WorldWideScience

Sample records for sequential one-pot protocol

  1. Synthesis of amino ester-embedded benzimidazoles: a one-pot sequential protocol under metal-free neutral conditions.

    Science.gov (United States)

    Roy, Priyabrata; Bodhak, Chandan; Pramanik, Animesh

    2017-02-01

    A one-pot three-component protocol has been developed for the synthesis of amino ester-embedded benzimidazoles under metal-free neutral conditions. Sequentially, the methodology involves coupling of an amino ester with 1-fluoro-2-nitrobenzene, reduction of the coupled nitroarene by sodium dithionite, and cyclization of the corresponding diamine with an aldehyde.

  2. One-pot sequential 1,2-addition, Pd-catalysed cross-coupling of organolithium reagents with Weinreb amides

    NARCIS (Netherlands)

    Giannerini, M.; Vila, C.; Hornillos, V.; Feringa, B. L.

    2016-01-01

    An efficient sequential 1,2-addition/cross-coupling of Weinreb amides with two organolithium reagents is reported. This synthetic approach allows access to a wide variety of functionalized ketones in a modular way. The one-pot procedure presented here takes advantage of a kinetically stable

  3. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy

    Science.gov (United States)

    Sahoo, Prasana K.; Memaran, Shahriar; Xin, Yan; Balicas, Luis; Gutiérrez, Humberto R.

    2018-01-01

    Two-dimensional heterojunctions of transition-metal dichalcogenides have great potential for application in low-power, high-performance and flexible electro-optical devices, such as tunnelling transistors, light-emitting diodes, photodetectors and photovoltaic cells. Although complex heterostructures have been fabricated via the van der Waals stacking of different two-dimensional materials, the in situ fabrication of high-quality lateral heterostructures with multiple junctions remains a challenge. Transition-metal-dichalcogenide lateral heterostructures have been synthesized via single-step, two-step or multi-step growth processes. However, these methods lack the flexibility to control, in situ, the growth of individual domains. In situ synthesis of multi-junction lateral heterostructures does not require multiple exchanges of sources or reactors, a limitation in previous approaches as it exposes the edges to ambient contamination, compromises the homogeneity of domain size in periodic structures, and results in long processing times. Here we report a one-pot synthetic approach, using a single heterogeneous solid source, for the continuous fabrication of lateral multi-junction heterostructures consisting of monolayers of transition-metal dichalcogenides. The sequential formation of heterojunctions is achieved solely by changing the composition of the reactive gas environment in the presence of water vapour. This enables selective control of the water-induced oxidation and volatilization of each transition-metal precursor, as well as its nucleation on the substrate, leading to sequential edge-epitaxy of distinct transition-metal dichalcogenides. Photoluminescence maps confirm the sequential spatial modulation of the bandgap, and atomic-resolution images reveal defect-free lateral connectivity between the different transition-metal-dichalcogenide domains within a single crystal structure. Electrical transport measurements revealed diode-like responses across the

  4. One-pot sequential synthesis of O-(halo-substituted benzyl hydroxylammonium salts

    Directory of Open Access Journals (Sweden)

    Saeed Emami

    2017-02-01

    Full Text Available In this study, we described a simple one-pot preparation of O-(halo-substituted benzyl hydroxylamine derivatives by O-benzylation of N-hydroxyurethane, followed by basic N-deprotection. The advantages of the method were the chemo- and regio-selectivity in obtaining the desired O-benzyl hydroxylammonium salts in a high yield as well as the simplicity of the purification process.

  5. Sequential One-Pot Ruthenium-Catalyzed Azide−Alkyne Cycloaddition from Primary Alkyl Halides and Sodium Azide

    KAUST Repository

    Johansson, Johan R.

    2011-04-01

    An experimentally simple sequential one-pot RuAAC reaction, affording 1,5-disubstituted 1H-1,2,3-triazoles in good to excellent yields starting from an alkyl halide, sodium azide, and an alkyne, is reported. The organic azide is formed in situ by treating the primary alkyl halide with sodium azide in DMA under microwave heating. Subsequent addition of [RuClCp*(PPh 3) 2] and the alkyne yielded the desired cycloaddition product after further microwave irradiation. © 2011 American Chemical Society.

  6. Sequential polymerization of ethylene oxide, ε-caprolactone and l-lactide: A one-pot metal-free route to tri- and pentablock terpolymers

    KAUST Repository

    Zhao, Junpeng; Pahovnik, David; Gnanou, Yves; Hadjichristidis, Nikolaos

    2014-01-01

    Metal-free polymerization of ethylene oxide (EO) catalyzed by a relatively mild phosphazene base (t-BuP2) was proven feasible, which enabled the one-pot sequential polymerization of EO, ε-caprolactone, and l-lactide. Using either 3-phenyl-1-propanol

  7. Water mediated eco-friendly green protocol for one-pot synthesis of ...

    Indian Academy of Sciences (India)

    the synthesis of important products, we describe here a simple, elegant and high yielding protocol for the syn- thesis of α-aminophosphonates in ..... In order to prove the involvement of water in the reac- tion mechanism unambiguously, the ...

  8. Sequential polymerization of ethylene oxide, ε-caprolactone and l-lactide: A one-pot metal-free route to tri- and pentablock terpolymers

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    Metal-free polymerization of ethylene oxide (EO) catalyzed by a relatively mild phosphazene base (t-BuP2) was proven feasible, which enabled the one-pot sequential polymerization of EO, ε-caprolactone, and l-lactide. Using either 3-phenyl-1-propanol or water as an initiator, the corresponding triblock or pentablock terpolymers were easily prepared. © 2014 the Partner Organisations.

  9. One-pot synthesis of linear- and three-arm star-tetrablock quarterpolymers via sequential metal-free ring-opening polymerization using a "catalyst switch" strategy

    KAUST Repository

    Zhao, Junpeng; Pahovnik, David; Gnanou, Yves; Hadjichristidis, Nikolaos

    2014-01-01

    A "catalyst switch" strategy has been used to sequentially polymerize four different heterocyclic monomers. In the first step, epoxides (1,2-butylene oxide and ethylene oxide) were successively polymerized from a monohydroxy or trihydroxy initiator in the presence of a strong phosphazene base promoter (t-BuP4). Then, an excess of diphenyl phosphate (DPP) was introduced, followed by addition and polymerization of a cyclic carbonate (trimethylene carbonate) and a cyclic ester (δ-valerolactone or ε-caprolactone). DPP acted as both neutralizer of the phosphazenium alkoxide (polyether chain end) and activator of the cyclic carbonate/ester. Using this method, linear- and star-tetrablock quarterpolymers were prepared in one pot. This work is emphasizing the strength of the previously developed catalyst switch strategy for the facile metal-free synthesis of complex macromolecular architectures. © 2014 Wiley Periodicals, Inc.

  10. One-pot synthesis of linear- and three-arm star-tetrablock quarterpolymers via sequential metal-free ring-opening polymerization using a "catalyst switch" strategy

    KAUST Repository

    Zhao, Junpeng

    2014-08-06

    A "catalyst switch" strategy has been used to sequentially polymerize four different heterocyclic monomers. In the first step, epoxides (1,2-butylene oxide and ethylene oxide) were successively polymerized from a monohydroxy or trihydroxy initiator in the presence of a strong phosphazene base promoter (t-BuP4). Then, an excess of diphenyl phosphate (DPP) was introduced, followed by addition and polymerization of a cyclic carbonate (trimethylene carbonate) and a cyclic ester (δ-valerolactone or ε-caprolactone). DPP acted as both neutralizer of the phosphazenium alkoxide (polyether chain end) and activator of the cyclic carbonate/ester. Using this method, linear- and star-tetrablock quarterpolymers were prepared in one pot. This work is emphasizing the strength of the previously developed catalyst switch strategy for the facile metal-free synthesis of complex macromolecular architectures. © 2014 Wiley Periodicals, Inc.

  11. Accelerated Combinatorial High Throughput Star Polymer Synthesis via a Rapid One-Pot Sequential Aqueous RAFT (rosa-RAFT) Polymerization Scheme.

    Science.gov (United States)

    Cosson, Steffen; Danial, Maarten; Saint-Amans, Julien Rosselgong; Cooper-White, Justin J

    2017-04-01

    Advanced polymerization methodologies, such as reversible addition-fragmentation transfer (RAFT), allow unprecedented control over star polymer composition, topology, and functionality. However, using RAFT to produce high throughput (HTP) combinatorial star polymer libraries remains, to date, impracticable due to several technical limitations. Herein, the methodology "rapid one-pot sequential aqueous RAFT" or "rosa-RAFT," in which well-defined homo-, copolymer, and mikto-arm star polymers can be prepared in very low to medium reaction volumes (50 µL to 2 mL) via an "arm-first" approach in air within minutes, is reported. Due to the high conversion of a variety of acrylamide/acrylate monomers achieved during each successive short reaction step (each taking 3 min), the requirement for intermediary purification is avoided, drastically facilitating and accelerating the star synthesis process. The presented methodology enables RAFT to be applied to HTP polymeric bio/nanomaterials discovery pipelines, in which hundreds of complex polymeric formulations can be rapidly produced, screened, and scaled up for assessment in a wide range of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Highly efficient one-pot three-component synthesis of naphthopyran derivatives in water catalyzed by hydroxyapatite

    Science.gov (United States)

    An expeditious and efficient protocol for the synthesis of naphthopyrans has been developed that proceeds via one-pot three-component sequential reaction in water catalyzed by hydroxyapatite or sodium-modified-hydroxyapatite. The title compounds have been obtained in high yield a...

  13. A green chemoselective one-pot protocol for expeditious synthesis of symmetric pyranodipyrimidine derivatives using ZrOCl2.8H2O

    Directory of Open Access Journals (Sweden)

    Mehdi Rimaz

    2016-09-01

    Full Text Available A convenient, highly efficient and time economic method has been described for the chemo- and regioselective synthesis of 5-aryloyl-1,3,7,9-tetraalkyl-2,8-dithioxo-2,3,8,9-tetrahydro-1H-pyrano[2,3-d:6,5-dˊ]dipyrimidine-4,6(5H,7H-diones derivatives by one-pot two-component reaction of 1,3-diethyl-2-thiobarbituric acid or 1,3-dimethyl-2-thiobarbituric acid with substituted arylglyoxalmonohydrates using commercially available zirconium (IV oxydichloride octahydrate (ZrOCl2.8H2O as green Lewis acid catalyst. This method is associated with some attractive characteristics such as good selectivity, very short reaction time, high yield of products, cleaner reaction profile, no harmful by-product, cheap and environmental benign catalyst, simple experimental and work-up procedure. This procedure does not require solvent separation and purification steps such as column chromatography.

  14. Stereodivergent Mannich reaction of bis(trimethylsilyl)ketene acetals with N-tert-butanesulfinyl imines by Lewis acid or Lewis base activation, a one-pot protocol to obtain chiral β-amino acids.

    Science.gov (United States)

    Cantú-Reyes, Margarita; Alvarado-Beltrán, Isabel; Ballinas-Indilí, Ricardo; Álvarez-Toledano, Cecilio; Hernández-Rodríguez, Marcos

    2017-09-20

    We report a one-pot synthesis of chiral β 2,2,3 -amino acids by the Mannich addition of bistrimethylsilyl ketene acetals to N-tert-butanesulfinyl imines followed by the removal of the chiral auxiliary. The synthesis and isolation of pure β-amino acid hydrochlorides were conducted under mild conditions, without strong bases and this method is operationally simple. The stereoselective reaction was promoted by two different activation methods that lead to different stereoisomers: (1) Lewis Acid (LA) catalysis with boron trifluoride diethyl etherate and (2) Lewis Base (LB) catalysis with tetrabutylammonium difluorotriphenylsilicate. The reaction presented good diastereoselectivity with LB activation and moderate to good dr with LA catalysis. The exceptions in both protocols were imines with electron donating groups in the aromatic ring.

  15. Exceedingly facile one-pot protocols to the synthesis of pyrimido annulated analogues of carbazolo condensed azepinones and their evaluation for analgesic activity

    Directory of Open Access Journals (Sweden)

    M. Agrawal

    2017-07-01

    Full Text Available Extremely simple protocols based on the reactivity of corresponding oxoketenedithioacetal (4, 2-(dimethylaminomethylene ketone (5, β-oxoenolether (6 and α,β-unsaturated ketone (7 derivatives of 7-ethyl-3, 4-dihydroazepino[3,2-b]carbazol-2,5(1H,7H-dione (3 have been developed to provide an easy access to their pyrimido annulated analogues (8-15 of medicinal interest. The key compound 3 from which, the synthesis proceeded has been realized in two steps from the commercial 3-amino-9-ethyl carbazole (1 on its reaction in the first step with ethyl succinyl chloride followed by cyclocondensation of the resulting ester 2 with PPA. The selected synthesized compounds were screened for in-vivo analgesic activity using acetic acid induced writhing model in mice. Among them, compound 13was found to be most active and found comparable to standard aspirin.

  16. One-pot synthesis of enantiomerically pure N-protected allylic amines from N-protected α-amino esters

    Directory of Open Access Journals (Sweden)

    Gastón Silveira-Dorta

    2016-05-01

    Full Text Available An improved protocol for the synthesis of enantiomerically pure allylic amines is reported. N-Protected α-amino esters derived from natural amino acids were submitted to a one-pot tandem reduction–olefination process. The sequential reduction with DIBAL-H at −78 °C and subsequent in situ addition of organophosphorus reagents yielded the corresponding allylic amines without the need to isolate the intermediate aldehyde. This circumvents the problem of instability of the aldehydes. The method tolerates well both Wittig and Horner–Wadsworth–Emmons organophosphorus reagents. A better Z-(diastereoselectivity was observed when compared to the previous one-pot method. The (diastereoselectivity of the process was affected neither by the reaction solvent nor by the amount of DIBAL-H employed. The method is compatible with the presence of free hydroxy groups as shown with serine and threonine derivatives.

  17. [Au]/[Pd] Multicatalytic Processes: Direct One-Pot Access to Benzo[ c ]chromenes and Benzo[ b ]furans

    KAUST Repository

    Oonishi, Yoshihiro

    2014-08-28

    A new synthetic protocol that combines the advantages offered by eco-friendly solvent-free reactions and sequential transformations is reported. This strategy offers straightforward access to benzo[c]chromenes and benzo[b]furans from commercially available starting materials. This two-step, one-pot strategy consists of an Au-catalyzed hydrophenoxylation process followed by Pd-catalyzed C-H activation or Mizoroki-Heck reactions. The selectivity of the process towards C-H activation or Mizoroki-Heck reaction can be easily tuned. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Copper-catalyzed one-pot synthesis of 1,2,4-triazoles from nitriles and hydroxylamine.

    Science.gov (United States)

    Xu, Hao; Ma, Shuang; Xu, Yuanqing; Bian, Longxiang; Ding, Tao; Fang, Xiaomin; Zhang, Wenkai; Ren, Yanrong

    2015-02-06

    A simple and efficient copper-catalyzed one-pot synthesis of substituted 1,2,4-triazoles through reactions of two nitriles with hydroxylamine has been developed. The protocol uses simple and readily available nitriles and hydroxylamine hydrochloride as the starting materials and inexpensive Cu(OAc)2 as the catalyst, and the corresponding 1,2,4-triazole derivatives are obtained in moderate to good yields. The reactions include sequential intermolecular addition of hydroxylamine to one nitrile to provide amidoxime, copper-catalyzed treatment of the amidoxime with another nitrile, and intramolecular dehydration/cyclization. This finding provides a new and useful strategy for synthesis of 1,2,4-triazole derivatives.

  19. One-Pot Conversion of Carbohydrates into Furan Derivatives via Furfural and 5-Hydroxylmethylfurfural as Intermediates.

    Science.gov (United States)

    Liu, Bing; Zhang, Zehui

    2016-08-23

    Recently, there has been growing interest in the transformation of renewable biomass into value-added fuels and chemicals. The catalytic conversion of naturally abundant carbohydrates can generate two-important furan chemicals: 5-hydroxymethylfurfural (HMF) from C6 carbohydrates and furfural from C5 carbohydrates. Both HMF and furfural have received great interest as precursors in the synthesis of commodity chemicals and liquid fuels. In recent years, a trend has emerged to integrate sequential catalytic processes involving multistep reactions for the direct one-pot transformation of carbohydrates into the aimed fuels and chemicals. One-pot reactions have remarkably unique and environmentally friendly benefits, including the fact that isolation and purification of intermediate compounds can be avoided. Herein, the present article aims to review recent advances in the one-pot conversion of carbohydrates into furan derivatives via furfural and HMF as intermediates. Special attention will be paid to the catalytic systems, mechanistic insight, reaction pathways, and catalyst stability. It is expected that this review will guide researchers to develop effective catalytic systems for the one-pot transformation of carbohydrates into furan derivatives. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Microwave-assisted one-pot synthesis of benzothiazole and ...

    Indian Academy of Sciences (India)

    Microwave-assisted synthesis of benzothiazole and benzoxazole libraries via PIFA promoted cyclocondensation of 2-aminothiophenols/2-aminophenols with aldehydes under one-pot condition in good to excellent yields was achieved. Twenty compounds have been investigated for their analgesic activity and showed ...

  1. Microwave assisted one-pot synthesis of benzothiazole and ...

    Indian Academy of Sciences (India)

    Dr.P.T.P

    1. Microwave assisted one-pot synthesis of benzothiazole and benzoxazole libraries as analgesic agents. C PRAVEEN a. , A NANDAKUMAR a. , P DHEENKUMAR b. , D MURALIDHARAN a and P T. PERUMAL a,. * a. Organic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600020,. Tamilnadu ...

  2. An environmentally benign one pot synthesis of substituted ...

    Indian Academy of Sciences (India)

    Instance of Plagiarism in Journal of Chemical Sci- ences and withdrawal of published article. The Journal of Chemical Sciences office received a complaint from an alert reader to the effect that the paper 'An environmentally benign one pot syn- thesis of substituted quinolines catalysed by fluo- roboric acid based ionic ...

  3. An environmentally benign three component one-pot synthesis of ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. One pot synthesis of amidoalkyl naphthol by condensation of aromatic aldehydes, 2-naphthol and amide/urea using silicotungstic acid as a catalyst is reported. The reaction was carried out under sol- vent-free reaction conditions. The method gave good yields of amidoalkyl naphthols in short reaction time.

  4. One-pot multienzyme (OPME) systems for chemoenzymatic synthesis of carbohydrates.

    Science.gov (United States)

    Yu, Hai; Chen, Xi

    2016-03-14

    Glycosyltransferase-catalyzed enzymatic and chemoenzymatic syntheses are powerful approaches for the production of oligosaccharides, polysaccharides, glycoconjugates, and their derivatives. Enzymes involved in the biosynthesis of sugar nucleotide donors can be combined with glycosyltransferases in one pot for efficient production of the target glycans from simple monosaccharides and acceptors. The identification of enzymes involved in the salvage pathway of sugar nucleotide generation has greatly facilitated the development of simplified and efficient one-pot multienzyme (OPME) systems for synthesizing major glycan epitopes in mammalian glycomes. The applications of OPME methods are steadily gaining popularity mainly due to the increasing availability of wild-type and engineered enzymes. Substrate promiscuity of these enzymes and their mutants allows OPME synthesis of carbohydrates with naturally occurring post-glycosylational modifications (PGMs) and their non-natural derivatives using modified monosaccharides as precursors. The OPME systems can be applied in sequence for synthesizing complex carbohydrates. The sequence of the sequential OPME processes, the glycosyltransferase used, and the substrate specificities of the glycosyltransferases define the structures of the products. The OPME and sequential OPME strategies can be extended to diverse glycans in other glycomes when suitable enzymes with substrate promiscuity become available. This Perspective summarizes the work of the authors and collaborators on the development of glycosyltransferase-based OPME systems for carbohydrate synthesis. Future directions are also discussed.

  5. One-Pot Catalyst-Free Synthesis of β- and γ-Hydroxy Sulfides using Diaryliodonium Salts and Microwave Irradiation

    Science.gov (United States)

    A facile one-pot high-yield protocol is described for the preparation of β- and γ-hydroxy sulfides directly from diaryliodonium salts, potassium thiocyanate, and ethane-1,2-diol (ethylene glycol)/propane-1,3-diol (β-propylene glycol) without the need for any additional catalyst o...

  6. One pot synthesis of 2-hydroxy pyrrolidine derivatives

    Directory of Open Access Journals (Sweden)

    Putta. P. Varma

    2011-01-01

    Full Text Available One pot reaction of various 2-amino-thiadiazoles or thiazoles and 2,3- dihydrofuran under mild condition in presence of CeCl 3.7H 2O as catalyst transformed the amino group of 2-amino-thiadiazoles or thiazoles into a medicinally important 2-hydroxy pyrrolidine ring system in good to excellent yields. The generality of the reaction was sufficiently investigated and demonstrated. The new reaction path way for this conversion was established by spectroscopic and analytical methods.

  7. One-pot multi-component green synthesis of highly substituted piperidines

    Directory of Open Access Journals (Sweden)

    Ravi Bansal

    2017-05-01

    Full Text Available An effective and expeditious method of the synthesis of a highly functionalized piperidines, catalyzed by nontoxic, recyclable and environment friendly sodium lauryl sulfate (SLS, via one-pot multi-component condensation of aldehydes, amines and β-ketoesters in water at room temperature, has been developed. This new protocol has advantages such as moderate to high yields of products obtained after simple post reaction workup. Structure of the synthesized compounds 4a–4j have been elucidated based on the 1H NMR, 13C NMR, FT-IR spectroscopy and elemental analysis.

  8. Yb(OTf){sub 3}-catalyzed one-pot three component synthesis for tertiary amines

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bum Seok; Kim, Ji Hye; Nam, Tae Kyu; Jang, Doo Ok [Dept. of Chemistry, Yonsei University, Wonju (Korea, Republic of)

    2015-07-15

    Tertiary amine functionality is found in many natural bioactive products such as alkaloids, amino acids, nucleic acids, pharmaceuticals, and agrochemicals. Tertiary amines have also been used as building blocks for nitrogen-containing organic compounds and synthetic polymers. A one-pot method for direct reductive amination of aldehydes has been developed to synthesize tertiary amines using HMDS as a nitrogen source in the presence of Yb(OTf ){sub 3}. With a stoichiometric amount of HMDS, the reaction afforded the desired tertiary amines without competitive reduction of the parent carbonyl compounds. This reaction offers a convenient and efficient protocol for synthesizing aromatic and aliphatic tertiary amines under mild reaction conditions.

  9. Efficient 'One Pot' Nitro Reduction-Protection of γ-Nitro Aliphatic Methyl Esters

    OpenAIRE

    Díaz-Coutiño, Francisco D.; Escalante, Jaime

    2009-01-01

    A simple and efficient protocol has been developed for the direct conversion of γ-nitro aliphatic methyl esters to N-(tert-butoxycarbonyl)amine methyl esters using NH4+HCO2- and Pd/C in the presence of (Boc)2O. There was a significant decrease in the reaction time under these conditions, increased yields and the purity of the products using this 'one pot' procedure. Un protocolo simple y eficiente de síntesis ha sido desarrollado para la conversión directa de metil ésteres de γ-nitro alifá...

  10. Light fluorous-tagged traceless one-pot synthesis of benzimidazoles facilitated by microwave irradiation.

    Science.gov (United States)

    Tseng, Chih-Chung; Tasi, Cheng-Hsun; Sun, Chung-Ming

    2012-06-01

    A novel protocol for rapid assemble of benzimidazole framework has been demonstrated. This method incorporated with light fluorous-tag provides a convenient method for diversification of benzimidazoles and for easy purification via fluorous solid-phase extraction (F-SPE) in a parallel manner. The key transformation of this study involves in situ reduction of aromatic nitro compound, amide formation, cyclization and aromatization promoted by microwave irradiation in a one-pot fashion. The strategy is envisaged to be applied for the establishment of drug-like small molecule libraries for high throughput screening.

  11. One-pot solvent-free rapid and green synthesis of 3,4-dihydropyrano[c]chromenes using grindstone chemistry

    Directory of Open Access Journals (Sweden)

    Devji S. Patel

    2016-09-01

    Full Text Available An easy solvent-free method is described for the synthesis of 3,4-dihydropyrano[c]chromenes by a one pot three component coupling reaction of aromatic aldehydes, malononitrile, and 4-hydroxycoumarin using basic ionic liquid as the catalyst by grindstone chemistry. The salient features of this one pot protocol are short reaction times, cleaner reaction profiles and simple workup.

  12. One-Pot Automated Synthesis of Quasi Triblock Copolymers for Self-Healing Physically Crosslinked Hydrogels.

    Science.gov (United States)

    Voorhaar, Lenny; De Meyer, Bernhard; Du Prez, Filip; Hoogenboom, Richard

    2016-10-01

    The preparation of physically crosslinked hydrogels from quasi ABA-triblock copolymers with a water-soluble middle block and hydrophobic end groups is reported. The hydrophilic monomer N-acryloylmorpholine is copolymerized with hydrophobic isobornyl acrylate via a one-pot sequential monomer addition through reversible addition fragmentation chain-transfer (RAFT) polymerization in an automated parallel synthesizer, allowing systematic variation of polymer chain length and hydrophobic-hydrophilic ratio. Hydrophobic interactions between the outer blocks cause them to phase-separate into larger hydrophobic domains in water, forming physical crosslinks between the polymers. The resulting hydrogels are studied using rheology and their self-healing ability after large strain damage is shown. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Transglutaminase-Catalyzed Bioconjugation Using One-Pot Metal-Free Bioorthogonal Chemistry.

    Science.gov (United States)

    Rachel, Natalie M; Toulouse, Jacynthe L; Pelletier, Joelle N

    2017-10-18

    General approaches for controlled protein modification are increasingly sought-after in the arena of chemical biology. Here, using bioorthogonal reactions, we present combinatorial chemoenzymatic strategies to effectuate protein labeling. A total of three metal-free conjugations were simultaneously or sequentially incorporated in a one-pot format with microbial transglutaminase (MTG) to effectuate protein labeling. MTG offers the particularity of conjugating residues within a protein sequence rather than at its extremities, providing a route to labeling the native protein. The reactions are rapid and circumvent the incompatibility posed by metal catalysts. We identify the tetrazine ligation as most-reactive for this purpose, as demonstrated by the fluorescent labeling of two proteins. The Staudinger ligation and strain-promoted azide-alkyne cycloaddition are alternatives. Owing to the breadth of labels that MTG can use as a substrate, our results demonstrate the versatility of this system, with the researcher being able to combine specific protein substrates with a variety of labels.

  14. Efficient Diels-Alder reaction of 1,2-benzoquinones with arynes and its utility in one-pot reactions.

    Science.gov (United States)

    Kaicharla, Trinadh; Bhojgude, Sachin Suresh; Biju, Akkattu T

    2012-12-21

    A new protocol for the efficient Diels-Alder reaction of 1,2-benzoquinones with arynes is reported. The aryne generated by the fluoride-induced 1,2-elimination of 2-(trimethylsilyl)aryl triflates undergoes a facile Diels-Alder reaction with 1,2-benzoquinones, affording the dioxobenzobicyclooctadienes in moderate to excellent yields. In addition, this methodology has been applied to the one-pot synthesis of benzoquinoxalinobarrelene and naphthalene derivatives.

  15. One-pot combination of enzyme and Pd nanoparticle catalysis for the synthesis of enantiomerically pure 1,2-amino alcohols

    NARCIS (Netherlands)

    Schrittwieser, J.; Coccia, F.; Kara, S.; Grischek, B.; Kroutil, W.; d'Alessandro, N.; Hollmann, F.

    2013-01-01

    One-pot combinations of sequential catalytic reactions can offer practical and ecological advantages over classical multi-step synthesis schemes. In this context, the integration of enzymatic and chemo-catalytic transformations holds particular potential for efficient and selective reaction

  16. Ceric ammonium nitrate catalysed three component one-pot efficient ...

    Indian Academy of Sciences (India)

    Wintec

    heterocyclic compounds. 26 here, we present a simple, mild and efficient protocol for synthesis of 2,4,5- triaryl-1H-imidazoles using CAN catalyst. 2. Experimental. 1. H NMR spectra were recorded on a 400 MHz Var- ian-Gemini spectrometer and are reported as parts per million (ppm) downfield from a tetramethylsi- ...

  17. One-pot four-component synthesis of 2-aryl-3,3-dihaloacrylonitriles using potassium hexacyanoferrate(II) as environmentally benign cyanide source

    International Nuclear Information System (INIS)

    Zhao, Zhouxing; Li, Zheng

    2011-01-01

    An efficient route to one-pot four-component reactions of aroyl chlorides, potassium hexacyanoferrate(II), triphenylphosphine and carbon tetrahalides to synthesize 2-aryl-3,3-dichloroacrylonitriles and 2-aryl-3,3-dibromoacrylonitriles was described. This protocol has advantages of use of non-toxic cyanide source, high yield and simple work-up procedure. (author)

  18. PhI(OAc)2-mediated one-pot oxidative decarboxylation and aromatization of tetrahydro-β-carbolines: synthesis of norharmane, harmane, eudistomin U and eudistomin I.

    Science.gov (United States)

    Kamal, Ahmed; Tangella, Yellaiah; Manasa, Kesari Lakshmi; Sathish, Manda; Srinivasulu, Vunnam; Chetna, Jadala; Alarifi, Abdullah

    2015-08-28

    Iodobenzene diacetate was employed as a mild and efficient reagent for one-pot oxidative decarboxylation of tetrahydro-β-carboline acids and dehydrogenation of tetrahydro-β-carbolines to access the corresponding aromatic β-carbolines. To the best of our knowledge this is the first synthesis of β-carbolines via a one-pot oxidative decarboxylation at ambient temperature. The utility of this protocol has been demonstrated in the synthesis of β-carboline alkaloids norharmane (2o), harmane (2p), eudistomin U (9) and eudistomin I (12).

  19. Green synthesis of tetrahydrobenzo[b]Pyrans by microwave assisted multi-component one-pot reactions in PEG-400.

    Science.gov (United States)

    Feng, Chun; Wang, Qiuyan; Lu, Cuifen; Yang, Guichun; Chen, Zuxing

    2012-01-01

    Polyethylene glycol is found to be a nontoxic and recyclable reaction medium for the microwave-assisted, multi-component one-pot reactions of aromatic aldehydes with ethyl-2-cyanoacetate and 1,3-cyclohexanedione or 5,5- dimethyl-1,3-cyclohexanedione in the presence of piperidine. This environmentally friendly microwave protocol offers ease of operation and enables recyclability of reaction medium and synthesis of a variety of substituted tetrahydrobenzo[b]pyran derivatives. It is an efficient, promising, and green synthetic strategy to construct tetrahydrobenzo[b]pyran skeleton.

  20. SOLVENT FREE ONE POT SYNTHESIS OF NOVEL NAPHTHO[1,8 ...

    African Journals Online (AJOL)

    KEY WORDS: Synthesis, Naphtho[1,8-gh]quinazoline-7,10-diones, One pot, ... In this regard, development of novel compounds and especially diverse small ..... catalysed by lithium bromide: An improved procedure for the Biginelli reaction.

