind of market model to the valuation of perpetual American options: derivatives with no maturity that can be exercised at any time. Our approach leads to option prices that fulfil financial formulas when canonical assumptions on the dynamics governing the process are made, but it is still suitable for more exotic market conditions.

  10. Project Tasks in Robotics

    DEFF Research Database (Denmark)

    Sørensen, Torben; Hansen, Poul Erik

    1998-01-01

    Description of the compulsary project tasks to be carried out as a part of DTU course 72238 Robotics......Description of the compulsary project tasks to be carried out as a part of DTU course 72238 Robotics...

  11. 48 CFR 570.401 - Renewal options.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Renewal options. 570.401... Requirements 570.401 Renewal options. (a) Exercise of options. Before exercising an option to renew, follow the... survey. Before exercising an option to renew a lease, review current market information to ensure the...

  12. Option Derivatives in Electricity Hedging

    Directory of Open Access Journals (Sweden)

    P. Pavlátka

    2010-01-01

    Full Text Available Despite the high volatility of electricity prices, there is still little demand for electricity power options, and the liquidity on the power exchanges of these power derivatives is quite low. One of the reasons is the uncertainty about how to evaluate these electricity options and about finding the right fair value of this product. Hedging of electricity is associated mainly with products such as futures and forwards. However, due to new trends in electricity trading and hedging, it is also useful to think more about options and the principles for working with them in hedging various portfolio positions and counterparties. We can quite often encounter a situation when we need to have a perfect hedge for our customer’s (end user consuming electricity portfolio, or we have to evaluate the volumetric risk (inability of a customer to predict consumption, which is very similar to selling options. Now comes the moment to compare the effects of using options or futures to hedge these open positions. From a practical viewpoint, the Black-Scholes prices appear to be the best available and the simplest method for evaluating option premiums, but there are some limitations that we have to consider.

  13. Task assignment and coaching

    OpenAIRE

    Dominguez-Martinez, S.

    2009-01-01

    An important task of a manager is to motivate her subordinates. One way in which a manager can give incentives to junior employees is through the assignment of tasks. How a manager allocates tasks in an organization, provides information to the junior employees about his ability. Without coaching from a manager, the junior employee only has information about his past performance. Based on his past performance, a talented junior who has performed a difficult task sometimes decides to leave the...

  14. Functional Task Test (FTT)

    Science.gov (United States)

    Bloomberg, Jacob J.; Mulavara, Ajitkumar; Peters, Brian T.; Rescheke, Millard F.; Wood, Scott; Lawrence, Emily; Koffman, Igor; Ploutz-Snyder, Lori; Spiering, Barry A.; Feeback, Daniel L.; hide

    2009-01-01

    This slide presentation reviews the Functional Task Test (FTT), an interdisciplinary testing regimen that has been developed to evaluate astronaut postflight functional performance and related physiological changes. The objectives of the project are: (1) to develop a set of functional tasks that represent critical mission tasks for the Constellation Program, (2) determine the ability to perform these tasks after space flight, (3) Identify the key physiological factors that contribute to functional decrements and (4) Use this information to develop targeted countermeasures.

  15. Advances in Geological CO{sub 2} Sequestration and Co-Sequestration with O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Verba, Circe A; O& #x27; Connor, William K.; Ideker, J.H.

    2012-10-28

    The injection of CO{sub 2} for Enhanced Oil Recovery (EOR) and sequestration in brine-bearing formations for long term storage has been in practice or under investigation in many locations globally. This study focused on the assessment of cement wellbore seal integrity in CO{sub 2}- and CO{sub 2}-O{sub 2}-saturated brine and supercritical CO{sub 2} environments. Brine chemistries (NaCl, MgCl{sub 2}, CaCl{sub 2}) at various saline concentrations were investigated at a pressure of 28.9 MPa (4200 psi) at both 50{degree}C and 85{degree}C. These parameters were selected to simulate downhole conditions at several potential CO{sub 2} injection sites in the United States. Class H portland cement is not thermodynamically stable under these conditions and the formation of carbonic acid degrades the cement. Dissociation occurs and leaches cations, forming a CaCO{sub 3} buffered zone, amorphous silica, and other secondary minerals. Increased temperature affected the structure of C-S-H and the hydration of the cement leading to higher degradation rates.

