WorldWideScience

Sample records for sequestration forest conservation

  1. Could Sacredness Contribute To Forest Conservation In African ...

    African Journals Online (AJOL)

    Attention is presently paid to forest conservation because of its potential for the sequestration of carbon. More than rural forest, urban forest is of greater utility because of it can serve as a natural low cost laboratory for pedagogic activities of several schools. Unfortunately those forests are regressing in Benin. The objective of ...

  2. Forest and wood products role in carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Sampson, R.N.

    1997-12-31

    An evaluation of the use of U.S. forests and forest products for carbon emission mitigation is presented. The current role of forests in carbon sequestration is described in terms of regional differences and forest management techniques. The potential for increasing carbon storage by converting marginal crop and pasture land, increasing timberland growth, reducing wildfire losses, and changing timber harvest methods is examined. Post-harvest carbon flows, environmental impacts of wood products, biomass energy crops, and increased use of energy-conserving trees are reviewed for their potential in reducing or offsetting carbon emissions. It is estimated that these techniques could offset 20 to 40 percent of the carbon emitted annually in the U.S. 39 refs., 5 tabs.

  3. Hurricane impacts on US forest carbon sequestration

    Science.gov (United States)

    Steven G. McNulty

    2002-01-01

    Recent focus has been given to US forests as a sink for increases in atmospheric carbon dioxide. Current estimates of US Forest carbon sequestration average approximately 20 Tg (i.e. 1012 g) year. However, predictions of forest carbon sequestration often do not include the influence of hurricanes on forest carbon storage. Intense hurricanes...

  4. Carbon sequestration, biological diversity, and sustainable development: Integrated forest management

    Energy Technology Data Exchange (ETDEWEB)

    Cairns, M.A. (Environmental Research Lab., Corvallis, OR (United States)); Meganck, R.A. (United Nations Environment Programme for the Wider Caribbean, Kingston (Jamaica))

    Tropical deforestation provides a significant contribution to anthropogenic increases in atmospheric CO[sub 2] concentration that may lead to global warming. Forestation and other forest management options to sequester CO[sub 2] in the tropical latitudes may fail unless they address local economic, social, environmental, and political needs of people in the developing world. Forest management is discussed in terms of three objectives: Carbon sequestration, sustainable development, and biodiversity conservation. An integrated forest management strategy of land-use planning is proposed to achieve these objectives and is centered around: Preservation of primary forest, intensified use of nontimber resources, agroforestry, and selective use of plantation forestry. 89 refs., 1 fig., 1 tab.

  5. Vegetation carbon sequestration in Chinese forests from 2010 to 2050.

    Science.gov (United States)

    He, Nianpeng; Wen, Ding; Zhu, Jianxing; Tang, Xuli; Xu, Li; Zhang, Li; Hu, Huifeng; Huang, Mei; Yu, Guirui

    2017-04-01

    Forests store a large part of the terrestrial vegetation carbon (C) and have high C sequestration potential. Here, we developed a new forest C sequestration (FCS) model based on the secondary succession theory, to estimate vegetation C sequestration capacity in China's forest vegetation. The model used the field measurement data of 3161 forest plots and three future climate scenarios. The results showed that logistic equations provided a good fit for vegetation biomass with forest age in natural and planted forests. The FCS model has been verified with forest biomass data, and model uncertainty is discussed. The increment of vegetation C storage in China's forest vegetation from 2010 to 2050 was estimated as 13.92 Pg C, while the average vegetation C sequestration rate was 0.34 Pg C yr -1 with a 95% confidence interval of 0.28-0.42 Pg C yr -1 , which differed significantly between forest types. The largest contributor to the increment was deciduous broadleaf forest (37.8%), while the smallest was deciduous needleleaf forest (2.7%). The vegetation C sequestration rate might reach its maximum around 2020, although vegetation C storage increases continually. It is estimated that vegetation C sequestration might offset 6-8% of China's future emissions. Furthermore, there was a significant negative relationship between vegetation C sequestration rate and C emission rate in different provinces of China, suggesting that developed provinces might need to compensate for undeveloped provinces through C trade. Our findings will provide valuable guidelines to policymakers for designing afforestation strategies and forest C trade in China. © 2016 John Wiley & Sons Ltd.

  6. ESTIMATION OF CARBON SEQUESTRATION BY RUSSIAN FORESTS: GEOSPATIAL ISSUE

    Directory of Open Access Journals (Sweden)

    N. V. Malysheva

    2017-01-01

    Full Text Available Сategories of carbon sequestration assessment for Russian forests are identified by GIS toolkit. Those are uniform by bioclimatic and site-specific conditions strata corresponding to modern version of bioclimatic forest district division. Stratification of forests at early stage substantially reduces the ambiguity of the evaluation because phytomass conversion sequestration capacity and expansion factor dependent on site-specific condition for calculating of forest carbon sink are absolutely necessary. Forest management units were linked to strata. Biomass conversion and expansion factor for forest carbon sink assessment linked to the strata were recalculated for forest management units. All operations were carried out with GIS analytical toolkit due to accessible functionalities. Units for forest carbon storage inventory and forest carbon balance calculation were localized. Production capacity parameters and forest carbon sequestration capacity have been visualized on maps complied by ArcGIS. Based on spatially-explicit information, we have found out that the greatest annual rates of forest’s carbon accumulation in Russian forests fall into mixed coniferous-deciduous forests of European-Ural part of Russia to Kaliningrad, Smolensk and Briansk Regions, coniferous-deciduous forests close to the boundary of Khabarovsk Region and Primorskij Kray in the Far East, as well as separate forest management units of Kabardino-Balkariya NorthCaucasian mountain area. The geospatial visualization of carbon sequestration by Russian forests and carbon balance assessment has been given.

  7. Regulating forest rotation to increase CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Gong, P.; Kristroem, B.

    1999-06-01

    Previous studies have shown that the optimal forest rotation age increases considerably if the benefits of CO{sub 2} sequestration are included in rotation decisions. While these studies provide some guidelines for managing public forests, private forest owners may not choose the socially optimal rotation age. This paper discusses a regulation measure to increase CO{sub 2} sequestration in privately owned forests. The regulation problem is treated as a sequential game, where the regulator chooses a subsidy scheme and forest owners respond by changing rotation ages. A private forest owner receives a subsidy at the time of harvesting if he/she changes the rotation age towards the socially optimal one. The subsidy is proportional to the associated change in timber yield. The forest owner`s objective is to maximize the net present value of after-tax timber production profits and subsidies. The regulator`s decision problem is to find the subsidy rate that maximizes the net benefits of implementing the policy (the net of increased CO{sub 2} sequestration benefits, subsidy costs, and changes in forestry taxation income). Empirical results for Swedish examples show that the optimal subsidy rate is sensitive to the marginal benefit of CO{sub 2} sequestration, the social discount rate, and site quality. The optimal subsidy rate is found to be significantly lower than the marginal benefit of CO{sub 2} sequestration. With the proposed subsidy scheme, private forest owners will choose rotation ages longer than the Faustmann rotation, but significantly shorter than the socially optimal rotation age 21 refs, 6 tabs. Arbetsrapport 272

  8. ANALYSIS OF URBAN FOREST CARBON SEQUESTRATION CAPACITY: A CASE STUDY OF ZENGDU, SUIZHOU

    Directory of Open Access Journals (Sweden)

    X. Yu

    2017-09-01

    Full Text Available Carbon-fixing and oxygen-releasing is an important content of forest ecosystem serving in city. Analysis of forest ecosystem carbon sequestration capacity can provide scientific reference for urban forest management strategies. Taking Zengdu of Suizhou as an example, CITYGREEN model was applied to calculate the carbon sequestration benefits of urban forest ecosystem in this paper. And the carbon sequestration potential of urban forest ecosystem following the returning of farmland to forest land is also evaluated. The results show that forest area, percent tree cover, and the structure of forest land were the major factors reflecting regional carbon sequestration capacity.

  9. Evaluation of forest structure, biomass and carbon sequestration in subtropical pristine forests of SW China.

    Science.gov (United States)

    Nizami, Syed Moazzam; Yiping, Zhang; Zheng, Zheng; Zhiyun, Lu; Guoping, Yang; Liqing, Sha

    2017-03-01

    Very old natural forests comprising the species of Fagaceae (Lithocarpus xylocarpus, Castanopsis wattii, Lithocarpus hancei) have been prevailing since years in the Ailaoshan Mountain Nature Reserve (AMNR) SW China. Within these forest trees, density is quite variable. We studied the forest structure, stand dynamics and carbon density at two different sites to know the main factors which drives carbon sequestration process in old forests by considering the following questions: How much is the carbon density in these forest trees of different DBH (diameter at breast height)? How much carbon potential possessed by dominant species of these forests? How vegetation carbon is distributed in these forests? Which species shows high carbon sequestration? What are the physiochemical properties of soil in these forests? Five-year (2005-2010) tree growth data from permanently established plots in the AMNR was analysed for species composition, density, stem diameter (DBH), height and carbon (C) density both in aboveground and belowground vegetation biomass. Our study indicated that among two comparative sites, overall 54 species of 16 different families were present. The stem density, height, C density and soil properties varied significantly with time among the sites showing uneven distribution across the forests. Among the dominant species, L. xylocarpus represents 30% of the total carbon on site 1 while C. wattii represents 50% of the total carbon on site 2. The average C density ranged from 176.35 to 243.97 t C ha -1 . The study emphasized that there is generous degree to expand the carbon stocking in this AMNR through scientific management gearing towards conservation of old trees and planting of potentially high carbon sequestering species on good site quality areas.

  10. To Conserve or not to Conserve: A case study of Forest Valuation of Tinderet Natural Forest

    International Nuclear Information System (INIS)

    Lang'at, D.; Cheboieo, J.; Siko, R

    2007-01-01

    Tinderet natural forest is part of the extensive Mau complex and forms an important hydrological system for lake Victoria. Information on on economic values of most forests in Kenya are not available or scanty. This paper aims at estimating the total economic value of Tinderet forest. Surveys were conducted on 109 households sampled from three villages within five kilometers of the forest. Further information/data was to determine direct use values. Other indirect use values (carbon sequestration and soil conservation) were were estimated by use of secondary data where the data not available, benefit transfer method was adopted. It was established that, the annual direct use of value to forest adjacent households is about Ksh. 33 million. The indirect use value is estimated at Ksh. 270 million and this value accrues to global community and not restricted to Kenya. The opportunity cost of conserving the Tinderet natural forest is estimated at Ksh. 210 million and only about Ksh. 33 million per year accrue as direct use values to the whole community. The current benefit from forest is inadequate to offset the community cost of of leaving the forest in it's present state. Based on this analysis, the government and the local communities are subsidizing the retention of the forest and this subsidy is currently estimated at at Ksh. 67 million through lost opportunity in settlement and income. In order to promote positive attitudes of the community adjustment to the forest on sustainable use of the forest, consumptive use of the forest should be encouraged

  11. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils

    DEFF Research Database (Denmark)

    de Vries, Wim; Reinds, Gert Jan; Gundersen, Per

    2006-01-01

    for CO2 emissions because of harvest and forest fires, was assumed 33% of the overall C pool changes by growth. C sequestration in the soil were based on calculated nitrogen (N) retention (N deposition minus net N uptake minus N leaching) rates in soils, multiplied by the C/N ratio of the forest soils......An estimate of net carbon (C) pool changes and long-term C sequestration in trees and soils was made at more than 100 intensively monitored forest plots (level II plots) and scaled up to Europe based on data for more than 6000 forested plots in a systematic 16 km x 16 km grid (level I plots). C...... pool changes in trees at the level II plots were based on repeated forest growth surveys At the level I plots, an estimate of the mean annual C pool changes was derived from stand age and available site quality characteristics. C sequestration, being equal to the long-term C pool changes accounting...

  12. Forest management and carbon sequestration in the Mediterranean region: A review

    International Nuclear Information System (INIS)

    Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Bravo, F.; Río, M. Del

    2017-01-01

    Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area. Material and methods: We review the main effects of forest management by comparing the effects of silviculture systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems), silvicultural options (thinning, rotation period, species composition), afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area. Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change. Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change

  13. Forest management and carbon sequestration in the Mediterranean region: A review

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Bravo, F.; Río, M. Del

    2017-11-01

    Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area. Material and methods: We review the main effects of forest management by comparing the effects of silviculture systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems), silvicultural options (thinning, rotation period, species composition), afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area. Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change. Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change.

  14. Using silviculture to influence carbon sequestration in southern Appalachian spruce-fir forests

    Science.gov (United States)

    Patrick T. Moore; R. Justin DeRose; James N. Long; Helga. van Miegroet

    2012-01-01

    Enhancement of forest growth through silvicultural modification of stand density is one strategy for increasing carbon (C) sequestration. Using the Fire and Fuels Extension of the Forest Vegetation Simulator, the effects of even-aged, uneven-aged and no-action management scenarios on C sequestration in a southern Appalachian red spruce-Fraser fir forest were modeled....

  15. Forest management and carbon sequestration in the Mediterranean region: A review

    Directory of Open Access Journals (Sweden)

    Ricardo Ruiz-Peinado

    2017-10-01

    Full Text Available Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area. Material and methods: We review the main effects of forest management by comparing the effects of silvicultural systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems, silvicultural options (thinning, rotation period, species composition, afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area. Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change. Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change

  16. Livelihood Implications and Perceptions of Large Scale Investment in Natural Resources for Conservation and Carbon Sequestration : Empirical Evidence from REDD+ in Vietnam

    NARCIS (Netherlands)

    Bayrak, Mucahid Mustafa; Marafa, Lawal Mohammed

    2017-01-01

    The complex relationship between local development and current large scale investments in natural resources in the Global South for the purpose of conservation and carbon sequestration is not fully understood yet. The Reducing Emissions from Deforestation and Forest Degradation programme (REDD+) is

  17. Climate change and carbon sequestration opportunities on national forests

    Science.gov (United States)

    R.L. Deal

    2010-01-01

    Deforestation globally accounts for about 20 percent of total greenhouse gas emissions. One of the major forestry challenges in the United States is reducing the loss of forest land from development. Foresters have a critical role to play in forest management and carbon sequestration to reduce greenhouse gas emissions, and forestry can be part of the solution. A recent...

  18. Carbon sequestration in the U.S. forest sector from 1990 to 2010

    Science.gov (United States)

    Peter B. Woodbury; James E. Smith; Linda S. Heath

    2007-01-01

    Forest inventory data supplemented with data from intensive research sites and models were used to estimate carbon stocks and sequestration rates in U.S. forests, including effects of land use change. Data on the production of wood products and emission from decomposition were used to estimate carbon stocks and sequestration rates in wood products and landfills. From...

  19. Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential

    International Nuclear Information System (INIS)

    Alongi, Daniel M.

    2011-01-01

    Natural ecosystem change over time is an often unconsidered issue for PES and REDD+ schemes, and a lack of consideration of thermodynamic limitations has led to misconceptions and oversimplifications regarding ecosystem services, especially for tropical mangrove forests. Mangroves are non-linear, non-equilibrium systems uniquely adapted to a highly dynamic boundary where shorelines are continually evolving and sea-level ever changing, and rarely conform to classical concepts of forest development and succession. Not all mangroves accumulate carbon and rates of forest floor accretion are directly linked to the frequency of tidal inundation. Carbon payments in either a PES or REDD+ scheme are dependent on the rate of carbon sequestration, not the size of C stocks, so site selection must be ordinarily confined to the sea edge. Gas emissions and net ecosystem production (NEP) are linked to forest age, particularly for monospecific plantations. Planting of mixed-species forests is recommended to maximize biodiversity, food web connectivity and NEP. Old-growth forests are the prime ecosystems for carbon sequestration, and policy must give priority to schemes to maintain their existence. Large uncertainties exist in carbon sequestration potential of mangroves, and such limitations must be factored into the design, timeframe and execution of PES and REDD+ schemes.

  20. [Regional and global estimates of carbon stocks and carbon sequestration capacity in forest ecosystems: A review].

    Science.gov (United States)

    Liu, Wei-wei; Wang, Xiao-ke; Lu, Fei; Ouyang, Zhi-yun

    2015-09-01

    As a dominant part of terrestrial ecosystems, forest ecosystem plays an important role in absorbing atmospheric CO2 and global climate change mitigation. From the aspects of zonal climate and geographical distribution, the present carbon stocks and carbon sequestration capacity of forest ecosystem were comprehensively examined based on the review of the latest literatures. The influences of land use change on forest carbon sequestration were analyzed, and factors that leading to the uncertainty of carbon sequestration assessment in forest ecosystem were also discussed. It was estimated that the current forest carbon stock was in the range of 652 to 927 Pg C and the carbon sequestration capacity was approximately 4.02 Pg C · a(-1). In terms of zonal climate, the carbon stock and carbon sequestration capacity of tropical forest were the maximum, about 471 Pg C and 1.02-1.3 Pg C · a(-1) respectively; then the carbon stock of boreal forest was about 272 Pg C, while its carbon sequestration capacity was the minimum, approximately 0.5 Pg C · a(-1); for temperate forest, the carbon stock was minimal, around 113 to 159 Pg C and its carbon sequestration capacity was 0.8 Pg C · a(-1). From the aspect of geographical distribution, the carbon stock of forest ecosystem in South America was the largest (187.7-290 Pg C), then followed by European (162.6 Pg C), North America (106.7 Pg C), Africa (98.2 Pg C) and Asia (74.5 Pg C), and Oceania (21.7 Pg C). In addition, carbon sequestration capacity of regional forest ecosystem was summed up as listed below: Tropical South America forest was the maximum (1276 Tg C · a(-1)), then were Tropical Africa (753 Tg C · a(-1)), North America (248 Tg C · a(-1)) and European (239 Tg C · a(-1)), and East Asia (98.8-136.5 Tg C · a(-1)) was minimum. To further reduce the uncertainty in the estimations of the carbon stock and carbon sequestration capacity of forest ecosystem, comprehensive application of long-term observation, inventories

  1. Assessing net carbon sequestration on urban and community forests of northern New England, USA

    Science.gov (United States)

    Daolan Zheng; Mark J. Ducey; Linda S. Heath

    2013-01-01

    Urban and community forests play an important role in the overall carbon budget of the USA. Accurately quantifying carbon sequestration by these forests can provide insight for strategic planning to mitigate greenhouse gas effects on climate change. This study provides a new methodology to estimate net forest carbon sequestration (FCS) in urban and community lands of...

  2. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.

    Science.gov (United States)

    Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei

    2017-02-01

    Forests play an important role in climate change mitigation and concentration of CO 2 reduction in the atmosphere. Forest management, especially afforestation and forest protection, could increase carbon stock of forests significantly. Carbon sequestration rate of afforestation ranges from 0.04 to 7.52 t C·hm -2 ·a -1 , while that of forest protection is 0.33-5.20 t C·hm -2 ·a -1 . At the same time, greenhouse gas (GHG) is generated within management boundary due to the production and transportation of the materials consumed in relevant activities of afforestation and forest management. In addition, carbon leakage is also generated outside boundary from activity shifting, market effects and change of environments induced by forest management. In this review, we summarized the definition of emission sources of GHG, monitoring methods, quantity and rate of greenhouse gas emissions within boundary of afforestation and forest management. In addition, types, monitoring methods and quantity of carbon leakage outside boundary of forest management were also analyzed. Based on the reviewed results of carbon sequestration, we introduced greenhouse gas emissions within boundary and carbon leakage, net carbon sequestration as well as the countervailing effects of greenhouse gas emissions and carbon leakage to carbon sequestration. Greenhouse gas emissions within management boundary counteract 0.01%-19.3% of carbon sequestration, and such counteraction could increase to as high as 95% considering carbon leakage. Afforestation and forest management have substantial net carbon sequestration benefits, when only taking direct greenhouse gas emissions within boundary and measurable carbon leakage from activity shifting into consideration. Compared with soil carbon sequestration measures in croplands, afforestation and forest management is more advantageous in net carbon sequestration and has better prospects for application in terms of net mitigation potential. Along with the

  3. Assessing the impact of planted forests on the global forest economy

    Science.gov (United States)

    Joseph Buongiorno; Shushuai Zhu

    2014-01-01

    Background: Planted forests are increasingly important in world forestry, natural resources conservation, and climate change policies. There is great interest in their potential for carbon sequestration and conservation of natural forests while they remain an essential source of fuelwood and industrial roundwood. Methods:...

  4. Long-term nitrogen regulation of forest carbon sequestration

    Science.gov (United States)

    Yang, Y.; Luo, Y.

    2009-12-01

    It is well established that nitrogen (N) limits plant production but unclear how N regulates long-term terrestrial carbon (C) sequestration in response to rising atmospheric C dioxide (CO2)(Luo et al., 2004). Most experimental evidence on C-N interactions is primarily derived from short-term CO2 manipulative studies (e.g. Oren et al., 2001; Reich et al., 2006a), which abruptly increase C inputs into ecosystems and N demand from soil while atmospheric CO2 concentration in the real world is gradually increasing over time (Luo & Reynolds, 1999). It is essential to examine long-term N regulations of C sequestration in natural ecosystems. Here we present results of a synthesis of more than 100 studies on long-term C-N interactions during secondary succession. C significantly accumulates in plant, litter and forest floor in most studies, and in mineral soil in one-third studies during stand development. Substantial increases in C stock are tightly coupled with N accretion. The C: N ratio in plant increases with stand age in most cases, but remains relatively constant in litter, forest floor and mineral soil. Our results suggest that natural ecosystems could have the intrinsic capacity to maintain long-term C sequestration through external N accrual, high N use efficiency, and efficient internal N cycling.

  5. Carbon sequestration, optimum forest rotation and their environmental impact

    International Nuclear Information System (INIS)

    Kula, Erhun; Gunalay, Yavuz

    2012-01-01

    Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost–benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. The results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO 2 . Consequently this finding must be considered in any carbon accounting calculations. - Highlights: ► Carbon sequestration in forestry is an environmental benefit. ► It moderates the problem of global warming. ► It prolongs the gestation period in harvesting. ► This paper uses British data in less favoured districts for growing Sitka spruce species.

  6. Carbon sequestration, optimum forest rotation and their environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Kula, Erhun, E-mail: erhun.kula@bahcesehir.edu.tr [Department of Economics, Bahcesehir University, Besiktas, Istanbul (Turkey); Gunalay, Yavuz, E-mail: yavuz.gunalay@bahcesehir.edu.tr [Department of Business Studies, Bahcesehir University, Besiktas, Istanbul (Turkey)

    2012-11-15

    Due to their large biomass forests assume an important role in the global carbon cycle by moderating the greenhouse effect of atmospheric pollution. The Kyoto Protocol recognises this contribution by allocating carbon credits to countries which are able to create new forest areas. Sequestrated carbon provides an environmental benefit thus must be taken into account in cost-benefit analysis of afforestation projects. Furthermore, like timber output carbon credits are now tradable assets in the carbon exchange. By using British data, this paper looks at the issue of identifying optimum felling age by considering carbon sequestration benefits simultaneously with timber yields. The results of this analysis show that the inclusion of carbon benefits prolongs the optimum cutting age by requiring trees to stand longer in order to soak up more CO{sub 2}. Consequently this finding must be considered in any carbon accounting calculations. - Highlights: Black-Right-Pointing-Pointer Carbon sequestration in forestry is an environmental benefit. Black-Right-Pointing-Pointer It moderates the problem of global warming. Black-Right-Pointing-Pointer It prolongs the gestation period in harvesting. Black-Right-Pointing-Pointer This paper uses British data in less favoured districts for growing Sitka spruce species.

  7. [Variation of forest vegetation carbon storage and carbon sequestration rate in Liaoning Province, Northeast China].

    Science.gov (United States)

    Zhen, Wei; Huang, Mei; Zhai, Yin-Li; Chen, Ke; Gong, Ya-Zhen

    2014-05-01

    The forest vegetation carbon stock and carbon sequestration rate in Liaoning Province, Northeast China, were predicted by using Canadian carbon balance model (CBM-CFS3) combining with the forest resource data. The future spatio-temporal distribution and trends of vegetation carbon storage, carbon density and carbon sequestration rate were projected, based on the two scenarios, i. e. with or without afforestation. The result suggested that the total forest vegetation carbon storage and carbon density in Liaoning Province in 2005 were 133.94 Tg and 25.08 t x hm(-2), respectively. The vegetation carbon storage in Quercus was the biggest, while in Robinia pseudoacacia was the least. Both Larix olgensis and broad-leaved forests had higher vegetation carbon densities than others, and the vegetation carbon densities of Pinus tabuliformis, Quercus and Robinia pseudoacacia were close to each other. The spatial distribution of forest vegetation carbon density in Liaoning Province showed a decrease trend from east to west. In the eastern forest area, the future increase of vegetation carbon density would be smaller than those in the northern forest area, because most of the forests in the former part were matured or over matured, while most of the forests in the later part were young. Under the scenario of no afforestation, the future increment of total forest vegetation carbon stock in Liaoning Province would increase gradually, and the total carbon sequestration rate would decrease, while they would both increase significantly under the afforestation scenario. Therefore, afforestation plays an important role in increasing vegetation carbon storage, carbon density and carbon sequestration rate.

  8. Effects of forest fertilization on C sequestration and GHG emissions

    International Nuclear Information System (INIS)

    Prescott, C.E.; Grayston, S.J.; Basiliko, N.; Seely, B.A.; Weetman, G.F.; Bull, G.Q.; Northway, S.; Mohn, W.W.

    2005-01-01

    This study evaluated the potential to create carbon credits from the increased storage in all carbon pools on the forest landscape. It was conducted in response to the Kyoto Protocol provision which allows the inclusion of carbon sinks. The productivity of Canada's forest landbase is limited by availability of nutrients, particularly nitrogen (N). Studies have shown that forest fertilization not only increases productivity of many forest type, but offers the associated benefit of increased carbon (C) sequestration in biomass. There is increasing evidence that N fertilization will also increase C sequestration in soil organic matter, since higher N availability appears to interfere with litter decomposition causing more C to become humified. Many long-term fertilization experiments in British Columbia have provided an opportunity to quantify the effects of N addition on C sequestration in vegetation and soil organic matter. It was noted that determining the effects of fertilization on emission of nitrous oxides (N 2 O) and consumption of methane (CH 4 ) is critical since the greenhouse warming potential of these gases is much greater than that of carbon dioxide (CO 2 ). This study also used state-of-the-art molecular methods to identify the soil microorganisms responsible for N 2 O production and CH 4 oxidation in order to determine the complex and often contradictory effects of fertilizers on N 2 O emission and CH 4 oxidation in forest soils. The actual N 2 O, CO 2 , and CH 4 fluxes from these soils were also measured. The main objective of the project was the development of microbial indicators as tools to detect soil GHG emission activity

  9. Translating National Level Forest Service Goals to Local Level Land Management: Carbon Sequestration

    Science.gov (United States)

    McNulty, S.; Treasure, E.

    2017-12-01

    The USDA Forest Service has many national level policies related to multiple use management. However, translating national policy to stand level forest management can be difficult. As an example of how a national policy can be put into action, we examined three case studies in which a desired future condition is evaluated at the national, region and local scale. We chose to use carbon sequestration as the desired future condition because climate change has become a major area of concern during the last decade. Several studies have determined that the 193 million acres of US national forest land currently sequester 11% to 15% of the total carbon emitted as a nation. This paper provides a framework by which national scale strategies for maintaining or enhancing forest carbon sequestration is translated through regional considerations and local constraints in adaptive management practices. Although this framework used the carbon sequestration as a case study, this framework could be used with other national level priorities such as the National Environmental Protection Act (NEPA) or the Endangered Species Act (ESA).

  10. Using Silviculture to Influence Carbon Sequestration in Southern Appalachian Spruce-Fir Forests

    Directory of Open Access Journals (Sweden)

    Patrick T. Moore

    2012-06-01

    Full Text Available Enhancement of forest growth through silvicultural modification of stand density is one strategy for increasing carbon (C sequestration. Using the Fire and Fuels Extension of the Forest Vegetation Simulator, the effects of even-aged, uneven-aged and no-action management scenarios on C sequestration in a southern Appalachian red spruce-Fraser fir forest were modeled. We explicitly considered C stored in standing forest stocks and the fate of forest products derived from harvesting. Over a 100-year simulation period the even-aged scenario (250 Mg C ha1 outperformed the no-action scenario (241 Mg C ha1 in total carbon (TC sequestered. The uneven-aged scenario approached 220 Mg C ha1, but did not outperform the no-action scenario within the simulation period. While the average annual change in C (AAC of the no-action scenario approached zero, or carbon neutral, during the simulation, both the even-aged and uneven-aged scenarios surpassed the no-action by year 30 and maintained positive AAC throughout the 100-year simulation. This study demonstrates that silvicultural treatment of forest stands can increase potential C storage, but that careful consideration of: (1 accounting method (i.e., TC versus AAC; (2 fate of harvested products and; (3 length of the planning horizon (e.g., 100 years will strongly influence the evaluation of C sequestration.

  11. Historical forest baselines reveal potential for continued carbon sequestration

    Science.gov (United States)

    Rhemtulla, Jeanine M.; Mladenoff, David J.; Clayton, Murray K.

    2009-01-01

    One-third of net CO2 emissions to the atmosphere since 1850 are the result of land-use change, primarily from the clearing of forests for timber and agriculture, but quantifying these changes is complicated by the lack of historical data on both former ecosystem conditions and the extent and spatial configuration of subsequent land use. Using fine-resolution historical survey records, we reconstruct pre-EuroAmerican settlement (1850s) forest carbon in the state of Wisconsin, examine changes in carbon after logging and agricultural conversion, and assess the potential for future sequestration through forest recovery. Results suggest that total above-ground live forest carbon (AGC) fell from 434 TgC before settlement to 120 TgC at the peak of agricultural clearing in the 1930s and has since recovered to approximately 276 TgC. The spatial distribution of AGC, however, has shifted significantly. Former savanna ecosystems in the south now store more AGC because of fire suppression and forest ingrowth, despite the fact that most of the region remains in agriculture, whereas northern forests still store much less carbon than before settlement. Across the state, continued sequestration in existing forests has the potential to contribute an additional 69 TgC. Reforestation of agricultural lands, in particular, the formerly high C-density forests in the north-central region that are now agricultural lands less optimal than those in the south, could contribute 150 TgC. Restoring historical carbon stocks across the landscape will therefore require reassessing overall land-use choices, but a range of options can be ranked and considered under changing needs for ecosystem services. PMID:19369213

  12. Effects of forest fertilization on C sequestration and GHG emissions

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, C.E.; Grayston, S.J.; Basiliko, N.; Seely, B.A.; Weetman, G.F. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Sciences; Bull, G.Q.; Northway, S. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Forest Resources Management; Mohn, W.W. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Microbiology and Immunology

    2005-07-01

    This study evaluated the potential to create carbon credits from the increased storage in all carbon pools on the forest landscape. It was conducted in response to the Kyoto Protocol provision which allows the inclusion of carbon sinks. The productivity of Canada's forest landbase is limited by availability of nutrients, particularly nitrogen (N). Studies have shown that forest fertilization not only increases productivity of many forest type, but offers the associated benefit of increased carbon (C) sequestration in biomass. There is increasing evidence that N fertilization will also increase C sequestration in soil organic matter, since higher N availability appears to interfere with litter decomposition causing more C to become humified. Many long-term fertilization experiments in British Columbia have provided an opportunity to quantify the effects of N addition on C sequestration in vegetation and soil organic matter. It was noted that determining the effects of fertilization on emission of nitrous oxides (N{sub 2}O) and consumption of methane (CH{sub 4}) is critical since the greenhouse warming potential of these gases is much greater than that of carbon dioxide (CO{sub 2}). This study also used state-of-the-art molecular methods to identify the soil microorganisms responsible for N{sub 2}O production and CH{sub 4} oxidation in order to determine the complex and often contradictory effects of fertilizers on N{sub 2}O emission and CH{sub 4} oxidation in forest soils. The actual N{sub 2}O, CO{sub 2}, and CH{sub 4} fluxes from these soils were also measured. The main objective of the project was the development of microbial indicators as tools to detect soil GHG emission activity.

  13. The role of old forests and big trees in forest carbon sequestration in the Pacific Northwest

    Science.gov (United States)

    Andrew N. Gray

    2015-01-01

    Forest ecosystems are an important component of the global carbon (C) cycle. Recent research has indicated that large trees in general, and old-growth forests in particular, sequester substantial amounts of C annually. C sequestration rates are thought to peak and decline with stand age but the timing and controls are not well-understood. The objectives of this study...

  14. Above Ground Biomass-carbon Partitioning, Storage and Sequestration in a Rehabilitated Forest, Bintulu, Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Kueh, J.H.R.; Majid, N.M.A.; Seca, G.; Ahmed, O.H.

    2013-01-01

    Forest degradation and deforestation are some of the major global concerns as it can reduce forest carbon storage and sequestration capacity. Forest rehabilitation on degraded forest areas has the potential to improve carbon stock, hence mitigate greenhouse gases emission. However, the carbon storage and sequestration potential in a rehabilitated tropical forest remains unclear due to the lack of information. This paper reports an initiative to estimate biomass-carbon partitioning, storage and sequestration in a rehabilitated forest. The study site was at the UPM-Mitsubishi Corporation Forest Rehabilitation Project, UPM Bintulu Sarawak Campus, Bintulu, Sarawak. A plot of 20 x 20 m 2 was established each in site 1991 (Plot 1991), 1999 (Plot 1999) and 2008 (Plot 2008). An adjacent natural regenerating secondary forest plot (Plot NF) was also established for comparison purposes. The results showed that the contribution of tree component biomass/ carbon to total biomass/ carbon was in the order of main stem > branch > leaf. As most of the trees were concentrated in diameter size class = 10 cm for younger rehabilitated forests, the total above ground biomass/ carbon was from this class. These observations suggest that the forests are in the early successional stage. The total above ground biomass obtained for the rehabilitated forest ranged from 4.3 to 4,192.3 kg compared to natural regenerating secondary forest of 3,942.3 kg while total above ground carbon ranged from 1.9 to 1,927.9 kg and 1,820.4 kg, respectively. The mean total above ground biomass accumulated ranged from 1.3 x 10 -2 to 20.5 kg/ 0.04 ha and mean total carbon storage ranged from 5.9 x 10 -3 to 9.4 kg/ 0.04 ha. The total CO 2 sequestrated in rehabilitated forest ranged from 6.9 to 7,069.1 kg CO 2 / 0.04 ha. After 19 years, the rehabilitated forest had total above ground biomass and carbon storage comparable to the natural regeneration secondary forest. The forest rehabilitated activities have the

  15. Quantitative Estimation of Soil Carbon Sequestration in Three Land Use Types (Orchard, Paddy Rice and Forest in a Part of Ramsar Lands, Northern Iran

    Directory of Open Access Journals (Sweden)

    zakieh pahlavan yali

    2017-02-01

    Full Text Available Introduction: The increasing Greenhouse Gases in atmosphere is the main cause of climate and ecosystems changes. The most important greenhouse gas is CO2 that causes global warming or the greenhouse effect. One of the known solutions that reduces atmospheric carbon and helps to improve the situation, is carbon sequestration in vegetation cover and soil. Carbon sequestration refers to the change in atmospheric CO2 into organic carbon compounds by plants and capture it for a certain time . However, the ecosystems with different vegetation have Impressive Influence on soil carbon sequestration (SCS. Soil as the main component of these ecosystems is a world-wide indicator which has been known to play an important role in global balance of carbon sequestration. Furthermore, carbon sequestration can be a standard world trade and becomes guaranteed. Costs of transfer of CO2 (carbon transfer From the atmosphere into the soil based on the negative effects of increased CO2 on Weather is always increasing, This issue can be faced by developing countries to create a new industry, especially when conservation and restoration of rangeland to follow. This research was regarded due to estimation of SCS in three land use types (orchard, paddy rice and forest in a Part of Ramsar Lands, Northern Iran. Materials and Methods: Ramsar city with an area of about 729/7 km2 is located in the western part of Mazandaran province. Its height above sea level is 20 meters. Ramsar city is situated in a temperate and humid climate. Land area covered by forest, orchard and paddy rice. After field inspection of the area, detailed topographic maps of the specified zone on the study were also tested. In each of the three land types, 500 hectares in the every growing and totally 1,500 hectares as study area were selected .For evaluation the sequestration of carbon in different vegetation systems,15 soil profile selected and sampling from depth of 0 to 100 centimetres of each profile

  16. Soil carbon sequestration potential in semi-arid grasslands in the conservation reserve program

    Science.gov (United States)

    The Conservation Reserve Program (CRP) in the USA plays a major role in carbon (C) sequestration to help mitigate rising CO2 levels and climate change. The Southern High Plains (SHP) region contains N900.000 ha enrolled in CRP, but a regionally specific C sequestration rate has not been studied, and...

  17. An equity assessment of introducing uncertain forest carbon sequestration in EU climate policy

    International Nuclear Information System (INIS)

    Münnich Vass, Miriam; Elofsson, Katarina; Gren, Ing-Marie

    2013-01-01

    Large emissions of greenhouse gases are expected to cause major environmental problems in the future. European policy makers have therefore declared that they aim to implement cost-efficient and fair policies to reduce carbon emissions. The purpose of this paper is to assess whether the cost of the EU policies for 2020 can be reduced through the inclusion of carbon sequestration as an abatement option while equity is also improved. The assessment is done by numerical calculations using a chance-constrained partial equilibrium model of the EU Emissions Trading Scheme and national effort-sharing targets, where forest sequestration is introduced as an uncertain abatement option. Fairness is evaluated by calculation of Gini-coefficients for six equity criteria to policy outcomes. The estimated Gini-coefficients range between 0.11 and 0.32 for the current policy, between 0.16 and 0.66 if sequestration is included and treated as certain, and between 0.19 and 0.38 when uncertainty about sequestration is taken into account and policy-makers wish to meet targets with at least 90 per cent probability. The results show that fairness is reduced when sequestration is included and that the impact is larger when sequestration is treated as certain. - Highlights: • We model EU's CO 2 emission reduction targets to 2020 for the 27 member states. • We assess the equity of including forest carbon sequestration in EU policy with six equity criteria. • A stochastic partial equilibrium model is used, in which abatement cost is minimised. • Current burden sharing within the EU is quite fair when compared with current income inequality. • The abatement cost is reduced and inequality increased when including sequestration

  18. [Carbon sequestration status of forest ecosystems in Ningxia Hui Autonomous Region].

    Science.gov (United States)

    Gao, Yang; Jin, Jing-Wei; Cheng, Ji-Min; Su, Ji-Shuai; Zhu, Ren-Bin; Ma, Zheng-Rui; Liu, Wei

    2014-03-01

    Based on the data of Ningxia Hui Autonomous Region forest resources inventory, field investigation and laboratory analysis, this paper studied the carbon sequestration status of forest ecosystems in Ningxia region, estimated the carbon density and storage of forest ecosystems, and analyzed their spatial distribution characteristics. The results showed that the biomass of each forest vegetation component was in the order of arbor layer (46.64 Mg x hm(-2)) > litterfall layer (7.34 Mg x hm(-2)) > fine root layer (6.67 Mg x hm(-2)) > shrub-grass layer (0.73 Mg x hm(-2)). Spruce (115.43 Mg x hm(-2)) and Pinus tabuliformis (94.55 Mg x hm(-2)) had higher vegetation biomasses per unit area than other tree species. Over-mature forest had the highest arbor carbon density among the forests with different ages. However, the young forest had the highest arbor carbon storage (1.90 Tg C) due to its widest planted area. Overall, the average carbon density of forest ecosystems in Ningxia region was 265.74 Mg C x hm(-2), and the carbon storage was 43.54 Tg C. Carbon density and storage of vegetation were 27.24 Mg C x hm(-2) and 4.46 Tg C, respectively. Carbon storage in the soil was 8.76 times of that in the vegetation. In the southern part of Ningxia region, the forest carbon storage was higher than in the northern part, where the low C storage was mainly related to the small forest area and young forest age structure. With the improvement of forest age structure and the further implementation of forestry ecoengineering, the forest ecosystems in Ningxia region would achieve a huge carbon sequestration potential.

  19. Renewal of Collaborative Research: Economically Viable Forest Harvesting Practices That Increase Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, E.A.; Dail, D.B., Hollinger, D.; Scott, N.; Richardson, A.

    2012-08-02

    Forests provide wildlife habitat, water and air purification, climate moderation, and timber and nontimber products. Concern about climate change has put forests in the limelight as sinks of atmospheric carbon. The C stored in the global vegetation, mostly in forests, is nearly equivalent to the amount present in atmospheric CO{sub 2}. Both voluntary and government-mandated carbon trading markets are being developed and debated, some of which include C sequestration resulting from forest management as a possible tradeable commodity. However, uncertainties regarding sources of variation in sequestration rates, validation, and leakage remain significant challenges for devising strategies to include forest management in C markets. Hence, the need for scientifically-based information on C sequestration by forest management has never been greater. The consequences of forest management on the US carbon budget are large, because about two-thirds of the {approx}300 million hectare US forest resource is classified as 'commercial forest.' In most C accounting budgets, forest harvesting is usually considered to cause a net release of C from the terrestrial biosphere to the atmosphere. However, forest management practices could be designed to meet the multiple goals of providing wood and paper products, creating economic returns from natural resources, while sequestering C from the atmosphere. The shelterwood harvest strategy, which removes about 30% of the basal area of the overstory trees in each of three successive harvests spread out over thirty years as part of a stand rotation of 60-100 years, may improve net C sequestration compared to clear-cutting because: (1) the average C stored on the land surface over a rotation increases, (2) harvesting only overstory trees means that a larger fraction of the harvested logs can be used for long-lived sawtimber products, compared to more pulp resulting from clearcutting, (3) the shelterwood cut encourages growth of

  20. Carbon Sequestration and Forest Management at DoD Installations: An Exploratory Study

    National Research Council Canada - National Science Library

    Barker, Jerry

    1995-01-01

    .... The primary purpose of this report is to explore the influence of management practices such as tree harvesting, deforestation, and reforestation on carbon sequestration potential by DOD forests...

  1. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere

    Science.gov (United States)

    Ram Oren; David S. Ellsworth; Kurt H. Johnsen; Nathan Phillips; Brent E. Ewers; Chris Maier; Karina V.R. Schafer; Heather McCarthy; George Hendrey; Steven G. McNulty; Gabriel G. Katul

    2001-01-01

    Northern mid-latitude forests are a large terrestrial carbon sink. Ignoring nutrient limitations, large increases in carbon sequestration from carbon dioxide (CO2) fertilization are expected in these forests. Yet, forests are usually relegated to sites of moderate to poor fertility, where tree growth is often limited by nutrient supply, in...

  2. Carbon sequestration potential of forest land: Management for products and bioenergy versus preservation

    International Nuclear Information System (INIS)

    Van Deusen, P.

    2010-01-01

    A 40 year projection of potential carbon sequestration is based on USDA Forest Service Forest Inventory and Analysis (FIA) data from the state of Georgia. The objective is to compare carbon sequestration under a sustainable management strategy versus a preservation strategy. FIA plots are projected ahead in time with hotdeck matching. This matches each subject plot with another plot from the database that represents the subject plot at a future time. The matched plot sequences are used to provide input data to a harvest scheduling program to generate a management strategy for the state. The sequestration from the management strategy is compared with a preservation strategy that involves no harvesting. Harvested wood is assumed to go into products with various half life decay rates. Carbon sequestration is increased as increasing proportions go into wood for energy, which is treated like a product with an infinite half life. Therefore, the harvested carbon does not return immediately to the atmosphere. Public land and land close to cities is assumed to be unavailable, and all other private land is assumed to be accessible. The results are presented as gigatonnes of CO 2 equivalent to make them directly comparable to US annual carbon emissions. The conclusion is that forest management will sequester more above-ground carbon than preservation over a 40 year period if the wood is used for products with an average half life greater than 5 years.

  3. The Role of Eucalyptus Globulus Forest and Products in Carbon Sequestration

    International Nuclear Information System (INIS)

    Arroja, L.; Dias, A.C.; Capela, I.

    2006-01-01

    This study is a contribution to the ongoing debate about the selection of the approach for carbon accounting in wood products to be used, in the future, in the national greenhouse gas inventories under the UNFCCC (United Nations Framework Convention on Climate Change). Two accounting approaches are used in this analysis: the stock-change approach and the atmospheric-flow approach. They are applied to the Portuguese Eucalyptus globulus forest sector. To achieve this objective, the fluxes of wood removed from the forest are tracked through its life cycle, which includes products manufacture (mainly pulp and paper), use and final disposal (landfilling, incineration and composting). This study develops a framework to the estimation of carbon sequestration in the forest of E. globulus, a fast growing species, more specifically, in the calculation of the conversion factors such as bark and foliage percentages and densities, used to convert wood volumes into total biomass. A mass balance approach based on real data from mills is also proposed, in order to assess carbon emissions from wood processing. The results show that E. globulus forest sector was a carbon sink, but the magnitude of the carbon sequestration differs substantially depending on the accounting approach used. The contribution of the forest ecosystem was smaller than the aggregated contribution of wood products in use and in landfills (including industrial waste), which reinforces the role that wood products play in national carbon budgets

  4. Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass.

    Science.gov (United States)

    Liu, YingChun; Yu, GuiRui; Wang, QiuFeng; Zhang, YangJian; Xu, ZeHong

    2014-12-01

    Forests play an important role in acting as a carbon sink of terrestrial ecosystem. Although global forests have huge carbon carrying capacity (CCC) and carbon sequestration potential (CSP), there were few quantification reports on Chinese forests. We collected and compiled a forest biomass dataset of China, a total of 5841 sites, based on forest inventory and literature search results. From the dataset we extracted 338 sites with forests aged over 80 years, a threshold for defining mature forest, to establish the mature forest biomass dataset. After analyzing the spatial pattern of the carbon density of Chinese mature forests and its controlling factors, we used carbon density of mature forests as the reference level, and conservatively estimated the CCC of the forests in China by interpolation methods of Regression Kriging, Inverse Distance Weighted and Partial Thin Plate Smoothing Spline. Combining with the sixth National Forest Resources Inventory, we also estimated the forest CSP. The results revealed positive relationships between carbon density of mature forests and temperature, precipitation and stand age, and the horizontal and elevational patterns of carbon density of mature forests can be well predicted by temperature and precipitation. The total CCC and CSP of the existing forests are 19.87 and 13.86 Pg C, respectively. Subtropical forests would have more CCC and CSP than other biomes. Consequently, relying on forests to uptake carbon by decreasing disturbance on forests would be an alternative approach for mitigating greenhouse gas concentration effects besides afforestation and reforestation.

  5. Mapping carbon sequestration in forests at the regional scale - a climate biomonitoring approach by example of Germany

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Winfried; Pesch, Roland [University of Vechta, Chair of Landscape Ecology, PO Box. 1553, Vechta (Germany)

    2011-12-15

    The United Nations Framework Convention on Climate Change recognizes carbon (C) fixation in forests as an important contribution for the reduction of atmospheric pollution in terms of greenhouse gases. Spatial differentiation of C sequestration in forests either at the national or at the regional scale is therefore needed for forest planning purposes. Hence, within the framework of the Forest Focus regulation, the aim of this investigation was to statistically analyse factors influencing the C fixation and to use the corresponding associations in terms of a predictive mapping approach at the regional scale by example of the German federal state North Rhine-Westphalia. The results of the methodical scheme outlined in this article should be compared with an already-published approach applied to the same data which were used in the investigation at hand. Site-specific data on C sequestration in humus, forest trees/dead wood and soil from two forest monitoring networks were intersected with available surface information on topography, soil, climate and forestal growing areas and districts. Next, the association between the C sequestration and the influence factors were examined and modelled by linear regression analyses. The resulting regression equations were applied on the surface data to predicatively map the C sequestration for the entire study area. The computations yielded an estimation of 146.7 mio t C sequestered in the forests of North Rhine-Westphalia corresponding to 168.6 t/ha. The calculated values correspond well to according specifications given by the literature. Furthermore, the results are almost identical to those of another pilot study where a different statistical methodology was applied on the same database. Nevertheless, the underlying regression models contribute only a low degree of explanation to the overall variance of the C fixation. This might mainly be due to data quality aspects and missing influence factors in the analyses. In another

  6. Carbon sequestration and water flow regulation services in mature Mediterranean Forest

    Science.gov (United States)

    Beguería, S.; Ovando, P.

    2015-12-01

    We develop a forestland use and management model that integrates spatially-explicit biophysical and economic data, to estimate the expected pattern of climate regulation services through carbon dioxide (CO2) sequestration in tree and shrubs biomass, and water flow regulation. We apply this model to examine the potential trade-offs and synergies in the supply of CO2 sequestration and water flow services in mature Mediterranean forest, considering two alternative forest management settings. A forest restoration scenario through investments in facilitating forest regeneration, and a forestry activity abandonment scenario as result of unprofitable forest regeneration investment. The analysis is performed for different discount rates and price settings for carbon and water. The model is applied at the farm level in a group of 567 private silvopastoral farms across Andalusia (Spain), considering the main forest species in this region: Quercus ilex, Q. suber, Pinus pinea, P. halepensis, P. pinaster and Eucalyptus sp., as well as for tree-less shrubland and pastures. The results of this research are provided by forest land unit, vegetation, farm and for the group of municipalities where the farms are located. Our results draw attention to the spatial variability of CO2 and water flow regulation services, and point towards a trade-off between those services. The pattern of economic benefits associated to water and carbon services fluctuates according to the assumptions regarding price levels and discounting rates, as well as in connection to the expected forest management and tree growth models, and to spatially-explicit forest attributes such as existing tree and shrubs inventories, the quality of the sites for growing different tree species, soil structure or the climatic characteristics. The assumptions made regarding the inter-temporal preferences and relative prices have a large effect on the estimated economic value of carbon and water services. These results

  7. Estimating Values of Carbon Sequestration and Nutrient Recycling in Forests: An Application to the Stockholm-Mälar Region in Sweden

    Directory of Open Access Journals (Sweden)

    Ing-Marie Gren

    2015-10-01

    Full Text Available We calculate values of forest carbon sequestration and nutrient recycling applying the replacement cost method. The value is then determined as the savings in costs by the replacement of more expensive abatement measures with these ecosystem services in cost-effective climate and nutrient programs. To this end, a dynamic optimization model is constructed, which accounts for uncertainty in sequestration. It is applied to the Stockholm-Mälar region in southeast Sweden where the EU 2050 climate policy for carbon emissions and the Baltic Sea action plan for nutrient discharges are applied. The results show that the value of carbon and nutrient sequestration can correspond to approximately 0.5% of the region’s gross domestic product, or 40% of the value of productive forest. The largest part of this value is attributed to carbon sequestration because of the relative stringency in targets and expensive alternative abatement measures. However, sequestration is uncertain because of stochastic weather conditions, and when society has a large risk aversion for not attaining climate and nutrient targets, the values of the forest carbon and nutrient sequestration can approach zero.

  8. Enhancing forest carbon sequestration in China: toward an integration of scientific and socio-economic perspectives.

    Science.gov (United States)

    Chen, J M; Thomas, S C; Yin, Y; Maclaren, V; Liu, J; Pan, J; Liu, G; Tian, Q; Zhu, Q; Pan, J-J; Shi, X; Xue, J; Kang, E

    2007-11-01

    This article serves as an introduction to this special issue, "China's Forest Carbon Sequestration", representing major results of a project sponsored by the Canadian International Development Agency and the Chinese Academy of Sciences. China occupies a pivotal position globally as a principle emitter of carbon dioxide, as host to some of the world's largest reforestation efforts, and as a key player in international negotiations aimed at reducing global greenhouse gas emission. The goals of this project are to develop remote sensing approaches for quantifying forest carbon balance in China in a transparent manner, and information and tools to support land-use decisions for enhanced carbon sequestration (CS) that are science based and economically and socially viable. The project consists of three components: (i) remote sensing and carbon modeling, (ii) forest and soil assessment, and (iii) integrated assessment of the socio-economic implications of CS via forest management. Articles included in this special issue are highlights of the results of each of these components.

  9. Soil organic matter formation and sequestration across a forested floodplain chronosequence

    Science.gov (United States)

    John D. Wigginton; B. Graeme Lockaby; Carl C. Trettin

    2000-01-01

    Successional changes in soil organic matter formation and carbon sequestration across a forested floodplain chronosequence were studied at the Savannah river site, National Environmental Research Park, SC, US. Four floodplain sites were selected for study, three of which are in various stages of recovery from impact due to thermal effluent discharge. The fourth is a...

  10. Community Forestry and Forest Conservation

    DEFF Research Database (Denmark)

    Milhøj, Anders; Casse, Thorkil

    2011-01-01

    This paper is a meta-study of local forest management experiences in developing countries drawn from a review of 56 case-studies presented in 52 papers. Many case-studies report positive links between community forestry and forest conservation. In international organizations and NGOs there is a g......This paper is a meta-study of local forest management experiences in developing countries drawn from a review of 56 case-studies presented in 52 papers. Many case-studies report positive links between community forestry and forest conservation. In international organizations and NGOs...

  11. Options for accounting carbon sequestration in German forests

    Science.gov (United States)

    Krug, Joachim; Koehl, Michael; Riedel, Thomas; Bormann, Kristin; Rueter, Sebastian; Elsasser, Peter

    2009-01-01

    Background The Accra climate change talks held from 21–27 August 2008 in Accra, Ghana, were part of an ongoing series of meetings leading up to the Copenhagen meeting in December 2009. During the meeting a set of options for accounting carbon sequestration in forestry on a post-2012 framework was presented. The options include gross-net and net-net accounting and approaches for establishing baselines. Results This article demonstrates the embedded consequences of Accra Accounting Options for the case study of German national GHG accounting. It presents the most current assessment of sequestration rates by forest management for the period 1990 – 2007, provides an outlook of future emissions and removals (up to the year 2042) as related to three different management scenarios, and shows that implementation of some Accra options may reverse sources to sinks, or sinks to sources. Conclusion The results of the study highlight the importance of elaborating an accounting system that would prioritize the climate convention goals, not national preferences. PMID:19650896

  12. Assessing the effect of climate change on carbon sequestration in a Mexican dry forest in the Yucatan Peninsula

    Science.gov (United States)

    Z. Dai; K.D. Johnson; R.A. Birdsey; J.L. Hernandez-Stefanoni; J.M. Dupuy

    2015-01-01

    Assessing the effect of climate change on carbon sequestration in tropical forest ecosystems is important to inform monitoring, reporting, and verification (MRV) for reducing deforestation and forest degradation (REDD), and to effectively assess forest management options under climate change. Two process-based models, Forest-DNDC and Biome-BGC, with different spatial...

  13. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics.

    Science.gov (United States)

    Chazdon, Robin L; Broadbent, Eben N; Rozendaal, Danaë M A; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T Mitchell; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Craven, Dylan; Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernández-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans; Vieira, Ima Celia G; Bentos, Tony Vizcarra; Williamson, G Bruce; Poorter, Lourens

    2016-05-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km(2) of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services.

  14. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    Science.gov (United States)

    Chazdon, Robin L.; Broadbent, Eben N.; Rozendaal, Danaë M. A.; Bongers, Frans; Zambrano, Angélica María Almeyda; Aide, T. Mitchell; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Craven, Dylan; Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben; Denslow, Julie S.; Dent, Daisy H.; DeWalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernández-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Lohbeck, Madelon; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velazquez, Jorge; Romero-Pérez, Isabel Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans; Vieira, Ima Celia G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Poorter, Lourens

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We estimate the age and spatial extent of lowland second-growth forests in the Latin American tropics and model their potential aboveground carbon accumulation over four decades. Our model shows that, in 2008, second-growth forests (1 to 60 years old) covered 2.4 million km2 of land (28.1% of the total study area). Over 40 years, these lands can potentially accumulate a total aboveground carbon stock of 8.48 Pg C (petagrams of carbon) in aboveground biomass via low-cost natural regeneration or assisted regeneration, corresponding to a total CO2 sequestration of 31.09 Pg CO2. This total is equivalent to carbon emissions from fossil fuel use and industrial processes in all of Latin America and the Caribbean from 1993 to 2014. Ten countries account for 95% of this carbon storage potential, led by Brazil, Colombia, Mexico, and Venezuela. We model future land-use scenarios to guide national carbon mitigation policies. Permitting natural regeneration on 40% of lowland pastures potentially stores an additional 2.0 Pg C over 40 years. Our study provides information and maps to guide national-level forest-based carbon mitigation plans on the basis of estimated rates of natural regeneration and pasture abandonment. Coupled with avoided deforestation and sustainable forest management, natural regeneration of second-growth forests provides a low-cost mechanism that yields a high carbon sequestration potential with multiple benefits for biodiversity and ecosystem services. PMID:27386528

  15. Stand Structure, Productivity and Carbon Sequestration Potential of Oak Dominated Forests in Kumaun Himalaya

    OpenAIRE

    Bijendra Lal; L.S. Lodhiyal

    2016-01-01

    Present study deals with stand structure, biomass, productivity and carbon sequestration in oak dominated forests mixed with other broad leaved tree species. The sites of studied forests were located in Nainital region between 29058’ N lat. and 79028’ E long at 1500-2150 m elevation. Tree density of forests ranged from 980-1100 ind.ha-1. Of this, oak trees shared 69-97%. The basal area of trees was 31.81 to 63.93 m2 ha-1. R. arboreum and Q. floribunda shared maximum basal area 16.45 and 16.32...

  16. The role of reforestation in carbon sequestration

    Science.gov (United States)

    Nave, L. E.; Walters, B. F.; Hofmeister, K.; Perry, C. H.; Mishra, U.; Domke, G. M.; Swanston, C.

    2017-12-01

    In the United States (U.S.), the maintenance of forest cover is a legal mandate for federally managed forest lands. Reforestation is one option for maintaining forest cover on managed or disturbed lands, and as a land use change can increase forest cover on previously non-forested lands, enhancing carbon (C)-based ecosystem services and functions such as the production of woody biomass for forest products and the mitigation of atmospheric CO2 pollution and climate change. Nonetheless, multiple assessments indicate that reforestation in the U.S. lags behind its potential, with continued ecosystem services and functions at risk if reforestation is not increased. In this context, there is need for multiple independent analyses that quantify the role of reforestation in C sequestration. Here, we report the findings of a large-scale data synthesis aimed at four objectives: 1) estimate C storage in major pools in forest and other land cover types; 2) quantify sources of variation in C pools; 3) compare the impacts of reforestation and afforestation on C pools; 4) assess whether results hold or diverge across ecoregions. Our data-driven analysis provides four key inferences regarding reforestation and other land use impacts on C sequestration. First, soils are the dominant C pool under all land cover types in the U.S., and spatial variation in soil C pool sizes has less to do with land cover than with other factors. Second, where historically cultivated lands are being reforested, topsoils are sequestering significant amounts of C, with the majority of reforested lands yet to reach sequestration capacity (relative to forested baseline). Third, the establishment of woody vegetation delivers immediate to multi-decadal C sequestration benefits in biomass and coarse woody debris pools, with two- to three-fold C sequestration benefits during the first several decades following planting. Fourth, opportunities to enhance C sequestration through reforestation vary among

  17. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach

    NARCIS (Netherlands)

    Masera, O.R.; Garza-Caligaris, J.F.; Kanninen, M.; Karjalainen, T.; Liski, J.; Nabuurs, G.J.; Pussinen, A.; Jong de, B.H.J.; Mohren, G.M.J.

    2003-01-01

    The paper describes the Version 2 of the CO2FIX (CO2FIX V.2) model, a user-friendly tool for dynamically estimating the carbon sequestration potential of forest management, agroforesty and afforestation projects. CO2FIX V.2 is a multi-cohort ecosystem-level model based on carbon accounting of forest

  18. The biodiversity cost of carbon sequestration in tropical savanna.

    Science.gov (United States)

    Abreu, Rodolfo C R; Hoffmann, William A; Vasconcelos, Heraldo L; Pilon, Natashi A; Rossatto, Davi R; Durigan, Giselda

    2017-08-01

    Tropical savannas have been increasingly viewed as an opportunity for carbon sequestration through fire suppression and afforestation, but insufficient attention has been given to the consequences for biodiversity. To evaluate the biodiversity costs of increasing carbon sequestration, we quantified changes in ecosystem carbon stocks and the associated changes in communities of plants and ants resulting from fire suppression in savannas of the Brazilian Cerrado, a global biodiversity hotspot. Fire suppression resulted in increased carbon stocks of 1.2 Mg ha -1 year -1 since 1986 but was associated with acute species loss. In sites fully encroached by forest, plant species richness declined by 27%, and ant richness declined by 35%. Richness of savanna specialists, the species most at risk of local extinction due to forest encroachment, declined by 67% for plants and 86% for ants. This loss highlights the important role of fire in maintaining biodiversity in tropical savannas, a role that is not reflected in current policies of fire suppression throughout the Brazilian Cerrado. In tropical grasslands and savannas throughout the tropics, carbon mitigation programs that promote forest cover cannot be assumed to provide net benefits for conservation.

  19. Co-benefits of biodiversity and carbon from regenerating secondary forests after shifting cultivation in the upland Philippines: implications for forest landscape restoration

    Science.gov (United States)

    Mukul, S. A.; Herbohn, J.; Firn, J.; Gregorio, N.

    2017-12-01

    Shifting cultivation is a widespread practice in tropical forest agriculture frontiers that policy makers often regard as the major driver of forest loss and degradation. Secondary forests regrowing after shifting cultivation are generally not viewed as suitable option for biodiversity conservation and carbon retention. Drawing upon our research in the Philippines and other relevant case studies, we compared the biodiversity and carbon sequestration benefits in recovering secondary forests after shifting cultivation to other land uses that commonly follow shifting cultivation. Regenerating secondary forests had higher biodiversity than fast growing timber plantations and other restoration options available in the area. Some old plantations, however, provided carbon benefits comparable the old growth forest, although their biodiversity was less than that of the regenerating forests. Our study demonstrates that secondary forests regrowing after shifting cultivation have a high potential for biodiversity and carbon sequestration co-benefits, representing an effective strategy for forest management and restoration in countries where they are common and where the forest is an integral part of rural people's livelihoods. We discuss the issues and potential mechanisms through which such dynamic land use can be incorporated into development projects that are currently financing the sustainable management, conservation, and restoration of tropical forests.

  20. Temperate forest dynamics and carbon storage: A 26-year case ...

    African Journals Online (AJOL)

    Overall, these results suggest that the forest is in a post-disturbance recovery phase, although favourable climatic conditions over the last three decades may also have had an influence on AGB accumulation. Keywords: aboveground biomass, carbon sequestration, forest conservation, long-term monitoring, succession ...

  1. Reviewing efforts in global forest conservation for sustainable forest ...

    African Journals Online (AJOL)

    Reviewing efforts in global forest conservation for sustainable forest management: The World Wide Fund (WWF) case study. ... Global Journal of Pure and Applied Sciences. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current ...

  2. Setulang forest conservation strategy in safeguarding the conservation of non-timber forest products in Malinau District

    Science.gov (United States)

    Hutauruk, T. R.; Lahjie, A. M.; Simarangkir, B. D. A. S.; Aipassa, M. I.; Ruslim, Y.

    2018-04-01

    Some research on human relationships with forests shows that human activities for the forests are sufficient to meet demand or to meet demand. Both will directly or indirectly change the perceptions of the people who exploit them against the forests being utilized. Setulang community one of the community groups that intensively utilize NTFP as one of the source of fulfillment and fulfill the demand of handicraft product. For needs and demand of livelihood the people of Setulang choose to make the existing forest in the Tane Olen area into. The analysis method used in this research with Stength Weakness Opportunity and Threat (SWOT). The results of this study show the extent to which the commitment of Setulang community and the conservation efforts of Setulang community both self-help and donor assistance and the local government, as well as what strategic steps can be taken by the stakeholders to conserve so that the village forest can provide benefits in the short or long term. Strategic measures need to be set up save Setulang State Forest from degradation and deforestation occurring around the village.

  3. Predicting impacts of climate change on the aboveground carbon sequestration rate of a temperate forest in northeastern China.

    Science.gov (United States)

    Ma, Jun; Hu, Yuanman; Bu, Rencang; Chang, Yu; Deng, Huawei; Qin, Qin

    2014-01-01

    The aboveground carbon sequestration rate (ACSR) reflects the influence of climate change on forest dynamics. To reveal the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and disturbance model (LANDIS Pro7.0) was used to simulate the ACSR of a temperate forest at the community and species levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of deciduous species.

  4. Dynamic conservation of forest genetic resources in 33 European countries

    NARCIS (Netherlands)

    Lefevre, F.; Koskela, J.; Hubert, J.; Kraigher, H.; Longauer, R.; Olrik, D.C.; Vries, de S.M.G.