  1. Multicomponent One-Pot Synthesis of Substituted Hantzsch Thiazole Derivatives Under Solvent Free Conditions

    Directory of Open Access Journals (Sweden)

    Bhaskar S. Dawane

    2009-01-01

    Full Text Available Thiazole derivatives were prepared by one-pot procedure by the reaction of α-haloketones, thiourea and substituted o-hydroxybenzaldehyde under environmentally solvent free conditions.

  2. One-pot tandem Ugi-4CR/S(N)Ar approach to highly functionalized quino[2,3-b][1,5]benzoxazepines.

    Science.gov (United States)

    Ghandi, Mehdi; Zarezadeh, Nahid; Abbasi, Alireza

    2016-05-01

    We have developed a convenient and facile method for the synthesis of functionalized diverse quino[2,3-b][1,5]benzoxazepines. These new compounds were synthesized through a one-pot sequential Ugi-4CR/base-free intramolecular aromatic nucleophilic substitution (S(N)Ar) reaction in moderate to good yields from readily available starting materials. Structural confirmation of the products is confirmed by analytical data and X-ray crystallography.

  3. Diversity-Oriented Synthesis of Coumarin-Linked Benzimidazoles via a One-Pot, Three-Step, Intramolecular Knoevenagel Cyclization.

    Science.gov (United States)

    Yao, Po-Hsin Eric; Kumar, Sunil; Liu, Yu-Li; Fang, Chiu-Ping; Liu, Chia-Chen; Sun, Chung-Ming

    2017-04-10

    Diversity-oriented synthesis of coumarin-linked benzimidazoles from N-(2-aminophenyl)-2-cyanoacetamide was achieved via a one-pot, three-step sequential reaction in excellent yields. In situ intramolecular cyclization of the cyanoacetamide afforded benzimidazoles which subsequently underwent a Knoevenagel condensation of the 2-cyanomethylbenzimidazoles with salicylaldehydes promoted by triethylamine to reach the target compounds. An important intermediate, 2-(2-imino-2H-chromen-3-yl)-1H-benzimidazole was characterized by X-ray analysis and further hydrolyzed to 2-(coumarin-3-yl)benzimidazole in acidic condition. Among the synthesized compounds, some were found to be promising inhibitors of porcine kidney d-amino acid oxidase (pkDAO).

  4. One-pot, mix-and-read peptide-MHC tetramers

    DEFF Research Database (Denmark)

    Leisner, Christian Valdemar Vinge; Loeth, Nina; Lamberth, Kasper

    2008-01-01

    BACKGROUND: Cytotoxic T Lymphocytes (CTL) recognize complexes of peptide ligands and Major Histocompatibility Complex (MHC) class I molecules presented at the surface of Antigen Presenting Cells (APC). Detection and isolation of CTL's are of importance for research on CTL immunity, and development...... molecules can be refolded in vitro, tetramerized with streptavidin, and used for specific T cell staining-all in a one-pot reaction without any intervening purification steps. CONCLUSIONS/SIGNIFICANCE: We have developed an efficient "one-pot, mix-and-read" strategy for peptide-MHC tetramer generation...

  5. [Au]/[Pd] Multicatalytic Processes: Direct One-Pot Access to Benzo[ c ]chromenes and Benzo[ b ]furans

    KAUST Repository

    Oonishi, Yoshihiro; Gó mez-Suá rez, Adriá n; Martin, Anthony R.; Makida, Yusuke; Slawin, Alexandra M. Z.; Nolan, Steven P.

    2014-01-01

    A new synthetic protocol that combines the advantages offered by eco-friendly solvent-free reactions and sequential transformations is reported. This strategy offers straightforward access to benzo[c]chromenes and benzo[b]furans from commercially

  6. One-pot efficient green synthesis of 1,4-dihydro-quinoxaline-2,3

    Indian Academy of Sciences (India)

    3-dione (1) has been achieved in a one-pot reaction at room temperature from substituted -phenylene diamine and oxalic acid under solvent-free conditions by a simple grinding method with unsurpassed atom economy. Thermal and powder ...

  7. Gene assembly via one-pot chemical ligation of DNA promoted by DNA nanostructures

    DEFF Research Database (Denmark)

    Manuguerra, Ilenia; Croce, Stefano; El-Sagheer, Afaf H.

    2018-01-01

    Current gene synthesis methods are driven by enzymatic reactions. Here we report the one-pot synthesis of a chemically-ligated gene from 14 oligonucleotides. The chemical ligation benefits from the highly efficient click chemistry approach templated by DNA nanostructures, and produces modified DNA...

  8. A novel one-pot synthesis of spirooxindole derivatives catalyzed by ...

    African Journals Online (AJOL)

    Nano zinc oxide was explored as a heterogeneous and reusable catalyst for the one-pot synthesis of spirooxindoles via three-component reaction between urea, isatin, and 1,3-dicarbonyl compounds. KEY WORDS: Nano-ZnO, Spirooxindoles, Isatin. Bull. Chem. Soc. Ethiop. 2013, 27(2), 309-314.

  9. Boric acid as a mild and efficient catalyst for one-pot synthesis of 1

    Indian Academy of Sciences (India)

    Abstract. An efficient green chemistry method has been developed for the synthesis of 1-amidoalkyl-2-naphthol derivatives via a one-pot three-component condensation of 2-naphthol, aldehydes and amide in the presence of boric acid as a mild catalyst.

  10. One-pot catalyst preparation : combined detemplating and Fe ionexchange of BEA through Fenton's chemistry

    NARCIS (Netherlands)

    Melián-Cabrera, I.; Kapteijn, F.; Moulijn, J.A.

    2005-01-01

    BEA zeolite has been simultaneously detemplated and Fe-exchanged by treating the parent zeolite with a Fenton's-type reagent (Fe3+ - H2O2) at low temperature. This one-pot process simplifies and speeds up considerably the preparation route. The catalyst shows excellent performance on N2O

  11. An efficient catalytic reductive amination: A facile one-pot access to ...

    Indian Academy of Sciences (India)

    An efficient catalytic reductive amination: A facile one-pot access to ... itors and in the manufacture of detergents and plastics.1 ... ammoniaborane/Ti(OiPr)4,5e ... demonstrated the first method for synthesis of 1,2- ... and column chromatography (Silica gel, n-hexane/ethyl .... supporting information at www.ias.ac.in/chemsci.

  12. Efficient one-pot four-component synthesis of fused thiazolopyridin-2 ...

    Indian Academy of Sciences (India)

    . 30. 70. 8. [Net3][Ac]. 1:1:1:1. 3. 30. 80. 9. [bmim][Cl]. 1:1:1:1. 3. 30. 78. 10 .... Catalyst-free one-pot synthesis of thiazolopyridin-2-ones. 1479. Table 3. Optimization of the activity of ionic liquid after reuse. Sl. No. No. of cycle. Yield (%). 1. I. 94. 3.

  13. One-Pot Functionalization of Graphene with Porphyrin through Cycloaddition Reactions

    NARCIS (Netherlands)

    Zhang, Xiaoyan; Hou, Lili; Cnossen, Arjen; Coleman, Anthony C.; Ivashenko, Oleksii; Rudolf, Petra; Wees, Bart J. van; Browne, Wesley R.; Feringa, Ben L.

    Two types of graphene-based hybrid materials, graphene-TPP (TPP=tetraphenylporphyrin) and graphene-PdTPP (PdTPP=palladium tetraphenylporphyrin), were prepared directly from pristine graphene through one-pot cycloaddition reactions. The hybrid materials were characterized by thermogravimetric

  14. Asymmetric Formation of Bridged Benzoxazocines through an Organocatalytic Multicomponent Dienamine-Mediated One-Pot Cascade

    DEFF Research Database (Denmark)

    Ransborg, Lars Krogager; Overgaard, Mette Kiilerich; Hejmanowska, Joanna

    2014-01-01

    An organocatalytic one-pot cascade leading to the stereoselective formation of novel bridged benzoxazocines is presented. The developed methodology is based on the first example of a γ-selective-Mannich-initiated cascade reaction and allows for direct annulation of the bridged benzoxazocines...

  15. Silica nanoparticles as a highly efficient catalyst for the one-pot ...

    African Journals Online (AJOL)

    Silica nanoparticles as a highly efficient catalyst for the one-pot synthesis of sterically congested ... Bulletin of the Chemical Society of Ethiopia ... 42 nm) as a catalyst under solvent free conditions at room temperature is described. The ease of ...

  16. A facile and expedient one-pot three-component reaction leading to ...

    Indian Academy of Sciences (India)

    Sci. Vol. 124, No. 5, September 2012, pp. 1007–1012. c Indian Academy of Sciences. A facile and expedient one-pot three-component reaction leading to multifunctionalized stabilized phosphorus ylides. ZAHRA HASSANI. ∗ and ZEINAB ESFANDIARPOUR. Department of New Materials, International Center for Science, ...

  17. Ammonia-Promoted One-Pot Tetrazolopiperidinone Synthesis by Ugi Reaction

    NARCIS (Netherlands)

    Patil, Pravin; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; Dömling, Alexander

    2017-01-01

    Ammonia in the tetrazole Ugi variation together with α-amino acid methyl ester-derived isocyanides provides tetrazolopiperidinones in good to high yields in one pot. The scope and limitations of this reaction were investigated by performing >70 reactions. The scaffold is useful to fill

  18. Ammonia-Promoted One-Pot Tetrazolopiperidinone Synthesis by Ugi Reaction.

    Science.gov (United States)

    Patil, Pravin; Kurpiewska, Katarzyna; Kalinowska-Tłuścik, Justyna; Dömling, Alexander

    2017-05-08

    Ammonia in the tetrazole Ugi variation together with α-amino acid methyl ester-derived isocyanides provides tetrazolopiperidinones in good to high yields in one pot. The scope and limitations of this reaction were investigated by performing >70 reactions. The scaffold is useful to fill high-throughput screening decks and in structure-based drug design.

  19. Nano-ZnO Catalyzed Multicomponent One-Pot Synthesis of Novel Spiro(indoline-pyranodioxine Derivatives

    Directory of Open Access Journals (Sweden)

    Harshita Sachdeva

    2014-01-01

    Full Text Available A simple catalytic protocol for the synthesis of novel spiro[indoline-pyranodioxine] derivatives has been developed using ZnO nanoparticle as an efficient, green, and reusable catalyst. The derivatives are obtained in moderate to excellent yield by one-pot three-component reaction of an isatin, malononitrile/ethylcyanoacetate, and 2,2-dimethyl-1,3-dioxane-4,6-dione in absolute ethanol under conventional heating and microwave irradiation. The catalyst was recovered by filtration from the reaction mixture and reused during five consecutive runs without any apparent loss of activity for the same reaction. The mild reaction conditions and recyclability of the catalyst make it environmentally benign synthetic procedure.

  20. exceedingly facile one-pot protocols to the synthesis of pyrimido

    African Journals Online (AJOL)

    Melting points were determined in an open capillary and are uncorrected. ..... Peripheral analgesic activity - acetic acid induced writhing test in mice ..... designing a more potent analgesic for therapeutic use in the field of medical science.

  1. A Simple, Rapid and Efficient One-pot Protocol for the Synthesis of 2 ...

    African Journals Online (AJOL)

    NJD

    A rapid and efficient condensation reaction of 2-aminothiophenol with various fatty acids in solvent-free conditions with or without microwave irradiation was ... heterocyclic compounds that have widespread applications in pharmaceutical and ... catalyzed reaction of aryl halides with o-aminothiophenol in presence of carbon ...

  2. Gold-silver-alloy nanoprobes for one-pot multiplex DNA detection

    International Nuclear Information System (INIS)

    Doria, G; Larguinho, M; Dias, J T; Baptista, P V; Pereira, E; Franco, R

    2010-01-01

    A specific colorimetric DNA detection method based on oligonucleotide functionalized gold-silver-alloy nanoparticles (AuAg-alloy-nanoprobes) is presented. The AuAg-alloy-nanoprobes were then used for the specific detection of a DNA sequence from TP53-a gene involved in cancer development. The AuAg-alloy-nanoprobes were then used in combination with Au-nanoprobes for a one-pot dual-colour detection strategy that allowed for the simultaneous differential detection of two distinct target sequences. This system poses an unprecedented opportunity to explore the combined use of metal nanoparticles with different composition towards the development of a multiplex one-pot colorimetric assay for DNA detection.

  3. Gold-silver-alloy nanoprobes for one-pot multiplex DNA detection

    Energy Technology Data Exchange (ETDEWEB)

    Doria, G; Larguinho, M; Dias, J T; Baptista, P V [Centro de Investigacao em Genetica Molecular Humana (CIGMH), Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Pereira, E [Rede de Quimica e Tecnologia (REQUIMTE), Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, 4169-007 Porto (Portugal); Franco, R, E-mail: pmvb@fct.unl.pt [Rede de Quimica e Tecnologia (REQUIMTE), Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2010-06-25

    A specific colorimetric DNA detection method based on oligonucleotide functionalized gold-silver-alloy nanoparticles (AuAg-alloy-nanoprobes) is presented. The AuAg-alloy-nanoprobes were then used for the specific detection of a DNA sequence from TP53-a gene involved in cancer development. The AuAg-alloy-nanoprobes were then used in combination with Au-nanoprobes for a one-pot dual-colour detection strategy that allowed for the simultaneous differential detection of two distinct target sequences. This system poses an unprecedented opportunity to explore the combined use of metal nanoparticles with different composition towards the development of a multiplex one-pot colorimetric assay for DNA detection.

  4. One-pot synthesis of thermoplastic mixed paramylon esters using trifluoroacetic anhydride.

    Science.gov (United States)

    Shibakami, Motonari; Tsubouchi, Gen; Sohma, Mitsugu; Hayashi, Masahiro

    2015-03-30

    Mixed paramylon esters prepared from paramylon (a storage polysaccharide of Euglena), acetic acid, and a long-chain fatty acid by one-pot synthesis using trifluoroacetic anhydride as a promoter and solvent were shown to have thermoplasticity. Size exclusion chromatography indicated that the mixed paramylon esters had a weight average molecular weight of approximately 4.9-6.7×10(5). Thermal analysis showed that these esters were stable in terms of the glass transition temperature (>90°C) and 5% weight loss temperature (>320°C). The degree of substitution of the long alkyl chain group, a dominant factor determining thermoplasticity, was controlled by tuning the feed molar ratio of acetic acid and long-chain fatty acid to paramylon. These results implied that the one-pot synthesis is useful for preparing structurally-well defined thermoplastic mixed paramylon esters with high molecular weight. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Caryophyllene driven diversity in an one-pot rearrangement of oxidation and transanular reactions

    Science.gov (United States)

    Tang, Hao-Yu; Quan, Lu-Lu; Yu, Jie; Zhang, Qiang; Gao, Jin-Ming

    2018-03-01

    Diversity oriented synthesis starting from natural products is a newly coming strategy to build diverse skeletons to meet the demands of high throughput screening in drug development. Caryophyllene was being considered as an ideal starting point to build divers natural-like sesquiterpenes due to its rich sources and build-in reactivity. In this paper, six new natural-like products (2-7) were synthesized form the natural cryophyllene oxide via cascade oxidation and transannular reactions in a one-pot procedure. Their structures were elucidated by exhaustive spectra method including 2D NMR and X-ray diffraction. Of the products, compounds 6 and 7 possess very similar skeleton to natural products. Our findings demonstrated that one-pot cascade reactions on macrocyclic natural products is a concise strategy to create diverse natural-like skeletons.

  6. Imides: forgotten players in the Ugi reaction. One-pot multicomponent synthesis of quinazolinones.

    Science.gov (United States)

    Mossetti, Riccardo; Pirali, Tracey; Saggiorato, Dèsirèe; Tron, Gian Cesare

    2011-06-28

    Up to now, the synthesis of quinazolinones has required lengthy synthetic procedures. Here, we describe an innovative one-pot multicomponent reaction leading to highly substituted quinazolinones. We believe that this novel transformation may open the door for the generation of new and pharmacologically active quinazolinones, but, most important of all, the resurrection of the imide-Ugi scaffold paves the way for the synthesis of novel molecular architectures. This journal is © The Royal Society of Chemistry 2011

  7. One-pot synthesis of phthalazines and pyridazino-aromatics: a novel strategy for substituted naphthalenes.

    Science.gov (United States)

    Kessler, Simon N; Wegner, Hermann A

    2012-07-06

    A new one-pot strategy for the synthesis of phthalazines and pyridazino-aromatics starting from aromatic aldehydes has been developed. A variety of substituents ranging from electron withdrawing to donating is tolerated furnishing the desired 1,2-diazine in good to excellent yields. The products have been applied to the bidentate Lewis acid catalyzed inverse electron-demand Diels-Alder (IEDDA) reaction opening a novel two-step entry into substituted naphthalenes, such as Naproxen.

  8. One-Pot Syntesis of 3-Functionalized 4-Hydroxycoumarin under Catalyst-Free Conditions

    Directory of Open Access Journals (Sweden)

    Yang Gao

    2018-01-01

    Full Text Available A concise and efficient one-pot synthesis of 3-functionalized 4-hydroxycoumarin derivatives via a three-component domino reaction of 4-hydroxycoumarin, phenylglyoxal and 3-arylaminocyclopent-2-enone or 4-arylaminofuran-2(5H-one under catalyst-free and microwave irradiation conditions is described. This synthesis involves a group-assisted purification process, which avoids traditional recrystallization and chromatographic purification methods.

  9. A one-pot radiosynthesis of [125I]iodoazido photoaffinity labels

    International Nuclear Information System (INIS)

    Wilson, A.A.; Dannals, R.F.; Ravert, H.T.; Wagner, H.N. Jr.; Grigoriadis, D.E.

    1989-01-01

    A useful method for preparing radioiodinated photoaffinity labels from alkyl anilines which offer significant advantages over present methods is described. The one-pot synthesis gives good radiochemical yields (40-64%) of pure, high specific activity (350-1500 mCi/μmol) 124 I labelled iodaryl azides while minimising manipulation of radioactive materials. Purification of the [ 125 I]iodoazido photoaffinity labels is achieved by high performance liquid chromatography. (author)

  10. One-Pot Synthesis and Antimicrobial Activity of Novel α-Aminophosphonates Using TMG

    Directory of Open Access Journals (Sweden)

    B. Siva Kumar

    2011-01-01

    Full Text Available α-Aminophosphonates (4a-j were synthesized in one-pot simultaneous reaction of 4-bromo-3-methyl benzenamine (1, dimethylphosphite (3 and different aromatic aldehydes (2a-j by Kabachnik-Fields reaction in the presence of tetramethylguanidine (TMG (10 mole% as catalyst in toluene at reflux temperature afforded 4a-j in good yields. All these compounds were found to exhibit moderate to good antimicrobial activity.

  11. Facile one-pot synthesis of porphyrin based porous polymer networks (PPNs) as biomimetic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zou, LF; Feng, DW; Liu, TF; Chen, YP; Fordham, S; Yuan, S; Tian, J; Zhou, HC

    2015-01-01

    Stable porphyrin based porous polymer networks, PPN-23 and PPN-24, have been synthesized through a facile one-pot approach by the aromatic substitution reactions of pyrrole and aldehydes. PPN-24(Fe) shows high catalytic efficiency as a biomimetic catalyst in the oxidation reaction of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) in the presence of H2O2.

  12. One-pot synthesis of polyunsaturated fatty acid amides with anti-proliferative properties.

    Science.gov (United States)

    Tremblay, Hugo; St-Georges, Catherine; Legault, Marc-André; Morin, Caroline; Fortin, Samuel; Marsault, Eric

    2014-12-15

    A one-pot environmentally friendly transamidation of ω-3 fatty acid ethyl esters to amides and mono- or diacylglycerols was investigated via the use of a polymer-supported lipase. The method was used to synthesize a library of fatty acid monoglyceryl esters and amides. These new derivatives were found to have potent growth inhibition effects against A549 lung cancer cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Recent Advances in the Catalytic One-Pot Synthesis of Flavonoids and Chromones.

    Science.gov (United States)

    Mohadeszadeh, Manijeh; Iranshahi, Mehrdad

    2017-01-01

    Flavonoids and chromones are two important classes of natural products that have various biological properties. During the past 10 years, there has been a significant increase in studies on the one-pot synthesis of flavonoids and chromones as medicinal scaffolds in drug discovery. This review describes the scope, mechanistic properties and regio- and chemo-selectivity features of several recently developed one-pot procedures for the synthesis of substituted chromones and flavonoids that have recently been published. Special importance is placed on the most promising and exciting medicinal applications of flavonoids and chromones. In this review, we discuss the progress on the synthesis of flavonoid and chromone derivatives in the presence of metal catalysts, organocatalysts, solid surfaces, microwave irradiation, acid and base catalysis, etc. For example, flavones can be prepared via the catalytic coordination of palladium complexes in a short time and at a low temperature with a high yield. Additionally, the one-pot synthesis of 2-substituted chromones via metal triflate (Yb(OTf)3) has provided the best result for this type of reaction with a high yield and a high regio and chemoselectivity. Generally, this review proposes the first specific overview of this developing and rapidly expanding field of flavonoid synthesis. We also discuss the mechanisms and advantages and disadvantages of methods for the synthesis of flavonoids and chromones. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. One-Pot Synthesis of Charged Amphiphilic Diblock and Triblock Copolymers Via High-Throughput Cu(0-Mediated Polymerization

    Directory of Open Access Journals (Sweden)

    Lenny Voorhaar

    2017-07-01

    Full Text Available Block copolymers containing functionalized monomers, for example those containing charged groups, can be used for many purposes, one of which is the design of polymeric supramolecular materials based on electrostatic interactions. In this paper the synthesis of diblock copolymers and ABA-triblock copolymers containing poly(n-butyl acrylate as a first or middle block and poly(2-(dimethylaminoethyl acrylate, poly(1-ethoxyethyl acrylate and poly(1-ethoxyethyl-2-carboxyethyl acrylate as second or outer blocks, resulting in block copolymers that can contain positive or negative charges, is reported. The polymerizations were performed and optimized via one-pot sequential monomer addition reactions via Cu(0-mediated polymerization using an automated parallel synthesizer. Different initiators, monomer concentrations and polymerization times were tested. While a bromide-containing initiator led to the best results for most monomers, when polymerizing 2-(dimethylaminoethyl acrylate the use of a chloride-containing initiator was necessary. Due to the slower polymerization using this initiator, a longer polymerization time was needed before addition of the second monomer. Using the optimized conditions, the diblock and triblock copolymers could be synthesized with good control over molecular weight and dispersities around 1.1 were obtained.

  15. One-pot synthesis and sigma receptor binding studies of novel spirocyclic-2,6-diketopiperazine derivatives.

    Science.gov (United States)

    Ghandi, Mehdi; Sherafat, Fatemeh; Sadeghzadeh, Masoud; Alirezapour, Behrouz

    2016-06-01

    New spirocyclic-2,6-diketopiperazine derivatives containing benzylpiperidine and cycloalkane moieties were synthesized by a one-pot two-step sequential Ugi/intramolecular N-amidation process in moderate to good yields. The in vitro ligand-binding profile studies performed on the sigma-1 and sigma-2 receptors revealed that the σ1 affinities and subtype selectivities of three spirocyclic piperidine derivatives are generally comparable to those of spirocycloalkane analogues. Compared to the low σ1 affinities obtained for cycloalkyl-substituted spirocyclic-2,6-diketopiperazines with n=2, those with n=1 proved to have optimal fitting with σ2 subtype by exhibiting higher affinities. Moreover, the best binding affinity and subtype selectivity was identified for compound 3c with Kiσ1=5.9±0.5nM and Kiσ2=563±21nM as well as 95-fold σ1/σ2 selectivity ratio, respectively. Copyright © 2016. Published by Elsevier Ltd.

  16. One-pot preparation of mRNA/cDNA display by a novel and versatile puromycin-linker DNA.

    Science.gov (United States)

    Mochizuki, Yuki; Biyani, Manish; Tsuji-Ueno, Sachika; Suzuki, Miho; Nishigaki, Koichi; Husimi, Yuzuru; Nemoto, Naoto

    2011-09-12

    A rapid, easy, and robust preparation method for mRNA/cDNA display using a newly designed puromycin-linker DNA is presented. The new linker is structurally simple, easy to synthesize, and cost-effective for use in "in vitro peptide and protein selection". An introduction of RNase T1 nuclease site to the new linker facilitates the easy recovery of mRNA/cDNA displayed protein by an improvement of the efficiency of ligating the linker to mRNAs and efficient release of mRNA/cDNA displayed protein from the solid-phase (magnetic bead). For application demonstration, affinity selections were successfully performed. Furthermore, we introduced a "one-pot" preparation protocol to perform mRNA display easy. Unlike conventional approaches that require tedious and downstream multistep process including purification, this protocol will make the mRNA/cDNA display methods more practical and convenient and also facilitate the development of next-generation, high-throughput mRNA/cDNA display systems amenable to automation.

  17. One-pot reaction for the preparation of biofunctionalized self-assembled monolayers on gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Raigoza, Annette F.; Fies, Whitney; Lim, Amber; Onyirioha, Kristeen; Webb, Lauren J., E-mail: lwebb@cm.utexas.edu

    2017-02-01

    Highlights: • One-pot synthesis of α-helical-terminated self-assembled monolayers on Au(111). • Synthesis of high density, structured, and covalently bound α-helices on Au(111). • Characterization by surface-averaged and single molecule techniques. • Peptide-terminated surfaces for fabrication of biomaterials and sensors. - Abstract: The Huisgen cycloaddition reaction (“click” chemistry) has been used extensively to functionalize surfaces with macromolecules in a straightforward manner. We have previously developed a procedure using the copper(I)-catalyzed click reaction to tether synthetic α-helical peptides carrying two alkyne groups to a well-ordered azide-terminated alkanethiol self-assembled monolayer (SAM) on a Au(111) surface. While convenient, click-based strategies potentially pose significant problems from reagents, solvents, and reaction temperatures that may irreversibly damage some molecules or substrates. Tuning click chemistry conditions would allow individual optimization of reaction conditions for a wide variety of biomolecules and substrate materials. Here, we explore the utility of simultaneous SAM formation and peptide-attachment chemistry in a one-pot reaction. We demonstrate that a formerly multistep reaction can be successfully carried out concurrently by mixing azide-terminated alkanethiols, CuCl, and a propargylglycine-containing peptide over a bare gold surface in ethanol and reacting at 70 °C. X-ray photoelectron spectroscopy (XPS), surface infrared spectroscopy, surface circular dichroic (CD) spectroscopy, and scanning tunneling microscopy (STM) were used to determine that this one-pot reaction strategy resulted in a high density of surface-bound α-helices without aggregation. This work demonstrates the simplicity and versatility of a SAM-plus-click chemistry strategy for functionalizing Au surfaces with structured biomolecules.

  18. One-Pot Exfoliation of Graphite and Synthesis of Nanographene/Dimesitylporphyrin Hybrids

    Science.gov (United States)

    Bernal, M. Mar; Pérez, Emilio M.

    2015-01-01

    A simple one-pot process to exfoliate graphite and synthesize nanographene-dimesitylporphyrin hybrids has been developed. Despite the bulky mesityl groups, which are expected to hinder the efficient π–π stacking between the porphyrin core and graphene, the liquid-phase exfoliation of graphite is significantly favored by the presence of the porphyrins. Metallation of the porphyrin further enhances this effect. The resulting graphene/porphyrin hybrids were characterized by spectroscopy (UV-visible, fluorescence, and Raman) and microscopy (STEM, scanning transmission electron microscopy). PMID:25984598

  19. Synthesis of cyclopentadiene-fused chromanones via one-pot multicomponent reactions.

    Science.gov (United States)

    Ghandi, Mehdi; Ghomi, Ali-Tabatabaei; Kubicki, Maciej

    2013-03-15

    We have developed one-pot method for the synthesis of functionalized novel cyclopentadiene-fused chromanone scaffolds. A variety of 4-oxo-2,4-dihydrocyclopenta[c]chromene-1,2-dicarboxylates were obtained in moderate to good yields via condensation of 2-hydroxybenzaldehydes and ethyl acetoacetate with 1:1 acetylenecarboxylate-isocyanides in toluene. These reactions presumably proceed via reaction of the in situ generated 3-acetyl-2H-chromen-2-ones with acetylenecarboxylate-isocyanide zwitterionic intermediates through Michael addition/intramolecular cyclization and double [1,5] acyl shift rearrangement cascade.

  20. Tetramethyl guanidine (TMG catalyzed synthesis of novel a -amino phosphonates by one-pot reaction

    Directory of Open Access Journals (Sweden)

    S. Annar

    2010-07-01

    Full Text Available An efficient method has been developed for the synthesis of a -amino phosphonates (4a-j by the three component one-pot reaction of equimolar quantities of 2-amino methyl furan (1, dimethyl / diethyl phosphite (2 and various aldehydes (3a-j in dry toluene at reflux conditions via Kabachnik – Fields reaction in high yields (70-80% in the presence of tetramethyl guanidine (TMG as catalyst. The TMG can be easily recovered from the reaction mixture after completion of the reaction and can be reused. Their antimicrobial activity has also been evaluated.

  1. Novel dextran derivatives with unconventional structure formed in an efficient one-pot reaction.

    Science.gov (United States)

    Hotzel, Konrad; Heinze, Thomas

    2016-11-03

    An efficient one-pot synthesis of new dextran derivatives is described. The functional groups of β-alanine, i.e., the carboxyl- and amine group, are converted independently in one-step by iminium chloride to form products with a single substituent. The dextran N-[(dimethylamino)methylene]-β-alanine ester is formed selectively. The structure of the resulting polymers is unambiguously determined by means of NMR- and FTIR-spectroscopy and elemental analysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Solvent free one pot synthesis of amidoalkyl naphthols over phosphotungstic acid

    Directory of Open Access Journals (Sweden)

    Divya P. Narayanan

    2017-07-01

    Full Text Available Montmorillonite KSF clay was effectively modified by the encapsulation of phosphotungstic acid into the clay layers via sonication followed by incipient wet impregnation method. The prepared catalysts were characterized by X-ray diffraction (XRD, Fourier-transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM techniques. The catalytic activities of the prepared systems were investigated in the solvent free synthesis of amidoalkyl naphthols by the multicomponent one-pot condensation of an aldehyde, β-naphthol and an amide or urea. Excellent yield, shorter reaction time, easy work-up, and reusability of the catalyst are the main attractions of this green procedure.

  3. One-Pot Synthesis of N-(α-Peroxy)Indole/Carbazole via Chemoselective Three-Component Condensation Reaction in Open Atmosphere

    KAUST Repository

    Wang, Xinbo

    2015-11-06

    A facile one-pot synthesis of N-(α-peroxy)indole and N-(α-peroxy)carbazole has been developed using metal-free, organo-acid-catalyzed three-component condensation reactions of indole/carbazole, aldehyde, and peroxide. Based on the reaction discovered, a new synthetic proposal for Fumitremorgin A and Verruculogen is introduced. Such a protocol could be easily handled and scaled up in an open atmosphere with a wide substrate scope, enabling the construction of a new molecule library.