  16. Risk-Informed Monitoring, Verification and Accounting (RI-MVA). An NRAP White Paper Documenting Methods and a Demonstration Model for Risk-Informed MVA System Design and Operations in Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Unwin, Stephen D.; Sadovsky, Artyom; Sullivan, E. C.; Anderson, Richard M.

    2011-09-30

    This white paper accompanies a demonstration model that implements methods for the risk-informed design of monitoring, verification and accounting (RI-MVA) systems in geologic carbon sequestration projects. The intent is that this model will ultimately be integrated with, or interfaced with, the National Risk Assessment Partnership (NRAP) integrated assessment model (IAM). The RI-MVA methods described here apply optimization techniques in the analytical environment of NRAP risk profiles to allow systematic identification and comparison of the risk and cost attributes of MVA design options.

  17. Task assignment and coaching

    NARCIS (Netherlands)

    Dominguez-Martinez, S.

    2009-01-01

    An important task of a manager is to motivate her subordinates. One way in which a manager can give incentives to junior employees is through the assignment of tasks. How a manager allocates tasks in an organization, provides information to the junior employees about his ability. Without coaching

  18. A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-12-23

    A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

  19. Southwestern Regional Partnership For Carbon Sequestration (Phase 2): Pump Canyon CO2-ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    International Nuclear Information System (INIS)

    2010-01-01

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO 2 sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO 2 -enhanced coalbed methane (CO 2 /ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO 2 sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO 2 was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO 2 movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO 2 . In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO 2 fluxes, and tracers were used to help in tracking the injected CO 2 . Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the results of the different MVA techniques.

  20. Southwestern Regional Partnership For Carbon Sequestration (Phase 2) Pump Canyon CO2- ECBM/Sequestration Demonstration, San Juan Basin, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Advanced Resources International

    2010-01-31

    Within the Southwest Regional Partnership on Carbon Sequestration (SWP), three demonstrations of geologic CO{sub 2} sequestration are being performed -- one in an oilfield (the SACROC Unit in the Permian basin of west Texas), one in a deep, unmineable coalbed (the Pump Canyon site in the San Juan basin of northern New Mexico), and one in a deep, saline reservoir (underlying the Aneth oilfield in the Paradox basin of southeast Utah). The Pump Canyon CO{sub 2}-enhanced coalbed methane (CO{sub 2}/ECBM) sequestration demonstration project plans to demonstrate the effectiveness of CO{sub 2} sequestration in deep, unmineable coal seams via a small-scale geologic sequestration project. The site is located in San Juan County, northern New Mexico, just within the limits of the high-permeability fairway of prolific coalbed methane production. The study area for the SWP project consists of 31 coalbed methane production wells located in a nine section area. CO{sub 2} was injected continuously for a year and different monitoring, verification and accounting (MVA) techniques were implemented to track the CO{sub 2} movement inside and outside the reservoir. Some of the MVA methods include continuous measurement of injection volumes, pressures and temperatures within the injection well, coalbed methane production rates, pressures and gas compositions collected at the offset production wells, and tracers in the injected CO{sub 2}. In addition, time-lapse vertical seismic profiling (VSP), surface tiltmeter arrays, a series of shallow monitoring wells with a regular fluid sampling program, surface measurements of soil composition, CO{sub 2} fluxes, and tracers were used to help in tracking the injected CO{sub 2}. Finally, a detailed reservoir model was constructed to help reproduce and understand the behavior of the reservoir under production and injection operation. This report summarizes the different phases of the project, from permitting through site closure, and gives the