    2013-01-01

    Dynamic conservation of forest genetic resources (FGR) means maintaining the genetic diversity of trees within an evolutionary process and allowing generation turnover in the forest. We assessed the network of forests areas managed for the dynamic conservation of FGR (conservation units) across

  5. Social participation and oak forest conservation: Paipa and Duitama study case

    International Nuclear Information System (INIS)

    Escobar Torres, Vivian Constanza; Palacio Tamayo, Dolly Cristina

    2010-01-01

    Social dynamics within social participation is a crucial issue for the accomplishment of forest conservation. In order to contribute to this field, a study of 31 institutional and community organized actors' cooperative practices, within forest conservation processes in Paipa and Duitama, located at the oak forests conservation corridor Guantiva, La Rusia, Iguaque in Colombia, was made, applying Social Network Analysis (SNA). Particularly, this article inquiry is about models of participation of these actors within the period of 2004-2008, looking at their projects and actions as management practices of forest conservation. The research questions were how social participation is included and understood in the conservation of these oak forests, observing cooperative practices amongst this set of actors, at local level. The results are related with the structural patterns of co-participation established amongst these actors within each other's projects and actions and the impact of those in the aim of forest conservation at local level, regarding power relations and its impact on forest conservation.

  6. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    Energy Technology Data Exchange (ETDEWEB)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2003-12-18

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report, we present a preliminary comparison of the carbon sequestration benefits for two forest types used to convert abandoned grasslands for carbon sequestration. Annual mixed hardwood benefits, based on total stand carbon volume present at the end of a given year, range from a minimum of $0/ton of carbon to a maximum of $5.26/ton of carbon (low prices). White pine benefits based on carbon volume range from a minimum of $0/ton of carbon to a maximum of $18.61/ton of carbon (high prices). The higher maximum white pine carbon payment can primarily be attributed to the fact that the shorter rotation means that payments for white pine carbon are being made on far less cumulative carbon tonnage than for that of the long-rotation hardwoods. Therefore, the payment per ton of white pine carbon needs to be higher than that of the hardwoods in order to render the conversion to white pine profitable by the end of a rotation. These carbon payments may seem appealingly low to the incentive provider. However, payments (not discounted) made over a full rotation may add up to approximately $17,493/ha for white pine (30-year rotation), and $18,820/ha for mixed hardwoods (60-year rotation). The literature suggests a range of carbon sequestration costs, from $0/ton of carbon to $120/ton of carbon, although the majority of studies suggest a cost below $50/ ton of carbon, with van Kooten et al. (2000) suggesting a cutoff cost of $20/ton of carbon sequestered. Thus, the ranges of carbon payments estimated for this study fall well within the ranges of carbon sequestration costs estimated in previous studies.

  7. Predicting Impacts of Climate Change on the Aboveground Carbon Sequestration Rate of a Temperate Forest in Northeastern China

    Science.gov (United States)

    Ma, Jun; Hu, Yuanman; Bu, Rencang; Chang, Yu; Deng, Huawei; Qin, Qin

    2014-01-01

    The aboveground carbon sequestration rate (ACSR) reflects the influence of climate change on forest dynamics. To reveal the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and disturbance model (LANDIS Pro7.0) was used to simulate the ACSR of a temperate forest at the community and species levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of deciduous species. PMID:24763409

  8. Predicting impacts of climate change on the aboveground carbon sequestration rate of a temperate forest in northeastern China.

    Directory of Open Access Journals (Sweden)

    Jun Ma

    Full Text Available The aboveground carbon sequestration rate (ACSR reflects the influence of climate change on forest dynamics. To reveal the long-term effects of climate change on forest succession and carbon sequestration, a forest landscape succession and disturbance model (LANDIS Pro7.0 was used to simulate the ACSR of a temperate forest at the community and species levels in northeastern China based on both current and predicted climatic data. On the community level, the ACSR of mixed Korean pine hardwood forests and mixed larch hardwood forests, fluctuated during the entire simulation, while a large decline of ACSR emerged in interim of simulation in spruce-fir forest and aspen-white birch forests, respectively. On the species level, the ACSR of all conifers declined greatly around 2070s except for Korean pine. The ACSR of dominant hardwoods in the Lesser Khingan Mountains area, such as Manchurian ash, Amur cork, black elm, and ribbed birch fluctuated with broad ranges, respectively. Pioneer species experienced a sharp decline around 2080s, and they would finally disappear in the simulation. The differences of the ACSR among various climates were mainly identified in mixed Korean pine hardwood forests, in all conifers, and in a few hardwoods in the last quarter of simulation. These results indicate that climate warming can influence the ACSR in the Lesser Khingan Mountains area, and the largest impact commonly emerged in the A2 scenario. The ACSR of coniferous species experienced higher impact by climate change than that of deciduous species.

  9. Ecological carbon sequestration via wood harvest and storage (WHS): Can it be a viable climate and energy strategy?

    Science.gov (United States)

    Zeng, N.; Zaitchik, B. F.; King, A. W.; Wullschleger, S. D.

    2016-12-01

    A carbon sequestration strategy is proposed in which forests are sustainably managed to optimal carbon productivity, and a fraction of the wood is selectively harvested and stored to prevent decomposition under anaerobic, dry or cold conditions. Because a large flux of CO2 is constantly assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. The live trees serve as a `carbon scrubber' or `carbon remover' that provides continuous sequestration (negative emissions). The stored wood is a semi-permanent carbon sink, but also serves as a `biomass/bioenergy reserve' that could be utilized in the future.Based on forest coarse wood production rate, land availability, bioconservation and other practical constraints, we estimate a carbon sequestration potential for wood harvest and storage (WHS) 1-3 GtC y-1. The implementation of such a scheme at our estimated lower value of 1 GtC y-1 would imply a doubling of the current world wood harvest rate. This can be achieved by harvesting wood at a modest harvesting intensity of 1.2 tC ha-1 y-1, over a forest area of 8 Mkm2 (800 Mha). To achieve the higher value of 3 GtC y-1, forests need to be managed this way on half of the world's forested land, or on a smaller area but with higher harvest intensity. However, the actual implementation may face challenges that vary regionally. We propose `carbon sequestration and biomass farms' in the tropical deforestation frontiers with mixed land use for carbon, energy, agriculture, as well as conservation. In another example, the forests damaged by insect infestation could be thinned to reduce fire and harvested for carbon sequestration.We estimate a cost of $10-50/tCO2 for harvest and storage around the landing site. The technique is low tech, distributed and reversible. We compare the potential of WHS with a number of other carbon sequestration methods. We will also show its impact on future land carbon sink

  10. International payment for forest conservation. Special case: compensation for leaving the oil in the ground in Yasuni National Park, Ecuador

    Energy Technology Data Exchange (ETDEWEB)

    Rosendal, Kristin; Schei, Peter Johan; Eikeland, Per Ove; Gulbrandsen, Lars

    2008-02-15

    This report evaluates the Ecuadorian proposal to have the international community compensate Ecuador for not exploiting the oil in the ITT area of Yasuni National Park. It includes the evaluation of this proposal in a broader context, assessing the possible consequences of the arrangement for future systems for international payment for biodiversity/rain forest conservation or payment for other ecosystem services as outlined in the Millennium Ecosystem Assessment. Recently, the debate about international funding of rain forest conservation and payment for ecosystem services in general has received new momentum thanks to the climate change negotiations. Although the debate goes back several decades, the content has now been broadened to include at least five major concerns: carbon sequestration and uptake, biodiversity conservation, maintenance and balance of other ecosystem services, safeguarding the livelihoods of local and indigenous people, and adaptation to climate change. This report examines the various past and current efforts relating to the question of international payment for forest conservation, linking it to the international obligations of developed countries to support global environmental goals in developing countries. The Yasuni case raises several questions that are also relevant to the Norwegian Bali initiative to contribute NOK 3 billion annually over five years for forest conservation. A central question is how these (new) flows of funding should be organized in order to achieve the relevant internationally agreed objectives emanating from multilateral environmental agreements. Here we discuss the role of the GEF, with its implementing agencies the World Bank, UNDP and UNEP. We tie the discussion to the obligations that developed countries have undertaken to support the implementation of global environmental goals in developing countries as emanating from the Convention on Biological Diversity (CBD), as well as obligations pertaining to

  11. International payment for forest conservation. Special case: compensation for leaving the oil in the ground in Yasuni National Park, Ecuador

    Energy Technology Data Exchange (ETDEWEB)

    Rosendal, Kristin; Schei, Peter Johan; Eikeland, Per Ove; Gulbrandsen, Lars

    2008-02-15

    This report evaluates the Ecuadorian proposal to have the international community compensate Ecuador for not exploiting the oil in the ITT area of Yasuni National Park. It includes the evaluation of this proposal in a broader context, assessing the possible consequences of the arrangement for future systems for international payment for biodiversity/rain forest conservation or payment for other ecosystem services as outlined in the Millennium Ecosystem Assessment. Recently, the debate about international funding of rain forest conservation and payment for ecosystem services in general has received new momentum thanks to the climate change negotiations. Although the debate goes back several decades, the content has now been broadened to include at least five major concerns: carbon sequestration and uptake, biodiversity conservation, maintenance and balance of other ecosystem services, safeguarding the livelihoods of local and indigenous people, and adaptation to climate change. This report examines the various past and current efforts relating to the question of international payment for forest conservation, linking it to the international obligations of developed countries to support global environmental goals in developing countries. The Yasuni case raises several questions that are also relevant to the Norwegian Bali initiative to contribute NOK 3 billion annually over five years for forest conservation. A central question is how these (new) flows of funding should be organized in order to achieve the relevant internationally agreed objectives emanating from multilateral environmental agreements. Here we discuss the role of the GEF, with its implementing agencies the World Bank, UNDP and UNEP. We tie the discussion to the obligations that developed countries have undertaken to support the implementation of global environmental goals in developing countries as emanating from the Convention on Biological Diversity (CBD), as well as obligations pertaining to

  12. The Value of Forest Conservation for Water Quality Protection

    Directory of Open Access Journals (Sweden)

    Melissa M. Kreye

    2014-05-01

    Full Text Available Forests protect water quality by reducing soil erosion, sedimentation, and pollution; yet there is little information about the economic value of conserving forests for water quality protection in much of the United States. To assess this value, we conducted a meta-analysis of willingness-to-pay (WTP for protecting unimpaired waters, and econometrically determined several significant drivers of WTP: type of conservation instrument (tool, aquatic resource type, geographic context, spatial scale, time, and household income. Using a benefit transfer to two highly forested sites, we illustrate the importance of these factors on WTP for water quality protection programs, forest conservation and policy design.

  13. Local understanding of forest conservation in land use change dynamics

    DEFF Research Database (Denmark)

    Shaleh, Muhammad Adha; Guth, Miriam Karen; Rahman, Syed Ajijur

    2016-01-01

    Forest (SEPPSF), Malaysia. Nine in-depth interviews were conducted with Orang Asli Jakun living in SEPPSF using open-ended questions. Local communities have positive perspectives toward the forest conservation program, despite massive environmental changes in their living landscape. This study suggests......The success of local forest conservation program depends on a critical appreciation of local communities. Based on this understanding, the present study aims to explore people’s perspective of forest conservation in a context of changes in their living landscape at South East Pahang Peat Swamp...

  14. Stated Preferences for Forest Conservation in Southern Finland

    DEFF Research Database (Denmark)

    Lehtonen, Emmi; Kuuluvainen, Jari; Pouta, Eija

    % support decreasing forest conservation. An average willingness-to-pay for increased biodiversity conservation was 60-212 € per household per year, depending on the described project and measurement method. In addition to costs per household, the number of conserved biotopes and endangered plant and animal......This study analyses Finnish citizens’ valuations and attitudes towards a forest conservation programme for southern Finland and the Pohjanmaa region. In particular, Finnish households’ willingness to accept expenses through increased taxation to guarantee a certain level of biodiversity...... conservation was investigated. Contingent valuation (CV) and choice experiment (CE) methods were applied. According to the CV results, 74% of respondents are prepared to pay for increased conservation and 16% support increased conservation but are not willing to pay for it. A further 5% are indifferent and 5...

  15. National Proceedings: Forest and Conservation Nursery Associations-2007

    Science.gov (United States)

    Kas Dumroese; L. E. Riley

    2008-01-01

    These proceedings are a compilation of the papers that were presented at the regional meetings of the forest and conservation nursery associations in the United States and Canada in 2007. The Northeastern Forest and Conservation Nursery Association meeting was held July 16 to 19 at the Grappone Conference Center in Concord, NH. The meeting was hosted by the New...

  16. Responses of the Carbon Storage and Sequestration Potential of Forest Vegetation to Temperature Increases in Yunnan Province, SW China

    Directory of Open Access Journals (Sweden)

    Ruiwu Zhou

    2018-04-01

    Full Text Available The distribution of forest vegetation and forest carbon sequestration potential are significantly influenced by climate change. In this study, a map of the current distribution of vegetation in Yunnan Province was compiled based on data from remote sensing imagery from the Advanced Land Observing Satellite (ALOS from 2008 to 2011. A classification and regression tree (CART model was used to predict the potential distribution of the main forest vegetation types in Yunnan Province and estimate the changes in carbon storage and carbon sequestration potential (CSP in response to increasing temperature. The results show that the current total forest area in Yunnan Province is 1.86 × 107 ha and that forest covers 48.63% of the area. As the temperature increases, the area of forest distribution first increases and then decreases, and it decreases by 11% when the temperature increases from 1.5 to 2 °C. The mean carbon density of the seven types of forest vegetation in Yunnan Province is 84.69 Mg/ha. The total carbon storage of the current forest vegetation in Yunnan Province is 871.14 TgC, and the CSP is 1100.61 TgC. The largest CSP (1114.82 TgC occurs when the temperature increases by 0.5 °C. Incremental warming of 2 °C will sharply decrease the forest CSP, especially in those regions with mature coniferous forest vegetation. Semi-humid evergreen broad-leaved forests were highly sensitive to temperature changes, and the CSP of these forests will decrease with increasing temperature. Warm-hot coniferous forests have the greatest CSP in all simulation scenarios except the scenario of a 2 °C temperature increase. These results indicate that temperature increases can influence the CSP in Yunnan Province, and the largest impact emerged in the 2 °C increase scenario.

  17. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    Energy Technology Data Exchange (ETDEWEB)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2005-06-08

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we compiled and evaluated all soil properties measured on the study sites. Statistical analysis of the properties was conducted, and first year survival and growth of white pine, hybrid poplars, and native hardwoods was assessed. Hardwood species survived better at all sites than white pine or hybrid poplar. Hardwood survival across treatments was 80%, 85%, and 50% for sites in Virginia, West Virginia, and Ohio, respectively, while white pine survival was 27%, 41%, and 58%, and hybrid poplar survival was 37%, 41%, and 72% for the same sites, respectively. Hybrid poplar height and diameter growth were superior to those of the other species tested, with the height growth of this species reaching 126.6cm after one year in the most intensive treatment at the site in Virginia. To determine carbon in soils on these

  18. Evaluating the Contribution of Climate Forcing and Forest Dynamics to Accelerating Carbon Sequestration by Forest Ecosystems in the Northeastern U.S.: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Munger, J. William [Harvard University, SEAS; Foster, David R. [Harvard University, Harvard Forest; Richardson, Andrew D. [Harvard University, OEB

    2014-10-01

    This report summarizes work to improve quantitative understanding of the terrestrial ecosystem processes that control carbon sequestration in unmanaged forests It builds upon the comprehensive long-term observations of CO2 fluxes, climate and forest structure and function at the Harvard Forest in Petersham, MA. This record includes the longest CO2 flux time series in the world. The site is a keystone for the AmeriFlux network. Project Description The project synthesizes observations made at the Harvard Forest HFEMS and Hemlock towers, which represent the dominant mixed deciduous and coniferous forest types in the northeastern United States. The 20+ year record of carbon uptake at Harvard Forest and the associated comprehensive meteorological and biometric data, comprise one of the best data sets to challenge ecosystem models on time scales spanning hourly, daily, monthly, interannual and multi-decadal intervals, as needed to understand ecosystem change and climate feedbacks.

  19. Spatial Aspects of the Provision of Forest Ecosystem Services

    DEFF Research Database (Denmark)

    Nielsen, Anne Sofie Elberg

    to the incorporation of spatial factors into cost and benefit evaluation of FES provision. Focus is on assessing where forest ecosystem provision should be undertaken, determinants of private stakeholder provision efforts and welfare consequences of changes in the provision level. Provision of carbon sequestration...... estimates for the U.S. counties of the cost of carbon sequestration from afforestation (conversion of non-forest land to forest), when afforestation is restricted by Holdridge zone climatic conditions. Aside from assessing the overall marginal cost schedule, the spatial distribution of these are examined......, to assess where afforestation should be undertaken for given carbon prices. The second paper investigates the determinants of landowner participation in a Danish voluntary conservation program. Combining contract data of landowners’ actual choices, GIS information on area specific characteristics...

  20. RESTORING SUSTAINABLE FORESTS ON APPALACHIAN MINED LANDS FOR WOOD PRODUCTS, RENEWABLE ENERGY, CARBON SEQUESTRATION, AND OTHER ECOSYSTEM SERVICES

    Energy Technology Data Exchange (ETDEWEB)

    J. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2004-08-04

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in VA, WV, KY, OH, and PA mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots requires 4.5 acres, and the complete installation at each site requires 13.5 acres. The plots at all three locations have been installed and the plot corners marked with PVC stakes. GPS coordinates of each plot have been collected. Soil samples were collected from each plot to characterize the sites prior to treatment. Baseline soil carbon was determined for each of the eighty-one plots. Fertility analysis of soil samples was completed and these data were used to prepare fertilizer prescriptions and the pre-designated plots were fertilized. We also evaluated economic-based policy instruments that are designed to mitigate the reforestation burden borne by the owner of reclaimed mined land. Results suggest that although profitability of reforestation of these previously reclaimed mine lands may be achievable on better sites under lower interest rates, substantial payments would be required to reach &apos

  1. Payments for carbon sequestration to alleviate development pressure in a rapidly urbanizing region

    Science.gov (United States)

    Smith, Jordan W.; Dorning, Monica; Shoemaker, Douglas A.; Méley, Andréanne; Dupey, Lauren; Meentemeyer, Ross K.

    2017-01-01

    The purpose of this study was to determine individuals' willingness to enroll in voluntary payments for carbon sequestration programs through the use of a discrete choice experiment delivered to forest owners living in the rapidly urbanizing region surrounding Charlotte, North Carolina. We examined forest owners' willingness to enroll in payments for carbon sequestration policies under different levels of financial incentives (annual revenue), different contract lengths, and different program administrators (e.g., private companies versus a state or federal agency). We also examined the influence forest owners' sense of place had on their willingness to enroll in hypothetical programs. Our results showed a high level of ambivalence toward participating in payments for carbon sequestration programs. However, both financial incentives and contract lengths significantly influenced forest owners' intent to enroll. Neither program administration nor forest owners' sense of place influenced intent to enroll. Although our analyses indicated that payments from carbon sequestration programs are not currently competitive with the monetary returns expected from timber harvest or property sales, certain forest owners might see payments for carbon sequestration programs as a viable option for offsetting increasing tax costs as development encroaches and property values rise.

  2. Private valuation of carbon sequestration in forest plantations

    Energy Technology Data Exchange (ETDEWEB)

    Guitart, A. Bussoni [Facultad de Agronomia, Universidad de la Republica. Avda. E. Garzon, 780, CP 12.900, Montevideo (Uruguay); Rodriguez, L.C. Estraviz [Escola Superior de Agricultura ' ' Luiz de Queiroz' ' , Universidad de Sao, Paulo (Brazil)

    2010-01-15

    Approval of the Clean Development Mechanism, provided for in the Kyoto Protocol, enables countries with afforested land to trade in carbon emissions reduction certificates related to carbon dioxide equivalent quantities (CO{sub 2-e}) stored within a certain forest area. Potential CO{sub 2-e} above base line sequestration was determined for two forest sites on commercial eucalyptus plantations in northern Brazil (Bahia). Compensation values for silvicultural regimes involving rotation lengths greater than economically optimal were computed using the Faustmann formula. Mean values obtained were US$8.16 (MgCO{sub 2-e}){sup -} {sup 1} and US$7.19 (MgCO{sub 2-e}){sup -} {sup 1} for average and high site indexes, respectively. Results show that carbon supply is more cost-efficient in highly productive sites. Annuities of US$18.8 Mg C{sup -} {sup 1} and US$35.1 Mg C{sup -} {sup 1} and yearly payments of US$4.4 m{sup -} {sup 3} and US$8.2 m{sup -} {sup 3} due for each marginal cubic meter produced were computed for high and average sites, respectively. The estimated value of the tonne of carbon defines minimum values to be paid to forest owners, in order to induce a change in silvicultural management regimes. A reduction of carbon supply could be expected as a result of an increase in wood prices, although it would not respond in a regular manner. For both sites, price elasticity of supply was found to be inelastic and increased as rotation length moved further away from economically optimal: 0.24 and 0.27 for age 11 years in average- and high-productivity sites, respectively. This would be due to biomass production potential as a limiting factor; beyond a certain threshold value, an increase in price does not sustain a proportional change in carbon storage supply. The environmental service valuation model proposed might be adequate for assessing potential supply in plantation forestry, from a private landowner perspective, with an economic opportunity cost. The model is

  3. Changes in soil carbon sequestration in Pinus massoniana forests along an urban-to-rural gradient of southern China

    Directory of Open Access Journals (Sweden)

    H. Chen

    2013-10-01

    Full Text Available Urbanization is accelerating globally, causing a variety of environmental changes such as increases in air temperature, precipitation, atmospheric CO2, and nitrogen (N deposition. However, the effects of these changes on forest soil carbon (C sequestration remain largely unclear. Here, we used urban-to-rural environmental gradients in Guangdong Province, southern China, to address the potential effects of these environmental changes on soil C sequestration in Pinus massoniana forests. In contrast to our expectations and earlier observations, soil C content in urban sites was significantly lower than that in suburban and rural sites. Lower soil C pools in urban sites were correlated with a significant decrease in fine root biomass and a potential increase in soil organic C decomposition. Variation of soil C pools was also a function of change in soil C fractions. Heavy fraction C content in urban sites was significantly lower than that in suburban and rural sites. By contrast, light fraction C content did not vary significantly along the urban-to-rural gradient. Our results suggest that urbanization-induced environmental changes may have a negative effect on forest soil C in the studied region.

  4. The Lifestyle Carbon Dividend: Assessment of the Carbon Sequestration Potential of Grasslands and Pasturelands Reverted to Native Forests

    Science.gov (United States)

    Rao, S.; Jain, A. K.; Shu, S.

    2015-12-01

    What is the potential of a global transition to a vegan lifestyle to sequester carbon and mitigate climate change? To answer this question, we use an Earth System Model (ESM), the Integrated Science Assessment Model (ISAM). ISAM is a fully coupled biogeochemistry (carbon and nitrogen cycles) and biogeophysics (hydrology and thermal energy) ESM, which calculates carbon sources and sinks due to land cover and land use change activities, such as reforestation and afforestation. We calculate the carbon sequestration potential of grasslands and pasturelands that can be reverted to native forests as 265 GtC on 1.96E+7 km2 of land area, just 41% of the total area of such lands on Earth. The grasslands and pasturelands are assumed to revert back to native forests which existed prior to any human intervention and these include tropical, temperate and boreal forests. The results are validated with above ground regrowth measurements. Since this carbon sequestration potential is greater than the 240 GtC of that has been added to the atmosphere since the industrial era began, it shows that such global lifestyle transitions have tremendous potential to mitigate and even reverse climate change.

  5. Forest owners' perceptions of ecotourism: Integrating community values and forest conservation.

    Science.gov (United States)

    Rodríguez-Piñeros, Sandra; Mayett-Moreno, Yesica

    2015-03-01

    The use of forest land for ecotourism has been well accepted due to its ability to provide income to local people and to conserve the forest. Preparing the forest with infrastructure to attract and educate visitors has been reported of importance. This study applied Q methodology in a small rural community of the State of Puebla, Mexico, to reveal forest owners' perceptions to build infrastructure in their forest as part of their ecotourism project. It also discloses forest owners' underlying motives to use their forest for ecotourism. Ecotourism is perceived as a complementary activity to farming that would allow women to be involved in community development. Low impact infrastructure is desired due to forest owners' perception to preserve the forest for the overall community well-being.

  6. Caribbean dry forest networking: an opportunity for conservation

    Science.gov (United States)

    K. Banda-Rodriguez; J. Weintritt; R.T. Pennington

    2016-01-01

    Seasonally dry tropical forest is the most threatened tropical forest in the world. Though its overall plant species diversity is lower than in neighboring biomes such as rain forest, species endemism can be high, and its conservation has often been neglected. Caribbean dry forests face diverse threats including tourism, agriculture, and climate change. The Latin...

  7. LEVERAGING RURAL LIVELIHOODS WITH FOREST CONSERVATION IN NIGERIA: THE ROLE OF NON-TIMBER FOREST PRODUCTS

    Directory of Open Access Journals (Sweden)

    Egbe BASSEY ETOWA

    2015-03-01

    Full Text Available In recent times some economists view Non-Timber Forest Products (NTFPs extraction and marketing as a better alternative to timber exploitation as a rural livelihood strategy. Harvesting and sale of NTFPs have the potential for accomplishing the dual goals of natural forest conservation and income generation for the rural inhabitants. Meanwhile, realization of these dual goals in Nigeria, require an understanding of how NTFPs functions in the face of marketing, ecological, geographic and institutional constraints. Following a conceptualization of NTFPs, this paper provides a vivid overview of the simultaneous roles of NTFPs in rural livelihood enhancement and forest conservation in Nigeria. It highlights governmental initiatives with respect to conservation, the challenges and prospects of NTFPs as a conservation strategy. Conclusively, the paper suggests that appropriate NTFPs development policies are required to simultaneously address forest depletion and poverty in rural areas of Nigeria.

  8. Allometric equations for estimating tree biomass in restored mixed-species Atlantic Forest stands

    Science.gov (United States)

    Lauro Rodrigues Nogueira; Vera Lex Engel; John A. Parrotta; Antonio Carlos Galvão de Melo; Danilo Scorzoni Ré

    2014-01-01

    Restoration of Atlantic Forests is receiving increasing attention because of its role in both biodiversity conservation and carbon sequestration for global climate change mitigation. This study was carried out in an Atlantic Forest restoration project in the south-central region of São Paulo State – Brazil to develop allometric equations to estimate tree biomass of...

  9. Forest Conservation Opportunity Areas - Conservative Model (ECO_RES.COA_FORREST66)

    Science.gov (United States)

    This layer designates areas with potential for forest conservation. These are areas of natural or semi-natural forest land cover patches that area at least 395 meters away from roads and away from patch edges. OAs were modeled by creating distance grids using the National Land Cover Database and the Census Bureau's TIGER road files.

  10. Phytogeography and conservation of neotropical dry forest with emphasis on Columbia

    OpenAIRE

    Banda Rodriguez, Karina Paola

    2017-01-01

    Dry forest is one of the most threatened tropical forests in the world. Human impact has caused its massive transformation but conservation of dry forest has often been neglected across Latin America. In Colombia, less than 10% of the original extension of dry forest remains. This thesis studies the phytogeography of neotropical dry forest and its relevance for conservation using data from 1602 tree species inventories made in dry forests across Latin America and the Caribbean ...

  11. Role of community forest reserves in wildlife conservation in Benin ...

    African Journals Online (AJOL)

    Sacred groves and community forests are common ways for local rural African people to conserve natural resources. The importance of traditional approach in wildlife conservation was evaluated with line transect method utilized to assess five community forests. Comparable species richness with similar size protected ...

  12. Comparison of carbon sequestration potential in agricultural and afforestation farming systems

    Directory of Open Access Journals (Sweden)

    Chinsu Lin

    2013-04-01

    Full Text Available In the last few decades, many forests have been cut down to make room for cultivation and to increase food or energy crops production in developing countries. In this study, carbon sequestration and wood production were evaluated on afforested farms by integrating the Gaussian diameter distribution model and exponential diameter-height model derived from sample plots of an afforested hardwood forest in Taiwan. The quantity of sequestrated carbon was determined based on aboveground biomass. Through pilot tests run on an age-volume model, an estimation bias was obtained and used to correct predicted volume estimates for a farm forest over a 20-year period. An estimated carbon sequestration of 11,254 t C was observed for a 189ha-hardwood forest which is equivalent to 41,264 t CO2. If this amount of carbon dioxide were exchanged on the Chicago Climate Exchange (CCX market, the income earned would be 821 US$ ha- 1. Carbon sequestration from rice (Oryza sativa or sugarcane (Saccharum officinarum production is discharged as a result of straw decomposition in the soil which also improves soil quality. Sugarcane production does not contribute significantly to carbon sequestration, because almost all the cane fiber is used as fuel for sugar mills. As a result of changing the farming systems to hardwood forest in this study area, carbon sequestration and carbon storage have increased at the rate of 2.98 t C ha- 1 year- 1. Net present value of afforestation for a 20-year period of carbon or wood management is estimated at around US$ 30,000 given an annual base interest rate of 3 %.

  13. Status and potential of terrestrial carbon sequestration in West Virginia

    Science.gov (United States)

    Benktesh D. Sharma; Jingxin. Wang

    2011-01-01

    Terrestrial ecosystem management offers cost-effective ways to enhance carbon (C) sequestration. This study utilized C stock and C sequestration in forest and agricultural lands, abandoned mine lands, and harvested wood products to estimate the net current annual C sequestration in West Virginia. Several management options within these components were simulated using a...

  14. The production of phytolith-occluded carbon in China's forests: implications to biogeochemical carbon sequestration.

    Science.gov (United States)

    Song, Zhaoliang; Liu, Hongyan; Li, Beilei; Yang, Xiaomin

    2013-09-01

    The persistent terrestrial carbon sink regulates long-term climate change, but its size, location, and mechanisms remain uncertain. One of the most promising terrestrial biogeochemical carbon sequestration mechanisms is the occlusion of carbon within phytoliths, the silicified features that deposit within plant tissues. Using phytolith content-biogenic silica content transfer function obtained from our investigation, in combination with published silica content and aboveground net primary productivity (ANPP) data of leaf litter and herb layer in China's forests, we estimated the production of phytolith-occluded carbon (PhytOC) in China's forests. The present annual phytolith carbon sink in China's forests is 1.7 ± 0.4 Tg CO2  yr(-1) , 30% of which is contributed by bamboo because the production flux of PhytOC through tree leaf litter for bamboo is 3-80 times higher than that of other forest types. As a result of national and international bamboo afforestation and reforestation, the potential of phytolith carbon sink for China's forests and world's bamboo can reach 6.8 ± 1.5 and 27.0 ± 6.1 Tg CO2  yr(-1) , respectively. Forest management practices such as bamboo afforestation and reforestation may significantly enhance the long-term terrestrial carbon sink and contribute to mitigation of global climate warming. © 2013 John Wiley & Sons Ltd.

  15. Viable contribution of Tibetan sacred mountains in southwestern China to forest conservation.

    Science.gov (United States)

    Shen, Xiaoli; Li, Sheng; Wang, Dajun; Lu, Zhi

    2015-12-01

    The Tibetan sacred mountains (TSMs) cover a large area and may represent a landscape-scale conservation opportunity. We compared the conservation value of forests in these mountains with the conservation value of government-established nature reserves and unmanaged open-access areas in Danba County, southwestern China. We used Landsat satellite images to map forest cover and to estimate forest loss in 1974-1989, 1989-1999, and 1999-2013. The TSMs (n = 41) and nature reserves (n = 4) accounted for 21.6% and 29.7% of the county's land area, respectively. Remaining land was open-access areas (i.e., areas without any restrictions on resource use) (56.2%) and farmlands (2.2%). Within the elevation range suitable for forests, forest cover did not differ significantly between nature reserves (58.8%) and open-access areas (58.4%), but was significantly higher in TSMs (65.5%) after controlling for environmental factors such as aspect, slope, and elevation. The TSMs of great cultural importance had higher forest cover, but patrols by monastery staff were not necessarily associated with increased forest cover. The annual deforestation rate in nonsacred areas almost tripled in 1989-1999 (111.4 ha/year) relative to 1974-1989 (40.4 ha/year), whereas the rate in TSMs decreased in the later period (19.7 ha/year vs. 17.2 ha/year). The reduced forest loss in TSMs in 1989-1999 was possibly due to the renaissance of TSM worship and strengthened management by the local Buddhist community since late 1980s. The annual deforestation rate in Danba decreased dramatically to 4.4 ha/year in 1999-2013, which coincided with the implementation of a national ban on logging in 1998. As the only form of protected area across the Tibetan region during much of its history, TSMs have positively contributed to conserving forest at a landscape scale. Conservation of TSM forests largely relied on the strength of local religious institutions. Integrating community-based conservation of TSMs within the

  16. Conservation of the Ethiopian church forests

    DEFF Research Database (Denmark)

    Aerts, Raf; Ortveld, Koev van; November, Eva

    2016-01-01

    communities and related these to environmental variables and potential natural vegetation, (3) identified the main challenges to biodiversity conservation in view of plant population dynamics and anthropogenic disturbances, and (4) present guidelines for management and policy. The 394 forests identified...... in satellite images were on average ~2ha in size and generally separated by ~2km from the nearest neighboring forest. Shape complexity, not size, decreased from the northern to the central highlands. Overall, 148 indigenous tree, shrub and liana species were recorded across the 78 surveyed forests. Patch α......-diversity increased with mean annual precipitation, but typically only 25 woody species occurred per patch. The combined results showed that >50% of tree species present in tropical northeast Africa were still present in the 78 studied church forests, even though individual forests were small and relatively species...

  17. 77 FR 8801 - Request for Applications: The Community Forest and Open Space Conservation Program

    Science.gov (United States)

    2012-02-15

    ... DEPARTMENT OF AGRICULTURE Forest Service Request for Applications: The Community Forest and Open Space Conservation Program AGENCY: Forest Service, USDA. ACTION: Request for applications. SUMMARY: The..., requests applications for the Community Forest and Open Space Conservation Program (Community Forest...

  18. Mitigation potential of carbon dioxide emissions by management of forests in Asia

    International Nuclear Information System (INIS)

    Brown, Sandra

    1996-01-01

    Substantial areas of available forest lands in Asia could be managed for conservation and sequestration of carbon. These include 133 Mha for establishment of plantations and agroforests, 33.5 Mha for slowed tropical deforestation, and 48 Mha for natural and assisted regeneration of tropical forests. The potential quantity of C conserved and sequestered on these lands was conservatively estimated to be 24 Pg C (1 Pg = 10 15 g) by 2050. Establishment of plantations and agroforests could account for 58% of the total mitigation potential on Asian forest lands. The amount of C that could be conserved and sequestered by all forest sector practices by 2050 under baseline conditions is equivalent to about 4% of the global fossil fuel emissions over the same time period. The uncertainties in estimates of mitigation potential presented in this paper are likely to be high, particularly with respect to the land area available for forestation projects and the rate at which deforestation could be slowed. The uncertainty terms are compounded in making global estimates of the mitigation potential, perhaps to large proportions, but to what extent is presently unknown. An example of a forestry project in China whose main goal was to rehabilitate degraded lands and at the same time provide biomass fuel for the local rural inhabitants is presented to demonstrate that C sequestration, and thus mitigation, is an added benefit to more traditional uses of forests. This forestry project is currently mitigating CO 2 emissions (up to 1.4 Mg C ha -1 yr -1 ) and, with a change in management, an almost two-fold increase in the current reduction of net C emissions would occur. 33 refs, 2 figs, 2 tabs

  19. Conservation of forest genetic resources in the United States.

    Science.gov (United States)

    B. St. Clair; S. Lipow; K. Vance-Borland; R. Johnson

    2007-01-01

    Conservation of genetic diversity is recognized as an important requirement of sustainable forest management. Gene conservation activities include in situ conservation of native stands in reserves and ex situ conservation in seed banks, genetic tests, seed and breeding orchards, and other plantations of known identity. We present an example from Oregon and Washington...

  20. In situ conservation and landscape genetics in forest species

    Directory of Open Access Journals (Sweden)

    Martín L.M.

    2012-03-01

    Full Text Available Conservation of forest genetic resources is essential for sustaining the environmental and productive values of forests. One of the environmental values is the conservation of the diversity that is assessed through the amount of genetic diversity stored by forests, their structure and dynamics. The current need for forest conservation and management has driven a rapid expansion of landscape genetics discipline that combines tools from molecular genetics, landscape ecology and spatial statistics and is decisive for improving not only ecological knowledge but also for properly managing population genetic resources. The objective of this study is to show the way to establish the safeguard of genetic diversity through this approach using the results obtained in sweet chestnut (Castanea sativa Mill. that has provided a better understanding on the species genetic resources. In this respect, we will show how the information provided by different types of molecular markers (genomic and genic offer more accurate indication on the distribution of the genetic diversity among and within populations assuming different evolutionary drivers.

  1. Offsetting China's CO2 Emissions by Soil Carbon Sequestration

    International Nuclear Information System (INIS)

    Lal, R.

    2004-01-01

    Fossil fuel emissions of carbon (C) in China in 2000 was about 1 Pg/yr, which may surpass that of the U.S. (1.84 Pg C) by 2020. Terrestrial C pool of China comprises about 35 to 60 Pg in the forest and 120 to 186 Pg in soils. Soil degradation is a major issue affecting 145 Mha by different degradative processes, of which 126 Mha are prone to accelerated soil erosion. Similar to world soils, agricultural soils of China have also lost 30 to 50% or more of the antecedent soil organic carbon (SOC) pool. Some of the depleted SOC pool can be re-sequestered through restoration of degraded soils, and adoption of recommended management practices. The latter include conversion of upland crops to multiple cropping and rice paddies, adoption of integrated nutrient management (INM) strategies, incorporation of cover crops in the rotations cycle and adoption of conservation-effective systems including conservation tillage. A crude estimated potential of soil C sequestration in China is 119 to 226 Tg C/y of SOC and 7 to 138 Tg C/y for soil inorganic carbon (SIC) up to 50 years. The total potential of soil C sequestration is about 12 Pg, and this potential can offset about 25% of the annual fossil fuel emissions in China

  2. Comparing the effect of naturally restored forest and grassland on carbon sequestration and its vertical distribution in the Chinese Loess Plateau.

    Directory of Open Access Journals (Sweden)

    Jie Wei

    Full Text Available Vegetation restoration has been conducted in the Chinese Loess Plateau (CLP since the 1950s, and large areas of farmland have been converted to forest and grassland, which largely results in SOC change. However, there has been little comparative research on SOC sequestration and distribution between secondary forest and restored grassland. Therefore, we selected typical secondary forest (SF-1 and SF-2 and restored grassland (RG-1 and RG-2 sites and determined the SOC storage. Moreover, to illustrate the factors resulting in possible variance in SOC sequestration, we measured the soil δ(13C value. The average SOC content was 6.8, 9.9, 17.9 and 20.4 g kg(-1 at sites SF-1, SF-2, RG-1 and RG-2, respectively. Compared with 0-100 cm depth, the percentage of SOC content in the top 20 cm was 55.1%, 55.3%, 23.1%, and 30.6% at sites SF-1, SF-2, RG-1 and RG-2, suggesting a higher SOC content in shallow layers in secondary forest and in deeper layers in restored grassland. The variation of soil δ(13C values with depth in this study might be attributed to the mixing of new and old carbon and kinetic fractionation during the decomposition of SOM by microbes, whereas the impact of the Suess effect (the decline of (13C atmospheric CO(2 values with the burning of fossil fuel since the Industrial Revolution was minimal. The soil δ(13C value increased sharply in the top 20 cm, which then increased slightly in deeper layers in secondary forest, indicating a main carbon source of surface litter. However the soil δ(13C values exhibited slow increases in the whole profile in the restored grasslands, suggesting that the contribution of roots to soil carbon in deeper layers played an important role. We suggest that naturally restored grassland would be a more effective vegetation type for SOC sequestration due to higher carbon input from roots in the CLP.

  3. Spatial overlap between environmental policy instruments and areas of high conservation value in forest.

    Science.gov (United States)

    Sverdrup-Thygeson, Anne; Søgaard, Gunnhild; Rusch, Graciela M; Barton, David N

    2014-01-01

    In order to safeguard biodiversity in forest we need to know how forest policy instruments work. Here we use a nationwide network of 9400 plots in productive forest to analyze to what extent large-scale policy instruments, individually and together, target forest of high conservation value in Norway. We studied both instruments working through direct regulation; Strict Protection and Landscape Protection, and instruments working through management planning and voluntary schemes of forest certification; Wilderness Area and Mountain Forest. As forest of high conservation value (HCV-forest) we considered the extent of 12 Biodiversity Habitats and the extent of Old-Age Forest. We found that 22% of productive forest area contained Biodiversity Habitats. More than 70% of this area was not covered by any large-scale instruments. Mountain Forest covered 23%, while Strict Protection and Wilderness both covered 5% of the Biodiversity Habitat area. A total of 9% of productive forest area contained Old-Age Forest, and the relative coverage of the four instruments was similar as for Biodiversity Habitats. For all instruments, except Landscape Protection, the targeted areas contained significantly higher proportions of HCV-forest than areas not targeted by these instruments. Areas targeted by Strict Protection had higher proportions of HCV-forest than areas targeted by other instruments, except for areas targeted by Wilderness Area which showed similar proportions of Biodiversity Habitats. There was a substantial amount of spatial overlap between the policy tools, but no incremental conservation effect of overlapping instruments in terms of contributing to higher percentages of targeted HCV-forest. Our results reveal that although the current policy mix has an above average representation of forest of high conservation value, the targeting efficiency in terms of area overlap is limited. There is a need to improve forest conservation and a potential to cover this need by better

  4. Carbon annuities and their potential to preserve tropical forests and slow global warming: an application for small-scale farmers

    Energy Technology Data Exchange (ETDEWEB)

    Caviglia-Harris, J.L. [Salisbury University, Salisbury, MD (United States). Dept. of Economics and Finance; Kahn, J.R. [Washington and Lee University, Lexington, VA (United States). Dept. of Economics

    2003-07-01

    Carbon annuities have been suggested as a means for rewarding landowners for preserving forests and sequestering carbon. Although this is an intuitively appealing approach, the benefits of the sequestration activities have not been compared with the opportunity cost of preserving the forest. This paper represents an initial attempt at analysing how large carbon annuities must be to induce a landowner in the Amazonian rainforest to accept the annuity and leave the forest intact. The benefits of carbon sequestration are computed based on estimates in the literature on the carbon contained in a hectare of rainforest and the damages associated with a ton of carbon emissions. This is compared with information on household income from Rondonia, Brazil. Our results show that, for the majority of our conservative assumptions about the damages of carbon emissions, the magnitude of an annuity is greater than the income from agriculture. For less conservative assumptions about the damages from global warming, a fraction of the annuity would be a sufficient incentive for small- scale farmers to switch to sustainable techniques that leave the forest intact. (author)

  5. The impact of a shade coffee certification program on forest conservation: a case study from a wild coffee forest in Ethiopia.

    Science.gov (United States)

    Takahashi, Ryo; Todo, Yasuyuki

    2013-11-30

    In recent years, shade coffee certification programs have attracted increasing attention from conservation and development organizations. Certification programs offer an opportunity to link environmental and economic goals by providing a premium price to producers and thereby contributing to forest conservation. However, the significance of the conservation efforts of certification programs remains unclear because of a lack of empirical evidence. The purpose of this study was to examine the impact of a shade coffee certification program on forest conservation. The study was conducted in the Belete-Gera Regional Forest Priority Area in Ethiopia, and remote sensing data of 2005 and 2010 were used to gauge the change of forest area. Using propensity score matching estimation, we found that forests under the coffee certification program were less likely to be deforested than forests without forest coffee. By contrast, the difference in the degree of deforestation between forests with forest coffee but not under the certification program and forests with no forest coffee is statistically insignificant. These results suggest that the certification program has had a large effect on forest protection, decreasing the probability of deforestation by 1.7 percentage points. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Forest conservation in a changing world: natural or cultural? Example from the Western Carpathians forests, Romania

    Directory of Open Access Journals (Sweden)

    Angelica Feurdean

    2010-04-01

    Full Text Available In order to plan for the future management of some of the most biodiverse forests of Europe, it is essential that we understand under which condition they arose and the time and processes responsible for their variability. Here, I highlight the main findings from the palaeoecological (pollen and charcoal, archaeological and historical investigation comprising the last 6000 years, in the Apuseni Natural Park, NW Romania and discuss the effect of the past land use and forest management on these forests. I then ask what does it mean in term of conservation values if these forests are not natural but a human product and bring up the relevance of cultural landscape for conservation.

  7. Forest managment options for sequestering carbon in Mexico

    International Nuclear Information System (INIS)

    Masera, O.R.; Bellon, M.R.; Segura, G.

    1995-01-01

    This paper identifies and examines economic response options to avoid carbon emissions and increase carbon sequestration in Mexican forests. A ''Policy'' scenario covering the years 2000, 2010 and 2030 and a ''Technical Potential'' scenario (year 2030) are developed to examine the potential carbon sequestration and costs of each response option. Benefit-cost analyses for three case studies, including management of a pulpwood plantation, a native temperate forest and a native tropical evergreen forest are presented and discussed. The study suggests that a large potential for reducing carbon emissions and increasing carbon sequestration exists in Mexican forests. However, the achievement of this potential will require important reforms to the current institutional setting of the forest sector. The management of native temperate and tropical forests offers the most promising alternatives for carbon sequestration. The cost effectiveness of commercial plantations critically depends on very high site productivity. Restoration of degraded forest lands; particularly through the establishment of energy plantations, also shows a large carbon sequestration potential. (Author)

  8. National Proceedings: Forest and Conservation Nursery Associations - 2013

    Science.gov (United States)

    K. M. Wilkinson; D. L. Haase; J. R. Pinto

    2014-01-01

    These proceedings are a compilation of 14 papers that were presented at the regional meetings of the forest and conservation nursery associations in the United States in 2013. The Joint Northeast and Southern Forest Nursery Conference was held at the Holiday Inn City Centre, Lafayette, Indiana, July 22 to 25, 2013. Subject matter for the technical sections included...

  9. Political transition and emergent forest-conservation issues in Myanmar.

    Science.gov (United States)

    Prescott, Graham W; Sutherland, William J; Aguirre, Daniel; Baird, Matthew; Bowman, Vicky; Brunner, Jake; Connette, Grant M; Cosier, Martin; Dapice, David; De Alban, Jose Don T; Diment, Alex; Fogerite, Julia; Fox, Jefferson; Hlaing, Win; Htun, Saw; Hurd, Jack; LaJeunesse Connette, Katherine; Lasmana, Felicia; Lim, Cheng Ling; Lynam, Antony; Maung, Aye Chan; McCarron, Benjamin; McCarthy, John F; McShea, William J; Momberg, Frank; Mon, Myat Su; Myint, Than; Oberndorf, Robert; Oo, Thaung Naing; Phelps, Jacob; Rao, Madhu; Schmidt-Vogt, Dietrich; Speechly, Hugh; Springate-Baginski, Oliver; Steinmetz, Robert; Talbott, Kirk; Than, Maung Maung; Thaung, Tint Lwin; Thawng, Salai Cung Lian; Thein, Kyaw Min; Thein, Shwe; Tizard, Robert; Whitten, Tony; Williams, Guy; Wilson, Trevor; Woods, Kevin; Ziegler, Alan D; Zrust, Michal; Webb, Edward L

    2017-12-01

    Political and economic transitions have had substantial impacts on forest conservation. Where transitions are underway or anticipated, historical precedent and methods for systematically assessing future trends should be used to anticipate likely threats to forest conservation and design appropriate and prescient policy measures to counteract them. Myanmar is transitioning from an authoritarian, centralized state with a highly regulated economy to a more decentralized and economically liberal democracy and is working to end a long-running civil war. With these transitions in mind, we used a horizon-scanning approach to assess the 40 emerging issues most affecting Myanmar's forests, including internal conflict, land-tenure insecurity, large-scale agricultural development, demise of state timber enterprises, shortfalls in government revenue and capacity, and opening of new deforestation frontiers with new roads, mines, and hydroelectric dams. Averting these threats will require, for example, overhauling governance models, building capacity, improving infrastructure- and energy-project planning, and reforming land-tenure and environmental-protection laws. Although challenges to conservation in Myanmar are daunting, the political transition offers an opportunity for conservationists and researchers to help shape a future that enhances Myanmar's social, economic, and environmental potential while learning and applying lessons from other countries. Our approach and results are relevant to other countries undergoing similar transitions. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  10. A novel dendrochronological approach reveals drivers of carbon sequestration in tree species of riparian forests across spatiotemporal scales.

    Science.gov (United States)

    Rieger, Isaak; Kowarik, Ingo; Cherubini, Paolo; Cierjacks, Arne

    2017-01-01

    locally adapted forest management plans to increase carbon dioxide sequestration from the atmosphere in trees. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Potential and economics of forestry options for carbon sequestration in India

    International Nuclear Information System (INIS)

    Ravindranath, N.H.; Somashekhar, B.S.

    1995-01-01

    There is a need to understand the carbon (C) sequestration potential of the forestry option and its financial implications for each country. In India the C emissions from deforestation are estimated to be nearly offset by C sequestration in forests under succession and tree plantations. India has nearly succeeded in stabilizing the area under forests and has adequate forest conservation strategies. Biomass demands for softwood, hardwood and firewood are estimated to double or treble by the year 2020. A set of forestry options were developed to meet the projected biomass needs, and keeping in mind the features of land categories available, three scenarios were developed: potential; demand-driven; and programme-driven scenarios. Adoption of the demand-driven scenario, targeted at meeting the projected biomass needs, is estimated to sequester 78 Mt of C annually after accounting for all emissions resulting from clearfelling and end use of biomass. The demand-driven scenario is estimated to offset 50% of national C emission at 1990 level. The cost per t of C sequestered for forestry options is lower than the energy options considered. The annual investment required for implementing the demand-driven scenario is estimated to be US$ 2.1 billion for six years and is shown to be feasible. Among forestry options, the ranking based on investment cost per t of C sequestered from least cost to highest cost is; natural regeneration -agro-forestry-enhanced natural regeneration ( < US$ 2.5/t C) -timber-community-forestry (US$ 3.3 to 7.3 per t of C). (Author)

  12. Bird community conservation and carbon offsets in western North America.

    Science.gov (United States)

    Schuster, Richard; Martin, Tara G; Arcese, Peter

    2014-01-01

    Conservation initiatives to protect and restore valued species and communities in human-dominated landscapes face huge challenges linked to the cost of acquiring habitat. We ask how the sale of forest carbon offsets could reduce land acquisition costs, and how the alternate goals of maximizing α or β-diversity in focal communities could affect the prioritization land parcels over a range of conservation targets. Maximizing total carbon storage and carbon sequestration potential reduced land acquisition costs by up to 48%. Maximizing β rather than α-diversity within forest and savannah bird communities reduced acquisition costs by up to 15%, and when these solutions included potential carbon credit revenues, acquisition cost reductions up to 32% were achieved. However, the total cost of conservation networks increased exponentially as area targets increased in all scenarios. Our results indicate that carbon credit sales have the potential to enhance conservation outcomes in human-dominated landscapes by reducing the net acquisition costs of land conservation in old and maturing forests essential for the persistence of old forest plant and animal communities. Maximizing β versus α-diversity may further reduce costs by reducing the total area required to meet conservation targets and enhancing landscape heterogeneity. Although the potential value of carbon credit sales declined as a fraction of total acquisition costs, even conservative scenarios using a carbon credit value of $12.5/T suggest reductions in acquisition cost of up to $235 M, indicating that carbon credit sales could substantially reduce the costs of conservation.

  13. Enhancement of Carbon Sequestration in west coast Douglas-fir Forests with Nitrogen Fertilization

    Science.gov (United States)

    Chen, B.; Jassal, R.; Black, A.; Brummer, C.; Spittlehouse, D.; Nesic, Z.

    2008-12-01

    Fertilization is one of the eligible management practices for C sequestering and hence reducing CO2 emissions under Article 3.4 of the Kyoto Protocol. In the coastal regions of British Columbia, which have very little nitrogen (N) deposition from pollution sources owing to their remote location, and soils deficient in N (Hanley et al., 1996), Douglas-fir stands respond to N fertilization (Brix, 1981; Fisher and Binkley, 2000; Chapin et al., 2002). However, a major concern with N fertilization is the potential loss from the soil surface of the highly potent greenhouse gas N2O, and little is known about such losses in N-fertilized forest soils. While it is necessary to determine and quantify the effects of N fertilization on stand C sequestration, it is also important to address environmental concerns by measuring N2O emissions to determine the net greenhouse gas (GHG) global warming potential (GWP). The GWP of N2O is 296 times (100-year time horizon) greater than that of CO2 (Ehhalt and Prather, 2001), yet there is little information on its net radiative forcing as a result of forest fertilization. We report two years of results on the effects of N fertilization in a chronosequence of three Douglas-fir stands (7, 19 and 58 years old, hereafter referred to as HDF00, HDF88 and DF49, respectively) on net C sequestration or net primary productivity measured using the eddy-covariance technique. DF49 (110 ha) and HDF88 (20 ha) were aerially fertilized with urea at 200 kg N ha-1 on Jan 13 and Feb 17, 2007, respectively, while due to its young age and competing understory, fertilizer to HDF00 (5 ha) was manually applied at 80 g urea/tree (60 kg N ha-1) along the tree drip line on Feb 13-14, 2007. Additionally, we calculate the net change in GHG GWP resulting from fertilization of DF49 by accounting for N2O emissions and energy costs of fertilizer production, transport, and application. We also compare polymer-coated slow-release urea (Environmentally Smart Nitrogen (ESN

  14. Carbon Sequestration in Protected Areas: A Case Study of an Abies religiosa (H.B.K. Schlecht. et Cham Forest

    Directory of Open Access Journals (Sweden)

    Pablo I. Fragoso-López

    2017-11-01

    Full Text Available The effects of global climate change have highlighted forest ecosystems as a key element in reducing the amount of atmospheric carbon through photosynthesis. The objective of this study was to estimate the amount of carbon content and its percentage capture in a protected Abies religiosa forest in which the study area was zoned with satellite image analysis. Dendrometric and epidometric variables were used to determine the volume and increase of aerial biomass, and stored carbon and its capture rate using equations. The results indicate that this forest contains an average of 105.72 MgC ha−1, with an estimated sequestration rate of 1.03 MgC ha−1 yr−1. The results show that carbon capture increasing depends on the increase in volume. Therefore, in order to achieve the maximum yield in a forest, it is necessary to implement sustainable forest management that favors the sustained use of soil productivity.

  15. Interaction of ice storms and management practices on current carbon sequestration in forests with potential mitigation under future CO2 atmosphere

    Science.gov (United States)

    Heather R. McCarthy; Ram Oren; Hyun-Seok Kim; Kurt H. Johnsen; Chris Maier; Seth G. Pritchard; Michael A. Davis

    2006-01-01

    Ice storms are disturbance events with potential impacts on carbon sequestration. Common forest management practices, such as fertilization and thinning, can change wood and stand properties and thus may change vulnerability to ice storm damage. At the same time, increasing atmospheric CO2 levels may also influence ice storm vulnerability. Here...

  16. Propensity of farmers to conserve forest within REDD+ projects in areas affected by armed-conflict

    DEFF Research Database (Denmark)

    Nunez, Augusto Carlos Castro; Mertz, Ole; Quintero, Marcela

    2016-01-01

    design and application of forest conservation and climate change mitigation approaches such as the mechanism for Reducing Emissions from Deforestation and Forest Degradation (REDD. +) in such contexts remain little studied. Unanswered questions relate to the propensity of farmers in conflict affected...... Colombian government REDD. + activities. A household survey (n = 90) showed that four explanatory variables are significantly related to the 'propensity to conserve forest'. 'Harvest of non-timber forest products' (specifically bush meat) positively influences a farmer's propensity to conserve forest...

  17. Identification of areas in Brazil that optimize conservation of forest carbon, jaguars, and biodiversity.

    Science.gov (United States)

    De Barros, Alan E; MacDonald, Ewan A; Matsumoto, Marcelo H; Paula, Rogério C; Nijhawan, Sahil; Malhi, Y; MacDonald, David W

    2014-04-01

    A major question in global environmental policy is whether schemes to reduce carbon pollution through forest management, such as Reducing Emissions from Deforestation and Degradation (REDD+), can also benefit biodiversity conservation in tropical countries. We identified municipalities in Brazil that are priorities for reducing rates of deforestation and thus preserving carbon stocks that are also conservation targets for the endangered jaguar (Panthera onca) and biodiversity in general. Preliminary statistical analysis showed that municipalities with high biodiversity were positively associated with high forest carbon stocks. We used a multicriteria decision analysis to identify municipalities that offered the best opportunities for the conservation of forest carbon stocks and biodiversity conservation under a range of scenarios with different rates of deforestation and carbon values. We further categorized these areas by their representativeness of the entire country (through measures such as percent forest cover) and an indirect measure of cost (number of municipalities). The municipalities that offered optimal co-benefits for forest carbon stocks and conservation were termed REDDspots (n = 159), and their spatial distribution was compared with the distribution of current and proposed REDD projects (n = 135). We defined REDDspots as the municipalities that offer the best opportunities for co-benefits between the conservation of forest carbon stocks, jaguars, and other wildlife. These areas coincided in 25% (n = 40) of municipalities. We identified a further 95 municipalities that may have the greatest potential to develop additional REDD+ projects while also targeting biodiversity conservation. We concluded that REDD+ strategies could be an efficient tool for biodiversity conservation in key locations, especially in Amazonian and Atlantic Forest biomes. ©2013 Society for Conservation Biology.

  18. Socio- cultural importance of sacred forests conservation in south ...

    African Journals Online (AJOL)

    Sacred forests have been an important part of many African traditional societies for decades. This is an example of in-situ biodiversity conservation, which has supported various ecosystem functions. This study highlighted various approaches used by communities to enhance the socio- cultural importance of sacred forest ...

  19. The impact of a shade coffee certification program on forest conservation using remote sensing and household data

    International Nuclear Information System (INIS)

    Takahashi, Ryo; Todo, Yasuyuki

    2014-01-01

    In recent years, shade coffee certification programs have attracted increasing attention from forest conservation and development organizations. The certification programs could be expected to promote forest conservation by providing a premium price to shade coffee producers. However, little is known about the significance of the conservation efforts generated by certification programs. In particular, the relationship between the impact of the certification and producer characteristics has yet to be examined. The purpose of this study, which was conducted in Ethiopia, was to examine the impact of a shade coffee certification program on forest conservation and its relationship with the socioeconomic characteristics of the producers. Remote sensing data of 2005 and 2010 was used to gauge the changes in forest area. Employing a probit model, we found that a forest coffee area being certified increased the probability of forest conservation by 19.3 percentage points relative to forest coffee areas lacking certification. We also found that although economically poor producers tended to engage in forest clearing, the forest coffee certification program had a significant impact on these producers. This result suggests that the certification program significantly affects the behaviors of economically poor producers and motivates these producers to conserve the forest. -- Highlights: • We employed the probit mode to evaluate the impact of the shade coffee certification on forest conservation in Ethiopia. • We estimated how the impact of the certification varied among producers with different characteristics. • The certification increased the probability of conserving forest by 19.3 percentage points. • Certification program motivated the economically poor producers to conserve the forest

  20. The impact of a shade coffee certification program on forest conservation using remote sensing and household data

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryo, E-mail: inter.takahashi@gmail.com [Policy Research Center, National Graduate Institute for Policy Studies, 7-22-1, Roppongi, Minato-ku, Tokyo 106-8677 (Japan); Todo, Yasuyuki, E-mail: yastodo@k.u-tokyo.ac.jp [Department of International Studies, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan)

    2014-01-15

    In recent years, shade coffee certification programs have attracted increasing attention from forest conservation and development organizations. The certification programs could be expected to promote forest conservation by providing a premium price to shade coffee producers. However, little is known about the significance of the conservation efforts generated by certification programs. In particular, the relationship between the impact of the certification and producer characteristics has yet to be examined. The purpose of this study, which was conducted in Ethiopia, was to examine the impact of a shade coffee certification program on forest conservation and its relationship with the socioeconomic characteristics of the producers. Remote sensing data of 2005 and 2010 was used to gauge the changes in forest area. Employing a probit model, we found that a forest coffee area being certified increased the probability of forest conservation by 19.3 percentage points relative to forest coffee areas lacking certification. We also found that although economically poor producers tended to engage in forest clearing, the forest coffee certification program had a significant impact on these producers. This result suggests that the certification program significantly affects the behaviors of economically poor producers and motivates these producers to conserve the forest. -- Highlights: • We employed the probit mode to evaluate the impact of the shade coffee certification on forest conservation in Ethiopia. • We estimated how the impact of the certification varied among producers with different characteristics. • The certification increased the probability of conserving forest by 19.3 percentage points. • Certification program motivated the economically poor producers to conserve the forest.

  1. Integrating the avoidance of forest degradation into systematic conservation planning in the Eastern Amazon

    Science.gov (United States)

    Ferreira, J.; Barlow, J.; Thompson, J.; Berenguer, E.; Aragão, L. E.; Lees, A.; Lennox, G.; Brancalion, P.; Ferraz, S.; Moura, N.; Oliveira, V. H.; Louzada, J.; Solar, R.; Nunes, S.; Parry, L.; Fonseca, T.; Garrett, R.; Vieira, I.; MacNally, R.; Gardner, T.

    2017-12-01

    Undisturbed forests are becoming increasingly rare in the tropics. The area of forest degraded by some form of disturbance, such as logging or fire, in the Brazilian Amazon now greatly exceeds that which had been deforested. Yet forest policy in the Amazon, as elsewhere in the tropics, remains overwhelmingly focused curbing the rate of forest loss without considering impacts on forest quality. We use a unique data set from the Sustainable Amazon Network (RAS), in the eastern Brazilian Amazon to assess the impacts of forest disturbance on biodiversity and assess the benefits of including avoided degradation measures in conservation planning. Biodiversity data on trees and fauna from two large regions, Santarém and Paragominas, were combined with remote sensing data to model biodiversity patterns as well as estimates of above-ground carbon stocks across a range of land-use types and forest conditions. We found that impact of forest disturbance on biodiversity loss in the state of Pará equates to double that lost from deforestation alone, -the equivalent of losing 92,000-139,000 km2 of primary forest. We found a strong positive relationship between increasing carbon stocks and higher biodiversity in varyingly disturbed forests. Simulations demonstrated that a carbon-focused conservation strategy is least effective at conserving biodiversity in the least disturbed forests, highlighting the importance of on-the-ground biodiversity surveys to prioritise conservation investments in the most species rich forests. We explored trade-offs among management actions to guide priorities for habitat protection, avoided degradation and restoration and found that where restoration imposes significant opportunity and implementation costs, efforts to avoid and reverse the degradation of existing forests can deliver greater returns on investment for biodiversity conservation. Systemic planning of forest management options at regional scales can substantially improve biodiversity

  2. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    Energy Technology Data Exchange (ETDEWEB)

    Burger, James A

    2005-07-20

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. We are currently estimating the acreage of lands in Virginia, West Virginia, Kentucky, Ohio, and Pennsylvania mined under SMCRA and reclaimed to non-forested post-mining land uses that are not currently under active management, and therefore can be considered as available for carbon sequestration. To determine actual sequestration under different forest management scenarios, a field study was installed as a 3 x 3 factorial in a random complete block design with three replications at each of three locations, one each in Ohio, West Virginia, and Virginia. The treatments included three forest types (white pine, hybrid poplar, mixed hardwood) and three silvicultural regimes (competition control, competition control plus tillage, competition control plus tillage plus fertilization). Each individual treatment plot is 0.5 acres. Each block of nine plots is 4.5 acres, and the complete installation at each site is 13.5 acres. During the reporting period we determined that by grinding the soil samples to a finer particle size of less than 250 μm (sieve No. 60), the effect of mine soil coal particle size on the extent to which these particles will be oxidized during the thermal treatment of the carbon partitioning procedure will be eliminated, thus making the procedure more accurate and precise. In the second phase of the carbon sequestration project, we focused our attention on determining the sample size required for carbon accounting on grassland mined fields in order to achieve a desired accuracy and precision of the final soil organic carbon (SOC) estimate. A mine land site quality classification scheme was developed and some field-testing of the methods of implementation was completed. The classification model

  3. Biodiversity Conservation and the Sacred Forests of Emohua, Rivers ...

    African Journals Online (AJOL)

    These sacred sites are regarded as the temples of god by the local people due to their beliefs, but technically the forests are centres of biodiversity. In recent times, anthropogenic interference activities expose the forest to threat and challenges which make the development and adoption of conservation strategies inevitable.