  4. One-Pot Multicomponent Synthesis of Thiourea Derivatives in Cyclotriphosphazenes Moieties

    Directory of Open Access Journals (Sweden)

    Zainab Ngaini

    2017-01-01

    Full Text Available In this study, hexasubstituted thiourea was carried out via reaction of isothiocyanato cyclophosphazene intermediates with a series of aromatics amines and amino acids in a one-pot reaction system. The reaction was not as straightforward as typical thiourea synthesis. Six unexpected thiourea derivatives 3a–f were formed in the presence of cyclotriphosphazene moieties in good yields (53–82%. The structures of 3a–f were characterized by elemental analysis and FTIR, 1H, 13C, and 31P NMR spectroscopies. The occurrence of reverse thioureas formation in a one-pot reaction system is discussed. The possible binding interaction of the synthesised thiourea 3a-b in comparison to the predicted phenyl thiourea 5a-b and the targeted 4a with enzyme enoyl ACP reductase (FabI is also discussed. Molecular docking of the targeted hexasubstituted thiourea 4a is able to give higher binding affinity of −7.5 kcal/mol compared to 5a-b (−5.9 kcal/mol and −6.3 kcal/mol and thiourea 3a-b (−4.5 kcal/mol and −4.7 Kcal/mol.

  5. One-pot synthesis of Ag-SiO2-Ag sandwich nanostructures

    International Nuclear Information System (INIS)

    Li Chaorong; Mei Jie; Li Shuwen; Lu Nianpeng; Wang Lina; Chen Benyong; Dong Wenjun

    2010-01-01

    Ag-SiO 2 -Ag sandwich nanostructures were prepared by a facile one-pot synthesis method. The Ag core, SiO 2 shell and Ag nanoparticle shell were all synthesized with polyvinylpyrrolidone, catalysed by ammonia, in the one-pot reaction. The polyvinylpyrrolidone, acting as a smart reducing agent, reduced the Ag + to Ag cores and Ag shells separately. Furthermore, the polyvinylpyrrolidone served as a protective agent to prevent the silver cores from aggregating. The SiO 2 shell and outer layer Ag nanoparticles were obtained when tetraethyl orthosilicate and ammonia were added to the silver core solution. Ammonia, acting as the catalyst, accelerated the hydrolysis of the tetraethyl orthosilicate to SiO 2 , which coated the silver cores. Furthermore, Ag(NH 3 ) 2 + ions were formed when aqueous ammonia was added to the solution, which increased the reduction capability. Then the polyvinylpyrrolidone reduced the Ag(NH 3 ) 2 + ions to small Ag nanoparticles on the surface of the Ag-SiO 2 and formed Ag-SiO 2 -Ag sandwich structures with a standard deviation of less than 4%. This structure effectively prevented the Ag nanoparticles on the silica surface from aggregating. Furthermore, the Ag-SiO 2 -Ag sandwich structures showed good catalysis properties due to the large surface area/volume value and activity of surface atoms of Ag particles.

  6. Synthesis of hybrid Au–ZnO nanoparticles using a one pot polyol process

    Energy Technology Data Exchange (ETDEWEB)

    Mezni, Amine [Unité de recherche “Synthèse et Structure de Nanomatériaux” UR11ES30, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Jarzouna (Tunisia); Centre d' Elaboration de Matériaux et d' Etudes Structurales, CNRS, UPR 8011, Université de Toulouse, 29 Rue Jeanne Marvig, 31055 Toulouse (France); Mlayah, Adnen; Serin, Virginie [Centre d' Elaboration de Matériaux et d' Etudes Structurales, CNRS, UPR 8011, Université de Toulouse, 29 Rue Jeanne Marvig, 31055 Toulouse (France); Smiri, Leila Samia, E-mail: lsmiri@gmail.com [Unité de recherche “Synthèse et Structure de Nanomatériaux” UR11ES30, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Jarzouna (Tunisia)

    2014-10-15

    In this work, we report on the synthesis of hybrid Au–ZnO nanoparticles using a one-pot chemical method that makes use of 1,3-propanediol as a solvent, a reducing agent and a stabilizing layer. The produced nanoparticles consisted of Au cores decorated with ZnO nanoparticles. The structure and morphology of the nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX) and Raman spectroscopy. Optical extinction measurements, combined with numerical simulations, showed that the Au–ZnO nanoparticles exhibit a localized surface plasmon resonance (SPR) clearly red-shifted with respect to that of bare Au nanoparticles (AuNPs). This work contributes to the emergence of multi-functional nanomaterials with possible applications in surface plasmon resonance based biosensors, energy-conversion devices, and in water-splitting hydrogen production. - Highlights: • Hybrid Au–ZnO nanoparticles were synthesized by a novel one-pot synthesis method that makes use of 1,3-propanediol. • The polyol solvent 1,3-propanediol plays the roles of the reducing agent and the stabilizer layer. • The Au–ZnO nanoparticles exhibit a strong localized surface plasmon resonance.

  7. Assembly of a biocompatible triazole-linked gene by one-pot click-DNA ligation

    Science.gov (United States)

    Kukwikila, Mikiembo; Gale, Nittaya; El-Sagheer, Afaf H.; Brown, Tom; Tavassoli, Ali

    2017-11-01

    The chemical synthesis of oligonucleotides and their enzyme-mediated assembly into genes and genomes has significantly advanced multiple scientific disciplines. However, these approaches are not without their shortcomings; enzymatic amplification and ligation of oligonucleotides into genes and genomes makes automation challenging, and site-specific incorporation of epigenetic information and/or modified bases into large constructs is not feasible. Here we present a fully chemical one-pot method for the assembly of oligonucleotides into a gene by click-DNA ligation. We synthesize the 335 base-pair gene that encodes the green fluorescent protein iLOV from ten functionalized oligonucleotides that contain 5ʹ-azide and 3ʹ-alkyne units. The resulting click-linked iLOV gene contains eight triazoles at the sites of chemical ligation, and yet is fully biocompatible; it is replicated by DNA polymerases in vitro and encodes a functional iLOV protein in Escherichia coli. We demonstrate the power and potential of our one-pot gene-assembly method by preparing an epigenetically modified variant of the iLOV gene.

  8. One-Pot Multicomponent Coupling Methods for the Synthesis of Diastereo- and Enantioenriched (Z)-Trisubstituted Allylic Alcohols

    Science.gov (United States)

    Kerrigan, Michael H.; Jeon, Sang-Jin; Chen, Young K.; Salvi, Luca; Carroll, Patrick J.; Walsh, Patrick J.

    2009-01-01

    (Z)-Trisubstituted allylic alcohols are widespread structural motifs in natural products and biologically active compounds but are difficult to directly prepare. Introduced herein is a general one-pot multicomponent coupling method for the synthesis of (Z)-α,α,β-trisubstituted allylic alcohols. (Z)-Trisubstituted vinylzinc reagents are formed in situ by initial hydroboration of 1-bromo-1-alkynes. Addition of dialkylzinc reagents induces a 1,2-metallate rearrangement that is followed by a boron-to-zinc transmetallation. The resulting vinylzinc reagents add to a variety of prochiral aldehydes to produce racemic (Z)-trisubstituted allylic alcohols. When enantioenriched aldehyde substrates are employed (Z)-trisubstituted allylic alcohols are isolated with high dr (>20:1 in many cases). For example, vinylation of enantioenriched benzyl protected α- and β-hydroxy propanal derivatives furnished the expected anti-Felkin addition products via chelation control. Surprisingly, silyl protected α-hydroxy aldehydes also afford anti-Felkin addition products. A protocol for the catalytic asymmetric addition of (Z)-trisubstituted vinylzinc reagents to prochiral aldehydes with a (−)-MIB-based catalyst has also been developed. Several additives were investigated as inhibitors of the Lewis acidic alkylzinc halide byproducts, which promote the background reaction to form the racemate. α-Ethyl and α-cyclohexyl (Z)-trisubstituted allylic alcohols can now be synthesized with excellent levels of enantioselectivity in the presence of diamine inhibitors. PMID:19476375

  9. Smiles Rearrangement Based Practical One-pot Synthesis of N-Alkyl/aryl-6-aminoquinolines from 6-Hydroxylquinoline

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yongsheng; Vijaykumar, B. V. D.; Jang, Kiwan; Choi, Kyungmin; Shin, Dongsoo [Changwon National Univ., Changwon (Korea, Republic of); Zuo, Hua [Southwest Univ., Chongqing (Korea, Republic of); Yoon, Yongjin [Gyeongsang National Univ., Chinju (Korea, Republic of)

    2013-12-15

    The C-N coupling protocol reported herein represents a convenient and practical synthesis of N-alkyl/aryl-6-aminoquinolines in a three-step one-pot manner by simple addition of 6-hydroxyquinoline and N-alkyl/aryl-2-chloroacetamides with Cs{sub 2}CO{sub 3} or K{sub 2}CO{sub 3} in DMF at 150 .deg. C via Smiles rearrangement. An electron donating substituent on the nitrogen counterpart would accelerate the rearrangement process to achieve various anilines in good yields. We currently engaged in making a chemical library including multifarious N-substituted-6-aminoquinolines, to be used in the screening for specific AChEI activity. Furthermore, this work extends the scope of preparing different heterocyclic synthons in drug design for various biological activities. Aminoquinolines and their derivatives are important chemical entities that are widely used as pro-drugs and drugs due to their antimicrobial, cytotoxic and anti-malarial activities etc.

  10. One pot 'click' reactions : tandem enantioselective biocatalytic epoxide ring opening and [3+2] azide alkyne cycloaddition

    NARCIS (Netherlands)

    Campbell-Verduyn, Lachlan S.; Szymanski, Wiktor; Postema, Christiaan P.; Dierckx, Rudi A.; Elsinga, Philip H.; Janssen, Dick B.; Feringa, Ben L.

    2010-01-01

    Halohydrin dehalogenase (HheC) can perform enantioselective azidolysis of aromatic epoxides to 1,2-azido alcohols which are subsequently ligated to alkynes producing chiral hydroxy triazoles in a one-pot procedure with excellent enantiomeric excess.

  11. Lanthanide nitrates as Lewis acids in the one-pot synthesis of 1,2,4-oxadiazole derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Vale, Juliana A.; Faustino, Wagner M., E-mail: julianadqf@yahoo.com.br [Departamento de Quimica, Universidade Federal da Paraiba, Joao Pessoa, PB (Brazil); Zampieri, Davila de S.; Moran, Paulo J.S.; Rodrigues, Jose A.R. [Instituto de Quimica, Universidade Estadual de Campinas, SP (Brazil); Sa, Gilberto F. de [Departamento de Quimica Fundamental, CCEN, Universidade Federal de Pernambuco, Recife, PE (Brazil)

    2012-08-15

    In this work we report the use of lanthanide nitrates [Ln(NO{sub 3}){sub 3}] acting as catalyst in direct one pot synthesis of 3-benzoyl- and 3-acetyl-1,2,4-oxadiazoles derivatives from ketones, nitriles and nitric acid. This is the first example of one-pot synthesis of benzoyl- and acetyl 1,2,4-oxadiazoles derivatives preparation using acetophenones derivates with electron-donator groups. (author)

  12. A one-pot chemoselective synthesis of secondary amines by using a biomimetic electrocatalytic system

    International Nuclear Information System (INIS)

    Largeron, Martine

    2009-01-01

    A one-pot electrochemically induced oxidation-imine formation-reduction route to secondary amines is described in detail. The key step of the process consists of the o-iminoquinone-mediated chemoselective catalytic oxidation of a primary aliphatic amine substrate, in the presence of a second amine used as the alkylating agent. Through the examination of the scope of the reaction by systematically varying both amine substrate and amine alkylating agent, it can be shown that this reaction sequence, leaving ammonia as the sole by-product, allows the rapid synthesis of various secondary amines in moderate to good yields. This process, that highlights the pre-eminent green advantages of electrochemical synthesis, especially the utilization of electricity as energy instead of chemical reagents, high atom economy as well as ambient temperature and pressure, could be a mild alternative to already reported synthetic methods.

  13. A one-pot chemoselective synthesis of secondary amines by using a biomimetic electrocatalytic system

    Energy Technology Data Exchange (ETDEWEB)

    Largeron, Martine [UMR CNRS 8638, Synthese et Structure de Molecules d' nteret Pharmacologique, Universite Paris Descartes, Faculte des Sciences Pharmaceutiques et Biologiques, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France)], E-mail: martine.largeron@parisdescartes.fr

    2009-09-01

    A one-pot electrochemically induced oxidation-imine formation-reduction route to secondary amines is described in detail. The key step of the process consists of the o-iminoquinone-mediated chemoselective catalytic oxidation of a primary aliphatic amine substrate, in the presence of a second amine used as the alkylating agent. Through the examination of the scope of the reaction by systematically varying both amine substrate and amine alkylating agent, it can be shown that this reaction sequence, leaving ammonia as the sole by-product, allows the rapid synthesis of various secondary amines in moderate to good yields. This process, that highlights the pre-eminent green advantages of electrochemical synthesis, especially the utilization of electricity as energy instead of chemical reagents, high atom economy as well as ambient temperature and pressure, could be a mild alternative to already reported synthetic methods.

  14. Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites.

    Science.gov (United States)

    Liu, Chao; Hajagos, Tibor Jacob; Chen, Dustin; Chen, Yi; Kishpaugh, David; Pei, Qibing

    2016-02-01

    Zirconium oxide nanoparticles are promising candidates for optical engineering, photocatalysis, and high-κ dielectrics. However, reported synthetic methods for the colloidal zirconium oxide nanoparticles use unstable alkoxide precursors and have various other drawbacks, limiting their wide application. Here, we report a facile one-pot method for the synthesis of colloidally stable zirconium oxide nanoparticles. Using a simple solution of zirconium trifluoroacetate in oleylamine, highly stable zirconium oxide nanoparticles have been synthesized with high yield, following a proposed amidization-assisted sol-gel mechanism. The nanoparticles can be readily dispersed in nonpolar solvents, forming a long-term stable transparent solution, which can be further used to fabricate high-refractive-index nanocomposites in both monolith and thin-film forms. In addition, the same method has also been extended to the synthesis of titanium oxide nanoparticles, demonstrating its general applicability to all group IVB metal oxide nanoparticles.

  15. One-Pot Synthesis of Cyclopropane-Fused Cyclic Amidines: An Oxidative Carbanion Cyclization.

    Science.gov (United States)

    Veeranna, Kirana Devarahosahalli; Das, Kanak Kanti; Baskaran, Sundarababu

    2017-12-18

    A novel and efficient one-pot method has been developed for the synthesis of cyclopropane-fused bicyclic amidines on the basis of a CuBr 2 -mediated oxidative cyclization of carbanions. The usefulness of this unique multicomponent strategy has been demonstrated by the use of a wide variety of substrates to furnish novel cyclopropane-containing amidines with a quaternary center in very good yields. This ketenimine-based approach provides straightforward access to biologically active and pharmaceutically important 3-azabicyclo[n.1.0]alkane frameworks under mild conditions. The synthetic power of this methodology is exemplified in the concise synthesis of the pharmaceutically important antidepressant drug candidate GSK1360707 and key intermediates for the synthesis of amitifadine, bicifadine, and narlaprevir. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Simple one-pot synthesis of thioureas from amine, carbon disulfide and oxidants in water

    Directory of Open Access Journals (Sweden)

    Milosavljević Milutin M.

    2016-01-01

    Full Text Available The present study reports the new facile methodology for synthesis of symmetrical and asymmetrical thioureas by an one-pot reaction of amine, carbon disulfide and oxidants: hydrogen peroxide, ethylenediamine tetraacetic acid (EDTA/sodium percarbonate system or air. The structures of the synthesized compounds were confirmed by IR, 1H and 13C NMR and MS methods. Reaction mechanism has been proposed on the basis of reaction intermediate isolation and their structure determination. The synthetic benefits of the presented methods is reflected in the operational simplicity, mild reaction conditions, short reaction times, recycling of solvent, high purity and yield of products, absence of dangerous by-products and technological applicability at industrial scale. Considering commercial importance of the thioureas, it can be emphasized that implementation of the optimal synthesis of thiourea, based on presented methods, at industrial level of production would provide concurrent alternative to existing technologies in use. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  17. Novel One-Pot Green Synthesis of Indolizines Biocatalysed by Candida antarctica Lipases

    Directory of Open Access Journals (Sweden)

    Simon Bonte

    2013-02-01

    Full Text Available Marine microorganisms are of considerable interest as a promising source of enzymes with unsuspected potentials as catalysts for chemical synthesis. We describe here an efficient method for one-pot indolizine synthesis that has been developed using lipase A and lipase B from Candida antarctica as biocatalysts. As showed by HPLC/MS analysis, the yield in indolizines was higher in the presence of the biocatalyst than in absence of enzyme. Lipase A, from Candida antarctica, showed high catalytic activity and selectivity for the cycloaddition reactions. When the reactions were performed under ultrasound irradiation, the Candida antarctica lipase catalyzed reactions yielded pure indolozines, in good yields and in very short time.

  18. One-Pot Synthesis of Lithium-Rich Cathode Material with Hierarchical Morphology.

    Science.gov (United States)

    Luo, Kun; Roberts, Matthew R; Hao, Rong; Guerrini, Niccoló; Liberti, Emanuela; Allen, Christopher S; Kirkland, Angus I; Bruce, Peter G

    2016-12-14

    Lithium-rich transition metal oxides, Li 1+x TM 1-x O 2 (TM, transition metal), have attracted much attention as potential candidate cathode materials for next generation lithium ion batteries because their high theoretical capacity. Here we present the synthesis of Li[Li 0.2 Ni 0.2 Mn 0.6 ]O 2 using a facile one-pot resorcinol-formaldehyde method. Structural characterization indicates that the material adopts a hierarchical porous morphology consisting of uniformly distributed small pores and disordered large pore structures. The material exhibits excellent electrochemical cycling stability and a good retention of capacity at high rates. The material has been shown to be both advantageous in terms of gravimetric and volumetric capacities over state of the art commercial cathode materials.

  19. New One-Pot Methodologies for the Modification or Synthesis of Alkaloid Scaffolds

    Directory of Open Access Journals (Sweden)

    Amir E. Wahba

    2010-08-01

    Full Text Available There are several avenues by which promising bioactive natural products can be produced in sufficient quantities to enable lead optimization and medicinal chemistry studies. The total synthesis of natural products is an important, but sometimes difficult, approach and requires the development of innovative synthetic methodologies to simplify the synthesis of complex molecules. Various classes of natural product alkaloids are both common and widely distributed in plants, bacteria, fungi, insects and marine organisms. This mini-review will discuss the scope, mechanistic insights and enantioselectivity aspects of selected examples of recently developed one-pot methods that have been published in 2009 for the synthesis of substituted piperidines, quinolizidines, pyrrolidines, hexahydropyrrolizines, octahydroindolizines and g-lactams. In addition, progress on the synthesis of b-carboline (manzamine alkaloids will also be discussed.

  20. One-Pot Synthesis of Cu(II Complex with Partially Oxidized TTF Moieties

    Directory of Open Access Journals (Sweden)

    Hiroki Oshio

    2012-07-01

    Full Text Available The one-pot synthesis of a Cu(II complex with partially oxidized tetrathiafulvalene (TTF moieties in its capping MT-Hsae-TTF ligands, [CuII(MT-sae-TTF2] [CuICl2] was realized by the simultaneous occurrence of Cu(II complexation and CuIICl2 mediated oxidation of TTF moieties. The crystal structure was composed of one-dimensional columns formed by partially oxidized TTF moieties and thus the cation radical salt showed relatively high electrical conductivity. Tight binding band structure calculations indicated the existence of a Peierls gap due to the tetramerization of the TTF moieties in the one-dimensional stacking column at room temperature, which is consistent with the semiconducting behavior of this salt.

  1. A facile one-pot method to Au–SnO2-graphene ternary hybrid

    International Nuclear Information System (INIS)

    Xu, Diou; Li, Xiaotian; Zhang, Dawei

    2014-01-01

    In this article, we propose a facile one-pot route for synthesizing Au–SnO 2 -graphene ternary hybrid. In the system, SnCl 2 not only as the precursor of SnO 2 , but also is employed as reducing agent for the effective reduction of both GO and HAuCl 4 to graphene and Au nanoparticles, respectively. The obtained Au–SnO 2 -graphene hybrid materials are characterized by atomic force microscopy, transmission electron microscopy, X-ray diffraction, Raman spectrum, X-ray photo-electron spectroscopy, and thermal gravimetric analysis. It is found that the content of Au nanoparticles decorated on the surface of graphene can be simply adjusted by changing the amount of HAuCl 4 used in the synthesis process

  2. One-pot aqueous phase catalytic conversion of sorbitol to gasoline over nickel catalyst

    International Nuclear Information System (INIS)

    Weng, Yujing; Qiu, Songbai; Xu, Ying; Ding, Mingyue; Chen, Lungang; Zhang, Qi; Ma, Longlong; Wang, Tiejun

    2015-01-01

    Highlights: • Directly production gasoline (C5–C12 alkanes) from biomass-derived sugar alcohol sorbitol. • Temperature of STG (553–593 K) was lower than that of traditional methanol to gasoline (MTG) (623–773 K). • Gasoline yield of 46.9% and C7–C12 hydrocarbons reached up to 45.5% in the gasoline products. - Abstract: The carbon chain extension and hydrodeoxygenation steps play critical roles in the high-energy-density hydrocarbons production. In this paper, a systematic study had been carried out to investigate one-pot aqueous phase catalytic conversion of sorbitol to gasoline (STG) over bifunctional Ni-based catalysts. Characterization technologies of N 2 physisorption, X-ray diffraction (XRD), Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and NH 3 temperature-programmed desorption (NH 3 -TPD) were used to study the textural properties, phase compositions, acid behavior and morphologies of the catalysts. The catalytic performances were tested in a fixed bed reactor. It was found that the physically mixed Ni/HZSM-5 and Ni/silica-gel (mesoporous SG) catalyst realized the carbon chain extension and exhibited excellent performances on hydrodeoxygenation (HDO) reaction (46.9% of gasoline (C5–C12) yield and 45.5% of C7–C12 hydrocarbons in the gasoline products). Especially, the temperature of STG (553–593 K) was lower obviously than that of the traditional methanol to gasoline (MTG) process (623–773 K). It provided a novel transformation of sorbitol to long-chain alkanes by one-pot process over the bifunctional catalyst (Ni@HZSM-5/SG), wherein hydrodeoxygenation, ketonization and aldol condensation steps were integrated

  3. Tuneable light-emitting carbon-dot/polymer flexible films prepared through one-pot synthesis

    Science.gov (United States)

    Bhunia, Susanta Kumar; Nandi, Sukhendu; Shikler, Rafi; Jelinek, Raz

    2016-02-01

    Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies.Development of efficient, inexpensive, and environmentally-friendly light emitters, particularly devices that produce white light, have drawn intense interest due to diverse applications in the lighting industry, photonics, solar energy, and others. We present a simple strategy for the fabrication of flexible transparent films exhibiting tuneable light emission through one-pot synthesis of polymer matrixes with embedded carbon dots assembled in situ. Importantly, different luminescence colours were produced simply by preparing C-dot/polymer films using carbon precursors that yielded C-dots exhibiting distinct fluorescence emission profiles. Furthermore, mixtures of C-dot precursors could be also employed for fabricating films exhibiting different colours. In particular, we successfully produced films emitting white light with attractive properties (i.e. ``warm'' white light with a high colour rendering index) - a highly sought after goal in optical technologies. Electronic supplementary information (ESI

  4. Highly efficient one-pot/one-step synthesis of multiblock copolymers from three-component polymerization of carbon dioxide, epoxide and lactone.

    Science.gov (United States)

    Li, Yang; Hong, Jiali; Wei, Renjian; Zhang, Yingying; Tong, Zaizai; Zhang, Xinghong; Du, Binyang; Xu, Junting; Fan, Zhiqiang

    2015-02-01

    It is a long-standing challenge to combine mixed monomers into multiblock copolymer (MBC) in a one-pot/one-step polymerization manner. We report the first example of MBC with biodegradable polycarbonate and polyester blocks that were synthesized from highly efficient one-pot/one-step polymerization of cyclohexene oxide (CHO), CO 2 and ε-caprolactone (ε-CL) in the presence of zinc-cobalt double metal cyanide complex and stannous octoate. In this protocol, two cross-chain exchange reactions (CCER) occurred at dual catalysts respectively and connected two independent chain propagation procedures ( i.e. , polycarbonate formation and polyester formation) simultaneously in a block-by-block manner, affording MBC without tapering structure. The multiblock structure of MBC was determined by the rate ratio of CCER to the two chain propagations and could be simply tuned by various kinetic factors. This protocol is also of significance due to partial utilization of renewable CO 2 and improved mechanical properties of the resultant MBC.

  5. Sequential attack with intensity modulation on the differential-phase-shift quantum-key-distribution protocol

    International Nuclear Information System (INIS)

    Tsurumaru, Toyohiro

    2007-01-01

    In this paper, we discuss the security of the differential-phase-shift quantum-key-distribution (DPSQKD) protocol by introducing an improved version of the so-called sequential attack, which was originally discussed by Waks et al. [Phys. Rev. A 73, 012344 (2006)]. Our attack differs from the original form of the sequential attack in that the attacker Eve modulates not only the phases but also the amplitude in the superposition of the single-photon states which she sends to the receiver. Concentrating especially on the 'discretized Gaussian' intensity modulation, we show that our attack is more effective than the individual attack, which had been the best attack up to present. As a result of this, the recent experiment with communication distance of 100 km reported by Diamanti et al. [Opt. Express 14, 13073 (2006)] turns out to be insecure. Moreover, it can be shown that in a practical experimental setup which is commonly used today, the communication distance achievable by the DPSQKD protocol is less than 95 km

  6. A ligand exchange strategy for one-pot sequential synthesis of (hyperbranched polyethylene)-b-(linear polyketone) block polymers.

    Science.gov (United States)

    Zhang, Zhichao; Ye, Zhibin

    2012-08-18

    Upon the addition of an equimolar amount of 2,2'-bipyridine, a cationic Pd-diimine complex capable of facilitating "living" ethylene polymerization is switched to catalyze "living" alternating copolymerization of 4-tertbutylstyrene and CO. This unique chemistry is thus employed to synthesize a range of well-defined treelike (hyperbranched polyethylene)-b-(linear polyketone) block polymers.

  7. One-pot solvothermal synthesis of highly water-dispersible size-tunable functionalized magnetite nanocrystal clusters for lipase immobilization.

    Science.gov (United States)

    Zhu, Hao; Hou, Chen; Li, Yijing; Zhao, Guanghui; Liu, Xiao; Hou, Ke; Li, Yanfeng

    2013-07-01

    A facile one-pot synthesis of highly water-dispersible size-tunable magnetite (Fe3O4) nanocrystal clusters (MNCs) end-functionalized with amino or carboxyl groups by a modified solvothermal reduction reaction has been developed. Dopamine and 3,4-dihydroxyhydroxycinnamic acid were used for the first time as both a surfactant and interparticle linker in a polylol process for economical and environment-friendly purposes. Morphology, chemical composition, and magnetic properties of the prepared particles were investigated by several methods, including FESEM, TEM, XRD, XPS, Raman, FTIR, TGA, zeta potential, and VSM. The sizes of the particles could be easily tuned over a wide range from 175 to 500 nm by varying the surfactant concentration. Moreover, ethylene glycol/diethylene glycol (EG/DEG) solvent mixtures with different ratios could be used as reductants to obtain the particles with smaller sizes. The XRD data demonstrated that the surfactants restrained the crystal growth of the grains. The nanoparticles showed superior magnetic properties and high colloidal stability in water. The cytotoxicity results indicated the feasibility of using the synthesized nanocrystals in biology-related fields. To estimate the applicability of the obtained MNCs in biotechnology, Candida rugosa lipase was selected for the enzyme immobilization process. The immobilized lipase exhibited excellent thermal stability and reusability in comparison with the free enzyme. This novel strategy would simplify the reaction protocol and improve the efficiency of materials functionalization, thus offering new potential applications in biotechnology and organocatalysis. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. High-affinity multivalent wheat germ agglutinin ligands by one-pot click reaction

    Directory of Open Access Journals (Sweden)

    Henning S. G. Beckmann

    2012-06-01

    Full Text Available A series of six mono-, di-, and trivalent N,N’-diacetylchitobiose derivatives was conveniently prepared by employing a one-pot procedure for Cu(II-catalyzed diazo transfer and Cu(I-catalyzed azide–alkyne cycloaddition (CuAAC starting from commercially available amines. These glycoclusters were probed for their binding potencies to the plant lectin wheat germ agglutinin (WGA from Triticum vulgaris by an enzyme-linked lectin assay (ELLA employing covalently immobilized N-acetylglucosamine (GlcNAc as a reference ligand. IC50 values were in the low micromolar/high nanomolar range, depending on the linker between the two disaccharides. Binding enhancements β up to 1000 for the divalent ligands and 2800 for a trivalent WGA ligand, compared to N,N’-diacetylchitobiose as the corresponding monovalent ligand, were observed. Molecular modeling studies, in which the chitobiose moieties were fitted into crystallographically determined binding sites of WGA, correlate the binding enhancements of the multivalent ligands with their ability to bind to the protein in a chelating mode. The best WGA ligand is a trivalent cluster with an IC50 value of 220 nM. Calculated per mol of contained chitobiose, this is the best WGA ligand known so far.

  9. One-pot pseudomorphic crystallization of mesoporous porous silica to hierarchical porous zeolites

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Jun-Ling; Jiang, Shu-Hua; Pang, Jun-Ling; Yuan, En-Hui; Ma, Xiao-Jing [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhongshan North Road, 200062 Shanghai (China); Lam, Koon-Fung [Department of Chemical Engineering, University College London, Torrington Place, London (United Kingdom); Xue, Qing-Song, E-mail: qsxue@chem.ecnu.edu.cn [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhongshan North Road, 200062 Shanghai (China); Zhang, Kun, E-mail: kzhang@chem.ecnu.edu.cn [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhongshan North Road, 200062 Shanghai (China)

    2015-09-15

    Hierarchically porous silica with mesopore and zeolitic micropore was synthesized via pseudomorphic crystallization under high-temperature hydrothermal treatment in the presence of cetyltrimethylammonium tosylate and tetrapropylammonium ions. A combined characterization using small-angle X-ray diffraction (XRD), nitrogen adsorption, high-resolution transmission electron microscopy (TEM), thermogravimetric analysis (TG), and elemental analysis showed that dual templates, CTA{sup +} and TPA{sup +} molecules, can work in a cooperative manner to synthesize mesoporous zeolite in a one-pot system by precisely tuning the reaction conditions, such as reaction time and temperature, and type and amount of heterometal atoms. It is found that the presence of Ti precursor is critical to the successful synthesis of such nanostructure. It not only retards the nucleation and growth of crystalline MFI domains, but also acts as nano-binder or nano-glue to favor the assembly of zeolite nanoblocks. - Graphical abstract: Display Omitted - Highlights: • A facile method to synthesize mesoporous zeolites with hierarchical porosity was presented. • It gives a new insight into keeping the balance between mesoscopic and molecular ordering in hierarchical porous materials. • A new understanding on the solid–solid transformation mechanism for the synthesis of titanosilicate zeolites was proposed.

  10. One-pot synthesis and transfer of PMMA/Ag photonic nanocomposites by pulsed laser deposition

    Science.gov (United States)

    Karoutsos, V.; Koutselas, I.; Orfanou, P.; Mpatzaka, Th.; Vasileiadis, M.; Vassilakopoulou, A.; Vainos, N. A.; Perrone, A.