  4. Implementation of the program for conservation and sustainable utilization of forest genetic resources in Republic of Serbia

    Directory of Open Access Journals (Sweden)

    Šijačić-Nikolić Mirjana

    2017-01-01

    Full Text Available Program for conservation and sustainable utilization of forest genetic resources has been defined for 2016-2025 period and it is a base for concrete activities in this field. This Program could be divided into several parts that deal with: the legal framework for the conservation and sustainable utilization of forest genetic resources; status of forest genetic resources in Serbia; previous activities on the conservation of forest genetic resources; and objectives, priorities and measures of conservation. The Program should have an impact on the development of the forestry sector through the following activities: conservation and sustainable utilization of the available gene pool; improving forest management in accordance with conservation principles; improving the production of reproductive material of forest trees; make the public awareness of the need for conservation and sustainable utilization of forest genetic resources; fulfillment of international obligations related to this field and the possibility of joining FAO activities related to forest genetic resources - development of the national report as a part of the publication The State of the World's Forest Genetic Resources. Implementation of the Program will depend upon raising the awareness on the importance, conservation and sustainable utilization of forest genetic resources, as a precondition for the forests survival; it will depend of funds that will be allocated for this purpose and enthusiasm of people who deal with these issues.

  5. Conservation in a crowded place : forest and people on Mount Elgon Uganda

    NARCIS (Netherlands)

    Sassen, M.

    2014-01-01

    Key words: tropical forest, conservation management, local livelihoods, forest cover change, disturbance, fuelwood, forest structure, species richness, biomass, Mount Elgon

    A growing world population has important consequences for forests. In this study I

  6. Carbon sequestration via wood harvest and storage: An assessment of its harvest potential

    DEFF Research Database (Denmark)

    Zeng, Ning; King, Anthony W.; Zaitchik, Ben

    2013-01-01

    A carbon sequestration strategy has recently been proposed in which a forest is actively managed, and a fraction of the wood is selectively harvested and stored to prevent decomposition. The forest serves as a ‘carbon scrubber’ or ‘carbon remover’ that provides continuous sequestration (negative ...... to be managed this way on half of the world’s forested land, or on a smaller area but with higher harvest intensity.We recommendWHS be considered part of the portfolio of climate mitigation and adaptation options that needs further research....

  7. Forest gene conservation from the perspective of the international community

    Science.gov (United States)

    M. Hosny El-Lakany

    2017-01-01

    conservation of forest genetic resources (FGR). After presenting internationally adopted definitions of some terms related to FGR, the characteristics of the current state of FGR conservation from a global perspective are summarized. Many international and regional organizations and institutions are engaged in the conservation of FGR at degrees ranging from...

  8. Capacity of US Forests to Maintain Existing Carbon Sequestration will be affected by Changes in Forest Disturbances and to a greater extent, the Economic and Societal Influences on Forest Management and Land Use

    Science.gov (United States)

    Joyce, L. A.; Running, S. W.; Breshears, D. D.; Dale, V.; Malmsheimer, R. W.; Sampson, N.; Sohngen, B.; Woodall, C. W.

    2012-12-01

    Increasingly the value of US forest carbon dynamics and carbon sequestration is being recognized in discussions of adaptation and mitigation to climate change. Past exploitation of forestlands in the United States for timber, fuelwood, and conversion to agriculture resulted in large swings in forestland area and terrestrial carbon dynamics. The National Climate Assessment explored the implications of current and future stressors, including climate change, to the future of forest carbon dynamics in the United States. While U.S forests and associated harvested wood products sequestered roughly 13 percent of all carbon dioxide emitted in the United States in 2010, the capacity of forests to maintain this amount of carbon sequestration will be affected by the effects of climate change on forest disturbances, tree growth and mortality, changes in species composition, and to a greater extent, the economic and societal influences on forest management and forestland use. Carbon mitigation through forest management includes three strategies: 1) land management to increase forest area (afforestation) and/or avoid deforestation; 2) carbon management in existing forests; and 3) use of wood in place of materials that require more carbon emissions to produce, in place of fossil fuels to produce energy or in wood products for carbon storage. A significant financial incentive facing many private forest owners is the value of their forest lands for conversion to urban or developed uses. In addition, consequences of large scale die-off and wildfire disturbance events from climate change pose major challenges to forestland area and forest management with potential impacts occurring up to regional scales for timber, flooding and erosion risks, other changes in water budgets, and biogeochemical changes including carbon storage. Options for carbon management on existing forests include practices that increase forest growth such as fertilization, irrigation, switch to fast

  9. USDA Forest Service Roadless Areas: Potential Biodiversity Conservation Reserves

    Directory of Open Access Journals (Sweden)

    Colby Loucks

    2003-12-01

    Full Text Available In January 2001, approximately 23 x 106 ha of land in the U.S. National Forest System were slated to remain roadless and protected from timber extraction under the Final Roadless Conservation Rule. We examined the potential contributions of these areas to the conservation of biodiversity. Using GIS, we analyzed the concordance of inventoried roadless areas (IRAs with ecoregion-scale biological importance and endangered and imperiled species distributions on a scale of 1:24,000. We found that more than 25% of IRAs are located in globally or regionally outstanding ecoregions and that 77% of inventoried roadless areas have the potential to conserve threatened, endangered, or imperiled species. IRAs would increase the conservation reserve network containing these species by 156%. We further illustrate the conservation potential of IRAs by highlighting their contribution to the conservation of the grizzly bear (Ursos arctos, a wide-ranging carnivore. The area created by the addition of IRAs to the existing system of conservation reserves shows a strong concordance with grizzly bear recovery zones and habitat range. Based on these findings, we conclude that IRAs belonging to the U.S. Forest Service are one of the most important biotic areas in the nation, and that their status as roadless areas could have lasting and far-reaching effects for biodiversity conservation.

  10. Efficiency of protected areas in Amazon and Atlantic Forest conservation: A spatio-temporal view

    Science.gov (United States)

    Sobral-Souza, Thadeu; Vancine, Maurício Humberto; Ribeiro, Milton Cezar; Lima-Ribeiro, Matheus S.

    2018-02-01

    The Amazon and Atlantic Forest are considered the world's most biodiverse biomes. Human and climate change impacts are the principal drivers of species loss in both biomes, more severely in the Atlantic Forest. In response to species loss, the main conservation action is the creation of protected areas (PAs). Current knowledge and research on the PA network's conservation efficiency is scarce, and existing studies have mainly considered a past temporal view. In this study, we tested the efficiency of the current PA network to maintain climatically stable areas (CSAs) across the Amazon and Atlantic Forest. To this, we used an ecological niche modeling approach to biome and paleoclimatic simulations. We propose three categories of conservation priority areas for both biomes, considering CSAs, PAs and intact forest remnants. The biomes vary in their respective PA networks' protection efficiency. Regarding protect CSAs, the Amazon PA network is four times more efficient than the Atlantic Forest PA network. New conservation efforts in these two forest biomes require different approaches. We discussed the conservation actions that should be taken in each biome to increase the efficiency of the PA network, considering both the creation and expansion of PAs as well as restoration programs.

  11. The Declining Cocoa Economy and the Atlantic Forest of Southern Bahia, Brazil: Conservation Attitudes of Cocoa Planters.

    Science.gov (United States)

    Alger, Keith; Caldas, Marcellus

    1994-01-01

    Causes of the degradation of Brazilian Atlantic Forest in the southeastern cocoa region of the State of Bahia are investigated by means of a survey on cocoa planter's forest conservation attitudes. Policies encouraging private forest conservation, and development of forest-conserving agricultural alternatives for landless poor are recommended. (LZ)

  12. Variation in carbon stocks on different slope aspects in seven major forest types of temperate region of Garhwal Himalaya, India.

    Science.gov (United States)

    Sharma, C M; Gairola, Sumeet; Baduni, N P; Ghildiyal, S K; Suyal, Sarvesh

    2011-09-01

    The present study was undertaken in seven major forest types of temperate zone (1500 m a.s.l. to 3100 m a.s.l.) of Garhwal Himalaya to understand the effect of slope aspects on carbon (C) density and make recommendations for forest management based on priorities for C conservation/sequestration. We assessed soil organic carbon (SOC) density, tree density, biomass and soil organic carbon (SOC) on four aspects, viz. north/east (NE), north/west (NW), south-east (SE) and south-west (SW), in forest stands dominated by Abies pindrow, Cedrus deodara, Pinus roxburghii, Cupressus torulosa, Quercus floribunda, Quercus semecarpifolia and Quercus leucotrichophora. TCD ranged between 77.3 CMg ha⁻¹ on SE aspect (Quercus leucotrichophora forest) and 291.6 CMg ha⁻¹ on NE aspect (moist Cedrus deodara forest). SOC varied between 40.3 CMg ha⁻¹ on SW aspect (Himalayan Pinus roxburghii forest) and 177.5 CMg ha⁻¹ on NE aspect (moist Cedrus deodara forest). Total C density (SOC+TCD) ranged between 118.1 CMg ha⁻¹ on SW aspect (Himalayan Pinus roxburghii forest) and 469.1 CMg ha⁻¹ on NE aspect (moist Cedrus deodara forest). SOC and TCD were significantly higher on northern aspects as compared with southern aspects. It is recommended that for C sequestration, the plantation silviculture be exercised on northern aspects, and for C conservation purposes, mature forest stands growing on northern aspects be given priority.

  13. Measuring and explaining the willingness to pay for forest conservation: evidence from a survey experiment in Brazil

    Science.gov (United States)

    Bakaki, Zorzeta; Bernauer, Thomas

    2016-11-01

    Recent research suggests that there is substantial public support (including willingness to pay) for forest conservation. Based on a nationwide survey experiment in Brazil (N = 2500) the largest and richest of the world’s tropical developing countries, we shed new light on this issue. To what extent does the public in fact support forest conservation and what factors are influencing support levels? Unlike previous studies, our results show that the willingness to pay for tropical forest conservation in Brazil is rather low. Moreover, framing forest conservation in terms of biodiversity protection, which tends to create more local benefits, does not induce more support than framing conservation in terms of mitigating global climate change. The results also show that low levels of trust in public institutions have a strong negative impact on the public’s willingness to pay for forest conservation, individually and/or via government spending. What could other (richer) countries do, in this context, to encourage forest conservation in Brazil and other tropical developing countries? One key issue is whether prospects of foreign funding for forest conservation are likely to crowd out or, conversely, enhance the motivation for domestic level conservation efforts. We find that prospects of foreign funding have no significant effect on willingness to pay for forest conservation. These findings have at least three policy implications, namely, that the Brazilian public’s willingness to pay for forest conservation is very limited, that large-scale international funding is probably needed, and that such funding is unlikely to encourage more domestic effort, but is also unlikely to crowd out domestic efforts. Restoring public trust in the Brazilian government is key to increasing public support for forest conservation in Brazil.

  14. Somatic embryogenesis and cryostorage for conservation and restoration of threatened forest trees

    Science.gov (United States)

    S.A. Merkle; A.R. Tull; H.J. Gladfelter; P.M. Montello; J.E. Mitchell; C. Ahn; R.D. McNeill

    2017-01-01

    Threats to North American forest trees from exotic pests and pathogens or habitat loss, make it imperative that every available tool be employed for conservation and restoration of these at risk species. One such tool, in vitro propagation, could greatly enhance conservation of forest tree genetic material and selection and breeding of resistant or...

  15. Spatial and temporal patterns of carbon storage in forest ecosystems on Hainan island, southern China.

    Science.gov (United States)

    Ren, Hai; Li, Linjun; Liu, Qiang; Wang, Xu; Li, Yide; Hui, Dafeng; Jian, Shuguang; Wang, Jun; Yang, Huai; Lu, Hongfang; Zhou, Guoyi; Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993-2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices.

  16. 75 FR 70083 - Emergency Forest Restoration Program and Emergency Conservation Program

    Science.gov (United States)

    2010-11-17

    ... Restoration Program and Emergency Conservation Program AGENCY: Farm Service Agency, USDA. ACTION: Interim rule. SUMMARY: The Farm Service Agency (FSA) is amending regulations as required by the Food, Conservation, and... as follows: PART 701--EMERGENCY CONSERVATION PROGRAM, EMERGENCY FOREST RESTORATION PROGRAM, AND...

  17. Conserving forest biodiversity across multiple land ownerships: lessons from the Northwest Forest Plan and the Southeast Queensland Regional Forests Agreement (Australia).

    Science.gov (United States)

    C.A. McAlpine; T.A. Spies; P. Norman; A. Peterson

    2007-01-01

    As the area of the world's forests shrinks, the management of production forests is becoming increasingly paramount for biodiversity conservation. In the United States and Australia, public debate and controversy about the management of production forests during the later decades of the 20th century resulted in governments adopting sweeping top-down changes to...

  18. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests.

    Science.gov (United States)

    Keith, Heather; Mackey, Brendan G; Lindenmayer, David B

    2009-07-14

    From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized.

  19. Re-evaluation of forest biomass carbon stocks and lessons from the world's most carbon-dense forests

    Science.gov (United States)

    Keith, Heather; Mackey, Brendan G.; Lindenmayer, David B.

    2009-01-01

    From analysis of published global site biomass data (n = 136) from primary forests, we discovered (i) the world's highest known total biomass carbon density (living plus dead) of 1,867 tonnes carbon per ha (average value from 13 sites) occurs in Australian temperate moist Eucalyptus regnans forests, and (ii) average values of the global site biomass data were higher for sampled temperate moist forests (n = 44) than for sampled tropical (n = 36) and boreal (n = 52) forests (n is number of sites per forest biome). Spatially averaged Intergovernmental Panel on Climate Change biome default values are lower than our average site values for temperate moist forests, because the temperate biome contains a diversity of forest ecosystem types that support a range of mature carbon stocks or have a long land-use history with reduced carbon stocks. We describe a framework for identifying forests important for carbon storage based on the factors that account for high biomass carbon densities, including (i) relatively cool temperatures and moderately high precipitation producing rates of fast growth but slow decomposition, and (ii) older forests that are often multiaged and multilayered and have experienced minimal human disturbance. Our results are relevant to negotiations under the United Nations Framework Convention on Climate Change regarding forest conservation, management, and restoration. Conserving forests with large stocks of biomass from deforestation and degradation avoids significant carbon emissions to the atmosphere, irrespective of the source country, and should be among allowable mitigation activities. Similarly, management that allows restoration of a forest's carbon sequestration potential also should be recognized. PMID:19553199

  20. Conservation and Livelihood Impacts of Decentralized Forest Governance in Ethiopia

    DEFF Research Database (Denmark)

    Yietagesu, Aklilu Ameha

    expected outcomes of PFM. In the four articles that form the thesis, the study argues that the PFM programme in Ethiopia contributes to forest conservation compared to other types of management regimes. However, conservation is also challenged mainly by lack of support from the authorities to forest user...... groups. Though various pilot projects have contributed valuable experiences on the performance of PFM in Ethiopia, the programme is currently being scaled up to the national level without taking these into account. Indeed, the PFM up-scaling programme remains based on the discretion of the individual...

  1. Carbon sequestration via wood burial

    Directory of Open Access Journals (Sweden)

    Zeng Ning

    2008-01-01

    Full Text Available Abstract To mitigate global climate change, a portfolio of strategies will be needed to keep the atmospheric CO2 concentration below a dangerous level. Here a carbon sequestration strategy is proposed in which certain dead or live trees are harvested via collection or selective cutting, then buried in trenches or stowed away in above-ground shelters. The largely anaerobic condition under a sufficiently thick layer of soil will prevent the decomposition of the buried wood. Because a large flux of CO2 is constantly being assimilated into the world's forests via photosynthesis, cutting off its return pathway to the atmosphere forms an effective carbon sink. It is estimated that a sustainable long-term carbon sequestration potential for wood burial is 10 ± 5 GtC y-1, and currently about 65 GtC is on the world's forest floors in the form of coarse woody debris suitable for burial. The potential is largest in tropical forests (4.2 GtC y-1, followed by temperate (3.7 GtC y-1 and boreal forests (2.1 GtC y-1. Burying wood has other benefits including minimizing CO2 source from deforestation, extending the lifetime of reforestation carbon sink, and reducing fire danger. There are possible environmental impacts such as nutrient lock-up which nevertheless appears manageable, but other concerns and factors will likely set a limit so that only part of the full potential can be realized. Based on data from North American logging industry, the cost for wood burial is estimated to be $14/tCO2($50/tC, lower than the typical cost for power plant CO2 capture with geological storage. The cost for carbon sequestration with wood burial is low because CO2 is removed from the atmosphere by the natural process of photosynthesis at little cost. The technique is low tech, distributed, easy to monitor, safe, and reversible, thus an attractive option for large-scale implementation in a world-wide carbon market.

  2. Forest Conservation Opportunity Areas - Liberal Model (ECO_RES.COA_FORREST33)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This layer designates areas with potential for forest conservation. These are areas of natural or semi-natural forest land cover patches that are at least 75 meters...

  3. Carbon sequestration in wood products: a method for attribution to multiple parties

    International Nuclear Information System (INIS)

    Tonn, Bruce; Marland, Gregg

    2007-01-01

    When forest is harvested some of the forest carbon ends up in wood products. If the forest is managed so that the standing stock of the forest remains constant over time, and the stock of wood products is increasing, then carbon dioxide is being removed from the atmosphere in net and this should be reflected in accounting for greenhouse gas emissions. We suggest that carbon sequestration in wood products requires cooperation of multiple parties; from the forest owner to the product manufacturer to the product user, and perhaps others. Credit for sequestering carbon away from the atmosphere could acknowledge the contributions of these multiple parties. Accounting under a cap-and-trade or tax system is not necessarily an inventory system, it is a system designed to motivate and/or reward an environmental objective. We describe a system of attribution whereby credits for carbon sequestration would be shared among multiple, contributing parties. It is hoped that the methodology outlined herein proves attractive enough to parties concerned to spur them to address the details of such a system. The system of incentives one would choose for limiting or controlling greenhouse gas emissions could be quite different, depending on how the attribution for emissions and sequestration is chosen

  4. Carbon storage and sequestration by trees in urban and community areas of the United States

    International Nuclear Information System (INIS)

    Nowak, David J.; Greenfield, Eric J.; Hoehn, Robert E.; Lapoint, Elizabeth

    2013-01-01

    Carbon storage and sequestration by urban trees in the United States was quantified to assess the magnitude and role of urban forests in relation to climate change. Urban tree field data from 28 cities and 6 states were used to determine the average carbon density per unit of tree cover. These data were applied to statewide urban tree cover measurements to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole tree carbon storage densities average 7.69 kg C m −2 of tree cover and sequestration densities average 0.28 kg C m −2 of tree cover per year. Total tree carbon storage in U.S. urban areas (c. 2005) is estimated at 643 million tonnes ($50.5 billion value; 95% CI = 597 million and 690 million tonnes) and annual sequestration is estimated at 25.6 million tonnes ($2.0 billion value; 95% CI = 23.7 million to 27.4 million tonnes). -- Highlights: •Total tree carbon storage in U.S. urban areas (c. 2005) is estimated at 643 million tonnes. •Total tree carbon storage in U.S. urban and community areas is estimated at 1.36 billion tonnes. •Net carbon sequestration in U.S. urban areas varies by state and is estimated at 18.9 million tonnes per year. •Overlap between U.S. forest and urban forest carbon estimates is between 247 million and 303 million tonnes. -- Field and tree cover measurements reveal carbon storage and sequestration by trees in U.S. urban and community areas

  5. From sink to source: Regional variation in U.S. forest carbon futures.

    Science.gov (United States)

    Wear, David N; Coulston, John W

    2015-11-12

    The sequestration of atmospheric carbon (C) in forests has partially offset C emissions in the United States (US) and might reduce overall costs of achieving emission targets, especially while transportation and energy sectors are transitioning to lower-carbon technologies. Using detailed forest inventory data for the conterminous US, we estimate forests' current net sequestration of atmospheric C to be 173 Tg yr(-1), offsetting 9.7% of C emissions from transportation and energy sources. Accounting for multiple driving variables, we project a gradual decline in the forest C emission sink over the next 25 years (to 112 Tg yr(-1)) with regional differences. Sequestration in eastern regions declines gradually while sequestration in the Rocky Mountain region declines rapidly and could become a source of atmospheric C due to disturbances such as fire and insect epidemics. C sequestration in the Pacific Coast region stabilizes as forests harvested in previous decades regrow. Scenarios simulating climate-induced productivity enhancement and afforestation policies increase sequestration rates, but would not fully offset declines from aging and forest disturbances. Separating C transfers associated with land use changes from sequestration clarifies forests' role in reducing net emissions and demonstrates that retention of forest land is crucial for protecting or enhancing sink strength.

  6. Forests planted for ecosystem restoration or conservation.

    Science.gov (United States)

    Constance A. Harrington

    1999-01-01

    Although the phrase, "planting for ecosystem restoration," is of recent origin, many of the earliest large-scale tree plantings were made for what we now refer to as "'restoration" or "conservation" goals. Forest restoration activities may be needed when ecosystems are disturbed by either natural or anthropogenic forces. Disturbances...

  7. Experiences from the Brazilian Atlantic Forest: ecological findings and conservation initiatives.

    Science.gov (United States)

    Joly, Carlos A; Metzger, Jean Paul; Tabarelli, Marcelo

    2014-11-01

    The Brazilian Atlantic Forest hosts one of the world's most diverse and threatened tropical forest biota. In many ways, its history of degradation describes the fate experienced by tropical forests around the world. After five centuries of human expansion, most Atlantic Forest landscapes are archipelagos of small forest fragments surrounded by open-habitat matrices. This 'natural laboratory' has contributed to a better understanding of the evolutionary history and ecology of tropical forests and to determining the extent to which this irreplaceable biota is susceptible to major human disturbances. We share some of the major findings with respect to the responses of tropical forests to human disturbances across multiple biological levels and spatial scales and discuss some of the conservation initiatives adopted in the past decade. First, we provide a short description of the Atlantic Forest biota and its historical degradation. Secondly, we offer conceptual models describing major shifts experienced by tree assemblages at local scales and discuss landscape ecological processes that can help to maintain this biota at larger scales. We also examine potential plant responses to climate change. Finally, we propose a research agenda to improve the conservation value of human-modified landscapes and safeguard the biological heritage of tropical forests. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  8. Protected areas: mixed success in conserving East Africa's evergreen forests.

    Science.gov (United States)

    Pfeifer, Marion; Burgess, Neil D; Swetnam, Ruth D; Platts, Philip J; Willcock, Simon; Marchant, Robert

    2012-01-01

    In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs) are intended to conserve habitats and species. Variability in PA effectiveness and 'leakage' (here defined as displacement of deforestation) may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa between 2001 and 2009, and test for correlations with forest accessibility and environmental drivers. We investigate PA effectiveness at local, landscape and national scales, comparing rates of deforestation within park boundaries with those detected in park buffer zones and in unprotected land more generally. Background forest loss (BFL) was estimated at -9.3% (17,167 km(2)), but varied between countries (range: -0.9% to -85.7%; note: no BFL in South Sudan). We document high variability in PA effectiveness within and between PA categories. The most successful PAs were National Parks, although only 26 out of 48 parks increased or maintained their forest area (i.e. Effective parks). Forest Reserves (Ineffective parks, i.e. parks that lose forest from within boundaries: 204 out of 337), Nature Reserves (six out of 12) and Game Parks (24 out of 26) were more likely to lose forest cover. Forest loss in buffer zones around PAs exceeded background forest loss, in some areas indicating leakage driven by Effective National Parks. Human pressure, forest accessibility, protection status, distance to fires and long-term annual rainfall were highly significant drivers of forest loss in East Africa. Some of these factors can be addressed by adjusting park management. However, addressing close links between livelihoods, natural capital and poverty remains a fundamental challenge in East Africa's forest conservation efforts.

  9. Protected areas: mixed success in conserving East Africa's evergreen forests.

    Directory of Open Access Journals (Sweden)

    Marion Pfeifer

    Full Text Available In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs are intended to conserve habitats and species. Variability in PA effectiveness and 'leakage' (here defined as displacement of deforestation may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa between 2001 and 2009, and test for correlations with forest accessibility and environmental drivers. We investigate PA effectiveness at local, landscape and national scales, comparing rates of deforestation within park boundaries with those detected in park buffer zones and in unprotected land more generally. Background forest loss (BFL was estimated at -9.3% (17,167 km(2, but varied between countries (range: -0.9% to -85.7%; note: no BFL in South Sudan. We document high variability in PA effectiveness within and between PA categories. The most successful PAs were National Parks, although only 26 out of 48 parks increased or maintained their forest area (i.e. Effective parks. Forest Reserves (Ineffective parks, i.e. parks that lose forest from within boundaries: 204 out of 337, Nature Reserves (six out of 12 and Game Parks (24 out of 26 were more likely to lose forest cover. Forest loss in buffer zones around PAs exceeded background forest loss, in some areas indicating leakage driven by Effective National Parks. Human pressure, forest accessibility, protection status, distance to fires and long-term annual rainfall were highly significant drivers of forest loss in East Africa. Some of these factors can be addressed by adjusting park management. However, addressing close links between livelihoods, natural capital and poverty remains a fundamental challenge in East Africa's forest conservation efforts.

  10. Interactions between carbon sequestration and shade tree diversity in a smallholder coffee cooperative in El Salvador.

    Science.gov (United States)

    Richards, Meryl Breton; Méndez, V Ernesto

    2014-04-01

    Agroforestry systems have substantial potential to conserve native biodiversity and provide ecosystem services. In particular, agroforestry systems have the potential to conserve native tree diversity and sequester carbon for climate change mitigation. However, little research has been conducted on the temporal stability of species diversity and aboveground carbon stocks in these systems or the relation between species diversity and aboveground carbon sequestration. We measured changes in shade-tree diversity and shade-tree carbon stocks in 14 plots of a 35-ha coffee cooperative over 9 years and analyzed relations between species diversity and carbon sequestration. Carbon sequestration was positively correlated with initial species richness of shade trees. Species diversity of shade trees did not change significantly over the study period, but carbon stocks increased due to tree growth. Our results show a potential for carbon sequestration and long-term biodiversity conservation in smallholder coffee agroforestry systems and illustrate the opportunity for synergies between biodiversity conservation and climate change mitigation. © 2013 Society for Conservation Biology.

  11. Lead sequestration and species redistribution during soil organic matter decomposition

    Science.gov (United States)

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  12. Forest Conservation in Costa Rica: when nonuse benefits are uncertain but rising

    NARCIS (Netherlands)

    Bulte, E.H.; Soest, van D.P.; Kooten, van G.C.; Schipper, R.A.

    2002-01-01

    Stochastic dynamic programming is used to investigate optimal holding of primary tropical forest in humid Costa Rica when future nonuse benefits of forest conservation are uncertain and increasing. The quasi-option value of maintaining primary forests is included as a component of investment in

  13. Protected Areas: Mixed Success in Conserving East Africa's Evergreen Forests

    OpenAIRE

    Pfeifer, Marion; Burgess, Neil D.; Swetnam, Ruth D.; Platts, Philip J.; Willcock, Simon; Marchant, Robert

    2012-01-01

    In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs) are intended to conserve habitats and species. Variability in PA effectiveness and 'leakage' (here defined as displacement of deforestation) may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa ...

  14. Identifying Priority Areas for Conservation: A Global Assessment for Forest-Dependent Birds

    Science.gov (United States)

    Buchanan, Graeme M.; Donald, Paul F.; Butchart, Stuart H. M.

    2011-01-01

    Limited resources are available to address the world's growing environmental problems, requiring conservationists to identify priority sites for action. Using new distribution maps for all of the world's forest-dependent birds (60.6% of all bird species), we quantify the contribution of remaining forest to conserving global avian biodiversity. For each of the world's partly or wholly forested 5-km cells, we estimated an impact score of its contribution to the distribution of all the forest bird species estimated to occur within it, and so is proportional to the impact on the conservation status of the world's forest-dependent birds were the forest it contains lost. The distribution of scores was highly skewed, a very small proportion of cells having scores several orders of magnitude above the global mean. Ecoregions containing the highest values of this score included relatively species-poor islands such as Hawaii and Palau, the relatively species-rich islands of Indonesia and the Philippines, and the megadiverse Atlantic Forests and northern Andes of South America. Ecoregions with high impact scores and high deforestation rates (2000–2005) included montane forests in Cameroon and the Eastern Arc of Tanzania, although deforestation data were not available for all ecoregions. Ecoregions with high impact scores, high rates of recent deforestation and low coverage by the protected area network included Indonesia's Seram rain forests and the moist forests of Trinidad and Tobago. Key sites in these ecoregions represent some of the most urgent priorities for expansion of the global protected areas network to meet Convention on Biological Diversity targets to increase the proportion of land formally protected to 17% by 2020. Areas with high impact scores, rapid deforestation, low protection and high carbon storage values may represent significant opportunities for both biodiversity conservation and climate change mitigation, for example through Reducing Emissions from

  15. Identifying priority areas for conservation: a global assessment for forest-dependent birds.

    Directory of Open Access Journals (Sweden)

    Graeme M Buchanan

    Full Text Available Limited resources are available to address the world's growing environmental problems, requiring conservationists to identify priority sites for action. Using new distribution maps for all of the world's forest-dependent birds (60.6% of all bird species, we quantify the contribution of remaining forest to conserving global avian biodiversity. For each of the world's partly or wholly forested 5-km cells, we estimated an impact score of its contribution to the distribution of all the forest bird species estimated to occur within it, and so is proportional to the impact on the conservation status of the world's forest-dependent birds were the forest it contains lost. The distribution of scores was highly skewed, a very small proportion of cells having scores several orders of magnitude above the global mean. Ecoregions containing the highest values of this score included relatively species-poor islands such as Hawaii and Palau, the relatively species-rich islands of Indonesia and the Philippines, and the megadiverse Atlantic Forests and northern Andes of South America. Ecoregions with high impact scores and high deforestation rates (2000-2005 included montane forests in Cameroon and the Eastern Arc of Tanzania, although deforestation data were not available for all ecoregions. Ecoregions with high impact scores, high rates of recent deforestation and low coverage by the protected area network included Indonesia's Seram rain forests and the moist forests of Trinidad and Tobago. Key sites in these ecoregions represent some of the most urgent priorities for expansion of the global protected areas network to meet Convention on Biological Diversity targets to increase the proportion of land formally protected to 17% by 2020. Areas with high impact scores, rapid deforestation, low protection and high carbon storage values may represent significant opportunities for both biodiversity conservation and climate change mitigation, for example through Reducing

  16. Identifying priority areas for conservation: a global assessment for forest-dependent birds.

    Science.gov (United States)

    Buchanan, Graeme M; Donald, Paul F; Butchart, Stuart H M

    2011-01-01

    Limited resources are available to address the world's growing environmental problems, requiring conservationists to identify priority sites for action. Using new distribution maps for all of the world's forest-dependent birds (60.6% of all bird species), we quantify the contribution of remaining forest to conserving global avian biodiversity. For each of the world's partly or wholly forested 5-km cells, we estimated an impact score of its contribution to the distribution of all the forest bird species estimated to occur within it, and so is proportional to the impact on the conservation status of the world's forest-dependent birds were the forest it contains lost. The distribution of scores was highly skewed, a very small proportion of cells having scores several orders of magnitude above the global mean. Ecoregions containing the highest values of this score included relatively species-poor islands such as Hawaii and Palau, the relatively species-rich islands of Indonesia and the Philippines, and the megadiverse Atlantic Forests and northern Andes of South America. Ecoregions with high impact scores and high deforestation rates (2000-2005) included montane forests in Cameroon and the Eastern Arc of Tanzania, although deforestation data were not available for all ecoregions. Ecoregions with high impact scores, high rates of recent deforestation and low coverage by the protected area network included Indonesia's Seram rain forests and the moist forests of Trinidad and Tobago. Key sites in these ecoregions represent some of the most urgent priorities for expansion of the global protected areas network to meet Convention on Biological Diversity targets to increase the proportion of land formally protected to 17% by 2020. Areas with high impact scores, rapid deforestation, low protection and high carbon storage values may represent significant opportunities for both biodiversity conservation and climate change mitigation, for example through Reducing Emissions from

  17. SUBMONTANE FOREST AT BANTIMURUNG BULUSARAUNG NATIONAL PARK: HOTSPOT OF BIRD DIVERSITY AND ITS MANAGEMENT CONSERVATION

    Directory of Open Access Journals (Sweden)

    Indra A.S.L.P. Putri

    2015-09-01

    Full Text Available Submontane forest is considered as one of the biodiversity hotspot.  Scientific information on bird diversity in this forest, however are lacking.  The aim of this research was to find out submontane forest bird diversity and its conservation management.  The research was carried out in three forests areas at Bantimurung Bulusaraung National Park submontane forest.  Point Count method was used to observe bird population. Data were analyzed using Shannon-Weiner diversity index, Pielou Evenness index, Simpson dominance index, Margalef species richness index, and Sorensen Similarity index. The significance different between the number of individual bird was tested using Kolmogorov-Smirnov test.  The result showed that submontane forest at Bantimurung Bulusaraung National Park is rich in bird diversity, bird endemic species and protected bird species.  There was a significant different on the number of individual bird at several human disturbance levels.  Based on these conditions, it is important to enhance understanding of the local people regarding zonation and develop cooperation with many stakeholders to increase the local community awareness concerning forest conservation. It is also necessary to ensure the sustainability of the National Park’s conservation program to maintain the submontane forest conservation.

  18. Using Biomass to Improve Site Quality and Carbon Sequestration

    Science.gov (United States)

    Bryce J. Stokes; Felipe G. Sanchez; Emily A. Carter

    1998-01-01

    The future demands on forest lands are a concern because of reduced productivity, especially on inherently poor sites, sites with long-depleted soils, or those soils that bear repeated, intensive short rotations. Forests are also an important carbon sink and, when well managed, can make even more significant contributions to sequestration and to reduction of greenhouse...

  19. Naturalitatea pădurii: concepte, caracteristici și implicații asupra conservării [Forest naturalness: concepts, characteristics and implications for conservation

    Directory of Open Access Journals (Sweden)

    Marius Teodosiu

    2014-08-01

    Full Text Available The paper review the naturalness related concepts, with a special emphasis on forests, and also their implications on forest conservation. Beside naturalness, key aspects of wild(erness, ecosystem integrity, ecosystem health, forest quality and authenticity are disscussed. The main approaches on forest naturalness are presented, including the basic (minimum naturalness requests, the shortcomings of associating high extreme naturalness levels (virgin, pristine to forests, or the necessity to consider the temporal component of naturalness (e.g. the forest history. In the section of conservation issues is presented a brief summary of the most important regional/world based statistics of high naturalness forests, including practical reccomendations regarding their size and weight at landscape scale.

  20. Synergy Between Traditional Ecological Knowledge and Conservation Science Supports Forest Preservation in Ecuador

    Directory of Open Access Journals (Sweden)

    C. Dustin Becker

    2003-12-01

    Full Text Available Meeting the desires of individuals while sustaining ecological "public goods" is a central challenge in natural resources conservation. Indigenous communities routinely make common property decisions balancing benefits to individuals with benefits to their communities. Such traditional knowledge offers insight for conservation. Using surveys and field observations, this case study examines aspects of indigenous institutions and ecological knowledge used by rural Ecuadorians to manage a forest commons before and after interacting with two U.S.-based conservation NGOs: Earthwatch Institute and People Allied for Nature. The rural farming community of Loma Alta has legal property rights to a 6842-ha watershed in western Ecuador. This self-governing community curtailed destruction of their moist forest commons, but not without the influence of modern scientific ecological knowledge. When Earthwatch Institute scientists provided evidence that forest clearing would reduce water supply to the community, villagers quickly modified land allocation patterns and set rules of use in the forest establishing the first community-owned forest reserve in western Ecuador. This case demonstrates that synergy between traditional knowledge and western knowledge can result in sustaining both ecosystem services and biodiversity in a forest commons.

  1. Conservation assessments for five forest bat species in the Eastern United States

    Science.gov (United States)

    Frank R., III Thompson

    2006-01-01

    Assesses the status, distribution, conservation, and management considerations for five Regional Forester Sensitive Species of forest bats on national forests in the Eastern United States: eastern pipistrelle, evening bat, southeastern myotis, eastern small-footed myotis, and northern long-eared bat. Includes information on the taxonomy, description, life history,...

  2. Using occupancy models of forest breeding birds to prioritize conservation planning

    Science.gov (United States)

    De Wan, A. A.; Sullivan, P.J.; Lembo, A.J.; Smith, C.R.; Maerz, J.C.; Lassoie, J.P.; Richmond, M.E.

    2009-01-01

    As urban development continues to encroach on the natural and rural landscape, land-use planners struggle to identify high priority conservation areas for protection. Although knowing where urban-sensitive species may be occurring on the landscape would facilitate conservation planning, research efforts are often not sufficiently designed to make quality predictions at unknown locations. Recent advances in occupancy modeling allow for more precise estimates of occupancy by accounting for differences in detectability. We applied these techniques to produce robust estimates of habitat occupancy for a subset of forest breeding birds, a group that has been shown to be sensitive to urbanization, in a rapidly urbanizing yet biological diverse region of New York State. We found that detection probability ranged widely across species, from 0.05 to 0.8. Our models suggest that detection probability declined with increasing forest fragmentation. We also found that the probability of occupancy of forest breeding birds is negatively influenced by increasing perimeter-area ratio of forest fragments and urbanization in the surrounding habitat matrix. We capitalized on our random sampling design to produce spatially explicit models that predict high priority conservation areas across the entire region, where interior-species were most likely to occur. Finally, we use our predictive maps to demonstrate how a strict sampling design coupled with occupancy modeling can be a valuable tool for prioritizing biodiversity conservation in land-use planning. ?? 2009 Elsevier Ltd.

  3. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Product, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    Energy Technology Data Exchange (ETDEWEB)

    Burger, James A

    2006-09-30

    Concentrations of CO{sub 2} in the Earth’s atmosphere have increased dramatically in the past 100 years due to deforestation, land use change, and fossil fuel combustion. These humancaused, higher levels of CO{sub 2} may enhance the atmospheric greenhouse effect and may contribute to climate change. Many reclaimed coal-surface mine areas in the eastern U.S. are not in productive use. Reforestation of these lands could provide societal benefits, including sequestration of atmospheric carbon. The goal of this project was to determine the biological and economic feasibility of restoring high-quality forests on the tens of thousands of hectares of mined land and to measure carbon sequestration and wood production benefits that would be achieved from large-scale application of forest restoration procedures. We developed a mine soil quality model that can be used to estimate the suitability of selected mined sites for carbon sequestration projects. Across the mine soil quality gradient, we tested survival and growth performance of three species assemblages under three levels of silvicultural. Hardwood species survived well in WV and VA, and survived better than the other species used in OH, while white pine had the poorest survival of all species at all sites. Survival was particularly good for the site-specific hardwoods planted at each site. Weed control plus tillage may be the optimum treatment for hardwoods and white pine, as any increased growth resulting from fertilization may not offset the decreased survival that accompanied fertilization. Grassland to forest conversion costs may be a major contributor to the lack of reforestation of previously reclaimed mine lands in the Appalachian coal-mining region. Otherwise profitable forestry opportunities may be precluded by these conversion costs, which for many combinations of factors (site class, forest type, timber prices, regeneration intensity, and interest rate) result in negative land expectation values

  4. An economic evaluation of carbon emission and carbon sequestration for the forestry sector in Malaysia

    International Nuclear Information System (INIS)

    Ismail, R.

    1995-01-01

    Forestry is an important sector in Malaysia. The long term development of the forestry sector will definitely affect the future amounts of carbon sequestration and emission of the country. This paper evaluates various forestry economic options that contribute to the reduction of carbon dioxide in the atmosphere. The analysis shows that, although forest plantation could sequester the highest amount of carbon per unit area, natural forests which are managed for sustainable timber production are the cheapest option for per-unit area carbon sequestrated. In evaluating forest options to address the issues of carbon sequestration and emission, the paper proposes that it should be assessed as an integral part of overall long term forestry development of the country which takes into account the future demands for forestry goods and services, financial resources, technology and human resource development. (Author)

  5. Collaboration and partnership in forest conservation: The role of ...

    African Journals Online (AJOL)

    Collaboration and partnership in forest conservation: The role of ... The results of a logit estimation model indicates that six factors (gender, ... Surprisingly, perceptions of economic and environmental benefits emerged as negatively significant.

  6. CARBON SEQUESTRATION AND PLANT COMMUNITY DYNAMICS FOLLOWING REFORESTATION OF TROPICAL PASTURE.

    Science.gov (United States)

    WHENDEE L. SILVER; LARA M. KUEPPERS; ARIEL E. LUGO; REBECCA OSTERTAG; VIRGINIA MATZEK

    2004-01-01

    Conversion of abandoned cattle pastures to secondary forests and plantations in the tropics has been proposed as a means to increase rates of carbon (C) sequestration from the atmosphere and enhance local biodiversity. We used a long-term tropical reforestation project (55–61 yr) to estimate rates of above- and belowground C sequestration and to investigate the impact...

  7. [Characteristics of carbon storage of Inner Mongolia forests: a review].

    Science.gov (United States)

    Yang, Hao; Hu, Zhong-Min; Zhang, Lei-Ming; Li, Sheng-Gong

    2014-11-01

    Forests in Inner Mongolia account for an important part of the forests in China in terms of their large area and high living standing volume. This study reported carbon storage, carbon density, carbon sequestration rate and carbon sequestration potential of forest ecosystems in Inner Mongolia using the biomass carbon data from the related literature. Through analyzing the data of forest inventory and the generalized allometric equations between volume and biomass, previous studies had reported that biomass carbon storage of the forests in Inner Mongolia was about 920 Tg C, which was 12 percent of the national forest carbon storage, the annual average growth rate was about 1.4%, and the average of carbon density was about 43 t · hm(-2). Carbon storage and carbon density showed an increasing trend over time. Coniferous and broad-leaved mixed forest, Pinus sylvestris var. mongolica forest and Betula platyphylla forest had higher carbon sequestration capacities. Carbon storage was reduced due to human activities such as thinning and clear cutting. There were few studies on carbon storage of the forests in Inner Mongolia with focus on the soil, showing that the soil car- bon density increased with the stand age. Study on the carbon sequestration potential of forest ecosystems was still less. Further study was required to examine dynamics of carbon storage in forest ecosystems in Inner Mongolia, i. e., to assess carbon storage in the forest soils together with biomass carbon storage, to compute biomass carbon content of species organs as 45% in the allometric equations, to build more species-specific and site-specific allometric equations including root biomass for different dominant species, and to take into account the effects of climate change on carbon sequestration rate and carbon sequestration potential.

  8. Geospatial characterization of deforestation, fragmentation and forest fires in Telangana state, India: conservation perspective.

    Science.gov (United States)

    Sudhakar Reddy, C; Vazeed Pasha, S; Jha, C S; Dadhwal, V K

    2015-07-01

    Conservation of biodiversity has been put to the highest priority throughout the world. The process of identifying threatened ecosystems will search for different drivers related to biodiversity loss. The present study aimed to generate spatial information on deforestation and ecological degradation indicators of fragmentation and forest fires using systematic conceptual approach in Telangana state, India. Identification of ecosystems facing increasing vulnerability can help to safeguard the extinctions of species and useful for conservation planning. The technological advancement of satellite remote sensing and Geographical Information System has increased greatly in assessment and monitoring of ecosystem-level changes. The areas of threat were identified by creating grid cells (5 × 5 km) in Geographical Information System (GIS). Deforestation was assessed using multi-source data of 1930, 1960, 1975, 1985, 1995, 2005 and 2013. The forest cover of 40,746 km(2), 29,299 km(2), 18,652 km(2), 18,368 km(2), 18,006 km(2), 17,556 km(2) and 17,520 km(2) was estimated during 1930, 1960, 1975, 1985, 1995, 2005 and 2013, respectively. Historical evaluation of deforestation revealed that major changes had occurred in forests of Telangana and identified 1095 extinct, 397 critically endangered, 523 endangered and 311 vulnerable ecosystem grid cells. The fragmentation analysis has identified 307 ecosystem grid cells under critically endangered status. Forest burnt area information was extracted using AWiFS data of 2005 to 2014. Spatial analysis indicates total fire-affected forest in Telangana as 58.9% in a decadal period. Conservation status has been recorded depending upon values of threat for each grid, which forms the basis for conservation priority hotspots. Of existing forest, 2.1% grids had severe ecosystem collapse and had been included under the category of conservation priority hotspot-I, followed by 27.2% in conservation priority hotspot-II and 51.5% in conservation

  9. Determination of the Sites with Conservation Priority in Research Forests of Yasouj University Based on Physiographic Factors

    Directory of Open Access Journals (Sweden)

    R. Zolfaghari

    2013-03-01

    Full Text Available Regarding high economic and conservative values of Zagros forests, and livelihood dependency of local people these recourses, determination of sites with higher conservation index can help us to maintain biodiversity of these forests more efficiently. Therefore, 49 plots with 450 m2 in area accompanied by 1, 10 and 45 m2 subplots were taken as systematic random design in research forests of Yasouj University. The number of species in each plot and subplot was recorded. The conservation values for different physiographic regions of forest were calculated using integrative parameters such as the number of species per plot, number of rare species per plot, number of tree species per plot, Jaccards similarity coefficient and slope of species-log(area. Comparing the conservation index in different physiographic sites revealed that the areas located in the north, hills and lower altitudes can be considered for in situ conservation due to higher number of trees, rare species and total plant species, species-log (area slope and lower amount of Jaccard similarity coefficient. But, vegetative sites located in lower slopes and south, because of lower conservation index, can be used for other multipurpose forestry activities. Using this index for different forest areas can be potentially conducted for better conservation and management of Zagros forests.

  10. Protected Areas: Mixed Success in Conserving East Africa’s Evergreen Forests

    Science.gov (United States)

    Pfeifer, Marion; Burgess, Neil D.; Swetnam, Ruth D.; Platts, Philip J.; Willcock, Simon; Marchant, Robert

    2012-01-01

    In East Africa, human population growth and demands for natural resources cause forest loss contributing to increased carbon emissions and reduced biodiversity. Protected Areas (PAs) are intended to conserve habitats and species. Variability in PA effectiveness and ‘leakage’ (here defined as displacement of deforestation) may lead to different trends in forest loss within, and adjacent to, existing PAs. Here, we quantify spatial variation in trends of evergreen forest coverage in East Africa between 2001 and 2009, and test for correlations with forest accessibility and environmental drivers. We investigate PA effectiveness at local, landscape and national scales, comparing rates of deforestation within park boundaries with those detected in park buffer zones and in unprotected land more generally. Background forest loss (BFL) was estimated at −9.3% (17,167 km2), but varied between countries (range: −0.9% to −85.7%; note: no BFL in South Sudan). We document high variability in PA effectiveness within and between PA categories. The most successful PAs were National Parks, although only 26 out of 48 parks increased or maintained their forest area (i.e. Effective parks). Forest Reserves (Ineffective parks, i.e. parks that lose forest from within boundaries: 204 out of 337), Nature Reserves (six out of 12) and Game Parks (24 out of 26) were more likely to lose forest cover. Forest loss in buffer zones around PAs exceeded background forest loss, in some areas indicating leakage driven by Effective National Parks. Human pressure, forest accessibility, protection status, distance to fires and long-term annual rainfall were highly significant drivers of forest loss in East Africa. Some of these factors can be addressed by adjusting park management. However, addressing close links between livelihoods, natural capital and poverty remains a fundamental challenge in East Africa’s forest conservation efforts. PMID:22768074

  11. Conservation of forest resources by rural farmers in Anambra

    African Journals Online (AJOL)

    PROF. MADUKWE

    local people involvement in conservation decisions ( X = 3.3). This implies that ... of biological diversity and forest products, which are the mainstay of many households. ... The demand for welfare and social infrastructure, and high goods.

  12. Anthropogenic nitrogen deposition enhances carbon sequestration in boreal soils.

    Science.gov (United States)

    Maaroufi, Nadia I; Nordin, Annika; Hasselquist, Niles J; Bach, Lisbet H; Palmqvist, Kristin; Gundale, Michael J

    2015-08-01

    It is proposed that carbon (C) sequestration in response to reactive nitrogen (Nr ) deposition in boreal forests accounts for a large portion of the terrestrial sink for anthropogenic CO2 emissions. While studies have helped clarify the magnitude by which Nr deposition enhances C sequestration by forest vegetation, there remains a paucity of long-term experimental studies evaluating how soil C pools respond. We conducted a long-term experiment, maintained since 1996, consisting of three N addition levels (0, 12.5, and 50 kg N ha(-1) yr(-1) ) in the boreal zone of northern Sweden to understand how atmospheric Nr deposition affects soil C accumulation, soil microbial communities, and soil respiration. We hypothesized that soil C sequestration will increase, and soil microbial biomass and soil respiration will decrease, with disproportionately large changes expected compared to low levels of N addition. Our data showed that the low N addition treatment caused a non-significant increase in the organic horizon C pool of ~15% and a significant increase of ~30% in response to the high N treatment relative to the control. The relationship between C sequestration and N addition in the organic horizon was linear, with a slope of 10 kg C kg(-1) N. We also found a concomitant decrease in total microbial and fungal biomasses and a ~11% reduction in soil respiration in response to the high N treatment. Our data complement previous data from the same study system describing aboveground C sequestration, indicating a total ecosystem sequestration rate of 26 kg C kg(-1) N. These estimates are far lower than suggested by some previous modeling studies, and thus will help improve and validate current modeling efforts aimed at separating the effect of multiple global change factors on the C balance of the boreal region. © 2015 John Wiley & Sons Ltd.

  13. The cost of carbon abatement through community forest management in Nepal Himalaya

    Energy Technology Data Exchange (ETDEWEB)

    Karky, Bhaskar Singh [Economic Analysis Division, International Centre for Integrated Mountain Development, GPO Box 3226, Kathmandu (Nepal); Skutsch, Margaret [Centro de Investigaciones en Geographia Ambiental, Universidad Nacional Autonoma de Mexico, Morelia (Mexico); University of Twente, PO Box 217 7500 AE Enschede (Netherlands)

    2010-01-15

    This paper estimates the economic returns to carbon abatement through biological sequestration in community managed forest under future REDD policy, and compares these for three possible management scenarios. For the estimation, the research relies on forest inventory data together with other socio-economic and resources use data collected from forest users in three sites of Nepal Himalaya. The paper estimates the incremental carbon from forest enhancement on a yearly basis over a five-year period using the value of 1 and 5 per tCO{sub 2} for conservative analysis. The results based on the three sites indicate that community forest management may be one of the least cost ways to abate carbon with a break-even price under Scenario 2 which ranges from 0.55 to 3.70 per tCO{sub 2}. However, bringing community forests into the carbon market may entail high opportunity costs as forests provide numerous non-monetary benefits to the local population, who regard these as the main incentive for conservation and management. An important finding of the research is that if forest resources use by local communities is not permitted, then carbon trading will not be attractive to them as revenue from carbon will not cover the cost foregone by not harvesting forest resources. (author)

  14. Simulating carbon sequestration using cellular automata and land use assessment for Karaj, Iran

    Science.gov (United States)

    Khatibi, Ali; Pourebrahim, Sharareh; Mokhtar, Mazlin Bin

    2018-06-01

    Carbon sequestration has been proposed as a means of slowing the atmospheric and marine accumulation of greenhouse gases. This study used observed and simulated land use/cover changes to investigate and predict carbon sequestration rates in the city of Karaj. Karaj, a metropolis of Iran, has undergone rapid population expansion and associated changes in recent years, and these changes make it suitable for use as a case study for rapidly expanding urban areas. In particular, high quality agricultural space, green space and gardens have rapidly transformed into industrial, residential and urban service areas. Five classes of land use/cover (residential, agricultural, rangeland, forest and barren areas) were considered in the study; vegetation and soil samples were taken from 20 randomly selected locations. The level of carbon sequestration was determined for the vegetation samples by calculating the amount of organic carbon present using the dry plant weight method, and for soil samples by using the method of Walkley and Black. For each area class, average values of carbon sequestration in vegetation and soil samples were calculated to give a carbon sequestration index. A cellular automata approach was used to simulate changes in the classes. Finally, the carbon sequestration indices were combined with simulation results to calculate changes in carbon sequestration for each class. It is predicted that, in the 15 year period from 2014 to 2029, much agricultural land will be transformed into residential land, resulting in a severe reduction in the level of carbon sequestration. Results from this study indicate that expansion of forest areas in urban counties would be an effective means of increasing the levels of carbon sequestration. Finally, future opportunities to include carbon sequestration into the simulation of land use/cover changes are outlined.

  15. Behavioral assumptions of conservation policy: conserving oak habitat on family-forest land in the Willamette Valley, Oregon

    Science.gov (United States)

    A. Paige Fischer; John C. Bliss

    2008-01-01

    Designing policies that harness the motivations of landowners is essential for conserving threatened habitats on private lands. Our goal was to understand how to apply ethnographic information about family-forest owners to the design of conservation policy for Oregon white oak (Quercus garryana) in the Willamette Valley, Oregon (U.S.A.). We examined...

  16. Rural aquaculture as a sustainable alternative for forest conservation in the Monarch Butterfly Biosphere Reserve, Mexico.

    Science.gov (United States)

    López-García, José; Manzo-Delgado, Lilia L; Alcántara-Ayala, Irasema

    2014-06-01

    Forest conservation plays a significant role in environmental sustainability. In Mexico only 8.48 million ha of forest are used for conservation of biodiversity. Payment for Environmental Services in the Monarch Butterfly Biosphere Reserve, one of the most important national protected areas, contributes to the conservation of these forests. In the Reserve, production of rainbow trout has been important for the rural communities who need to conserve the forest cover in order to maintain the hibernation cycle of the butterfly. Aquaculture is a highly productive activity for these protected areas, since it harnesses the existing water resources. In this study, changes from 1999 to 2012 in vegetation and land-use cover in the El Lindero basin within the Reserve were evaluated in order to determine the conservation status and to consider the feasibility of aquaculture as a means of sustainable development at community level. Evaluation involved stereoscopic interpretation of digital aerial photographs from 1999 to 2012 at 1:10,000 scale, comparative analysis by orthocorrected mosaics and restitution on the mosaics. Between 1999 and 2012, forested land recovered by 28.57 ha (2.70%) at the expense of non-forested areas, although forest degradation was 3.59%. Forest density increased by 16.87%. In the 46 ha outside the Reserve, deforestation spread by 0.26%, and land use change was 0.11%. The trend towards change in forest cover is closely related to conservation programmes, particularly payment for not extracting timber, reforestation campaigns and surveillance, whose effects have been exploited for the development of rural aquaculture; this is a new way to improve the socio-economic status of the population, to avoid logging and to achieve environmental sustainability in the Reserve. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. RANGELAND SEQUESTRATION POTENTIAL ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Lee Spangler; George F. Vance; Gerald E. Schuman; Justin D. Derner

    2012-03-31

    Rangelands occupy approximately half of the world's land area and store greater than 10% of the terrestrial biomass carbon and up to 30% of the global soil organic carbon. Although soil carbon sequestration rates are generally low on rangelands in comparison to croplands, increases in terrestrial carbon in rangelands resulting from management can account for significant carbon sequestration given the magnitude of this land resource. Despite the significance rangelands can play in carbon sequestration, our understanding remains limited. Researchers conducted a literature review to identify sustainably management practices that conserve existing rangeland carbon pools, as well as increase or restore carbon sequestration potentials for this type of ecosystem. The research team also reviewed the impact of grazing management on rangeland carbon dynamics, which are not well understood due to heterogeneity in grassland types. The literature review on the impact of grazing showed a wide variation of results, ranging from positive to negative to no response. On further review, the intensity of grazing appears to be a major factor in controlling rangeland soil organic carbon dynamics. In 2003, researchers conducted field sampling to assess the effect of several drought years during the period 1993-2002. Results suggested that drought can significantly impact rangeland soil organic carbon (SOC) levels, and therefore, carbon sequestration. Resampling was conducted in 2006; results again suggested that climatic conditions may have overridden management effects on SOC due to the ecological lag of the severe drought of 2002. Analysis of grazing practices during this research effort suggested that there are beneficial effects of light grazing compared to heavy grazing and non-grazing with respect to increased SOC and nitrogen contents. In general, carbon storage in rangelands also increases with increased precipitation, although researchers identified threshold levels of

  18. Genetic conservation planning for forest tree species in Western North America under future climate change: Employing a novel approach to identify conservation gaps

    Science.gov (United States)

    L.K. Gray; E.J. Russell; Q.E. Barber; A. Hamann

    2017-01-01

    Among the 17 provinces, territories, and states that comprise western North America, approximately 18 percent of the 8.4 million km2 of forested land base is designated as protected areas to ensure the in situ conservation of forest biodiversity. Jurisdictions vary substantially however, in their responsibilities, protected area coverage, and conservation policies....

  19. Redefining Secondary Forests in the Mexican Forest Code: Implications for Management, Restoration, and Conservation

    Directory of Open Access Journals (Sweden)

    Francisco J. Román-Dañobeytia

    2014-05-01

    Full Text Available The Mexican Forest Code establishes structural reference values to differentiate between secondary and old-growth forests and requires a management plan when secondary forests become old-growth and potentially harvestable forests. The implications of this regulation for forest management, restoration, and conservation were assessed in the context of the Calakmul Biosphere Reserve, which is located in the Yucatan Peninsula. The basal area and stem density thresholds currently used by the legislation to differentiate old-growth from secondary forests are 4 m2/ha and 15 trees/ha (trees with a diameter at breast height of >25 cm; however, our research indicates that these values should be increased to 20 m2/ha and 100 trees/ha, respectively. Given that a management plan is required when secondary forests become old-growth forests, many landowners avoid forest-stand development by engaging slash-and-burn agriculture or cattle grazing. We present evidence that deforestation and land degradation may prevent the natural regeneration of late-successional tree species of high ecological and economic importance. Moreover, we discuss the results of this study in the light of an ongoing debate in the Yucatan Peninsula between policy makers, non-governmental organizations (NGOs, landowners and researchers, regarding the modification of this regulation to redefine the concept of acahual (secondary forest and to facilitate forest management and restoration with valuable timber tree species.

  20. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    Bert R. Bock; Richard G. Rhudy; David E. Nichols

    2001-07-01

    In order to plan for potential CO{sub 2} mitigation mandates, utilities need better information on CO{sub 2} mitigation options, especially carbon sequestration options that involve non-utility operations. One of the major difficulties in evaluating CO{sub 2} sequestration technologies and practices, both geologic storage of captured CO{sub 2} and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This project is comparing the economics of major technologies and practices under development for CO{sub 2} sequestration, including captured CO{sub 2} storage options such as active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of biological sinks such as forests and croplands. An international group of experts has been assembled to compare on a consistent basis the economics of this diverse array of CO{sub 2} sequestration options. Designs and data collection are nearly complete for each of the CO{sub 2} sequestration options being compared. Initial spreadsheet development has begun on concepts involving storage of captured CO{sub 2}. No significant problems have been encountered, but some additional outside expertise will be accessed to supplement the team's expertise in the areas of life cycle analysis, oil and gas exploration and production, and comparing CO{sub 2} sequestration options that differ in timing and permanence of CO{sub 2} sequestration. Plans for the next reporting period are to complete data collection and a first approximation of the spreadsheet. We expect to complete this project on time and on budget.

  1. Translating conservation genetics into management: Pan-European minimum requirements for dynamic conservation units of forest tree genetic diversity

    OpenAIRE

    Koskela, Jarkko; Lefèvre, François; Schueler, Silvio; Kraigher, Hojka; Olrik, Ditte C.; Hubert, Jason; Longauer, Roman; Bozzano, Michele; Yrjänä, Leena; Alizoti, Paraskevi; Rotach, Peter; Vietto, Lorenzo; Bordács, Sándor; Myking, Tor; Eysteinsson, Thröstur

    2013-01-01

    This paper provides a review of theoretical and practical aspects related to genetic management of forest trees. The implementation of international commitments on forest genetic diversity has been slow and partly neglected. Conservation of forest genetic diversity is still riddled with problems, and complexities of national legal and administrative structures. Europe is an example of a complex region where the dis- tribution ranges of tree species extend across large geographical areas with ...

  2. Application of geoinformatics for landscape assessment and conserving forest biodiversity in northeast India

    Science.gov (United States)

    Ashish Kumar; Bruce G. Marcot; Gautam Talukdar; P.S. Roy

    2012-01-01

    Herein, we summarize our work, within forest ecosystems of Garo Hills in northeast India, on mapping vegetation and land cover conditions, delineating wildlife habitat corridors among protected areas, evaluating forest conservation values of influence zones bordering protected areas, analyzing dispersion patterns of native forests, and determining potential effects of...

  3. Conservation Benefits of Tropical Multifunctional Land-Uses in and Around a Forest Protected Area of Bangladesh

    Directory of Open Access Journals (Sweden)

    Sharif A. Mukul

    2017-01-01

    Full Text Available Competing interests in land for agriculture and commodity production in tropical human-dominated landscapes make forests and biodiversity conservation particularly challenging. Establishment of protected areas in this regard is not functioning as expected due to exclusive ecological focus and poor recognition of local people’s traditional forest use and dependence. In recent years, multifunctional land-use systems such as agroforestry have widely been promoted as an efficient land-use in such circumstances, although their conservation effectiveness remains poorly investigated. We undertake a rapid biodiversity survey to understand the conservation value of four contrasting forms of local land-use, namely: betel leaf (Piper betle agroforestry; lemon (Citrus limon agroforestry; pineapple (Ananas comosus agroforestry; and, shifting cultivation–fallow managed largely by the indigenous communities in and around a highly diverse forest protected area of Bangladesh. We measure the alpha and beta diversity of plants, birds, and mammals in these multifunctional land-uses, as well as in the old-growth secondary forest in the area. Our study finds local land-use critical in conserving biodiversity in the area, with comparable biodiversity benefits as those of the old-growth secondary forest. In Bangladesh, where population pressure and rural people’s dependence on forests are common, multifunctional land-uses in areas of high conservation priority could potentially be used to bridge the gap between conservation and commodity production, ensuring that the ecological integrity of such landscapes will be altered as little as possible.

  4. Earth Observation Data for Mapping and Evaluation of Ecosystem Services to Improve Human Livelihoods and Conserve Species

    Science.gov (United States)

    Shapiro, Aurelie C.; Bhagabati, Nirmal

    2010-12-01

    Mapping and evaluating ecosystem services is of increasing concern and urgency for conservation organizations such as WWF. Coupling biodiversity assessments with ecosystem services e.g., carbon sequestration, water regulation, sediment reduction, is an effective way to visualize additional financial and human benefits of conservation for decision makers. WWF is eager to apply various Earth Observation data to conservation applications for consistent mapping and monitoring of natural ecosystems and the potential impacts of their loss on humans and wildlife alike. Such examples include forest carbon mapping, integrated evaluation of ecosystem services (via the InVEST tool) and bundling endangered Tiger habitat with various ecosystem services for bundled benefits.

  5. Making carbon sequestration a paying proposition

    Science.gov (United States)

    Han, Fengxiang X.; Lindner, Jeff S.; Wang, Chuji

    2007-03-01

    Atmospheric carbon dioxide (CO2) has increased from a preindustrial concentration of about 280 ppm to about 367 ppm at present. The increase has closely followed the increase in CO2 emissions from the use of fossil fuels. Global warming caused by increasing amounts of greenhouse gases in the atmosphere is the major environmental challenge for the 21st century. Reducing worldwide emissions of CO2 requires multiple mitigation pathways, including reductions in energy consumption, more efficient use of available energy, the application of renewable energy sources, and sequestration. Sequestration is a major tool for managing carbon emissions. In a majority of cases CO2 is viewed as waste to be disposed; however, with advanced technology, carbon sequestration can become a value-added proposition. There are a number of potential opportunities that render sequestration economically viable. In this study, we review these most economically promising opportunities and pathways of carbon sequestration, including reforestation, best agricultural production, housing and furniture, enhanced oil recovery, coalbed methane (CBM), and CO2 hydrates. Many of these terrestrial and geological sequestration opportunities are expected to provide a direct economic benefit over that obtained by merely reducing the atmospheric CO2 loading. Sequestration opportunities in 11 states of the Southeast and South Central United States are discussed. Among the most promising methods for the region include reforestation and CBM. The annual forest carbon sink in this region is estimated to be 76 Tg C/year, which would amount to an expenditure of 11.1-13.9 billion/year. Best management practices could enhance carbon sequestration by 53.9 Tg C/year, accounting for 9.3% of current total annual regional greenhouse gas emission in the next 20 years. Annual carbon storage in housing, furniture, and other wood products in 1998 was estimated to be 13.9 Tg C in the region. Other sequestration options

  6. Cultural valuation and biodiversity conservation in the Upper Guinea forest, West Africa

    Directory of Open Access Journals (Sweden)

    James A. Fraser

    2016-09-01

    Full Text Available The cultural valuation of biodiversity has taken on renewed importance over the last two decades as the ecosystem services framework has become widely adopted. Conservation initiatives increasingly use ecosystem service frameworks to render tropical forest landscapes and their peoples legible to market-oriented initiatives such as REDD+ and biodiversity offsetting schemes. Ecosystem service approaches have been widely criticized by scholars in the social sciences and humanities for their narrow focus on a small number of easily quantifiable and marketable services and a reductionist and sometimes simplistic approach to culture. We address the need to combine methods from each of the "three cultures" of natural science, quantitative social science, and qualitative social science/humanities in conceptualizing the relationship between cultural valuation and biodiversity conservation. We combine qualitative data with forest inventories and a quantitative index of cultural value to evaluate the relationship between cultural valuation and biodiversity conservation in Upper Guinea forest in Liberia, West Africa. Our study focuses on "sacred agroforests," spaces that are associated with Mande macro-language speaking groups such as the Loma. We demonstrate that sacred agroforests are associated with different cultural values compared with secondary forests. Although biodiversity and biomass are similar, sacred agroforests exhibit a different species composition, especially of culturally salient species, increasing overall landscape agro-biodiversity. Sacred agroforests are also shaped and conserved by local cultural institutions revolving around ancestor worship, ritual, and the metaphysical conceptual category "salɛ." We conclude that to understand the relationship between cultural valuation and biodiversity conservation, interpretivist approaches such as phenomenology should be employed alongside positivist ecosystem service frameworks.

  7. Forest Conservation Opportunity Areas - Liberal Model (ECO_RES.COA_FORREST33)

    Science.gov (United States)

    This layer designates areas with potential for forest conservation. These are areas of natural or semi-natural forest land cover patches that are at least 75 meters away from roads and away from patch edges. OAs were modeled by creating distance grids using the National Land Cover Database and the Census Bureau's TIGER roads files.

  8. 77 FR 13261 - Request for Applications: The Community Forest and Open Space Conservation Program

    Science.gov (United States)

    2012-03-06

    ... DEPARTMENT OF AGRICULTURE Forest Service Request for Applications: The Community Forest and Open Space Conservation Program AGENCY: Forest Service. ACTION: Notice; Correction. SUMMARY: The Department..., published a document in the Federal Register of February 15, 2011, concerning requests for applications for...

  9. Changes in phenology and the influence on the carbon sequestration in a Danish beech forest over 20 years

    DEFF Research Database (Denmark)

    Pilegaard, Kim; Ibrom, Andreas

    Observations of carbon sequestration in a Danish beech forest over the last 20 years have shown a steady increase in NEE. Earlier studies (Pile- gaard et al. 2011) have shown, that about half of the increase can be attributed to an increase in the growing season length. The growing sea- son has...... 6 years using the R package Phenopix (Filippa et al. 2016). The new data is compared with CUP and LP to give more detailed information on the phenology. The information is used to examine the evolution of net ecosystem exchange (NEE) over the 20 year period....

  10. Soil carbon sequestration, carbon markets, and conservation agriculture practices: A hypothetical examination in Mozambique

    Directory of Open Access Journals (Sweden)

    Timoteo E. Simone

    2017-09-01

    Full Text Available Payments for Environmental Services (PES are relatively novel mechanisms whereby the adoption of sustainable management practices by a stakeholder is rewarded by incentives linked to external markets. Adoption of PES for conservation agricultural practices (CAPS by smallholder farmers may provide opportunities to increase household income or cover the technology costs of adoption if the carbon sequestration benefits of CAPS are quantifiable, adoption rates are accelerated and maintained, a mechanism exists whereby carbon sequestration services can be compensated, and carbon offset exchange markets are viable. This research suggests a methodology to examine a PES market for carbon offsets generated by the adoption of CAPS by farmers in Mozambique. Assuming a cumulative adoption of 60% over a 20-year period, revenue from PES market participation to CA adopters was two times higher than revenue earned when disadoption occurred midway through the simulation. Lower adoption targets are associated with higher per household returns when fertilizer rates typical to the region are increased. Establishing and maintaining a sustainable PES system in the study region would require significant investment in time and resources. The lack of on-the-ground institutions or local support for such a program would also challenge successful implementation. Finally, the programs where participant success depends on external markets, such as the hypothetical one suggested here, are subject to the ebb and flow of foreign demand for carbon offsets. Addressing these three broad constraints to a PES/CAPS program in the region would require grass-roots driven policy initiatives with buy-in at multiple social, economic, and political levels.

  11. Geometrid moth assemblages reflect high conservation value of naturally regenerated secondary forests in temperate China

    NARCIS (Netherlands)

    Zou, Yi; Sang, Weiguo; Warren-Thomas, Eleanor; Axmacher, Jan Christoph

    2016-01-01

    The widespread destruction of mature forests in China has led to massive ecological degradation, counteracted in recent decades by substantial efforts to promote forest plantations and protect secondary forest ecosystems. The value of the resulting forests for biodiversity conservation is widely

  12. Floristic conservation value, nested understory floras, and the development of second-growth forest.

    Science.gov (United States)

    Spyreas, Greg; Matthews, Jeffrey W

    2006-08-01

    Nestedness analysis can reveal patterns of plant composition and diversity among forest patches. For nested floral assemblages, the plants occupying any one patch are a nested subset of the plants present in successively more speciose patches. Elimination of sensitive understory plants with human disturbance is one of several mechanisms hypothesized to generate nonrandom, nested floral distributions. Hypotheses explaining distributions of understory plants remain unsubstantiated across broad landscapes of varying forest types and disturbance histories. We sampled the vegetation of 51 floodplain and 55 upland forests across Illinois (USA) to examine how the diversity, composition, and nestedness of understory floras related to their overstory growth and structure (basal area), and their overall floristic conservation value (mean C). We found that plant assemblages were nested with respect to site species richness, such that rare plants indicated diverse forests. Floras were also nested with respect to site mean C and basal area (BA). However, in an opposite pattern from what we had expected, floras of high-BA stands were nested subsets of those of low-BA stands. A set of early-successional plants restricted to low-BA stands, and more importantly, the absence of a set of true forest plants in high-BA stands, accounted for this pattern. Additionally, we observed a decrease in species richness with increasing BA. These results are consistent with the hypothesis that recovery of true forest plants does not occur concurrently with overstory regeneration following massive anthropogenic disturbance. Nestedness by site mean C indicates that high conservation value (conservative) plants co-occur in highly diverse stands; these forests are assumed to be less disturbed historically. Because site mean C was uncorrelated with BA, BA-neutral disturbances such as livestock usage are suggested as accounting for between-site differences in mean C. When considered individually

  13. National Proceedings: Forest and Conservation Nursery Associations-2009

    Science.gov (United States)

    L. E. Riley; J. R. Pinto; R. K. Dumroese

    2010-01-01

    These proceedings are a compilation of 20 papers that were presented at the regional meetings of the Intertribal Nursery Council and the forest and conservation nursery associations in the United States in 2009. The Intertribal Nursery Council Meeting was held at the Best Western University Inn in Moscow, Idaho, on July 14, 2009. Subject matter for the technical...

  14. Adaptation and mitigation options for forests and forest management in a changing climate

    NARCIS (Netherlands)

    Johnston, M.; Lindner, M.; Parotta, J.; Giessen, L.

    2012-01-01

    Climate change is now accepted as an important issue for forests and forest management around the world. Climate change will affect forests' ability to provide ecosystem goods and services on which human communities depend: biodiversity, carbon sequestration, regulation of water quality and

  15. Splenectomy versus conservative management for acute sequestration crises in people with sickle cell disease.

    Science.gov (United States)

    Owusu-Ofori, Shirley; Remmington, Tracey

    2015-09-07

    Acute splenic sequestration crises are a complication of sickle cell disease, with high mortality rates and frequent recurrence in survivors of first attacks. Splenectomy and blood transfusion, with their consequences, are the mainstay of long-term management used in different parts of the world. This is a 2015 update of a Cochrane review first published in 2002, and previously updated in 2013. To assess whether splenectomy (total or partial), to prevent acute splenic sequestration crises in people with sickle cell disease, improved survival and decreased morbidity in people with sickle cell disease, as compared with regular blood transfusions. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register, which comprises of references identified from comprehensive electronic database searches and handsearching relevant journals and abstract books of conference proceedings.Additional trials were sought from the reference lists of the trials and reviews identified by the search strategy.Date of the most recent search: 10 June 2015. All randomized or quasi-randomized controlled trials comparing splenectomy (total or partial) to prevent recurrence of acute splenic sequestration crises with no treatment or blood transfusions in people with sickle cell disease. No trials of splenectomy for acute splenic sequestration were found. No trials of splenectomy for acute splenic sequestration were found. Splenectomy, if full, will prevent further sequestration and if partial, may reduce the recurrence of acute splenic sequestration crises. However, there is a lack of evidence from trials showing that splenectomy improves survival and decreases morbidity in people with sickle cell disease. There is a need for a well-designed, adequately-powered, randomized controlled trial to assess the benefits and risks of splenectomy compared to transfusion programmes, as a means of improving survival and decreasing mortality from acute splenic

  16. The relative contributions of forest growth and areal expansion to forest biomass carbon

    Science.gov (United States)

    P. Li; J. Zhu; H. Hu; Z. Guo; Y. Pan; R. Birdsey; J. Fang

    2016-01-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms...

  17. Interaction between forest biodiversity and people's use of forest resources in Roviana, Solomon Islands: implications for biocultural conservation under socioeconomic changes.

    Science.gov (United States)

    Furusawa, Takuro; Sirikolo, Myknee Qusa; Sasaoka, Masatoshi; Ohtsuka, Ryutaro

    2014-01-27

    In Solomon Islands, forests have provided people with ecological services while being affected by human use and protection. This study used a quantitative ethnobotanical analysis to explore the society-forest interaction and its transformation in Roviana, Solomon Islands. We compared local plant and land uses between a rural village and urbanized village. Special attention was paid to how local people depend on biodiversity and how traditional human modifications of forest contribute to biodiversity conservation. After defining locally recognized land-use classes, vegetation surveys were conducted in seven forest classes. For detailed observations of daily plant uses, 15 and 17 households were randomly selected in the rural and urban villages, respectively. We quantitatively documented the plant species that were used as food, medicine, building materials, and tools. The vegetation survey revealed that each local forest class represented a different vegetative community with relatively low similarity between communities. Although commercial logging operations and agriculture were both prohibited in the customary nature reserve, local people were allowed to cut down trees for their personal use and to take several types of non-timber forest products. Useful trees were found at high frequencies in the barrier island's primary forest (68.4%) and the main island's reserve (68.3%). Various useful tree species were found only in the reserve forest and seldom available in the urban village. In the rural village, customary governance and control over the use of forest resources by the local people still functioned. Human modifications of the forest created unique vegetation communities, thus increasing biodiversity overall. Each type of forest had different species that varied in their levels of importance to the local subsistence lifestyle, and the villagers' behaviors, such as respect for forest reserves and the semidomestication of some species, contributed to

  18. How to estimate carbon sequestration on small forest tracts estimate carbon sequestration on small forest tracts

    Science.gov (United States)

    Coeli M. Hoover; Richard A. Birdsey; Linda S. Heath; Susan L. Stout

    2000-01-01

    International climate change agreements may allow carbon stored as a result of afforestation and reforestation to be used to offset CO2 emissions. Monitoring the carbon sequestered or released through forest management activities thus becomes important. Estimating forest carbon storage is feasible even for nonindustrial private forestland (NIPF)...

  19. Consequences of co-benefits for the efficient design of carbon sequestration programs

    International Nuclear Information System (INIS)

    Feng, H.; Kling, C.L.

    2005-01-01

    The social efficiency of private carbon markets that also included trading in agricultural soil carbon sequestration with significant associated co-benefits were considered. Three topics related to the presence of co-benefits that sequester carbon were examined: (1) the consequences of co-benefits from carbon sinks and carbon abatement technology on the efficiency of carbon markets; (2) the efficient supply of carbon sequestration and co-benefits when there is spatial heterogeneity; and (3) the consequences of the presence of a carbon market when there is also a government supported conservation program. Co-benefits from carbon sinks and abatement were considered in relation to the socially efficient level of sequestration. The supply of carbon sequestration and co-benefits were then considered when fields differed in their potential to provide carbon and other environmental benefits. An empirical example of the economic characteristics of carbon sequestration and co-benefits in the Upper Mississippi River Basin was presented, in which the sequestration practice of land retirement with planting of perennial grasses was examined. Two sets of figures were used to illustrate the relationship between the cost of carbon sequestration and its marginal co-benefits: the marginal cost and the marginal co-benefits of carbon sequestration in a carbon market; and the marginal cost of carbon sequestration under a policy designed to maximize a bundle of environmental benefits. It was demonstrated that the relationship between carbon and its associated co-benefits will affect the efficiency of policy instruments designed for carbon sequestration. It was recommended that policy-makers consider that there are already a multitude of existing conservation programmes that result in significant carbon sequestration in many countries, and that nascent carbon markets are emerging in countries that have not ratified the Kyoto Protocol. The efficient level and location of carbon

  20. The deep human prehistory of global tropical forests and its relevance for modern conservation.

    Science.gov (United States)

    Roberts, Patrick; Hunt, Chris; Arroyo-Kalin, Manuel; Evans, Damian; Boivin, Nicole

    2017-08-03

    Significant human impacts on tropical forests have been considered the preserve of recent societies, linked to large-scale deforestation, extensive and intensive agriculture, resource mining, livestock grazing and urban settlement. Cumulative archaeological evidence now demonstrates, however, that Homo sapiens has actively manipulated tropical forest ecologies for at least 45,000 years. It is clear that these millennia of impacts need to be taken into account when studying and conserving tropical forest ecosystems today. Nevertheless, archaeology has so far provided only limited practical insight into contemporary human-tropical forest interactions. Here, we review significant archaeological evidence for the impacts of past hunter-gatherers, agriculturalists and urban settlements on global tropical forests. We compare the challenges faced, as well as the solutions adopted, by these groups with those confronting present-day societies, which also rely on tropical forests for a variety of ecosystem services. We emphasize archaeology's importance not only in promoting natural and cultural heritage in tropical forests, but also in taking an active role to inform modern conservation and policy-making.

  1. ECONOMIC EVALUATION OF CO2 SEQUESTRATION TECHNOLOGIES; SEMIANNUAL

    International Nuclear Information System (INIS)

    Bert R. Bock; Richard G. Rhudy; David E. Nichols

    2001-01-01

    In order to plan for potential CO(sub 2) mitigation mandates, utilities need better information on CO(sub 2) mitigation options, especially carbon sequestration options that involve non-utility operations. One of the major difficulties in evaluating CO(sub 2) sequestration technologies and practices, both geologic storage of captured CO(sub 2) and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This project is comparing the economics of major technologies and practices under development for CO(sub 2) sequestration, including captured CO(sub 2) storage options such as active oil reservoirs, depleted oil and gas reservoirs, deep aquifers, coal beds, and oceans, as well as the enhancement of biological sinks such as forests and croplands. An international group of experts has been assembled to compare on a consistent basis the economics of this diverse array of CO(sub 2) sequestration options. Designs and data collection are nearly complete for each of the CO(sub 2) sequestration options being compared. Initial spreadsheet development has begun on concepts involving storage of captured CO(sub 2). No significant problems have been encountered, but some additional outside expertise will be accessed to supplement the team's expertise in the areas of life cycle analysis, oil and gas exploration and production, and comparing CO(sub 2) sequestration options that differ in timing and permanence of CO(sub 2) sequestration. Plans for the next reporting period are to complete data collection and a first approximation of the spreadsheet. We expect to complete this project on time and on budget

  2. Ecosystem services and opportunity costs shift spatial priorities for conserving forest biodiversity.

    Directory of Open Access Journals (Sweden)

    Matthias Schröter

    Full Text Available Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone or partially restricted (partial use zone. Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2% and the non-use zone (+3.2%. Furthermore, opportunity costs increased (+6.6%, which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1% of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%.

  3. Ecosystem Services and Opportunity Costs Shift Spatial Priorities for Conserving Forest Biodiversity

    Science.gov (United States)

    Schröter, Matthias; Rusch, Graciela M.; Barton, David N.; Blumentrath, Stefan; Nordén, Björn

    2014-01-01

    Inclusion of spatially explicit information on ecosystem services in conservation planning is a fairly new practice. This study analyses how the incorporation of ecosystem services as conservation features can affect conservation of forest biodiversity and how different opportunity cost constraints can change spatial priorities for conservation. We created spatially explicit cost-effective conservation scenarios for 59 forest biodiversity features and five ecosystem services in the county of Telemark (Norway) with the help of the heuristic optimisation planning software, Marxan with Zones. We combined a mix of conservation instruments where forestry is either completely (non-use zone) or partially restricted (partial use zone). Opportunity costs were measured in terms of foregone timber harvest, an important provisioning service in Telemark. Including a number of ecosystem services shifted priority conservation sites compared to a case where only biodiversity was considered, and increased the area of both the partial (+36.2%) and the non-use zone (+3.2%). Furthermore, opportunity costs increased (+6.6%), which suggests that ecosystem services may not be a side-benefit of biodiversity conservation in this area. Opportunity cost levels were systematically changed to analyse their effect on spatial conservation priorities. Conservation of biodiversity and ecosystem services trades off against timber harvest. Currently designated nature reserves and landscape protection areas achieve a very low proportion (9.1%) of the conservation targets we set in our scenario, which illustrates the high importance given to timber production at present. A trade-off curve indicated that large marginal increases in conservation target achievement are possible when the budget for conservation is increased. Forty percent of the maximum hypothetical opportunity costs would yield an average conservation target achievement of 79%. PMID:25393951

  4. Identifying and managing conflicts between forest conservation and other human interests in Europe

    NARCIS (Netherlands)

    Niemela, J.; Young, J.; Alard, D.; Askasibar, M.; Henle, K.; Johnson, R.; Kurttila, M.; Larsson, T.B.; Matouch, S.; Nowicki, P.L.; Paiva, R.Q.; Portoghesi, L.; Smulders, M.J.M.; Stevenson, A.; Tartes, U.; Watt, A.

    2005-01-01

    In this paper, circumstances where various human activities and interests clash with the conservation of forest biodiversity are examined, with particular focus on the drivers behind the conflicts. After identifying past and current human-related threats potentially leading to conflicts in forests,

  5. Rural electrification in Indonesia : the role of micro hydro power in shaping forest conservation behavior

    NARCIS (Netherlands)

    I Wayan Gede Santika, W.; Midden, C.J.H.; Lemmens, A.M.C.

    2009-01-01

    It is reported that villagers at the villages electrified by micro hydro power (MHP) show more favorable attitudes, intentions, and behaviors toward forest conservation. They initiated a community-based agreement regulating forest cutting, reduced trees chopped from the forests, reduced intention

  6. Agricultural Intensification in the Brazilian Agricultural-Forest Frontier: Land Use Responses to Development and Conservation Policy

    Science.gov (United States)

    Garrett, R.; Koh, I.; le Polain de Waroux, Y.; Lambin, E.; Kastens, J.; Brown, J. C.

    2017-12-01

    Agricultural expansion, extensive cattle ranching, and deforestation remain pressing challenges for sustainable development and climate mitigation throughout South America. In response to these challenges, national and local governments, as well as private and non-governmental actors have developed new forest conservation governance mechanisms. The objective of this study is to better understand how conservation policies interact with supply chain development to influence land use. In particular, we endeavor to understand the timing and spatial patterns of crop and cattle intensification, an understudied phenomenon that is critical to understanding the future of agricultural-forest frontiers and the impacts of conservation policies. We focus on Mato Grosso, the largest soy and cattle producing state in Brazil, which spans the Cerrado and Amazon biomes and has experienced higher levels of deforestation for agricultural expansion than any other state globally over the last decade. Using a newly created spatially explicit data set of land use intensity, supply chain development, and forest policy, we find that agricultural intensification is occurring rapidly in the region, but is only partially driven by changes in conservation policies. The intensification of cattle production is the result of improvements in deforestation monitoring, penalties, and enforcement, and increased land scarcity. Crop intensification, in contrast, preceded increases in conservation restrictions, and is associated with the positive spillovers resulting from agribusiness agglomeration and development. These results suggest that intensification is not a foregone conclusion of increasing forest conservation restrictions, but is highly dependent on wider development processes. A combined effort to direct agribusiness development away from forest regions via tax credits and subsidized credit, when applied in concert with stringent conservation requirements, could help promote intensification

  7. The role of the incentives in the conservation of the natural forests

    International Nuclear Information System (INIS)

    Castellanos N, Yuli; Fetecua S; Oscar Javier

    2002-01-01

    To use forest incentives for the favorable conservation of forest that is in private properties is a difficult process that has encountered obstacles since the creation itself of the incentives and their conception through their application on part of farmers. In the actuality, exist tax and economic incentives that principally favor landowners and big companies and that in other cases propitiate deforestation of the natural zones. The certificate of forest incentive for conservation (CIF) is the incentive that is nearest to biodiversity protection but in Colombia hasn't been applied. The economic valuation of the benefits provided by the forest (positives externalities), may solve this conflict, if it compensates proprietors as well as the tropical countries. But the absence of volunteer, to pay people and the countries benefits is a link of a chain that it is missing, since this panorama, the small proprietors of natural zones should organize and work to get tax and economic exemptions. This process should accompany research, technical assistance and financing on part of the national government

  8. Carbon storage and sequestration by trees in urban and community areas of the United States.

    Science.gov (United States)

    Nowak, David J; Greenfield, Eric J; Hoehn, Robert E; Lapoint, Elizabeth

    2013-07-01

    Carbon storage and sequestration by urban trees in the United States was quantified to assess the magnitude and role of urban forests in relation to climate change. Urban tree field data from 28 cities and 6 states were used to determine the average carbon density per unit of tree cover. These data were applied to statewide urban tree cover measurements to determine total urban forest carbon storage and annual sequestration by state and nationally. Urban whole tree carbon storage densities average 7.69 kg C m(-2) of tree cover and sequestration densities average 0.28 kg C m(-2) of tree cover per year. Total tree carbon storage in U.S. urban areas (c. 2005) is estimated at 643 million tonnes ($50.5 billion value; 95% CI = 597 million and 690 million tonnes) and annual sequestration is estimated at 25.6 million tonnes ($2.0 billion value; 95% CI = 23.7 million to 27.4 million tonnes). Published by Elsevier Ltd.

  9. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems.

    Science.gov (United States)

    Campo, Julio; Merino, Agustín

    2016-05-01

    The effect of precipitation regime on the C cycle of tropical forests is poorly understood, despite the existence of models that suggest a drier climate may substantially alter the source-sink function of these ecosystems. Along a precipitation regime gradient containing 12 mature seasonally dry tropical forests growing under otherwise similar conditions (similar annual temperature, rainfall seasonality, and geological substrate), we analyzed the influence of variation in annual precipitation (1240 to 642 mm) and duration of seasonal drought on soil C. We investigated litterfall, decomposition in the forest floor, and C storage in the mineral soil, and analyzed the dependence of these processes and pools on precipitation. Litterfall decreased slightly - about 10% - from stands with 1240 mm yr(-1) to those with 642 mm yr(-1), while the decomposition decreased by 56%. Reduced precipitation strongly affected C storage and basal respiration in the mineral soil. Higher soil C storage at the drier sites was also related to the higher chemical recalcitrance of litter (fine roots and forest floor) and the presence of charcoal across sites, suggesting an important indirect influence of climate on C sequestration. Basal respiration was controlled by the amount of recalcitrant organic matter in the mineral soil. We conclude that in these forest ecosystems, the long-term consequences of decreased precipitation would be an increase in organic layer and mineral soil C storage, mainly due to lower decomposition and higher chemical recalcitrance of organic matter, resulting from changes in litter composition and, likely also, wildfire patterns. This could turn these seasonally dry tropical forests into significant soil C sinks under the predicted longer drought periods if primary productivity is maintained. © 2016 John Wiley & Sons Ltd.

  10. State of Conservation of the Native Forests in Entre Ríos (Argentina) and Changes in Land Use

    Science.gov (United States)

    Sabattini, R. A.; Sione, S. M.; Ledesma, S. G.; Sabattini, J. A.; Wilson, M. G.

    2012-04-01

    The native forest area of Entre Ríos province (Argentina) is associated with a constant change in land use, with an increase in recent years in agricultural use, especially for soybean crop. In addition, since its inadequate management has triggered degradation processes of the natural forest structure, the implementation of strategies for the restoration and conservation of native forests has become a priority. The aim of this study was to diagnose the conservation state of the native forest in the basin of the Estacas Stream (Entre Ríos, Argentina) after the change in land use, to help design guidelines for the restoration and sustainable management of these ecosystems. The field study was conducted in October 2010, in a representative area of the native forest of 73,000 ha. Using Landsat 5-TM images (INPE), environments were separated by manual vectorization, identifying and classifying native forests and other lands (agricultural, urban). Using a field exploratory survey (58 geo-referenced sampling points), we developed patterns corresponding to the different types of forests, contrasting this information with the digital data of the images. The native forests were classified according to type (high/low forest, open/closed forest, savanna), successional stage (climax, successional or regeneration forest) and degree of disturbance (weed growth, erosion, fire), and their frequency determined. Each classification was assessed by a contingency matrix, and global reliability index and the Kappa index. The information obtained generated a classification map of native forests in the basin scale. We found that the native forest covered an area of 42,726.91 ha, accounting for 58.52% of the total basin area, and that the rest corresponded to other land uses. The most frequent native forests (59.09%) were climax forest, but accounted for only 8.2% of the basin area. Within this group, the most important were the low and open forest, with Prosopis affinis and Prosopis

  11. La foret classee d'Atakpame: diversite, typologie, sequestration de ...

    African Journals Online (AJOL)

    This study assesses the woodlands diversity in Atakpamé classified forest (FCA) of Togo and their potential carbon sequestration. The FCA, an important production source of diversified products and very useful for riparian populations survival is weakened. FCA is subject to various anthropogenic pressures that affect ...

  12. Spatial variation in the storages and age-related dynamics of forest carbon sequestration in different climate zones-evidence from black locust plantations on the Loess Plateau of China.

    Science.gov (United States)

    Li, Taijun; Ren, Bowen; Wang, Dahui; Liu, Guobin

    2015-01-01

    Knowledge about the long-term influences of climate change on the amount of potential carbon (C) sequestration in forest ecosystems, including age-related dynamics, remains unclear. This study used two similar age-sequences of black locust forests (Robinia pseudoacacia L.) in the semi-arid and semi-humid zones of China's Loess Plateau to assess the variation in C stocks and age-related dynamics. Our results demonstrated that black locust forests of the semi-humid zone stored significantly more C than did forests in the semi-arid zone, across the chronosequence (p zone, while the semi-arid zone had a capacity of only 79.4 Mg C ha-1. Soil organic C (SOC) increased continuously with stand age in the semi-arid zone (R2 = 0.84, p = 0.010). However, in the semi-humid zone, SOC declined sharply by 47.8% after the initial stage (5 to 10 y). The C stock in trees increased continuously with stand age in the semi-humid zone (R2 = 0.83, p = 0.011), yet in the semi-arid zone, it decreased dramatically from 43.0 Mg C ha-1 to 28.4 Mg C ha-1 during the old forest stage (38 to 56 y). The shift from being a net C sink to a net C source occurred at the initial stage in the semi-humid zone versus at the old forest stage in the semi-arid zone after reforestation. Surprisingly, with the exception of the initial and later stages (55 y), the patterns of C allocation among trees, soils, understory and litter were not statistically different between the two climate zones. Our results suggest that climate factors can alter the potential amount and age-related dynamics of forest C sequestration.

  13. Spatial Variation in the Storages and Age-Related Dynamics of Forest Carbon Sequestration in Different Climate Zones—Evidence from Black Locust Plantations on the Loess Plateau of China

    Science.gov (United States)

    Li, Taijun; Ren, Bowen; Wang, Dahui; Liu, Guobin

    2015-01-01

    Knowledge about the long-term influences of climate change on the amount of potential carbon (C) sequestration in forest ecosystems, including age-related dynamics, remains unclear. This study used two similar age-sequences of black locust forests (Robinia pseudoacacia L.) in the semi-arid and semi-humid zones of China’s Loess Plateau to assess the variation in C stocks and age-related dynamics. Our results demonstrated that black locust forests of the semi-humid zone stored significantly more C than did forests in the semi-arid zone, across the chronosequence (p zone, while the semi-arid zone had a capacity of only 79.4 Mg C ha−1. Soil organic C (SOC) increased continuously with stand age in the semi-arid zone (R2 = 0.84, p = 0.010). However, in the semi-humid zone, SOC declined sharply by 47.8% after the initial stage (5 to 10 y). The C stock in trees increased continuously with stand age in the semi-humid zone (R2 = 0.83, p = 0.011), yet in the semi-arid zone, it decreased dramatically from 43.0 Mg C ha−1 to 28.4 Mg C ha−1 during the old forest stage (38 to 56 y). The shift from being a net C sink to a net C source occurred at the initial stage in the semi-humid zone versus at the old forest stage in the semi-arid zone after reforestation. Surprisingly, with the exception of the initial and later stages (55 y), the patterns of C allocation among trees, soils, understory and litter were not statistically different between the two climate zones. Our results suggest that climate factors can alter the potential amount and age-related dynamics of forest C sequestration. PMID:25799100

  14. Trading forest carbon

    Science.gov (United States)

    The nature of carbon in forests is discussed from the perspective of carbon trading. Carbon inventories, specifically in the area of land use and forestry are reviewed for the Pacific Northwest. Carbon turnover in forests is discussed as it relates to carbon sequestration. Scient...

  15. Conservation thinning in secondary forest: negative but mild effect on land molluscs in closed-canopy mixed oak forest in Sweden.

    Directory of Open Access Journals (Sweden)

    Birte Rancka

    Full Text Available Secondary succession is changing the character of many temperate forests and often leads to closed-canopy stands. In such forests set aside for conservation, habitat management alternatives need to be tested experimentally, but this is rarely done. The Swedish Oak Project compares two often debated alternatives: minimal intervention and non-traditional active management (conservation thinning on plots of each type replicated at 25 sites. We study responses of several taxa, and here report results for land molluscs. They are considered to be sensitive to more open, drier forest and we predicted a negative effect of the thinning (26% reduction of the basal area; mean value for 25 experimental forests. We sampled molluscs in the litter in ten 20 x 25 cm subplots, and by standardised visual search, in each plot. In total, we recorded 53 species of snails and slugs (24 369 individuals and the mean species richness in plots was 17. Two seasons after thinning, mean (± SE species richness had decreased by 1.4 (± 0.9 species in thinning plots, but increased by 0.7 (± 1.0 species in minimal intervention plots, a significant but small change with considerable variation among sites. In matched comparisons with minimal intervention, thinning reduced the overall abundance of molluscs. Most species responded negatively to thinning - but only five of the 53 species were significantly affected, and reproduction seemed to be negatively affected in only one species. An ordination analysis did not reveal any particular change in the species community due to thinning. Thus, the negative effect of conservation thinning on land molluscs was apparently mild - one reason was that many trees, shrubs and other forest structures remained after the treatment. Conservation thinning may be recommended, since other taxa are favoured, but minimal intervention is also a useful form of management for molluscs and saproxylic taxa.

  16. Monitoring and economic factors affecting the economic viability of afforestation for carbon sequestration projects

    International Nuclear Information System (INIS)

    Robertson, Kimberly; Loza-Balbuena, Isabel; Ford-Robertson, Justin

    2004-01-01

    The Kyoto Protocol is the first step towards achieving the objectives of the United Nations Framework Convention on Climate Change and aims among others to promote 'the protection and enhancement of carbon sinks and reservoirs'. To encourage afforestation for carbon sequestration a project must be economically viable. This study uses a model to analyse the impact on project viability of a range of carbon monitoring options, international carbon credit value and discount rate, applied to a Pinus radiata afforestation project in New Zealand. Monitoring carbon in conjunction with conventional forest inventory shows the highest return. Long-term average carbon accounting has lower accounting costs, compared to annual and 5 yearly accounting, as monitoring is only required every 5-10 years until the long-term average is attained. In this study we conclude that monitoring soil carbon stocks is not economically feasible using any of the accounting methods, when carbon is valued at US$ 10/t. This conclusion may be relevant to forest carbon sequestration projects elsewhere in the world and suggests care is needed in selecting the appropriate carbon monitoring options to avoid the risk that costs could be higher than any monetary benefits from terrestrial carbon sequestration. This would remove any commercial incentive to afforest for carbon sequestration reasons and severely limit the use of forest sinks as part of any package of measures addressing the ultimate objective of the UNFCCC

  17. Exploring the willingness to pay for forest ecosystem services by residents of the Veneto Region

    Directory of Open Access Journals (Sweden)

    Paola Gatto

    2014-05-01

    Full Text Available Forests produce a wide array of goods, both private and public. The demand for forest ecosystem services is increasing in many European countries, yet there is still a scarcity of data on values at regional scale for Alpine areas. A Choice Experiment survey has been conducted in order to explore preferences, uses and the willingness of the Veneto population to pay for ecosystem services produced by regional mountain forests. The results show that willingness to pay is significant for recreation and C-sequestration but not for biodiversity conservation, landscape and other ecosystem services. These findings question the feasibility of developing market-based mechanisms in Veneto at present and cast light on the possible role of public institutions in promoting policy actions to increase the general awareness of forest-related ecosystem services.

  18. When you cannot see the forest for the trees: Effect of forest monocultures on biodiversity conservation

    International Nuclear Information System (INIS)

    Cordero Rivera, Adolfo

    2011-01-01

    Human population is growing at rates that were unimaginable only a century ago, creating such pressure on resources, which will only decrease when the decline in birth rate stabilizes population. Among these resources, wood is one of the most demanded. Global consumption of wood is currently more than 3500 million m 3, a rate multiplied by six since 1950. To meet this demand, we manage millions of hectares of forests and forest plantations, part of which are cut down each year. This logging determines drastic effects on forests, affecting the biodiversity associated and the ecosystems services provided to society. This work is a review of the structural and functional characteristics that differentiate forests and forest plantations, in spite of the confusion between both ecosystems by FAO and the forest sector companies, which have coined the oxymoron planted forests. Forest plantations are more productive than forests from the point of view of the volume of wood that can be obtained from them, and if well managed, could minimize the pressure on forests. However, they do not provide many services that forests do provide, especially in the case of monospecific plantations consisting of even aged individuals of exotic species that are managed intensively. Some of the many techniques that combine the production of wood with the conservation of biodiversity are reviewed.

  19. The role of novel forest ecosystems in the conservation of wood-inhabiting fungi in boreal broadleaved forests.

    Science.gov (United States)

    Juutilainen, Katja; Mönkkönen, Mikko; Kotiranta, Heikki; Halme, Panu

    2016-10-01

    The increasing human impact on the earth's biosphere is inflicting changes at all spatial scales. As well as deterioration and fragmentation of natural biological systems, these changes also led to other, unprecedented effects and emergence of novel habitats. In boreal zone, intensive forest management has negatively impacted a multitude of deadwood-associated species. This is especially alarming given the important role wood-inhabiting fungi have in the natural decay processes. In the boreal zone, natural broad-leaved-dominated, herb-rich forests are threatened habitats which have high wood-inhabiting fungal species richness. Fungal diversity in other broadleaved forest habitat types is poorly known. Traditional wood pastures and man-made afforested fields are novel habitats that could potentially be important for wood-inhabiting fungi. This study compares species richness and fungal community composition across the aforementioned habitat types, based on data collected for wood-inhabiting fungi occupying all deadwood diameter fractions. Corticioid and polyporoid fungi were surveyed from 67 130 deadwood particles in four natural herb-rich forests, four birch-dominated wood pastures, and four birch-dominated afforested field sites in central Finland. As predicted, natural herb-rich forests were the most species-rich habitat. However, afforested fields also had considerably higher overall species richness than wood pastures. Many rare or rarely collected species were detected in each forest type. Finally, fungal community composition showed some divergence not only among the different habitat types, but also among deadwood diameter fractions. Synthesis and applications : In order to maintain biodiversity at both local and regional scales, conserving threatened natural habitat types and managing traditional landscapes is essential. Man-made secondary woody habitats could provide the necessary resources and serve as surrogate habitats for many broadleaved deadwood

  20. Achievable future conditions as a framework for guiding forest conservation and management

    Science.gov (United States)

    S.W. Golladay; K.L. Martin; J. M. Vose; D. N. Wear; A.P. Covich; R.J. Hobbs; Kier Klepzig; G.E. Likens; R.J. Naiman; A.W. Shearer

    2016-01-01

    We contend that traditional approaches to forest conservation and management will be inadequate given the predicted scale of social-economic and biophysical changes in the 21st century. New approaches, focused on anticipating and guiding ecological responses to change, are urgently needed to ensure the full value of forest ecosystem services for future generations....

  1. Terrestrial carbon losses from mountaintop coal mining offset regional forest carbon sequestration in the 21st century

    International Nuclear Information System (INIS)

    Elliott Campbell, J; Fox, James F; Acton, Peter M

    2012-01-01

    Studies that quantify the spatial and temporal variability of carbon sources and sinks provide process-level information for the prediction of future levels of atmospheric carbon dioxide as well as verification of current emission agreements. Assessments of carbon sources and sinks for North America that compare top-down atmospheric constraints with bottom-up inventories find particularly large carbon sinks in the southeastern US. However, this southeastern US sink may be impacted by extreme land-use disturbance events due to mountaintop coal mining (MCM). Here we apply ecosystem modeling and field experiment data to quantify the potential impact of future mountaintop coal mining on the carbon budget of the southern Appalachian forest region. For projections based on historical mining rates, grassland reclamation, and the continued regrowth of un-mined forests, we find that the southern Appalachian forests switch from a net carbon sink to a net carbon source by year 2025–33 with a 30%–35% loss in terrestrial carbon stocks relative to a scenario with no future mining by the year 2100. Alternatively, scenarios of forest sequestration due to the effect of CO 2 fertilization result in a 15%–24% loss in terrestrial carbon stocks by the year 2100 for mining scenarios relative to scenarios with no future mining. These results suggest that while power plant stack emissions are the dominant life-cycle stage in coal-fired electricity, accounting for mountaintop coal mining in bottom-up inventories may be a critical component of regional carbon budgets. (letter)

  2. Increased carbon sequestration in a Danish beech forest during 1996-2016: Observations and hypotheses.

    Science.gov (United States)

    Pilegaard, Kim; Ibrom, Andreas

    2017-04-01

    A study of the net exchange of CO2 (NEE) between the atmosphere and a beech forest near Sorø, Denmark, during 14 years (1996-2009) showed that the beech forest acted as an increasing sink of CO2 [1]. A significant increase in gross primary production (GPP) and a smaller and not significant increase in ecosystem respiration (RE) were also found. Thus, the increased NEE was mainly attributed to an increase in GPP. The length of the carbon uptake period (CUP) significantly increased, whereas there was a no increase in the leafed period (LP). This means that the leaves stayed active longer. The increase in the carbon uptake period explained about half of the increasing NEE. The remaining increase was believed to be due to an observed increased uptake capacity of the canopy and increased annual radiation efficiency[2]. The causes for this were hypothesized to be a combination of increase in atmospheric CO2 concentration, higher summer precipitation, and increased availability of N. A higher nitrogen content in the leaves was observed towards the end of the observation period. An updated analysis of the flux data, now including the years 1996-2016, confirms the increasing trend in carbon sequestration of the forest, an increasingly longer growing season, and a significant correlation of NEE and CUP, however, similarly to the first study, the increase in CUP only explains about half of the total increase. Here we investigate three hypotheses for the remaining reasons for the increase: H1: increased canopy nitrogen content H2: carbon dioxide fertilisation H3: increased water availability due to changing precipitation patterns. We describe the multiannual development of canopy photosynthesis capacity with regression analysis and perform sensitivity studies with the canopy model MAESTRA [3] to investigate the above hypotheses. The results will be presented, critically discussed and interpreted with respect to general effects of global climate change and site specific, local

  3. Organic matter fuel briquettes as a forest conservation tool in Lake ...

    African Journals Online (AJOL)

    Organic matter fuel briquettes as a forest conservation tool in Lake Malawi National Park: research note. ... Open Access DOWNLOAD FULL TEXT ... towards fuel briquettes, cost is the limiting factor when people choose their fuel source.

  4. Implications Of Fuelwood Demandon Sustainable Forest Conservation Of The Sub-Sahara Africa

    Directory of Open Access Journals (Sweden)

    Sogbon Odunwole

    2017-04-01

    Full Text Available Forests contribute immensely to economic and social development through formal trade in timber environmental services non- timber forest products safety net spiritual and aesthetic value. Wood is a key source of energy that has been used for millennia for cooking boiling water lighting and heating. Today about 2.5billion people depend on biomass energy for cooking and heating with 87 of this energy being provided by wood. In sub-Saharan African more than 90 of the population relies on wood fire that is firewood and charcoal as their primary source of domestic energy. Over 80 of urban householders and small industries use charcoal and firewood as their source of energy. Despite their numerous importance Africas forest continue to decline rapidly due to increase in agricultural practices into forest lands population growth and urbanization increased poverty high dependence on natural resources for subsistence and income through forest. The study centred on the implications of fuel wood demand on forest conservation in sub-Sahara Africa - a regional focus on Akure metropolitan area Ondo State. The specific objectives of the paper were to identify firewood consumption pattern in Akure metropolitan area and factors responsible for increased fuelwood demand in the study area. The paper adopted direct observation oral interview and 0.05 of the study area as sample size for the study. The study observed lack of adequate alternative poor implementation and enforcement of government regulation on forestry poverty and poor awareness on the menace of forest depletion among others. The paper posited provision of alternative fuel with subsidy regular awareness campaign proper monitoring implementation and enforcement of forest regulations with a view to achieving sustainable conservation.

  5. Restoring Sustainable Forests on Appalachian Mined Lands for Wood Products, Renewable Energy, Carbon Sequestration, and Other Ecosystem Services

    Energy Technology Data Exchange (ETDEWEB)

    James A. Burger; J. Galbraith; T. Fox; G. Amacher; J. Sullivan; C. Zipper

    2006-05-05

    The overall purpose of this project is to evaluate the biological and economic feasibility of restoring high-quality forests on mined land, and to measure carbon sequestration and wood production benefits that would be achieved from forest restoration procedures. In this quarterly report we present data that show the spatial distribution of carbon in mine soils. Soil carbon data from deep soil pits from grassland minelands located in Ohio, Virginia, and West Virginia were analyzed to determine the vertical distribution and variability of soil organic carbon (SOC) down to a 2-m depth. Regression analyses were used to describe and model the distribution by soil depth of C(wt%), BD{sub fines}(g cm{sup -3}), and fines (vol%) in mine soils. The volume of excavated mine soil samples was transformed in terms of costs of digging and sampling, including sample collection and preparation, and C(wt%) analysis, in order to determine the maximum cost-effective depth (MCD) for carbon inventorying on the mined sites analyzed. Based on the horizontal variation of SOC(g m{sup -2}), we determined the sampling intensity required to achieve a desired accuracy of the amount of sequestered SOC(g m{sup -2}) at certain probability levels. The MCD and sampling intensity measurements were used to determine the minimum detectable difference (MDD) of SOC(g m{sup -2}) between two consecutive carbon inventories. We also proposed a method to determine the minimum number of years before a future C inventory event is carried out so that the measured SOC(g m{sup -2}) differences were greater than MDD. We used geostatistical analyses procedures to determine spatial dependence predictability of surface SOC(g m{sup -2}) data on the minelands analyzed. Kriging techniques were used to create surface SOC(g m{sup -2}) maps for the sites in Ohio and West Virginia. The average C sequestration rate in the surface soil layer for the Ohio (age 9) sites was estimated at 124 g C m{sup -2} yr{sup -1}, and it was

  6. The conservation value of South East Asia's highly degraded forests: evidence from leaf-litter ants

    Science.gov (United States)

    Woodcock, Paul; Edwards, David P.; Fayle, Tom M.; Newton, Rob J.; Khen, Chey Vun; Bottrell, Simon H.; Hamer, Keith C.

    2011-01-01

    South East Asia is widely regarded as a centre of threatened biodiversity owing to extensive logging and forest conversion to agriculture. In particular, forests degraded by repeated rounds of intensive logging are viewed as having little conservation value and are afforded meagre protection from conversion to oil palm. Here, we determine the biological value of such heavily degraded forests by comparing leaf-litter ant communities in unlogged (natural) and twice-logged forests in Sabah, Borneo. We accounted for impacts of logging on habitat heterogeneity by comparing species richness and composition at four nested spatial scales, and examining how species richness was partitioned across the landscape in each habitat. We found that twice-logged forest had fewer species occurrences, lower species richness at small spatial scales and altered species composition compared with natural forests. However, over 80 per cent of species found in unlogged forest were detected within twice-logged forest. Moreover, greater species turnover among sites in twice-logged forest resulted in identical species richness between habitats at the largest spatial scale. While two intensive logging cycles have negative impacts on ant communities, these degraded forests clearly provide important habitat for numerous species and preventing their conversion to oil palm and other crops should be a conservation priority. PMID:22006966

  7. Threats from urban expansion, agricultural transformation and forest loss on global conservation priority areas

    Science.gov (United States)

    Moilanen, Atte; Di Minin, Enrico

    2017-01-01

    Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results

  8. Soil carbon sequestration potential for "grain for green" project in Loess Plateau, China

    Science.gov (United States)

    Chang, R.; Fu, B.; Liu, Gaisheng; Liu, S.

    2011-01-01

    Conversion of cropland into perennial vegetation land can increase soil organic carbon (SOC) accumulation, which might be an important mitigation measure to sequester carbon dioxide from the atmosphere. The “Grain for Green” project, one of the most ambitious ecological programmes launched in modern China, aims at transforming the low-yield slope cropland into grassland and woodland. The Loess Plateau in China is the most important target of this project due to its serious soil erosion. The objectives of this study are to answer three questions: (1) what is the rate of the SOC accumulation for this “Grain for Green” project in Loess Plateau? (2) Is there a difference in SOC sequestration among different restoration types, including grassland, shrub and forest? (3) Is the effect of restoration types on SOC accumulation different among northern, middle and southern regions of the Loess Plateau? Based on analysis of the data collected from the literature conducted in the Loess Plateau, we found that SOC increased at a rate of 0.712 TgC/year in the top 20 cm soil layer for 60 years under this project across the entire Loess Plateau. This was a relatively reliable estimation based on current data, although there were some uncertainties. Compared to grassland, forest had a significantly greater effect on SOC accumulation in middle and southern Loess Plateau but had a weaker effect in the northern Loess Plateau. There were no differences found in SOC sequestration between shrub and grassland across the entire Loess Plateau. Grassland had a stronger effect on SOC sequestration in the northern Loess Plateau than in the middle and southern regions. In contrast, forest could increase more SOC in the middle and southern Loess Plateau than in the northern Loess Plateau, whereas shrub had a similar effect on SOC sequestration across the Loess Plateau. Our results suggest that the “Grain for Green” project can significantly increase the SOC storage in Loess Plateau

  9. Estimating long-term carbon sequestration patterns in even- and uneven-aged southern pine stands

    Science.gov (United States)

    Don C. Bragg; James M. Guldin

    2010-01-01

    Carbon (C) sequestration has become an increasingly important consideration for forest management in North America, and has particular potential in pine-dominated forests of the southern United States. Using existing literature on plantations and long-term studies of naturally regenerated loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine-dominated stands on...

  10. Beyond Nature Appropriation: Towards Post-development Conservation in the Maya Forest

    OpenAIRE

    Jose E Martinez-Reyes

    2014-01-01

    The establishment of biosphere reserves in Mexico was followed by alternative livelihood conservation/development projects to integrate indigenous groups into Western style conservation under the idea of sustainable development and participation. In this paper, I discuss the outcomes of two forest wildlife management projects in one Maya community along the Sian Ka′an Biosphere Reserve in the state of Quintana Roo. Both projects ultimately failed and the community mobilised and expelled the N...

  11. The effects of processing non-timber forest products and trade partnerships on people's well-being and forest conservation in Amazonian societies.

    Directory of Open Access Journals (Sweden)

    Carla Morsello

    Full Text Available This study evaluated whether processing non-timber forest products (NTFPs and establishing trade partnerships between forest communities and companies enhance the outcomes of NTFP commercialization. In particular, we evaluated whether product processing, partnerships, or their combination was associated with a number of outcomes related to the well-being of forest inhabitants and forest conservation. We based our analyses on ethnographic and quantitative data (i.e., survey and systematic observations gathered at seven communities from five societies of the Brazilian and Bolivian Amazon. Our results indicated that product processing and partnerships do not represent a silver bullet able to improve the results of NTFP commercialization in terms of well-being and conservation indicators. Compared with cases without interventions, households adopting partnerships but not product processing were most often associated with improved economic proxies of well-being (total income, NTFP income, food consumption and gender equality in income. In comparison, the combination of product processing and partnerships was associated with similar outcomes. Unexpectedly, product processing alone was associated with negative outcomes in the economic indicators of well-being. All of the investigated strategies were associated with less time spent in social and cultural activities. With respect to forest conservation, the strategies that included a partnership with or without processing produced similar results: while household deforestation tended to decrease, the hunting impact increased. Processing alone was also associated with higher levels of hunting, though it did not reduce deforestation. Our results indicate that establishing partnerships may enhance the outcomes of NTFP trade in terms of the financial outcomes of local communities, but practitioners need to use caution when adopting the processing strategy and they need to evaluate potential negative results

  12. The effects of processing non-timber forest products and trade partnerships on people's well-being and forest conservation in Amazonian societies.

    Science.gov (United States)

    Morsello, Carla; Ruiz-Mallén, Isabel; Diaz, Maria Dolores Montoya; Reyes-García, Victoria

    2012-01-01

    This study evaluated whether processing non-timber forest products (NTFPs) and establishing trade partnerships between forest communities and companies enhance the outcomes of NTFP commercialization. In particular, we evaluated whether product processing, partnerships, or their combination was associated with a number of outcomes related to the well-being of forest inhabitants and forest conservation. We based our analyses on ethnographic and quantitative data (i.e., survey and systematic observations) gathered at seven communities from five societies of the Brazilian and Bolivian Amazon. Our results indicated that product processing and partnerships do not represent a silver bullet able to improve the results of NTFP commercialization in terms of well-being and conservation indicators. Compared with cases without interventions, households adopting partnerships but not product processing were most often associated with improved economic proxies of well-being (total income, NTFP income, food consumption and gender equality in income). In comparison, the combination of product processing and partnerships was associated with similar outcomes. Unexpectedly, product processing alone was associated with negative outcomes in the economic indicators of well-being. All of the investigated strategies were associated with less time spent in social and cultural activities. With respect to forest conservation, the strategies that included a partnership with or without processing produced similar results: while household deforestation tended to decrease, the hunting impact increased. Processing alone was also associated with higher levels of hunting, though it did not reduce deforestation. Our results indicate that establishing partnerships may enhance the outcomes of NTFP trade in terms of the financial outcomes of local communities, but practitioners need to use caution when adopting the processing strategy and they need to evaluate potential negative results for indicators of

  13. The Effects of Processing Non-Timber Forest Products and Trade Partnerships on People's Well-Being and Forest Conservation in Amazonian Societies

    Science.gov (United States)

    Morsello, Carla; Ruiz-Mallén, Isabel; Diaz, Maria Dolores Montoya; Reyes-García, Victoria

    2012-01-01

    This study evaluated whether processing non-timber forest products (NTFPs) and establishing trade partnerships between forest communities and companies enhance the outcomes of NTFP commercialization. In particular, we evaluated whether product processing, partnerships, or their combination was associated with a number of outcomes related to the well-being of forest inhabitants and forest conservation. We based our analyses on ethnographic and quantitative data (i.e., survey and systematic observations) gathered at seven communities from five societies of the Brazilian and Bolivian Amazon. Our results indicated that product processing and partnerships do not represent a silver bullet able to improve the results of NTFP commercialization in terms of well-being and conservation indicators. Compared with cases without interventions, households adopting partnerships but not product processing were most often associated with improved economic proxies of well-being (total income, NTFP income, food consumption and gender equality in income). In comparison, the combination of product processing and partnerships was associated with similar outcomes. Unexpectedly, product processing alone was associated with negative outcomes in the economic indicators of well-being. All of the investigated strategies were associated with less time spent in social and cultural activities. With respect to forest conservation, the strategies that included a partnership with or without processing produced similar results: while household deforestation tended to decrease, the hunting impact increased. Processing alone was also associated with higher levels of hunting, though it did not reduce deforestation. Our results indicate that establishing partnerships may enhance the outcomes of NTFP trade in terms of the financial outcomes of local communities, but practitioners need to use caution when adopting the processing strategy and they need to evaluate potential negative results for indicators of

  14. Risk assessment for biodiversity conservation planning in Pacific Northwest forests

    Science.gov (United States)

    Becky K. Kerns; Alan Ager

    2007-01-01

    Risk assessment can provide a robust strategy for landscape-scale planning challenges associated with species conservation and habitat protection in Pacific Northwest forests. We provide an overview of quantitative and probabilistic ecological risk assessment with focus on the application of approaches and influences from the actuarial, financial, and technical...

  15. The status of conservation of urban forests in eastern Amazonia

    Directory of Open Access Journals (Sweden)

    DD Amaral

    Full Text Available This study aims to identify the remnant tree flora in six forest fragments in the metropolitan area of Belém and to analyze these fragments in terms of biological conservation, species richness and diversity in the local urban landscape. The fragments and their respective sampling areas were as follows: Amafrutas reserve (15 ha, Trambioca Is. reserve (2 ha, Bosque Rodrigues Alves city park (15 ha, Combu Is. reserve (10 ha, Gunma Park reserve (10 ha and Mocambo reserve (5 ha. Inventories were built from lineal plots of 250 m² and included trees with DBH equal to or greater than 10 cm at a height of 1.3 m above ground. Sixty-nine families and 759 species, of which eight were officially listed as endangered (Brazilian National Flora: Ministry of Environment, Normative Instruction of September, 2008; Pará State Flora: Decree Nº. 802 of February 2008 were recorded. These endangered species are: Aspidosperma desmanthum Benth. ex Müll. Arg. (Apocynaceae, Cedrela odorata L. (Meliaceae, Eschweilera piresii S.A Mori (Lecythidaceae, Euxylophora paraensis Huber (Rutaceae, Hymenolobium excelsum Ducke (Leguminosae, Manilkara huberi (Ducke Chevalier (Sapotaceae, Tabebuia impetiginosa (Mart. ex DC. Standl. (Bignoniaceae, Mezilaurus itauba (Meisn. Taub. ex Mez (Lauraceae and Qualea coerulea Aubl. (Vochysiaceae. Emergency actions such as implementing management plans for already existing Conservation Units, the creation of new such units in areas of primary forest fragments (as in the case of the Amafrutas reserve, as well as the intensification of actions of surveillance and monitoring, should be undertaken by Federal, State, and Municipal environmental agencies so as to ensure the conservation of these last primary forest remnants in the metropolitan area of Belém.

  16. Does the Maya Forest Need More Roads?:Conservation Policy in Brief

    OpenAIRE

    Conde, Dalia Amor; Ramos, Victor Hugo; Burgués, Irene; Castellanos, Bayron; Fleck, Leonardo; Albacete, Carlos; Espinoza, Piedad; Manterola, Carlos; Paiz, Gerardo

    2007-01-01

    An assortment of road projects has been proposed in the border region of Mexico, Guatemala and Belize, which is part of the Maya Forest, the largest contiguous tropical forest in the Americas north of the Amazon. The proposals are apparently aimed at spurring economic growth and reducing the high levels of poverty found in this area. But more and better roads usually bring more people and expand farms. Decision-makers are therefore confronted with a seeming conflict between conservation and d...

  17. Incorporating phylogenetic information for the definition of floristic districts in hyperdiverse Amazon forests: Implications for conservation

    OpenAIRE

    Guevara Andino, Juan Ernesto; Pitman, Nigel C. A.; ter Steege, Hans; Mogollón, Hugo; Ceron, Carlos; Palacios, Walter; Oleas, Nora; Fine, Paul V. A.

    2017-01-01

    Abstract Using complementary metrics to evaluate phylogenetic diversity can facilitate the delimitation of floristic units and conservation priority areas. In this study, we describe the spatial patterns of phylogenetic alpha and beta diversity, phylogenetic endemism, and evolutionary distinctiveness of the hyperdiverse Ecuador Amazon forests and define priority areas for conservation. We established a network of 62 one‐hectare plots in terra firme forests of Ecuadorian Amazon. In these plots...

  18. Hydrological services and biodiversity conservation under forestation scenarios: comparing options to improve watershed management

    Science.gov (United States)

    Carvalho-Santos, Claudia; Nunes, João Pedro; Sousa-Silva, Rita; Gonçalves, João; Pradinho Honrado, João

    2015-04-01

    Humans rely on ecosystems for the provision of hydrological services, namely water supply and water damage mitigation, and promoting forests is a widely used management strategy for the provision of hydrological services. Therefore, it is important to model how forests will contribute for this provision, taking into account the environmental characteristics of each region, as well as the spatio-temporal patterns of societal demand. In addition, ensuring forest protection and the delivery of forest ecosystem services is one of the aims included in the European Union biodiversity strategy to 2020. On the other hand, forest management for hydrological services must consider possible trade-offs with other services provision, as well as with biodiversity conservation. Accurate modeling and mapping of both hydrological services and biodiversity conservation value is thus important to support spatial planning and land management options involving forests. The objectives of this study were: to analyze the provision and spatial dynamics of hydrological services under two forest cover change scenarios (oak and eucalyptus/pine) compared to the current shrubland-dominated landscape; and to evaluate their spatial trade-offs with biodiversity conservation value. The Vez watershed (250km2), in northwest Portugal, was used as case-study area. SWAT (Soil and Water Assessment Tool) was applied to simulate the provision of hydrological services (water supply quantity, timing and quality; soil erosion and flood regulation), and was calibrated against daily discharge, sediments, nitrates and evapotranspiration. Good agreement was obtained between model predictions and field measurements. The maps for each service under the different scenarios were produced at the Hydrologic Response Unit (HRU) level. Biodiversity conservation value was based on nature protection regimes and on expert valuation applied to a land cover map. Statistical correlations between hydrological services provision

  19. Balancing shifting cultivation and forest conservation: lessons from a "sustainable landscape" in southeastern Mexico.

    Science.gov (United States)

    Dalle, Sarah Paule; Pulido, María T; de Blois, Sylvie

    2011-07-01

    Shifting cultivation is often perceived to be a threat to forests, but it is also central to the culture and livelihoods of millions of people worldwide. Balancing agriculture and forest conservation requires knowledge of how agricultural land uses evolve in landscapes with forest conservation initiatives. Based on a case study from Quintana Roo, Mexico, and remote sensing data, we investigated land use and land cover change (LUCC) in relation to accessibility (from main settlement and road) in search of evidence for agricultural expansion and/or intensification after the initiation of a community forestry program in 1986. Intensification was through a shortening of the fallow period. Defining the sampling space as a function of human needs and accessibility to agricultural resources was critical to ensure a user-centered perspective of the landscape. The composition of the accessible landscape changed substantially between 1976 and 1997. Over the 21-year period studied, the local population saw the accessible landscape transformed from a heterogeneous array of different successional stages including mature forests to a landscape dominated by young fallows. We detected a dynamic characterized by intensification of shifting cultivation in the most accessible areas with milpas being felled more and more from young fallows in spite of a preference for felling secondary forests. We argue that the resulting landscape provides a poorer resource base for sustaining agricultural livelihoods and discuss ways in which agricultural change could be better addressed through participatory land use planning. Balancing agricultural production and forest conservation will become even more important in a context of intense negotiations for carbon credits, an emerging market that is likely to drive future land changes worldwide.

  20. Plant diversity patterns in neotropical dry forests and their conservation implications.

    Science.gov (United States)

    Banda-R, Karina; Delgado-Salinas, Alfonso; Dexter, Kyle G; Linares-Palomino, Reynaldo; Oliveira-Filho, Ary; Prado, Darién; Pullan, Martin; Quintana, Catalina; Riina, Ricarda; Rodríguez M, Gina M; Weintritt, Julia; Acevedo-Rodríguez, Pedro; Adarve, Juan; Álvarez, Esteban; Aranguren B, Anairamiz; Arteaga, Julián Camilo; Aymard, Gerardo; Castaño, Alejandro; Ceballos-Mago, Natalia; Cogollo, Álvaro; Cuadros, Hermes; Delgado, Freddy; Devia, Wilson; Dueñas, Hilda; Fajardo, Laurie; Fernández, Ángel; Fernández, Miller Ángel; Franklin, Janet; Freid, Ethan H; Galetti, Luciano A; Gonto, Reina; González-M, Roy; Graveson, Roger; Helmer, Eileen H; Idárraga, Álvaro; López, René; Marcano-Vega, Humfredo; Martínez, Olga G; Maturo, Hernán M; McDonald, Morag; McLaren, Kurt; Melo, Omar; Mijares, Francisco; Mogni, Virginia; Molina, Diego; Moreno, Natalia Del Pilar; Nassar, Jafet M; Neves, Danilo M; Oakley, Luis J; Oatham, Michael; Olvera-Luna, Alma Rosa; Pezzini, Flávia F; Dominguez, Orlando Joel Reyes; Ríos, María Elvira; Rivera, Orlando; Rodríguez, Nelly; Rojas, Alicia; Särkinen, Tiina; Sánchez, Roberto; Smith, Melvin; Vargas, Carlos; Villanueva, Boris; Pennington, R Toby

    2016-09-23

    Seasonally dry tropical forests are distributed across Latin America and the Caribbean and are highly threatened, with less than 10% of their original extent remaining in many countries. Using 835 inventories covering 4660 species of woody plants, we show marked floristic turnover among inventories and regions, which may be higher than in other neotropical biomes, such as savanna. Such high floristic turnover indicates that numerous conservation areas across many countries will be needed to protect the full diversity of tropical dry forests. Our results provide a scientific framework within which national decision-makers can contextualize the floristic significance of their dry forest at a regional and continental scale. Copyright © 2016, American Association for the Advancement of Science.

  1. Village Fengshui Forests of Southern China – Culture History and Conservation Status

    Directory of Open Access Journals (Sweden)

    Chris Coggins

    2012-06-01

    Full Text Available The post-reform revival of 'fengshui' and related indigenous spiritual practices in China has revitalized traditional village management of “'fengshui' forests” (“'fengshuilin'”.  This study examines the cosmological principles, landscape ecology, conservation status, and floristic diversity of forest patches that comprise important biological refugia in China’s subtropical broadleaved forest region. From 1949-1979, 'fengshui' was prohibited by the state, but many lineage villages continued to protect 'fengshuilin' through nontraditional means.  The restoration of 'fengshui' has enhanced 'fengshuilin' preservation traditions, but lack of state recognition has impeded systematic research and conservation planning. We assess the status of 'fengshui' practice, 'fengshuilin' management, enforcement of harvesting bans, and tree species selection in seventeen villages associated with over 40 forest patches.  There is little evidence of utilitarian criteria for tree species selection, thus 'fengshuilin' contain diverse taxonomic assemblages.  This suggests strong local institutional capacity for maintaining and enhancing forest diversity and unique traditions of indigenous landscape ecology. We would like to express our deep gratitude for the generosity of the Freeman Foundation and ASIANetwork for funding through the ASIANetwork Freeman Student-Faculty Fellows Program for Collaborative Research in Asia.  Without their support for field research in the summer of 2011, this project would not have been possible.

  2. How to reconcile wood production and biodiversity conservation? The Pan-European boreal forest history gradient as an "experiment".