    2015-08-01

    Nanocomposite films comprising metallic nanoparticles in polymer matrices find increasing use in emerging photonic, electronic and microsystem applications owing to their tailored advanced functionalities. The versatile development of such films based on poly-methyl-methacrylate (PMMA) matrix having embedded Ag nanoparticles is addressed here. Two low-cost one-pot chemical methods for the synthesis of bulk target nanocomposite materials are demonstrated. These nanocomposites are subsequently transferred via pulsed laser deposition using 193 nm ArF excimer laser radiation, producing films maintaining the structural and functional properties. Both target- and laser-deposited materials have been thoroughly characterized using microscopic, spectroscopic and thermal analysis methods. Infrared spectra demonstrated the close molecular PMMA chain similarity for both target and film materials, though structural alterations identified by thermal analysis proved the enhanced characteristics of films grown. High-resolution electron microscopy proved the transfer of Ag nanoparticles sized 10-50 nm. Visible absorption peaked in the spectral range of 430-440 nm and attributed to the Ag nanocomposite plasmonic response verifying the transfer of the functional performance from target to film.

  11. Synthesis of Curcumin Glycosides with Enhanced Anticancer Properties Using One-Pot Multienzyme Glycosylation Technique.

    Science.gov (United States)

    Gurung, Rit Bahadur; Gong, So Youn; Dhakal, Dipesh; Le, Tuoi Thi; Jung, Na Rae; Jung, Hye Jin; Oh, Tae Jin; Sohng, Jae Kyung

    2017-09-28

    Curcumin is a natural polyphenolic compound, widely acclaimed for its antioxidant, antiinflammatory, antibacterial, and anticancerous properties. However, its use has been limited due to its low-aqueous solubility and poor bioavailability, rapid clearance, and low cellular uptake. In order to assess the effect of glycosylation on the pharmacological properties of curcumin, one-pot multienzyme (OPME) chemoenzymatic glycosylation reactions with UDP- α-D-glucose or UDP-α-D-2-deoxyglucose as donor substrate were employed. The result indicated significant conversion of curcumin to its glycosylated derivatives: curcumin 4'- O -β- glucoside, curcumin 4',4''-di- O -β-glucoside, curcumin 4'- O -β-2-deoxyglucoside, and curcumin 4',4''-di- O -β-2-deoxyglucoside. The products were characterized by ultra-fast performance liquid chromatography, high-resolution quadruple-time-of-flight electrospray ionization-mass spectrometry, and NMR analyses. All the products showed improved water solubility and comparable antibacterial activities. Additionally, the curcumin 4'- O -β-glucoside and curcumin 4'- O -β-2-deoxyglucoside showed enhanced anticancer activities compared with the parent aglycone and diglycoside derivatives. This result indicates that glycosylation can be an effective approach for enhancing the pharmaceutical properties of different natural products, such as curcumin.

  12. Maghemite nanoparticles with enhanced magnetic properties: one-pot preparation and ultrastable dextran shell.

    Science.gov (United States)

    Di Corato, Riccardo; Aloisi, Alessandra; Rella, Simona; Greneche, Jean-Marc; Pugliese, Giammarino; Pellegrino, Teresa; Malitesta, Cosimino; Rinaldi, Rosaria

    2018-05-10

    In the field on nanomedicine, superparamagnetic nanoparticles are one of the most studied nanomaterials for theranostics. In this paper, a one-pot synthesis of magnetic nanoparticles is presented, with elevated control on particles size from 10 to 40 nm. The monitoring of vacuum level is here introduced as a crucial parameter for achieving a fine particle morphology. Magnetic properties of these nanoparticles are highly affected by disorders or mismatches in crystal structure. A prolonged oxidation step is applied to the obtained nanoparticles to transform the magnetic phases into a pure maghemite one, confirmed by a high resolution XPS analysis, by Mössbauer spectrometry and, indirectly, by increased performances in magnetization curves and in relaxation times. Afterward, the attained nanoparticles are transferred in water by a non-derivatized dextran coating. The thermogravimetric analysis confirms that the polysaccharide molecules replace the oleic acid on the surface by stabilizing the particles in aqueous phase and culture media. Preliminary in vitro test reveals as the dextran coated nanoparticles are not passively internalized from the cells. As proof of concept, a secondary layer of chitosan assures a positive charge to the nanoparticle surface, thus enhancing the cellular internalization.

  13. One pot synthesized Li, Zr doped porous silica nanoparticle for low temperature CO2 adsorption

    Directory of Open Access Journals (Sweden)

    Mani Ganesh

    2017-05-01

    Full Text Available Li, Zr doped porous silica was synthesized in one pot and investigated for low temperature CO2 adsorption. The synthesized nanoparticle was characterized by X-ray diffraction (XRD, N2 adsorption–desorption measurement, thermogravimetric analysis (TGA and scanning electron microscopy (SEM. The specific surface area, average pore diameter and pore volume were determined to be 962 m2/g, 2.3 nm and 0.56 cm3/g respectively. ICP-AES analysis revealed a metal content of 4 wt.% (Zr and 3.42 wt.% (Li. Their CO2 adsorption capacity was tested at room temperature and atmospheric pressure. An uptake of about 5 wt.% was observed and regenerable at a low temperature of 200 °C. This adsorption and desorption temperature of the sorbent is lower than the reported lithium silicate. The CO2 adsorption–desorption cyclic performance studies illustrated that Li, Zr doped porous silica is a recyclable, selective and potential sorbent for CO2 adsorption.

  14. Green One-pot Synthesis of Novel Polysubstituted Pyrazole Derivatives as Potential Antimicrobial Agents.

    Science.gov (United States)

    Beyzaei, Hamid; Motraghi, Zahra; Aryan, Reza; Zahedi, Mohammad Mehdi; Samzadeh-Kermani, Alireza

    2017-12-01

    Various biological properties of natural and synthetic pyrazole derivatives such as anti-inflammatory, antimicrobial, neuroprotective, anticonvulsant, antidepressant and anticancer activities encouraged us to propose a new, fast, green and eco-friendly procedure for the preparation of some novel 5-amino-3-(aryl substituted)-1-(2,4-dinitrophenyl)-1H-pyrazole-4-carbonitriles. They were efficiently synthesized via one-pot two-step process reaction of malononitrile, 2,4-dinitrophenylhydrazine and different benzaldehydes in deep eutectic solvent (DES) glycerol/potassium carbonate. The products yield and reaction times were considerably improved in the presence of applied DES. Antibacterial effects of all newly synthesized pyrazoles in comparison with several common antibiotics were evaluated against a variety of Gram-positive and Gram-negative pathogenic bacteria. In addition to, their inhibitory activities on three fungi were compared to some current antifungal agents. The moderate to good antimicrobial potentials particularly against fungi were observed in the major heterocyclic compounds according to the IZD, MIC, MBC and MFC results.

  15. Effect of surfactant concentration on the size of one-pot synthesized Si nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Jung; Kim, Tae Woo; Lee, Myong Euy [Dept. of Chemistry and Medical Chemistry, College of Science and Technology, Research and EducationCenter for Advanced Silicon Materials, Yonsei University, Wonju (Korea, Republic of); Cho, Hyeon Mo [University College, Yonsei University, Incheon (Korea, Republic of); Yoon, Sang Woong [Youngchang Chemical Co., LTD, Seongnam (Korea, Republic of); Ryou, Joon Sung [Advanced Technology R and D Center, SKC, Suwon (Korea, Republic of)

    2015-07-15

    The effect of surfactant concentration on the synthesis of Si nanoparticles (NPs) was studied. Hexyl Si NPs were synthesized using one-pot synthetic methodology with different ratios of SiCl{sub 4}:HexylSiCl{sub 3} (1:1, 1:2, 1:3, 1:6) to observe the effect of surfactant concentration on the size of Si NPs. In Fourier transform infrared spectroscopy analysis, the Si–H stretching band and the characteristic Si–O–Si bands decreased and eventually disappeared with increasing hexyltrichlorosilane concentration. This suggests that the level of oxidation decreased with excess amounts of hexyltrichlorosilane because the surface area of exposed Si NPs without hexyl capping groups was reduced. Results of transmission electron microscopy and particle size analysis showed that the average diameter of hexyl Si NPs increased slightly from low surfactant concentration (SiCl{sub 4}:HexylSiCl{sub 3} = 1:1) to high concentration (1:6). This might be caused due to the relationship between the surfactant concentration effect and the core material part effect of hexyltrichlorosilane. Agglomerated Si NPs were observed and their luminescence bands were not shifted because the Si NPs were capped by alkyl groups to prevent aggregation.

  16. A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles

    International Nuclear Information System (INIS)

    Wang Yi; Li Yuanfang; Zhao Xijuan; Huang Chengzhi; Chen Liqiang; Peng Li

    2010-01-01

    A simple, one-pot and controllable strategy is reported in this contribution for biomimetic synthesis and self-assembly of gold nanoparticles (Au-NPs). It involves our synthesized polyaldehyde dextran (PAD), which has been proved to be a biomacromolecule with excellent biocompatibility and biodegradability, acting as both a reducing agent and a stabilizer. The morphology of the as-prepared Au-NP assemblies can be controlled by adjusting the reaction conditions, such as the concentration of aldehyde in PAD, the reaction time and the temperature. Investigations of the mechanism suggest that stabilizers may distribute on different crystal facets of NPs non-uniformly owing to the different binding forces, and dipole-dipole interaction of NPs could be the main driving force for the assembly of Au-NPs. In addition, intermolecular hydrogen bonding interaction of stabilizers could also act as a possible driving force. The excellent biocompatibility of the Au-NP assemblies makes them promising candidates for fabricating future optical nanodevices and application in biological systems.

  17. A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles

    Science.gov (United States)

    Wang, Yi; Chen, Li Qiang; Li, Yuan Fang; Zhao, Xi Juan; Peng, Li; Zhi Huang, Cheng

    2010-07-01

    A simple, one-pot and controllable strategy is reported in this contribution for biomimetic synthesis and self-assembly of gold nanoparticles (Au-NPs). It involves our synthesized polyaldehyde dextran (PAD), which has been proved to be a biomacromolecule with excellent biocompatibility and biodegradability, acting as both a reducing agent and a stabilizer. The morphology of the as-prepared Au-NP assemblies can be controlled by adjusting the reaction conditions, such as the concentration of aldehyde in PAD, the reaction time and the temperature. Investigations of the mechanism suggest that stabilizers may distribute on different crystal facets of NPs non-uniformly owing to the different binding forces, and dipole-dipole interaction of NPs could be the main driving force for the assembly of Au-NPs. In addition, intermolecular hydrogen bonding interaction of stabilizers could also act as a possible driving force. The excellent biocompatibility of the Au-NP assemblies makes them promising candidates for fabricating future optical nanodevices and application in biological systems.

  18. One-pot size-controlled growth of graphene-encapsulated germanium nanocrystals

    Science.gov (United States)

    Lee, Jae-Hyun; Lee, Eun-Kyung; Kang, Seog-Gyun; Jung, Su-Ho; Son, Seok-Kyun; Nam, Woo Hyun; Kim, Tae-Hoon; Choi, Byong Lyong; Whang, Dongmok

    2018-05-01

    To realize graphene-encapsulated semiconductor nanocrystals (NCs), an additional graphene coating process, which causes shape destruction and chemical contamination, has so far been inevitable. We report herein one-pot growth of uniform graphene-germanium core-shell nanocrystals (Ge@G NCs) in gram scale by the addition of methane as a carbon source during the thermal pyrolysis of germane. The methane plays a critical role in the growth of the graphene shell, as well as in the determination of the nucleation density and diameter of the NCs, similar to a surfactant in the liquid-phase growth of monodisperse NCs. By adjusting the gas ratio of precursors, a mixture of germane and methane, we can control the size of the Ge@G NCs in the range of ∼5-180 nm. The Ge@G NCs were characterized by various microscopic and spectroscopic tools, which indicated that the Ge core is single crystalline, and is completely covered by the graphene shell. We further investigated the merits of the graphene shell, which can enhance the electrical conductivity of nanocrystalline materials.

  19. One-pot synthesis and electrochemical reactivity of carbon coated LiFePO4 spindles

    International Nuclear Information System (INIS)

    Yu Juanjuan; Hu Juncheng; Li Jinlin

    2012-01-01

    Highlights: ► Carbon coated LiFePO 4 spindles have been successfully synthesized via a novel supercritical method. ► The concentrations of lithium have an effect on the morphology of carbon coated LiFePO 4 . ► Amorphous carbon layer formed on the surface of LiFePO 4 by adding glucose. ► The carbon coating is responsible for the enhanced electrochemical performance. - Abstract: Spindle-like carbon coated LiFePO 4 (LiFePO 4 /C) composites have been successfully synthesized via a novel one-pot supercritical methanol method. The products were characterized by X-ray power diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). The particle size, morphology and electrochemical reactivity changed with the concentration of lithium and carbon source. A possible morphology evolution process was also proposed. The glucose not only facilitates the formation of single crystalline LiFePO 4 , but also gives an amorphous carbon layer on the surface LiFePO 4 spindles.

  20. One pot phytosynthesis of gold nanoparticles using Genipa americana fruit extract and its biological applications

    International Nuclear Information System (INIS)

    Kumar, Brajesh; Smita, Kumari; Cumbal, Luis; Camacho, Javier; Hernández-Gallegos, Elisabeth; Guadalupe Chávez-López, María de; Grijalva, Marcelo; Andrade, Kleber

    2016-01-01

    In this article, rapid one pot synthesis of gold nanoparticles (GNPs) using an eco-friendly extract of Genipa americana L. fruit is described. Electrospray ionization mass spectrometry (ESI-MS) and Fourier transform infrared (FTIR) spectroscopic studies demonstrated that small molecules such as genipin, genipaol, geniposide and ranolazine can act as reducer as well as stabilizers. The monodispersed, spherical GNPs were further characterized by UV–vis spectroscopy at λ max = 535 nm, transmission electron microscopy (TEM), dynamic light scattering (DLS) and X-ray diffraction (XRD) analysis. This synthetic approach offers a greener and alternate route to the preparation of GNPs free from toxic chemical components and stable for 6–7 months under room temperature. The green synthesized GNPs showed weak antioxidant efficacy against 1,1-diphenyl-2-picrylhydrazyl and no cytotoxicity against A-549 and HeLa human cancer cell lines, from lung and cervix. This study opens a new industrial scope of G. americana fruit in nanoscience and as surface modified GNPs can be developed into a successful drug carrier for future pharmaceutical products. - Highlights: • Gold nanoparticles can be synthesized by Genipa americana fruit extract. • TEM-DLS analysis confirmed that the average particle size is 30.4 ± 14.9 nm. • Nanoparticles showed weak antioxidant and no cytotoxicity activity.

  1. One-pot fabrication and antimicrobial properties of novel PET nonwoven fabrics

    International Nuclear Information System (INIS)

    Lin Song; Wang Zheng; Qi Jiancheng; Wu Jinhui; Tian Tao; Hao Limei; Yang Jingquan; Hou Lili

    2011-01-01

    Recently, with the ever-growing demand for healthy living, more and more research is focused on materials capable of killing harmful microorganisms around the world. It is believed that designing such protective materials for hygienic and biomedical applications can benefit people in professional areas and daily life. Thus, in this paper, one novel kind of antibacterial poly(ethylene terephthalate) (PET) nonwoven fabrics was conveniently one-pot prepared, with the combined immobilization of two biological antimicrobial agents, i.e. ε-polylysine and natamycin, by using the soft methacrylate nonwoven fabrics adhesives. Then, the antimicrobial activities of the functional fabrics were investigated by using the standard shaking-flask method, showing excellent antibacterial efficiency (AE) against both Escherichia coli (8099) and Staphylococcus aureus (ATCC 6538) (AE > 99.99%) compared with untreated PET nonwoven fabrics. The anti-bioaerosol tests also showed similar trends. Meantime, scanning electron microscopy analysis indicated that the bacteria on the antibacterial PET appeared to be partly bacteriolyzed and showed much less viability than those on the pristine ones. Moreover, the long residual biocidal action of such modified PET fabrics was also evaluated, and the antibacterial activity of antibacterial fibers was unaffected by the 3 month artificially accelerated aging.

  2. Efficient One-Pot Synthesis of 5-Chloromethylfurfural (CMF from Carbohydrates in Mild Biphasic Systems

    Directory of Open Access Journals (Sweden)

    Dimitris S. Argyropoulos

    2013-07-01

    Full Text Available 5-Halomethylfurfurals can be considered as platform chemicals of high reactivity making them useful for the preparation of a variety of important compounds. In this study, a one-pot route for the conversion of carbohydrates into 5-chloromethylfurfural (CMF in a simple and efficient (HCl-H3PO4/CHCl3 biphasic system has been investigated. Monosaccharides such as D-fructose, D-glucose and sorbose, disaccharides such as sucrose and cellobiose and polysaccharides such as cellulose were successfully converted into CMF in satisfactory yields under mild conditions. Our data shows that when using D-fructose the optimum yield of CMF was about 47%. This understanding allowed us to extent our work to biomaterials, such as wood powder and wood pulps with yields of CMF obtained being comparable to those seen with some of the enumerated mono and disaccharides. Overall, the proposed (HCl-H3PO4/CHCl3 optimized biphasic system provides a simple, mild, and cost-effective means to prepare CMF from renewable resources.

  3. One-pot synthesis of bioactive cyclopentenones from α-linolenic acid and docosahexaenoic acid.

    Science.gov (United States)

    Maynard, Daniel; Müller, Sara Mareike; Hahmeier, Monika; Löwe, Jana; Feussner, Ivo; Gröger, Harald; Viehhauser, Andrea; Dietz, Karl-Josef

    2018-04-01

    Oxidation products of the poly-unsaturated fatty acids (PUFAs) arachidonic acid, α-linolenic acid and docosahexaenoic acid are bioactive in plants and animals as shown for the cyclopentenones prostaglandin 15d-PGJ 2 and PGA 2 , cis-(+)-12-oxophytodienoic acid (12-OPDA), and 14-A-4 neuroprostane. In this study an inexpensive and simple enzymatic multi-step one-pot synthesis is presented for 12-OPDA, which is derived from α-linolenic acid, and the analogous docosahexaenoic acid (DHA)-derived cyclopentenone [(4Z,7Z,10Z)-12-[[-(1S,5S)-4-oxo-5-(2Z)-pent-2-en-1yl]-cyclopent-2-en-1yl] dodeca-4,7,10-trienoic acid, OCPD]. The three enzymes utilized in this multi-step cascade were crude soybean lipoxygenase or a recombinant lipoxygenase, allene oxide synthase and allene oxide cyclase from Arabidopsis thaliana. The DHA-derived 12-OPDA analog OCPD is predicted to have medicinal potential and signaling properties in planta. With OCPD in hand, it is shown that this compound interacts with chloroplast cyclophilin 20-3 and can be metabolized by 12-oxophytodienoic acid reductase (OPR3) which is an enzyme relevant for substrate bioactivity modulation in planta. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Heterocycles X V- one pot synthesis of indenyl pyrimidine- 2 - ones

    International Nuclear Information System (INIS)

    EL-Rayyes, R. N.

    1997-01-01

    Condensation of 1- indanone, aryl aldehydes (Ia-k) and urea revealed the formation of the corresponding dihydropyrimidinones (I Ia - k). these were acetaldeyde and brominated to give compounds (III) and (IV) respective l. Dehydrogenation of (II) gave the corresponding pyrimuidunones (V). The structures of the products (II - V) were substantiated by chemical and spectral methods. In a previous work, 1- indanone was reacted with guanidine to produce 2- amino - isopropylenediamine (1) . On the other hand, indenyl pyrimidine - 2- ones were previously prepared through a multi - step synthesis (2,3). The present investigation describes a one - pot synthesis of some new dihydropyrimidinones (I Ia - K). Thus 1- indanone and urea were condensed with aryl aldehydes (Ia - K) to produce the corresponding 4- aryl - 3,4- dihydro - 5 [H] - indenyl (1,2 -e) py rimidin - 2 (I H) ones (I Ia - K) (2,3). The structure of these products was substantiated by chemical and spectral methods as well as elemental analysis.(author). 11 refs., 3 table

  5. One pot phytosynthesis of gold nanoparticles using Genipa americana fruit extract and its biological applications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Brajesh, E-mail: krmbraj@gmail.com [Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui, P.O. BOX 171-5-231B (Ecuador); Smita, Kumari; Cumbal, Luis [Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui, P.O. BOX 171-5-231B (Ecuador); Camacho, Javier [Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui, P.O. BOX 171-5-231B (Ecuador); Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Farmacología, C.P. 07360 Mexico City (Mexico); Hernández-Gallegos, Elisabeth; Guadalupe Chávez-López, María de [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Departamento de Farmacología, C.P. 07360 Mexico City (Mexico); Grijalva, Marcelo; Andrade, Kleber [Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui s/n, Sangolqui, P.O. BOX 171-5-231B (Ecuador)

    2016-05-01

    In this article, rapid one pot synthesis of gold nanoparticles (GNPs) using an eco-friendly extract of Genipa americana L. fruit is described. Electrospray ionization mass spectrometry (ESI-MS) and Fourier transform infrared (FTIR) spectroscopic studies demonstrated that small molecules such as genipin, genipaol, geniposide and ranolazine can act as reducer as well as stabilizers. The monodispersed, spherical GNPs were further characterized by UV–vis spectroscopy at λ{sub max} = 535 nm, transmission electron microscopy (TEM), dynamic light scattering (DLS) and X-ray diffraction (XRD) analysis. This synthetic approach offers a greener and alternate route to the preparation of GNPs free from toxic chemical components and stable for 6–7 months under room temperature. The green synthesized GNPs showed weak antioxidant efficacy against 1,1-diphenyl-2-picrylhydrazyl and no cytotoxicity against A-549 and HeLa human cancer cell lines, from lung and cervix. This study opens a new industrial scope of G. americana fruit in nanoscience and as surface modified GNPs can be developed into a successful drug carrier for future pharmaceutical products. - Highlights: • Gold nanoparticles can be synthesized by Genipa americana fruit extract. • TEM-DLS analysis confirmed that the average particle size is 30.4 ± 14.9 nm. • Nanoparticles showed weak antioxidant and no cytotoxicity activity.

  6. One pot electrochemical synthesis of polymer/CNT/metal nanoparticles for fuel cell applications

    Science.gov (United States)

    Ventrapragada, Lakshman; Zhu, Jingyi; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Nanomaterials center Team

    Carbon nanotubes (CNTs) have become a key player in the design of materials for energy applications. They gained their popularity in industrial and scientific research due to their unique properties like excellent conductivity, high surface area, etc. Here we used chemical vapor deposition (CVD) to synthesize two types of CNTs namely, helically coiled CNTs and vertically aligned CNTs. These CNTs were subsequently used to make composites with conducting polymers and metal nanoparticles. One pot electrochemical synthesis was designed to electropolymerize aniline, pyrrole etc. on the surface of the electrode with simultaneous deposition of platinum and gold metal nanoparticles, and CNTs in the polymer matrix. The as synthesized composite materials were characterized with scanning electron microscope for surface morphology and spectroscopic techniques like Raman, UV-Vis for functionality. These were used to study electrocatalytic oxidation of methanol and ethanol for alkaline fuel cell applications. Electrodes fabricated from these composites not only showed good kinetics but also exhibited excellent stability. Uniqueness of this composite lies in its simple two step synthesis and it doesn't involve any surfactants unlike conventional chemical synthesis routes.

  7. One pot synthesis of dandelion-like polyaniline coated gold nanoparticles composites for electrochemical sensing applications.

    Science.gov (United States)

    Lu, Zhiwei; Dai, Wanlin; Liu, Baichen; Mo, Guangquan; Zhang, Junjun; Ye, Jiaping; Ye, Jianshan

    2018-04-18

    In this work, we report a facile and green strategy for one pot and in-situ synthesis of a dandelion-like conductive polyaniline coated gold nanoparticle nanocomposites (Au@PANI). The Au@PANI was characterized by SEM, TEM, XRD, TGA, FTIR, UV-vis and conductivity measurement, respectively. Newly-designed Au@PANI materials possessed a significantly high conductivity and strong adsorption capability. Thus, the Au@PANI modified glassy carbon electrode (GCE) was utilized for construct a novel electrochemical sensor for the simultaneous assay of Pb 2+ and Cu 2+ using square wave anodic stripping voltammetry (SWASV). Under the optimized conditions, an excellent electrochemical response in the simultaneous of Pb 2+ and Cu 2+ with detection limit of 0.003 and 0.008 μM (S/N = 3), respectively. Moreover, the prepared sensors realized an excellent reproducibility, repeatability and long term stability, as well as reliable practical assays in real water samples. Besides, the possible formation mechanism and sensing mechanism of Au@PANI nanocomposites have been discussed in detail. We believe this study provides a novel method of fabrication of noble metal nanoparticles decorated conducting polymer materials for the electrochemical sensing applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Preparing hydrophobic nanocellulose-silica film by a facile one-pot method.

    Science.gov (United States)

    Le, Duy; Kongparakul, Suwadee; Samart, Chanatip; Phanthong, Patchiya; Karnjanakom, Surachai; Abudula, Abuliti; Guan, Guoqing

    2016-11-20

    Hydrophobic nanocellulose-silica film was successfully prepared by a facile one-pot method using tetraethoxysilane (TEOS) and dodecyl triethoxylsilane (DTES). Morphological characterization of the hydrophobic nanocellulose-silica (NC-SiO2-DTES) film showed well self-assembled DTES modified silica spherical nanoparticles with the particle sizes in the range of 88-126nm over the nanocellulose film. The hydrophobicity of the NC-SiO2-DTES film was achieved owing to the improvement of roughness of the nanocellulose film by coating dodecyl- terminated silica nanoparticles. An increase in DTES loading amount and reaction time increased the hydrophobicity of the film, and the optimum condition for NC-SiO2-DTES film preparation was achieved at DTES/TEOS molar ratio of 2.0 for 8h reaction time. Besides, the NC-SiO2-DTES film performed superoleophilic property with octane and hexadecane contact angles of 0°. It also showed an excellent hydrophobic property over all pH values ranged from 1 to 14. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. One-pot fabrication and antimicrobial properties of novel PET nonwoven fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Lin Song; Wang Zheng; Qi Jiancheng; Wu Jinhui; Tian Tao; Hao Limei; Yang Jingquan [Institute of Medical Equipment, Academy of Military Medical Sciences, Tianjin 300161 (China); Hou Lili, E-mail: yjq789@sohu.com [National Bio-protection Engineering Center, Tianjin 300161 (China)

    2011-08-15

    Recently, with the ever-growing demand for healthy living, more and more research is focused on materials capable of killing harmful microorganisms around the world. It is believed that designing such protective materials for hygienic and biomedical applications can benefit people in professional areas and daily life. Thus, in this paper, one novel kind of antibacterial poly(ethylene terephthalate) (PET) nonwoven fabrics was conveniently one-pot prepared, with the combined immobilization of two biological antimicrobial agents, i.e. {epsilon}-polylysine and natamycin, by using the soft methacrylate nonwoven fabrics adhesives. Then, the antimicrobial activities of the functional fabrics were investigated by using the standard shaking-flask method, showing excellent antibacterial efficiency (AE) against both Escherichia coli (8099) and Staphylococcus aureus (ATCC 6538) (AE > 99.99%) compared with untreated PET nonwoven fabrics. The anti-bioaerosol tests also showed similar trends. Meantime, scanning electron microscopy analysis indicated that the bacteria on the antibacterial PET appeared to be partly bacteriolyzed and showed much less viability than those on the pristine ones. Moreover, the long residual biocidal action of such modified PET fabrics was also evaluated, and the antibacterial activity of antibacterial fibers was unaffected by the 3 month artificially accelerated aging.

  10. On Metal Segregation of Bimetallic Nanocatalysts Prepared by a One-Pot Method in Microemulsions

    Directory of Open Access Journals (Sweden)

    Concha Tojo

    2017-02-01

    Full Text Available A comparative study on different bimetallic nanocatalysts prepared from microemulsions using a one-pot method has been carried out. The analysis of experimental observations, complemented by simulation studies, provides detailed insight into the factors affecting nanoparticle architecture: (1 The metal segregation in a bimetallic nanocatalysts is the result of the combination of three main kinetic parameters: the reduction rate of metal precursors (related to reduction standard potentials, the material intermicellar exchange rate (determined by microemulsion composition, and the metal precursors concentration; (2 A minimum difference between the reduction standard potentials of the two metals of 0.20 V is needed to obtain a core-shell structure. For values ∆ε0 smaller than 0.20 V the obtaining of alloys cannot be avoided, neither by changing the microemulsion nor by increasing metal concentration; (3 As a rule, the higher the film flexibility around the micelles, the higher the degree of mixture in the nanocatalyst; (4 A minimum concentration of metal precursors is required to get a core-shell structure. This minimum concentration depends on the microemulsion flexibility and on the difference in reduction rates.

  11. Efficient production of biodiesel from waste grease: one-pot esterification and transesterification with tandem lipases.

    Science.gov (United States)

    Yan, Jinyong; Li, Aitao; Xu, Yi; Ngo, Thao P N; Phua, Szechao; Li, Zhi

    2012-11-01

    A novel concept and efficient method for producing biodiesel (FAME) from grease (15-40wt% free fatty acid, FFA) were developed by using tandem lipases for one-pot esterification of FFA and transesterification of triglyceride with methanol in a solvent-free system. Combining immobilized Candida antarctica lipase B (CALB) (Novozyme 435) favoring the esterification and immobilized Thermomyces lanuginosus lipase (TLL) (Lipozyme TLIM) preferring the transesterification at 2:8 (wt/wt) gave FAME in 80% yield, being better than that with Novozyme 435 or Lipozyme TLIM. Recombinant Escherichia coli (Calb/Tll) co-expressing CALB and TLL was engineered as a more efficient tandem-lipases system. Using wet or dry cells (4wt%) gave FAME in 87% or 95% yield, which is much better than that with E. coli cells expressing either CALB or TLL alone. Cells of E. coli (Calb/Tll) were recycled for five times and retained 75% productivity, thus being practical for producing biodiesel from grease. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Lipase-catalyzed asymmetric synthesis of naphtho[2,3-c]furan-1(3H)-one derivatives by a one-pot dynamic kinetic resolution/intramolecular Diels-Alder reaction: Total synthesis of (-)-himbacine.

    Science.gov (United States)

    Sugiyama, Koji; Kawanishi, Shinji; Oki, Yasuhiro; Kamiya, Marin; Hanada, Ryosuke; Egi, Masahiro; Akai, Shuji

    2018-04-01

    One-pot sequential reactions using the acyl moieties installed by enzymatic dynamic kinetic resolution of alcohols have been little investigated. In this work, the acryloyl moiety installed via the lipase/oxovanadium combo-catalyzed dynamic kinetic resolution of a racemic dienol [4-(cyclohex-1-en-1-yl)but-3-en-2-ol or 1-(cyclohex-1-en-1-yl)but-2-en-1-ol] with a (Z)-3-(phenylsulfonyl)acrylate underwent an intramolecular Diels-Alder reaction in a one-pot procedure to produce an optically active naphtho[2,3-c]furan-1(3H)-one derivative (98% ee). This method was successfully applied to the asymmetric total synthesis of (-)-himbacine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Valorization of starchy, cellulosic, and sugary food waste into hydroxymethylfurfural by one-pot catalysis.

    Science.gov (United States)

    Yu, Iris K M; Tsang, Daniel C W; Yip, Alex C K; Chen, Season S; Ok, Yong Sik; Poon, Chi Sun

    2017-10-01

    This study aimed to produce a high-value platform chemical, hydroxymethylfurfural (HMF), from food waste and evaluate the catalytic performance of trivalent and tetravalent metals such as AlCl 3 , CrCl 3 , FeCl 3 , Zr(O)Cl 2 , and SnCl 4 for one-pot conversion. Starchy food waste, e.g., cooked rice and penne produced 4.0-8.1 wt% HMF and 46.0-64.8 wt% glucose over SnCl 4 after microwave heating at 140 °C for 20 min. This indicated that starch hydrolysis was effectively catalyzed but subsequent glucose isomerization was rate-limited during food waste valorization, which could be enhanced by 40-min reaction to achieve 22.7 wt% HMF from cooked rice. Sugary food waste, e.g., kiwifruit and watermelon, yielded up to 13 wt% HMF over Sn catalyst, which mainly resulted from naturally present fructose. Yet, organic acids in fruits may hinder Fe-catalyzed dehydration by competing for the Lewis sites. In contrast, conversion of raw mixed vegetables as cellulosic food waste was limited by marginal hydrolysis at the studied conditions (120-160 °C and 20-40 min). It is interesting to note that tetravalent metals enabled HMF production at a lower temperature and shorter time, while trivalent metals could achieve a higher HMF selectivity at an elevated temperature. Further studies on kinetics, thermodynamics, and reaction pathways of food waste valorization are recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles.

    Science.gov (United States)

    Zhang, Xiaodong; Chen, Xiaokai; Kai, Siqi; Wang, Hong-Yin; Yang, Jingjing; Wu, Fu-Gen; Chen, Zhan

    2015-03-17

    A simple and highly efficient method for dopamine (DA) detection using water-soluble silicon nanoparticles (SiNPs) was reported. The SiNPs with a high quantum yield of 23.6% were synthesized by using a one-pot microwave-assisted method. The fluorescence quenching capability of a variety of molecules on the synthesized SiNPs has been tested; only DA molecules were found to be able to quench the fluorescence of these SiNPs effectively. Therefore, such a quenching effect can be used to selectively detect DA. All other molecules tested have little interference with the dopamine detection, including ascorbic acid, which commonly exists in cells and can possibly affect the dopamine detection. The ratio of the fluorescence intensity difference between the quenched and unquenched cases versus the fluorescence intensity without quenching (ΔI/I) was observed to be linearly proportional to the DA analyte concentration in the range from 0.005 to 10.0 μM, with a detection limit of 0.3 nM (S/N = 3). To the best of our knowledge, this is the lowest limit for DA detection reported so far. The mechanism of fluorescence quenching is attributed to the energy transfer from the SiNPs to the oxidized dopamine molecules through Förster resonance energy transfer. The reported method of SiNP synthesis is very simple and cheap, making the above sensitive and selective DA detection approach using SiNPs practical for many applications.

  15. One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jian; Konda, Murthy; Parthasarathi, Ramakrishnan; Dutta, Tanmoy; Valiev, Marat; Xu, Feng; Simmons, Blake A.; Singh, Seema

    2017-01-01

    The transformation of biomass into liquid fuels is of great importance. Previous work has demonstrated the capability of specific ionic liquids (ILs), such as 1-ethyl-3-methylimidazolium acetate ([C(2)C(1)Im][OAc]) and cholinium lysinate ([Ch][Lys]), to be effective biomass pretreatment solvents. Using these ILs for an integrated biomass-to-biofuel configuration is still challenging due to a significant water-wash related to the high toxicity of [C(2)C(1)Im][OAc] and pH adjustment prior to saccharification for the highly basic [Ch][Lys]. In this work, we demonstrate, for the first time, that a one-pot integrated biofuel production is enabled by a low cost (similar to$1 per kg) and biocompatible protic IL (PIL), ethanolamine acetate, without pH adjustments, water-wash and solid-liquid separations. After pretreatment, the whole slurry is directly used for simultaneous saccharification and fermentation (SSF) with commercial enzyme cocktails and wild type yeast strains, generating 70% of the theoretical ethanol yield (based on switchgrass). The structure-performance relationships of PILs in terms of lignin removal, net basicity, and pH value are systematically studied. A technoeconomic analysis (TEA) revealed that an integrated biorefinery concept based on this PIL process could potentially reduce the minimum ethanol selling price by more than 40% compared to scenarios that require pH adjustment prior to SSF. Improvement of the economic performance will be made by reducing the dilution and enzyme loading during SSF as identified by TEA. This study demonstrates the impact of a biocompatible IL in terms of process optimization and conversion efficiency, and opens up avenues for realizing an IL based efficiently integrated biomass conversion technology.

  16. One-pot synthesis of a Ni–Mn3O4 nanocomposite for supercapacitors

    International Nuclear Information System (INIS)

    Xu, Guo-rong; Shi, Jin-jin; Dong, Wen-hao; Wen, Ya; Min, Xiang-ping; Tang, An-ping

    2015-01-01

    Highlights: • Ni–Mn 3 O 4 nanocomposites have been synthesized simply. • Mn 3 O 4 particles were deposited on surface of Ni particles with OH functional groups. • Ni–Mn 3 O 4 composites could be quickly conditioned to birnessite-type MnO 2 . • A specific capacitance of 230 F g −1 was obtained for Ni (17.3%)–Mn 3 O 4 nanocomposite. - Abstract: Ni–Mn 3 O 4 nanocomposite has been prepared successfully by chemical oxidation in an alkaline solution of Mn 2+ on the surface of Ni nanoparticles with OH functional groups using one-pot method. The obtained Ni–Mn 3 O 4 nanocomposite was characterized using a scanning electron microscope (SEM), a transmission electron microscope (TEM), X-ray diffraction (XRD) analysis and various electrochemical techniques, such as cyclic voltammetry (CV), galvanostatic charge/discharge (GC/D) and electrochemical impedance spectroscopy (EIS). The average crystal sizes of Mn 3 O 4 were found to decrease linearly with increasing Ni content in the Ni–Mn 3 O 4 composite. The Ni–Mn 3 O 4 nanocomposite could be easily conditioned and inverted to birnessite-type MnO 2 . A specific capacitance of 230 F g −1 (based on pure Mn 3 O 4 ) was obtained for the Ni (17.3%)–Mn 3 O 4 nanocomposite at a current rate of 0.25 A g −1 , and 94% of the initial capacitance was retained after 1000 GC/D cycles at a current rate of 1 A g −1 . It is concluded that the Ni–Mn 3 O 4 nanocomposite is a promising electrode materials for supercapacitors

  17. One-pot preparation of unsaturated polyester nanocomposites containing functionalized graphene sheets via a novel solvent-exchange method

    Science.gov (United States)

    This paper reports a convenient one-pot method integrating a novel solvent-exchange method into in situ melt polycondensation to fabricate unsaturated polyester nanocomposites containing functionalized graphene sheets (FGS). A novel solvent-exchange method was first developed to prepare graphene oxi...

  18. One-pot radioiodination of aryl amines via stable diazonium salts: preparation of 125I-imaging agents

    OpenAIRE

    Sloan, Nikki L.; Luthra, Sajinder K.; McRobbie, Graeme; Pimlott, Sally L.; Sutherland, Andrew

    2017-01-01

    An operationally simple, one-pot, two-step tandem procedure that allows the incorporation of radioactive iodine into aryl amines via stable diazonium salts is described. The mild conditions are tolerant of various functional groups and substitution patterns, allowing late-stage, rapid access to a wide range of 125I-labelled aryl compounds and SPECT radiotracers.

  19. A one-pot radioiodination of aryl amines via stable diazonium salts: preparation of 125I-imaging agents.

    Science.gov (United States)

    Sloan, Nikki L; Luthra, Sajinder K; McRobbie, Graeme; Pimlott, Sally L; Sutherland, Andrew

    2017-10-05

    An operationally simple, one-pot, two-step tandem procedure that allows the incorporation of radioactive iodine into aryl amines via stable diazonium salts is described. The mild conditions are tolerant of various functional groups and substitution patterns, allowing late-stage, rapid access to a wide range of 125 I-labelled aryl compounds and SPECT radiotracers.

  20. Mechanistic investigation of the one-pot formation of amides by oxidative coupling of alcohols with amines in methanol

    DEFF Research Database (Denmark)

    Mielby, Jerrik Jørgen; Riisager, Anders; Fristrup, Peter

    2013-01-01

    The one-pot formation of amides by oxidative coupling of alcohols and amines via intermediate formation of methyl ester using supported gold and base as catalysts was studied using the Hammett methodology. Determining the relative reactivity of four different para-substituted benzyl alcohol deriv...... a theoretical Hammett plot that was in good agreement with the one obtained experimentally....

  1. CuI-Catalyzed: One-Pot Synthesis of Diaryl Disulfides from Aryl Halides and Carbon Disulfide

    Directory of Open Access Journals (Sweden)

    Mohammad Soleiman-Beigi

    2013-01-01

    Full Text Available A new application of carbon disulfide in the presence of KF/Al2O3 is reported for the synthesis of organic symmetrical diaryl disulfides. These products were synthesized by one-pot reaction of aryl halides with the in situ generated trithiocarbonate ion in the presence of copper under air atmosphere.

  2. One-pot in situ redox synthesis of hexacyanoferrate/conductive polymer hybrids as lithium-ion battery cathodes.

    Science.gov (United States)

    Wong, Min Hao; Zhang, Zixuan; Yang, Xianfeng; Chen, Xiaojun; Ying, Jackie Y

    2015-09-14

    An efficient and adaptable method is demonstrated for the synthesis of lithium hexacyanoferrate/conductive polymer hybrids for Li-ion battery cathodes. The hybrids were synthesized via a one-pot method, involving a redox-coupled reaction between pyrrole monomers and the Li3Fe(CN)6 precursor. The hybrids showed much better cyclability relative to reported Prussian Blue (PB) analogs.

  3. Stereo- and regio-selective one-pot synthesis of triazole-based unnatural amino acids and β- amino triazoles

    Science.gov (United States)

    Synthesis of triazole based unnatural amino acids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW conditions. The developed method is applicable to a broad substrate scope a...

  4. Metal-free one-pot synthesis of 2-substituted and 2,3-disubstituted morpholines from aziridines

    Directory of Open Access Journals (Sweden)

    Hongnan Sun

    2015-04-01

    Full Text Available The metal-free synthesis of 2-substituted and 2,3-disubstituted morpholines through a one-pot strategy is described. A simple and inexpensive ammonium persulfate salt enables the reaction of aziridines with halogenated alcohols to proceed via an SN2-type ring opening followed by cyclization of the resulting haloalkoxy amine.

  5. One-pot synthesis of water soluble iron nanoparticles using rationally-designed peptides and ligand release.

    Science.gov (United States)

    Papst, Stefanie; Cheong, Soshan; Banholzer, Moritz J; Brimble, Margaret A; Williams, David E; Tilley, Richard D

    2013-05-18

    Herein we report the rational design of new phosphopeptides for control of nucleation, growth and aggregation of water-soluble, superparamagnetic iron-iron oxide core-shell nanoparticles. The use of the designed peptides enables a one-pot synthesis that avoids utilizing unstable or toxic iron precursors, organic solvents, and the need for exchange of capping agent after synthesis of the NPs.

  6. tBuLi-Mediated One-Pot Direct Highly Selective Cross-Coupling of Two Distinct Aryl Bromides

    NARCIS (Netherlands)

    Vila, Carlos; Cembellin, Sara; Hornillos, Valentin; Giannerini, Massimo; Fananas-Mastral, Martin; Feringa, Ben L.

    2015-01-01

    A Pd-catalyzed direct cross-coupling of two distinct aryl bromides mediated by tBuLi is described. The use of [Pd-PEPPSI-IPr] or [Pd-PEPPSI-IPent] as catalyst allows for the efficient one-pot synthesis of unsymmetrical biaryls at room temperature. The key for this selective cross-coupling is the use

  7. Synthesis of non-natural carbohydrates from glycerol and aldehydes in a one-pot four-enzyme cascade reaction

    NARCIS (Netherlands)

    Babich, L.; Hartog, L.; Falcicchio, P.; Oost, van der J.

    2011-01-01

    A simple procedure has been developed for the synthesis of enantio- and diastereomerically pure carbohydrate analogues from glycerol and a variety of aldehydes in one pot using a four-enzyme cascade reaction. As a proof of concept of the usefulness of this enzymatic catalytic cascade the naturally

  8. Highly luminescent CdSe/ZnSe core-shell quantum dots of one-pot preparation in octadecene

    NARCIS (Netherlands)

    Zeng, Q.; Kong, X.; Zhang, Y.; Zhang, H.

    2008-01-01

    CdSe/ZnSe core-shell quantum dots were synthesized using a new one-pot procedure where the core was prepared in octadecene. A ZnSe shell around a CdSe nanoparticle was formed by the reaction of selenium-richness on the surfaces of CdSe nanoparticles with Zn2+ from the injected zinc stearate

  9. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: Aqueous hydration of nitriles to amides

    Science.gov (United States)

    One-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium hydroxide immobilization; the hydration of nitriles occurs in high yield and excellent selectivity using this...

  10. A Biocatalytic One-Pot Approach for the Preparation of Lignin Oligomers Using an Oxidase/Peroxidase Cascade Enzyme System

    NARCIS (Netherlands)

    Habib, Mohamed H. M.; Deuss, Peter J.; Loncar, Nikola; Trajkovic, Milos; Fraaije, Marco W.

    2017-01-01

    Synthetic lignin was prepared biocatalytically in a one-pot, two-step reaction using an oxidase/peroxidase cascade enzyme system. Using eugenol in combination with eugenol oxidase and a peroxidase, lignin-like material was produced. The cascade reaction takes advantage of the ability of the oxidase

  11. A trifunctional mesoporous silica-based, highly active catalyst for one-pot, three-step cascade reactions.

    Science.gov (United States)

    Biradar, Ankush V; Patil, Vijayshinha S; Chandra, Prakash; Doke, Dhananjay S; Asefa, Tewodros

    2015-05-18

    We report the synthesis of a trifunctional catalyst containing amine, sulphonic acid and Pd nanoparticle catalytic groups anchored on the pore walls of SBA-15. The catalyst efficiently catalyzes one-pot three-step cascade reactions comprising deacetylation, Henry reaction and hydrogenation, giving up to ∼100% conversion and 92% selectivity to the final product.

  12. One-pot bioethanol production from cellulose by co-culture of Acremonium cellulolyticus and Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Park Enoch Y

    2012-08-01

    Full Text Available Abstract Background While the ethanol production from biomass by consolidated bioprocess (CBP is considered to be the most ideal process, simultaneous saccharification and fermentation (SSF is the most appropriate strategy in practice. In this study, one-pot bioethanol production, including cellulase production, saccharification of cellulose, and ethanol production, was investigated for the conversion of biomass to biofuel by co-culture of two different microorganisms such as a hyper cellulase producer, Acremonium cellulolyticus C-1 and an ethanol producer Saccharomyces cerevisiae. Furthermore, the operational conditions of the one-pot process were evaluated for maximizing ethanol concentration from cellulose in a single reactor. Results Ethanol production from cellulose was carried out in one-pot bioethanol production process. A. cellulolyticus C-1 and S. cerevisiae were co-cultured in a single reactor. Cellulase producing-medium supplemented with 2.5 g/l of yeast extract was used for productions of both cellulase and ethanol. Cellulase production was achieved by A. cellulolyticus C-1 using Solka-Floc (SF as a cellulase-inducing substrate. Subsequently, ethanol was produced with addition of both 10%(v/v of S. cerevisiae inoculum and SF at the culture time of 60 h. Dissolved oxygen levels were adjusted at higher than 20% during cellulase producing phase and at lower than 10% during ethanol producing phase. Cellulase activity remained 8–12 FPU/ml throughout the one-pot process. When 50–300 g SF/l was used in 500 ml Erlenmeyer flask scale, the ethanol concentration and yield based on initial SF were as 8.7–46.3 g/l and 0.15–0.18 (g ethanol/g SF, respectively. In 3-l fermentor with 50–300 g SF/l, the ethanol concentration and yield were 9.5–35.1 g/l with their yields of 0.12–0.19 (g/g respectively, demonstrating that the one-pot bioethanol production is a reproducible process in a scale-up bioconversion of cellulose to ethanol

  13. Microwave assisted facile one pot synthesis of novel 5-carboxamido substituted analogues of 1,4-benzodiazepin-2-one of medicinal interest

    Directory of Open Access Journals (Sweden)

    R. Sirohi

    2013-05-01

    Full Text Available A novel synthetic approach developed by the use of a microwave (MW assisted one pot protocol to the synthesis of methyl-1,4-benzodiazepin-2-one-5-carboxylate (2 derivatives for which N-chloroacetylisatin was employed with an elegant success to afford the formation of 5-methyl carboxylate derivatives of 1,4-benzodiazepines from its reaction with methanolic hexamine. We have utilized MW technique in the present work in conducting the reaction of carboxylate ester derivative (2 with several selected primary and secondary amines 3, 4, 5, 6, 7, and 8 which had the previous history of being biologically active in the literature, to generate the corresponding carboxamide derivatives (9-14.

  14. One-pot synthesis and characterization of rhodamine derivative-loaded magnetic core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jin, E-mail: jzhang@eng.uwo.ca; Li Jiaxin [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada); Razavi, Fereidoon S. [Brock University, Department of Physics (Canada); Mumin, Abdul Md. [University of Western Ontario, Department of Chemical and Biochemical Engineering (Canada)

    2011-05-15

    A new method to produce elaborate nanostructure with magnetic and fluorescent properties in one entity is reported in this article. Magnetite (Fe{sub 3}O{sub 4}) coated with fluorescent silica (SiO{sub 2}) shell was produced through the one-pot reaction, in which one reactor was utilized to realize the synthesis of superparamagnetic core of Fe{sub 3}O{sub 4}, the formation of SiO{sub 2} coating through the condensation and polymerization of tetraethylorthosilicate (TEOS), and the encapsulation of tetramethyl rhodamine isothiocyanate-dextran (TRITC-dextran) within silica shell. Transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and X-ray diffraction (XRD) were carried out to investigate the core-shell structure. The magnetic core of the core-shell nanoparticles is 60 {+-} 10 nm in diameter. The thickness of the fluorescent SiO{sub 2} shell is estimated at 15 {+-} 5 nm. In addition, the fluorescent signal of the SiO{sub 2} shell has been detected by the laser confocal scanning microscopy (LCSM) with emission wavelength ({lambda}{sub em}) at 566 nm. In addition, the magnetic properties of TRITC-dextran loaded silica-coating iron oxide nanoparticles (Fe{sub 3}O{sub 4}-SiO{sub 2} NPs) were studied. The hysteresis loop of the core-shell NPs measured at room temperature shows that the saturation magnetization (M{sub s}) is not reached even at the field of 70 kOe (7T). Meanwhile, the very low coercivity (H{sub c}) and remanent magnetization (M{sub r}) are 0.375 kOe and 6.6 emu/g, respectively, at room temperature. It indicates that the core-shell particles have the superparamagnetic properties. The measured blocking temperature (T{sub B}) of the TRITC-dextran loaded Fe{sub 3}O{sub 4}-SiO{sub 2} NPs is about 122.5 K. It is expected that the multifunctional core-shell nanoparticles can be used in bio-imaging.

  15. General and efficient one-pot synthesis of novel sugar/heterocyclic(aryl) 1,2-diketones from sugar terminal alkynes by Sonogashira/tetra-n- butylammonium permanganate oxidation.

    Science.gov (United States)

    Zhang, Fuyi; Wu, Xiaopei; Wang, Liming; Liu, Hong; Zhao, Yufen

    2015-11-19

    A new approach for one-pot synthesis of novel sugar/heterocyclic(aryl) 1,2-diketones has been achieved by the reaction of various sugar terminal alkynes with heterocyclic(aryl) iodides at room temperature. This one-pot protocol includes Sonogashira coupling and mild n-Bu4NMnO4 oxidation reaction. This method is mild, general and efficient. Fifty-six examples have been given and the sugar/heterocyclic(aryl) 1,2-diketones were obtained in 71-94% yields. The sugar terminal alkynes include 9 structurally different sugars in pyranose, furanose, and acyclic form which have various protecting groups, sensitive groups, and sterically bulky substituents. The heterocyclic(aryl) iodides include sterically bulky heterocyclic compounds and iodobenzenes with electron-donating, electron-neutral, and electron-withdrawing substituents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Assessment of a sequential extraction protocol by examining solution chemistry and mineralogical evolution

    Science.gov (United States)

    Maubec, Nicolas; Pauwels, Hélène; Noël, Hervé; Bourrat, Xavier

    2015-04-01

    Knowledge of the behavior of heavy metals, such as copper and zinc in sediments, is a key factor to improve the management of rivers. The mobility of these metals, which may be harmful to the environment, depends directly on their concentration and speciation , which in turn depend on physico-chemical parameters such as mineralogy of the sediment fraction, pH, redox potential, salinity etc ... (Anderson et al., 2000; Sterckeman et al., 2004; Van Oort et al., 2008). Several methods based on chemical extractions are currently applied to assess the behavior of heavy metals in soils and sediments. Among them, sequential extraction procedure is widely used in soil and sediment science and provides details about the origin, biological and physicochemical availability, mobilization and transports of trace metals elements. It is based on the use of a series of extracting reagents to extract selectively heavy metals according to their association within the solid phase (Cornu and Clozel, 2000) including the following different fraction : exchangeable, bound to carbonates, associated to oxides (reducible fraction), linked to organic matter and sulfides (oxidizable fraction) as well as silicate minerals so called residual fraction (Hickey and Kittrick, 1984; Tessier et al., 1979). Consequently sequential extraction method is expected to simulate a lot of potential natural and anthropogenic modifications of environmental conditions (Arey et al., 1999; Brannon and Patrick, 1987; Hickey and Kittrick, 1984; La Force et al., 1999; Tessier et al., 1979). For three decades, a large number of protocols has been proposed, characterized by specific reagents and experimental conditions (concentrations, number of steps, extraction orders and solid/solution ratio) (Das et al., 1995; Gomez Ariza et al., 2000; Quevauviller et al., 1994; Rauret, 1998; Tack and Verloo, 1995), but it appeared that several of them suffer from a lack of selectivity of applied reagents: besides target ones, some

  17. Controlled synthesis of multi-shelled transition metal oxide hollow structures through one-pot solution route

    Institute of Scientific and Technical Information of China (English)

    Xi Wang; Yi-Jun Yang; Ying Ma; Jian-Nian Yao

    2013-01-01

    As one type of promising candidates fot environmental and energy-related systems,multi-shelled transition metal oxide hollow structures (MS-TMOHSs) have drawn great scientific and technical interest in the past few years.This article highlights recent advances in one-pot solution synthesis of MS-TMOHSs.We begin it with an overview of synthetic strategies that have been exploited to achieve these peculiar structures.We then focus on one-pot solution approaches in the following four sections:i) soft templates directed growth; ii) Ostwald ripening; iii) controlled etching; and iv) gas bubble assisted growth.After giving a brief discussion on the unique properties and applications of these multi-shelled hollow structures,we conclude this review with the general challenges and the potential future directions of this exciting area of research.

  18. Direct Production of Furfural in One-pot Fashion from Raw Biomass Using Brønsted Acidic Ionic Liquids.

    Science.gov (United States)

    Matsagar, Babasaheb M; Hossain, Shahriar A; Islam, Tofazzal; Alamri, Hatem R; Alothman, Zeid A; Yamauchi, Yusuke; Dhepe, Paresh L; Wu, Kevin C-W

    2017-10-18

    The conversion of raw biomass into C5-sugars and furfural was demonstrated with the one-pot method using Brønsted acidic ionic liquids (BAILs) without any mineral acids or metal halides. Various BAILs were synthesized and characterized using NMR, FT-IR, TGA, and CHNS microanalysis and were used as the catalyst for raw biomass conversion. The remarkably high yield (i.e. 88%) of C5 sugars from bagasse can be obtained using 1-methyl-3(3-sulfopropyl)-imidazolium hydrogen sulfate ([C 3 SO 3 HMIM][HSO 4 ]) BAIL catalyst in a water medium. Similarly, the [C 3 SO 3 HMIM][HSO 4 ] BAIL also converts the bagasse into furfural with very high yield (73%) in one-pot method using a water/toluene biphasic solvent system.

  19. Post-modified acid-base bifunctional MIL-101(Cr) for one-pot deacetalization-Knoevenagel reaction

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Manman [Tianjin University, School of Science (China); Yan, Xilong; Li, Yang; Chen, Ligong, E-mail: lgchen@tju.edu.cn [Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) (China)

    2017-04-15

    A novel and convenient approach for the construction of the bifunctional MIL-101 material bearing sulfonic acid and amino groups was established via the post-synthetic modification. This material possesses high BET surface area (1446 m{sup 2}/g) and large pore volume (0.77 cm{sup 3}/g). Significantly, this material could serve as a bifunctional heterogeneous catalyst and was initially employed for one-pot deacetalization-Knoevenagel reaction, exhibiting excellent catalytic performance (yield 99.74%). More importantly, it can be easily recovered and reused at least three times. Finally, our proposed catalytic mechanism indicated that amino and the sulfonic acid groups played a synergistic effect on this one-pot deacetalization-Knoevenagel reaction.

  20. Gold Nanoparticles Supported on a Layered Double Hydroxide as Efficient Catalysts for the One-Pot Synthesis of Flavones.

    Science.gov (United States)

    Yatabe, Takafumi; Jin, Xiongjie; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-11-02

    Flavones are a class of natural products with diverse biological activities and have frequently been synthesized by step-by-step procedures using stoichiometric amounts of reagents. Herein, a catalytic one-pot procedure for the synthesis of flavone and its derivatives is developed. In the presence of gold nanoparticles supported on a Mg-Al layered double hydroxide (Au/LDH), various kinds of flavones can be synthesized starting from 2'-hydroxyacetophenones and benzaldehydes (or benzyl alcohols). The present one-pot procedure consists of a sequence of several reactions, and Au/LDH can catalyze all these different types of reactions. The catalysis is shown to be truly heterogeneous, and Au/LDH can be readily recovered and reused. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. One pot obtention of a tetrabutylammonium hydroxide solution for ironporphyrin-OH- interaction studies in organic solvents

    Directory of Open Access Journals (Sweden)

    Lídia S. Iwamoto

    1999-04-01

    Full Text Available In this work we report the obtention of a tetrabutylammonium hydroxide (TBAOH solution in acetonitrile in a one pot process in order to study the interaction ironporphyrinOH- in non-aqueous systems. All the reactions were carried out under dry argon atmosphere to prevent the contamination of the solution with CO2, which leads to the formation of (TBA2CO3.

  2. Vancomycin analogues containing monosaccharides exhibit improved antibiotic activity: a combined one-pot enzymatic glycosylation and chemical diversification strategy.

    Science.gov (United States)

    Thayer, Desiree A; Wong, Chi-Huey

    2006-09-18

    Many natural products contain carbohydrate moieties that contribute to their biological activity. Manipulation of the carbohydrate domain of natural products through multiple glycosylations to identify new derivatives with novel biological activities has been a difficult and impractical process. We report a practical one-pot enzymatic approach with regeneration of cosubstrates to synthesize analogues of vancomycin that contain an N-alkyl glucosamine, which exhibited marked improvement in antibiotic activity against a vancomycin-resistant strain of Enterococcus.

  3. One-pot three-component synthesis of quinoxaline and phenazine ring systems using Fischer carbene complexes

    Directory of Open Access Journals (Sweden)

    Priyabrata Roy

    2010-05-01

    Full Text Available One-pot three-component coupling of o-alkynylheteroaryl carbonyl derivatives with Fischer carbene complexes and dienophiles leading to the synthesis of quinoxaline and phenazine ring systems has been investigated. This involves the generation of furo[3,4-b]pyrazine and furo[3,4-b]quinoxaline as transient intermediates, which were trapped with Diels–Alder dienophiles. This is the first report on furo[3,4-b]pyrazine intermediates.

  4. Ultrasound-Promoted One-Pot, Four-Component Synthesis of Pyridin-2(1H-One Derivatives

    Directory of Open Access Journals (Sweden)

    Jinming Yang

    2013-11-01

    Full Text Available An efficient one-pot synthesis of 1,6-diamino-2-oxo-1,2,3,4-tetrahydro- pyridine-3,5-dicarbonitrile derivatives by four-component piperidine-catalyzed reactions of a ketone, malononitrile, ethyl cyanoacetate and hydrazine hydrate under ultrasound irradiation is described. This method provides several advantages such as shorter reaction times, excellent yields, and a simple workup procedure.

  5. Nanocrystalline copper(II oxide-catalyzed one-pot four- component synthesis of polyhydroquinoline derivativesunder solvent-free conditions

    Directory of Open Access Journals (Sweden)

    J. Safaei-Ghomi

    2011-07-01

    Full Text Available The efficient and environmentally friendly method for the one-pot synthesis of polyhydroquinolines has been developed in the presence of CuO nanoparticles. The multi-component reactions of aldehydes, dimedone, ethyl acetoacetate andammonium acetate were carried out under solvent-free conditions to afford some polyhydroquinoline derivatives. This method provides several advantages including high yields, low reaction times and little catalyst loading.

  6. Chemoenzymatic one-pot synthesis in an aqueous medium: combination of metal-catalysed allylic alcohol isomerisation-asymmetric bioamination.

    Science.gov (United States)

    Ríos-Lombardía, Nicolás; Vidal, Cristian; Cocina, María; Morís, Francisco; García-Álvarez, Joaquín; González-Sabín, Javier

    2015-07-11

    The ruthenium-catalysed isomerisation of allylic alcohols was coupled, for the first time, with asymmetric bioamination in a one-pot process in an aqueous medium. In the cases involving prochiral ketones, the ω-TA exhibited excellent enantioselectivity, identical to that observed in the single step. As a result, amines were obtained from allylic alcohols with high overall yields and excellent enantiomeric excesses.

  7. Environmentally friendly room temperature strecker reaction:one-pot synthesis of α-aminonitriles in ionic liquid

    International Nuclear Information System (INIS)

    Mojtahedi, M. M.; Abaee, M.S.; Abbasi, H.

    2006-01-01

    A three component efficient and facile procedure is developed for the synthesis of a-aminonitriles from aromatic-and aliphatic aldehydes, amines, and trimethylsilyl cyanide in 1-butyl-3-methyl-1H-imidazolium perchlorate ([bmim][C1O 4 ]) ionic liquid as the reaction medium at room temperature. Excellent yields are obtained in this one-pot procedure with short reaction times and the ionic liquid medium reused several times in a row

  8. One-Pot Synthesis of (+)-Nootkatone via Dark Singlet Oxygenation of Valencene: The Triple Role of the Amphiphilic Molybdate Catalyst

    OpenAIRE

    Bing Hong; Raphaël Lebeuf; Stéphanie Delbaere; Paul L. Alsters; Véronique Nardello-Rataj

    2016-01-01

    Efficient one-pot catalytic synthesis of (+)-nootkatone was performed from (+)-valencene using only hydrogen peroxide and amphiphilic molybdate ions. The process required no solvent and proceeded in three cascade reactions: (i) singlet oxygenation of valencene according to the ene reaction; (ii) Schenck rearrangement of one hydroperoxide into the secondary β-hydroperoxide; and (iii) dehydration of the hydroperoxide into the desired (+)-nootkatone. The solvent effect on the hydroperoxide rearr...