    Science.gov (United States)

    Naumov, Vladimir; Manton, Michael; Elbakidze, Marine; Rendenieks, Zigmars; Priednieks, Janis; Uhlianets, Siarhei; Yamelynets, Taras; Zhivotov, Anton; Angelstam, Per

    2018-07-15

    There are currently competing demands on Europe's forests and the finite resources and services that they can offer. Forestry intensification that aims at mitigating climate change and biodiversity conservation is one example. Whether or not these two objectives compete can be evaluated by comparative studies of forest landscapes with different histories. We test the hypothesis that indicators of wood production and biodiversity conservation are inversely related in a gradient of long to short forestry intensification histories. Forest management data containing stand age, volume and tree species were used to model the opportunity for wood production and biodiversity conservation in five north European forest regions representing a gradient in landscape history from very long in the West and short in the East. Wood production indicators captured the supply of coniferous wood and total biomass, as well as current accessibility by transport infrastructure. Biodiversity conservation indicators were based on modelling habitat network functionality for focal bird species dependent on different combinations of stand age and tree species composition representing naturally dynamic forests. In each region we randomly sampled 25 individual 100-km 2 areas with contiguous forest cover. Regarding wood production, Sweden's Bergslagen region had the largest areas of coniferous wood, followed by Vitebsk in Belarus and Zemgale in Latvia. NW Russia's case study regions in Pskov and Komi had the lowest values, except for the biomass indicator. The addition of forest accessibility for transportation made the Belarusian and Swedish study region most suitable for wood and biomass production, followed by Latvia and two study regions in NW Russian. Regarding biodiversity conservation, the overall rank among regions was opposite. Mixed and deciduous habitats were functional in Russia, Belarus and Latvia. Old Scots pine and Norway spruce habitats were only functional in Komi. Thus

  3. Balancing forest-regeneration probabilities and maintenance costs in dry grasslands of high conservation priority

    Science.gov (United States)

    Bolliger, Janine; Edwards, Thomas C.; Eggenberg, Stefan; Ismail, Sascha; Seidl, Irmi; Kienast, Felix

    2011-01-01

    Abandonment of agricultural land has resulted in forest regeneration in species-rich dry grasslands across European mountain regions and threatens conservation efforts in this vegetation type. To support national conservation strategies, we used a site-selection algorithm (MARXAN) to find optimum sets of floristic regions (reporting units) that contain grasslands of high conservation priority. We sought optimum sets that would accommodate 136 important dry-grassland species and that would minimize forest regeneration and costs of management needed to forestall predicted forest regeneration. We did not consider other conservation elements of dry grasslands, such as animal species richness, cultural heritage, and changes due to climate change. Optimal sets that included 95–100% of the dry grassland species encompassed an average of 56–59 floristic regions (standard deviation, SD 5). This is about 15% of approximately 400 floristic regions that contain dry-grassland sites and translates to 4800–5300 ha of dry grassland out of a total of approximately 23,000 ha for the entire study area. Projected costs to manage the grasslands in these optimum sets ranged from CHF (Swiss francs) 5.2 to 6.0 million/year. This is only 15–20% of the current total estimated cost of approximately CHF30–45 million/year required if all dry grasslands were to be protected. The grasslands of the optimal sets may be viewed as core sites in a national conservation strategy.

  4. Evaluating heterogeneous conservation effects of forest protection in Indonesia.

    Directory of Open Access Journals (Sweden)

    Payal Shah

    Full Text Available Establishing legal protection for forest areas is the most common policy used to limit forest loss. This article evaluates the effectiveness of seven Indonesian forest protected areas introduced between 1999 and 2012. Specifically, we explore how the effectiveness of these parks varies over space. Protected areas have mixed success in preserving forest, and it is important for conservationists to understand where they work and where they do not. Observed differences in the estimated treatment effect of protection may be driven by several factors. Indonesia is particularly diverse, with the landscape, forest and forest threats varying greatly from region to region, and this diversity may drive differences in the effectiveness of protected areas in conserving forest. However, the observed variation may also be spurious and arise from differing degrees of bias in the estimated treatment effect over space. In this paper, we use a difference-in-differences approach comparing treated observations and matched controls to estimate the effect of each protected area. We then distinguish the true variation in protected area effectiveness from spurious variation driven by several sources of estimation bias. Based on our most flexible method that allows the data generating process to vary across space, we find that the national average effect of protection preserves an additional 1.1% of forest cover; however the effect of individual parks range from a decrease of 3.4% to an increase of 5.3% and the effect of most parks differ from the national average. Potential biases may affect estimates in two parks, but results consistently show Sebangau National Park is more effective while two parks are substantially less able to protect forest cover than the national average.

  5. Spatial variation in the storages and age-related dynamics of forest carbon sequestration in different climate zones-evidence from black locust plantations on the Loess Plateau of China.

    Directory of Open Access Journals (Sweden)

    Taijun Li

    Full Text Available Knowledge about the long-term influences of climate change on the amount of potential carbon (C sequestration in forest ecosystems, including age-related dynamics, remains unclear. This study used two similar age-sequences of black locust forests (Robinia pseudoacacia L. in the semi-arid and semi-humid zones of China's Loess Plateau to assess the variation in C stocks and age-related dynamics. Our results demonstrated that black locust forests of the semi-humid zone stored significantly more C than did forests in the semi-arid zone, across the chronosequence (p < 0.001. The C carrying capacity of the plantations was measured at 166.4 Mg C ha-1 (1 Mg = 106 g in the semi-humid zone, while the semi-arid zone had a capacity of only 79.4 Mg C ha-1. Soil organic C (SOC increased continuously with stand age in the semi-arid zone (R2 = 0.84, p = 0.010. However, in the semi-humid zone, SOC declined sharply by 47.8% after the initial stage (5 to 10 y. The C stock in trees increased continuously with stand age in the semi-humid zone (R2 = 0.83, p = 0.011, yet in the semi-arid zone, it decreased dramatically from 43.0 Mg C ha-1 to 28.4 Mg C ha-1 during the old forest stage (38 to 56 y. The shift from being a net C sink to a net C source occurred at the initial stage in the semi-humid zone versus at the old forest stage in the semi-arid zone after reforestation. Surprisingly, with the exception of the initial and later stages (55 y, the patterns of C allocation among trees, soils, understory and litter were not statistically different between the two climate zones. Our results suggest that climate factors can alter the potential amount and age-related dynamics of forest C sequestration.

  6. Modeling carbon and nitrogen biogeochemistry in forest ecosystems

    Science.gov (United States)

    Changsheng Li; Carl Trettin; Ge Sun; Steve McNulty; Klaus Butterbach-Bahl

    2005-01-01

    A forest biogeochemical model, Forest-DNDC, was developed to quantify carbon sequestration in and trace gas emissions from forest ecosystems. Forest-DNDC was constructed by integrating two existing moels, PnET and DNDC, with several new features including nitrification, forest litter layer, soil freezing and thawing etc, PnET is a forest physiological model predicting...

  7. Biodiversity conservation values of fragmented communally reserved forests, managed by indigenous people, in a human-modified landscape in Borneo.

    Science.gov (United States)

    Takeuchi, Yayoi; Soda, Ryoji; Diway, Bibian; Kuda, Tinjan Ak; Nakagawa, Michiko; Nagamasu, Hidetoshi; Nakashizuka, Tohru

    2017-01-01

    This study explored the conservation values of communally reserved forests (CRFs), which local indigenous communities deliberately preserve within their area of shifting cultivation. In the current landscape of rural Borneo, CRFs are the only option for conservation because other forested areas have already been logged or transformed into plantations. By analyzing their alpha and beta diversity, we investigated how these forests can contribute to restore regional biodiversity. Although CRFs were fragmented and some had been disturbed in the past, their tree species diversity was high and equivalent to that of primary forests. The species composition of intact forests and forests disturbed in the past did not differ clearly, which indicates that past logging was not intensive. All CRFs contained unique and endangered species, which are on the IUCN Red List, Sarawak protected plants, or both. On the other hand, the forest size structure differed between disturbed and intact CRFs, with the disturbed CRFs consisting of relatively smaller trees. Although the beta diversity among CRFs was also high, we found a high contribution of species replacement (turnover), but not of richness difference, in the total beta diversity. This suggests that all CRFs have a conservation value for restoring the overall regional biodiversity. Therefore, for maintaining the regional species diversity and endangered species, it would be suitable to design a conservation target into all CRFs.

  8. Wood Density as a Conservation Tool: Quantification of Disturbance and Identification of Conservation-Priority Areas in Tropical Forests

    NARCIS (Netherlands)

    Slik, J.W.F.; Bernard, C.S.; Breman, F.C.; Beek, van M.; Salim, A.; Sheil, D.

    2008-01-01

    Inventories of tree species are often conducted to guide conservation efforts in tropical forests. Such surveys are time consuming, demanding of expertise, and expensive to perform and interpret. Approaches to make survey efforts simpler or more effective would be valuable. In particular, it would

  9. Multifunctional management of mountain forests - Compromises between the protection and conservation functions

    Directory of Open Access Journals (Sweden)

    Marc Fuhr, Nicolas Clouet, Thomas Cordonnier and Frédéric Berger

    2011-03-01

    Full Text Available How can the balance between protection against natural hazards and biodiversity conservation be determined at each stage in forest development? This study provides a number of answers in view of improving multifunctional management.

  10. Carbon Sequestration in Colorado's Lands: A Spatial and Policy Analysis

    Science.gov (United States)

    Brandt, N.; Brazeau, A.; Browning, K.; Meier, R.

    2017-12-01

    Managing landscapes to enhance terrestrial carbon sequestration has significant potential to mitigate climate change. While a previous carbon baseline assessment in Colorado has been published (Conant et al, 2007), our study pulls from the existing literature to conduct an updated baseline assessment of carbon stocks and a unique review of carbon policies in Colorado. Through a multi-level spatial analysis based in GIS and informed by a literature review, we established a carbon stock baseline and ran four land use and carbon stock projection scenarios using Monte Carlo simulations. We identified 11 key policy recommendations for improving Colorado's carbon stocks, and evaluated each using Bardach's policy matrix approach (Bardach, 2012). We utilized a series of case studies to support our policy recommendations. We found that Colorado's lands have a carbon stock of 3,334 MMT CO2eq, with Forests and Woodlands holding the largest stocks, at 1,490 and 774 MMT CO2eq respectively. Avoided conversion of all Grasslands, Forests, and Wetlands in Colorado projected over 40 years would increase carbon stocks by 32 MMT CO2eq, 1,053 MMT CO2eq, and 36 MMT CO2eq, respectively. Over the 40-year study period, Forests and Woodlands areas are projected to shrink while Shrublands and Developed areas are projected to grow. Those projections suggest sizable increases in area of future wildfires and development in Colorado. We found that numerous policy opportunities to sequester carbon exist at different jurisdictional levels and across land cover types. The largest opportunities were found in state-level policies and policies impacting Forests, Grasslands, and Wetlands. The passage of statewide emission reduction legislation has the highest potential to impact carbon sequestration, although political and administrative feasibility of this option are relatively low. This study contributes to the broader field of carbon sequestration literature by examining the nexus of carbon stocks

  11. Attitudes of local communities towards conservation of mangrove forests: A case study from the east coast of India

    Science.gov (United States)

    Badola, Ruchi; Barthwal, Shivani; Hussain, Syed Ainul

    2012-01-01

    The ecological and economic importance of mangrove ecosystems is well established and highlighted by studies establishing a correlation between the protective function of mangroves and the loss of lives and property caused by coastal hazards. Nevertheless, degradation of this ecosystem remains a matter of concern, emphasizing the fact that effective conservation of natural resources is possible only with an understanding of the attitudes and perceptions of local communities. In the present study, we examined the attitudes and perceptions of local communities towards mangrove forests through questionnaire surveys in 36 villages in the Bhitarkanika Conservation Area, India. The sample villages were selected from 336 villages using hierarchical cluster analysis. The study revealed that local communities in the area had positive attitudes towards conservation and that their demographic and socio-economic conditions influenced people's attitudes. Local communities valued those functions of mangrove forests that were directly linked to their wellbeing. Despite human-wildlife conflict, the attitudes of the local communities were not altogether negative, and they were willing to participate in mangrove restoration. People agreed to adopt alternative resources if access to forest resources were curtailed. Respondents living near the forests, who could not afford alternatives, admitted that they would resort to pilfering. Hence, increasing their livelihood options may reduce the pressure on mangrove forests. In contrast with other ecosystems, the linkages of mangrove ecosystem services with local livelihoods and security are direct and tangible. It is therefore possible to develop strong local support for sustainable management of mangrove forests in areas where a positive attitude towards mangrove conservation prevails. The current debates on Reducing Emissions from Deforestation and Forest Degradation (REDD) and payment for ecosystem services provide ample scope for

  12. Land-use change and management effects on carbon sequestration in soils of Russia's South Taiga zone

    International Nuclear Information System (INIS)

    Larionova, A.A.; Rozanova, L.N.; Yevdokimov, I.V.; Yermolayev, A.M.; Kurganova, I.N.; Blagodatsky, S.A.

    2003-01-01

    The impact of land use change and management on soil C sequestration was investigated during the 1980s-1990s on gray forest soils in Pushchino, and on the soddy-podzolic soil in Prioksko-Terrasny Biosphere Reserve, Moscow Region, Russia (54 deg 50 min N, 37 deg 35 min E). Mean annual rates of C sequestration after establishment of perennials (layer 0-60 cm) were 63-182 g C/m 2 and 22-43 g C/m 2 for gray forest and soddy-podzolic soils, respectively. Grassing resulted in higher soil C accumulation than afforestation. Cutting and application of NPK fertilisers increased soil C accumulation, but newly formed soil organic matter was less resistant to decomposition than in unfertilised soil. Preliminary calculations of C sequestration due to abandonment of arable land in Russia since the early 1990s suggest that total C accumulation in soil and the plant biomass could represent about one tenth of industrial CO 2 emissions

  13. Impact of Nitrogen Fertilization on Forest Carbon Sequestration and Water Loss in a Chronosequence of Three Douglas-Fir Stands in the Pacific Northwest

    Directory of Open Access Journals (Sweden)

    Xianming Dou

    2015-05-01

    Full Text Available To examine the effect of nitrogen (N fertilization on forest carbon (C sequestration and water loss, we used an artificial neural network model to estimate C fluxes and evapotranspiration (ET in response to N fertilization during four post-fertilization years in a Pacific Northwest chronosequence of three Douglas-fir stands aged 61, 22 and 10 years old in 2010 (DF49, HDF88 and HDF00, respectively. Results showed that N fertilization increased gross primary productivity (GPP for all three sites in all four years with the largest absolute increase at HDF00 followed by HDF88. Ecosystem respiration increased in all four years at HDF00, but decreased over the last three years at HDF88 and over all four years at DF49. As a result, fertilization increased the net ecosystem productivity of all three stands with the largest increase at HDF88, followed by DF49. Fertilization had no discernible effect on ET in any of the stands. Consequently, fertilization increased water use efficiency (WUE in all four post-fertilization years at all three sites and also increased light use efficiency (LUE of all the stands, especially HDF00. Our results suggest that the effects of fertilization on forest C sequestration and water loss may be associated with stand age and fertilization; the two younger stands appeared to be more efficient than the older stand with respect to GPP, WUE and LUE.

  14. Beyond Nature Appropriation: Towards Post-development Conservation in the Maya Forest

    Directory of Open Access Journals (Sweden)

    Jose E Martinez-Reyes

    2014-01-01

    Full Text Available The establishment of biosphere reserves in Mexico was followed by alternative livelihood conservation/development projects to integrate indigenous groups into Western style conservation under the idea of sustainable development and participation. In this paper, I discuss the outcomes of two forest wildlife management projects in one Maya community along the Sian Ka′an Biosphere Reserve in the state of Quintana Roo. Both projects ultimately failed and the community mobilised and expelled the NGO from the community. I argue that the failure of these projects involved two dynamics: 1 lack of coherence between the objectives of state agencies, conservation NGOs, and the local community; and 2 unequal ethnic relations, reproducing relations of colonial inequality and dictating how indigenous groups can participate in managing a territory for conservation. If collaboration and local participation are key in conservation management programs, these case studies suggest that greater institutional accountability and community autonomy are needed to make the practice of conservation more democratic and participatory. The expulsion of the NGO as a conservation and development broker also opened the space for, and possibilities of, post-development conservation practice that challenges the normalising expectations of Western biodiversity conservation.

  15. Conservation and restoration of forested wetlands: new techniques and perspectives

    Science.gov (United States)

    James Johnston; Steve Hartley; Antonio Martucci

    2000-01-01

    A partnership of state and federal agencies and private organizations is developing advanced spatial analysis techniques applied for conservation and restoration of forested wetlands. The project goal is to develop an application to assist decisionmakers in defining the eligibility of land sites for entry in the Wetland Reserve Program (WRP) of the U.S. Department of...

  16. Diameter growth performance of tree functional groups in Puerto Rican secondary tropical forests

    OpenAIRE

    Adame, Patricia; Brandeis, Thomas J; Uriarte, Maria

    2014-01-01

    Aim of study: Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Yet, the high species diversity of mixed tropical forests, including many uncommon sp...

  17. Carbon flows and economic evaluation of mitigation options in Tanzania's forest sector

    International Nuclear Information System (INIS)

    Makundi, W.; Okiting'ati, Aku

    1995-01-01

    This paper presents estimates of the rate of forest use, deforestation and forest degradation, as well as the corresponding carbon flows, in the Tanzanian forest sector. It is estimated that the country lost 525,000 ha of forests in 1990, with associated committed emissions of 31.5 Mt carbon (MtC), and 7.05 MtC of committed carbon sequestration. The paper then describes the possible response options in the forest sector to mitigate GHG emissions, and evaluates the most stable subset of these - i.e. forest conservation, woodfuel plantations and agroforestry. The conservation options were found to cost an average of US$1.27 per tonne of carbon (tC) conserved. Five options for fuelwood plantations and agroforestry, with two different ownership regimes were evaluated. Each one of the options gives a positive net present value at low rates of discount, ranging from U.S.$1.06 to 3.4/tC of avoided emissions at 0% discount rate. At 10% discount, the eucalyptus and maize option has a highest PNV of U.S.$1.73/tC, and the government plantation gives a negative PNV (loss) of U.S.$ 0.13 tC sequestered. The options with a private/community type of ownership scheme fared better than government run options. This conclusion also held true when ranking the options by the BRAC indicator, with the government fuelwood plantation ranked the lowest, and the private agroforestry option of eucalyptus and corn performing best. The mitigation options evaluated here show that the forest sector in Tanzania has one of the most cost-effective GHG mitigation opportunities in the world, and they are within the development aspirations of the country. (Author)

  18. “Medium-Scale” Forestland Grabbing in the Southwestern Highlands of Ethiopia: Impacts on Local Livelihoods and Forest Conservation

    Directory of Open Access Journals (Sweden)

    Tola Gemechu Ango

    2018-02-01

    Full Text Available Tropical forest provides a crucial portion of sustenance in many rural communities, although it is increasingly under pressure from appropriations of various scales. This study investigated the impacts of medium-scale forestland grabbing on local livelihoods and forest conservation in the southwestern highlands of Ethiopia. Data were generated through interviews, discussions and document review. The results indicate that state transfer of part of the forestland since the late 1990s to investors for coffee production created in situ displacement- a situation where farmers remained in place but had fully or partially lost access to forest- that disrupted farmers’ livelihoods and caused conflicts between them and the investors. Court cases about the appropriated land and related imprisonment, inflicted financial and opportunity costs on farmers. Farmers considered the livelihood opportunities created by the companies insufficient to compensate for loss of forest access. Companies’ technology transfers to farmers and contributions to foreign currency earnings from coffee exports have not yet materialized. Forest conservation efforts have been negatively affected by deforestation caused by conversion to coffee plantations and by farmers’ efforts to secure rights to forestland by more intensive use. The medium-scale forestland grabbing has been detrimental to farmers’ livelihoods and forest conservation in a way that recalls criticism of large- and mega-scale land grabbing since 2007–2008. The overall failure to achieve the objectives of transferring forestland to investors highlights a critical need to shift institutional supports to smallholders’ informal forest access and management practices for better development and conservation outcomes.

  19. Impact of Canopy Openness on Spider Communities: Implications for Conservation Management of Formerly Coppiced Oak Forests.

    Directory of Open Access Journals (Sweden)

    Ondřej Košulič

    Full Text Available Traditional woodland management created a mosaic of differently aged patches providing favorable conditions for a variety of arthropods. After abandonment of historical ownership patterns and traditional management and the deliberate transformation to high forest after World War II, large forest areas became darker and more homogeneous. This had significant negative consequences for biodiversity. An important question is whether even small-scale habitat structures maintained by different levels of canopy openness in abandoned coppiced forest may constitute conditions suitable for forest as well as open habitat specialists. We investigated the effect of canopy openness in former traditionally coppiced woodlands on the species richness, functional diversity, activity density, conservation value, and degree of rareness of epigeic spiders. In each of the eight studied locations, 60-m-long transect was established consisting of five pitfall traps placed at regular 15 m intervals along the gradient. Spiders were collected from May to July 2012. We recorded 90 spider species, including high proportions of xeric specialists (40% and red-listed threatened species (26%. The peaks of conservation indicators, as well as spider community abundance, were shifted toward more open canopies. On the other hand, functional diversity peaked at more closed canopies followed by a rapid decrease with increasing canopy openness. Species richness was highest in the middle of the canopy openness gradient, suggesting an ecotone effect. Ordinations revealed that species of conservation concern tended to be associated with sparse and partly opened canopy. The results show that the various components of biodiversity peaked at different levels of canopy openness. Therefore, the restoration and suitable forest management of such conditions will retain important diversification of habitats in formerly coppiced oak forest stands. We indicate that permanent presence of small

  20. Conservation Easements and Management by Family Forest Owners: A Propensity Score Matching Approach with Multi-Imputations of Survey Data

    Science.gov (United States)

    Nianfu Song; Francisco X. Aguilar; Brett J. Butler

    2014-01-01

    Increasingly, private landowners are participating in conservation easement programs, but their effects on land management remain to be addressed. Data from the USDA Forest Service National Woodland Owner Survey for the US Northern Region were used to investigate how conservation easement participation is associated with selected past and future forest management...

  1. Utilizing Forest Inventory and Analysis Data, Remote Sensing, and Ecosystem Models for National Forest System Carbon Assessments

    Science.gov (United States)

    Alexa J. Dugan; Richard A. Birdsey; Sean P. Healey; Christopher Woodall; Fangmin Zhang; Jing M. Chen; Alexander Hernandez; James B. McCarter

    2015-01-01

    Forested lands, representing the largest terrestrial carbon sink in the United States, offset 16% of total U.S. carbon dioxide emissions through carbon sequestration. Meanwhile, this carbon sink is threatened by deforestation, climate change and natural disturbances. As a result, U.S. Forest Service policies require that National Forests assess baseline carbon stocks...

  2. Constraining Forest Certificate's Market to Improve Cost-Effectiveness of Biodiversity Conservation in São Paulo State, Brazil.

    Science.gov (United States)

    Bernasconi, Paula; Blumentrath, Stefan; Barton, David N; Rusch, Graciela M; Romeiro, Ademar R

    2016-01-01

    The recently launched Brazilian "forest certificates" market is expected to reduce environmental compliance costs for landowners through an offset mechanism, after a long history of conservation laws based in command-and-control and strict rules. In this paper we assessed potential costs and evaluated the cost-effectiveness of the instrument when introducing to this market constraints that aim to address conservation objectives more specifically. Using the conservation planning software Marxan with Zones we simulated different scopes for the "forest certificates" market, and compared their cost-effectiveness with that of existing command-and-control (C&C), i.e. compliance to the Legal Reserve on own property, in the state of São Paulo. The simulations showed a clear potential of the constrained "forest certificates" market to improve conservation effectiveness and increase cost-effectiveness on allocation of Legal Reserves. Although the inclusion of an additional constraint of targeting the BIOTA Conservation Priority Areas doubled the cost (+95%) compared with a "free trade" scenario constrained only by biome, this option was still 50% less costly than the baseline scenario of compliance with Legal Reserve at the property.

  3. Constraining Forest Certificate's Market to Improve Cost-Effectiveness of Biodiversity Conservation in São Paulo State, Brazil.

    Directory of Open Access Journals (Sweden)

    Paula Bernasconi

    Full Text Available The recently launched Brazilian "forest certificates" market is expected to reduce environmental compliance costs for landowners through an offset mechanism, after a long history of conservation laws based in command-and-control and strict rules. In this paper we assessed potential costs and evaluated the cost-effectiveness of the instrument when introducing to this market constraints that aim to address conservation objectives more specifically. Using the conservation planning software Marxan with Zones we simulated different scopes for the "forest certificates" market, and compared their cost-effectiveness with that of existing command-and-control (C&C, i.e. compliance to the Legal Reserve on own property, in the state of São Paulo. The simulations showed a clear potential of the constrained "forest certificates" market to improve conservation effectiveness and increase cost-effectiveness on allocation of Legal Reserves. Although the inclusion of an additional constraint of targeting the BIOTA Conservation Priority Areas doubled the cost (+95% compared with a "free trade" scenario constrained only by biome, this option was still 50% less costly than the baseline scenario of compliance with Legal Reserve at the property.

  4. Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change

    OpenAIRE

    Schueler, Silvio; Falk, Wolfgang; Koskela, Jarkko; Lefèvre, François; Bozzano, Michele; Hubert, Jason; Kraigher, Hojka; Longauer, Roman; Olrik, Ditte C.

    2014-01-01

    A transnational network of genetic conservation units for forest trees was recently documented in Europe aiming at the conservation of evolutionary processes and the adaptive potential of natural or man-made tree populations. In this study, we quantified the vulnerability of individual conservation units and the whole network to climate change using climate favourability models and the estimated velocity of climate change. Compared to the overall climate niche of the analysed target species p...

  5. Plant science in forest canopies--the first 30 years of advances and challenges (1980-2010).

    Science.gov (United States)

    Lowman, Margaret D; Schowalter, Timothy D

    2012-04-01

    As an emerging subdiscipline of forest biology, canopy science has undergone a transition from observational, 'oh-wow' exploration to a more hypothesis-driven, experimental arena for rigorous field biology. Although efforts to explore forest canopies have occurred for a century, the new tools to access the treetops during the past 30 yr facilitated not only widespread exploration but also new discoveries about the complexity and global effects of this so-called 'eighth continent of the planet'. The forest canopy is the engine that fixes solar energy in carbohydrates to power interactions among forest components that, in turn, affect regional and global climate, biogeochemical cycling and ecosystem services. Climate change, biodiversity conservation, fresh water conservation, ecosystem productivity, and carbon sequestration represent important components of forest research that benefit from access to the canopy for rigorous study. Although some canopy variables can be observed or measured from the ground, vertical and horizontal variation in environmental conditions and processes within the canopy that determine canopy-atmosphere and canopy-forest floor interactions are best measured within the canopy. Canopy science has matured into a cutting-edge subset of forest research, and the treetops also serve as social and economic drivers for sustainable communities, fostering science education and ecotourism. This interdisciplinary context of forest canopy science has inspired innovative new approaches to environmental stewardship, involving diverse stakeholders. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  6. Secondary Forests from Agricultural Abandonment in Amazonia 2000-2009

    Science.gov (United States)

    Morton, Douglas

    2010-01-01

    Ongoing negotiations to include reducing emissions from tropical deforestation and forest degradation (REDD+) in a post-Kyoto climate agreement highlight the critical role of satellite data for accurate and transparent accounting of forest cover changes. In addition to deforestation and degradation, knowledge of secondary forest dynamics is essential for full carbon accounting under REDD+. Land abandonment to secondary forests also frames one of the key tradeoffs for agricultural production in tropical forest countries-whether to incentivize secondary forest growth (for carbon sequestration and biodiversity conservation) or low-carbon expansion of agriculture or biofuels production in areas of secondary forests. We examined patterns of land abandonment to secondary forest across the arc of deforestation in Brazil and Bolivia using time series of annual Landsat and MODIS data from 2000-2009. Rates of land abandonment to secondary forest during 2002-2006 were less than 5% of deforestation rates in these years. Small areas of new secondary forest were scattered across the entire arc of deforestation, rather than concentrated in any specific region of the basin. Taken together, our analysis of the satellite data record emphasizes the difficulties of addressing the pool of new secondary forests in the context of REDD+ in Amazonia. Due to the small total area of secondary forests, land sparing through agricultural intensification will be an important element of efforts to reduce deforestation rates under REDD+ while improving agricultural productivity in Amazonia.

  7. Extended benefit cost analysis as an instrument of economic valuated in Petungkriyono forest ecosystem services

    Science.gov (United States)

    Damayanti, Irma; Nur Bambang, Azis; Retnaningsih Soeprobowati, Tri

    2018-05-01

    Petungkriyono is the last tropical forest in Java and provides biodiversity including rare flora and fauna that must be maintained, managed and utilized in order to give meaning for humanity and sustainability. Services of Forest Ecosystem in Petungkriyono are included such as goods supply, soil-water conservation, climate regulation, purification environment and flora fauna habitats. The approach of this study is the literature review from various studies before perceiving the influenced of economic valuation in determining the measurement conservation strategies of Petungkriyono Natural Forest Ecosystem in Pekalongan Regency. The aims of this study are to analyzing an extended benefit cost of natural forest ecosystems and internalizing them in decision making. The method of quantification and valuation of forest ecosystem is Cost and Benefit Analysis (CBA) which is a standard economic appraisal tools government in development economics. CBA offers the possibility capturing impact of the project. By using productivity subtitution value and extended benefit cost analysis any comodity such as Backwoods,Pine Woods, Puspa woods and Pine Gum. Water value, preventive buildings of landslide and carbon sequestration have total economic value of IDR.163.065.858.080, and the value of Extended Benefit Cost Ratio in Petungkriyono is 281.35 %. However, from the result is expected the local government of Pekalongan to have high motivation in preserve the existence of Petungkriyono forest.

  8. Biochar for soil fertility and natural carbon sequestration

    Science.gov (United States)

    Rostad, C.E.; Rutherford, D.W.

    2011-01-01

    Biochar is charcoal (similar to chars generated by forest fires) that is made for incorporation into soils to increase soil fertility while providing natural carbon sequestration. The incorporation of biochar into soils can preserve and enrich soils and also slow the rate at which climate change is affecting our planet. Studies on biochar, such as those cited by this report, are applicable to both fire science and soil science.

  9. An assessment of forest landowner interest in selling forest carbon credits in the Lake States, USA

    Science.gov (United States)

    Kristell A. Miller; Stephanie A. Snyder; Michael A. Kilgore

    2012-01-01

    The nation's family forest lands can be an important contributor to carbon sequestration efforts. Yet very little is known about how family forest landowners view programs that enable them to sell carbon credits generated from the growth of their forest and the compensation that would be required to encourage a meaningful level of participation. To address this...

  10. Development of a national forest inventory for carbon accounting purposes in New Zealand's planted Kyoto forests

    Science.gov (United States)

    John Moore; Ian Payton; Larry Burrows; Chris Goulding; Peter Beets; Paul Lane; Peter Stephens

    2007-01-01

    This article discusses the development of a monitoring system to estimate carbon sequestration in New Zealand's planted Kyoto forests, those forests that have been planted since January 1, 1990, on land that previously did not contain forest. The system must meet the Intergovernmental Panel on Climate Change good practice guidance and must be seen to be unbiased,...

  11. Mechanisms of Soil Carbon Sequestration

    Science.gov (United States)

    Lal, Rattan

    2015-04-01

    Carbon (C) sequestration in soil is one of the several strategies of reducing the net emission of CO2 into the atmosphere. Of the two components, soil organic C (SOC) and soil inorganic C (SIC), SOC is an important control of edaphic properties and processes. In addition to off-setting part of the anthropogenic emissions, enhancing SOC concentration to above the threshold level (~1.5-2.0%) in the root zone has numerous ancillary benefits including food and nutritional security, biodiversity, water quality, among others. Because of its critical importance in human wellbeing and nature conservancy, scientific processes must be sufficiently understood with regards to: i) the potential attainable, and actual sink capacity of SOC and SIC, ii) permanence of the C sequestered its turnover and mean residence time, iii) the amount of biomass C needed (Mg/ha/yr) to maintain and enhance SOC pool, and to create a positive C budget, iv) factors governing the depth distribution of SOC, v) physical, chemical and biological mechanisms affecting the rate of decomposition by biotic and abiotic processes, vi) role of soil aggregation in sequestration and protection of SOC and SIC pool, vii) the importance of root system and its exudates in transfer of biomass-C into the SOC pools, viii) significance of biogenic processes in formation of secondary carbonates, ix) the role of dissolved organic C (DOC) in sequestration of SOC and SIC, and x) importance of weathering of alumino-silicates (e.g., powered olivine) in SIC sequestration. Lack of understanding of these and other basic processes leads to misunderstanding, inconsistencies in interpretation of empirical data, and futile debates. Identification of site-specific management practices is also facilitated by understanding of the basic processes of sequestration of SOC and SIC. Sustainable intensification of agroecosystems -- producing more from less by enhancing the use efficiency and reducing losses of inputs, necessitates thorough

  12. Conserving tropical tree diversity and forest structure: the value of small rainforest patches in moderately-managed landscapes.

    Science.gov (United States)

    Hernández-Ruedas, Manuel A; Arroyo-Rodríguez, Víctor; Meave, Jorge A; Martínez-Ramos, Miguel; Ibarra-Manríquez, Guillermo; Martínez, Esteban; Jamangapé, Gilberto; Melo, Felipe P L; Santos, Bráulio A

    2014-01-01

    Rainforests are undergoing severe deforestation and fragmentation worldwide. A huge amount of small forest patches are being created, but their value in conserving biodiversity and forest structure is still controversial. Here, we demonstrate that in a species-rich and moderately-managed Mexican tropical landscape small rainforest patches (<100 ha) can be highly valuable for the conservation of tree diversity and forest structure. These patches showed diverse communities of native plants, including endangered species, and a new record for the country. Although the number of logged trees increased in smaller patches, patch size was a poor indicator of basal area, stem density, number of species, genera and families, and community evenness. Cumulative species-area curves indicated that all patches had a similar contribution to the regional species diversity. This idea also was supported by the fact that patches strongly differed in floristic composition (high β-diversity), independently of patch size. Thus, in agreement with the land-sharing approach, our findings support that small forest patches in moderately-managed landscapes should be included in conservation initiatives to maintain landscape heterogeneity, species diversity, and ecosystem services.

  13. Managing Commercial Tree Species for Timber Production and Carbon Sequestration: Management Guidelines and Financial Returns

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Kronrad

    2006-09-19

    A carbon credit market is developing in the United States. Information is needed by buyers and sellers of carbon credits so that the market functions equitably and efficiently. Analyses have been conducted to determine the optimal forest management regime to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. Because the potential of a forest ecosystem to sequester carbon depends on the tree species, site quality and management regimes utilized, analyses have determined how to optimize carbon sequestration by determining how to optimally manage each species, given a range of site qualities, discount rates, prices of carbon credits and other economic variables. The effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, the amount of carbon that can be sequestered, and the amount of timber products produced has been determined.

  14. Conservation value of low-productivity forests measured as the amount and diversity of dead wood and saproxylic beetles.

    Science.gov (United States)

    Hämäläinen, Aino; Strengbom, Joachim; Ranius, Thomas

    2018-06-01

    In many managed landscapes, low-productivity land comprises most of the remaining relatively untouched areas, and is often over-represented within protected areas. The relationship between the productivity and conservational value of a site is poorly known; however, it has been hypothesized that biodiversity increases with productivity due to higher resource abundance or heterogeneity, and that the species communities of low-productivity land are a nested subset of communities from more productive land. We tested these hypotheses for dead-wood-dependent beetles by comparing their species richness and composition, as well as the amount and diversity of dead wood, between low-productivity (potential forest growth dead wood, but volume appeared to be a better predictor than diversity for the higher species richness in set-asides. Beetle species composition was similar among stand types, and the assemblages in low-productivity stands were largely subsets of those in high-productivity set-asides. However, 11% of all species and 40% of red-listed species only occurred in high-productivity stands, while no species were unique to low-productivity stands. We conclude that low-productivity forests are less valuable for conservation than high-productivity forest land. Given the generally similar species composition among stand types, a comparable conservational effect could be obtained by setting aside a larger area of low-productivity forest in comparison to the high-productivity. In terms of dead wood volumes, 1.8-3.6 ha of low-productivity forest has the same value as 1 ha of unmanaged high-productivity forest. This figure can be used to estimate the conservation value of low-productivity forests; however, as high-productivity forests harbored some unique species, they are not completely exchangeable. © 2018 The Authors. Ecological Applications published by Wiley Periodicals, Inc. on behalf of Ecological Society of America.

  15. Building on Two Decades of Ecosystem Management and Biodiversity Conservation under the Northwest Forest Plan, USA

    Directory of Open Access Journals (Sweden)

    Dominick A. DellaSala

    2015-09-01

    Full Text Available The 1994 Northwest Forest Plan (NWFP shifted federal lands management from a focus on timber production to ecosystem management and biodiversity conservation. The plan established a network of conservation reserves and an ecosystem management strategy on ~10 million hectares from northern California to Washington State, USA, within the range of the federally threatened northern spotted owl (Strix occidentalis caurina. Several subsequent assessments—and 20 years of data from monitoring programs established under the plan—have demonstrated the effectiveness of this reserve network and ecosystem management approach in making progress toward attaining many of the plan’s conservation and ecosystem management goals. This paper (1 showcases the fundamental conservation biology and ecosystem management principles underpinning the NWFP as a case study for managers interested in large-landscape conservation; and (2 recommends improvements to the plan’s strategy in response to unprecedented climate change and land-use threats. Twenty years into plan implementation, however, the U.S. Forest Service and Bureau of Land Management, under pressure for increased timber harvest, are retreating from conservation measures. We believe that federal agencies should instead build on the NWFP to ensure continuing success in the Pacific Northwest. We urge federal land managers to (1 protect all remaining late-successional/old-growth forests; (2 identify climate refugia for at-risk species; (3 maintain or increase stream buffers and landscape connectivity; (4 decommission and repair failing roads to improve water quality; (5 reduce fire risk in fire-prone tree plantations; and (6 prevent logging after fires in areas of high conservation value. In many respects, the NWFP is instructive for managers considering similar large-scale conservation efforts.

  16. Conserving and Restoring Old Growth in Frequent-fire Forests: Cycles of Disruption and Recovery

    Directory of Open Access Journals (Sweden)

    Dave Egan

    2007-12-01

    Full Text Available I provide a synthesis of the papers in the Special Issue, The Conservation and Restoration of Old Growth in Frequent-fire Forests of the American West. These papers - the product of an Old Growth Writing Workshop, held at Northern Arizona University in Flagstaff, Arizona on 18-19 April 2006 - represent the ideas of 25 workshop participants who argue for a new attitude toward managing old growth in the frequent-fire forests of the American West. Unlike the lush, old-growth rainforests of the Pacific Northwest, the dry, frequent-fire forests of the western United States evolved with surface fires that disturbed the system with such regularity that young trees were almost always killed. When saplings did survive, they grew beyond the harm of frequent surface fires and, ultimately, attained the characteristics that define old growth in these systems. This system worked well, producing old-growth trees in abundance, until the onset of Euro-American settlement in the mid- to late-19th century. The arrival of these settlers put in motion an interplay of unprecedented social, political, economic, and ecological forces (e.g., removal of Native Americans and their fire-based land management systems, overgrazing of the understory, aggressive logging, establishment of federal land management agencies, implementation of a federal fire suppression policy. These activities have culminated in 1 overly dense forested ecosystems that are now on the verge of collapse because of catastrophic fires (i.e., crown fire at the landscape level; the Rodeo-Chediski Fire and insect outbreaks, 2 the emergence of conservation-minded environmental legislation and policy, and 3 greater levels of interaction between citizens, federal agencies, and fire-prone landscapes. Recognizing the tenuous ecological situation of these forests, restoration ecologists, foresters, and others have developed ways to return historic ecological processes and lower tree densities to these forests

  17. Quantifying the biophysical climate change mitigation potential of Canada's forest sector

    Science.gov (United States)

    Smyth, C. E.; Stinson, G.; Neilson, E.; Lemprière, T. C.; Hafer, M.; Rampley, G. J.; Kurz, W. A.

    2014-07-01

    The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Forests and their carbon (C) sequestration potential are affected by management practices, where wood harvesting transfers C out of the forest into products, and subsequent regrowth allows further C sequestration. Here we determine the mitigation potential of the 2.3 × 106 km2 of Canada's managed forests from 2015 to 2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), a harvested wood products (HWP) model that estimates emissions based on product half-life decay times, and an account of emission substitution benefits from the use of wood products and bioenergy. We examine several mitigation scenarios with different assumptions about forest management activity levels relative to a base case scenario, including improved growth from silvicultural activities, increased harvest and residue management for bioenergy, and reduced harvest for conservation. We combine forest management options with two mitigation scenarios for harvested wood product use involving an increase in either long-lived products or bioenergy uses. Results demonstrate large differences among alternative scenarios, and we identify potential mitigation scenarios with increasing benefits to the atmosphere for many decades into the future, as well as scenarios with no net benefit over many decades. The greatest mitigation impact was achieved through a mix of strategies that varied across the country and had cumulative mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050. There was a trade-off between short-term and long-term goals, in that maximizing short-term emissions reduction could reduce the forest sector's ability to contribute to longer-term objectives. We conclude that (i) national-scale forest sector mitigation options need to be assessed rigorously from a systems perspective to avoid the development of

  18. Forest Carbon Sequestration Subsidy and Carbon Tax as Part of China’s Forestry Policies

    Directory of Open Access Journals (Sweden)

    Jinhua Liu

    2017-02-01

    Full Text Available Forestry is an effective strategy for climate change mitigation. However, forestry activities not only sequester carbon but also release CO2. It is therefore important to formulate carbon subsidy and carbon taxation policies on the basis of the price of carbon. In this study, a forestry-based Computable General Equilibrium (CGE model was built by using input-output data of China in 2014 to construct a Social Accounting Matrix (SAM. The model simulates different carbon price scenarios and was used to explore the effects of carbon subsidy and carbon taxation policies on the forestry economy. The main results can be summarized as follows: When the carbon price is low, the implementation of the policy increases forestry output and causes forest product prices to rise. When the carbon price is high, the carbon tax will produce an inhibitory effect, and output and prices will decline. With the constant rise of the carbon price, value addition will decrease, with flow to other industries. For the carbon sequestration policy, there is a reasonable carbon price range bound. In light of these results, relevant policies are proposed.

  19. CARBON SEQUESTRATION IN PASTURES WITH TREES, TREELESS PASTURES AND DECIDUOUS FOREST FROM HUATUSCO, VERACRUZ

    Directory of Open Access Journals (Sweden)

    José Antonio Torres-Rivera

    2011-11-01

    Full Text Available It was compared the amount of carbon (C sequestered in a pasture with trees (P+Ar and in conventional treeless pastures (P and deciduous forest (BC, typical of the region of Huatusco, Veracruz, Mexico. Total C sequestered by the systems evaluated was 49.9, 63.0 and 469.8 ton ha-1 for P, P+Ar and BC, respectively. The system with the highest amount of C sequestered was BC, with almost equal proportions in the aerial (268.4 ton ha-1 and belowground parts (201.4 ton ha-1. The amount of C sequestered in the livestock systems represented about one tenth of that sequestered in BC, being higher the proportion obtained in P+Ar (13.4 % compared to P (10.6 %. In both livestock systems, a significantly greater amount of C was sequestered in the soil organic matter than in the aerial biomass, with 59.7 and 3.29 ton ha-1 in P+Ar, and with 48.2 and 1.78 ton ha-1 in P, respectively. It is expected that as trees of the P+Ar system gain volume, C sequestration will increase, especially in the aerial biomass.

  20. Succession of Ephemeral Secondary Forests and Their Limited Role for the Conservation of Floristic Diversity in a Human-Modified Tropical Landscape

    DEFF Research Database (Denmark)

    van Breugel, Michiel; Hall, Jefferson S.; Craven, Dylan

    2013-01-01

    of these secondary forests to conserve tree species diversity, we also evaluated the diversity of species that can persist as viable metapopulations in a dynamic patchwork of short-lived successional forests, using different assumptions about the average relative size at reproductive maturity. We found...... niche operate simultaneously and shape successional dynamics of the metacommunity of these early secondary forests. A high diversity of plant species across the metacommunity of early secondary forests shows a potential for restoration of diverse forests through natural succession, when trees....... This implies that ephemeral secondary forests have a limited role in the long-term conservation of tree species diversity in human-modified tropical landscapes....

  1. Pan-European strategy for genetic conservation of forest trees and establishment of a core network of dynamic conservation units

    NARCIS (Netherlands)

    Vries, de S.M.G.; Alan, Murat; Bozzano, Michele; Burianek, Vaclav

    2015-01-01

    The diversity of forests, at the level of species and at the level of genetic diversity within species, is an important resource for Europe. Over the past several decades European countries have made considerable efforts to conserve the genetic diversity of tree species. According to the EUFGIS

  2. Long-term forest-savannah dynamics in the Bolivian Amazon: implications for conservation.

    Science.gov (United States)

    Mayle, Francis E; Langstroth, Robert P; Fisher, Rosie A; Meir, Patrick

    2007-02-28

    The aim of this paper is to evaluate the respective roles of past changes in climate, geomorphology and human activities in shaping the present-day forest-savannah mosaic of the Bolivian Amazon, and consider how this palaeoecological perspective may help inform conservation strategies for the future. To this end, we review a suite of palaeoecological and archaeological data from two distinct forest-savannah environments in lowland Bolivia: Noel Kempff Mercado National Park (NKMNP) on the Precambrian Shield and the 'Llanos de Moxos' in the Beni basin. We show that they contain markedly contrasting legacies of past climatic, geomorphic and anthropogenic influences between the last glacial period and the Spanish Conquest. In NKMNP, increasing precipitation caused evergreen rainforest expansion, at the expense of semi-deciduous dry forest and savannahs, over the last three millennia. In contrast, pre-Hispanic indigenous cultures were instrumental in facilitating recent forest expansion in the Llanos de Moxos by building a vast network of earthworks. Insights from Mid-Holocene palaeodata, together with ecological observations and modelling studies, suggest that there will be progressive replacement of rainforest by dry forest and savannah in NKMNP over the twenty-first century in response to the increased drought predicted by general circulation models. Protection of the latitudinal landscape corridors may be needed to facilitate these future species reassortments. However, devising appropriate conservation strategies for the Llanos de Moxos will be more difficult due to its complex legacy of Palaeo-Indian impact. Without fully understanding the degree to which its current biota has been influenced by past native cultures, the type and intensity of human land use appropriate for this landscape in the future will be difficult to ascertain.

  3. Consuming the forest in an environment of crisis: nature tourism, forest conservation and neoliberal agriculture in south India.

    Science.gov (United States)

    Münster, Daniel; Münster, Ursula

    2012-01-01

    This article engages ethnographically with the neoliberalization of nature in the spheres of tourism, conservation and agriculture. Drawing on a case study of Wayanad district, Kerala, the article explores a number of themes. First, it shows how a boom in domestic nature tourism is currently transforming Wayanad into a landscape for tourist consumption. Second, it examines how tourism in Wayanad articulates with projects of neoliberalizing forest and wildlife conservation and with their contestations by subaltern groups. Third, it argues that the contemporary commodification of nature in tourism and conservation is intimately related to earlier processes of commodifying nature in agrarian capitalism. Since independence, forest land has been violently appropriated for intensive cash-cropping. Capitalist agrarian change has transformed land into a (fictitious) commodity and produced a fragile and contested frontier of agriculture and wildlife. When agrarian capitalism reached its ecological limits and entered a crisis of accumulation, farming became increasingly speculative, exploring new modes of accumulation in out-of-state ginger cultivation. In this scenario nature and wildlife tourism emerges as a new prospect for accumulation in a post-agrarian economy. The neoliberalization of nature in Wayanad, the authors argue, is a process driven less by new modes of regulation than by the agrarian crisis and new modes of speculative farming.

  4. Rubiaceae in Brazilian Atlantic Forest remnants: floristic similarity and implications for conservation.

    Science.gov (United States)

    de Paiva, Alessandra Marques; Barberena, Felipe Fajardo Villela Antolin; Lopes, Rosana Conrado

    2016-06-01

    Brazil holds most of the Atlantic Forest Domain and is also one of the Rubiaceae diversity centers in the Neotropics. Despite the urban expansion in the state of Rio de Janeiro, large areas of continuous vegetation with high connectivity degree can still be found. Recently, new Rubiaceae species have been described in the Rio de Janeiro flora, which present small populations and very particular distribution. The current paper analyzed the similarity in the floristic composition of the Rubiaceae in eight Atlantic Forest remnants of Rio de Janeiro state protected by Conservation Units. We also surveyed and set guidelines for conservation of microendemic species. The similarity analysis were based on previously published studies in Área de Proteção Ambiental de Grumari, Área de Proteção Ambiental Palmares, Parque Estadual da Serra da Tiririca, Parque Nacional do Itatiaia, Parque Nacional de Jurubatiba, Reserva Biológica de Poço das Antas, Reserva Biológica do Tinguá and Reserva Ecológica de Macaé de Cima - using the PAST software (“Paleontological Statistics”) with Sørensen coefficient. The floristic similarity analysis revealed two groups with distinct physiographic characteristics and different vegetation types. Group A consisted in two Restinga areas, Área de Proteção Ambiental de Grumari and Parque Nacional de Jurubatiba, which showed strong bootstrap support (98 %). Group B included forest remnants with distinct phytophisiognomies or altitudes, but with moderate bootstrap support. Low similarity levels among the eight areas were found due to the habitats’ heterogeneity. The current study pointed out 19 microendemic species from the Atlantic Forest, they present a single-site distribution or a distribution restricted to Mountain and Metropolitan regions of Rio de Janeiro state. Concerning the conservation status of microendemic species, discrepancies between the Catalogue of Flora of Rio de Janeiro and the Red Book of Brazilian Flora (two of

  5. Biodiversity of Coreoidea and Pentatomidae (Heteroptera) from Atlantic forest protected areas. Insights into their conservation.

    Science.gov (United States)

    Dellapé, Gimena; Colpo, Karine D; Melo, María C; Montemayor, Sara I; Dellapé, Pablo M

    2018-01-01

    Although the majority of threatened species are likely to be tropical insects, knowledge of the diversity, ecological role and impact of insect biodiversity loss on ecosystem processes is very limited. Specimens belonging to four families of Heteroptera: Pentatomidae, Coreidae, Alydidae and Rhopalidae, were collected from a protected area in the Paraná Forest, the largest ecoregion of the Atlantic Forest, in Argentina. The assemblages were characterized and the biodiversity estimated, and they were compared with the assemblages found in five other protected areas in the Brazilian Atlantic Forest. In our study area, Pentatomidae had the greatest richness and diversity; Coreidae was the second most diverse family, with highest sampling deficit, highest percentage of singletons, and lowest inventory completeness; and Rhopalidae was the best sampled family with asymptotic rarefaction curves. We explored the application of the Species Conservation Importance index, following four criteria, to evaluate the relative importance of the pentatomid species studied and its usefulness for assigning conservation values to areas. We found similar Site Conservation Values among the six areas and noted that the use of criteria was limited by the lack of information, being crucial to increase the knowledge of most of the species.

  6. CO2 sequestration

    International Nuclear Information System (INIS)

    Favre, E.; Jammes, L.; Guyot, F.; Prinzhofer, A.; Le Thiez, P.

    2009-01-01

    This document presents the summary of a conference-debate held at the Academie des Sciences (Paris, France) on the topic of CO 2 sequestration. Five papers are reviewed: problems and solutions for the CO 2 sequestration; observation and surveillance of reservoirs; genesis of carbonates and geological storage of CO 2 ; CO 2 sequestration in volcanic and ultra-basic rocks; CO 2 sequestration, transport and geological storage: scientific and economical perspectives

  7. Constraining Forest Certificate’s Market to Improve Cost-Effectiveness of Biodiversity Conservation in São Paulo State, Brazil

    Science.gov (United States)

    Blumentrath, Stefan; Barton, David N.; Rusch, Graciela M.; Romeiro, Ademar R.

    2016-01-01

    The recently launched Brazilian “forest certificates” market is expected to reduce environmental compliance costs for landowners through an offset mechanism, after a long history of conservation laws based in command-and-control and strict rules. In this paper we assessed potential costs and evaluated the cost-effectiveness of the instrument when introducing to this market constraints that aim to address conservation objectives more specifically. Using the conservation planning software Marxan with Zones we simulated different scopes for the “forest certificates” market, and compared their cost-effectiveness with that of existing command-and-control (C&C), i.e. compliance to the Legal Reserve on own property, in the state of São Paulo. The simulations showed a clear potential of the constrained “forest certificates” market to improve conservation effectiveness and increase cost-effectiveness on allocation of Legal Reserves. Although the inclusion of an additional constraint of targeting the BIOTA Conservation Priority Areas doubled the cost (+95%) compared with a “free trade” scenario constrained only by biome, this option was still 50% less costly than the baseline scenario of compliance with Legal Reserve at the property. PMID:27780220

  8. Age structure and disturbance legacy of North American forests

    Science.gov (United States)

    Y. Pan; J.M. Chen; R. Birdsey; K. McCullough; L. He; F. Deng

    2011-01-01

    Most forests of the world are recovering from a past disturbance. It is well known that forest disturbances profoundly affect carbon stocks and fluxes in forest ecosystems, yet it has been a great challenge to assess disturbance impacts in estimates of forest carbon budgets. Net sequestration or loss of CO2 by forests after disturbance follows a...

  9. Administrative Co-management: The Case of Special-Use Forest Conservation in Vietnam

    NARCIS (Netherlands)

    Nguyen, T.K.D.; Bush, S.R.; Mol, A.P.J.

    2013-01-01

    Special-use forests (SUFs) are nature protected areas in Vietnam used to conserve nature and its biodiversity. While the Vietnamese government has managed to increase the size and number of SUFs, biodiversity within these areas continues to decline. To improve protection of these SUFs, co-management

  10. Soil tillage conservation and its effect on erosion control, water management and carbon sequestration

    Science.gov (United States)

    Rusu, Dr.; Gus, Dr.; Bogdan, Dr.; Moraru, Dr.; Pop, Dr.; Clapa, Dr.; Pop, Drd.

    2009-04-01

    fuel for preparing the germination bed. Presently it is necessary a change concerning the concept of conservation practices and a new approach regarding the control of erosion. The real conservation of soil must be expanded beyond the traditional understanding of soil erosion. The real soil conservation is represented by carbon management. We need to focus to another level concerning conservation by focusing on of soil quality. Carbon management is necessary for a complex of matters including soil, water management, field productivity, biological fuel and climatic change. Profound research is necessary in order to establish the carbon sequestration practices and their implementation impact.

  11. Plant biodiversity of beech forests in central-northern Italy: a methodological approach for conservation purposes

    Directory of Open Access Journals (Sweden)

    Marcantonio M

    2012-07-01

    Full Text Available Forests are reckoned essentials as biodiversity reservoirs and carbon sinks. Current threats to forest ecosystems (e.g., climate changes, habitat loss and fragmentation, management changes call for monitoring their biodiversity and preserving their ecological functions. In this study, we characterized plants diversity of five beech forests located in central and north Apennines mountain chain, using results by a probabilistic sampling. In order to achieve our goals, we have considered species richness and abundance, taxonomic distinctness and species composition, using both old and new analytical approaches. Results have shown how: (1 the forest type dominated by Fagus sylvatica is characterized by high complexity, with marked compositional, structural and biodiversity differences; (2 beech forests of Pigelleto di Piancastagnaio and Valle della Corte show the highest plants diversity values. The ecological characteristics of these areas, which sustain high diversity values, are unique and of great conservation interest; (3 the use of species richness as the only diversity measure have not allowed an efficient differentiation between studied areas. Indeed, the use of different indexes and analytical methods is required to detect multiple characteristics of biological diversity, as well as to carry out efficient biodiversity surveys aimed to develop optimal conservation strategies. In the future, we plan to apply the sampling methodology and the analytical approach used in this paper to characterize plants diversity of similar forest types.

  12. Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function

    Energy Technology Data Exchange (ETDEWEB)

    Lubowski, Ruben N.; Plantinga, Andrew J.; Stavins, Robert N.

    2001-01-01

    Increased attention by policy makers to the threat of global climate change has brought with it considerable interest in the possibility of encouraging the expansion of forest area as a means of sequestering carbon dioxide. The marginal costs of carbon sequestration or, equivalently, the carbon sequestration supply function will determine the ultimate effects and desirability of policies aimed at enhancing carbon uptake. In particular, marginal sequestration costs are the critical statistic for identifying a cost-effective policy mix to mitigate net carbon dioxide emissions. We develop a framework for conducting an econometric analysis of land use for the forty-eight contiguous United States and employing it to estimate the carbon sequestration supply function. By estimating the opportunity costs of land on the basis of econometric evidence of landowners' actual behavior, we aim to circumvent many of the shortcomings of previous sequestration cost assessments. By conducting the first nationwide econometric estimation of sequestration costs, endogenizing prices for land-based commodities, and estimating land-use transition probabilities in a framework that explicitly considers the range of land-use alternatives, we hope to provide better estimates eventually of the true costs of large-scale carbon sequestration efforts. In this way, we seek to add to understanding of the costs and potential of this strategy for addressing the threat of global climate change.

  13. Impacts of Tropical Forest Disturbance Upon Avifauna on a Small Island with High Endemism: Implications for Conservation

    Directory of Open Access Journals (Sweden)

    Martin Thomas

    2010-01-01

    Full Text Available Tropical forests are rapidly being lost across Southeast Asia and this is predicted to have severe implications for many of the region′s bird species. However, relationships between forest disturbance and avifaunal assemblages remain poorly understood, particularly on small island ecosystems such as those found in the biodiversity ′hotspot′ of Wallacea. This study examines how avifaunal richness varies across a disturbance gradient in a forest reserve on Buton Island, southeast Sulawesi. Particular emphasis is placed upon examining responses in endemic and red-listed species with high conservation importance. Results indicate that overall avian richness increases between primary and 30-year-old regenerating secondary forest and then decreases through disturbed secondary forest, but is highest in cleared farmland. However, high species richness in farmland does not signify high species distinctiveness; bird community composition here differs significantly from that found in forest sites, and is poor in supporting forest specialists and endemic species. Certain large-bodied endemics such as the Knobbed Hornbill (Rhyticeros cassidix appear to be sensitive to moderate disturbance, with populations occurring at greatest density within primary forest. However, overall endemic species richness, as well as that of endemic frugivores and insectivores, is similar in primary and secondary forest types. Results indicate that well-established secondary forest in particular has an important role in supporting species with high conservational importance, possessing community composition similar to that found in primary forest and supporting an equally high richness of endemic species.

  14. Trade-offs between biodiversity conservation and economic development in five tropical forest landscapes

    DEFF Research Database (Denmark)

    Sandker, Marieke; Ruiz-Perez, Manuel; Campbell, Bruce Morgan

    2012-01-01

    of conservation or can benefit conservation, but in all cases sustained poverty negatively affects conservation in the long term. Most scenarios with better outcomes for conservation come at a cost for development and the financial benefits of payments for environmental services (PES) are not sufficient...... to compensate for lost opportunities to earn cash. However, implementation of strategies for reducing emissions from deforestation and forest degradation in locations with low population densities come close to overcoming opportunity costs. Environmental services and subsistence income enhance...... the attractiveness of conservation scenarios to local people and in situations where these benefits are obvious, PES may provide the extra cash incentive to tip the balance in favor of such a scenario. The paper stresses the importance of external factors (such as industrial investments and the development...

  15. Lithological control on phytolith carbon sequestration in moso bamboo forests.

    Science.gov (United States)

    Li, Beilei; Song, Zhaoliang; Wang, Hailong; Li, Zimin; Jiang, Peikun; Zhou, Guomo

    2014-06-11

    Phytolith-occluded carbon (PhytOC) is a stable carbon (C) fraction that has effects on long-term global C balance. Here, we report the phytolith and PhytOC accumulation in moso bamboo leaves developed on four types of parent materials. The results show that PhytOC content of moso bamboo varies with parent material in the order of granodiorite (2.0 g kg(-1)) > granite (1.6 g kg(-1)) > basalt (1.3 g kg(-1)) > shale (0.7 g kg(-1)). PhytOC production flux of moso bamboo on four types of parent materials varies significantly from 1.0 to 64.8 kg CO₂ ha(-1) yr(-1), thus a net 4.7 × 10(6) -310.8 × 10(6) kg CO₂ yr(-1) would be sequestered by moso bamboo phytoliths in China. The phytolith C sequestration rate in moso bamboo of China will continue to increase in the following decades due to nationwide bamboo afforestation/reforestation, demonstrating the potential of bamboo in regulating terrestrial C balance. Management practices such as afforestation of bamboo in granodiorite area and granodiorite powder amendment may further enhance phytolith C sequestration through bamboo plants.

  16. Implementation of the Forest Service Open Space Conservation Strategy in Washington State: Exploring the Role of the National Forest System

    Science.gov (United States)

    Richard J. Pringle; Lee K. Cerveny; Gordon A. Bradley

    2015-01-01

    The loss of open space was declared one of the “four threats to the health of our nation’s forests” by former USDA Forest Service Chief Dale Bosworth in 2004. Since then, the agencywide Open Space Conservation Strategy (OSCS) was released and the “four threats” were incorporated into the agency’s National Strategic Plan. These actions indicate that the OSCS is in the...

  17. Carbon budgets and carbon sequestration potential of Indian forests

    NARCIS (Netherlands)

    Kaul, M.

    2010-01-01

    Keywords: Carbon uptake, Forest biomass, Bioenergy, Land use change, Indian forests, Deforestation, Afforestation, Rotation length, Trees outside forests.

    Global climate change is a widespread and growing concern that has led to extensive international discussions and negotiations.

  18. The role of composition, invasives, and maintenance emissions on urban forest carbon stocks.

    Science.gov (United States)

    Horn, Josh; Escobedo, Francisco J; Hinkle, Ross; Hostetler, Mark; Timilsina, Nilesh

    2015-02-01

    There are few field-based, empirical studies quantifying the effect of invasive trees and palms and maintenance-related carbon emissions on changes in urban forest carbon stocks. We estimated carbon (C) stock changes and tree maintenance-related C emissions in a subtropical urban forest by re-measuring a subsample of residential permanent plots during 2009 and 2011, using regional allometric biomass equations, and surveying residential homeowners near Orlando, FL, USA. The effect of native, non-native, invasive tree species and palms on C stocks and sequestration was also quantified. Findings show 17.8 tC/ha in stocks and 1.2 tC/ha/year of net sequestration. The most important species both by frequency of C stocks and sequestration were Quercus laurifolia Michx. and Quercus virginiana Mill., accounting for 20% of all the trees measured; 60% of carbon stocks and over 75% of net C sequestration. Palms contributed to less than 1% of the total C stocks. Natives comprised two-thirds of the tree population and sequestered 90% of all C, while invasive trees and palms accounted for 5 % of net C sequestration. Overall, invasive and exotic trees had a limited contribution to total C stocks and sequestration. Annual tree-related maintenance C emissions were 0.1% of total gross C sequestration. Plot-level tree, palm, and litter cover were correlated to C stocks and net sequestration. Findings can be used to complement existing urban forest C offset accounting and monitoring protocols and to better understand the role of invasive woody plants on urban ecosystem service provision.

  19. Forest carbon trends in the Southern United States

    Science.gov (United States)

    Robert A. Mickler; James E. Smith; Linda S. Heath

    2004-01-01

    Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon (C) sequestration and total C sequestration potential under alternative management options. Future changes in the proportion and spatial distribution of land use could increase or decrease the capacity of areas to sequester C in terrestrial ecosystems. As the ecosystems within...

  20. Contribution of forest floor fractions to carbon storage and ...

    African Journals Online (AJOL)

    Forest floor carbon stocks, which include different components of litter, hemic and sapric materials, have not been empirically quantified in tropical montane forest, although they influence soil carbon (C) pools. To date, the contribution of arbuscular mycorrhizae in C sequestration potentials in tropical montane forests have ...

  1. Comparison of Drosophilidae (Diptera assemblages from two highland Araucaria Forest fragments, with and without environmental conservation policies

    Directory of Open Access Journals (Sweden)

    R Cavasini

    Full Text Available Flies from the Drosophilidae family are model organisms for biological studies and are often suggested as bioindicators of environmental quality. The Araucaria Forest, one of Atlantic Forest phyto-physiognomy, displays a highly fragmented distribution due to the expansion of agriculture and urbanization. Thus, this work aimed to evaluate and compare the drosophilid assemblages from two highland Araucaria Forest fragments, one a conservation unit (PMA – Parque Municipal das Araucárias and the other a private property without any conservational policy (FBL – Fazenda Brandalise, in space and time, using species abundances and richness, ecological indexes and Neotropical and exotic species proportions as parameters to establish the level of environmental quality of these fragments. Our results showed that the observed diversity in PMA (H′ = 2.221 was approximately 40% higher than in FBL (H′ = 1.592. This could be due to higher preservation quality and habitat diversity in PMA, indicating the importance of conservation units. However, richness were similar for these areas, with PMA (Dmg = 6.602 only 8% higher than FBL (Dmg = 6.128, which suggest that the larger distance from city limits and the larger size of FBL forested area could be compensating the higher disturbance caused by antrophic extractive exploitation of this fragment. This points out that, besides the quality of presevertion, the size and/or connection with other fragments should be considered for areas destined for biodiversity conservation. In general, both areas presented similar drosophilid assemblages, and the expressive abundance of both Neotropical species (mostly of the subgroup willistoni and the exotic species D. kikkawai suggests that these areas are in intermediate stages of conservation.

  2. Comparison of Drosophilidae (Diptera) assemblages from two highland Araucaria Forest fragments, with and without environmental conservation policies.