  9. Electrochemistry for the Generation of Renewable Chemicals: One-Pot Electrochemical Deoxygenation of Xylose to δ-Valerolactone.

    Science.gov (United States)

    James, Olusola O; Sauter, Waldemer; Schröder, Uwe

    2017-05-09

    In this study, the electrochemical conversion of xylose to δ-valerolactone via carbonyl intermediates is demonstrated. The conversion was achieved in aqueous media and at ambient conditions. This study also demonstrates that the feedstock for production of renewable chemicals and biofuels through electrochemistry can be extended to primary carbohydrate molecules. This is the first report on a one-pot electrochemical deoxygenation of xylose to δ-valerolactone. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Montmorillonite Clay Catalyzed Three Component, One-Pot Synthesis of 5-Hydroxyindole Derivatives

    International Nuclear Information System (INIS)

    Subba Reddy, B. V.; Sivaramakrishna Reddy, P.; Jayasudhan Reddy, Y.; Bhaskar, N.; Chandra Obula Reddy, B.

    2013-01-01

    A highly efficient and environmentally benign protocol has been developed for the first time to produce a wide range of biologically active 5-hydroxyindole derivatives using montmorillonite KSF clay as a reusable solid acid catalyst. The use of recyclable clay makes this procedure quite simple, more convenient and cost-effective

  11. "One-Pot" Ion-Exchange and Mesopore Formation During Desilication

    DEFF Research Database (Denmark)

    Holm, Martin Spangsberg; Hansen, Martin Kalmar; Christensen, Claus Hviid

    2009-01-01

    A desilication protocol using tetramethylammonium hydroxide was applied to zeolite beta. The new route presented here integrates the desilication and ion-exchange post-treatment steps allowing for a subsequent ion-exchange step to be avoided. It is shown that the acidic and highly mesoporous zeol...... zeolite is obtained directly upon calcination. Thus, careful choice of base and post-treatment conditions lead to the fabrication of a hierarchical meso- and microporous structure with completely retained crystallinity. (...

  12. One-Pot Catalytic Enantio- and Diastereoselective Syntheses of anti-, syn-cis-Disubstituted, and syn-Vinyl Cyclopropyl Alcohols

    Science.gov (United States)

    Kim, Hun Young; Salvi, Luca; Carroll, Patrick J.; Walsh, Patrick J.

    2009-01-01

    Highly enantio- and diastereoselective methods for the synthesis of a variety of cyclopropyl alcohols are reported. These methods represent the first one-pot approaches to syn-vinyl cyclopropyl alcohols, syn-cis-disubstituted cyclopropyl alcohols, and anti-cyclopropyl alcohols from achiral precursors. The methods begin with enantioselective C–C bond formations promoted by a MIB-based zinc catalyst to generate allylic alkoxide intermediates. The intermediates are then subjected to in situ alkoxide-directed cyclopropanation to provide cyclopropyl alcohols. In the synthesis of vinyl cyclopropyl alcohols, hydroboration of enynes is followed by transmetalation of the resulting dienylborane to zinc to provide dienylzinc reagents. Enantioselective addition to aldehydes generates the requisite dienyl zinc alkoxides, which are then subjected to in situ cyclopropanation to furnish vinyl cyclopropyl alcohols. Cyclopropanation occurs at the double bond allylic to the alkoxide. Using this method, syn-vinylcyclopropyl alcohols are obtained in 65–85% yield, 76–93% ee, and >19:1 dr. To prepare anti-cyclopropanols, enantioselective addition of alkylzinc reagents to conjugated enals provides allylic zinc alkoxides. Because direct cyclopropanation provides syn-cyclopropyl alcohols, the intermediate allylic alkoxides were treated with TMSCl/Et3N to generate intermediate silyl ethers. In situ cyclopropanation of the allylic silyl ether resulted in cyclopropanation to form the anti-cyclopropyl silyl ether. Workup with TBAF affords the anti-cyclopropyl alcohols in one-pot in 60–82% yield, 89–99% ee, and ≥10:1 dr. For the synthesis of cis-disubstituted cyclopropyl alcohols, in situ generated (Z)-vinyl zinc reagents were employed in asymmetric addition to aldehydes to generate (Z)-allylic zinc alkoxides. In situ cyclopropanation provides syn-cis-disubstituted cyclopropyl alcohols in 42–70% yield, 88–97% ee, and >19:1 dr. These one-pot procedures enable the synthesis of a

  13. One-Pot Procedure for Recovery of Gallic Acid from Wastewater and Encapsulation within Protein Particles.

    Science.gov (United States)

    Nourbakhsh, Himan; Madadlou, Ashkan; Emam-Djomeh, Zahra; Wang, Yi-Cheng; Gunasekaran, Sundaram; Mousavi, Mohammad E

    2016-02-24

    A whey protein isolate solution was heat-denatured and treated with the enzyme transglutaminase, which cross-linked ≈26% of the amino groups and increased the magnitude of the ζ-potential value. The protein solution was microemulsified, and then the resulting water-in-oil microemulsion was dispersed within a gallic acid-rich model wastewater. Gallic acid extraction by the outlined microemulsion liquid membrane (MLM) from the exterior aqueous phase (wastewater) and accumulation within the internal aqueous nanodroplets induced protein cold-set gelation and resulted in the formation of gallic acid-enveloping nanoparticles. Measurements with a strain-controlled rheometer indicated a progressive increase in the MLM viscosity during gallic acid recovery corresponding to particle formation. The mean hydrodynamic size of the nanoparticles made from the heat-denatured and preheated enzymatically cross-linked proteins was 137 and 122 nm, respectively. The enzymatic cross-linking of whey proteins led to a higher gallic acid recovery yield and increased the glass transition enthalpy and temperature. A similar impact on glass transition indices was observed by the gallic acid-induced nanoparticulation of proteins. Scanning electron microscopy showed the existence of numerous jammed/fused nanoparticles. It was suggested on the basis of the results of Fourier transform infrared spectroscopy that the in situ nanoparticulation of proteins shifted the C-N stretching and C-H bending peaks to higher wavenumbers. X-ray diffraction results proposed a decreased β-sheet content for proteins because of the acid-induced particulation. The nanoparticles made from the enzymatically cross-linked protein were more stable against the in vitro gastrointestinal digestion and retained almost 19% of the entrapped gallic acid after 300 min sequential gastric and intestinal digestions.

  14. One-Pot Two-Step Organocatalytic Asymmetric Synthesis of Spirocyclic Piperidones via Wolff Rearrangement–Amidation–Michael–Hemiaminalization Sequence

    Directory of Open Access Journals (Sweden)

    Yanqing Liu

    2017-02-01

    Full Text Available A highly enantioselective organocatalytic Wolff rearrangement–amidation–Michael–hemiaminalization stepwise reaction is described involving a cyclic 2-diazo-1,3-diketone, primary amine and α,β-unsaturated aldehyde. Product stereocontrol can be achieved by adjusting the sequence of steps in this one-pot multicomponent reaction. This approach was used to synthesize various optically active spirocyclic piperidones with three stereogenic centers and multiple functional groups in good yields up to 76%, moderate diastereoselectivities of up to 80:20 and high enantioselectivities up to 97%.

  15. Conformationally superarmed S-ethyl glycosyl donors as effective building blocks for chemoselective oligosaccharide synthesis in one pot

    DEFF Research Database (Denmark)

    Bandara, Mithila D.; Yasomanee, Jagodige P.; Rath, Nigam P.

    2017-01-01

    A new series of superarmed glycosyl donors has been investigated. It was demonstrated that the S-ethyl leaving group allows for high reactivity, which is much higher than that of equally equipped S-phenyl glycosyl donors that were previously investigated by our groups. The superarmed S......-ethyl glycosyl donors equipped with a 2-O-benzoyl group gave complete β-stereoselectivity. Utility of the new glycosyl donors has been demonstrated in a one-pot one-addition oligosaccharide synthesis with all of the reaction components present from the beginning...

  16. Visible-light-promoted and one-pot synthesis of phenanthridines and quinolines from aldehydes and O-acyl hydroxylamine.

    Science.gov (United States)

    An, Xiao-De; Yu, Shouyun

    2015-06-05

    A one-pot synthesis of phenanthridines and quinolines from commercially available or easily prepared aldehydes has been reported. O-(4-Cyanobenzoyl)hydroxylamine was utilized as the nitrogen source to generate O-acyl oximes in situ with aldehydes catalyzed by Brønsted acid. O-Acyl oximes were then subjected to visible light photoredox catalyzed cyclization via iminyl radicals to furnish aza-arenes. A variety of phenanthridines and quinolines have been prepared assisted by Brønsted acid and photocatalyst under visible light at room temperature with satisfactory yields.

  17. Novel one-pot process for the synthesis of ethyl 2-imino-4-methyl-2,3-dihydrothiazole-5-carboxylates

    Directory of Open Access Journals (Sweden)

    Beyzaei Hamid

    2015-01-01

    Full Text Available A facile one-pot two-step process for the synthesis of ethyl 2-imino-4-methyl-2,3-dihydrothiazole-5-carboxylates via the cyclocondensation of ethyl 2-thiocyanatoacetoacetate with a variety of hydrazine and hydrazide derivatives has been developed. Ethyl 2-thiocyanatoacetoacetate itself has been synthesized as intermediate from the reaction of ethyl 2-chloroacetoacetate with potassium thiocyanate (KSCN. The molecular structures of these newly synthesized compounds were elucidated on the basis of elemental analysis and spectral data.

  18. New method to access hyperbranched polymers with uniform structure via one-pot polymerization of inimer in microemulsion.

    Science.gov (United States)

    Min, Ke; Gao, Haifeng

    2012-09-26

    A facile approach is presented for successful synthesis of hyperbranched polymers with high molecular weight and uniform structure by a one-pot polymerization of an inimer in a microemulsion. The segregated space in the microemulsion confined the inimer polymerization and particularly the polymer-polymer reaction within discrete nanoparticles. At the end of polymerization, each nanoparticle contained one hyperbranched polymer that had thousands of inimer units and low polydispersity. The hyperbranched polymers were used as multifunctional macroinitiators for synthesis of "hyper-star" polymers. When a degradable inimer was applied, the hyper-stars showed fast degradation into linear polymer chains with low molecular weight.

  19. One-pot synthesis and cytotoxicity studies of new Mannich base derivatives of polyether antibiotic--lasalocid acid.

    Science.gov (United States)

    Huczyński, Adam; Rutkowski, Jacek; Borowicz, Izabela; Wietrzyk, Joanna; Maj, Ewa; Brzezinski, Bogumil

    2013-09-15

    Seven Mannich base derivatives of polyether antibiotic Lasalocid acid (2a-2g) were synthesized and screened for their antiproliferative activity against various human cancer cell lines. A novel chemoselective one-pot synthesis of these Mannich bases was developed. Compounds 2a-2c and 2g with sterically smaller dialkylamine substituent, displayed potent antiproliferative activity (IC50: 3.2-7.3 μM), and demonstrated higher than twofold selectivity for specific type of cancer. The nature of Mannich base substituent on C-2 atom at the aromatic ring may be critical in the search for selectivity towards a particular cancer cell. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Organocatalyzed, Visible-Light Photoredox-Mediated, One-Pot Minisci Reaction Using Carboxylic Acids via N-(Acyloxy)phthalimides.

    Science.gov (United States)

    Sherwood, Trevor C; Li, Ning; Yazdani, Aliza N; Dhar, T G Murali

    2018-03-02

    An improved, one-pot Minisci reaction has been developed using visible light, an organic photocatalyst, and carboxylic acids as radical precursors via the intermediacy of in situ-generated N-(acyloxy)phthalimides. The conditions employed are mild, demonstrate a high degree of functional group tolerance, and do not require a large excess of the carboxylic acid reactant. As a result, this reaction can be applied to drug-like scaffolds and molecules with sensitive functional groups, enabling late-stage functionalization, which is of high interest to medicinal chemistry.

  1. Controlled silver delivery by silver-cellulose nanocomposites prepared by a one-pot green synthesis assisted by microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Ana Rosa; Unali, Gianfranco, E-mail: ana.rosa.silva@ua.pt [Structured Materials Expertise Group, Unilever Discover Port Sunlight, Quarry Road East, Bebington CH63 3JW (United Kingdom)

    2011-08-05

    Controlled silver release from cellulosic nanocomposites was achieved by synthesizing silver nanoparticles, under microwave heating for 1-15 min, in a one-pot, versatile and sustainable process in which microcrystalline cellulose simultaneously functions as reducing, stabilizing and supporting agent in water; chitin, starch and other cellulose derivatives could also be used as reducing, stabilizing and supporting agents for silver nanoparticles and the method was also found to be extensible to the preparation of noble metal (Au, Pt) and metal oxide nanoparticle (ZnO, Cu, CuO and Cu{sub 2}O) nanocomposites.

  2. Controlled silver delivery by silver-cellulose nanocomposites prepared by a one-pot green synthesis assisted by microwaves

    International Nuclear Information System (INIS)

    Silva, Ana Rosa; Unali, Gianfranco

    2011-01-01

    Controlled silver release from cellulosic nanocomposites was achieved by synthesizing silver nanoparticles, under microwave heating for 1-15 min, in a one-pot, versatile and sustainable process in which microcrystalline cellulose simultaneously functions as reducing, stabilizing and supporting agent in water; chitin, starch and other cellulose derivatives could also be used as reducing, stabilizing and supporting agents for silver nanoparticles and the method was also found to be extensible to the preparation of noble metal (Au, Pt) and metal oxide nanoparticle (ZnO, Cu, CuO and Cu 2 O) nanocomposites.

  3. An Efficient, Eco-friendly and Sustainable One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-ones Directly from Alcohols Catalyzed by Heteropolyanion-Based Ionic Liquids.

    Science.gov (United States)

    Fu, Renzhong; Yang, Yang; Ma, Xudong; Sun, Yu; Li, Jin; Gao, Hang; Hu, Huaxing; Zeng, Xiaojun; Yi, Jun

    2017-09-11

    Efficient, eco-friendly and sustainable access to 3,4-dihydropyrimidin-2(1 H )-ones directly from alcohols under microwave and solvent-free conditions has been reported. The practical protocol involves heteropolyanion-based catalyzed oxidation of alcohols to aldehydes with NaNO₃ as the oxidant followed by cyclocondensation with dicarbonyl compounds and urea or thiourea in a two-step, one-pot manner. Compatibility with different functional groups, good to excellent yields and reusable catalysts are the main highlights. The utilization of alcohols instead of aldehydes is a valid and green alternative to the classical Biginelli reaction.

  4. One-pot synthesis of magnetic hybrid materials based on ovoid-like carboxymethyl-cellulose/cetyltrimethylammonium-bromide templates

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Martínez, Nubia E. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, 66450 Nuevo León (Mexico); Garza-Navarro, M.A., E-mail: marco.garzanr@uanl.edu.mx [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, 66450 Nuevo León (Mexico); Universidad Autónoma de Nuevo León, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, Apodaca, 66600 Nuevo León (Mexico); Lucio-Porto, Raúl [Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel (IMN), 2 rue de la Houssinière, BP32229, 44322 Nantes Cedex 3 (France); and others

    2013-09-16

    A novel one-pot synthetic procedure to obtain magnetic hybrid nanostructured materials (HNM), based on magnetic spinel-metal-oxide (SMO) nanoparticles stabilized in ovoid-like carboxymethyl-cellulose (CMC)/cetyltrimethylammonium-bromide (CTAB) templates, is reported. The HNM were synthesized from the controlled hydrolysis of inorganic salts of Fe (II) and Fe (III) into aqueous dissolutions of CMC and CTAB. The synthesized HNM were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy and static magnetic measurements. The experimental evidence suggests that, due to the competition between CTAB molecules and SMO nanoparticles to occupy CMC intermolecular sites nearby to its carboxylate functional groups, the size of both, SMO nanoparticles and ovoid-like CMC/CTAB templates can be tuned, varying the CTAB:SMO weight ratio. Moreover, it was found that the magnetic response of the HNM depends on the confinement degree of the SMO nanoparticles into the CMC/CTAB template. Hence, their magnetic characteristics can be adjusted controlling the size of the template, the quantity and distribution of the SMO nanoparticles within the template and their size. - Graphical abstract: Display Omitted - Highlights: • The synthesis of magnetic hybrid materials is reported. • The hybrid materials were synthesized following a novel one-pot procedure. • The magnetic nanoparticles were stabilized in ovoid-like templates. • The size of the templates was tuned adjusting nanoparticles weight content. • The magnetic properties of hybrid materials depend on the size of the template.

  5. Flower-Like ZnO-Assisted One-Pot Encapsulation of Noble Metal Nanoparticles Supported Catalysts with ZIFs

    Science.gov (United States)

    Lin, Lu; Liu, Haiou; Zhang, Xiongfu

    2018-03-01

    Rational design of efficient approaches to fabricate MOFs-coated core-shell composites is promising but challenging. We report here the encapsulation of Pd nanoparticles (Pd NPs) supported flower-like ZnO (F-ZnO) microspheres with ZIF-8 shell through a facile strategy, in which the formation and immobilization of Pd NPs on F-ZnO supports and the subsequent growth of ZIF-8 shells over them are effectively integrated into one-pot synthetic route. Importantly, the utilization of ZnO both as support of Pd NPs and Zn2+ source of ZIF-8 is favorable for the implement of one-pot synthesis, due to its functions in anchoring Pd NPs and inducing ZIF-8 formation. Further insights into the morphological influence of zinc oxide particles on the resulting materials indicate that the flower-like microspheres with 2D nanosheets as subunits also benefit the coating of Pd NPs supported cores with ZIF-8, resulting in a well-defined core-shell catalyst. The achieved catalyst deliveries remarkable performance in terms of selectivity, anti-poisoning and recyclability in the liquid hydrogenations of alkenes.

  6. Advances in hexitol and ethylene glycol production by one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose

    International Nuclear Information System (INIS)

    Li, Yuping; Liao, Yuhe; Cao, Xiaofeng; Wang, Tiejun; Ma, Longlong; Long, Jinxing; Liu, Qiying; Xua, Ying

    2015-01-01

    In this review, recent advances in the one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose to value-added polyols, including hexitols (sorbitol, mannitol, and isosorbide) and 1,2-alkanediols (ethylene glycol and 1,2-propylene glycol), are summarized. Methods for the generation of H + in the first step of cellulose hydrolysis to form intermediate sugars, such as the use of soluble acids (mineral acids and heteropoly acids) and H + produced in situ from functional supports and H 2 dissociation, are classified and analyzed, considering its combination with active metals for the subsequent hydrogenation or hydrogenolysis of sugars to polyols. The interaction of non-noble metals such as nickel, bimetals, and tungsten with support materials in the catalytic conversion of intermediate sugars to hexitols and ethylene glycol is reviewed. The corresponding reaction pathways and mechanisms are discussed, including the conversion process using basic supports and solution conditions. Major challenges and promising routes are also suggested for the future development of the chemocatalytic conversion of cellulose. - Highlights: • Advances in the one-pot hydrolytic hydrogenation/hydrogenolysis of cellulose are summarized. • The interaction of non-noble metals with support materials for cellulose conversion is reviewed. • Method for the generation of in situ H + and effects of the acidic groups on supports are discussed. • Incomplete identification of intermediates/products causes mechanism complications. • Efficient conversion, separation and purification are other concerns for cellulose degrading

  7. Novel one-pot synthesis and characterization of bioactive thiol-silicate nanoparticles for biocatalytic and biosensor applications

    International Nuclear Information System (INIS)

    Neville, Frances; Pchelintsev, Nikolay A; Broderick, Michael J F; Gibson, Tim; Millner, Paul A

    2009-01-01

    A novel one-pot neutral synthesis using bioinspired polymers to fabricate thiol-nanoparticles is presented. The thiol-particles may be directly tethered to metal surfaces such as gold, allowing the production of self-assembled nanostructured biocatalytic or biosensor surfaces. This one-pot method has also been used to entrap enzymes within the thiol-nanoparticles; it is apparent that once enzyme entrapment is carried out a bimodal distribution of particles is formed, with particles of one mode being very similar in size to thiol-nanoparticles without enzyme entrapped, and particles of the other mode being much larger in size. To this end, efforts have been made to separate the two modes of particles for the sample containing enzyme and it has been observed that the larger mode thiol-nanoparticles do indeed contain significant amounts of enzyme in comparison to the smaller mode ones. As the enzyme-containing thiol-nanoparticles can now be isolated, this means that there are many future possibilities for the use of thiol-particles containing enzyme, as they may be used in a wide range of processes and devices which require catalytic functionalized surfaces, such as biosensors and biocatalytic reactors.

  8. One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance

    International Nuclear Information System (INIS)

    Tian Chungui; Li Wei; Pan Kai; Zhang Qi; Tian Guohui; Zhou Wei; Fu Honggang

    2010-01-01

    Ag nanoparticles (NPs) modified ZnO microspheres (Ag/ZnO microspheres) were prepared by a facile one pot strategy in ethylene glycol (EG) medium. The EG played two important roles in the synthesis: it could act as a reaction media for the formation of ZnO and reduce Ag + to Ag 0 . A series of the characterizations indicated the successful combination of Ag NPs with ZnO microspheres. It was shown that Ag modification could greatly enhance the photocatalytic efficiency of ZnO microspheres by taking the photodegradation of Rhodamine B as a model reaction. With appropriate ratio of Ag and ZnO, Ag/ZnO microspheres showed the better photocatalytic performance than commercial Degussa P-25 TiO 2 . Photoluminescence and surface photovoltage spectra demonstrated that Ag modification could effectively inhibit the recombination of the photoinduced electron and holes of ZnO. This is responsible for the higher photocatalytic activity of Ag/ZnO composites. -- Graphical abstract: A 'one-pot' strategy was developed for preparing the Ag/ZnO microspheres in ethylene glycol. The composites exhibited superior photocatalytic performance for photodegradation of Rhodamine B dye in water. Display Omitted

  9. One-pot conjugated linoleic acid production from castor oil by Rhizopus oryzae lipase and resting cells of Lactobacillus plantarum.

    Science.gov (United States)

    Khaskheli, Abid Ali; Talpur, Farah Naz; Cebeci Aydin, Aysun; Jawaid, Sana; Surhio, Muhammad Ali; Afridi, Hassan Imran

    2017-10-01

    Conjugated linoleic acid (CLA) has attracted as novel type of fatty acids having unusual health-promoting properties such as anticarcinogenic and antiobesitic effects. The present work employed castor oil as substrate for one-pot production of CLA using washed cells of Lactobacillus plantarum (L. plantarum) and lipases as catalysts. Among the screened lipases, the lipase Rhizopus oryzae (ROL) greatly assisted resting cells to produce CLA. Mass spectral analysis of the product showed that two major isomers of CLA were produced in the reaction mixture i.e. cis-9, trans-11 56.55% and trans-10, cis-12 43.45%. Optimum factors for CLA synthesis were found as substrate concentration (8 mg/mL), pH (6.5), washed cell concentration (12% w/v), and incubation time of 20 h. Hence, the combination of ROL with L. plantarum offers one pot production of CLA selectively using castor oil as a cost-effective substrate.

  10. Simple one-pot aqueous synthesis of CdHgTe nanocrystals using sodium tellurite as the Te source

    International Nuclear Information System (INIS)

    Shen, Zhitao; Luo, Chunhua; Huang, Rong; Wang, Yiting; Peng, Hui; Travas-sejdic, Jadranka

    2014-01-01

    In this work, we systematically investigated the one-pot aqueous synthesis conditions of CdHgTe nanocrystals (NCs) using sodium tellurite (Na 2 TeO 3 ) as the Te source, and found that the added content of Hg 2+ and the initial pH value of reaction solutions significantly affected the photoluminescence quantum yield (PL QY) of alloyed CdHgTe NCs. When the concentration of Cd was 1.0 mmol L −1 , the mole ratio of Cd/Te/Hg/MPA was 1:0.5:0.05:2.4, and the initial pH value of the reaction solution was about 8.78, the PL QY of as-prepared CdHgTe NCs was up to 45%. Characterization by HRTEM and XRD confirmed the crystalline nature of CdHgTe NCs. Compared to other synthetic approaches of CdHgTe NCs, our experimental results indicate that Na 2 TeO 3 could be an attractive alternative Te source to directly synthesize CdHgTe NCs in aqueous media. - Highlights: • A one-pot method was developed for the synthesis of highly luminescent CdHgTe nanocrystals (NCs). • Sodium tellurite was used as the Te source. • The quantum yield reached up to 45%. • The experimental conditions were optimized and the prepared CdHgTe NCs were characterized

  11. One-pot preparation of conducting composite containing abundant amino groups on electrode surface for electrochemical detection of von willebrand factor

    Science.gov (United States)

    Wang, Wen; Ma, Chao; Li, Yi; Liu, Baihui; Tan, Liang

    2018-03-01

    A one-pot protocol based on cyclic voltammetric scan was employed to prepare new conducting composite that was abundant in amino groups. The scanning electron microscope, atomic force microscope, X-ray photoelectron spectroscopy and infrared spectrum characterization demonstrate that poly(azure A), gold nanoparticles, chitosan and cysteine were immobilized simultaneously on glassy carbon electrode surface. Von Willebrand factor (vWF) antibody (Ab) was subsequently assembled by using glutaraldehyde to construct the Ab/composite-modified electrode. The capture of vWF could inhibit the charge transfer between the ferri-/ferrocyanide probe and the electrode and exert the negative effect on the electrochemical response of the dye polymer in the conducting composite due to the strong steric hindrance effect. The DPV peak current change before and after the immunoreaction was found to be proportional to the logarithm of the vWF concentration from 0.001 to 100 μg mL-1 with a detection limit of 0.4 ng mL-1. The proposed label-free electrochemical method was employed in the investigation on the release of vWF by oxidation-injured vascular endothelial cells. The experimental results exhibit that the vWF content in growth medium was increased when the oxidation injury of the cells was intensified in the presence of H2O2.

  12. Cascade Wittig reaction-double Claisen and Cope rearrangements: one-pot synthesis of diprenylated coumarins gravelliferone, balsamiferone, and 6,8-diprenylumbelliferone

    Digital Repository Service at National Institute of Oceanography (India)

    Patre, R.E.; Shet, J.B.; Parameswaran, P.S.; Tilve, S.G.

    A cascade Wittig reaction-double Claisen and Cope rearrangements has been employed for a one-pot synthesis of diprenylated coumarins gravelliferone, balsamiferone, and 6,8-diprenylumbelliferone from a common precursor 2,4-diprenyloxybenzaldehyde...

  13. One-pot low-temperature green synthesis of magnetic graphene nanocomposite for the selective reduction of nitrobenzene

    Science.gov (United States)

    Haridas, Vijayasree; Sugunan, Sankaran; Narayanan, Binitha N.

    2018-06-01

    In the present study, a green one-pot low-temperature method is adopted for the synthesis of a novel magnetic graphene nanocomposite catalyst. Graphene preparation is performed without employing any oxidizing agents or corrosive chemicals, under mild sonication in isopropyl alcohol - water mixture. Monolayered nanoplatelets of graphene are obtained in the green solvent mixture and the composite material is found to be ferromagnetic in nature, obvious from the vibrating sample magnetometric measurements. Fe in the nanocomposite exists in two different forms i.e., α-Fe2O3 and α-FeOOH, as evident from the material characterization results. The graphene nanocomposite is found to be highly efficient in the selective reduction of nitrobenzene to aniline under solvent free reaction conditions and magnetic separation of this fine nanomaterial from the reaction mixture is successfully carried out. The catalyst is efficiently reusable till five repeated cycles.

  14. Mesoporous C/CrN and C/VN Nanocomposites Obtained by One-Pot Soft-Templating Process

    Directory of Open Access Journals (Sweden)

    Julien Kiener

    2016-07-01

    Full Text Available Nanocomposites of ordered mesoporous carbon associated with chromium nitride (CrN or vanadium nitride (VN nanoparticles were obtained by a simple one-pot synthesis based on the solvent evaporation induced self-assembly (EISA process using Pluronic triblock surfactant as soft-template and a phenol-based resin (resol as carbon precursor. These nanocomposites were characterized by X-ray diffraction, nitrogen physisorption and Transmission Electron Microscopy (TEM techniques. Electron tomography (or 3D-TEM technique was particularly useful for providing direct insight on the internal architecture of C/CrN nanocomposite. Nanocomposites showed a very well organized hexagonal mesoporous carbon structure and a relatively high concentration of nanoparticles well distributed in the porous network. The chromium and vanadium nitrides/mesoporous carbon nanocomposites could have many potential applications in catalysis, Li-ion batteries, and supercapacitors.

  15. One-pot hydrothermal synthesis, characterization and electrochemical properties of CuS nanoparticles towards supercapacitor applications

    International Nuclear Information System (INIS)

    Krishnamoorthy, Karthikeyan; Rao, Alluri Nagamalleswara; Jae Kim, Sang; Kumar Veerasubramani, Ganesh

    2014-01-01

    In this article, we have investigated the electrochemical properties of CuS nanoparticles for supercapacitor applications. The CuS nanoparticles are prepared by a facile one-pot hydrothermal approach using copper nitrate and thiourea as starting materials. The x-ray diffraction study revealed the formation of covellite CuS. The field-emission scanning electron microscope studies suggested the formation of cubic shaped CuS nanoparticles. The electrochemical studies such as cyclic voltammetry, galvanostatic charge-discharge analysis and electrochemical impedance spectroscopy confirmed the pseudocapacitive nature of the CuS electrodes. The CuS electrode shows a specific capacitance of about 101.34 F g −1 from the cyclic voltammetry at a scan rate of 5 mV s −1 . The electrochemical impedance spectra analyzed using Nyquist plot confirmed the pseudocapacitive behavior of the CuS electrodes. (paper)

  16. One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity

    Science.gov (United States)

    Kebukawa, Yoko; Chan, Queenie H. S.; Tachibana, Shogo; Kobayashi, Kensei; Zolensky, Michael E.

    2017-01-01

    The exogenous delivery of organic molecules could have played an important role in the emergence of life on the early Earth. Carbonaceous chondrites are known to contain indigenous amino acids as well as various organic compounds and complex macromolecular materials, such as the so-called insoluble organic matter (IOM), but the origins of the organic matter are still subject to debate. We report that the water-soluble amino acid precursors are synthesized from formaldehyde, glycolaldehyde, and ammonia with the presence of liquid water, simultaneously with macromolecular organic solids similar to the chondritic IOM. Amino acid products from hydrothermal experiments after acid hydrolysis include α-, β-, and γ-amino acids up to five carbons, for which relative abundances are similar to those extracted from carbonaceous chondrites. One-pot aqueous processing from simple ubiquitous molecules can thus produce a wide variety of meteoritic organic matter from amino acid precursors to macromolecular IOM in chondrite parent bodies. PMID:28345041

  17. Eco-friendly one-pot synthesis of highly dispersible functionalized graphene nanosheets with free amino groups

    International Nuclear Information System (INIS)

    Liu Zhiting; Duan Xuezhi; Qian Gang; Zhou Xinggui; Yuan Weikang

    2013-01-01

    An eco-friendly, facile and scalable hydrothermal approach, in which the reduction and functionalization of graphite oxide (GO) are completed in one pot, is proposed for the synthesis of monolayer 3-aminopropyltriethoxysilane (APTES)-functionalized graphenes (A-FGs). Atomic force microscopy, transmission electron microscopy and x-ray diffraction analyses indicate that the as-synthesized A-FGs consist of only one or a few layered graphenes, while x-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis reveal that APTES is bonded to graphene by the dehydration reaction between the Si–OH (produced by APTES hydration) and the –OH on the GO surface. As a result, free amino groups are left on the A-FGs. Moreover, A-FGs are highly dispersible in dimethylsulfoxide, APTES and ethylene glycol, and their solubilities are up to 0.89, 4.03 and 0.90 mg ml −1 , respectively. (paper)

  18. Nb-Based Zeolites: Efficient bi-Functional Catalysts for the One-Pot Synthesis of Succinic Acid from Glucose

    Directory of Open Access Journals (Sweden)

    Magdi El Fergani

    2017-12-01

    Full Text Available The one-pot production of succinic acid from glucose was investigated in pure hot water as solvent using Nb (0.02 and 0.05 moles%-Beta zeolites obtained by a post-synthesis methodology. Structurally, they are comprised of residual framework Al-acid sites, extra-framework isolated Nb (V and Nb2O5 pore-encapsulated clusters. The Nb-modified Beta-zeolites acted as bi-functional catalysts in which glucose is dehydrated to levulinic acid (LA which, further, suffers an oxidation process to succinic acid (SA. After the optimization of the reaction conditions, that is, at 180 °C, 18 bar O2, and 12 h reaction time, the oxidation of glucose occurred with a selectivity to succinic acid as high as 84% for a total conversion.

  19. One-pot synthesis and antiproliferative activity of novel double-modified derivatives of the polyether ionophore monensin A.

    Science.gov (United States)

    Klejborowska, Greta; Maj, Ewa; Wietrzyk, Joanna; Stefańska, Joanna; Huczyński, Adam

    2018-05-02

    Monensin A (MON) is a polyether ionophore antibiotic, which shows a wide spectrum of biological activity. New MON derivatives such as double-modified ester-carbonates and double-modified amide-carbonates were obtained by a new and efficient one-pot synthesis with triphosgene as the activating reagent and the respective alcohol or amine. All new derivatives were tested for their antiproliferative activity against two drug-sensitive (MES-SA, LoVo) and two drug-resistant (MES-SA/DX5, LoVo/DX) cancer cell lines, and were also studied for their antimicrobial activity against different Staphylococcus aureus and Staphylococcus epidermidis bacterial strains. For the first time, the activity of MON and its derivatives against MES-SA and MES-SA/DX5 were evaluated. © 2018 John Wiley & Sons A/S.

  20. One-pot Synthesis of Bio-inspired Layered Materials of 3D Graphene Network/Calcium Carbonate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jing; FU Zhengyi; YAO Bin; PING Hang; YU Hongjian; ZHANG Fan; ZHANG Jinyong; WANG Yucheng; WANG Hao; WANG Weimin

    2017-01-01

    A bio-inspired layered material of reduced graphene oxide (RGOs) and calcium carbonate was synthesized via a one-pot strategy in DMF/H2O mixed solvent. The experimental results show that the product is a layered material of wrinkled RGOs networks and micron-sized calcium carbonate particles with uniform granular diameter and homogeneous morphology, which are distributed between the layered gallery of the graphene scaffold. The polymorph and the morphology of the in-situ produced calcium carbonate particles can be manipulated by simply changing the temperature scheme. Besides, the graphene oxide was reduced to a certain extent, and the hierarchical wrinkles were generated in the RGOs layer by the in-situ formation of the calcium carbonate particles. This work provides a facile and controllable strategy for synthesizing layered material of RGOs and carbonates, and also presents a platform for making three-dimensional porous wrinkled RGOs networks.

  1. One-Pot Synthesis of Hierarchical Flower-Like Pd-Cu Alloy Support on Graphene Towards Ethanol Oxidation

    Science.gov (United States)

    Zhang, Jingyi; Feng, Anni; Bai, Jie; Tan, Zhibing; Shao, Wenyao; Yang, Yang; Hong, Wenjing; Xiao, Zongyuan

    2017-09-01

    The synergetic effect of alloy and morphology of nanocatalysts play critical roles towards ethanol electrooxidation. In this work, we developed a novel electrocatalyst fabricated by one-pot synthesis of hierarchical flower-like palladium (Pd)-copper (Cu) alloy nanocatalysts supported on reduced graphene oxide (Pd-Cu(F)/RGO) for direct ethanol fuel cells. The structures of the catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometer (XPS). The as-synthesized Pd-Cu(F)/RGO nanocatalyst was found to exhibit higher electrocatalytic performances towards ethanol electrooxidation reaction in alkaline medium in contrast with RGO-supported Pd nanocatalyst and commercial Pd black catalyst in alkaline electrolyte, which could be attributed to the formation of alloy and the morphology of nanoparticles. The high performance of nanocatalyst reveals the great potential of the structure design of the supporting materials for the future fabrication of nanocatalysts.

  2. One-pot synthesis of polyaniline-doped in mesoporous TiO2 and its electrorheological behavior

    International Nuclear Information System (INIS)

    Wei Chuan; Zhu Yihua; Yang Xiaoling; Li Chunzhong

    2007-01-01

    A class of hybrid organic-inorganic composite for application in electrorheological (ER) fluid was prepared by using a simple one-pot method. Transmission electron microscopy (TEM) image shows that the synthesized material had a mesoporous structure. X-ray diffraction (XRD) further proves that the pore size is about 7.4 nm with an anatase TiO 2 framework. Fourier transform infrared (FT-IR) and nitrogen sorption curve reveal polyaniline (PANI) is doped in mesochannels. The ER behaviors of PANI/TiO 2 in silicone oil are invesigated with different doping degrees under different electric fields. The results obtained provide more insight into the role of proper doping in ER fluid

  3. One-pot synthesis of FePt/CNTs nanocomposites for efficient cellular imaging and cancer therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weihong; Zheng, Xiuwen, E-mail: xwzheng1976@163.com [Linyi University, School of Chemistry & Chemical Engineering, Shandong Provincial Key Laboratory of Detection Technology for Tumor Makers (China); Li, Shulian [Linyi Tumor Hospital (China); Zhang, Wei; Wen, Xin [Linyi University, School of Chemistry & Chemical Engineering, Shandong Provincial Key Laboratory of Detection Technology for Tumor Makers (China); Yue, Ludan [Shandong Normal University (China); Wang, Jinlong [Shandong University of Technology (China)

    2015-11-15

    Here, we developed a facile route to synthesize carbon nanotube-based FePt nanocomposites (FePt/CNTs) as a potential theranostic platform in the cancer treatment. FePt/CNTs were firstly synthesized via one-pot polyol route, and then functionalized with 6-arm-polyethylene glycol-amine polymer. The average size of FePt nanoparticles (NPs) is 3–4 nm, which is dispersed on the CNT surface (ca.50–150 nm). The as-prepared FePt NPs display high cytotoxicity by highly reactive oxygen species in cancer cells. Folic acid and fluorescein isothiocyanate are assembled onto the surface of FePt/CNTs for effective targeting of folate receptor-positive cancer cells and simultaneously for the visualization of cellular uptake. Therefore, the FePt/CNTs NPs capability of simultaneously performing diagnosis, therapy, and targeting is, therefore, promising for future potential widespread application in biomedicine.

  4. One-pot non-enzymatic formation of firefly luciferin in a neutral buffer from p-benzoquinone and cysteine.

    Science.gov (United States)

    Kanie, Shusei; Nishikawa, Toshio; Ojika, Makoto; Oba, Yuichi

    2016-04-21

    Firefly luciferin, the substrate for the bioluminescence reaction of luminous beetles, possesses a benzothiazole ring, which is rare in nature. Here, we demonstrate a novel one-pot reaction to give firefly luciferin in a neutral buffer from p-benzoquinone and cysteine without any synthetic reagents or enzymes. The formation of firefly luciferin was low in yield in various neutral buffers, whereas it was inhibited or completely prevented in acidic or basic buffers, in organic solvents, or under a nitrogen atmosphere. Labelling analysis of the firefly luciferin using stable isotopic cysteines showed that the benzothiazole ring was formed via the decarboxylation and carbon-sulfur bond rearrangement of cysteine. These findings imply that the biosynthesis of firefly luciferin can be developed/evolved from the non-enzymatic production of firefly luciferin using common primary biosynthetic units, p-benzoquinone and cysteine.

  5. One-Pot Synthesis of (+-Nootkatone via Dark Singlet Oxygenation of Valencene: The Triple Role of the Amphiphilic Molybdate Catalyst

    Directory of Open Access Journals (Sweden)

    Bing Hong

    2016-11-01

    Full Text Available Efficient one-pot catalytic synthesis of (+-nootkatone was performed from (+-valencene using only hydrogen peroxide and amphiphilic molybdate ions. The process required no solvent and proceeded in three cascade reactions: (i singlet oxygenation of valencene according to the ene reaction; (ii Schenck rearrangement of one hydroperoxide into the secondary β-hydroperoxide; and (iii dehydration of the hydroperoxide into the desired (+-nootkatone. The solvent effect on the hydroperoxide rearrangement is herein discussed. The amphiphilic dimethyldioctyl ammonium molybdate, which is also a balanced surfactant, played a triple role in this process, as molybdate ions catalyzed at both Step 1 and Step 3 and it allowed the rapid formation of a three-phase microemulsion system that highly facilitates product recovery. Preparative synthesis of the high added value (+-nootkatone was thus performed at room temperature with an isolated yield of 46.5%. This is also the first example of a conversion of allylic hydroperoxides into ketones catalyzed by molybdate ions.

  6. A Convenient One-Pot Method for the Synthesis of N-Methoxy-N-methyl Amides from Carboxylic Acids

    International Nuclear Information System (INIS)

    Kim, Joong Gon; Jang, Doo Ok

    2010-01-01

    We have developed a mild and convenient method for one-pot synthesis of Weinreb amides from carboxylic acids. The process is general for the preparation of Weinreb amides from a variety of carboxylic acids. The reaction was also applicable to the preparation of α-amino Weinreb amides and proceeded without deprotection of the N-Fmoc protecting group or racemization of the stereogenic centers. N-Methoxy-N-methyl amides, or Weinreb amides, have been widely used as versatile synthetic intermediates in organic syntheses. These amides serve as excellent acylating agents for organolithium or organomagnesium reagents and as robust aldehyde group equivalents. The utility of Weinreb amides has been extended to the preparation of N-protected amino aldehydes, useful intermediates for many chemoselective transformations in peptide chemistry

  7. Novel one-pot one-step synthesis of 2'-[(18)F]fluoroflumazenil (FFMZ) for benzodiazepine receptor imaging.

    Science.gov (United States)

    Yoon, Young Hyun; Jeong, Jae Min; Kim, Hyung Woo; Hong, Sung Hyun; Lee, Yun-Sang; Kil, Hee Sup; Chi, Dae Yoon; Lee, Dong Soo; Chung, June-Key; Lee, Myung Chul

    2003-07-01

    We describe the synthesis of 2'-[(18)F]fluoroflumazenil (FFMZ), which differs from the typically used [(18)F]fluoroethylflumazenil (FEFMZ) for benzodiazepine receptor imaging. For one-pot one-step labeling, the precursors, 2'-tosyloxyflumazenil (TFMZ) and 2'-mesyloxyflumazenil (MFMZ), were synthesized in three steps. The precursors were successfully labeled with no-carrier-added (18)F-fluoride which was activated by repeated azeotropic distillation with Kryptofix 2.2.2./potassium carbonate in MeCN. An automated system for labeling and purification of [(18)F]FFMZ was developed. Labeling efficiency and radiochemical purity of [(18)F]FFMZ after synthesis by the automated system were 68% and 98%, respectively. Specific binding of [(18)F]FFMZ to central benzodiazepine receptor of rats was demonstrated by phosphoimaging.

  8. Novel one-pot one-step synthesis of 2'-[18F]fluoroflumazenil (FFMZ) for benzodiazepine receptor imaging

    International Nuclear Information System (INIS)

    Young, Hyun Yoon; Jae, Min Jeong; Hyung, Woo Kim; Sung, Hyun Hong; Lee, Yun-Sang; Hee, Sup Kil; Dae, Yoon Chi; Dong, Soo Lee; Chung, June-Key; Myung, Chul Lee

    2003-01-01

    We describe the synthesis of 2'-[ 18 F]fluoroflumazenil (FFMZ), which differs from the typically used [ 18 F]fluoroethylflumazenil (FEFMZ) for benzodiazepine receptor imaging. For one-pot one-step labeling, the precursors, 2'-tosyloxyflumazenil (TFMZ) and 2'-mesyloxyflumazenil (MFMZ), were synthesized in three steps. The precursors were successfully labeled with no-carrier-added 18 F-fluoride which was activated by repeated azeotropic distillation with Kryptofix 2.2.2./potassium carbonate in MeCN. An automated system for labeling and purification of [ 18 F]FFMZ was developed. Labeling efficiency and radiochemical purity of [ 18 F]FFMZ after synthesis by the automated system were 68% and 98%, respectively. Specific binding of [ 18 F]FFMZ to central benzodiazepine receptor of rats was demonstrated by phosphoimaging

  9. One-pot synthesis of stable colloidal solutions of MFe2O4 nanoparticles using oleylamine as solvent and stabilizer

    International Nuclear Information System (INIS)

    Pérez-Mirabet, Leonardo; Solano, Eduardo; Martínez-Julián, Fernando; Guzmán, Roger; Arbiol, Jordi; Puig, Teresa; Obradors, Xavier; Pomar, Alberto; Yáñez, Ramón; Ros, Josep; Ricart, Susagna

    2013-01-01

    Highlights: ► One-pot synthesis of ferrite magnetic nanoparticles ( 3 and M(acac) 2 (M = Co, Mn, Cu and Zn) in oleylamine, which also acts as a capping ligand, by producing stable colloidal dispersions of nanoparticles in non-polar solvents. The properties of the nanoparticles have been studied via different techniques, such as transmission electron microscopy, which shows that nanoparticles are monocrystallines and a narrow dispersion in size; magnetic analyses have demonstrated that the resulting ferrite nanoparticles show high saturation values and superparamagnetic behavior at room temperature; X-ray diffraction has also been performed, and it confirms that the synthesized nanoparticles have a spinel structure. Complementarily, ligand exchange has been also carried out in order to produce dispersions of the synthesized nanoparticles in polar media

  10. One-pot process combining transesterification and selective hydrogenation for biodiesel production from starting material of high degree of unsaturation.

    Science.gov (United States)

    Yang, Ru; Su, Mengxing; Li, Min; Zhang, Jianchun; Hao, Xinmin; Zhang, Hua

    2010-08-01

    A one-pot process combining transesterification and selective hydrogenation was established to produce biodiesel from hemp (Cannabis sativa L.) seed oil which is eliminated as a potential feedstock by a specification of iodine value (IV; 120 g I(2)/100g maximum) contained in EN 14214. A series of alkaline earth metal oxides and alkaline earth metal supported copper oxide were prepared and tested as catalysts. SrO supported 10 wt.% CuO showed the superior catalytic activity for transesterification with a biodiesel yield of 96% and hydrogenation with a reduced iodine value of 113 and also exhibited a promising selectivity for eliminating methyl linolenate and increasing methyl oleate without rising methyl stearate in the selective hydrogenation. The fuel properties of the selective hydrogenated methyl esters are within biodiesel specifications. Furthermore, cetane numbers and iodine values were well correlated with the compositions of the hydrogenated methyl esters according to degrees of unsaturation. (c) 2010 Elsevier Ltd. All rights reserved.

  11. One-pot synthesis of NiO/C composite nanoparticles as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lipeng, E-mail: lipeng.zhang@jcu.edu.au [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China); College of Science, Technology and Engineering, James Cook University, Douglas, Queensland 4811 (Australia); Mu, Jiechen; Wang, Zhao; Li, Guomin; Zhang, Yanling [School of Chemical Engineering, Shandong University of Technology, Zibo 255049 (China); He, Yinghe, E-mail: yinghe.he@jcu.edu.au [College of Science, Technology and Engineering, James Cook University, Douglas, Queensland 4811 (Australia)

    2016-06-25

    Nanostructured NiO/C composite particles with controlled carbon content for lithium-ion battery anode were prepared via a one-pot hydrothermal approach and subsequent calcination in a high purity nitrogen atmosphere. The composites were composed of amorphous carbon and nanocrystalline NiO. The structure of the NiO crystals was determined with X-ray diffraction (XRD) analysis and the content of carbon was calculated from the energy dispersive spectroscopy (EDS) results. Scanning electron microscopy (SEM) images showed a relatively narrow distribution of particle size for both the neat NiO and NiO/C nanoparticles. Electrochemical performance measurements demonstrated that, after 50 cycles, NiO/C nanocomposites maintained a high reversible capacity of 585.9 mAh g{sup −1}, much higher than that of 356.1 mAh g{sup −1} of the neat NiO nanoparticles without carbon. The NiO/C nanoparticles also exhibited a remarkable discharge capacity, a high charge/discharge rate and an excellent cycle stability. The improvements can be attributed to the even carbon coating on the NiO particles, which significantly enhances the conductivity and improves the structural stability of the electrode. - Highlights: • NiO/C nanocomposite material is prepared via a one-pot hydrothermal approach. • Both NiO and NiO/C composite have a narrow particle size distribution. • Carbon in the NiO/C enhanced the conductivity and suppressed particle aggregation. • NiO/C composites maintained a reversible capacity of 585.9 mAh g{sup −1} after 50 cycles.

  12. One-pot synthetic method to prepare highly N-doped nanoporous carbons for CO2 adsorption

    International Nuclear Information System (INIS)

    Meng, Long-Yue; Park, Soo-Jin

    2014-01-01

    A one-pot synthetic method was used for the preparation of nanoporous carbon containing nitrogen from polypyrrole (PPY) using NaOH as the activated agent. The activation process was carried out under set conditions (NaOH/PPY = 2 and NaOH/PPY = 4) at different temperatures in 600–900 °C for 2 h. The effect of the activation conditions on the pore structure, surface functional groups and CO 2 adsorption capacities of the prepared N-doped activated carbons was examined. The carbon was analyzed by X-ray photoelectron spectroscopy (XPS), N2/77 K full isotherms, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The CO 2 adsorption capacity of the N-doped activated carbon was measured at 298 K and 1 bar. By dissolving the activation agents, the N-doped activated carbon exhibited high specific surface areas (755–2169 m 2 g −1 ) and high pore volumes (0.394–1.591 cm 3 g −1 ). In addition, the N-doped activated carbons contained a high N content at lower activation temperatures (7.05 wt.%). The N-doped activated carbons showed a very high CO 2 adsorption capacity of 177 mg g −1 at 298 K and 1 bar. The CO 2 adsorption capacity was found to be dependent on the microporosity and N contents. - Highlights: • A one-pot synthetic method was used for the preparation of N-doped nanoporous carbons. • Polypyrrole (PPY) were activated with NaOH under set conditions (NaOH/PPY = 2 and 4). • N-doped activated carbon exhibited high specific surface areas (2169 m 2 g −1 ). • The carbons showed a very high CO 2 adsorption capacity of 177 mg g −1 at 298 K

  13. One-pot synthesis of reduced graphene oxide supported gold-based nanomaterials as robust nanocatalysts for glucose electrooxidation

    International Nuclear Information System (INIS)

    Ghosh, Srabanti; Holade, Yaovi; Remita, Hynd; Servat, Karine; Beaunier, Patricia; Hagège, Agnès; Kokoh, K. Boniface

    2016-01-01

    Highlights: • Fast preparation of graphene nanosheets by one-pot radiolytic reduction of GO. • One-pot synthesis of graphene nanosheets supported Au-Pt-Pd nanoparticles. • Radiolysis enables to engineer highly active Metal/rGO nanocomposites. • Ternary Au_5_0Pt_2_5Pd_2_5/rGO electrocatalyst is 5-fold higher effective than Pt/rGO. • Selective glucose oxidation reaction in a 2-electron process leads to gluconate. - Abstract: We report a novel “one-pot”, convenient and efficient method based on radiolysis to synthesize gold-based nanoparticles finely dispersed on reduced graphene oxide (rGO) nanosheets obtained from reductive transformation of graphene oxide (GO). Extensive characterizations of the metal/rGO nanocomposites were performed and revealed that the optimized bimetallic Au_9_0Pd_1_0 and trimetallic Au_5_0Pd_2_5Pt_2_5 materials were mostly nano-alloyed. Not only the multimetallic catalysts demonstrate high electrocatalytic performances towards glucose in alkaline medium, but they also surpass the majority of the reported noble metals based nanocatalysts. The spectroelectrochemical investigations have highlighted a 2-electron reaction process leading to gluconate, a high added-value chemical used in various industries. Definitely, the strategies developed herein pave new rational pathways for the design of effective anode catalysts for glucose-based electrochemical energy converters and the scalability in the catalyst composition opens up new avenues in the efficient application of graphene-based nanocomposites as promising electrode materials in the electrocatalysis of carbohydrates.

  14. Adsorptive removal of dibenzothiophene from model fuels over one-pot synthesized PTA@MIL-101(Cr) hybrid material

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shao-Yi; Zhang, Yan-Fei [School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Liu, Yong [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin (China); Qin, Feng-Xiang; Ren, Hai-Tao [School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Wu, Song-Hai, E-mail: songhaiwu@gmail.com [School of Chemical Engineering and Technology, Tianjin University, Tianjin (China)

    2013-11-15

    Highlights: • One-pot synthesized PTA@MIL-101(Cr) shows high capacity of benzothiophene. • PTA/MIL-101(Cr) obtained via post-modification performs poor in the adsorption. • PTA and MIL-101(Cr) exhibit synergetic effect on adsorption of benzothiophene. • In the presence of aromatics, PTA@MIL-101(Cr) and MIL-101(Cr) remain their capacity. • PTA-dispersed MOFs adsorb dibenzothiophene through acid–base interaction. -- Abstract: Hybrid nanomaterials comprising phosphotungstic acid (PTA) and MIL-101(Cr) were prepared through one-pot synthesis and post-modification methods and then were used as adsorbents of dibenzothiophene (DBT) from simulated diesel fuels. Samples obtained by different ways (encapsulation and impregnation) were characterized by nitrogen adsorption, transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrum (FT-IR) and series of adsorption experiments. The equilibrium adsorption capacities of PTA@MIL-101(Cr) illustrated that the direct introduction of PTA into MIL-101(Cr) during synthesis resulted in a 10.7% increase compared with MIL-101(Cr). However, porous hybrid adsorbent PTA/MIL-101(Cr) prepared via post-modification method exhibited lower adsorption capacity than virgin MIL-101(Cr). The theoretical maximum adsorption capacity (Q{sub 0}) of PTA@MIL-101(Cr) is 136.5 mg S/g adsorbent, 4.2 times of MIL-101(Cr). Even in competitive adsorption between aromatic compounds, which possess strong affinity with MOFs, and DBT, PTA@MIL-101(Cr) and MIL-101(Cr) remained their effectiveness in removal of DBT in the system. Based on these results, it can be presumed that MIL-101(Cr), modified properly, can be used as a promising adsorbent for eliminating aromatics and S-compounds in commercial fuels simultaneously.

  15. A facile one-pot fabrication of flowerlike graphene-based particles for electric double-layer capacitors

    International Nuclear Information System (INIS)

    Xia, Xiaohong; Ma, Qian; Yi, Shangqi; Chen, Hui; Liu, Hongbo; Chen, Yuxi; Yang, Li

    2014-01-01

    Flowerlike graphene-based particles had been successfully synthesized from the suspension of graphene oxide (GO) in the aqueous solution of sucrose by one-pot hydrothermal carbonization approach. Porous carbon from sucrose prompted the evolution of graphene from flat-shaped to flowerlike curved morphology, which was confirmed by the observation of scanning electron microscopy and transmission electron microscopy. The graphene-based particles possess large pore volume (0.69 cm 3  g −1 ) and surface area (470.5 m 2  g −1 ), which is about 6 times greater than that of carbonized graphene sheets (79.2 m 2  g −1 ). Electrochemical investigation indicated that the specific capacitance of the particles reached 162 F g −1 at current density of 0.1 A g −1 in 30 wt% KOH aqueous electrolytes and the capacitance maintenance achieved 90% as the current density enlarged 50 times. The keys to the ideal capacitive performance are the abilities to make full utilization of specific surface area of graphene and ensure a quick kinetic process for the diffusion of ions within curved graphene particles with considerable open edges. - Highlights: • Flowerlike graphene-based particles were synthesized by one-pot hydrothermal method. • Carbon from sucrose prompted the evolution of flat-shaped graphene to curved-shaped. • Carbonized curved particles with considerable open edges exhibit large pore volume. • A high specific capacitance and rate performance of the electrode were achieved

  16. Photothermal cancer therapy using graphitic carbon–coated magnetic particles prepared by one-pot synthesis

    Directory of Open Access Journals (Sweden)

    Lee HJ

    2014-12-01

    Full Text Available Hyo-Jeong Lee,1 Jakkid Sanetuntikul,2 Eun-Sook Choi,1 Bo Ram Lee,1 Jung-Hee Kim,1 Eunjoo Kim,1 Sangaraju Shanmugam2 1Nano and Bio Research Division, 2Department of Energy Systems Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea Abstract: We describe here a simple synthetic strategy for the fabrication of carbon-coated Fe3O4 (Fe3O4@C particles using a single-component precursor, iron (III diethylenetriaminepentaacetic acid complex. Physicochemical analyses revealed that the core of the synthesized particles consists of ferromagnetic Fe3O4 material ranging several hundred nanometers, embedded in nitrogen-doped graphitic carbon with a thickness of ~120 nm. Because of their photothermal activity (absorption of near-infrared [NIR] light, the Fe3O4@C particles have been investigated for photothermal therapeutic applications. An example of one such application would be the use of Fe3O4@C particles in human adenocarcinoma A549 cells by means of NIR-triggered cell death. In this system, the Fe3O4@C can rapidly generate heat, causing >98% cell death within 10 minutes under 808 nm NIR laser irradiation (2.3 W cm-2. These Fe3O4@C particles provided a superior photothermal therapeutic effect by intratumoral delivery and NIR irradiation of tumor xenografts. These results demonstrate that one-pot synthesis of carbon-coated magnetic particles could provide promising materials for future clinical applications and encourage further investigation of this simple method. Keywords: graphitic carbon–encapsulated magnetic nanoparticles, iron oxide, one-pot synthesis, photothermal cancer therapy

  17. One-Pot Hydrothermal Synthesis of Magnetite Prussian Blue Nano-Composites and Their Application to Fabricate Glucose Biosensor

    Directory of Open Access Journals (Sweden)

    Ezzaldeen Younes Jomma

    2016-02-01

    Full Text Available In this work, we presented a simple method to synthesize magnetite Prussian blue nano-composites (Fe3O4-PB through one-pot hydrothermal process. Subsequently, the obtained nano-composites were used to fabricate a facile and effective glucose biosensor. The obtained nanoparticles were characterized using transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, UV-vis absorbance spectroscopy, cyclic voltammetry and chronoamperometry. The resultant Fe3O4-PB nanocomposites have magnetic properties which could easily controlled by an external magnetic field and the electro-catalysis of hydrogen peroxide. Thus, a glucose biosensor based on Fe3O4-PB was successfully fabricated. The biosensor showed super-electrochemical properties toward glucose detection exhibiting fast response time within 3 to 4 s, low detection limit of 0.5 µM and wide linear range from 5 µM to 1.2 mM with sensitivity of 32 µA∙mM−1∙cm−2 and good long-term stability.

  18. Surface modification of magnesium aluminum hydroxide nanoparticles with poly(methyl methacrylate) via one-pot in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaojun, E-mail: guoxj6906@163.com [College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070 (China); Zhao Leihua; Zhang Li; Li Jing [College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070 (China)

    2012-01-15

    Hydrophobic magnesium aluminum hydroxide composite particles (PMMA-MAH) were obtained by means of grafting poly(methyl methacrylate) (PMMA) onto the surface of magnesium aluminum hydroxide(MAH) nanoparticles after a novel type of phosphate coupling agent (DN-27) modification. The introduction of functional double bonds was firstly conducted on the surface of nanoparticles by DN-27 modification, followed by one-pot in situ polymerization on the particles surface using methyl methacrylate (MMA) as monomer, azoisobutyronitrile (AIBN) as initiator and sodium dodecyl sulfate (SDS) as stabilizer to graft PMMA on the surface of DN-27-modified MAH particles. The obtained composite particles were characterized by field-emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD). The results show that the organic macromolecule PMMA could be successfully grafted on the surface of DN-27-modified MAH nanoparticles and the thermal stability of the PMMA-MAH composite particles had been improved. Compared with unmodified blank MAH sample, the product obtained with this method possesses better hydrophobic properties such as a higher water contact angle of 108 Degree-Sign and a well dispersion.

  19. One-pot synthesis of gold nanostars using plant polyphenols for cancer photoacoustic imaging and photothermal therapy

    International Nuclear Information System (INIS)

    Zhang, Xiao-Long; Zheng, Cheng; Zhang, Yun; Yang, Huang-Hao; Liu, Xiaolong; Liu, Jingfeng

    2016-01-01

    Branched plasmonic nanostructures have been found to exhibit strong enhancement of the electromagnetic field surrounding their multi-branched petals. This feature endows them with improved performance in catalysis, surface-enhanced Raman scattering, photoacoustic imaging, and photothermal therapy. Albeit several synthesis techniques have been developed, the precisely controlled growth of highly branched nanostructures with a one-pot surfactant-free procedure is still challenging. Herein, we present a simple seedless route to synthesize gold nanostars (AuNSs) using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The size and shape of AuNSs can be tuned by simply adjusting the amount of added GA. Under the optimum condition, the as-prepared AuNSs with diameters about 100 nm exhibit strong near-infrared absorption, good photothermal efficiency, and high biocompatibility. We demonstrate that AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.Graphical AbstractGold nanostars (AuNSs) are synthesized by a simple seedless route using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.

  20. Production of novel "functional oil" rich in diglycerides and phytosterol esters with "one-pot" enzymatic transesterification.