    Science.gov (United States)

    Cavasini, R; Buschini, M L T; Machado, L P B; Mateus, R P

    2014-11-01

    Flies from the Drosophilidae family are model organisms for biological studies and are often suggested as bioindicators of environmental quality. The Araucaria Forest, one of Atlantic Forest phyto-physiognomy, displays a highly fragmented distribution due to the expansion of agriculture and urbanization. Thus, this work aimed to evaluate and compare the drosophilid assemblages from two highland Araucaria Forest fragments, one a conservation unit (PMA - Parque Municipal das Araucárias) and the other a private property without any conservational policy (FBL - Fazenda Brandalise), in space and time, using species abundances and richness, ecological indexes and Neotropical and exotic species proportions as parameters to establish the level of environmental quality of these fragments. Our results showed that the observed diversity in PMA (H' = 2.221) was approximately 40% higher than in FBL (H' = 1.592). This could be due to higher preservation quality and habitat diversity in PMA, indicating the importance of conservation units. However, richness were similar for these areas, with PMA (Dmg = 6.602) only 8% higher than FBL (Dmg = 6.128), which suggest that the larger distance from city limits and the larger size of FBL forested area could be compensating the higher disturbance caused by antrophic extractive exploitation of this fragment. This points out that, besides the quality of presevertion, the size and/or connection with other fragments should be considered for areas destined for biodiversity conservation. In general, both areas presented similar drosophilid assemblages, and the expressive abundance of both Neotropical species (mostly of the subgroup willistoni) and the exotic species D. kikkawai suggests that these areas are in intermediate stages of conservation.

  3. Monitoring coniferous forest biomass change using a Landsat trajectory-based approach

    Science.gov (United States)

    Magdalena Main-Knorn; Warren B. Cohen; Robert E. Kennedy; Wojciech Grodzki; Dirk Pflugmacher; Patrick Griffiths; Patrick Hostert

    2013-01-01

    Forest biomass is a major store of carbon and thus plays an important role in the regional and global carbon cycle. Accurate forest carbon sequestration assessment requires estimation of both forest biomass and forest biomass dynamics over time. Forest dynamics are characterized by disturbances and recovery, key processes affecting site productivity and the forest...

  4. Biodiversity conservation in Swedish forests: ways forward for a 30-year-old multi-scaled approach.

    Science.gov (United States)

    Gustafsson, Lena; Perhans, Karin

    2010-12-01

    A multi-scaled model for biodiversity conservation in forests was introduced in Sweden 30 years ago, which makes it a pioneer example of an integrated ecosystem approach. Trees are set aside for biodiversity purposes at multiple scale levels varying from individual trees to areas of thousands of hectares, with landowner responsibility at the lowest level and with increasing state involvement at higher levels. Ecological theory supports the multi-scaled approach, and retention efforts at every harvest occasion stimulate landowners' interest in conservation. We argue that the model has large advantages but that in a future with intensified forestry and global warming, development based on more progressive thinking is necessary to maintain and increase biodiversity. Suggestions for the future include joint planning for several forest owners, consideration of cost-effectiveness, accepting opportunistic work models, adjusting retention levels to stand and landscape composition, introduction of temporary reserves, creation of "receiver habitats" for species escaping climate change, and protection of young forests.

  5. Participatory conservation approaches for satoyama, the traditional forest and agricultural landscape of Japan.

    Science.gov (United States)

    Kobori, Hiromi; Primack, Richard B

    2003-06-01

    The traditional agricultural landscape of Japan, known as satoyama, consists of a mixture of forests, wet rice paddy fields, grasslands, and villages. This landscape supports a great diversity of plant and animal species, many of which are significant to the Japanese culture. The satoyama landscape is currently being rapidly converted to residential and industrial uses in Japan's expanding metropolitan areas, with the local loss of many species. Only 7% of the land in the Yokohama area remains as satoyama. City residents and older farmers have become key participants in programs to protect examples of satoyama. Many urban residents value the experience of participating in agricultural and conservation activities once they are made aware of the threat faced by the satoyama landscape. In one particularly successful program, conservation efforts and fund-raising are linked to "Totoro", an imaginary forest animal featured in a popular animated film.

  6. The role of non-industrial private forest lands in the conservation of southern fire-dependent wildlife

    Science.gov (United States)

    Christopher E. Moorman; Peter T. Bromley; Mark A. Megalos; David Drake

    2002-01-01

    Although scientific support for fire as a land management tool has grown, non-industrial private forest (NIPF) landowners often fail to burn on their properties. These lands comprise approximately 70 percent of southern forests, making them critical to the long-term conservation of wildlife and plant species. Natural resource professionals must overcome key constraints...

  7. Incorporating phylogenetic information for the definition of floristic districts in hyperdiverse Amazon forests: Implications for conservation.

    Science.gov (United States)

    Guevara Andino, Juan Ernesto; Pitman, Nigel C A; Ter Steege, Hans; Mogollón, Hugo; Ceron, Carlos; Palacios, Walter; Oleas, Nora; Fine, Paul V A

    2017-11-01

    Using complementary metrics to evaluate phylogenetic diversity can facilitate the delimitation of floristic units and conservation priority areas. In this study, we describe the spatial patterns of phylogenetic alpha and beta diversity, phylogenetic endemism, and evolutionary distinctiveness of the hyperdiverse Ecuador Amazon forests and define priority areas for conservation. We established a network of 62 one-hectare plots in terra firme forests of Ecuadorian Amazon. In these plots, we tagged, collected, and identified every single adult tree with dbh ≥10 cm. These data were combined with a regional community phylogenetic tree to calculate different phylogenetic diversity (PD) metrics in order to create spatial models. We used Loess regression to estimate the spatial variation of taxonomic and phylogenetic beta diversity as well as phylogenetic endemism and evolutionary distinctiveness. We found evidence for the definition of three floristic districts in the Ecuadorian Amazon, supported by both taxonomic and phylogenetic diversity data. Areas with high levels of phylogenetic endemism and evolutionary distinctiveness in Ecuadorian Amazon forests are unprotected. Furthermore, these areas are severely threatened by proposed plans of oil and mining extraction at large scales and should be prioritized in conservation planning for this region.

  8. Land-use change and carbon sinks: Econometric estimation of the carbon sequestration supply function; FINAL

    International Nuclear Information System (INIS)

    Lubowski, Ruben N.; Plantinga, Andrew J.; Stavins, Robert N.

    2001-01-01

    Increased attention by policy makers to the threat of global climate change has brought with it considerable interest in the possibility of encouraging the expansion of forest area as a means of sequestering carbon dioxide. The marginal costs of carbon sequestration or, equivalently, the carbon sequestration supply function will determine the ultimate effects and desirability of policies aimed at enhancing carbon uptake. In particular, marginal sequestration conts are the critical statistic for identifying a cost-effective policy mix to mitigate net carbon dioxide emissions. We develop a framework for conducting an econometric analysis of land use for the forty-eight contiguous United States and employing it to estimate the carbon sequestration supply function. By estimating the opportunity costs of land on the basis of econometric evidence of landowners' actual behavior, we aim to circumvent many of the shortcomings of previous sequestration cost assessments. By conducting the first nationwide econometric estimation of sequestration costs, endogenizing prices for land-based commodities, and estimating land-use transition probabilities in a framework that explicitly considers the range of land-use alternatives, we hope to provide better estimates eventually of the true costs of large-scale carbon sequestration efforts. In this way, we seek to add to understanding of the costs and potential of this strategy for addressing the threat of global climate change

  9. Conservation of forest birds: evidence of a shifting baseline in community structure.

    Science.gov (United States)

    Rittenhouse, Chadwick D; Pidgeon, Anna M; Albright, Thomas P; Culbert, Patrick D; Clayton, Murray K; Flather, Curtis H; Huang, Chengquan; Masek, Jeffrey G; Stewart, Susan I; Radeloff, Volker C

    2010-08-02

    Quantifying changes in forest bird diversity is an essential task for developing effective conservation actions. When subtle changes in diversity accumulate over time, annual comparisons may offer an incomplete perspective of changes in diversity. In this case, progressive change, the comparison of changes in diversity from a baseline condition, may offer greater insight because changes in diversity are assessed over longer periods of times. Our objectives were to determine how forest bird diversity has changed over time and whether those changes were associated with forest disturbance. We used North American Breeding Bird Survey data, a time series of Landsat images classified with respect to land cover change, and mixed-effects models to associate changes in forest bird community structure with forest disturbance, latitude, and longitude in the conterminous United States for the years 1985 to 2006. We document a significant divergence from the baseline structure for all birds of similar migratory habit and nest location, and all forest birds as a group from 1985 to 2006. Unexpectedly, decreases in progressive similarity resulted from small changes in richness (<1 species per route for the 22-year study period) and modest losses in abundance (-28.7 - -10.2 individuals per route) that varied by migratory habit and nest location. Forest disturbance increased progressive similarity for Neotropical migrants, permanent residents, ground nesting, and cavity nesting species. We also documented highest progressive similarity in the eastern United States. Contemporary forest bird community structure is changing rapidly over a relatively short period of time (e.g., approximately 22 years). Forest disturbance and forest regeneration are primary factors associated with contemporary forest bird community structure, longitude and latitude are secondary factors, and forest loss is a tertiary factor. Importantly, these findings suggest some regions of the United States may

  10. I think that I shall never see {hor_ellipsis} a lovely forestry policy: Land use programs for conservation of forests

    Energy Technology Data Exchange (ETDEWEB)

    Rayner, S.F.; Richards, K.R.

    1994-01-01

    Forestry programs are frequently invoked as having potential for mitigation of greenhouse gas emissions. Most studies have attempted to quantify the potential impact of forest programs on carbon uptake and the potential costs of such programs. In this paper, we will attempt instead to focus on the institutional issues of the implementation of forestry programs for carbon sequestration. In particular, we explore the challenges for implementing forest programs that are: of increasing technological complexity; and in settings that depart significantly from the idealized conditions of economic models. We start in Section 1 by examining a suite of instruments that are commonly employed to implement a given policy. Section 2 examines a relatively simple case -- a tree-planting program in the US -- and demonstrates that there are significant difficulties involved in implementing a carbon sequestration program, even in a well-developed market economy. Section 3 focuses on other technologies in the US and why the choice of policy instruments and program design is more difficult than for the simple tree-planting case. Section 4 considers implementation of forestry policies in other countries where the economies may bear less resemblance to the ideal market economy than the US. In those settings, the choice of policy instruments may be very sensitive to non-market considerations that are often missed in conventional policy and cost analysis.

  11. Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change.

    Science.gov (United States)

    Schueler, Silvio; Falk, Wolfgang; Koskela, Jarkko; Lefèvre, François; Bozzano, Michele; Hubert, Jason; Kraigher, Hojka; Longauer, Roman; Olrik, Ditte C

    2014-05-01

    A transnational network of genetic conservation units for forest trees was recently documented in Europe aiming at the conservation of evolutionary processes and the adaptive potential of natural or man-made tree populations. In this study, we quantified the vulnerability of individual conservation units and the whole network to climate change using climate favourability models and the estimated velocity of climate change. Compared to the overall climate niche of the analysed target species populations at the warm and dry end of the species niche are underrepresented in the network. However, by 2100, target species in 33-65 % of conservation units, mostly located in southern Europe, will be at the limit or outside the species' current climatic niche as demonstrated by favourabilities below required model sensitivities of 95%. The highest average decrease in favourabilities throughout the network can be expected for coniferous trees although they are mainly occurring within units in mountainous landscapes for which we estimated lower velocities of change. Generally, the species-specific estimates of favourabilities showed only low correlations to the velocity of climate change in individual units, indicating that both vulnerability measures should be considered for climate risk analysis. The variation in favourabilities among target species within the same conservation units is expected to increase with climate change and will likely require a prioritization among co-occurring species. The present results suggest that there is a strong need to intensify monitoring efforts and to develop additional conservation measures for populations in the most vulnerable units. Also, our results call for continued transnational actions for genetic conservation of European forest trees, including the establishment of dynamic conservation populations outside the current species distribution ranges within European assisted migration schemes. © 2013 John Wiley & Sons Ltd.

  12. Optimal conservation resource allocation under variable economic and ecological time discounting rates in boreal forest.

    Science.gov (United States)

    Mazziotta, Adriano; Pouzols, Federico Montesino; Mönkkönen, Mikko; Kotiaho, Janne S; Strandman, Harri; Moilanen, Atte

    2016-09-15

    Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current standard forest management rules, setting aside of mature stands, or setting aside of clear-cuts. We first estimated how habitat availability for focal indicator species and economic returns from timber harvesting develop through time as a function of forest type and action chosen. We then developed an optimal resource allocation by accounting for budget size and habitat availability of indicator species in different forest types. We also accounted for the perspective adopted towards sustainability, modeled via temporal preference and economic and ecological time discounting. Controversially, we found that in boreal forest set-aside followed by protection of clear-cuts can become a winning cost-effective strategy when accounting for habitat requirements of multiple species, long planning horizon, and limited budget. It is particularly effective when adopting a long-term sustainability perspective, and accounting for present revenues from timber harvesting. The present analysis assesses the cost-effective conditions to allocate resources into an inexpensive conservation strategy that nevertheless has potential to produce high ecological values in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Potential Distribution of Mountain Cloud Forest in Michoacán, Mexico: Prioritization for Conservation in the Context of Landscape Connectivity.

    Science.gov (United States)

    Correa Ayram, Camilo A; Mendoza, Manuel E; Etter, Andrés; Pérez Salicrup, Diego R

    2017-07-01

    Landscape connectivity is essential in biodiversity conservation because of its ability to reduce the effect of habitat fragmentation; furthermore is a key property in adapting to climate change. Potential distribution models and landscape connectivity studies have increased with regard to their utility to prioritizing areas for conservation. The objective of this study was to model the potential distribution of Mountain cloud forests in the Transversal Volcanic System, Michoacán and to analyze the role of these areas in maintaining landscape connectivity. Potential distribution was modeled for the Mountain cloud forests based on the maximum entropy approach using 95 occurrence points and 17 ecological variables at 30 m spatial resolution. Potential connectivity was then evaluated by using a probability of connectivity index based on graph theory. The percentage of variation (dPCk) was used to identify the individual contribution of each potential area of Mountain cloud forests in overall connectivity. The different ways in which the potential areas of Mountain cloud forests can contribute to connectivity were evaluated by using the three fractions derived from dPCk (dPCintrak, dPCfluxk, and dPCconnectork). We determined that 37,567 ha of the TVSMich are optimal for the presence of Mountain cloud forests. The contribution of said area in the maintenance of connectivity was low. The conservation of Mountain cloud forests is indispensable, however, in providing or receiving dispersal flows through TVSMich because of its role as a connector element between another habitat types. The knowledge of the potential capacity of Mountain cloud forests to promote structural and functional landscape connectivity is key in the prioritization of conservation areas.

  14. To Sequestrate or not to Sequestrate in View of the National Credit ...

    African Journals Online (AJOL)

    Keywords: Advantage of creditors; civil suit; compulsory sequestration; concursus creditorum; credit agreements; debt counsellor; debt enforcement; debt relief measures; debt restructuring; debt review; discretion of court; National Credit Act; NCA; reckless credit; Section 129 notice; sequestration; sequestration applications; ...

  15. Use of native species to improve carbon sequestration and contribute towards solving the environmental problems of the timberlands in Biscay, northern Spain.

    Science.gov (United States)

    Rodríguez-Loinaz, Gloria; Amezaga, Ibone; Onaindia, Miren

    2013-05-15

    The rapid transformation of natural forest areas into fast-growing exotic species plantations, where the main objective is timber and pulp production, has led to a neglect of other services forests provide in many parts of the world. One example of such a problem is the county of Biscay, where the management of these plantations has negative impacts on the environment, creating the necessity to evaluate alternative tree species for use in forestry. The actual crisis in the forest sector of the region could be an opportunity to change to native species plantations that could help restore ecosystem structure and function. However, forest managers of the region are using the current interest on carbon sequestration by forest to persist with the "pine and eucalyptus culture", arguing that these species provide a big C sequestration service. Moreover, they are promoting the expansion of eucalyptus plantations to obtain biomass for the pulp and paper industry and for bioenergy. The aim of this paper is to answer the following questions: Is this argument used by the foresters well-founded? or, could the use of native species in plantations improve the C sequestration service in Biscay while avoiding the environmental problems the actual plantations cause? To answer these questions we created three alternative future scenarios: a) the Services scenario, where there is a substitution of fast-growing exotic plantations by native broadleaf species plantations; b) the Biomass scenario, where there is a bet on eucalyptus plantations; and c) the Business as usual scenario. The changes in the C stock in living biomass in these scenarios have been simulated by a hybrid approach utilising inventories and models, and the period considered was 150 years. Our results show that the substitution of existing exotic plantations by plantations of native species has the greatest potential for increasing C sequestration. Although short- and mid-term outcomes may differ, when the long

  16. Phylogenetic variation of phytolith carbon sequestration in bamboos.

    Science.gov (United States)

    Li, Beilei; Song, Zhaoliang; Li, Zimin; Wang, Hailong; Gui, Renyi; Song, Ruisheng

    2014-04-16

    Phytoliths, the amorphous silica deposited in plant tissues, can occlude organic carbon (phytolith-occluded carbon, PhytOC) during their formation and play a significant role in the global carbon balance. This study explored phylogenetic variation of phytolith carbon sequestration in bamboos. The phytolith content in bamboo varied substantially from 4.28% to 16.42%, with the highest content in Sasa and the lowest in Chimonobambusa, Indocalamus and Acidosasa. The mean PhytOC production flux and rate in China's bamboo forests were 62.83 kg CO2 ha(-1) y(-1) and 4.5 × 10(8)kg CO2 y(-1), respectively. This implies that 1.4 × 10(9) kg CO2 would be sequestered in world's bamboo phytoliths because the global bamboo distribution area is about three to four times higher than China's bamboo. Therefore, both increasing the bamboo area and selecting high phytolith-content bamboo species would increase the sequestration of atmospheric CO2 within bamboo phytoliths.

  17. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    Science.gov (United States)

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity. © 2013 John Wiley & Sons Ltd.

  18. Forest rights

    DEFF Research Database (Denmark)

    Balooni, Kulbhushan; Lund, Jens Friis

    2014-01-01

    One of the proposed strategies for implementation of reducing emissions from deforestation and forest degradation plus (REDD+) is to incentivize conservation of forests managed by communities under decentralized forest management. Yet, we argue that this is a challenging road to REDD+ because...... conservation of forests under existing decentralized management arrangements toward a push for extending the coverage of forests under decentralized management, making forest rights the hard currency of REDD+....

  19. Multi-aged Forest: an Optimal Management Strategy for Carbon Sequestration

    Science.gov (United States)

    Yao, L.; Tang, X.; Ma, M.

    2017-12-01

    Disturbances and climatic changes significantly affect forest ecosystem productivity, water use efficiency (WUE) and carbon (C) flux dynamics. A deep understanding of terrestrial feedbacks to such effects and recovery mechanisms in forests across contrasting climatic regimes is essential to predict future regional/global C and water budgets, which are also closely related to the potential forest management decisions. However, the resilience of multi-aged and even-aged forests to disturbances has been debated for more than 60 years because of technical measurement constraints. Here we evaluated 62 site-years of eddy covariance measurements of net ecosystem production (NEP), evapotranspiration (ET), the estimates of gross primary productivity (GPP), ecosystem respiration (Re) and ecosystem-level WUE, as well as the relationships with environmental controls in three chronosequences of multi- and even-aged coniferous forests covering the Mediterranean, temperate and boreal regions. Age-specific dynamics in multi-year mean annual NEP and WUE revealed that forest age is a key variable that determines the sign and magnitude of recovering forest C source-sink strength from disturbances. However, the trends of annual NEP and WUE across succession stages between two stand structures differed substantially. The successional patterns of NEP exhibited an inverted-U trend with age at the two even-aged chronosequences, whereas NEP of the multi-aged chronosequence increased steadily through time. Meanwhile, site-level WUE of even-aged forests decreased gradually from young to mature, whereas an apparent increase occurred for the same forest age in multi-aged stands. Compared with even-aged forests, multi-aged forests sequestered more CO2 with forest age and maintained a relatively higher WUE in the later succession periods. With regard to the available flux measurements in this study, these behaviors are independent of tree species, stand ages and climate conditions . We also

  20. Role of forest conservation in lessening land degradation in a temperate region: the Monarch Butterfly Biosphere Reserve, Mexico.

    Science.gov (United States)

    Manzo-Delgado, Lilia; López-García, José; Alcántara-Ayala, Irasema

    2014-06-01

    With international concern about the rates of deforestation worldwide, particular attention has been paid to Latin America. Forest conservation programmes in Mexico include Payment for Environmental Services (PES), a scheme that has been successfully introduced in the Monarch Butterfly Biosphere Reserve. To seek further evidence of the role of PES in lessening land degradation processes in a temperate region, the conservation state of the Cerro Prieto ejido within the Reserve was assessed by an analysis of changes in vegetation cover and land-use between 1971 and 2013. There were no changes in the total forest surface area, but the relative proportions of the different classes of cover density had changed. In 1971, closed and semi-closed forest occupied 247.81 ha and 5.38 ha, 82.33% and 1.79% of the total area of the ejido, respectively. By 2013, closed forest had decreased to 230.38 ha (76.54% of the ejido), and semi-closed cover was 17.23 ha (5.72% of the ejido), suggesting that some semi-closed forest had achieved closed status. The final balance between forest losses and recovery was: 29.63 ha were lost, whereas 13.72 ha were recovered. Losses were mainly linked to a sanitation harvest programme to control the bark beetle Scolytus mundus. Ecotourism associated with forest conservation in the Cerro Prieto ejido has been considered by inhabitants as a focal alternative for economic development. Consequently, it is essential to develop a well-planned and solidly structured approach based on social cohesion to foster a community-led sustainable development at local level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Project CAPTURE: using forest inventory and analysis data to prioritize tree species for conservation, management, and restoration

    Science.gov (United States)

    Kevin M. Potter; Barbara S. Crane; William W. Hargrove

    2015-01-01

    A variety of threats, most importantly climate change and insect and disease infestation, will increase the likelihood that forest tree species could experience population-level extirpation or species-level extinction during the next century. Project CAPTURE (Conservation Assessment and Prioritization of Forest Trees Under Risk of Extirpation) is a cooperative effort...

  2. Quantifying carbon sequestration in forest plantations by modeling the dynamics of above and below ground carbon pools

    Science.gov (United States)

    Chris A. Maier; Kurt H. Johnsen

    2010-01-01

    Intensive pine plantation management may provide opportunities to increase carbon sequestration in the Southeastern United States. Developing management options that increase fiber production and soil carbon sequestration require an understanding of the biological and edaphic processes that control soil carbon turnover. Belowground carbon resides primarily in three...

  3. The Carbon Sequestration Potential of Tree Crop Plantations

    DEFF Research Database (Denmark)

    Kongsager, Rico; Napier, Jonas; Mertz, Ole

    2013-01-01

    -wood products to meet domestic and international market requirements at the same time. Financial compensation for such plantations could potentially be covered by the Clean Development Mechanism under the United Nations Framework Convention on Climate Change (FCCC) Kyoto Protocol, but its suitability has also...... been suggested for integration into REDD+(reducing emissions from deforestation, forest degradation and enhancement of forest C stocks) currently being negotiated under the United Nations FCCC. We assess the aboveground C sequestration potential of four major plantation crops – cocoa (Theobroma cacao......), oil palm (Elaeis guineensis), rubber (Hevea brasiliensis), and orange (Citrus sinesis) – cultivated in the tropics. Measurements were conducted in Ghana and allometric equations were applied to estimate biomass. The largest C potential was found in the rubber plantations (214 tC/ha). Cocoa (65 t...

  4. Comparison of Drosophilidae (Diptera) assemblages from two highland Araucaria Forest fragments, with and without environmental conservation policies

    OpenAIRE

    Cavasini, R; Buschini, MLT; Machado, LPB; Mateus, RP

    2014-01-01

    Flies from the Drosophilidae family are model organisms for biological studies and are often suggested as bioindicators of environmental quality. The Araucaria Forest, one of Atlantic Forest phyto-physiognomy, displays a highly fragmented distribution due to the expansion of agriculture and urbanization. Thus, this work aimed to evaluate and compare the drosophilid assemblages from two highland Araucaria Forest fragments, one a conservation unit (PMA – Parque Municipal das Araucárias) and the...

  5. Forest carbon calculators: a review for managers, policymakers, and educators

    Science.gov (United States)

    Harold S.J. Zald; Thomas A. Spies; Mark E. Harmon; Mark J. Twery

    2016-01-01

    Forests play a critical role sequestering atmospheric carbon dioxide, partially offsetting greenhouse gas emissions, and thereby mitigating climate change. Forest management, natural disturbances, and the fate of carbon in wood products strongly influence carbon sequestration and emissions in the forest sector. Government policies, carbon offset and trading programs,...

  6. Synthesis of the conservation value of the early-successional stage in forests of eastern North America

    Science.gov (United States)

    David I. King; Scott. Schlossberg

    2014-01-01

    As a result of changes in natural and anthropogenic disturbance regimes, the extent of early-successional forest across much of eastern North American is near historic lows, and continues to decline. This has caused many scientists to identify the conservation of early-successional species as a high priority. In this synthesis, we discuss the conservation implications...

  7. Contribution of Plantation Forest on Wild Bees (Hymenoptera: Apoidea Pollinators Conservation in Mount Slamet, Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Imam Widhiono

    2017-12-01

    Full Text Available Wild bee pollinators (Hymenoptera : Apiade diversity and abundance were studied in three types of plantation forest on Mt. Slamet (Central Java Province, Indonesia. The aims of the research was to know the diversity and abundance of wild bee pollinators and to determine the possibility of plantation forest contribution on wild bees conservation. Sampling has been done at three stands: a pine forest (PF, with Pinus merkusii, an Agathis forest (AF, with Agathis damara and a community forest (CF, with Albizia falctaria. Each habitat was divided into 5 line transect (100 x 5 m and sweep nets were used to collect the wild bee samples. Sampling was done eah month from April to August 2015. The diversity of wild bees was high (12 species in 9 genera; members of the Apidae (7 species were dominant. The most abundant species across the forests were Apis cerana (343 individuals; 25.5% of total, Trigona laeviceps (195 individuals; 14.5%, and Megachille relativa (165 individuals; 12.3%. Measurements of species diversity (H’, species evenness (E, habitat similarity (Ss and species richness indicated that the wild bee species diversity in the region was relatively high (H’ = 1.275 to (H’ = 1.730;(E= 0.870 to (E = 0.93. The result showed that the diversity of wild bees in three different plantation forest habitats on Mt. Slamet were similar and can be concluded that plantation forest types were important for pollinator conservation, and an appropriate future preservation strategy should include of the areas of all plantation forest types.

  8. Forest conservation and the clean development mechanism. Lessons from the Costa Rican protected areas project

    International Nuclear Information System (INIS)

    Voehringer, F.

    2004-01-01

    Deforestation is currently the source of about 20% of anthropogenic CO2 emissions. Avoided deforestation has, nonetheless, been ruled out as a Clean Development Mechanism (CDM) category in the Kyoto Protocol's first commitment period, because several methodological issues were considered too difficult to resolve. This paper explores whether CDM issues such as (1) carbon quantification, (2) additionality and baseline setting, (3) leakage risks, (4) non-permanence risks, and (5) sustainable development can be adequately dealt with in large, diversified forest conservation projects. To this aim, it studies the case of the Costa Rican Protected Areas Project (PAP), an Activities Implemented Jointly (AIJ) project which was meant to consolidate the national park system to avoid deforestation, promote the growth of secondary forests and regenerate pastures on an area that, in total, covers 10% of the national territory. The case study examines how the issues mentioned above have been addressed in the project design and in the certification process. It is found that baseline uncertainties are the major problem in this case. Nonetheless, the case suggests the possibility to address CDM issues by specific requirements for project design and very conservative and temporary crediting. Provided that other case studies support this conclusion, eligibility of well-designed forest conservation projects under the CDM in the second commitment period may be worth considering, given the secondary benefits of avoided deforestation

  9. Effectiveness of management interventions on forest carbon stock in planted forests in Nepal.

    Science.gov (United States)

    Dangal, Shambhu Prasad; Das, Abhoy Kumar; Paudel, Shyam Krishna

    2017-07-01

    Nepal has successfully established more than 370,000 ha of plantations, mostly with Pinus patula, in the last three and a half decades. However, intensive management of these planted forests is very limited. Despite the fact that the Kyoto Convention in 1997 recognized the role of plantations for forest-carbon sequestration, there is still limited knowledge on the effects of management practices and stand density on carbon-sequestration of popular plantation species (i.e. Pinus patula) in Nepal. We carried out case studies in four community forests planted between 1976 and 1990 to assess the impacts of management on forest carbon stocks. The study found that the average carbon stock in the pine plantations was 217 Mg C ha -1 , and was lower in forests with intensively managed plantations (214.3 Mg C ha -1 ) than in traditionally managed plantations (219 Mg C ha -1 ). However, it was the reverse in case of soil carbon, which was higher (78.65 Mg C ha -1 ) in the forests with intensive management. Though stand density was positively correlated with carbon stock, the proportionate increment in carbon stock was lower with increasing stand density, as carbon stock increased by less than 25% with a doubling of stand density (300-600). The total carbon stock was higher in plantations aged between 25 and 30 years compared to those aged between 30 and 35 years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Jewel scarabs (Chrysina sp.) in Honduras: key species for cloud forest conservation monitoring?

    Science.gov (United States)

    Jocque, M; Vanhove, M P M; Creedy, T J; Burdekin, O; Nuñez-Miño, J M; Casteels, J

    2013-01-01

    Jewel scarabs, beetles in the genus Chrysina Kirby (Coleoptera: Rutelinae: Scarabaeidae), receive their name from the bright, often gold, green elytra that reflect light like a precious stone. Jewel scarabs are commonly observed at light traps in Mesoamerican cloud forests, and their association with mountain forests makes them potentially interesting candidates for cloud forest conservation monitoring. The absence of survey protocols and identification tools, and the little ecological information available are barriers. In the present study, collection of Chrysina species assembled during biodiversity surveys by Operation Wallacea in Cusuco National Park (CNP), Honduras, were studied. The aim of this overview is to provide an easy to use identification tool for in the field, hopefully stimulating data collection on these beetles. Based on the data associated with the collection localities, elevation distribution of the species in the park was analyzed. The limited data points available were complemented with potential distribution areas generated with distribution models based on climate and elevation data. This study is aimed at initializing the development of a survey protocol for Chrysina species that can be used in cloud forest conservation monitoring throughout Central America. A list of Chrysina species recorded from Honduras so far is provided. The six identified and one unidentified species recorded from CNP are easy to identify in the field based on color and straightforward morphological characteristics. Literature research revealed ten species currently recorded from Honduras. This low species richness in comparison with surrounding Central American countries indicates the poor knowledge of this genus in Honduras. Chrysina species richness in CNP increases with elevation, thereby making the genus one of a few groups of organisms where this correlation is observed, and rendering it a suitable invertebrate representative for cloud forest habitats in

  11. Growing up with stress - carbon sequestration and allocation dynamics of a broadleaf evergreen forest

    Science.gov (United States)

    Griebel, Anne; Bennett, Lauren T.; Arndt, Stefan K.

    2016-04-01

    Evergreen forests have the potential to sequester carbon year-round due to the presence of leaves with a multi-year lifespan. Eucalypt forests occur in warmer climates where temperature and radiation are not imposing a strong seasonality. Thus, unlike deciduous or many coniferous trees, many eucalypts grow opportunistically as conditions allow. As such, many eucalypts do not produce distinct growth rings, which present challenges to the implementation of standard methods and data interpretation approaches for monitoring and explaining carbon allocation dynamics in response to climatic stress. As a consequence, there is a lack of detailed understanding of seasonal growth dynamics of evergreen forests as a whole, and, in particular, of the influence of climatic drivers on carbon allocation to the various biomass pools. We used a multi-instrument approach in a mixed species eucalypt forest to investigate the influence of climatic drivers on the seasonal growth dynamics of a predominantly temperate and moisture-regulated environment in south-eastern Australia. Ecosystem scale observations of net ecosystem exchange (NEE) from a flux tower in the Wombat forest near Melbourne indicated that the ecosystem is a year-round carbon sink, but that intra-annual variations in temperature and moisture along with prolonged heat waves and dry spells resulted in a wide range of annual sums over the past three years (NEE ranging from ~4 to 12 t C ha-1 yr-1). Dendrometers were used to monitor stem increments of the three dominant eucalypt species. Stem expansion was generally opportunistic with the greatest increments under warm but moist conditions (often in spring and autumn), and the strongest indicators of stem growth dynamics being radiation, vapour pressure deficit and a combined heat-moisture index. Differences in the seasonality of stem increments between species were largely due to differences in the canopy position of sampled individuals. The greatest stem increments were

  12. Landscape structure in the northern coast of Paraná state, a hotspot for the brazilian Atlantic Forest conservation

    Directory of Open Access Journals (Sweden)

    Érico Emed Kauano

    2012-10-01

    Full Text Available The "Serra do Mar" region comprises the largest remnant of the Brazilian Atlantic Forest. The coast of the Paraná State is part of the core area of the "Serra do Mar" corridor and where actions for biodiversity conservation must be planned. In this study we aimed at characterizing the landscape structure in the APA-Guaraqueçaba, the largest protected area in this region, in order to assist environmental policies of this region. Based on a supervised classification of a mosaic of LANDSAT-5-TM satellite images (from March 2009, we developed a map (1:75,000 scale with seven classes of land use and land cover and analyzed the relative quantities of forests and modified areas in slopes and lowlands. The APA-Guaraqueçaba is comprised mainly by the Dense Ombrophilous Forest (68.6% of total area and secondary forests (9.1%, indicating a forested landscape matrix; anthropogenic and bare soil areas (0.8% and the Pasture/Grasslands class (4.2% were less representative. Slopes were less fragmented and more preserved (96.3% of Dense Ombrophilous Forest and secondary forest than lowlands (71.3%, suggesting that restoration initiatives in the lowlands must be stimulated in this region. We concluded that most of the region sustains well-conserved ecosystems, highlighting the importance of Paraná northern coast for the biodiversity maintenance of the Atlantic Forest.

  13. A disconnect between O horizon and mineral soil carbon - Implications for soil C sequestration

    Science.gov (United States)

    Garten, Charles T., Jr.

    2009-03-01

    Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO 2 concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.

  14. History and conservation of wild and cultivated plant diversity in Uganda: Forest species and banana varieties as case studies

    Directory of Open Access Journals (Sweden)

    Alan C. Hamilton

    2016-02-01

    Full Text Available The history of wild and cultivated plant diversity in Uganda is reviewed, taking forest species and bananas as examples. Palynological research into past human influences on forests is reassessed. The evidence suggests that crops were first introduced into the country at about 1000 BCE, farming communities practicing slash and burn agriculture started to significantly influence the floristic composition of forests during the 1st millennium BCE and there was a major episode of forest reduction at about 1000 CE related to socio-economic change. Bananas were probably introduced in the early centuries CE. The colonial era from 1894 saw the introduction of new concepts of land ownership and the establishment of forest reserves and agricultural stations. Forests and banana diversity are currently under threat, Uganda having a very high rate of deforestation and endemic banana varieties proving susceptible to introduced pests and diseases. It is suggested that, under these circumstances, conservationists take an opportunistic approach to field engagement, making use of favourable local conditions as they arise. Partnerships should be sought with elements of society concerned with sustainable use, provision of ecosystem services and cultural survival to widen the social base of plant conservation. International organisations involved in conservation of plant genetic resources and wild plant species should collaborate with one another to develop the conceptual basis of plant conservation, to make it more relevant to countries like Uganda.

  15. Forest and climate change

    International Nuclear Information System (INIS)

    2009-01-01

    After having recalled the challenges the French forest has to face, and a brief overview of the status of forests in the world, this report proposes an overview of actions which are implemented to strengthen the carbon sequestration role of forests, at the international level and in France. It discusses the distribution of carbon, the forest carbon stocks (in the world, Europe and France), the actions against climate change, the costs and financing of the reduction of greenhouse gas emissions in the forest sector. It comments the status of international negotiations and how forests are taken into account. It presents the French forest and wood sector (characteristics of the forest in metropolitan France and overseas, wood as material and as energy). It recalls the commitment of the Grenelle de l'Environnement, and indicates the current forest studies

  16. Forests and ozone: productivity, carbon storage, and feedbacks.

    Science.gov (United States)

    Wang, Bin; Shugart, Herman H; Shuman, Jacquelyn K; Lerdau, Manuel T

    2016-02-22

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution.

  17. Strategies of conservation of the tropical natural forest of the commune «El Pital» Manabí, Ecuador

    Directory of Open Access Journals (Sweden)

    Gonzalo Cantos Cevallos

    2015-11-01

    Full Text Available They are many the efforts that are made to conserve the tropical natural forests that are in the world. The communities that inhabit these forests depend directly on the resources of the area. Their priorities are not the commercial exploitation of a product, but in occasions they cause alterations to the environment. The commune «El Pital» is located in the area of reduction of the National Park Machalilla. It presents a native forest with high degree of affectation in their structure due to the entropic local action. The objective of the work is to propose conservation strategies that allow to stop the ecological deterioration of the natural forest of the town and to improve the use of the coastal natural resources. Interviews, shops and exploratory forest inventories were carried out. It confirms that the forest exploitation, the one dismounts and the one clears of vegetation, the cultivations of short cycle and the existence and opening of communication roads, are the main variables that generate bigger tension in the use and handling of the native forest. The positive incidences turned out to be the forest repopulation, gathering of seeds, cultivation of short cycle and the ecotouristic practice in front of the economic movement and services that were the activities that presented more favorable evaluation results for the recovery of the forest and for the development of the community.

  18. Towards energy self sufficiency in the North: Energy conservation and forest biomass

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    A symposium was held to address the issues of controlling energy demand through conservation, and increasing the range of energy supply using forest products (biomass) as a renewable alternative to fossil fuels in Canada's northern climates. Sections on retrofitting of thermal insulation, production of wood fuels, and unconventional energy analyses of these technologies are included. Separate abstracts have been prepared for 23 papers.

  19. Are ungulates in forests concerns or key species for conservation and biodiversity? Reply to Boulanger et al. (DOI: 10.1111/gcb.13899).

    Science.gov (United States)

    Fløjgaard, Camilla; Bruun, Hans Henrik; Hansen, Morten D D; Heilmann-Clausen, Jacob; Svenning, Jens-Christian; Ejrnaes, Rasmus

    2018-03-01

    Increasing species richness of light demanding species in forests may not be a conservation concern if we accept a macroecological and evolutionary baseline for biodiversity. Most of the current biodiversity in Europe has evolved in the Pleistocene or earlier, and in ecosystems markedly influenced by dynamic natural processes, including grazing. Many threatened species are associated with high-light forest environments such as forest glades and edges, as these have strongly declined at least partially due to the decline of large herbivores in European forests. Hence, moderate grazing in forests should be an ecological baseline and conservation target rather than a concern. © 2017 John Wiley & Sons Ltd.

  20. Conservation of forest birds: evidence of a shifting baseline in community structure.

    Directory of Open Access Journals (Sweden)

    Chadwick D Rittenhouse

    2010-08-01

    Full Text Available Quantifying changes in forest bird diversity is an essential task for developing effective conservation actions. When subtle changes in diversity accumulate over time, annual comparisons may offer an incomplete perspective of changes in diversity. In this case, progressive change, the comparison of changes in diversity from a baseline condition, may offer greater insight because changes in diversity are assessed over longer periods of times. Our objectives were to determine how forest bird diversity has changed over time and whether those changes were associated with forest disturbance.We used North American Breeding Bird Survey data, a time series of Landsat images classified with respect to land cover change, and mixed-effects models to associate changes in forest bird community structure with forest disturbance, latitude, and longitude in the conterminous United States for the years 1985 to 2006. We document a significant divergence from the baseline structure for all birds of similar migratory habit and nest location, and all forest birds as a group from 1985 to 2006. Unexpectedly, decreases in progressive similarity resulted from small changes in richness (<1 species per route for the 22-year study period and modest losses in abundance (-28.7 - -10.2 individuals per route that varied by migratory habit and nest location. Forest disturbance increased progressive similarity for Neotropical migrants, permanent residents, ground nesting, and cavity nesting species. We also documented highest progressive similarity in the eastern United States.Contemporary forest bird community structure is changing rapidly over a relatively short period of time (e.g., approximately 22 years. Forest disturbance and forest regeneration are primary factors associated with contemporary forest bird community structure, longitude and latitude are secondary factors, and forest loss is a tertiary factor. Importantly, these findings suggest some regions of the United

  1. Conserving Tropical Tree Diversity and Forest Structure: The Value of Small Rainforest Patches in Moderately-Managed Landscapes

    Science.gov (United States)

    Hernández-Ruedas, Manuel A.; Arroyo-Rodríguez, Víctor; Meave, Jorge A.; Martínez-Ramos, Miguel; Ibarra-Manríquez, Guillermo; Martínez, Esteban; Jamangapé, Gilberto; Melo, Felipe P. L.; Santos, Bráulio A.

    2014-01-01

    Rainforests are undergoing severe deforestation and fragmentation worldwide. A huge amount of small forest patches are being created, but their value in conserving biodiversity and forest structure is still controversial. Here, we demonstrate that in a species-rich and moderately-managed Mexican tropical landscape small rainforest patches (tree diversity and forest structure. These patches showed diverse communities of native plants, including endangered species, and a new record for the country. Although the number of logged trees increased in smaller patches, patch size was a poor indicator of basal area, stem density, number of species, genera and families, and community evenness. Cumulative species-area curves indicated that all patches had a similar contribution to the regional species diversity. This idea also was supported by the fact that patches strongly differed in floristic composition (high β-diversity), independently of patch size. Thus, in agreement with the land-sharing approach, our findings support that small forest patches in moderately-managed landscapes should be included in conservation initiatives to maintain landscape heterogeneity, species diversity, and ecosystem services. PMID:24901954

  2. Conserving what, where and how? Cost-efficient measures to conserve biodiversity in Denmark

    DEFF Research Database (Denmark)

    Petersen, Anders Højgård; Strange, Niels; Anthon, Signe

    2016-01-01

    Biodiversity conservation efforts in Europe have traditionally focused on farmland and open nature areas such as grasslands, heathlands and meadows, while little attention has been devoted to conservation actions in forest. Using detailed information on the geographical distribution of about 900...... terrestrial species in Denmark we apply systematic conservation planning techniques to identify how to protect biodiversity at the lowest cost to society. The results suggest that conservation actions in forest should be given a higher priority. Thus, three to four times the number of forest species...... are protected per million € compared with species living in open land natural areas. Furthermore, a gap analysis finds the current designation of Natura 2000 and other protected areas is skewed toward open land natural areas, and insufficient to meet the conservation targets on forest species....

  3. Implications of rural-urban migration for conservation of the Atlantic Forest and urban growth in Misiones, Argentina (1970-2030).

    Science.gov (United States)

    Izquierdo, Andrea E; Grau, Héctor R; Aide, T Mitchell

    2011-05-01

    Global trends of increasing rural-urban migration and population urbanization could provide opportunities for nature conservation, particularly in regions where deforestation is driven by subsistence agriculture. We analyzed the role of rural population as a driver of deforestation and its contribution to urban population growth from 1970 to the present in the Atlantic Forest of Argentina, a global conservation priority. We created future land-use-cover scenarios based on human demographic parameters and the relationship between rural population and land-cover change between 1970 and 2006. In 2006, native forest covered 50% of the province, but by 2030 all scenarios predicted a decrease that ranged from 18 to 39% forest cover. Between 1970 and 2001, rural migrants represented 20% of urban population growth and are expected to represent less than 10% by 2030. This modeling approach shows how rural-urban migration and land-use planning can favor nature conservation with little impact on urban areas.

  4. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2005-01-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. Efforts are underway to showcase the architecture of the GIS framework and initial results for sources and sinks. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is

  5. Integrated management of carbon sequestration and biomass utilization opportunities in a changing climate: Proceedings of the 2009 National Silviculture Workshop; 2009 June 15-18; Boise, ID.

    Science.gov (United States)

    Theresa B. Jain; Russell T. Graham; Jonathan Sandquist

    2010-01-01

    Forests are important for carbon sequestration and how they are manipulated either through natural or human induced disturbances can have an effect on CO2 emissions and carbon sequestration. The 2009 National Silviculture Workshop presented scientific information and management strategies to meet a variety of objectives while simultaneously addressing carbon...

  6. Bird response to future climate and forest management focused on mitigating climate change

    Science.gov (United States)

    Jaymi J. LeBrun; Jeffrey E. Schneiderman; Frank R. Thompson; William D. Dijak; Jacob S. Fraser; Hong S. He; Joshua J. Millspaugh

    2016-01-01

    Context. Global temperatures are projected to increase and affect forests and wildlife populations. Forest management can potentially mitigate climateinduced changes through promoting carbon sequestration, forest resilience, and facilitated change. Objectives. We modeled direct and indirect effects of climate change on avian...

  7. Managing carbon sequestration and storage in northern hardwood forests

    Science.gov (United States)

    Eunice A. Padley; Deahn M. Donner; Karin S. Fassnacht; Ronald S. Zalesny; Bruce Birr; Karl J. Martin

    2011-01-01

    Carbon has an important role in sustainable forest management, contributing to functions that maintain site productivity, nutrient cycling, and soil physical properties. Forest management practices can alter ecosystem carbon allocation as well as the amount of total site carbon.

  8. Mammal indicator species for protected areas and managed forests in a landscape conservation area in northern India

    Science.gov (United States)

    Pradeep K. Mathur; Harish Kumar; John F. Lehmkuhl; Anshuman Tripathi; Vishwas B. Sawarkar; Rupak. De

    2010-01-01

    There is a realization that managed forests and other natural areas in the landscape matrix can and must make significant contributions to biodiversity conservation. Often, however, there are no consistent baseline vegetation or wildlife data for assessing the status of biodiversity elements across protected and managed areas for conservation planning, nor is there a...

  9. Forests Regenerating after Clear-Cutting Function as Habitat for Bryophyte and Lichen Species of Conservation Concern

    Science.gov (United States)

    Rudolphi, Jörgen; Gustafsson, Lena

    2011-01-01

    The majority of managed forests in Fennoscandia are younger than 70 years old but yet little is known about their potential to host rare and threatened species. In this study, we examined red-listed bryophytes and lichens in 19 young stands originating from clear-cutting (30–70 years old) in the boreal region, finding 19 red-listed species (six bryophytes and 13 lichens). We used adjoining old stands, which most likely never had been clear-cut, as reference. The old stands contained significantly more species, but when taking the amount of biological legacies (i.e., remaining deciduous trees and dead wood) from the previous forest generation into account, bryophyte species number did not differ between old and young stands, and lichen number was even higher in young stands. No dispersal effect could be detected from the old to the young stands. The amount of wetlands in the surroundings was important for bryophytes, as was the area of old forest for both lichens and bryophytes. A cardinal position of young stands to the north of old stands was beneficial to red-listed bryophytes as well as lichens. We conclude that young forest plantations may function as habitat for red-listed species, but that this depends on presence of structures from the previous forest generation, and also on qualities in the surrounding landscape. Nevertheless, at repeated clear-cuttings, a successive decrease in species populations in young production stands is likely, due to increased fragmentation and reduced substrate amounts. Retention of dead wood and deciduous trees might be efficient conservation measures. Although priority needs to be given to preservation of remnant old-growth forests, we argue that young forests rich in biological legacies and located in landscapes with high amounts of old forests may have a conservation value. PMID:21490926

  10. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2005-11-01

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the

  11. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth.

    Science.gov (United States)

    Fang, Jingyun; Guo, Zhaodi; Hu, Huifeng; Kato, Tomomichi; Muraoka, Hiroyuki; Son, Yowhan

    2014-06-01

    Forests play an important role in regional and global carbon (C) cycles. With extensive afforestation and reforestation efforts over the last several decades, forests in East Asia have largely expanded, but the dynamics of their C stocks have not been fully assessed. We estimated biomass C stocks of the forests in all five East Asian countries (China, Japan, North Korea, South Korea, and Mongolia) between the 1970s and the 2000s, using the biomass expansion factor method and forest inventory data. Forest area and biomass C density in the whole region increased from 179.78 × 10(6) ha and 38.6 Mg C ha(-1) in the 1970s to 196.65 × 10(6) ha and 45.5 Mg C ha(-1) in the 2000s, respectively. The C stock increased from 6.9 Pg C to 8.9 Pg C, with an averaged sequestration rate of 66.9 Tg C yr(-1). Among the five countries, China and Japan were two major contributors to the total region's forest C sink, with respective contributions of 71.1% and 32.9%. In China, the areal expansion of forest land was a larger contributor to C sinks than increased biomass density for all forests (60.0% vs. 40.0%) and for planted forests (58.1% vs. 41.9%), while the latter contributed more than the former for natural forests (87.0% vs. 13.0%). In Japan, increased biomass density dominated the C sink for all (101.5%), planted (91.1%), and natural (123.8%) forests. Forests in South Korea also acted as a C sink, contributing 9.4% of the total region's sink because of increased forest growth (98.6%). Compared to these countries, the reduction in forest land in both North Korea and Mongolia caused a C loss at an average rate of 9.0 Tg C yr(-1), equal to 13.4% of the total region's C sink. Over the last four decades, the biomass C sequestration by East Asia's forests offset 5.8% of its contemporary fossil-fuel CO2 emissions. © 2014 John Wiley & Sons Ltd.

  12. Exploring Local Perspectives for Conservation Planning: A Case Study from a Remote Forest Community in Indonesian Papua

    Directory of Open Access Journals (Sweden)

    Miriam van Heist

    2015-09-01

    Full Text Available Reconciling conservation and livelihoods is a concern wherever forests are important in local people’s lives. We plead for engaging these people in survey activities to clarify what is important to them, as a first step in conservation planning. This will help to address their priorities and gain their guidance and support for interventions. This paper presents the results of such a survey with the community of Kwerba in Mamberamo, a remote and little known part of Indonesian Papua. Views and priorities were explored through interviews, scoring exercises, community mapping and a field survey. Whereas small gardens provided most staple food, culture and livelihoods were linked to the forest. People scored primary forest highest for nearly all use categories. Primary forest was particularly highly valued as a source of construction materials, ornaments and rituals, and as a hunting place. We developed a list of the overall most important plants and animals. Many natural resources were used, but few were commercially exploited. The community had rules to control access to certain areas and resources. Taboos to restrict access to sacred places were also maintained. Our evaluation identified opportunities to achieve conservation outcomes jointly with the Kwerba people. In follow-up activities, the community presented local government with a land-use plan for their territory. The government recognized the value of our approach and requested training to implement it more widely in the region.

  13. Exploring canopy structure and function as a potential mechanism of sustain carbon sequestration in aging forests

    Science.gov (United States)

    Fotis, A. T.; Curtis, P.; Ricart, R.

    2013-12-01

    weaker, but strong positive correlation). On average, Q. rubra and F. grandifolia had greater LMA in high rugosity plots while LMA was greater for A. rubrum and P. strobus in low rugosity plots. These findings suggest that species are responding differently to canopy structural complexity and that leaf arrangement in space plays an important role in determining leaf level traits. Furthermore, this research demonstrates that PCL can be used for quick identification of canopy traits (e.g., average LMA) relevant to photosynthetic capacity, and thus, carbon sequestration potential, and therefore may become an important tool in forest management.

  14. Attitudes Towards Forest Elephant Conservation Around a Protected Area in Northern Congo

    Directory of Open Access Journals (Sweden)

    Félicien Nsonsi

    2017-01-01

    Full Text Available An assessment of local attitudes towards conservation can guide wildlife managers in the effective application of measurements to improve these perceptions. Here we conducted a quantitative questionnaire survey around a protected area in northern Congo surveying 314 households living in four villages around the Nouabalé-Ndoki National Park. We investigated the impact of the benefits of a conservation project (led by an international non-governmental organisation, the experience with human-elephant conflict and the respondents' socio-economic profile on local people's attitudes towards forest elephant conservation. Using multivariate analysis, we found overall positive attitudes towards elephant conservation with more positive answers in the village where a conservation project is based. Furthermore, people employed in the conservation project stated more positive attitudes compared to logging company employees famers, natural resource users and people conducting other jobs. Experience of human elephant conflict negatively impacted people's perceptions. Socio-economic variables, such as ethnic group, education level or salary category had relatively little impact on people's responses. Qualitative statements largely supported the questionnaire results. We discuss our results in the light of the limits of attitude surveys and suggest further investigations to identify the activities needed to foster positive attitudes for elephant conservation in all villages around the Nouabalé-Ndoki National Park in partnership with the logging company.

  15. Contribution of a mixed forest plantation to avifauna conservation at Rio Cauca canyon, Colombia

    International Nuclear Information System (INIS)

    Castano Villa, Gabriel Jaime; Morales Betancourt, Juan Alejandro; Bedoya Alvarez, Mary Luz

    2008-01-01

    The avifauna of a forest mixed plantation at Cauca river canyon in Caldas department; was monitored during 10 months. Fifty nine understory resident species were captured,10% of them presented high sensibility to habitat perturbation (forest specialists). Only those species with low sensibility (generalists) presented differences between monthly numbers of captures. Other 50 species associated to the plantation, including two endemic and 26% boreal migratory species were registered visually and/or by its vocalizations. The results suggest that this plantation plays a key role in the conservation of local avifauna, is habitat both for species associated with natural forests and for those with less habitat requirements. This type of reforestation with native species could be a restoration model for other degraded areas from the region.

  16. Carbon sequestration rate and aboveground biomass carbon potential of three young species in lower Gangetic plain.

    Science.gov (United States)

    Jana, Bipal K; Biswas, Soumyajit; Majumder, Mrinmoy; Roy, Pankaj K; Mazumdar, Asis

    2011-07-01

    Carbon is sequestered by the plant photosynthesis and stored as biomass in different parts of the tree. Carbon sequestration rate has been measured for young species (6 years age) of Shorea robusta at Chadra forest in Paschim Medinipur district, Albizzia lebbek in Indian Botanic Garden in Howrah district and Artocarpus integrifolia at Banobitan within Kolkata in the lower Gangetic plain of West Bengal in India by Automated Vaisala Made Instrument GMP343 and aboveground biomass carbon has been analyzed by CHN analyzer. The specific objective of this paper is to measure carbon sequestration rate and aboveground biomass carbon potential of three young species of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia. The carbon sequestration rate (mean) from the ambient air during winter season as obtained by Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 11.13 g/h, 14.86 g/h and 4.22g/h, respectively. The annual carbon sequestration rate from ambient air were estimated at 8.97 t C ha(-1) by Shorea robusta, 11.97 t C ha(-1) by Albizzia lebbek and 3.33 t C ha(-1) by Artocarpus integrifolia. The percentage of carbon content (except root) in the aboveground biomass of Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 47.45, 47.12 and 43.33, respectively. The total aboveground biomass carbon stock per hectare as estimated for Shorea robusta, Albizzia lebbek and Artocarpus integrifolia were 5.22 t C ha(-1) , 6.26 t C ha(-1) and 7.28 t C ha(-1), respectively in these forest stands.

  17. Determining landscape-level carbon emissions from historically harvested forest products

    Science.gov (United States)

    Sean Healey; Todd Morgan; Jon Songster; Jason. Brandt

    2009-01-01

    Resources have been developed in the literature to enable landowners to estimate the carbon sequestration timeline of forest products derived from their land. These tools were used here to estimate sequestration and emissions related to harvests carried out in Ravalli County from 1945 to 2007. This county-level accounting of product carbon release can later be combined...

  18. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo

    International Nuclear Information System (INIS)

    Betts, R.A.

    2000-01-01

    Carbon uptake by forestation is one method proposed to reduce net carbon dioxide emissions to the atmosphere and so limit the radiative forcing of climate change. But the overall impact of forestation on climate will also depend on other effects associated with the creation of new forests. In particular the albedo of a forested landscape is generally lower than that of cultivated land, especially when snow is lying, and decreasing albedo exerts a positive radiative forcing on climate. Here I simulate the radiative forcings associated with changes in surface albedo as a result of forestation in temperate and boreal forest areas, and translate these forcings into equivalent changes in local carbon stock for comparison with estimated carbon sequestration potentials. I suggest that in many boreal forest areas, the positive forcing induced by decreases in albedo can offset the negative forcing that is expected from carbon sequestration. Some high-latitude forestation activities may therefore increase climate change, rather that mitigating it as intended

  19. Optimal conservation resource allocation under variable economic and ecological time discounting rates in boreal forest

    DEFF Research Database (Denmark)

    Mazziotta, Adriano; Montesino Pouzols, Federico; Mönkkönen, Mikko

    2016-01-01

    Resource allocation to multiple alternative conservation actions is a complex task. A common trade-off occurs between protection of smaller, expensive, high-quality areas versus larger, cheaper, partially degraded areas. We investigate optimal allocation into three actions in boreal forest: current......, and accounting for present revenues from timber harvesting. The present analysis assesses the cost-effective conditions to allocate resources into an inexpensive conservation strategy that nevertheless has potential to produce high ecological values in the future....

  20. Big Sky Carbon Sequestration Partnership

    Energy Technology Data Exchange (ETDEWEB)

    Susan Capalbo

    2005-12-31

    has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts

  1. Traditional and formal ecological knowledge to assess harvesting and conservation of a Mexican Tropical Dry Forest.

    Science.gov (United States)

    Monroy-Ortiz, Columba; García-Moya, Edmundo; Romero-Manzanares, Angélica; Luna-Cavazos, Mario; Monroy, Rafael

    2018-05-15

    This research integrates Traditional and Formal Ecological Knowledge (TEK / FEK) of a Tropical Dry Forest in central Mexico, in order to assess harvesting and conservation of the non-timber forest species. We were interested in: knowing the structure and diversity of the forest community; identifying which are the tree resources of common interest to the users through participatory workshops. A further interest was to identify those resources which are important to local people in terms of preservation; explaining the relationship of the species with some environmental factors; and visualizing which management practices endanger or facilitate the conservation of species. Studied areas were defined and labelled on a map drawn by local informants, where they indicated those plant species of common interest for preservation. Ethnobotanical techniques were used to reveal the TEK and assess harvesting and conservation of the species. With the FEK through community and population ecology, we detected the importance of five environmental factors, obtained various ecological indicators of the vegetation, and studied the population structure of the relevant species. The FEK was analyzed using descriptive and multivariate statistics. As a result, low density and small basal area of trees were registered. Species richness and diversity index were similar to other natural protected areas in Mexico. Tree species harvested shown an asymmetric distribution of diameters. Harvesting, elevation, and accessibility were the most influential factors on tree density. FEK demonstrated that TEK is helpful for the assessment of forest harvesting. Ecological analysis complemented the local knowledge detecting that Lysiloma tergemina is a species non-identified for the people as interesting, although we discover that it is a threatened species by over-harvesting. Haematoxylum brasiletto was identified as important for conservation due to its scarcity and medicinal use. Our results advanced

  2. Effect of hydrological conditions on nitrous oxide, methane, and carbon dioxide dynamics in a bottomland hardwood forest and its implication for soil carbon sequestration

    Science.gov (United States)

    Yu, K.; Faulkner, S.P.; Baldwin, M.J.

    2008-01-01

    This study was conducted at three locations in a bottomland hardwood forest with a distinct elevation and hydrological gradient: ridge (high, dry), transition, and swamp (low, wet). At each location, concentrations of soil greenhouse gases (N2O, CH4 , and CO2), their fluxes to the atmosphere, and soil redox potential (Eh) were measured bimonthly, while the water table was monitored every day. Results show that soil Eh was significantly (P transition > ridge location. The ratio CO2/CH4 production in soil is a critical factor for evaluating the overall benefit of soil C sequestration, which can be greatly offset by CH4 production and emission. ?? Journal compilation ?? 2008 Blackwell Publishing.

  3. Benchmark carbon stocks from old-growth forests in northern New England, USA

    Science.gov (United States)

    Coeli M. Hoover; William B. Leak; Brian G. Keel

    2012-01-01

    Forests world-wide are recognized as important components of the global carbon cycle. Carbon sequestration has become a recognized forest management objective, but the full carbon storage potential of forests is not well understood. The premise of this study is that old-growth forests can be expected to provide a reasonable estimate of the upper limits of carbon...

  4. How to estimate forest carbon for large areas from inventory data

    Science.gov (United States)

    James E. Smith; Linda S. Heath; Peter B. Woodbury

    2004-01-01

    Carbon sequestration through forest growth provides a low-cost approach for meeting state and national goals to reduce net accumulations of atmospheric carbon dioxide. Total forest ecosystem carbon stocks include "pools" in live trees, standing dead trees, understory vegetation, down dead wood, forest floor, and soil. Determining the level of carbon stocks in...

  5. Oligarchic forests of economic plants in amazonia: utilization and conservation of an important tropical resource.

    Science.gov (United States)

    Peters, C M; Balick, M J; Kahn, F; Anderson, A B

    1989-12-01

    Tropical forests dominated by only one or two tree species occupy tens of millions of hectares in Ammonia In many cases, the dominant species produce fruits, seeds, or oils of economic importance. Oligarchic (Gr. oligo = few, archic = dominated or ruled by) forests of six economic species, i. e., Euterpe oleracea, Grias peruviana, Jessenia bataua, Mauritia flexuosa, Myrciaria dubia, and Orbignya phalerata, were studied in Brazil and Peru Natural populations of these species contain from 100 to 3,000 conspecific adult trees/ha and produce up to 11.1 metric tons of fruit/hd/yr. These plant populations are utilized and occasionally managed, by rural inhabitants in the region. Periodic fruit harvests, if properly controlled have only a minimal impact on forest structure and function, yet can generate substantial economic returns Market-oriented extraction of the fruits produced by oligarchic forests appears to represent a promising alternative for reconciling the development and conservation of Amazonian forests.

  6. Forest Carbon Stocks in Woody Plants of Mount Zequalla Monastery ...

    African Journals Online (AJOL)

    Carbon sequestration through forestry has the potential to play a significant role in ameliorating global environmental problems such as atmospheric accumulation of GHG's and climate change.The present study was undertaken to estimate forest carbon stock along altitudinal gradient in Mount Zequalla Monastery forest.

  7. Multidimensional remote sensing based mapping of tropical forests and their dynamics

    NARCIS (Netherlands)

    Dutrieux, L.P.

    2016-01-01

    Tropical forests concentrate a large part of the terrestrial biodiversity, provide important resources, and deliver many ecosystem services such as climate regulation, carbon sequestration, and hence climate change mitigation. While in the current context of anthropogenic pressure these forests

  8. Survey of Forest Elephants Loxodonta cyclotis (Matschie, 1900 (Mammalia: Proboscidea: Elephantidae in the Bia Conservation Area, Ghana

    Directory of Open Access Journals (Sweden)

    Emmanuel Danquah

    2014-10-01

    Full Text Available Information on elephant ranges and numbers is vital for effective conservation and management, especially in western Africa where elephant populations are small and scattered.  The Bia Conservation Area (BCA in southwestern Ghana is a priority site for the conservation of Forest Elephants in western Africa.  A dung count was conducted using a systematic segmented track line design to determine the density and distribution of the BCA elephant population.  The mean density of dung-piles was 452.15 per sq.km. and mean dung survival time was estimated to be 54.64 days (SD 2 days, leading to an estimate of 146 elephants (95% confidence interval 98-172 with a density of 0.48/km2 for the BCA. This estimate probably makes the Bia forest elephant population the largest in Ghana.  Records of BCA elephant activities were also made.  This study augments the Regional African Elephant Database and should facilitate strategic planning and management programmes.

  9. Antimicrobial Activity of Endemic Herbs from Tangkahan Conservation Forest North Sumatera to Bacteria and Yeast

    Directory of Open Access Journals (Sweden)

    KIKI NURTJAHJA

    2013-12-01

    Full Text Available Tangkahan Conservation Forest in Karo County, North Sumatera has high biodiversity of endemic herbs. Many species of the wild herbs are well known used as traditional medicine not only by local people but also by people out of the area. The methanol extract of the medicinal wild herbs in Tangkahan Conservation Forest, Karo County to relief skin diseases caused by bacteria and fungi never been studied medically. The antimicrobial activity leave extract of the medicinal herbs to pathogenic microorganisms are studied. The leaves extract of kembu-kembu (Callicarpa candicans, rintih bulung (Piper muricatum, cep-cepan (Castanopsis costata, and sereh kayu (Eugenia grandis, has antimicrobial to bacteria (Bacillus sp., Escherichia coli, Serratia marcescens, Staphylococcus aureus and yeast (Candida albicans. Toxicity assay of these plants by brine shrimp method using Artemia salina indicates that cep-cepan dan sereh kayu have lethal concentration higher than kembu-kembu and rintih bulung.

  10. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Eric A. [Woods Hole Research Center, Falmouth, MA (United States); Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States); Savage, Kathleen [Woods Hole Research Center, Falmouth, MA (United States); Finzi, Adrien [Boston Univ., MA (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States); Wehr, Richard [Univ. of Arizona, Tucson, AZ (United States)

    2016-02-18

    1. Project Summary and Objectives This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of belowground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. aboveground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: A. Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics ; B. Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated belowground using measurements of root growth and indices of belowground autotrophic vs. heterotrophic respiration (via trenched plots and isotope measurements); C. Testing whether plant allocation of carbon belowground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and D. Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2).

  11. Partitioning CO2 fluxes with isotopologue measurements and modeling to understand mechanisms of forest carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Saleska, Scott [Univ. of Arizona, Tucson, AZ (United States). Dept. of Ecology and Evolutionary Biology; Davidson, Eric [Woods Hole Research Center, Falmouth, MA (United States); Finzi, Adrien [Boston Univ., MA (United States). Dept. of Biology; Wehr, Richard [Univ. of Arizona, Tucson, AZ (United States); Moorcroft, Paul [Harvard Univ., Cambridge, MA (United States). Dept. of Organismic and Evolutionary Biology

    2016-01-28

    This project combines automated in situ observations of the isotopologues of CO2 with root observations, novel experimental manipulations of below ground processes, and isotope-enabled ecosystem modeling to investigate mechanisms of below- vs. above ground carbon sequestration at the Harvard Forest Environmental Measurements Site (EMS). The proposed objectives, which have now been largely accomplished, include: (A) Partitioning of net ecosystem CO2 exchange (NEE) into photosynthesis and respiration using long-term continuous observations of the isotopic composition of NEE, and analysis of their dynamics; (B) Investigation of the influence of vegetation phenology on the timing and magnitude of carbon allocated below ground using measurements of root growth and indices of below ground autotrophic vs. heterotrophic respiration (via trenched plots andisotope measurements); (C) Testing whether plant allocation of carbon below ground stimulates the microbial decomposition of soil organic matter, using in situ rhizosphere simulation experiments wherein realistic quantities of artificial isotopically-labeled exudates are released into the soil; and (D) Synthesis and interpretation of the above data using the Ecosystem Demography Model 2 (ED2).

  12. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.

    Science.gov (United States)

    de Wit, Heleen A; Bryn, Anders; Hofgaard, Annika; Karstensen, Jonas; Kvalevåg, Maria M; Peters, Glen P

    2014-07-01

    Expanding high-elevation and high-latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south-central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land-use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow-covered tundra areas. The positive climate feedback of high-latitude and high-elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts. © 2013 John Wiley & Sons Ltd.

  13. Forest disturbance and North American carbon flux

    Science.gov (United States)

    S. N. Goward; J. G. Masek; W. Cohen; G. Moisen; G. J. Collatz; S. Healey; R. A. Houghton; C. Huang; R. Kennedy; B. Law; S. Powell; D. Turner; M. A. Wulder

    2008-01-01

    North America's forests are thought to be a significant sink for atmospheric carbon. Currently, the rate of sequestration by forests on the continent has been estimated at 0.23 petagrams of carbon per year, though the uncertainty about this estimate is nearly 50%. This offsets about 13% of the fossil fuel emissions from the continent [Pacala et al., 2007]. However...

  14. Calcium silicates synthesised from industrial residues with the ability for CO2 sequestration.

    Science.gov (United States)

    Morales-Flórez, Victor; Santos, Alberto; López, Antonio; Moriña, Isabel; Esquivias, Luis

    2014-12-01

    This work explored several synthesis routes to obtain calcium silicates from different calcium-rich and silica-rich industrial residues. Larnite, wollastonite and calcium silicate chloride were successfully synthesised with moderate heat treatments below standard temperatures. These procedures help to not only conserve natural resources, but also to reduce the energy requirements and CO2 emissions. In addition, these silicates have been successfully tested as carbon dioxide sequesters, to enhance the viability of CO2 mineral sequestration technologies using calcium-rich industrial by-products as sequestration agents. Two different carbon sequestration experiments were performed under ambient conditions. Static experiments revealed carbonation efficiencies close to 100% and real-time resolved experiments characterised the dynamic behaviour and ability of these samples to reduce the CO2 concentration within a mixture of gases. The CO2 concentration was reduced up to 70%, with a carbon fixation dynamic ratio of 3.2 mg CO2 per g of sequestration agent and minute. Our results confirm the suitability of the proposed synthesis routes to synthesise different calcium silicates recycling industrial residues, being therefore energetically more efficient and environmentally friendly procedures for the cement industry. © The Author(s) 2014.

  15. Potential water yield reduction due to forestation across China

    Science.gov (United States)

    Ge Sun; Guoyi Zhou; Zhiqiang Zhang; Xiaohua Wei; Steven G. McNulty; James M. Vose

    2006-01-01

    It is widely recognized that vegetation restoration will have positive effects on watershed health by reducing soil erosion and non-point source pollution, enhancing terrestrial and aquatic habitat, and increasing ecosystem carbon sequestration. However, the hydrologic consequences of forestation on degraded lands are not well studied in the forest hydrology community...

  16. THE APPLICATION AND DEVELOPMENT OF APPROPRIATE TOOLS AND TECHNOLOGIES FOR COST-EFFECTIVE CARBON SEQUESTRATION

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Ellen Hawes; Zoe Kant; Miguel Calmon; Gilberto Tiepolo

    2002-09-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research projects is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: advanced videography testing; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  17. Carbon benefits from protected areas in the conterminous United States

    Science.gov (United States)

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2013-01-01

    Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land...

  18. Modelling the role of forests on water provision services: a hydro-economic valuation approach

    Science.gov (United States)

    Beguería, S.; Campos, P.

    2015-12-01

    Hydro-economic models that allow integrating the ecological, hydrological, infrastructure, economic and social aspects into a coherent, scientifically- informed framework constitute preferred tools for supporting decision making in the context of integrated water resources management. We present a case study of water regulation and provision services of forests in the Andalusia region of Spain. Our model computes the physical water flows and conducts an economic environmental income and asset valuation of forest surface and underground water yield. Based on available hydrologic and economic data, we develop a comprehensive water account for all the forest lands at the regional scale. This forest water environmental valuation is integrated within a much larger project aiming at providing a robust and easily replicable accounting tool to evaluate yearly the total income and capital of forests, encompassing all measurable sources of private and public incomes (timber and cork production, auto-consumption, recreational activities, biodiversity conservation, carbon sequestration, water production, etc.). We also force our simulation with future socio-economic scenarios to quantify the physical and economic efects of expected trends or simulated public and private policies on future water resources. Only a comprehensive integrated tool may serve as a basis for the development of integrated policies, such as those internationally agreed and recommended for the management of water resources.

  19. Conflict between conservation and development: cash forest encroachment in Asian elephant distributions.

    Science.gov (United States)

    Liu, Peng; Wen, Hui; Harich, Franziska K; He, Changhuan; Wang, Lanxin; Guo, Xianming; Zhao, Jianwei; Luo, Aidong; Yang, Hongpei; Sun, Xiao; Yu, Yang; Zheng, Shaobo; Guo, Jing; Li, Li; Zhang, Li

    2017-08-03

    Over the last 4 decades, China has undergone major economic development, resulting in considerable impacts on its wildlife populations and habitats. It is essential to quantify the conflict between development and conservation to assist with policy-making because forestry policies and market trends affected indirectly the distribution of Asian elephants. Here, we mapped the historical distribution of elephants versus human land use. Elephant distributions appear to occur in unbroken natural forests only. However, over the 40-year period, the distribution ranges have become smaller and fragmented, with natural forest area also declining by 16%. The monoculture of cash trees is encroaching on natural forests. Over the past 10 years, rubber plantations have become concentrated in the south, with extensive natural forests and scattered rubber farms being converted to tea plantations, due to changes in governmental policies and product prices. Through mapping the spatial changes in the distribution of rubber and tea plantations, our study is expected to help local managers to incorporate the needs of endangered elephants through creating space when planning plantations, especially in Xishuangbanna and the south part of Pu'er. In conclusion, restoring elephant habitat and establishing ecological corridors are critical for the survival of elephants in this region.

  20. Mixing carrots and sticks to conserve forests in the Brazilian Amazon: a spatial probabilistic modeling approach.

    Science.gov (United States)

    Börner, Jan; Marinho, Eduardo; Wunder, Sven

    2015-01-01

    Annual forest loss in the Brazilian Amazon had in 2012 declined to less than 5,000 sqkm, from over 27,000 in 2004. Mounting empirical evidence suggests that changes in Brazilian law enforcement strategy and the related governance system may account for a large share of the overall success in curbing deforestation rates. At the same time, Brazil is experimenting with alternative approaches to compensate farmers for conservation actions through economic incentives, such as payments for environmental services, at various administrative levels. We develop a spatially explicit simulation model for deforestation decisions in response to policy incentives and disincentives. The model builds on elements of optimal enforcement theory and introduces the notion of imperfect payment contract enforcement in the context of avoided deforestation. We implement the simulations using official deforestation statistics and data collected from field-based forest law enforcement operations in the Amazon region. We show that a large-scale integration of payments with the existing regulatory enforcement strategy involves a tradeoff between the cost-effectiveness of forest conservation and landholder incomes. Introducing payments as a complementary policy measure increases policy implementation cost, reduces income losses for those hit hardest by law enforcement, and can provide additional income to some land users. The magnitude of the tradeoff varies in space, depending on deforestation patterns, conservation opportunity and enforcement costs. Enforcement effectiveness becomes a key determinant of efficiency in the overall policy mix.

  1. Mixing Carrots and Sticks to Conserve Forests in the Brazilian Amazon: A Spatial Probabilistic Modeling Approach

    Science.gov (United States)

    Börner, Jan; Marinho, Eduardo; Wunder, Sven

    2015-01-01

    Annual forest loss in the Brazilian Amazon had in 2012 declined to less than 5,000 sqkm, from over 27,000 in 2004. Mounting empirical evidence suggests that changes in Brazilian law enforcement strategy and the related governance system may account for a large share of the overall success in curbing deforestation rates. At the same time, Brazil is experimenting with alternative approaches to compensate farmers for conservation actions through economic incentives, such as payments for environmental services, at various administrative levels. We develop a spatially explicit simulation model for deforestation decisions in response to policy incentives and disincentives. The model builds on elements of optimal enforcement theory and introduces the notion of imperfect payment contract enforcement in the context of avoided deforestation. We implement the simulations using official deforestation statistics and data collected from field-based forest law enforcement operations in the Amazon region. We show that a large-scale integration of payments with the existing regulatory enforcement strategy involves a tradeoff between the cost-effectiveness of forest conservation and landholder incomes. Introducing payments as a complementary policy measure increases policy implementation cost, reduces income losses for those hit hardest by law enforcement, and can provide additional income to some land users. The magnitude of the tradeoff varies in space, depending on deforestation patterns, conservation opportunity and enforcement costs. Enforcement effectiveness becomes a key determinant of efficiency in the overall policy mix. PMID:25650966

  2. Synergies for Improving Oil Palm Production and Forest Conservation in Floodplain Landscapes

    Science.gov (United States)

    Abram, Nicola K.; Xofis, Panteleimon; Tzanopoulos, Joseph; MacMillan, Douglas C.; Ancrenaz, Marc; Chung, Robin; Peter, Lucy; Ong, Robert; Lackman, Isabelle; Goossens, Benoit; Ambu, Laurentius; Knight, Andrew T.

    2014-01-01

    Lowland tropical forests are increasingly threatened with conversion to oil palm as global demand and high profit drives crop expansion throughout the world’s tropical regions. Yet, landscapes are not homogeneous and regional constraints dictate land suitability for this crop. We conducted a regional study to investigate spatial and economic components of forest conversion to oil palm within a tropical floodplain in the Lower Kinabatangan, Sabah, Malaysian Borneo. The Kinabatangan ecosystem harbours significant biodiversity with globally threatened species but has suffered forest loss and fragmentation. We mapped the oil palm and forested landscapes (using object-based-image analysis, classification and regression tree analysis and on-screen digitising of high-resolution imagery) and undertook economic modelling. Within the study region (520,269 ha), 250,617 ha is cultivated with oil palm with 77% having high Net-Present-Value (NPV) estimates ($413/ha− yr–$637/ha− yr); but 20.5% is under-producing. In fact 6.3% (15,810 ha) of oil palm is commercially redundant (with negative NPV of $-299/ha− yr-$-65/ha− yr) due to palm mortality from flood inundation. These areas would have been important riparian or flooded forest types. Moreover, 30,173 ha of unprotected forest remain and despite its value for connectivity and biodiversity 64% is allocated for future oil palm. However, we estimate that at minimum 54% of these forests are unsuitable for this crop due to inundation events. If conversion to oil palm occurs, we predict a further 16,207 ha will become commercially redundant. This means that over 32,000 ha of forest within the floodplain would have been converted for little or no financial gain yet with significant cost to the ecosystem. Our findings have globally relevant implications for similar floodplain landscapes undergoing forest transformation to agriculture such as oil palm. Understanding landscape level constraints to this crop, and transferring

  3. Quantifying the evidence for co-benefits between species conservation and climate change mitigation in giant panda habitats.

    Science.gov (United States)

    Li, Renqiang; Xu, Ming; Powers, Ryan; Zhao, Fen; Jetz, Walter; Wen, Hui; Sheng, Qingkai

    2017-10-05

    Conservationists strive for practical, cost-effective management solutions to forest-based species conservation and climate change mitigation. However, this is compromised by insufficient information about the effectiveness of protected areas in increasing carbon storage, and the co-benefits of species and carbon conservation remain poorly understood. Here, we present the first rigorous quantitative assessment of the roles of giant panda nature reserves (NRs) in carbon sequestration, and explore the co-benefits of habitat conservation and climate change mitigation. Results show that more than 90% of the studied panda NRs are effective in increasing carbon storage, with the mean biomass carbon density of the whole NRs exhibiting a 4.2% higher growth rate compared with lands not declared as NRs over the period 1988-2012, while this effectiveness in carbon storage masks important patterns of spatial heterogeneity across the giant panda habitats. Moreover, the significant associations have been identified between biomass carbon density and panda's habitat suitability in ~85% NRs and at the NR level. These findings suggest that the planning for carbon and species conservation co-benefits would enhance the greatest return on limited conservation investments, which is a critical need for the giant panda after its conservation status has been downgraded from "endangered" to "vulnerable".

  4. Characterizing fragmentation of the collective forests in southern China from multitemporal Landsat imagery: A case study from Kecheng district of Zhejiang province

    Science.gov (United States)

    Li, M.; Zhu, Z.; Vogelmann, James E.; Xu, D.; Wen, W.; Liu, A.

    2011-01-01

    Tropical and subtropical forests provide important ecosystem goods and services including carbon sequestration and biodiversity conservation. These forests are facing increasing socioeconomic pressures and are rapidly being degraded and fragmented. This analysis focuses on the rate of change and patterns of fragmentation in a collective forest area in Zhejiang province, China, during the time period 1988–2005. The research consisted of two parts. The first was the development of general land cover maps and the identification of land cover changes by interpreting Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) time series imagery. The second part involved the computation and analysis of forest fragmentation metrics. For this portion of the study, fragmentation statistics were analyzed, and images were developed to depict forest fragmentation patterns and trends. Results revealed that there was a net loss of 7.8% in forest coverage, dropping from 66.8% in 1988 to 59.0% in 2005, primarily caused by agricultural expansion and poor forest management practices. An acceleration of forest fragmentation was also witnessed during the time intervals, which was evidenced by a decreasing trend in interior forest (57.2% in 1988, 55.0% in 1996 and 54.8% in 2005 respectively) coupled with the scales of the selected geospatial metrics. Continued forest loss and fragmentation are closely correlated with the existing political, educational, institutional and economic processes of contemporary China. To unlock the developmental potentials of the collective forests and to effectively mitigate the rate of forest loss and fragmentation, reforms of forest tenure and ecological immigration practices are recognized as a prospective alternative. The produced fragmentation maps further illustrates the importance of assessing landscape change history, especially the spatiotemporal patterns of forest fragments, when developing landscape level plans for biodiversity

  5. Integrated mangrove-shrimp cultivation: Potential for blue carbon sequestration.

    Science.gov (United States)

    Ahmed, Nesar; Thompson, Shirley; Glaser, Marion

    2018-05-01

    Globally, shrimp farming has had devastating effects on mangrove forests. However, mangroves are the most carbon-rich forests, with blue carbon (i.e., carbon in coastal and marine ecosystems) emissions seriously augmented due to devastating effects on mangrove forests. Nevertheless, integrated mangrove-shrimp cultivation has emerged as a part of the potential solution to blue carbon emissions. Integrated mangrove-shrimp farming is also known as organic aquaculture if deforested mangrove area does not exceed 50% of the total farm area. Mangrove destruction is not permitted in organic aquaculture and the former mangrove area in parts of the shrimp farm shall be reforested to at least 50% during a period of maximum 5 years according to Naturland organic aquaculture standards. This article reviews integrated mangrove-shrimp cultivation that can help to sequester blue carbon through mangrove restoration, which can be an option for climate change mitigation. However, the adoption of integrated mangrove-shrimp cultivation could face several challenges that need to be addressed in order to realize substantial benefits from blue carbon sequestration.

  6. The cost of carbon abatement through community forest management in Nepal Himalaya

    NARCIS (Netherlands)

    Karky, B.S.; Skutsch, Margaret

    2010-01-01

    This paper estimates the economic returns to carbon abatement through biological sequestration in community managed forest under future REDD policy, and compares these for three possible management scenarios. For the estimation, the research relies on forest inventory data together with other

  7. Knowing and doing: research leading to action in the conservation of forest genetic diversity of Patagonian temperate forests.

    Science.gov (United States)

    Gallo, Leonardo A; Marchelli, Paula; Chauchard, Luis; Peñalba, Marcelo Gonzalez

    2009-08-01

    Researchers dealing with conservation subjects usually do not put the results of their work into practice, even when the primary purpose of their research is the preservation of biodiversity. In the South American temperate forests we identified an area with the highest genetic diversity in Argentina of Nothofagus nervosa, one of the most relevant southern beech species. Based on the information of our scientific study and our recommendations, the authorities of Lanin National Park changed the protection status of this area to avoid logging. The new forestry management plans include consideration of "high genetic diversity" in decisions on where logging will be allowed. Results of our initial genetic study induced the analysis of biodiversity at the species and ecosystems levels, which yielded results similar to our genetic studies. A strong connection among researchers and managers from the onset of our study and the awareness of the former about the importance of the implementation of the research work were key to bridging the gap between conservation research and conservation practice.

  8. European genetic conservation strategies of forest trees in the context of currently running climate change

    NARCIS (Netherlands)

    Vries, de S.M.G.

    2015-01-01

    The diversity of forests, at the level of species and at the level of genetic diversity within species, is an important resource for Europe. Over the past several decades countries have made efforts to conserve the diversity of tree species and genetic diversity. However, there was no harmonised

  9. Where is the carbon? Carbon sequestration potential from private forestland in the Southern United States

    Science.gov (United States)

    Christopher S. Galik; Brian C. Murray; D. Evan Mercer

    2013-01-01

    Uncertainty surrounding the future supply of timber in the southern United States prompted the question, “Where is all the wood?” (Cubbage et al. 1995). We ask a similar question about the potential of southern forests to mitigate greenhouse gas (GHG) emissions by sequestering carbon. Because significant carbon sequestration potential occurs on individual nonindustrial...

  10. Social multicriteria evaluation and its contribution to the conservation of forests

    International Nuclear Information System (INIS)

    Vargas lsaza, Olga Lucia

    2005-01-01

    The proposal of the ministry of environment, housing, and territorial development of Colombia on how forestry zoning plans (FZPs) should be conducted by the autonomous regional corporations is analyzed; from which it con be of firmed that with the directives of the FZPs, it is not possible to obtain a sustainable zoning of forests and thereby achieve their conservation. Social Multicriteria Evaluation (SME), a technique that combines institutional analysis and multicriteria evaluation, allows overcoming this paw, it us therefore recommended that SMEs be conducted instead of FZPs in areas requiring zoning

  11. Caatinga Revisited: Ecology and Conservation of an Important Seasonal Dry Forest

    Science.gov (United States)

    de Albuquerque, Ulysses Paulino; de Lima Araújo, Elcida; El-Deir, Ana Carla Asfora; de Lima, André Luiz Alves; Souto, Antonio; Bezerra, Bruna Martins; Ferraz, Elba Maria Nogueira; Maria Xavier Freire, Eliza; Sampaio, Everardo Valadares de Sá Barreto; Las-Casas, Flor Maria Guedes; de Moura, Geraldo Jorge Barbosa; Pereira, Glauco Alves; de Melo, Joabe Gomes; Alves Ramos, Marcelo; Rodal, Maria Jesus Nogueira; Schiel, Nicola; de Lyra-Neves, Rachel Maria; Alves, Rômulo Romeu Nóbrega; de Azevedo-Júnior, Severino Mendes; Telino Júnior, Wallace Rodrigues; Severi, William

    2012-01-01

    Besides its extreme climate conditions, the Caatinga (a type of tropical seasonal forest) hosts an impressive faunal and floristic biodiversity. In the last 50 years there has been a considerable increase in the number of studies in the area. Here we aimed to present a review of these studies, focusing on four main fields: vertebrate ecology, plant ecology, human ecology, and ethnobiology. Furthermore, we identify directions for future research. We hope that the present paper will help defining actions and strategies for the conservation of the biological diversity of the Caatinga. PMID:22919296

  12. Caatinga Revisited: Ecology and Conservation of an Important Seasonal Dry Forest

    Directory of Open Access Journals (Sweden)

    Ulysses Paulino de Albuquerque

    2012-01-01

    Full Text Available Besides its extreme climate conditions, the Caatinga (a type of tropical seasonal forest hosts an impressive faunal and floristic biodiversity. In the last 50 years there has been a considerable increase in the number of studies in the area. Here we aimed to present a review of these studies, focusing on four main fields: vertebrate ecology, plant ecology, human ecology, and ethnobiology. Furthermore, we identify directions for future research. We hope that the present paper will help defining actions and strategies for the conservation of the biological diversity of the Caatinga.

  13. Importance of woodlots to local communities, small scale entrepreneurs and indigenous forest conservation – A case study

    CSIR Research Space (South Africa)

    Ham, C

    2000-01-01

    Full Text Available forestry, South Africa The Importance of Woodlots to Local Communities, Small-scale Entrepreneurs and Indigenous Forest Conservation A case study Cori Ham ii The Importance of Woodlots to Local Communities, Small Scale Entrepreneurs... by the financial support of the UK Department for International Development and the European Commission iii Citation: Ham, C. 2000. The importance of woodlots to local communities, small scale entrepreneurs and indigenous forest conservation– A case study...

  14. Design of forest bird monitoring for strategic habitat conservation on Kaua'i Island, Hawai'i

    Science.gov (United States)

    Camp, Richard J.; Gorresen, P. Marcos

    2011-01-01

    This report was commissioned by the U.S. Fish and Wildlife Service (USFWS). The purpose was to develop a monitoring program for Kaua`i forest birds in the USFWS Strategic Habitat Conservation and adaptive management frameworks. Monitoring within those frameworks is a tool to assess resource responses to management and conservation actions, and through an iterative learning process improve our understanding of species recovery, effective management, and knowledge gaps. This report provides only the monitoring component of both frameworks, and we apply the monitoring program to the East Alaka`i Protective Fence Project.

  15. Hydro-economic modeling of the role of forests on water resources production in Andalusia, Spain

    Science.gov (United States)

    Beguería, Santiago; Serrano-Notivoli, Roberto; Álvarez-Palomino, Alejandro; Campos, Pablo

    2014-05-01

    The development of more refined information tools is a pre-requisite for supporting decision making in the context of integrated water resources management. Among these tools, hydro-economic models are favoured because they allow integrating the ecological, hydrological, infrastructure and economic aspects into a coherent, scientifically-informed framework. We present a case study that assesses physically the water resources of forest lands of the Andalusia region in Spain and conducts an economic environmental income and asset valuation of the forest surface water yield. We show how, based on available hydrologic and economic data, we can develop a comprehensive water account for all the forest lands at the regional scale. This forest water environmental valuation is part of the larger RECAMAN project, which aims at providing a robust and easily replicable accounting tool to evaluate yearly the total income an capital generated by the forest land, encompassing all measurable sources of private and public incomes (timber and cork production, auto-consumption, recreational activities, biodiversity conservation, carbon sequestration, water production, etc.). Only a comprehensive integrated tool such as the one built within the RECAMAN project may serve as a basis for the development of integrated policies such as those internationally agreed and recommended for the management of water resources.

  16. Abiotic and biotic drivers of biomass change in a Neotropical forest

    NARCIS (Netherlands)

    Sande, van der M.T.; Pena Claros, M.; Ascarrunz, Nataly; Arets, E.J.M.M.; Licona, J.C.; Toledo, Marisol; Poorter, L.

    2017-01-01

    Summary
    1. Tropical fores ts play an important role in the global carbon cycle, but the drivers of net forest biomass change (i.e. net carbon sequestration) are poorly understood. Here, we evaluate how abiotic factors (soil co nditions and disturbance) and biotic factors (forest structure,

  17. Essays on the economics of forestry-based carbon mitigation

    NARCIS (Netherlands)

    Benítez-Ponce, P.C.

    2005-01-01

    Keywords:climate change, carbon costs, afforestation, risk, secondary forests, conservation payments, ecosystem services

    This thesis is a collection of articles that deal with the economics of carbon sequestration in forests. It pays

  18. Carbon sinks: An analysis of the economic potential in a mangrove forest of the Colombian Pacific

    International Nuclear Information System (INIS)

    Lozano Torres, Yancilly

    2007-01-01

    In the present article the author examines the problem of climate change from the perspective offered by the so called flexibility mechanisms introduced by the Kyoto Protocol. The pollution reduction at targeted levels is expected to be achieved at minimum economic costs which are socially acceptable in an exchange market for CO 2 sinks. With this system many developing countries are to participate with the promise of an eco-systemic functionality of natural forests as sources of CO 2 sequestration. It is shown that the potential benefits derived from the forest conservation market as CO 2 sinks is not consistent with social costs or opportunity costs incurred in by many communities, as it is the case of the Colombian south pacific region. In this imbalance, an important role is played by transaction costs which in fact determine the part of the pie corresponding to the community and the bureaucracy.

  19. A statistical power analysis of woody carbon flux from forest inventory data

    Science.gov (United States)

    James A. Westfall; Christopher W. Woodall; Mark A. Hatfield

    2013-01-01

    At a national scale, the carbon (C) balance of numerous forest ecosystem C pools can be monitored using a stock change approach based on national forest inventory data. Given the potential influence of disturbance events and/or climate change processes, the statistical detection of changes in forest C stocks is paramount to maintaining the net sequestration status of...

  20. Soil organic carbon sequestration and tillage systems in Mediterranean environments

    Science.gov (United States)

    Francaviglia, Rosa; Di Bene, Claudia; Marchetti, Alessandro; Farina, Roberta

    2016-04-01

    Soil carbon sequestration is of special interest in Mediterranean areas, where rainfed cropping systems are prevalent, inputs of organic matter to soils are low and mostly rely on crop residues, while losses are high due to climatic and anthropic factors such as intensive and non-conservative farming practices. The adoption of reduced or no tillage systems, characterized by a lower soil disturbance in comparison with conventional tillage, has proved to be positively effective on soil organic carbon (SOC) conservation and other physical and chemical processes, parameters or functions, e.g. erosion, compaction, ion retention and exchange, buffering capacity, water retention and aggregate stability. Moreover, soil biological and biochemical processes are usually improved by the reduction of tillage intensity. The work deals with some results available in the scientific literature, and related to field experiment on arable crops performed in Italy, Greece, Morocco and Spain. Data were organized in a dataset containing the main environmental parameters (altitude, temperature, rainfall), soil tillage system information (conventional, minimum and no-tillage), soil parameters (bulk density, pH, particle size distribution and texture), crop type, rotation, management and length of the experiment in years, initial SOCi and final SOCf stocks. Sampling sites are located between 33° 00' and 43° 32' latitude N, 2-860 m a.s.l., with mean annual temperature and rainfall in the range 10.9-19.6° C and 355-900 mm. SOC data, expressed in t C ha-1, have been evaluated both in terms of Carbon Sequestration Rate, given by [(SOCf-SOCi)/length in years], and as percentage change in comparison with the initial value [(SOCf-SOCi)/SOCi*100]. Data variability due to the different environmental, soil and crop management conditions that influence SOC sequestration and losses will be examined.

  1. Global patterns of aboveground carbon stock and sequestration in mangroves

    Directory of Open Access Journals (Sweden)

    GUSTAVO C.D. ESTRADA

    Full Text Available ABSTRACT In order to contribute to understand the factors that control the provisioning of the ecosystem service of carbon storage by mangroves, data on carbon stock and sequestration in the aboveground biomass (AGB from 73 articles were averaged and tested for the dependence on latitude, climatic parameters, physiographic types and age. Global means of carbon stock (78.0 ± 64.5 tC.ha-1 and sequestration (2.9 ± 2.2 tC.ha-1.yr-1 showed that mangroves are among the forest ecosystems with greater capacity of carbon storage in AGB per area. On the global scale, carbon stock increases toward the equator (R²=0.22 and is dependent on 13 climatic parameters, which can be integrated in the following predictive equation: Carbon Stock in AGB = -16.342 + (8.341 x Isothermality + (0.021 x Annual Precipitation [R²=0.34; p < 0.05]. It was shown that almost 70% of carbon stock variability is explained by age. Carbon stock and sequestration also vary according to physiographic types, indicating the importance of hydroperiod and edaphic parameters to the local variability of carbon stock. By demonstrating the contribution of local and regional-global factors to carbon stock, this study provides information to the forecast of the effects of future climate changes and local anthropogenic forcings on this ecosystem service.

  2. An Innovative Method for Evaluating Strategic Goals in a Public Agency: Conservation Leadership in the U.S. Forest Service

    Science.gov (United States)

    David N. Bengston; David P. Fan

    1999-01-01

    This article presents an innovative methodology for evaluating strategic planning goals in a public agency. Computer-coded content analysis was used to evaluate attitudes expressed in about 28,000 on-line news media stories about the U.S. Department of Agriculture Forest Service and its strategic goal of conservation leadership. Three dimensions of conservation...

  3. Identifying conservation and restoration priorities for saproxylic and old-growth forest species: a case study in Switzerland.

    Science.gov (United States)

    Lachat, Thibault; Bütler, Rita

    2009-07-01

    Saproxylic (dead-wood-associated) and old-growth species are among the most threatened species in European forest ecosystems, as they are susceptible to intensive forest management. Identifying areas with particular relevant features of biodiversity is of prime concern when developing species conservation and habitat restoration strategies and in optimizing resource investments. We present an approach to identify regional conservation and restoration priorities even if knowledge on species distribution is weak, such as for saproxylic and old-growth species in Switzerland. Habitat suitability maps were modeled for an expert-based selection of 55 focal species, using an ecological niche factor analyses (ENFA). All the maps were then overlaid, in order to identify potential species' hotspots for different species groups of the 55 focal species (e.g., birds, fungi, red-listed species). We found that hotspots for various species groups did not correspond. Our results indicate that an approach based on "richness hotspots" may fail to conserve specific species groups. We hence recommend defining a biodiversity conservation strategy prior to implementing conservation/restoration efforts in specific regions. The conservation priority setting of the five biogeographical regions in Switzerland, however, did not differ when different hotspot definitions were applied. This observation emphasizes that the chosen method is robust. Since the ENFA needs only presence data, this species prediction method seems to be useful for any situation where the species distribution is poorly known and/or absence data are lacking. In order to identify priorities for either conservation or restoration efforts, we recommend a method based on presence data only, because absence data may reflect factors unrelated to species presence.

  4. Sustaining Jamaica's forests: The protected areas resource conservation project

    Science.gov (United States)

    Berke, Philip R.; Beatley, Timothy

    1995-07-01

    This study examines Jamaica's attempt to protect a tropical forest reserve. The biophysical setting, and the types and magnitude of forest development pressures are reviewed. Next, Jamaica's approach to developing new land-use strategies and compatible environmental protection and economic development programs are examined. Finally, the practical and theoretical implications by which institutions can be designed to encourage planning for sustainable development are reviewed. The implications suggest how to provide an appropriate mix of cooperation and market competition, by which people acting in their own interests accomplish socially equitable economic development, while protecting the environment for the benefit of future generations. The experience illustrates that effective long-term protection of natural areas requires the building of local relationships and support, the development of local economic activities supportive of conservation, the defining of clear boundaries, and significant monitoring and enforcement. Long-term protection of the Blue and John Crow mountains, and other important natural areas of Jamaica, will also require the development of a workable and enforceable system of land-use planning for the island, and adjustments to the economic incentive structure so that sustainable, nonextractive uses of natural capital are placed on equal footing with other economic uses (e.g., coffee production).

  5. The Indian Sundarban Mangrove Forests: History, Utilization, Conservation Strategies and Local Perception

    Directory of Open Access Journals (Sweden)

    Aditya Ghosh

    2015-05-01

    Full Text Available Covering approximately 10,000 km2 the Sundarbans in the Northern Bay of Bengal is the largest contiguous mangrove forest on earth. Mangroves forests are highly productive and diverse ecosystems, providing a wide range of direct ecosystem services for resident populations. In addition, mangroves function as a buffer against frequently occurring cyclones; helping to protect local settlements including the two most populous cities of the world, Kolkata and Dhaka, against their worst effects. While large tracts of the Indian Sundarbans were cleared, drained and reclaimed for cultivation during the British colonial era, the remaining parts have been under various protection regimes since the 1970s, primarily to protect the remaining population of Bengal tigers (Panthera tigris ssp. tigris. In view of the importance of such forests, now severely threatened worldwide, we trace the areal change that the Indian Sundarbans have undergone over the last two-and-a-half centuries. We apply a multi-temporal and multi-scale approach based on historical maps and remote sensing data to detect changes in mangrove cover. While the mangroves’ areal extent has not changed much in the recent past, forest health and structure have. These changes result from direct human interference, upstream development, extreme weather events and the slow onset of climate change effects. Moreover, we consider the role of different management strategies affecting mangrove conservation and their intersection with local livelihoods.

  6. Vegetation ecology and carbon sequestration potential of shrubs in tropics of Chhattisgarh, India.

    Science.gov (United States)

    Jhariya, Manoj Kumar

    2017-09-25

    Tropical forests are well known to have great species diversity and contribute substantial share in terrestrial carbon (C) stocks worldwide. Shrubs are long-neglected life form in the forest ecosystem, playing many roles in the forest and human life. Shrub has great impact on vegetation attributes which in turn modify the C storage and capture. In the present investigation, an attempt has been made to explore the dynamics of shrub species in four fire regimes, viz. high, medium, low, and no fire zones of Bhoramdeo Wildlife Sanctuary of Kawardha forest division (Chhattisgarh), India. The variations in structure, diversity, biomass, productivity, and C sequestration potential in all the sites were quantified. The density and basal area of shrub varied from 1250 to 3750 individuals ha -1 and 2.79 to 4.92 m 2  ha -1 , respectively. The diversity indices showed that the value of Shannon index was highest in medium fire zone (3.77) followed by high, low, and no fire zones as 3.25, 3.12, and 2.32, respectively. The value of Simpson's index or concentration of dominance (Cd) ranged from 0.08 to 0.20, species richness from 0.56 to 1.58, equitability from 1.41 to 1.44, and beta diversity from 1.50 to 4.20, respectively. The total biomass and C storage ranged from 6.82 to 15.71 and from 2.93 to 6.76 t ha -1 , respectively. The shrub density, importance value index (IVI), and abundance to frequency ratio (A/F) significantly correlated between high fire and medium fire zone. The basal area was found to be significantly positively correlated between high fire and medium fire, and low and no fire zones, respectively. Two-way cluster analysis reflected various patterns of clustering due to influence of the forest fire which showed that some species have distant clustering while some have smaller cluster. Principal component analysis (PCA) reflects variable scenario with respect to shrub layer. Ventilago calyculata and Zizyphus rotundifolia showed higher correlation between

  7. City Life in the Midst of the Forest: a Punan Hunter-Gatherer's Vision of Conservation and Development

    Directory of Open Access Journals (Sweden)

    Patrice Levang

    2007-06-01

    Full Text Available The Punan Tubu, a group of hunter-gatherers in East-Kalimantan, Indonesia, are used to illustrate the very real trade-offs that are made between conservation and development. This group has undergone various forms of resettlement in the 20th century, to the point that some are now settled close to the city of Malinau whereas others remain in remote locations in the upper Tubu catchment. This study is based on several years of ethnographic and household analysis. The Punan clearly favor both conservation and development. In the city, the Punan benefit from all positive effects of development. Child and infant mortality rates are very low, and illiteracy has been eradicated among the younger generation. However, the Punan complain that nothing in town is free. The older generation, in particular, resents the loss of Punan culture. Because of frustration and unemployment, young people often succumb to alcoholism and drug addiction. The Punan do not want to choose between conservation and development, between forest life and city life. They want to benefit from the advantages of both locations, to enjoy both free forest products and the positive aspects of modern life, to go wild boar hunting in the morning and watch television in the evening. In short, they want to enjoy city life in the midst of the forest. The same kind of contradiction has led to identity problems. They want to uphold the traditional life of the hunter-gatherer, but at the same time they reject marginalization and seek integration into the larger society. In short, they want integration without loss of identity. The settlement of Sule-Pipa illustrates how some groups have dealt with the contradiction more successfully. Thanks to good organization and charitable donations, they have secured educational facilities and basic health care, and marketing costs are reduced by collectively organized road and river transportation. The economy of the village is thriving, mainly because of

  8. Implications of climate change for Pacific Northwest forest management

    International Nuclear Information System (INIS)

    Wall, G.

    1991-01-01

    A Canada/USA symposium was held to identify potential consequences of global climate change to Pacific Northwest forests; to identify the future role and relative contribution of those forests in the balance of carbon, moisture, and energy exchange of the atmosphere; and to develop recommendations for Pacific Northwest forest management strategies and policy options for responding to global climate change. Papers were presented on such topics as regional climatic change, forest responses and processes, public policy on forests and climatic change, sequestration of atmospheric carbon, forest management, and forest adaptation to climatic change. Separate abstracts have been prepared for 14 papers from this symposium

  9. Carbon sequestration in managed temperate coniferous forests under climate change

    Science.gov (United States)

    Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.

    2016-03-01

    Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.

  10. Conservation Tillage on the Loess Plateau, China: Food security, Yes; Carbon sequestration, No?

    Science.gov (United States)

    Kuhn, Nikolaus; Hu, Yaxian; Xiao, Liangang; Greenwood, Phil; Bloemertz, Lena

    2015-04-01

    of NT in increasing SOC stocks to reduce net CO2 emissions. 2) In each soil layer, the total SOC stocks also declined over time. Such a decreasing trend suggests that the SOC sink was approaching its maximum capacity. This implies that the overall potential of NT in improving SOC stocks is apt to be over-estimated, if annual increases derived from short-term observation are linearly extrapolated to a long-term estimation. 3) Yields of NT increased evidently by 11.07% compared to CT. In particular, during years with precipitation food production falling below minimum thresholds to meet subsistence requirements, thereby increasing resilience to famine. Overall, conservation tillage (no-till) has great potential in stabilizing crop yield and thus ensuring local subsistence requirements on the China Loess Plateau. However, the potential of NT to sequestrate SOC is limited than often reported and has maximum capacity, and thus cannot be linearly extrapolated to estimate its effects on mitigating climate change.

  11. Technical Report on Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Zoe Kant; Patrick Gonzalez

    2009-01-07

    The Nature Conservancy participated in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project was 'Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration'. The objectives of the project were to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Final Technical Report discusses the results of the six tasks that The Nature Conservancy undertook to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between July 1st 2001 and July 10th 2008. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool. The project occurred in two phases. The first was a focused exploration of specific carbon measurement and monitoring methodologies and pre-selected carbon sequestration opportunities. The second was a more systematic and comprehensive approach to compare various competing measurement and monitoring methodologies, and assessment of a variety of carbon sequestration opportunities in order to find those that are the lowest cost with the greatest combined carbon and other

  12. Applying a framework for landscape planning under climate change for the conservation of biodiversity in the Finnish boreal forest.

    Science.gov (United States)

    Mazziotta, Adriano; Triviño, Maria; Tikkanen, Olli-Pekka; Kouki, Jari; Strandman, Harri; Mönkkönen, Mikko

    2015-02-01

    Conservation strategies are often established without consideration of the impact of climate change. However, this impact is expected to threaten species and ecosystem persistence and to have dramatic effects towards the end of the 21st century. Landscape suitability for species under climate change is determined by several interacting factors including dispersal and human land use. Designing effective conservation strategies at regional scales to improve landscape suitability requires measuring the vulnerabilities of specific regions to climate change and determining their conservation capacities. Although methods for defining vulnerability categories are available, methods for doing this in a systematic, cost-effective way have not been identified. Here, we use an ecosystem model to define the potential resilience of the Finnish forest landscape by relating its current conservation capacity to its vulnerability to climate change. In applying this framework, we take into account the responses to climate change of a broad range of red-listed species with different niche requirements. This framework allowed us to identify four categories in which representation in the landscape varies among three IPCC emission scenarios (B1, low; A1B, intermediate; A2, high emissions): (i) susceptible (B1 = 24.7%, A1B = 26.4%, A2 = 26.2%), the most intact forest landscapes vulnerable to climate change, requiring management for heterogeneity and resilience; (ii) resilient (B1 = 2.2%, A1B = 0.5%, A2 = 0.6%), intact areas with low vulnerability that represent potential climate refugia and require conservation capacity maintenance; (iii) resistant (B1 = 6.7%, A1B = 0.8%, A2 = 1.1%), landscapes with low current conservation capacity and low vulnerability that are suitable for restoration projects; (iv) sensitive (B1 = 66.4%, A1B = 72.3%, A2 = 72.0%), low conservation capacity landscapes that are vulnerable and for which alternative conservation measures are required depending on the

  13. [Mammals of Zoque Forest, Mexico: richness, use and conservation].

    Science.gov (United States)

    Lira-Torres, Iván; Galindo-Leal, Carlos; Briones-Salas, Miguel

    2012-06-01

    Zoque Forest is one of the richest and threatened regions in Southeastern Mexico, and for which few studies on mammal biology and use are available. Here we analyzed the conservation status of mammalian species according to Mexican and international laws, with an updated checklist of mammals in this forest, and some information on their use by some rural communities. Basic information was obtained from national and international collections and publications. A total of 42 fieldtrips, that followed conventional techniques, were conducted from 2003 through 2010, and some questionnaires to local hunters were applied. The mammalian fauna found in the area was composed of 149 species belonging to 99 genera and 30 families; these results support that the Zoque Forest is the richest in the number of mammalian species in Mexico. A total of 35 species were considered at risk by the Mexican National Law NOM-059-SEMARNAT-2010, and 21 species were found to be registered in the IUCN Red List or in CITES. Of the 40 species included in any of the lists, only the Baird's tapir, jaguar and white-lipped peccary were included in all three lists and 14 species were shared by the two of them. The main uses of mammals in order of importance are: 1) bushmeat, 2) pets, 3) skins, and 4) traditional medicine. Subsistence hunting and trade are unofficially allowed for farmers in this area. As for now, the region has healthy populations of a large number of mammals even though they have been used by local residents. However, since a considerable number of these species are listed under some criterion of threat, local authorities are called for more control.

  14. [Remote sensing estimation of urban forest carbon stocks based on QuickBird images].

    Science.gov (United States)

    Xu, Li-Hua; Zhang, Jie-Cun; Huang, Bo; Wang, Huan-Huan; Yue, Wen-Ze

    2014-10-01

    Urban forest is one of the positive factors that increase urban carbon sequestration, which makes great contribution to the global carbon cycle. Based on the high spatial resolution imagery of QuickBird in the study area within the ring road in Yiwu, Zhejiang, the forests in the area were divided into four types, i. e., park-forest, shelter-forest, company-forest and others. With the carbon stock from sample plot as dependent variable, at the significance level of 0.01, the stepwise linear regression method was used to select independent variables from 50 factors such as band grayscale values, vegetation index, texture information and so on. Finally, the remote sensing based forest carbon stock estimation models for the four types of forest were established. The estimation accuracies for all the models were around 70%, with the total carbon reserve of each forest type in the area being estimated as 3623. 80, 5245.78, 5284.84, 5343.65 t, respectively. From the carbon density map, it was found that the carbon reserves were mainly in the range of 25-35 t · hm(-2). In the future, urban forest planners could further improve the ability of forest carbon sequestration through afforestation and interplanting of trees and low shrubs.

  15. Forest bird monitoring protocol for strategic habitat conservation and endangered species management on O'ahu Forest National Wildlife Refuge, Island of O'ahu, Hawai'i

    Science.gov (United States)

    Camp, Richard J.; Gorresen, P. Marcos; Banko, Paul C.

    2011-01-01

    This report describes the results of a pilot forest bird survey and a consequent forest bird monitoring protocol that was developed for the O'ahu Forest National Wildlife Refuge, O'ahu Island, Hawai'i. The pilot survey was conducted to inform aspects of the monitoring protocol and to provide a baseline with which to compare future surveys on the Refuge. The protocol was developed in an adaptive management framework to track bird distribution and abundance and to meet the strategic habitat conservation requirements of the Refuge. Funding for this research was provided through a Science Support Partnership grant sponsored jointly by the U.S. Geological Survey (USGS) and the U.S. Fish and Wildlife Service (USFWS).

  16. The Significance of Forests and Algae in CO2 Balance: A Hungarian Case Study

    Directory of Open Access Journals (Sweden)

    Attila Bai

    2017-05-01

    Full Text Available This study presents the sequestration and emissions of forests and algae related to CO2 while providing a comparison to other biomass sources (arable crops, short rotation coppices. The goal of the paper is to analyze the impact of the current CO2 balance of forests and the future prospects for algae. Our calculations are based on data, not only from the literature but, in the case of algae, from our own previous experimental work. It was concluded that the CO2 sequestration and natural gas saving of forests is typically 3.78 times higher than the emissions resulting from the production technology and from the burning process. The economic and environmental protection-related efficiency operate in opposite directions. The CO2 sequestration ability of algae can primarily be utilized when connected to power plants. The optimal solution could be algae production integrated with biogas power plants, since plant sizes are smaller and algae may play a role, not only in the elimination of CO2 emissions and the utilization of heat but also in wastewater purification.

  17. Distribution and Conservation of Davilla (Dilleniaceae in Brazilian Atlantic Forest Using Ecological Niche Modeling

    Directory of Open Access Journals (Sweden)

    Ismael Martins Pereira

    2014-01-01

    Full Text Available We have modeled the ecological niche for 12 plant species belonging to the genus Davilla (Dilleniaceae which occur in the Atlantic Forest of Brazil. This group includes endemic species lianas threatened by extinction and is therefore a useful indicator for forest areas requiring conservation. The aims are to compare the distribution and richness of species within the protected areas, assessing the degree of protection and gap analysis of reserves for this group. We used the Maxent algorithm with environmental and occurrence data, and produced geographic distribution maps. The results show that high species richness occurs in forest and coastal forest of Espírito Santo to Bahia states. The endemic species comprise D. flexuosa, D. macrocarpa, D. flexuosa, D. grandifolia, and D. sessilifolia. In the Atlantic Forest of southeastern Brazil, the following endemic species occur: D. tintinnabulata and D. glaziovii, with this latter species being included in the “red list” due habitat loss and predatory extractivism. The indicators of species richness in the coastal region of Bahia correspond with floristic inventories that point to this area having a high biodiversity. Although this region has several protected areas, there are gaps in reserves, which, combined with anthropogenic threats and fragmentation, have caused several problems for biodiversity.

  18. Increased topsoil carbon stock across China's forests.

    Science.gov (United States)

    Yang, Yuanhe; Li, Pin; Ding, Jinzhi; Zhao, Xia; Ma, Wenhong; Ji, Chengjun; Fang, Jingyun

    2014-08-01

    Biomass carbon accumulation in forest ecosystems is a widespread phenomenon at both regional and global scales. However, as coupled carbon-climate models predicted, a positive feedback could be triggered if accelerated soil carbon decomposition offsets enhanced vegetation growth under a warming climate. It is thus crucial to reveal whether and how soil carbon stock in forest ecosystems has changed over recent decades. However, large-scale changes in soil carbon stock across forest ecosystems have not yet been carefully examined at both regional and global scales, which have been widely perceived as a big bottleneck in untangling carbon-climate feedback. Using newly developed database and sophisticated data mining approach, here we evaluated temporal changes in topsoil carbon stock across major forest ecosystem in China and analysed potential drivers in soil carbon dynamics over broad geographical scale. Our results indicated that topsoil carbon stock increased significantly within all of five major forest types during the period of 1980s-2000s, with an overall rate of 20.0 g C m(-2) yr(-1) (95% confidence interval, 14.1-25.5). The magnitude of soil carbon accumulation across coniferous forests and coniferous/broadleaved mixed forests exhibited meaningful increases with both mean annual temperature and precipitation. Moreover, soil carbon dynamics across these forest ecosystems were positively associated with clay content, with a larger amount of SOC accumulation occurring in fine-textured soils. In contrast, changes in soil carbon stock across broadleaved forests were insensitive to either climatic or edaphic variables. Overall, these results suggest that soil carbon accumulation does not counteract vegetation carbon sequestration across China's forest ecosystems. The combination of soil carbon accumulation and vegetation carbon sequestration triggers a negative feedback to climate warming, rather than a positive feedback predicted by coupled carbon-climate models

  19. Assessing Habitat Quality of Forest-Corridors through NDVI Analysis in Dry Tropical Forests of South India: Implications for Conservation

    Directory of Open Access Journals (Sweden)

    Paramesha Mallegowda

    2015-02-01

    Full Text Available Most wildlife habitats and migratory routes are extremely threatened due to increasing demands on forestland and forest resources by burgeoning human population. Corridor landscape in Biligiri Rangaswamy Temple Tiger Reserve (BRT is one among them, subjected to various anthropogenic pressures. Human habitation, intensive farming, coffee plantations, ill-planned infrastructure developments and rapid spreading of invasive plant species Lantana camara, pose a serious threat to wildlife habitat and their migration. Aim of this work is to create detailed NDVI based land change maps and to use them to identify time-series trends in greening and browning in forest corridors in the study area and to identify the drivers that are influencing the observed changes. Over the four decades in BRT, NDVI increased in the core area of the forest and reduced in the fringe areas. The change analysis between 1973 and 2014 shows significant changes; browning due to anthropogenic activities as well as natural processes and greening due to Lantana spread. This indicates that the change processes are complex, involving multiple driving factors, such as socio-economic changes, high population growth, historical forest management practices and policies. Our study suggests that the use of updated and accurate change detection maps will be useful in taking appropriate site specific action-oriented conservation decisions to restore and manage the degraded critical wildlife corridors in human-dominated landscape.

  20. Forest Carbon Stocks in Woody Plants of Arba Minch Ground Water ...

    African Journals Online (AJOL)

    The role of forests in mitigating the effect of climate change depends on the carbon sequestration potential and management. This study was conducted to estimate the carbon stock and its variation along environmental gradients in Arba Minch Ground Water Forest. The data was collected from the field by measuring plants ...

  1. Impacts of nonnative invasive species on US forests and recommendations for policy and management

    Science.gov (United States)

    W. Keith Moser; Edward L. Barnard; Ronald F. Billings; Susan J. Crocker; Andrew N. Gray; George G. Ice; Mee-Sook Kim; Richard Reid; Sue U. Rodman; William H. McWilliams

    2009-01-01

    The introduction of nonnative invasive species (NNIS) into the United States has had tremendous impacts on the nation's commercial and urban forest resources. Of principal concern are the effects of NNIS on forest composition, structure, function, productivity, and patterns of carbon sequestration. In 2006, the Society of American Foresters commissioned an ad hoc...

  2. Forest carbon trading : legal, policy, ecological and aboriginal issues

    International Nuclear Information System (INIS)

    Elgie, S.

    2005-01-01

    Canada's forest ecosystems store 88 billion tonnes of carbon, with trees alone storing 13 billion tonnes, twice the global annual carbon emissions. Carbon trading could affect forest management. Certain types of forest carbon project will offer cost-effective carbon sequestration options. This paper addresses current concerns about forest carbon trading such as phony carbon gains, biodiversity impact and increased fossil fuel emissions. Statistics were presented with information on global carbon stocks. The Kyoto Protocol requires that Canada must count all changes in forest carbon stocks resulting from afforestation, reforestation or deforestation, and that Canada has the option of counting carbon stock changes from forest management. The decision must be made by 2006, and considerations are whether to present projected net source or sink, or whether to count current commercially managed areas or all timber productive areas. An outline of federal constitutional authority power regarding Kyoto was presented, including limits and risks of trade and treaty powers. The economics of forest carbon were outlined with reference to increasing forest carbon storage. A two-pronged approach was advised, with avoided logging and plantation and intensive management securing carbon and timber benefits. Examples of pre-Kyoto pilots were presented, including the SaskPower project, the Little Red River Cree project and the Labrador Innu project. The disadvantages of offset trading were presented. It was concluded that forest carbon markets are part of a larger vision for sustainable development in Canada's north, especially for aboriginal peoples, and may indicate a growing market for ecological services. Constitutional limits to federal power to regulate carbon trading are not insurmountable, but require care. Ownerships of forest carbon rights raises important policy and legal issues, including aboriginal right, efficiency and equity. An estimated cost of forest carbon projects

  3. BIG SKY CARBON SEQUESTRATION PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Susan M. Capalbo

    2004-10-31

    The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. During the third quarter, planning efforts are underway for the next Partnership meeting which will showcase the architecture of the GIS framework and initial results for sources and sinks, discuss the methods and analysis underway for assessing geological and terrestrial sequestration potentials. The meeting will conclude with an ASME workshop. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification

  4. Carbon debt and carbon sequestration parity in forest bioenergy production

    Science.gov (United States)

    S.R. Mitchell; M.E. Harmon; K.B. O' Connell

    2012-01-01

    The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and...

  5. PRIORITY AREAS FOR FOREST CONSERVATION, AIMING AT THE MAINTENANCE OF WATER RESOURCES, THROUGH THE MULTICRITERIA EVALUATION1

    Directory of Open Access Journals (Sweden)

    Victor A M Silva

    2017-11-01

    Full Text Available Abstract Replacing the original land cover by other land uses, especially when it is associated with inadequate management practices, can cause changes in runoff and rainwater infiltration. This can result in above normal levels of soil erosion and sediment-carrying to the rivers and streams. The original land cover conservation in the watersheds is, therefore, essential for the maintenance of its water resources. In this context, the main objective of this study was to prioritize areas for forest conservation in two watersheds, aiming at maintaining the water availability, in terms of quantity and quality, for the public supply. The watersheds were selected considering their regional importance and because they are similar in terms of land use / land cover. The study was developed in the Multicriteria Evaluation (MCE context, which permits the integration of different landscape characteristics (i.e. factors, in order to obtain a solution for the decision-making process. The following criteria were selected by considering the expert's opinions: slope, flow accumulation, aspect, and land use / land cover. Their relative importance (i.e. factor weight was defined through the Pairwise Comparison Method. The criteria maps units were normalized by a common scale and then aggregated through an MCE method named Weighted Linear Combination (WLC. Pearson correlation was used to evaluate the criteria contribution on the final map. The watershed 1 was classified in approximately 14% of its area as very high priority; 27% as high; 19% as medium; 21% as low; and 18% as very low. The watershed 2 obtained, respectively, 17%; 29%; 17%; 21%; e 17%. We conclude that the WLC method supports the definition of priority areas for forest conservation in the watersheds, in order to have an appropriate design of actions for forest conservation.

  6. Four hurdles for conservation on private land: the case of the golden lion tamarin, Atlantic Forest, Brazil.

    Directory of Open Access Journals (Sweden)

    Ralf Christopher Buckley

    2015-08-01

    Full Text Available Many threatened species worldwide rely on patches of remnant vegetation in private landholdings. To establish private reserves that contribute effectively to conservation involves a wide range of complex and interacting ecological, legal, social and financial factors. These can be seen as a series of successive hurdles, each with multiple bars, which must all be surmounted. The golden lion tamarin, Leontopithecus rosalia, is restricted to the Atlantic Forest biome in the state of Rio de Janeiro, Brazil. This forest is largely cleared. There are many small remnant patches on private lands, able to support tamarins. Local NGO’s have successfully used limited funds to contribute to tamarin conservation in a highly cost effective way. We examined the mechanisms by analysing documents and interviewing landholders and other stakeholders. We found that the local NGOs successfully identified landholdings where ecological, legal, social and some financial hurdles had already been crossed, and helped landholders over the final financial hurdle by funding critical cost components. This cost <5% of the price of outright land purchase. This approach is scaleable for golden lion tamarin elsewhere within the Atlantic Forest biome, and applicable for other species and ecosystems worldwide.

  7. Balancing development and conservation? An assessment of livelihood and environmental outcomes of nontimber forest product trade in Asia, Africa, and Latin America

    NARCIS (Netherlands)

    Kusters, K.; Achdiawan, R.; Belcher, B.; Ruiz Pérez, M.; Hussain, A.

    2008-01-01

    This chapter addresses the question, to what extent and under which conditions nontimber forest product (NTFP) trade leads to both livelihood improvement and forest conservation. We based the analysis on a standardized expert-judgment assessment of the livelihood and environmental outcomes of 55

  8. Mixed method approaches to evaluate conservation impact

    DEFF Research Database (Denmark)

    Lund, Jens Friis; Burgess, Neil D.; Chamshama, Shabani A.O.

    2015-01-01

    Nearly 10% of the world's total forest area is formally owned by communities and indigenous groups, yet knowledge of the effects of decentralized forest management approaches on conservation (and livelihood) impacts remains elusive. In this paper, the conservation impact of decentralized forest m...

  9. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Ellen Hawes; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2006-09-30

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st and July 30th 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  10. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Zoe Kant; Sarah Woodhouse Murdock; Neil Sampson; Gilberto Tiepolo; Tim Pearson; Sarah Walker; Miguel Calmon

    2006-01-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  11. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Jenny Henman; Sarah Woodhouse Murdock; Neil Sampson; Tim Pearson; Sarah Walker; Zoe Kant; Miguel Calmon

    2006-04-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2006. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  12. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Brent Sohngen; Neil Sampson; Mark Anderson; Miguel Calmon; Sean Grimland; Zoe Kant; Dan Morse; Sarah Woodhouse Murdock; Arlene Olivero; Tim Pearson; Sarah Walker; Jon Winsten; Chris Zganjar

    2007-03-31

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between January 1st and March 31st 2007. The specific tasks discussed include: Task 1--carbon inventory advancements; Task 2--emerging technologies for remote sensing of terrestrial carbon; Task 3--baseline method development; Task 4--third-party technical advisory panel meetings; Task 5--new project feasibility studies; and Task 6--development of new project software screening tool.

  13. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Patrick Gonzalez; Sandra Brown; Sarah Woodhouse Murdock; Jenny Henman; Zoe Kant; Gilberto Tiepolo; Tim Pearson; Neil Sampson; Miguel Calmon

    2005-10-01

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas reductions. The research described in this report occurred between April 1st , 2005 and June 30th, 2005. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: emerging technologies for remote sensing of terrestrial carbon; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  14. Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bill Stanley; Sandra Brown; Patrick Gonzalez; Zoe Kant; Gilberto Tiepolo; Wilber Sabido; Ellen Hawes; Jenny Henman; Miguel Calmon; Michael Ebinger

    2004-07-10

    The Nature Conservancy is participating in a Cooperative Agreement with the Department of Energy (DOE) National Energy Technology Laboratory (NETL) to explore the compatibility of carbon sequestration in terrestrial ecosystems and the conservation of biodiversity. The title of the research project is ''Application and Development of Appropriate Tools and Technologies for Cost-Effective Carbon Sequestration''. The objectives of the project are to: (1) improve carbon offset estimates produced in both the planning and implementation phases of projects; (2) build valid and standardized approaches to estimate project carbon benefits at a reasonable cost; and (3) lay the groundwork for implementing cost-effective projects, providing new testing ground for biodiversity protection and restoration projects that store additional atmospheric carbon. This Technical Progress Report discusses preliminary results of the six specific tasks that The Nature Conservancy is undertaking to answer research needs while facilitating the development of real projects with measurable greenhouse gas impacts. The research described in this report occurred between July 1, 2002 and June 30, 2003. The specific tasks discussed include: Task 1: carbon inventory advancements; Task 2: remote sensing for carbon analysis; Task 3: baseline method development; Task 4: third-party technical advisory panel meetings; Task 5: new project feasibility studies; and Task 6: development of new project software screening tool.

  15. Sources and sinks of diversification and conservation priorities for the Mexican tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Judith X Becerra

    Full Text Available Elucidating the geographical history of diversification is critical for inferring where future diversification may occur and thus could be a valuable aid in determining conservation priorities. However, it has been difficult to recognize areas with a higher likelihood of promoting diversification. We reconstructed centres of origin of lineages and identified areas in the Mexican tropical dry forest that have been important centres of diversification (sources and areas where species are maintained but where diversification is less likely to occur (diversity sinks. We used a molecular phylogeny of the genus Bursera, a dominant member of the forest, along with information on current species distributions. Results indicate that vast areas of the forest have historically functioned as diversity sinks, generating few or no extant Bursera lineages. Only a few areas have functioned as major engines of diversification. Long-term preservation of biodiversity may be promoted by incorporation of such knowledge in decision-making.

  16. Effects of national forest-management regimes on unprotected forests of the Himalaya.

    Science.gov (United States)

    Brandt, Jodi S; Allendorf, Teri; Radeloff, Volker; Brooks, Jeremy

    2017-12-01

    Globally, deforestation continues, and although protected areas effectively protect forests, the majority of forests are not in protected areas. Thus, how effective are different management regimes to avoid deforestation in non-protected forests? We sought to assess the effectiveness of different national forest-management regimes to safeguard forests outside protected areas. We compared 2000-2014 deforestation rates across the temperate forests of 5 countries in the Himalaya (Bhutan, Nepal, China, India, and Myanmar) of which 13% are protected. We reviewed the literature to characterize forest management regimes in each country and conducted a quasi-experimental analysis to measure differences in deforestation of unprotected forests among countries and states in India. Countries varied in both overarching forest-management goals and specific tenure arrangements and policies for unprotected forests, from policies emphasizing economic development to those focused on forest conservation. Deforestation rates differed up to 1.4% between countries, even after accounting for local determinants of deforestation, such as human population density, market access, and topography. The highest deforestation rates were associated with forest policies aimed at maximizing profits and unstable tenure regimes. Deforestation in national forest-management regimes that emphasized conservation and community management were relatively low. In India results were consistent with the national-level results. We interpreted our results in the context of the broader literature on decentralized, community-based natural resource management, and our findings emphasize that the type and quality of community-based forestry programs and the degree to which they are oriented toward sustainable use rather than economic development are important for forest protection. Our cross-national results are consistent with results from site- and regional-scale studies that show forest-management regimes that

  17. Growing the urban forest: tree performance in response to biotic and abiotic land management

    Science.gov (United States)

    Emily E. Oldfield; Alexander J. Felson; D. S. Novem Auyeung; Thomas W. Crowther; Nancy F. Sonti; Yoshiki Harada; Daniel S. Maynard; Noah W. Sokol; Mark S. Ashton; Robert J. Warren; Richard A. Hallett; Mark A. Bradford

    2015-01-01

    Forests are vital components of the urban landscape because they provide ecosystem services such as carbon sequestration, storm-water mitigation, and air-quality improvement. To enhance these services, cities are investing in programs to create urban forests. A major unknown, however, is whether planted trees will grow into the mature, closed-canopied forest on which...

  18. The role of boreal forests and forestry in the global carbon budget : a synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Fyles, I.H.; Shaw, C.H.; Apps, M.J.; Karjalainen, T.; Stocks, B.J.; Running, S.W.; Kurz, W.A.; Weyerhaeuser, G.Jr.; Jarvis, P.G.

    2002-10-01

    This paper provides a synthesis of all papers presented at the conference on the role of boreal forests in the global carbon budget. The scientific community is recognizing the critical links between boreal forest ecosystems, carbon dynamics and global climate change. This paper addresses the five main topics discussed at the conference including: (1) carbon stocks and fluxes, (2) the effects of natural disturbances on carbon dynamics, (3) effects of management practices on carbon dynamics, (4) afforestation and carbon sequestration, and (5) effects of climate change and elevated carbon dioxide concentration on carbon dynamics. Large-scale model simulations suggest that increased global temperatures will result in increased net ecosystem productivity (NEP). Several model simulations also indicate that net primary productivity (NPP) will increase. While most forest stands are currently carbon sinks, disturbances such as fire, insects and tree harvesting make forests susceptible to becoming a source of carbon. In contrast, some studies suggest that climate change will cause shifting vegetation patterns, increased soil carbon and higher forest productivity that may result in higher sequestration of carbon in the boreal forest. 84 refs.

  19. Toward optimal soil organic carbon sequestration with effects of agricultural management practices and climate change in Tai-Lake paddy soils of China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liming; Zhuang, Qianlai; He, Yujie; Liu, Yaling; Yu, Dongsheng; Zhao, Quanying; Shi, Xuezheng; Xing, Shihe; Wang, Guangxiang

    2016-08-01

    Understanding the impacts of climate change and agricultural management practices on soil organic carbon (SOC) dynamics is critical for implementing optimal farming practices and maintaining agricultural productivity. This study examines the influence of climate and agricultural management on carbon sequestration potentials in Tai-Lake Paddy soils of China using the DeNitrification-DeComposition (DNDC) model, with a high-resolution soil database (1:50,000). Model simulations considered the effects of no tillage, increasing manure application, increasing/decreasing of N-fertilizer application and crop residues, water management, and climatic shifts in temperature and precipitation. We found that the carbon sequestration potential for the 2.32 Mha paddy soils of the Tai-Lake region varied from 4.71 to 44.31 Tg C during the period 2001-2019, with an annual average SOC changes ranged from 107 to 1005 kg C ha-1 yr-1. The sequestration potential significantly increased with increasing application of N-fertilizer, manure, conservation tillage, and crop residues. To increase soil C sequestration in this region, no-tillage and increasing of crop residue return to soils and manure application are recommended. Our analysis of climate impacts on SOC sequestration suggests that the rice paddies in this region will continue to be a carbon sink under future warming conditions. In addition, because the region’s annual precipitation (>1200 mm) is high, we also recommend reducing irrigation water use for these rice paddies to conserve freshwater in the Tai-Lake region.

  20. Balancing Methane Emissions and Carbon Sequestration in Tropical/Subtropical Coastal Wetlands: A Review

    Science.gov (United States)

    Mitsch, W. J.; Schafer, K. V.; Cabezas, A.; Bernal, B.

    2016-02-01

    Wetlands are estimated to emit about 20 to 25 percent of current global CH4 emissions, or about 120 to 180 Tg-CH4 yr-1. Thus, in climate change discussions concerning wetlands, these "natural emissions" often receive the most attention, often overshadowing the more important ecosystem services that wetlands provide, including carbon sequestration. While methane emissions from coastal wetlands have generally been described as small due to competing biogeochemical cycles, disturbance of coastal wetlands, e.g., the introduction of excessive freshwater fluxes or substrate disturbance, can lead to much higher methane emission rates. Carbon sequestration is a more positive carbon story about wetlands and coastal wetlands in particular. The rates of carbon sequestration in tropical/subtropical coastal wetlands, mainly mangroves, are in the range of 100 to 200 g-C m-2 yr-1, two to ten times higher rates than in the more frequently studied northern peatlands. This function of coastal wetlands has significant international support now for mangrove conservation and it is referred to in the literature and popular press as blue carbon. This presentation will summarize what we know about methane emissions and carbon sequestration in tropical/subtropical coastal wetlands, how these rates compare with those in non-tropical and/or inland wetlands, and a demonstration of two or three models that compare methane fluxes with carbon dioxide sequestration to determine if wetlands are net sinks of radiative forcing. The presentation will also present a global model of carbon with an emphasis on wetlands.

  1. Carbon sequestration index as a determinant for climate change mitigation: Case study of Bintan Island

    Science.gov (United States)

    Wahyudi, A.'an J.; Afdal; Prayudha, Bayu; Dharmawan, I. W. E.; Irawan, Andri; Abimanyu, Haznan; Meirinawati, Hanny; Surinati, Dewi; Syukri, Agus F.; Yuliana, Chitra I.; Yuniati, Putri I.

    2018-02-01

    The increase of the anthropogenic carbon dioxide (CO2) affects the global carbon cycle altering the atmospheric system and initiates the climate changes. There are two ways to mitigate these changes, by maintaining the greenhouse gasses below the carbon budget and by conserving the marine and terrestrial vegetation for carbon sequestration. These two strategies become variable to the carbon sequestration index (CSI) that represents the potential of a region in carbon sequestration, according to its natural capacity. As a study case, we conducted carbon sequestration research in Bintan region (Bintan Island and its surrounding), Riau Archipelago province. This research was aimed to assess the CSI and its possibility for climate change mitigation. We observed carbon sequestration of seagrass meadows and mangrove, greenhouse gas (CO2) emission (correlated to population growth, the increase of vehicles), and CSI. Bintan region has 125,849.9 ha of vegetation area and 14,879.6 ha of terrestrial and marine vegetation area, respectively. Both vegetation areas are able to sequester 0.262 Tg C yr-1 in total and marine vegetation contributes about 77.1%. Total CO2 emission in Bintan region is up to 0.273 Tg C yr-1, produced by transportation, industry and land use sectors. Therefore, CSI of the Bintan region is 0.98, which is above the global average (i.e. 0.58). This value demonstrates that the degree of sequestration is comparable to the total carbon emission. This result suggests that Bintan’s vegetation has high potential for reducing greenhouse gas effects.

  2. Conservation implications of forest changes caused by bark beetle management in the Šumava National Park

    Czech Academy of Sciences Publication Activity Database

    Zýval, V.; Křenová, Zdeňka; Kindlmann, Pavel

    2016-01-01

    Roč. 204, part B (2016), s. 394-402 ISSN 0006-3207 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : Natura 2000 * Forest ecosystem management * Natural disturbances * Bark beetles * National park conservation policy Subject RIV: EH - Ecology, Behaviour Impact factor: 4.022, year: 2016

  3. Regional impacts of a program for private forest carbon offset sales

    Science.gov (United States)

    Darius M. Adams; Ralph Alig; Greg Latta; Eric M. White

    2011-01-01

    Policymakers are examining wide range of alternatives for climate change mitigation, including carbon offset sales programs, to enhance sequestration in the forest sector. Under an offset sales program, on-the-ground forestry could change as result of both afforestation and modifications in the management of existing forests. These effects could vary markedly by region...

  4. The importance of a Biosphere Reserve of Atlantic Forest for the conservation of stream fauna

    Directory of Open Access Journals (Sweden)

    CE. Yoshida

    Full Text Available Preservation of terrestrial fauna and flora has been the main reason for the settlement of most protected areas in the past 30 years, but although those areas may include water bodies, this does not necessarily mean that the biodiversity of freshwater environments are also protected. In the present study, the fauna inventory of eight streams (1st, 2nd, 4th and 5th orders of three microbasins of Japi Mountain, a Biosphere Reserve of Atlantic Forest recognised by UNESCO since 1994, located in São Paulo state, southeast of Brazil, was conducted. The hypothesis of this study is that the conservation of this area is important for the maintenance of the aquatic biodiversity of this biome, and so, this world hotspot deserves priority conservation actions. From 2005 to 2007, benthic macroinvertebrates, fishes and, eventually, anuran amphibians were sampled in these streams. The results showed that Japi Mountain contributes to the conservation of 138 taxonomic units of the aquatic biota and covers a rich and representative biodiversity of freshwater fauna of the world (0.2%, Neotropical region (0.9%, Brazil (2.4% and São Paulo state (17.9%. The studied streams in the Environmental Protection Area help protect endangered taxa like the fishes Neoplecostomus paranensis and Pareiorhina cf rudolphi, and shelter freshwater invertebrates and fishes whose distribution is restricted to the Brazilian territory. Japi Mountain is also an important haven of species that was missing there like the frog species Vitreorana eurygnatha. Thus, this species inventory emphasises the importance of conservation actions of the freshwater environments of this Biosphere Reserve of Atlantic Forest.

  5. The importance of a Biosphere Reserve of Atlantic Forest for the conservation of stream fauna.

    Science.gov (United States)

    Yoshida, C E; Uieda, V S

    2014-05-01

    Preservation of terrestrial fauna and flora has been the main reason for the settlement of most protected areas in the past 30 years, but although those areas may include water bodies, this does not necessarily mean that the biodiversity of freshwater environments are also protected. In the present study, the fauna inventory of eight streams (1st, 2nd, 4th and 5th orders) of three microbasins of Japi Mountain, a Biosphere Reserve of Atlantic Forest recognised by UNESCO since 1994, located in São Paulo state, southeast of Brazil, was conducted. The hypothesis of this study is that the conservation of this area is important for the maintenance of the aquatic biodiversity of this biome, and so, this world hotspot deserves priority conservation actions. From 2005 to 2007, benthic macroinvertebrates, fishes and, eventually, anuran amphibians were sampled in these streams. The results showed that Japi Mountain contributes to the conservation of 138 taxonomic units of the aquatic biota and covers a rich and representative biodiversity of freshwater fauna of the world (0.2%), Neotropical region (0.9%), Brazil (2.4%) and São Paulo state (17.9%). The studied streams in the Environmental Protection Area help protect endangered taxa like the fishes Neoplecostomus paranensis and Pareiorhina cf rudolphi, and shelter freshwater invertebrates and fishes whose distribution is restricted to the Brazilian territory. Japi Mountain is also an important haven of species that was missing there like the frog species Vitreorana eurygnatha. Thus, this species inventory emphasises the importance of conservation actions of the freshwater environments of this Biosphere Reserve of Atlantic Forest.

  6. Carbon emissions and sequestration in forests: Case studies from seven developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, W.; Sathaye, J. (eds.) (Lawrence Berkeley Lab., CA (United States)); Cerutti, O.M.; Ordonez, M.J.; Minjarez, R.D. (Universidad Nacional Autonoma de Mexico, Mexico City (Mexico) Centro de Ecologia)

    1992-08-01

    Estimates of carbon emissions from deforestation in Mexico are derived for the year 1985 and for two contrasting scenarios in 2025. Carbon emissions are calculated through an in-depth review of the existing information on forest cover deforestation mtes and area affected by forest fires as well as on forests' carbon-related biological characteristics. The analysis covers both tropical -- evergreen and deciduous -- and temperate -- coniferous and broadleaf -- closed forests. Emissions from the forest sector are also compared to those from energy and industry. Different policy options for promoting the sustainable management of forest resources in the country are discussed. The analysis indicates that approximately 804,000 hectares per year of closed forests suffered from major perturbations in the mid 1980's in Mexico, leading to an annual deforestation mte of 668,000 hectares. Seventy five percent of total deforestation is concentrated in tropical forests. The resulting annual carbon balance is estimated in 53.4 million tons per year, and the net committed emissions in 45.5 million tons or 41% and 38%, respectively, of the country's total for 1985--87. The annual carbon balance from the forest sector in 2025 is expected to decline to 16.5 million tons in the low emissions scenario and to 22.9 million tons in the high emissions scenario. Because of the large uncertainties in some of the primary sources of information, the stated figures should be taken as preliminary estimates.

  7. Butterfly community assemblages in relation to human disturbance in a tropical upland forest in Ghana, and implications for conservation

    Directory of Open Access Journals (Sweden)

    Patrick Addo-Fordjour

    2015-04-01

    Full Text Available The present study determined butterfly diversity, species composition and abundance in different forests of varying human disturbance intensities in the Atewa Range Forest Reserve, Ghana (i.e. non-disturbed, moderately disturbed and heavily disturbed forests. Vegetation characteristics and butterflies were sampled within ten 50 m × 50 m plots in each forest type. The study revealed that butterfly Shannon diversity index was similar in the non-disturbed and moderately disturbed forests although it was significantly lower in the heavily disturbed forest. Butterfly abundance differed significantly among all the forest types. Significant relationships were detected between some vegetation characteristics, and butterfly diversity and abundance (P<0.001. Using Non-metric Multidimensional Scaling (NMDS and cluster analysis, three main butterfly assemblages were identified on the basis of species composition, with each one in a particular forest type. Furthermore, butterfly species composition differed significantly among the forest types (ANOSIM; P<0.0001. The intermediate form of human disturbance in the moderately disturbed forest maintained butterfly diversity, suggesting that management efforts aimed at butterfly conservation should be geared towards protecting forests from excessive human disturbance; selective logging is recommended.

  8. Carbon footprint of cartons in Europe - Carbon Footprint methodology and biogenic carbon sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Elin; Karlsson, Per-Erik; Hallberg, Lisa; Jelse, Kristian

    2010-05-15

    A methodology for carbon sequestration in forests used for carton production has been developed and applied. The average Carbon Footprint of converted cartons sold in Europe has been calculated and summarised. A methodology for a EU27 scenario based assessment of end of life treatment has been developed and applied. The average Carbon Footprint represents the total Greenhouse Gas emissions from one average tonne of virgin based fibres and recycled fibres produced, converted and printed in Europe

  9. 75 FR 52546 - Hakalau Forest National Wildlife Refuge, Hawai`i County, HI; Comprehensive Conservation Plan and...

    Science.gov (United States)

    2010-08-26

    ...] Hakalau Forest National Wildlife Refuge, Hawai`i County, HI; Comprehensive Conservation Plan and...; Hilo, HI 96720. Alternatively, you may fax comments to the refuge at (808) 443-2304, or e-mail them to... attend two open house meetings. The meetings were held March 3 and 4, 2009, in Hilo, HI, and Captain Cook...

  10. Sequestration Options for the West Coast States

    Energy Technology Data Exchange (ETDEWEB)

    Myer, Larry

    2006-04-30

    -sink matching was implemented and preliminary marginal cost curves developed, which showed that 20, 40, or 80 Mega tonnes (Mt) of CO{sub 2} per year could be sequestered in California at a cost of $31/tonne (t), $35/t, or $50/t, respectively. Phase I also addressed key issues affecting deployment of CCS technologies, including storage-site monitoring, injection regulations, and health and environmental risks. A framework for screening and ranking candidate sites for geologic CO{sub 2} storage on the basis of HSE risk was developed. A webbased, state-by-state compilation of current regulations for injection wells, and permits/contracts for land use changes, was developed, and modeling studies were carried out to assess the application of a number of different geophysical techniques for monitoring geologic sequestration. Public outreach activities resulted in heightened awareness of sequestration among state, community and industry leaders in the Region. Assessment of the changes in carbon stocks in agricultural lands showed that Washington, Oregon and Arizona were CO{sub 2} sources for the period from 1987 to 1997. Over the same period, forest carbon stocks decreased in Washington, but increased in Oregon and Arizona. Results of the terrestrial supply curve analyses showed that afforestation of rangelands and crop lands offer major sequestration opportunities; at a price of $20 per t CO{sub 2}, more than 1,233 MMT could be sequestered over 40-years in Washington and more than 1,813 MMT could be sequestered in Oregon.

  11. Forecasting Vulnerability to Drought-related Mortality in Western US Forests

    Science.gov (United States)

    Buotte, P.; Law, B. E.; Hudiburg, T. W.

    2017-12-01

    Climate-driven tree mortality has been documented across the globe, and continued future mortality is expected. Such mortality could pose threats to ecosystem services, including carbon sequestration. Therefore, forecasting future mortality is critical. Ecosystem process models can be a tool for forecasting forest vulnerability to drought. We modified the Community Land Model (CLM4.5) to forecast forest vulnerability to drought-related mortality in the western US. We increased the ecological resolution by parameterizing CLM4.5 to recognize 14 different forest types common to the region. We used published physiological traits and tuned CLM4.5 to match present day above ground carbon stocks. We incorporated the influence of drought stress through species- or genus-specific controls on stomatal conductance given soil moisture and increased rates of leaf shed during prolonged periods of low soil moisture. We ran CLM4.5 at a 1/24 degree spatial resolution in offline mode using climate forcing data. We compare forest growth and carbon sequestration metrics (e.g. chronic reduction of GPP below its potential) between historical and future time periods to determine relevant metrics of vulnerability to drought-related mortality. Using the robust metrics, we will forecast and map future forest vulnerability to drought-related mortality given a range of climate scenarios.

  12. Policy challenges and approaches for the conservation of mangrove forests in Southeast Asia.

    Science.gov (United States)

    Friess, Daniel A; Thompson, Benjamin S; Brown, Ben; Amir, A Aldrie; Cameron, Clint; Koldewey, Heather J; Sasmito, Sigit D; Sidik, Frida

    2016-10-01

    Many drivers of mangrove forest loss operate over large scales and are most effectively addressed by policy interventions. However, conflicting or unclear policy objectives exist at multiple tiers of government, resulting in contradictory management decisions. To address this, we considered four approaches that are being used increasingly or could be deployed in Southeast Asia to ensure sustainable livelihoods and biodiversity conservation. First, a stronger incorporation of mangroves into marine protected areas (that currently focus largely on reefs and fisheries) could resolve some policy conflicts and ensure that mangroves do not fall through a policy gap. Second, examples of community and government comanagement exist, but achieving comanagement at scale will be important in reconciling stakeholders and addressing conflicting policy objectives. Third, private-sector initiatives could protect mangroves through existing and novel mechanisms in degraded areas and areas under future threat. Finally, payments for ecosystem services (PES) hold great promise for mangrove conservation, with carbon PES schemes (known as blue carbon) attracting attention. Although barriers remain to the implementation of PES, the potential to implement them at multiple scales exists. Closing the gap between mangrove conservation policies and action is crucial to the improved protection and management of this imperiled coastal ecosystem and to the livelihoods that depend on them. © 2016 Society for Conservation Biology.

  13. Do forests have a say in global carbon markets for climate stabilization policy?

    Energy Technology Data Exchange (ETDEWEB)

    Tavoni, M.; Bosetti, V. [Fondazione Eni Enrico Mattei, FEEM (Italy); Sohngen, B. [Ohio State Univ., Dept. of Agr., Env., and Dev. Economics (United States)

    2007-05-15

    While carbon sequestration was included in the Kyoto Protocol, its potential scope as a mitigation activity has been highly debated in subsequent negotiations. Notwithstanding the widespread research suggesting that biological sequestration of carbon can play an important role for reducing greenhouse gas emissions, the nations in the Kyoto Protocol have so far only haltingly incorporated forestry measures, for a variety of reasons. One concern revolved around the validity of measuring and monitoring land-based activities to prove that they provided additional carbon storage, as for example error bounds for measuring and monitoring carbon in forests are fairly large. A second reason for the setbacks to forest sequestration regarded whether carbon sequestration would reduce carbon prices and consequently the quantity of abatement provided by the energy sector. Only the energy sector, after all, can ensure permanent reductions in CO{sub 2} emissions. This concern implies that forest carbon sequestration could be large enough to influence carbon prices in a global carbon market. Clearly, if prices are lower the deployment of low carbon measures and technologies could be delayed, for example by reducing incentives for technological evolution. Yet, enriching the mitigation portfolio with forestry could bring a significant contribution. Global policies meant to stabilize greenhouse gas concentrations in the future will arguably require a vast bundle of measures to meet ambitious targets. The first set of concerns has been widely addressed in a range of publications, including those of the Intergovernmental Panel on Climate Change. Remarkably less attention has been devoted to the second set of concerns. In this article we try to fill the gap by analyzing the impact biological carbon sequestration has on a policy to stabilize carbon emissions. In doing so we are able to evaluate a potentially attractive mitigation option like carbon sinks accounting for the influence the

  14. Forest biodiversity, carbon and other ecosystem services: relationships and impacts of deforestation and forest degradation

    Science.gov (United States)

    Ian D. Thompson; Joice Ferreira; Toby Gardner; Manuel Guariguata; Lian Pin Koh; Kimiko Okabe; Yude Pan; Christine B. Schmitt; Jason Tylianakis; Jos Barlow; Valerie Kapos; Werner A. Kurz; John A. Parrotta; Mark D. Spalding; Nathalie van Vliet

    2012-01-01

    REDD+ actions should be based on the best science and on the understanding that forests can provide more than a repository for carbon but also offer a wide range of services beneficial to people. Biodiversity underpins many ecosystem services, one of which is carbon sequestration, and individual species’ functional traits play an important role in determining...

  15. The role of carbon sequestration and the tonne-year approach in fulfilling the objective of climate convention

    International Nuclear Information System (INIS)

    Korhonen, Riitta; Pingoud, Kim; Savolainen, Ilkka; Matthews, Robert

    2002-01-01

    Carbon can be sequestered from the atmosphere to forests in order to lower the atmospheric carbon dioxide concentration. Tonne-years of sequestered carbon have been suggested to be used as a measure of global warming impact for these projects of finite lifetimes. It is illustrated here by simplified example cases that the objective of the stabilisation of the atmospheric greenhouse gas concentrations expressed in the UN Climate convention and the tonne-year approach can be in contradiction. Tonne-years generated by the project can indicate that carbon sequestration helps in the mitigation of climate change even when the impact of the project on the CO 2 concentration is that concentration increases. Hence, the use of the tonne-years might waste resources of fulfilling the objective of the convention. The studied example cases are closely related to the IPCC estimates on global forestation potentials by 2050. It is also illustrated that the use of bioenergy from the reforested areas to replace fossil fuels can in the long term contribute more effectively to the control of carbon dioxide concentrations than permanent sequestration of carbon to forests. However, the estimated benefits depend on the time frame considered, whether we are interested in the decadal scale of controlling of the rate of climate change or in the centennial scale of controlling or halting the climate change

  16. Tamm Review: Sequestration of carbon from coarse woody debris in forest soils

    NARCIS (Netherlands)

    Magnússon, R.Í.; Tietema, A.; Cornelissen, J.H.C.; Hefting, M.M.; Kalbitz, K.

    2016-01-01

    Worldwide, forests have absorbed around 30% of global anthropogenic emissions of carbon dioxide (CO2) annually, thereby acting as important carbon (C) sinks. It is proposed that leaving large fragments of dead wood, coarse woody debris (CWD), in forest ecosystems may contribute to the forest C sink

  17. Soil carbon sequestration due to post-Soviet cropland abandonment: estimates from a large-scale soil organic carbon field inventory.

    Science.gov (United States)

    Wertebach, Tim-Martin; Hölzel, Norbert; Kämpf, Immo; Yurtaev, Andrey; Tupitsin, Sergey; Kiehl, Kathrin; Kamp, Johannes; Kleinebecker, Till

    2017-09-01

    The break-up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large-scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub-Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land-use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land-use type had an effect on carbon accumulation in the topsoil (0-5 cm), no independent land-use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha -1  yr -1 (1-20 years old, 0-5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1-10 years old, 1.04 Mg C ha -1  yr -1 ) compared to earlier abandoned crop fields (11-20 years old, 0.26 Mg C ha -1  yr -1 ). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model-based continent-wide SOC prediction. © 2017 John Wiley & Sons Ltd.

  18. Succession of ephemeral secondary forests and their limited role for the conservation of floristic diversity in a human-modified tropical landscape.

    Directory of Open Access Journals (Sweden)

    Michiel van Breugel

    Full Text Available Both local- and landscape-scale processes drive succession of secondary forests in human-modified tropical landscapes. Nonetheless, until recently successional changes in composition and diversity have been predominantly studied at the patch level. Here, we used a unique dataset with 45 randomly selected sites across a mixed-use tropical landscape in central Panama to study forest succession simultaneously on local and landscape scales and across both life stages (seedling, sapling, juvenile and adult trees and life forms (shrubs, trees, lianas, and palms. To understand the potential of these secondary forests to conserve tree species diversity, we also evaluated the diversity of species that can persist as viable metapopulations in a dynamic patchwork of short-lived successional forests, using different assumptions about the average relative size at reproductive maturity. We found a deterministic shift in the diversity and composition of the local plant communities as well as the metacommunity, driven by variation in the rate at which species recruited into and disappeared from the secondary forests across the landscape. Our results indicate that dispersal limitation and the successional niche operate simultaneously and shape successional dynamics of the metacommunity of these early secondary forests. A high diversity of plant species across the metacommunity of early secondary forests shows a potential for restoration of diverse forests through natural succession, when trees and fragments of older forests are maintained in the agricultural matrix and land is abandoned or set aside for a long period of time. On the other hand, during the first 32 years the number of species with mature-sized individuals was a relatively small and strongly biased sub-sample of the total species pool. This implies that ephemeral secondary forests have a limited role in the long-term conservation of tree species diversity in human-modified tropical landscapes.

  19. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L.; Wu, Yiping; Young, Claudia J.

    2015-01-01

    Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands’ contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency’s land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.

  20. Ecosystem carbon stocks and sequestration potential of federal lands across the conterminous United States.

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shuguang; Sohl, Terry L; Wu, Yiping; Young, Claudia J

    2015-10-13

    Federal lands across the conterminous United States (CONUS) account for 23.5% of the CONUS terrestrial area but have received no systematic studies on their ecosystem carbon (C) dynamics and contribution to the national C budgets. The methodology for US Congress-mandated national biological C sequestration potential assessment was used to evaluate ecosystem C dynamics in CONUS federal lands at present and in the future under three Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (IPCC SRES) A1B, A2, and B1. The total ecosystem C stock was estimated as 11,613 Tg C in 2005 and projected to be 13,965 Tg C in 2050, an average increase of 19.4% from the baseline. The projected annual C sequestration rate (in kilograms of carbon per hectare per year) from 2006 to 2050 would be sinks of 620 and 228 for forests and grasslands, respectively, and C sources of 13 for shrublands. The federal lands' contribution to the national ecosystem C budget could decrease from 23.3% in 2005 to 20.8% in 2050. The C sequestration potential in the future depends not only on the footprint of individual ecosystems but also on each federal agency's land use and management. The results presented here update our current knowledge about the baseline ecosystem C stock and sequestration potential of federal lands, which would be useful for federal agencies to decide management practices to achieve the national greenhouse gas (GHG) mitigation goal.

  1. Carbon sequestration and storage by Gainesville's urban forest

    Science.gov (United States)

    Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer

    2009-01-01

    Climate change is a world-wide issue, and it may seem as if only actions by national governments can work effectively against it. In fact individuals and small communities, too, can make wise choices and impacts. Communities can mitigate climate change through reducing fossil fuel consumption and good management of its urban forest....

  2. Large-scale range collapse of Hawaiian forest birds under climate change and the need 21st century conservation options

    Science.gov (United States)

    Fortini, Lucas B.; Vorsino, Adam E.; Amidon, Fred A.; Paxton, Eben H.; Jacobi, James D.

    2015-01-01

    Hawaiian forest birds serve as an ideal group to explore the extent of climate change impacts on at-risk species. Avian malaria constrains many remaining Hawaiian forest bird species to high elevations where temperatures are too cool for malaria's life cycle and its principal mosquito vector. The impact of climate change on Hawaiian forest birds has been a recent focus of Hawaiian conservation biology, and has centered on the links between climate and avian malaria. To elucidate the differential impacts of projected climate shifts on species with known varying niches, disease resistance and tolerance, we use a comprehensive database of species sightings, regional climate projections and ensemble distribution models to project distribution shifts for all Hawaiian forest bird species. We illustrate that, under a likely scenario of continued disease-driven distribution limitation, all 10 species with highly reliable models (mostly narrow-ranged, single-island endemics) are expected to lose >50% of their range by 2100. Of those, three are expected to lose all range and three others are expected to lose >90% of their range. Projected range loss was smaller for several of the more widespread species; however improved data and models are necessary to refine future projections. Like other at-risk species, Hawaiian forest birds have specific habitat requirements that limit the possibility of range expansion for most species, as projected expansion is frequently in areas where forest habitat is presently not available (such as recent lava flows). Given the large projected range losses for all species, protecting high elevation forest alone is not an adequate long-term strategy for many species under climate change. We describe the types of additional conservation actions practitioners will likely need to consider, while providing results to help with such considerations.

  3. Long-term modeling of the forest-grassland ecotone in the French Alps: implications for land management and conservation.

    Science.gov (United States)

    Carlson, Bradley Z; Renaud, Julien; Biron, Pierre Eymard; Choler, Philippe

    2014-07-01

    Understanding decadal-scale land-cover changes has the potential to inform current conservation policies. European mountain landscapes that include numerous protected areas provide a unique opportunity to weigh the long-term influences of land-use practices and climate on forest-grassland ecotone dynamics. Aerial photographs from four dates (1948, 1978, 1993, and 2009) were used to quantify the extent of forest and grassland cover at 5-m resolution across a 150-km2 area in a protected area of the southwestern French Alps. The study area included a grazed zone and a nongrazed zone that was abandoned during the 1970s. We estimated time series of a forestation index (FI) and analyzed the effects of elevation and grazing on FI using a hierarchical linear mixed effect model. Forest extent (composed primarily of mountain pine, Pinus uncinata) expanded from 50.6 km2 in 1948 to 85.5 km2 in 2009, i.e., a 23% increase in relative cover at the expense of grassland communities. Over the sixty-year period, the treeline rose by 118 m, from 1564 to 1682 m. Rapid forest expansion within the nongrazed zone followed the cessation of logging activities and was likely accelerated by climate warming during the 1980s. Within the grazed zone, the maintained presence of sheep did not fully counteract mountain pine expansion and led to highly contrasting rates of land-cover change based on the location of shepherds' cabins and water sources. Projections of FI for 2030 showed remnant patches of intensively used grasslands interspersed in a densely forested matrix. Our analysis of mountain land-cover dynamics provided strong evidence for forest encroachment into grassland habitat despite consistent grazing pressure. This pattern may be attributed to the disappearance of traditional land-use practices such as shrub burning and removal. Our findings prompt land managers to reconsider their initial conservation priority (i.e., the protection of a renowned mountain pine forest) and to implement

  4. Evaluating the Suitability of Management Strategies of Pure Norway Spruce Forests in the Black Forest Area of Southwest Germany for Adaptation to or Mitigation of Climate Change

    Science.gov (United States)

    Yousefpour, Rasoul; Hanewinkel, Marc; Le Moguédec, Gilles

    2010-02-01

    The study deals with the problem of evaluating management strategies for pure stands of Norway spruce ( Picea abies Karst) to balance adaptation to and mitigation of climate change, taking into account multiple objectives of a forest owner. A simulation and optimization approach was used to evaluate the management of a 1000 ha model Age-Class forest, representing the age-class distribution of an area of 66,000 ha of pure Norway spruce forests in the Black Forest region of Southwest Germany. Eight silvicultural scenarios comprising five forest conversion schemes which were interpreted as “adaptation” strategies which aims at increasing the proportion of Beech, that is expected to better cope with climate change than the existing Norway spruce, and three conventional strategies including a “Do-nothing” alternative classified as “mitigation”, trying to keep rather higher levels of growing stock of spruce, were simulated using the empirical growth simulator BWINPro-S. A linear programming approach was adapted to simultaneously maximize the net present values of carbon sequestration and timber production subject to the two constraints of wood even flow and partial protection of the oldest (nature protection). The optimized plan, with the global utility of 11,687 €/ha in forty years, allocated a combination of silvicultural scenarios to the entire forest area. Overall, strategies classified as “mitigation” were favored, while strategies falling into the “adaptation”-category were limited to the youngest age-classes in the optimal solution. Carbon sequestration of the “Do-nothing” alternative was between 1.72 and 1.85 million tons higher than the other alternatives for the entire forest area while the differences between the adaptation and mitigation approaches were approximately 133,000 tons. Sensitivity analysis showed that a carbon price of 21 €/ t is the threshold at which carbon sequestration is promoted, while an interest rate of above 2

  5. Exploring Conservation Options in the Broad-Leaved Korean Pine Mixed Forest of the Changbai Mountain Region

    Directory of Open Access Journals (Sweden)

    Lin Ma

    2015-05-01

    Full Text Available The broad-leaved Korean pine (Pinus koraiensis mixed forest (BKPF is one of the most biodiverse zonal communities in the northern temperate zone. Changbai Mountain in northeastern China contains one of the largest BKPFs in the region. The government of China has established a network of 23 nature reserves to protect the BKPF and the species that depend on it for habitat, including the endangered Siberian tiger (Panthera tigris altaica. This study used the conservation planning software C-Plan to calculate the irreplaceability value of each unit to assess how efficiently and comprehensively the existing conservation network supports biodiversity and to identify gap areas that, if integrated into the network, would expand its protection capability. Results show a number of high-conservation-value planning units concentrated along certain ridges. The existing conservation network is structured such that the habitats of only 24 species (out of a total of 75 achieve established conservation targets. Of the other 51 species, 20 achieve less than 50% of their conservation targets. However, expanding the network to include high-conservation-value gap areas could achieve conservation targets for 64 species and could provide different degrees of protection to the other 11 species. Using C-Plan software can guide decision-making to expand the conservation network in this most precious of mountainous ecological zones.

  6. Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala.

    Science.gov (United States)

    Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui

    2014-01-01

    In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration.

  7. Reconciling Biodiversity Conservation and Timber Production in Mixed Uneven-Aged Mountain Forests: Identification of Ecological Intensification Pathways.

    Science.gov (United States)

    Lafond, Valentine; Cordonnier, Thomas; Courbaud, Benoît

    2015-11-01

    Mixed uneven-aged forests are considered favorable to the provision of multiple ecosystem services and to the conciliation of timber production and biodiversity conservation. However, some forest managers now plan to increase the intensity of thinning and harvesting operations in these forests. Retention measures or gap creation are considered to compensate potential negative impacts on biodiversity. Our objectives were to assess the effect of these management practices on timber production and biodiversity conservation and identify potential compensating effects between these practices, using the concept of ecological intensification as a framework. We performed a simulation study coupling Samsara2, a simulation model designed for spruce-fir uneven-aged mountain forests, an uneven-aged silviculture algorithm, and biodiversity models. We analyzed the effect of parameters related to uneven-aged management practices on timber production, biodiversity, and sustainability indicators. Our study confirmed that the indicators responded differently to management practices, leading to trade-offs situations. Increasing management intensity had negative impacts on several biodiversity indicators, which could be partly compensated by the positive effect of retention measures targeting large trees, non-dominant species, and deadwood. The impact of gap creation was more mitigated, with a positive effect on the diversity of tree sizes and deadwood but a negative impact on the spruce-fir mixing balance and on the diversity of the understory layer. Through the analysis of compensating effects, we finally revealed the existence of possible ecological intensification pathways, i.e., the possibility to increase management intensity while maintaining biodiversity through the promotion of nature-based management principles (gap creation and retention measures).

  8. The potential uses of sarcosaprophagous flesh flies and blowflies for the evaluation of the regeneration and conservation of forest clearings: a case study in the Amazon forest.

    Science.gov (United States)

    de Sousa, José Roberto Pereira; Esposito, Maria Cristina; Carvalho Filho, Fernando da Silva; Juen, Leandro

    2014-01-01

    The level of association between dipterans of the families Calliphoridae and Sarcophagidae and habitats with different levels of vegetation cover was analyzed at Porto Urucu in Coari, Amazonas, Brazil, with the aim of identifying the potential of these taxa as bioindicators for the assessment of forest regeneration and conservation. The flies were collected in 16 sample areas, 12 of which were clearings at different stages of regeneration (C1--early regeneration; C2--moderate regeneration; and C3--advanced regeneration) and 4 in continuous forest (F). According to the IndVal analysis, nine sarcophagid species--Peckia (Sarcodexia) lambens (Wiedemann), Peckia (Peckia) chrysostoma (Wiedemann), Peckia (Squamatodes) ingens (Walker), Sarcofahrtiopsis cuneata (Townsend), Oxysarcodexia thornax (Walker), Peckia (Euboettcheria) collusor (Curran & Walley), Oxysarcodexia fringidea (Curran & Walley), Oxysarcodexia amorosa (Schiner), and Helicobia pilifera (Lopes)--were associated indiscriminately with clearings (C1 + C2 + C3). In contrast, only one calliphorid species Chrysomya albiceps (Wiedemann) was associated with clearings in the early moderate regeneration (C1 + C2) phases, and four calliphorids were associated with continuous forest or mature clearings (C3 + F): Mesembrinella bicolor (F.), Eumesembrinella randa (Walker), Mesembrinella bellardiana (Aldrich), and Lucilia eximia (Wiedemann). These results indicate that sarcophagids may be useful for evaluating the degree of anthropogenic impact but are not suitable for the detection of minor variations in forest cover. In contrast, calliphorids may be appropriate for the evaluation of both anthropogenic impacts and the degree of forest regeneration and conservation. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  9. Does functional trait diversity predict aboveground biomass and productivity of tropical forests? Testing three alternative hypotheses

    NARCIS (Netherlands)

    Finegan, B.; Peña Claros, M.; Oliviera, de A.; Alarcón, A.; Ascarrunz, N.; Bret-Harte, M.S.; Carreño-Rocabado, G.; Casanoves, F.; Díaz, S.; Eguiguren Velepucha, P.; Fernandez, F.; Licona, J.C.; Lorenzo, L.; Salgado Negret, B.; Vaz, M.; Poorter, L.

    2015-01-01

    Tropical forests are globally important, but it is not clear whether biodiversity enhances carbon storage and sequestration in them. We tested this relationship focusing on components of functional trait biodiversity as predictors. Data are presented for three rain forests in Bolivia, Brazil and

  10. Opportunities and uses of biochar on forest sites in North America [Chapter 15

    Science.gov (United States)

    Deborah S. Page-Dumroese; Mark D. Coleman; Sean C. Thomas

    2017-01-01

    Biochar may be useful for restoring or revitalizing degraded forest soils and help with carbon sequestration, nutrient leaching losses, and reducing greenhouse gas emissions. However, biochar is not currently widely used on forested lands across North America. This chapter provides an overview of several biochar experiments conducted in North America and discusses the...

  11. Variation in carbon stocks on different slope aspects in seven major ...

    Indian Academy of Sciences (India)

    The present study was undertaken in seven major forest types of temperate zone (1500 m a.s.l. to 3100 m a.s.l.) of Garhwal Himalaya to understand the effect of slope aspects on carbon (C) density and make recommendations for forest management based on priorities for C conservation/sequestration. We assessed soil ...

  12. Conservation, Community, and Culture? New Organizational Challenges of Community Forest Concessions in the Maya Biosphere Reserve of Guatemala

    Science.gov (United States)

    Taylor, Peter Leigh

    2010-01-01

    Community-based forestry has received much recent attention as an effort to protect threatened Southern forests by linking conservation with sustainable livelihoods. Many researchers have emphasized the importance of effective organization for successful community-based forestry. While significant attention has been paid to community-level…

  13. Federal land management, carbon sequestration, and climate change in the Southeastern U.S.: a case study with fort benning

    Science.gov (United States)

    Zhao, S.; Liu, S.; Li, Z.; Sohl, Terry L.

    2010-01-01

    Land use activities can have a major impact on the temporal trendsandspatialpatternsofregionalland-atmosphereexchange of carbon. Federal lands generally have substantially different land management strategies from surrounding areas, and the carbon consequences have rarely been quantified and assessed. Using the Fort Benning Installation as a case study, we used the General Ensemble biogeochemical Modeling System (GEMS) to simulate and compare ecosystem carbon sequestration between the U.S. Army's Fort Benning and surrounding areas from 1992 to 2050. Our results indicate that the military installation sequestered more carbon than surrounding areas from 1992 to 2007 (76.7 vs 18.5 g C m-2 yr-1), and is projected to continue sequestering more carbon from 2008 to 2050 (75.7 vs 25.6 g C m-2 yr-1), mostly because of the proactive management approaches adopted on military training lands. Our results suggest that federal lands might play a positive and important role in sequestering and conserving atmospheric carbon because some anthropogenic disturbances (e.g., urbanization, forest harvesting, and agriculture) can be minimized or prevented on federal lands

  14. Current and potential carbon stocks in Moso bamboo forests in China.

    Science.gov (United States)

    Li, Pingheng; Zhou, Guomo; Du, Huaqiang; Lu, Dengsheng; Mo, Lufeng; Xu, Xiaojun; Shi, Yongjun; Zhou, Yufeng

    2015-06-01

    Bamboo forests provide important ecosystem services and play an important role in terrestrial carbon cycling. Of the approximately 500 bamboo species in China, Moso bamboo (Phyllostachys pubescens) is the most important one in terms of distribution, timber value, and other economic values. In this study, we estimated current and potential carbon stocks in China's Moso bamboo forests and in their products. The results showed that Moso bamboo forests in China stored about 611.15 ± 142.31 Tg C, 75% of which was in the top 60 cm soil, 22% in the biomass of Moso bamboos, and 3% in the ground layer (i.e., bamboo litter, shrub, and herb layers). Moso bamboo products store 10.19 ± 2.54 Tg C per year. The potential carbon stocks reach 1331.4 ± 325.1 Tg C, while the potential C stored in products is 29.22 ± 7.31 Tg C a(-1). Our results indicate that Moso bamboo forests and products play a critical role in C sequestration. The information gained in this study will facilitate policy decisions concerning carbon sequestration and management of Moso bamboo forests in China. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Ecosystem carbon stocks in Pinus palustris forests

    Science.gov (United States)

    Lisa Samuelson; Tom Stokes; John R. Butnor; Kurt H. Johnsen; Carlos A. Gonzalez-Benecke; Pete Anderson; Jason Jackson; Lorenzo Ferrari; Tim A. Martin; Wendell P. Cropper

    2014-01-01

    Longleaf pine (Pinus palustris Mill.) restoration in the southeastern United States offers opportunities for carbon (C) sequestration. Ecosystem C stocks are not well understood in longleaf pine forests, which are typically of low density and maintained by prescribed fire. The objectives of this research were to develop allometric equations for...

  16. Anthropogenic Land-use Change and the Dynamics of Amazon Forest Biomass

    Science.gov (United States)

    Laurance, William F.

    2004-01-01

    This project was focused on assessing the effects of prevailing land uses, such as habitat fragmentation, selective logging, and fire, on biomass and carbon storage in Amazonian forests, and on the dynamics of carbon sequestration in regenerating forests. Ancillary goals included developing GIs models to help predict the future condition of Amazonian forests, and assessing the effects of anthropogenic climate change and ENS0 droughts on intact and fragmented forests. Ground-based studies using networks of permanent plots were linked with remote-sensing data (including Landsat TM and AVHRR) at regional scales, and higher-resolution techniques (IKONOS imagery, videography, LIDAR, aerial photographs) at landscape and local scales. The project s specific goals were quite eclectic and included: Determining the effects of habitat fragmentation on forest dynamics, floristic composition, and the various components of above- and below-ground biomass. Assessing historical and physical factors that affect trajectories of forest regeneration and carbon sequestration on abandoned lands. Extrapolating results from local studies of biomass dynamics in fragmented and regenerating forests to landscape and regional scales in Amazonia, using remote sensing and GIS. Testing the hypothesis that intact Amazonian forests are functioning as a significant carbon sink. Examining destructive synergisms between forest fragmentation and fire. Assessing the short-term impacts of selective logging on aboveground biomass. Developing GIS models that integrate current spatial data on forest cover, deforestation, logging, mining, highway and roads, navigable rivers, vulnerability to wild fires, protected areas, and existing and planned infrastructure projects, in an effort to predict the future condition of Brazilian Amazonian forests over the next 20-25 years. Devising predictive spatial models to assess the influence of varied biophysical and anthropogenic predictors on Amazonian deforestation.

  17. Temporal mapping of deforestation and forest degradation in Nepal: Applications to forest conservation

    NARCIS (Netherlands)

    Panta, M.; Kim, K.; Joshi, C.

    2008-01-01

    Deforestation and forest degradation are associated and progressive processes resulting in the conversion of forest area into a mosaic of mature forest fragments, pasture, and degraded habitat. Monitoring of forest landscape spatial structures has been recommended to detect degenerative trends in

  18. Carbon sequestration.

    Science.gov (United States)

    Lal, Rattan

    2008-02-27

    Developing technologies to reduce the rate of increase of atmospheric concentration of carbon dioxide (CO2) from annual emissions of 8.6PgCyr-1 from energy, process industry, land-use conversion and soil cultivation is an important issue of the twenty-first century. Of the three options of reducing the global energy use, developing low or no-carbon fuel and sequestering emissions, this manuscript describes processes for carbon (CO2) sequestration and discusses abiotic and biotic technologies. Carbon sequestration implies transfer of atmospheric CO2 into other long-lived global pools including oceanic, pedologic, biotic and geological strata to reduce the net rate of increase in atmospheric CO2. Engineering techniques of CO2 injection in deep ocean, geological strata, old coal mines and oil wells, and saline aquifers along with mineral carbonation of CO2 constitute abiotic techniques. These techniques have a large potential of thousands of Pg, are expensive, have leakage risks and may be available for routine use by 2025 and beyond. In comparison, biotic techniques are natural and cost-effective processes, have numerous ancillary benefits, are immediately applicable but have finite sink capacity. Biotic and abiotic C sequestration options have specific nitches, are complementary, and have potential to mitigate the climate change risks.

  19. Does functional trait diversity predict aboveground biomass and productivity of tropical forests? Testing three alternative hypotheses

    NARCIS (Netherlands)

    Finegan, B.; Pena Claros, M.; Silva de Oliveira, A.; Ascarrunz, N.; Bret-Harte, M.S.; Carreño Rocabado, I.G.; Casanoves, F.; Diaz, S.; Eguiguren Velepucha, P.; Fernandez, F.; Licona, J.C.; Lorenzo, L.; Salgado Negret, B.; Vaz, M.; Poorter, L.

    2014-01-01

    1. Tropical forests are globally important, but it is not clear whether biodiversity enhances carbon storage and sequestration in them. We tested this relationship focusing on components of functional trait biodiversity as predictors. 2. Data are presented for three rain forests in Bolivia, Brazil

  20. dwindling ethiopian forests

    African Journals Online (AJOL)

    eliasn

    1999-05-26

    May 26, 1999 ... Shelter for animals: Forests are natural “habitats for many wild animals. .... nificance of forest conservation and development in Ethiopia's combat ...... of forests are not, unfortunately, analogues to traffic lights where the impact.

  1. Effects of preference heterogeneity among landowners on spatial conservation prioritization.

    Science.gov (United States)

    Nielsen, Anne Sofie Elberg; Strange, Niels; Bruun, Hans Henrik; Jacobsen, Jette Bredahl

    2017-06-01

    The participation of private landowners in conservation is crucial to efficient biodiversity conservation. This is especially the case in settings where the share of private ownership is large and the economic costs associated with land acquisition are high. We used probit regression analysis and historical participation data to examine the likelihood of participation of Danish forest owners in a voluntary conservation program. We used the results to spatially predict the likelihood of participation of all forest owners in Denmark. We merged spatial data on the presence of forest, cadastral information on participation contracts, and individual-level socioeconomic information about the forest owners and their households. We included predicted participation in a probability model for species survival. Uninformed and informed (included land owner characteristics) models were then incorporated into a spatial prioritization for conservation of unmanaged forests. The choice models are based on sociodemographic data on the entire population of Danish forest owners and historical data on their participation in conservation schemes. Inclusion in the model of information on private landowners' willingness to supply land for conservation yielded at intermediate budget levels up to 30% more expected species coverage than the uninformed prioritization scheme. Our landowner-choice model provides an example of moving toward more implementable conservation planning. © 2016 Society for Conservation Biology.

  2. Predators, Prey and Habitat Structure: Can Key Conservation Areas and Early Signs of Population Collapse Be Detected in Neotropical Forests?

    Directory of Open Access Journals (Sweden)

    Benoit de Thoisy

    Full Text Available Tropical forests with a low human population and absence of large-scale deforestation provide unique opportunities to study successful conservation strategies, which should be based on adequate monitoring tools. This study explored the conservation status of a large predator, the jaguar, considered an indicator of the maintenance of how well ecological processes are maintained. We implemented an original integrative approach, exploring successive ecosystem status proxies, from habitats and responses to threats of predators and their prey, to canopy structure and forest biomass. Niche modeling allowed identification of more suitable habitats, significantly related to canopy height and forest biomass. Capture/recapture methods showed that jaguar density was higher in habitats identified as more suitable by the niche model. Surveys of ungulates, large rodents and birds also showed higher density where jaguars were more abundant. Although jaguar density does not allow early detection of overall vertebrate community collapse, a decrease in the abundance of large terrestrial birds was noted as good first evidence of disturbance. The most promising tool comes from easily acquired LiDAR data and radar images: a decrease in canopy roughness was closely associated with the disturbance of forests and associated decreasing vertebrate biomass. This mixed approach, focusing on an apex predator, ecological modeling and remote-sensing information, not only helps detect early population declines in large mammals, but is also useful to discuss the relevance of large predators as indicators and the efficiency of conservation measures. It can also be easily extrapolated and adapted in a timely manner, since important open-source data are increasingly available and relevant for large-scale and real-time monitoring of biodiversity.

  3. ASPECTS REGARDING LEGAL PROTECTION OF FOREST ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    Cristian Popescu

    2012-12-01

    Full Text Available The first legislative concerns for the protection and exploitation of forests are occurring since the eighteenth century. Forest of the country has always been a priority for environmental policy. The institutional framework for forestry organization in Romania is represented mainly by the Ministry of Environment and National Administration of Forests – Romsilva. First Romanian Forest Code was adopted on 19 June 1881. In present, the main law governing the forest is given by Law No. 46 of March 19, 2008 (Forest Code. Forests are resources of interest economic, social, recreational, ecological and biological. Biodiversity conservation of forest ecosystems involves the sustainable management by applying intensive treatments that promote natural regeneration of species of fundamental natural forest type and forest conservation and quasi virgin. The main way to conserve forest ecosystems is represented by the establishment of protected areas of national interest.

  4. Reconciling certification and intact forest landscape conservation.

    Science.gov (United States)

    Kleinschroth, Fritz; Garcia, Claude; Ghazoul, Jaboury

    2018-05-29

    In 2014, the Forest Stewardship Council (FSC) added a new criterion to its principles that requires protection of intact forest landscapes (IFLs). An IFL is an extensive area of forest that lacks roads and other signs of human activity as detected through remote sensing. In the Congo basin, our analysis of road networks in formally approved concessionary logging areas revealed greater loss of IFL in certified than in noncertified concessions. In areas of informal (i.e., nonregulated) extraction, road networks are known to be less detectable by remote sensing. Under the current definition of IFL, companies certified under FSC standards are likely to be penalized relative to the noncertified as well as the informal logging sector on account of their planned road networks, despite an otherwise better standard of forest management. This could ultimately undermine certification and its wider adoption, with implications for the future of sustainable forest management.

  5. CO{sub 2} sequestration; Sequestration du CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Acket, C

    2008-04-15

    The carbon dioxide is the main gas associated to the human activity, generating consequences on the greenhouse effect. By the use of fossil fuels, the human activity generates each year, about 26 milliards of tons. Only the half of theses releases is absorbed by the nature, the rest reinforces the greenhouse effect. To reduce the emissions two actions are proposed: a better energy consumption and the development of technologies which do not produce, or weakly, greenhouse effect gases. Another way is studied: the carbon sequestration and geological storage. This document details the different technologies of sequestration, the transport and the underground storage. It discusses also the economical and legislative aspects, providing examples and projects. (A.L.B.)

  6. Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars.

    Science.gov (United States)

    Santín, Cristina; Doerr, Stefan H; Merino, Agustin; Bucheli, Thomas D; Bryant, Rob; Ascough, Philippa; Gao, Xiaodong; Masiello, Caroline A

    2017-09-11

    Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ 13 C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar's environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa.

  7. Global assessment of promising forest management practices for sequestration of carbon

    International Nuclear Information System (INIS)

    Winjum, J.K.; Dixon, R.K.; Schroeder, P.E.

    1991-01-01

    In the 1980s, forests covered an estimated 4.08 billion hectares and contained a carbon pool of 1,400 gigatonnes, or 64% of the total terrestrial pool. Forest biomass productivity per unit of land can be enhanced by proper management practices and it is suggested that by implementing such practices, forests could store more carbon globally and thereby slow the increase in atmospheric CO 2 . Currently, only about 10% of world forests are managed at an active level. An assessment is presented of the amount of carbon that could be sequestered globally by implementing the practices of reforestation, afforestation, natural regeneration, silviculture, and agroforestry. The assessment is based on the development of a global database on managed forest and agroforestry systems. For each of the above five practices, the database contains information on carbon sequestered per hectare, implementation costs, and estimates of the amount of land technically suitable for such practices throughout the world. Results are presented for each practice in the boreal, temperate, and tropical regions. Preliminary estimates show that promising forestry and agroforestry practices could sequester, over a 50-y period, ca 50-100 gigatonnes of carbon at a cost of $170-340 million. This would be a significant contribution as a mitigating measure regarding atmospheric CO 2 buildup and projections for global warming, at present rates of anthropogenic carbon emissions (300-400 gigatonnes carbon over 50 y). 19 refs., 2 figs., 4 tabs

  8. Analyzing the efficacy of subtropical urban forests in offsetting carbon emissions from cities

    Science.gov (United States)

    Francisco Escobedo; Sebastian Varela; Min Zhao; John E. Wagner; Wayne Zipperer

    2010-01-01

    Urban forest management and policies have been promoted as a tool to mitigate carbon dioxide (CO2) emissions. This study used existing CO2 reduction measures from subtropical Miami-Dade and Gainesville, USA and modeled carbon storage and sequestration by trees to analyze policies that use urban forests to offset carbon emissions. Field data were analyzed, modeled, and...

  9. Managing Forests for Water in the Anthropocene—The Best Kept Secret Services of Forest Ecosystems

    Directory of Open Access Journals (Sweden)

    Irena F. Creed

    2016-03-01

    Full Text Available Water and forests are inextricably linked. Pressures on forests from population growth and climate change are increasing risks to forests and their aquatic ecosystem services (AES. There is a need to incorporate AES in forest management but there is considerable uncertainty about how to do so. Approaches that manage forest ecosystem services such as fiber, water and carbon sequestration independently ignore the inherent complexities of ecosystem services and their responses to management actions, with the potential for unintended consequences that are difficult to predict. The ISO 31000 Risk Management Standard is a standardized framework to assess risks to forest AES and to prioritize management strategies to manage risks within tolerable ranges. The framework consists of five steps: establishing the management context, identifying, analyzing, evaluating and treating the risks. Challenges to implementing the framework include the need for novel models and indicators to assess forest change and resilience, quantification of linkages between forest practice and AES, and the need for an integrated systems approach to assess cumulative effects and stressors on forest ecosystems and AES. In the face of recent international agreements to protect forests, there are emerging opportunities for international leadership to address these challenges in order to protect both forests and AES.

  10. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    NARCIS (Netherlands)

    Chazdon, R.L.; Broadbent, E.N.; Rozendaal, Danae; Bongers, F.; Jakovac, A.C.; Braga Junqueira, A.; Lohbeck, M.W.M.; Pena Claros, M.; Poorter, L.

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We

  11. Spatio-temporal changes in biomass carbon sinks in China's forests from 1977 to 2008.

    Science.gov (United States)

    Guo, Zhaodi; Hu, Huifeng; Li, Pin; Li, Nuyun; Fang, Jingyun

    2013-07-01

    Forests play a leading role in regional and global carbon (C) cycles. Detailed assessment of the temporal and spatial changes in C sinks/sources of China's forests is critical to the estimation of the national C budget and can help to constitute sustainable forest management policies for climate change. In this study, we explored the spatio-temporal changes in forest biomass C stocks in China between 1977 and 2008, using six periods of the national forest inventory data. According to the definition of the forest inventory, China's forest was categorized into three groups: forest stand, economic forest, and bamboo forest. We estimated forest biomass C stocks for each inventory period by using continuous biomass expansion factor (BEF) method for forest stands, and the mean biomass density method for economic and bamboo forests. As a result, China's forests have accumulated biomass C (i.e., biomass C sink) of 1896 Tg (1 Tg=10(12) g) during the study period, with 1710, 108 and 78 Tg C in forest stands, and economic and bamboo forests, respectively. Annual forest biomass C sink was 70.2 Tg C a(-1), offsetting 7.8% of the contemporary fossil CO2 emissions in the country. The results also showed that planted forests have functioned as a persistent C sink, sequestrating 818 Tg C and accounting for 47.8% of total C sink in forest stands, and that the old-, mid- and young-aged forests have sequestrated 930, 391 and 388 Tg C from 1977 to 2008. Our results suggest that China's forests have a big potential as biomass C sink in the future because of its large area of planted forests with young-aged growth and low C density.

  12. Diameter growth performance of tree functional groups in Puerto Rican secondary tropical forests

    Directory of Open Access Journals (Sweden)

    Patricia Adame

    2014-04-01

    Full Text Available Aim of study: Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Understanding the factors that control tree growth in successional stands is particularly important for quantifying the carbon sequestration potential and timber yield of secondary tropical forests. Yet, the high species diversity of mixed tropical forests, including many uncommon species, hinders the development of species-specific diameter growth models.Area of study: In these analyses, we grouped 82 species from secondary forests distributed across 93 permanent plots on the island of Puerto Rico.Material and Methods: Species were classified according to regeneration strategy and adult height into six functional groups. This classification allowed us to develop a robust diameter growth model using growth data collected from 1980-1990. We used mixed linear model regression to analyze tree diameter growth as a function of individual tree characteristics, stand structure, functional group and site factors.Main results: The proportion of variance in diameter growth explained by the model was 15.1%, ranging from 7.9 to 21.7%. Diameter at breast height, stem density and functional group were the most important predictors of tree growth in Puerto Rican secondary forest. Site factors such as soil and topography failed to predict diameter growth.Keywords: Caribbean forests; growth model; tropical forest succession; Puerto Rico.

  13. Including Effects of Water Stress on Dead Organic Matter Decay to a Forest Carbon Model

    Science.gov (United States)

    Kim, H.; Lee, J.; Han, S. H.; Kim, S.; Son, Y.

    2017-12-01

    Decay of dead organic matter is a key process of carbon (C) cycling in forest ecosystems. The change in decay rate depends on temperature sensitivity and moisture conditions. The Forest Biomass and Dead organic matter Carbon (FBDC) model includes a decay sub-model considering temperature sensitivity, yet does not consider moisture conditions as drivers of the decay rate change. This study aimed to improve the FBDC model by including a water stress function to the decay sub-model. Also, soil C sequestration under climate change with the FBDC model including the water stress function was simulated. The water stress functions were determined with data from decomposition study on Quercus variabilis forests and Pinus densiflora forests of Korea, and adjustment parameters of the functions were determined for both species. The water stress functions were based on the ratio of precipitation to potential evapotranspiration. Including the water stress function increased the explained variances of the decay rate by 19% for the Q. variabilis forests and 7% for the P. densiflora forests, respectively. The increase of the explained variances resulted from large difference in temperature range and precipitation range across the decomposition study plots. During the period of experiment, the mean annual temperature range was less than 3°C, while the annual precipitation ranged from 720mm to 1466mm. Application of the water stress functions to the FBDC model constrained increasing trend of temperature sensitivity under climate change, and thus increased the model-estimated soil C sequestration (Mg C ha-1) by 6.6 for the Q. variabilis forests and by 3.1 for the P. densiflora forests, respectively. The addition of water stress functions increased reliability of the decay rate estimation and could contribute to reducing the bias in estimating soil C sequestration under varying moisture condition. Acknowledgement: This study was supported by Korea Forest Service (2017044B10-1719-BB01)

  14. Small non-flying mammals from conserved and altered areas of Atlantic Forest and Cerrado: comments on their potencial use for monitoring environment

    Directory of Open Access Journals (Sweden)

    BONVICINO C. R.

    2002-01-01

    Full Text Available Two Atlantic Forests and two Cerrado areas in Brazil were sampled for non-flying small mammal fauna. In each biome one area with altered and another with almost unaltered vegetation (national parks, were chosen to investigate these fauna. Species richness of Atlantic Forest and Cerrado was comparable in the conserved as well as in the altered areas. Data suggested that species could be divided into different ecological categories according to distribution, use of altered and/or relatively unaltered vegetation and habitat specificity. Within these ecological categories some species are appropriate indicators for monitoring environmental quality and degradation. Useful guidelines for wildlife management planning, including selecting areas for conservation units and their better boundary delimitation can ensue.

  15. Small non-flying mammals from conserved and altered areas of Atlantic Forest and Cerrado: comments on their potencial use for monitoring environment

    Directory of Open Access Journals (Sweden)

    C. R. BONVICINO

    Full Text Available Two Atlantic Forests and two Cerrado areas in Brazil were sampled for non-flying small mammal fauna. In each biome one area with altered and another with almost unaltered vegetation (national parks, were chosen to investigate these fauna. Species richness of Atlantic Forest and Cerrado was comparable in the conserved as well as in the altered areas. Data suggested that species could be divided into different ecological categories according to distribution, use of altered and/or relatively unaltered vegetation and habitat specificity. Within these ecological categories some species are appropriate indicators for monitoring environmental quality and degradation. Useful guidelines for wildlife management planning, including selecting areas for conservation units and their better boundary delimitation can ensue.

  16. Forest rights : the micro-politics of decentralisation and forest tenure reform in tribal India

    NARCIS (Netherlands)

    Bose, P.

    2012-01-01

    Forest rights are of utmost importance for the future of forest initiatives, be it for resource use, management, and conservation, or for climate change adaptation and mitigation. The growing trend towards acknowledging the relevance of the sustainable use and conservation of

  17. Forest carbon dynamics in the Pacific Northwest (USA) and the St. Petersburg region of Russia: comparisons and policy implications.

    Science.gov (United States)

    Ralph J. Alig; Olga Krankina; Andrew Yost; Julia. Kuzminykh

    2006-01-01

    Forests of the United States and Russia can play a positive role in reducing the extent of global warming caused by greenhouse gases, especially carbon dioxide. To determine the extent of carbon sequestration, physical, ecological, economic, and social issues need to be considered, including different forest management objectives across major forest ownership groups....

  18. Book of Abstracts - Managing Forests to Promote Environmental Services

    DEFF Research Database (Denmark)

    This book includes the abstracts of the oral and poster presentation of the conference ‘Managing Forests to Promote Environmental Services’, 3-5 November 2015, Copenhagen. The conference is arranged by the Centre of Advanced Research on Environmental Services from Nordic Forest Ecosystems (CAR-ES...... forest management and environmental ecosystem services in a broader perspective, and overviews of ten years of CAR-ES integrated research on carbon sequestration, water protection, biodiversity, and soil quality in the Nordic – Baltic are presented. Frederiksberg, October 2015 Inge Stupak, Lars Högbom...... II), funded by Nordic Forest Research (SNS) 2011-2015. This is an open network that brings together Nordic and Baltic forest researchers in order to provide scientific knowledge on the impacts of forest management on major environmental services for decision making within the forestry sector...

  19. Organic carbon stocks and sequestration rates of forest soils in Germany.

    Science.gov (United States)

    Grüneberg, Erik; Ziche, Daniel; Wellbrock, Nicole

    2014-08-01

    The National Forest Soil Inventory (NFSI) provides the Greenhouse Gas Reporting in Germany with a quantitative assessment of organic carbon (C) stocks and changes in forest soils. Carbon stocks of the organic layer and the mineral topsoil (30 cm) were estimated on the basis of ca. 1.800 plots sampled from 1987 to 1992 and resampled from 2006 to 2008 on a nationwide grid of 8 × 8 km. Organic layer C stock estimates were attributed to surveyed forest stands and CORINE land cover data. Mineral soil C stock estimates were linked with the distribution of dominant soil types according to the Soil Map of Germany (1 : 1 000 000) and subsequently related to the forest area. It appears that the C pool of the organic layer was largely depending on tree species and parent material, whereas the C pool of the mineral soil varied among soil groups. We identified the organic layer C pool as stable although C was significantly sequestered under coniferous forest at lowland sites. The mineral soils, however, sequestered 0.41 Mg C ha(-1) yr(-1) . Carbon pool changes were supposed to depend on stand age and forest transformation as well as an enhanced biomass input. Carbon stock changes were clearly attributed to parent material and soil groups as sandy soils sequestered higher amounts of C, whereas clayey and calcareous soils showed small gains and in some cases even losses of soil C. We further showed that the largest part of the overall sample variance was not explained by fine-earth stock variances, rather by the C concentrations variance. The applied uncertainty analyses in this study link the variability of strata with measurement errors. In accordance to other studies for Central Europe, the results showed that the applied method enabled a reliable nationwide quantification of the soil C pool development for a certain period. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  20. Balancing Development and Conservation? An Assessment of Livelihood and Environmental Outcomes of Nontimber Forest Product Trade in Asia, Africa, and Latin America

    Directory of Open Access Journals (Sweden)

    Koen Kusters

    2006-12-01

    Full Text Available This article addresses the question, to what extent and under which conditions nontimber forest product (NTFP trade leads to both livelihood improvement and forest conservation. We based the analysis on a standardized expert-judgment assessment of the livelihood and environmental outcomes of 55 cases of NTFP trade from Asia, Africa, and Latin America. The results show that NTFP trade benefits several components of peoples' livelihoods, but may increase inequality between households. Involvement of women in the production-to-consumption system (PCS tends to have a positive impact on intrahousehold equity. In 80% of the cases, the commercial production of NTFPs does not enable people to make financial investments to increase quality and quantity of production, limiting the potential for development. In our set of cases, commercial extraction from the wild, without further management, tends to lead to resource depletion. NTFP production systems are generally considered to have lower environmental values than natural forest, but do contribute positively to the environmental values in the landscape. We found that higher livelihood outcomes are associated with lower environmental outcomes and conclude that NTFP trade is not likely to reconcile development and conservation of natural forest.