    Science.gov (United States)

    Zheng, Ming-Ming; Huang, Qing; Huang, Feng-Hong; Guo, Ping-Mei; Xiang, Xia; Deng, Qian-Chun; Li, Wen-Lin; Wan, Chu-Yun; Zheng, Chang

    2014-06-04

    Diglycerides and phytosterol esters are two important functional lipids. Phytosterol esters mixed with dietary diglyceride could not only influence body weight but also prevent or reverse insulin resistance and hyperlipidemia. In this study, a kind of novel "functional oil" rich in both diglycerides and phytosterol esters was prepared with "one-pot" enzymatic transesterification. First, lipase AYS (Candida rugosa) was immobilized on the porous cross-linked polystyrene resin beads (NKA) via hydrophobic interaction. The resulting immobilized AYS showed much better transesterification activity and thermal stability to freeways. On the basis of the excellent biocatalyst prepared, a method for high-efficiency enzymatic esterification of phytosterols with different triglycerides to produce corresponding functional oils rich in both diglycerides and phytosterol esters was developed. Four functional oils rich in both diglycerides and phytosterol esters with conversions >92.1% and controllable fatty acid composition were obtained under the optimized conditions: 80 mmol/L phytosterols, 160 mmol/L triglycerides, and 25 mg/mL AYS@NKA at 180 rpm and 50 °C for 12 h in hexane. The prepared functional oil possessed low acid value (≤1.0 mgKOH/g), peroxide value (≤2.1 mmol/kg), and conjugated diene value (≤1.96 mmol/kg) and high diglyceride and phytosterol ester contents (≥10.4 and ≥20.2%, respectively). All of the characteristics favored the wide application of the functional oil in different fields of functional food.

  1. One-pot synthesis of hollow NiSe-CoSe nanoparticles with improved performance for hybrid supercapacitors

    Science.gov (United States)

    Chen, Haichao; Fan, Meiqiang; Li, Chao; Tian, Guanglei; Lv, Chunju; Chen, Da; Shu, Kangying; Jiang, Jianjun

    2016-10-01

    Hollow NiSe-CoSe samples have been synthesized for the first time via a one-pot solvothermal approach. The strategy is robust enough to synthesize NiSe-CoSe nanoparticles with different NiSe to CoSe ratios but with a similar hollow structure. Co ions in the NiSe-CoSe nanoparticles play decisive role for formation of the hollow structure; otherwise, the nanoparticles become solid for the NiSe sample. When used as the positive electroactive materials for energy storage, the NiSe-CoSe samples show excellent electrochemical activity in alkaline electrolyte. Using the synergistic effect between NiSe and CoSe, the electrochemical performance of NiSe-CoSe can be tuned by varying the NiSe to CoSe ratios. The NiSe-CoSe sample with a NiSe to CoSe ratio of 4:2 shows the best electrochemical performance in terms of superior specific capacity, improved rate capability and excellent cycling stability. In addition, the electrochemical performance of NiSe-CoSe sample with a NiSe to CoSe ratio of 4:2 is also evaluated via assembling hybrid supercapacitors with RGO, and the hybrid supercapacitor delivers both high power and energy densities (41.8 Wh kg-1 at 750 W kg-1 and 20.3 Wh kg-1 at 30 kW kg-1).

  2. One-Pot Parallel Synthesis of Lipid Library via Thiolactone Ring Opening and Screening for Gene Delivery.

    Science.gov (United States)

    Molla, Mijanur R; Böser, Alexander; Rana, Akshita; Schwarz, Karina; Levkin, Pavel A

    2018-04-18

    Efficient delivery of nucleic acids into cells is of great interest in the field of cell biology and gene therapy. Despite a lot of research, transfection efficiency and structural diversity of gene-delivery vectors are still limited. A better understanding of the structure-function relationship of gene delivery vectors is also essential for the design of novel and intelligent delivery vectors, efficient in "difficult-to-transfect" cells and in vivo clinical applications. Most of the existing strategies for the synthesis of gene-delivery vectors require multiple steps and lengthy procedures. Here, we demonstrate a facile, three-component one-pot synthesis of a combinatorial library of 288 structurally diverse lipid-like molecules termed "lipidoids" via a thiolactone ring opening reaction. This strategy introduces the possibility to synthesize lipidoids with hydrophobic tails containing both unsaturated bonds and reducible disulfide groups. The whole synthesis and purification are convenient, extremely fast, and can be accomplished within a few hours. Screening of the produced lipidoids using HEK293T cells without addition of helper lipids resulted in identification of highly stable liposomes demonstrating ∼95% transfection efficiency with low toxicity.

  3. Rapid One-Pot Microwave Synthesis of Mixed-Linker Hybrid Zeolitic-Imidazolate Framework Membranes for Tunable Gas Separations.

    Science.gov (United States)

    Hillman, Febrian; Brito, Jordan; Jeong, Hae-Kwon

    2018-02-14

    The relatively slow and complex fabrication processes of polycrystalline metal-organic framework (MOF) membranes often times restrict their way to commercialization, despite their potential for molecular separation applications. Herein, we report a rapid one-pot microwave synthesis of mixed-linker hybrid zeolitic-imidazolate framework (ZIF) membranes consisting of 2-methylimidazolate (ZIF-8 linker) and benzimidazolate (ZIF-7 linker) linkers, termed ZIF-7-8 membranes. The fast-volumetric microwave heating in conjunction with a unique counter diffusion of metal and linker solutions enabled unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes in ∼90 s, the fastest MOF membrane preparation up to date. Furthermore, we were able to tune the molecular sieving properties of the ZIF-7-8 membranes by varying the benzimidazole-to-2-methylimidazole (bIm-to-mIm) linker ratio in the hybrid frameworks. The tuning of their molecular sieving properties led to the systematic change in the permeance and selectivity of various small gases. The unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes with tunable molecular sieving properties is an important step forward for the commercial gas separation applications of ZIF membranes.

  4. One-pot synthesis of powder-form {beta}-Ni(OH){sub 2} monolayer nanosheets with high electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Minmin; Ren, Wanzhong; Zhao, Yunan; Liu, Yan; Cui, Hongtao, E-mail: htcui@ytu.edu.cn [Yantai University, Shandong Provincial Engineering Research Center for Light Hydrocarbon Comprehensive Utilization, College of Chemistry and Chemical Engineering (China)

    2013-08-15

    In this work, {beta}-Ni(OH){sub 2} monolayer nanosheets, which had been thought to be unachievable, were successfully prepared for the first time by a one-pot strategy using epoxide as precipitation agent and sodium dodecyl sulfate (SDS) as surfactant. The characterization results indicate that the formation of monolayer morphology depends on the mediation of SDS molecules. The XRD patterns demonstrate the loose and defective packing of Ni(OH){sub 2} layers in the SDS intercalated samples. The disappearing of vibration band of free hydroxyl groups in the FTIR spectra suggests the interlayer separation resulted by SDS. The TEM and AFM images further confirm the formation of monolayer nanosheets. It is proposed that the in situ modification of the secondary growth unit of {beta}-Ni(OH){sub 2} by SDS allows its two-dimensional anisotropic growth through steric hindrance of SDS molecules. In addition, this effect allows isolation of {beta}-Ni(OH){sub 2} from solvent with keeping of monolayer nanosheet state in dry powder. The electrochemical measurement results indicate that {beta}-Ni(OH){sub 2} monolayer nanosheets own much higher urea electrolysis performance than their corresponding multilayer structure.

  5. One-pot synthesis of powder-form β-Ni(OH)2 monolayer nanosheets with high electrochemical performance

    International Nuclear Information System (INIS)

    Wang, Minmin; Ren, Wanzhong; Zhao, Yunan; Liu, Yan; Cui, Hongtao

    2013-01-01

    In this work, β-Ni(OH) 2 monolayer nanosheets, which had been thought to be unachievable, were successfully prepared for the first time by a one-pot strategy using epoxide as precipitation agent and sodium dodecyl sulfate (SDS) as surfactant. The characterization results indicate that the formation of monolayer morphology depends on the mediation of SDS molecules. The XRD patterns demonstrate the loose and defective packing of Ni(OH) 2 layers in the SDS intercalated samples. The disappearing of vibration band of free hydroxyl groups in the FTIR spectra suggests the interlayer separation resulted by SDS. The TEM and AFM images further confirm the formation of monolayer nanosheets. It is proposed that the in situ modification of the secondary growth unit of β-Ni(OH) 2 by SDS allows its two-dimensional anisotropic growth through steric hindrance of SDS molecules. In addition, this effect allows isolation of β-Ni(OH) 2 from solvent with keeping of monolayer nanosheet state in dry powder. The electrochemical measurement results indicate that β-Ni(OH) 2 monolayer nanosheets own much higher urea electrolysis performance than their corresponding multilayer structure

  6. Facile and rapid one-pot microwave-assisted synthesis of Pd-Ni magnetic nanoalloys confined in mesoporous carbons

    International Nuclear Information System (INIS)

    Martínez de Yuso, Alicia; Le Meins, Jean-Marc; Oumellal, Yassine; Paul-Boncour, Valérie; Zlotea, Claudia; Matei Ghimbeu, Camelia

    2016-01-01

    An easy and rapid one-pot microwave-assisted soft-template synthesis method for the preparation of Pd-Ni nanoalloys confined in mesoporous carbon is reported. This approach allows the formation of mesoporous carbon and the growth of the particles at the same time, under short microwave irradiation (4 h) compared to the several days spent for the classical approach. In addition, the synthesis steps are diminished and no thermopolymerization step or reduction treatment being required. The influence of the Pd-Ni composition on the particle size and on the carbon characteristics was investigated. Pd-Ni solid solutions in the whole composition range could be obtained, and the metallic composition proved to have an important effect on the nanoparticle size but low influence on carbon textural properties. Small and uniformly distributed nanoparticles were confined in mesoporous carbon with uniform pore size distribution, and dependence between the nanoparticle size and the nanoalloy composition was observed, i.e., increase of the particle size with increasing the Ni content (from 5 to 14 nm). The magnetic properties of the materials showed a strong nanoparticle size and/or composition effect. The blocking temperature of Pd-Ni nanoalloys increases with the increase of Ni amount and therefore of particle size. The magnetization values are smaller than the bulk counterpart particularly for the Ni-rich compositions due to the formed graphitic shells surrounding the particles inducing a dead magnetic layer.

  7. Facile and rapid one-pot microwave-assisted synthesis of Pd-Ni magnetic nanoalloys confined in mesoporous carbons

    Science.gov (United States)

    Martínez de Yuso, Alicia; Le Meins, Jean-Marc; Oumellal, Yassine; Paul-Boncour, Valérie; Zlotea, Claudia; Matei Ghimbeu, Camelia

    2016-12-01

    An easy and rapid one-pot microwave-assisted soft-template synthesis method for the preparation of Pd-Ni nanoalloys confined in mesoporous carbon is reported. This approach allows the formation of mesoporous carbon and the growth of the particles at the same time, under short microwave irradiation (4 h) compared to the several days spent for the classical approach. In addition, the synthesis steps are diminished and no thermopolymerization step or reduction treatment being required. The influence of the Pd-Ni composition on the particle size and on the carbon characteristics was investigated. Pd-Ni solid solutions in the whole composition range could be obtained, and the metallic composition proved to have an important effect on the nanoparticle size but low influence on carbon textural properties. Small and uniformly distributed nanoparticles were confined in mesoporous carbon with uniform pore size distribution, and dependence between the nanoparticle size and the nanoalloy composition was observed, i.e., increase of the particle size with increasing the Ni content (from 5 to 14 nm). The magnetic properties of the materials showed a strong nanoparticle size and/or composition effect. The blocking temperature of Pd-Ni nanoalloys increases with the increase of Ni amount and therefore of particle size. The magnetization values are smaller than the bulk counterpart particularly for the Ni-rich compositions due to the formed graphitic shells surrounding the particles inducing a dead magnetic layer.

  8. One-Pot Fabrication of Antireflective/Antibacterial Dual-Function Ag NP-Containing Mesoporous Silica Thin Films.

    Science.gov (United States)

    Wang, Kaikai; He, Junhui

    2018-04-04

    Thin films that integrate antireflective and antibacterial dual functions are not only scientifically interesting but also highly desired in many practical applications. Unfortunately, very few studies have been devoted to the preparation of thin films with both antireflective and antibacterial properties. In this study, mesoporous silica (MSiO 2 ) thin films with uniformly dispersed Ag nanoparticles (Ag NPs) were prepared through a one-pot process, which simultaneously shows high transmittance, excellent antibacterial activity, and mechanical robustness. The optimal thin-film-coated glass substrate demonstrates a maximum transmittance of 98.8% and an average transmittance of 97.1%, respectively, in the spectral range of 400-800 nm. The growth and multiplication of typical bacteria, Escherichia coli ( E. coli), were effectively inhibited on the coated glass. Pencil hardness test, tape adhesion test, and sponge washing test showed favorable mechanical robustness with 5H pencil hardness, 5A grade adhesion, and functional durability of the coating, which promises great potential for applications in various touch screens, windows for hygiene environments, and optical apparatuses for medical uses such as endoscope, and so on.

  9. One-pot synthesis of redox-responsive polymers-coated mesoporous silica nanoparticles and their controlled drug release.

    Science.gov (United States)

    Sun, Jiao-Tong; Piao, Ji-Gang; Wang, Long-Hai; Javed, Mohsin; Hong, Chun-Yan; Pan, Cai-Yuan

    2013-09-01

    A versatile one-pot strategy for the preparation of reversibly cross-linked polymer-coated mesoporous silica nanoparticles (MSNs) via surface reversible addition-fragmentation chain transfer (RAFT) polymerization is presented for the first time in this paper. The less reactive monomer oligo(ethylene glycol) acrylate (OEGA) and the more reactive cross-linker N,N'-cystaminebismethacrylamide (CBMA) are chosen to be copolymerized on the external surfaces of RAFT agent-functionalized MSNs to form the cross-linked polymer shells. Owing to the reversible cleavage and restoration of disulfide bonds via reduction/oxidation reactions, the polymer shells can control the on/off switching of the nanopores and regulate the drug loading and release. The redox-responsive release of doxorubicin (DOX) from this drug carrier is realized. The protein adsorption, in vitro cytotoxicity assays, and endocytosis studies demonstrate that this biocompatible vehicle is a potential candidate for delivering drugs. It is expected that this versatile grafting strategy may help fabricate satisfying MSN-based drug delivery systems for clinical application. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A One Pot Synthesis of Novel Bioactive Tri-Substitute-Condensed-Imidazopyridines that Targets Snake Venom Phospholipase A2

    Science.gov (United States)

    Anilkumar, Nirvanappa C.; Sundaram, Mahalingam S.; Mohan, Chakrabhavi Dhananjaya; Rangappa, Shobith; Bulusu, Krishna C.; Fuchs, Julian E.; Girish, Kesturu S.; Bender, Andreas; Basappa; Rangappa, Kanchugarakoppal S.

    2015-01-01

    Drugs such as necopidem, saripidem, alpidem, zolpidem, and olprinone contain nitrogen-containing bicyclic, condensed-imidazo[1,2-α]pyridines as bioactive scaffolds. In this work, we report a high-yield one pot synthesis of 1-(2-methyl-8-aryl-substitued-imidazo[1,2-α]pyridin-3-yl)ethan-1-onefor the first-time. Subsequently, we performed in silico mode-of-action analysis and predicted that the synthesized imidazopyridines targets Phospholipase A2 (PLA2). In vitro analysis confirmed the predicted target PLA2 for the novel imidazopyridine derivative1-(2-Methyl-8-naphthalen-1-yl-imidazo [1,2-α]pyridine-3-yl)-ethanone (compound 3f) showing significant inhibitory activity towards snake venom PLA2 with an IC50 value of 14.3 μM. Evidently, the molecular docking analysis suggested that imidazopyridine compound was able to bind to the active site of the PLA2 with strong affinity, whose affinity values are comparable to nimesulide. Furthermore, we estimated the potential for oral bioavailability by Lipinski's Rule of Five. Hence, it is concluded that the compound 3f could be a lead molecule against snake venom PLA2. PMID:26196520

  11. A One Pot Synthesis of Novel Bioactive Tri-Substitute-Condensed-Imidazopyridines that Targets Snake Venom Phospholipase A2.

    Directory of Open Access Journals (Sweden)

    Nirvanappa C Anilkumar

    Full Text Available Drugs such as necopidem, saripidem, alpidem, zolpidem, and olprinone contain nitrogen-containing bicyclic, condensed-imidazo[1,2-α]pyridines as bioactive scaffolds. In this work, we report a high-yield one pot synthesis of 1-(2-methyl-8-aryl-substitued-imidazo[1,2-α]pyridin-3-ylethan-1-onefor the first-time. Subsequently, we performed in silico mode-of-action analysis and predicted that the synthesized imidazopyridines targets Phospholipase A2 (PLA2. In vitro analysis confirmed the predicted target PLA2 for the novel imidazopyridine derivative1-(2-Methyl-8-naphthalen-1-yl-imidazo [1,2-α]pyridine-3-yl-ethanone (compound 3f showing significant inhibitory activity towards snake venom PLA2 with an IC50 value of 14.3 μM. Evidently, the molecular docking analysis suggested that imidazopyridine compound was able to bind to the active site of the PLA2 with strong affinity, whose affinity values are comparable to nimesulide. Furthermore, we estimated the potential for oral bioavailability by Lipinski's Rule of Five. Hence, it is concluded that the compound 3f could be a lead molecule against snake venom PLA2.

  12. Highly Efficient One-Pot Synthesis of COS-Based Block Copolymers by Using Organic Lewis Pairs.

    Science.gov (United States)

    Yang, Jia-Liang; Cao, Xiao-Han; Zhang, Cheng-Jian; Wu, Hai-Lin; Zhang, Xing-Hong

    2018-01-31

    A one-pot synthesis of block copolymer with regioregular poly(monothiocarbonate) block is described via metal-free catalysis. Lewis bases such as guanidine, quaternary onium salts, and Lewis acid triethyl borane (TEB) were equivalently combined and used as the catalysts. By using polyethylene glycol (PEG) as the macromolecular chain transfer agent (CTA), narrow polydispersity block copolymers were obtained from the copolymerization of carbonyl sulfide (COS) and propylene oxide (PO). The block copolymers had a poly(monothiocarbonate) block with perfect alternating degree and regioregularity. Unexpectedly, the addition of CTA to COS/PO copolymerization system could dramatically improve the turnover frequency (TOF) of PO (up to 240 h -1 ), higher than that of the copolymerization without CTA. In addition, the conversion of CTA could be up to 100% in most cases, as revealed by ¹H NMR spectra. Of consequence, the number-average molecular weights ( M n s) of the resultant block copolymers could be regulated by varying the feed ratio of CTA to PO. Oxygen-sulfur exchange reaction (O/S ER), which can generate randomly distributed thiocarbonate and carbonate units, was effectively suppressed in all of the cases in the presence of CTA, even at 80 °C. This work presents a versatile method for synthesizing sulfur-containing block copolymers through a metal-free route, providing an array of new block copolymers.

  13. One-pot synthesis of GDP-l-fucose by a four-enzyme cascade expressed in Lactococcus lactis.

    Science.gov (United States)

    Li, Ling; Kim, Seul-Ah; Heo, Ji Eun; Kim, Tae-Jip; Seo, Jin-Ho; Han, Nam Soo

    2017-12-20

    GDP-l-fucose is an l-fucose donor to synthesize fucosylated compounds such as human milk oligosaccharides or Lewis antigen. In this study, we used Lactococcus lactis subsp. cremoris NZ9000 to express 4 enzymes, ManB, ManC, Gmd, and WcaG and produced GDP-l-fucose by using one-pot synthesis method with mannose-6-phosphate as substrate and the enzymes as biocatalyst. For preparation of enzyme mixture, 4 genes (manB, manC, gmd, and wcaG) cloned from Escherichia coli were transformed into L. lactis strains using pNZ8008 and the recombinant cell lysates were obtained after cultivation. When mannose-6-phosphate was used as the substrate, the consecutive reactions with ManB, ManC, Gmd, and WcaG resulted in the successful production of GDP-l-fucose (0.13mM). When GDP-d-mannose was used as the substrate, it was entirely converted to GDP-l-fucose (0.2mM; 0.12g/L) via 2 enzymatic reactions mediated by Gmd and WcaG. This is the first report of GDP-l-fucose production by using multiple enzymes expressed in lactic acid bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. One pot low-temperature growth of hierarchical δ-MnO2 nanosheets on nickel foam for supercapacitor applications

    International Nuclear Information System (INIS)

    Pang, Mingjun; Long, Guohui; Jiang, Shang; Ji, Yuan; Han, Wei; Wang, Biao; Liu, Xilong; Xi, Yunlong

    2015-01-01

    Hierarchical δ-MnO 2 nanosheets as electroactive materials have been directly deposited on nickel foam substrate by one-pot chelation-mediated aqueous method. The morphological evolution process has been investigated by scanning electron microscopy (SEM) at different time intervals in detail. The hierarchical δ-MnO 2 electrodes which are synthesized at 30 °C, 40 °C and 50 °C are directly served as binder- and conductive-agent-free electrodes for supercapacitors and have been explored by cyclic voltammetry, galvanostatic charge-discharge test and electrochemical impedance spectroscopy. With the decrease of reaction temperature the specific capacitance of δ-MnO 2 electrode increases. The vertically aligned δ-MnO 2 nanosheets which have been synthesized at 30 °C exhibit a highest capacitance of 325 F g −1 at the current density of 1 A g −1 . The capacitance loss is less than 15% after 1000 cycles at the scan rate of 30 mV s −1 . Furthermore, it is found that the equivalent series resistance and charge transfer resistance of the electrode are 0.36 Ω and 1.7 Ω, respectively. Such superior electrochemical performance of the electrode made by directly growing porous δ-MnO 2 nanosheets on nickel foam makes it has very promising applications in high-performance supercapacitors

  15. One-pot, one-step synthesis of 2,5-diformylfuran from carbohydrates over Mo-containing Keggin heteropolyacids.

    Science.gov (United States)

    Liu, Yu; Zhu, Liangfang; Tang, Jinqiang; Liu, Mingyang; Cheng, Ruodi; Hu, Changwei

    2014-12-01

    In this work, a one-pot strategy for directly converting fructose into 2,5-diformylfuran (DFF) over Mo-containing Keggin heteropolyacids (HPAs) in open air is developed. H3 PMo12 O40 HPA is found to show high activity and selectivity to the formation of DFF owing to its higher Brønsted acidity and moderate redox potential. The partial substitution of the H(+) in H3 PMo12 O40 with Cs(+) leads to the heterogenization of the HPA by forming its cesium salts Csx H3-x PMo12 (x=0.5, 1.5, and 2.5). A satisfactory yield of 69.3% to DFF is obtained over Cs0.5 H2.5 PMo12 polyoxometalate after deliberate optimization of the reaction conditions. The heterogenized polyoxometalate could be recycled and reused without significant loss of catalytic activity for five runs. The produced DFF could be separated from the resulting mixture by an adsorption-desorption method using activated carbon as the adsorbent and furfural as the desorbent. A highest isolated yield of 58.2% is obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. One-pot synthesis of gold nanostars using plant polyphenols for cancer photoacoustic imaging and photothermal therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Long [Mengchao Hepatobiliary Hospital of Fujian Medical University, The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province (China); Zheng, Cheng [Fuzhou University, The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, College of Chemistry (China); Zhang, Yun [Chinese Academy of Sciences, Xiamen Institute of Rare Earth Materials, Haixi Institute (China); Yang, Huang-Hao [Fuzhou University, The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, College of Chemistry (China); Liu, Xiaolong, E-mail: xiaoloong.liu@gmail.com; Liu, Jingfeng, E-mail: drjingfeng@126.com [Mengchao Hepatobiliary Hospital of Fujian Medical University, The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province (China)

    2016-07-15

    Branched plasmonic nanostructures have been found to exhibit strong enhancement of the electromagnetic field surrounding their multi-branched petals. This feature endows them with improved performance in catalysis, surface-enhanced Raman scattering, photoacoustic imaging, and photothermal therapy. Albeit several synthesis techniques have been developed, the precisely controlled growth of highly branched nanostructures with a one-pot surfactant-free procedure is still challenging. Herein, we present a simple seedless route to synthesize gold nanostars (AuNSs) using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The size and shape of AuNSs can be tuned by simply adjusting the amount of added GA. Under the optimum condition, the as-prepared AuNSs with diameters about 100 nm exhibit strong near-infrared absorption, good photothermal efficiency, and high biocompatibility. We demonstrate that AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.Graphical AbstractGold nanostars (AuNSs) are synthesized by a simple seedless route using a natural plant polyphenol, gallic acid (GA), as a reducing and stabilizing agent. The AuNSs can be utilized for simultaneous photoacoustic imaging and photothermal therapy in living cancer cells. This study highlights facile synthesized AuNSs could serve as a promising platform for cancer diagnosis and therapy.

  17. Preparation of stable magnetic nanofluids containing Fe3O4@PPy nanoparticles by a novel one-pot route

    Directory of Open Access Journals (Sweden)

    Zhao Baobao

    2011-01-01

    Full Text Available Abstract Stable magnetic nanofluids containing Fe3O4@Polypyrrole (PPy nanoparticles (NPs were prepared by using a facile and novel method, in which one-pot route was used. FeCl3·6H2O was applied as the iron source, and the oxidizing agent to produce PPy. Trisodium citrate (Na3cit was used as the reducing reagent to form Fe3O4 NPs. The as-prepared nanofluid can keep long-term stability. The Fe3O4@PPy NPs can still keep dispersing well after the nanofluid has been standing for 1 month and no sedimentation is found. The polymerization reaction of the pyrrole monomers took place with Fe3+ ions as the initiator, in which these Fe3+ ions remained in the solution adsorbed on the surface of the Fe3O4 NPs. Thus, the core-shell NPs of Fe3O4@PPy were obtained. The particle size of the as-prepared Fe3O4@PPy can be easily controlled from 7 to 30 nm by the polymerization reaction of the pyrrole monomers. The steric stabilization and weight of the NPs affect the stability of the nanofluids. The as-prepared Fe3O4@PPy NPs exhibit superparamagnetic behavior.

  18. Facile and rapid one-pot microwave-assisted synthesis of Pd-Ni magnetic nanoalloys confined in mesoporous carbons

    Energy Technology Data Exchange (ETDEWEB)

    Martínez de Yuso, Alicia; Le Meins, Jean-Marc [Université de Strasbourg, Université de Haute-Alsace, Institut de Science des Matériaux de Mulhouse, CNRS UMR (France); Oumellal, Yassine; Paul-Boncour, Valérie; Zlotea, Claudia [Institut de Chimie et des Matériaux Paris Est, UMR 7182, CNRS-UPEC (France); Matei Ghimbeu, Camelia, E-mail: camelia.ghimbeu@uha.fr [Université de Strasbourg, Université de Haute-Alsace, Institut de Science des Matériaux de Mulhouse, CNRS UMR (France)

    2016-12-15

    An easy and rapid one-pot microwave-assisted soft-template synthesis method for the preparation of Pd-Ni nanoalloys confined in mesoporous carbon is reported. This approach allows the formation of mesoporous carbon and the growth of the particles at the same time, under short microwave irradiation (4 h) compared to the several days spent for the classical approach. In addition, the synthesis steps are diminished and no thermopolymerization step or reduction treatment being required. The influence of the Pd-Ni composition on the particle size and on the carbon characteristics was investigated. Pd-Ni solid solutions in the whole composition range could be obtained, and the metallic composition proved to have an important effect on the nanoparticle size but low influence on carbon textural properties. Small and uniformly distributed nanoparticles were confined in mesoporous carbon with uniform pore size distribution, and dependence between the nanoparticle size and the nanoalloy composition was observed, i.e., increase of the particle size with increasing the Ni content (from 5 to 14 nm). The magnetic properties of the materials showed a strong nanoparticle size and/or composition effect. The blocking temperature of Pd-Ni nanoalloys increases with the increase of Ni amount and therefore of particle size. The magnetization values are smaller than the bulk counterpart particularly for the Ni-rich compositions due to the formed graphitic shells surrounding the particles inducing a dead magnetic layer.

  19. In situ one-pot synthesis of graphene–polyaniline nanofiber composite for high-performance electrochemical capacitors

    International Nuclear Information System (INIS)

    Jin, Yuhong; Fang, Mou; Jia, Mengqiu

    2014-01-01

    In this work, graphene–polyaniline nanofiber (G/PANI-F) composite is prepared through a new and one-pot method that includes the reduction of graphene oxide (GO) by aniline and then followed by in-situ polymerization. Aniline plays the two roles in this method: as a chemical reducing agent to reduce GO to graphene and as a monomer to prepare polyaniline nanofiber (PANI-F). Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy and transmission electron microscopy are employed to confirm that GO can be reduced by aniline and PANI-F can be deposited on the surface of graphene. The electrochemical properties of G/PANI-F composite electrode are measured by using cyclic voltammetry, galvanostatic charge–discharge test and electrochemical impedance spectroscopy. The G/PANI-F composite electrode exhibits enhanced specific capacitance of 965 F g −1 at 0.5 A g −1 and the capacity retention is 90% after 2000 cycles.

  20. A facile one-pot hydrothermal approach for the preparation of CuO/rGO nanocomposites with different morphologies

    Science.gov (United States)

    Ajit, Akshata V.; Gawli, Yogesh P.; Ethiraj, Anita Sagadevan

    2018-05-01

    Graphene-based metal oxides such as Cu2O, SnO2, CuO, Fe3O4, MnO2 are promising candidates for many applications because of their advantageous properties. Amongst all, CuO has been widely studied because of its excellent electrocatalytic activity. Although many methodologies have been developed for the synthesis of CuO/graphene nanostructures with different morphologies including nanorods, nanoparticles, nanosheets, flower, urchin; not many investigations have been done on one pot synthesis method for CuO/reduced graphene oxide (rGO) nanocomposites to achieve different morphologies. Therefore in the present work effort has been made to synthesize various CuO-rGO nanocomposites via surfactant (CTAB) assisted hydrothermal method. Detailed study was performed to monitor the effect of various reaction parameters like temperature, reaction time, reactant concentration on the synthesized nanocomposites. Several analytical tools, including XRD, SEM, FTIR and UV-Vis spectroscopy have been utilized to characterize the samples. XRD results showed formation of monoclinic structure of CuO along with presence of rGO. Calculated optical bandgap studies indicate decrease in the bandgap of synthesized CuO (Eg=4.5eV-4.34eV) with increase in temperature from 120°C to 180°C. Our results clearly demonstrate that reaction parameters play a key role to bring out the optical and morphological changes in the CuO-rGO nanocomposites.

  1. One-pot synthesis of stable water soluble Mn:ZnSe/ZnS core/shell quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Hao; Gao Xue; Liu Siyu; Su Xingguang, E-mail: suxg@jlu.edu.cn [College of Chemistry, Jilin University, Department of Analytical Chemistry (China)

    2013-06-15

    In this paper, Mn:ZnSe/ZnS core/shell-doped quantum dots (d-dots) with 3-mercaptopropionic acid as the stabilizer are successfully synthesized through a simple one-pot synthesis procedure in aqueous solution. The average diameter of Mn:ZnSe/ZnS core/shell d-dots is about 2.9 nm, which is lager than that of Mn:ZnSe cores (about 1.9 nm). The optical features and structure of the obtained Mn:ZnSe/ZnS core/shell quantum dots have been characterized by UV-Vis and fluorescence spectroscopy, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The photostability against UV irradiation and chemical stability against H{sub 2}O{sub 2} etching have been studied, and the results showed that the prepared Mn:ZnSe/ZnS core/shell d-dots are more stable than CdTe quantum dots prepared in aqueous solution. Finally, the resulting core/shell quantum dots are used as fluorescent label in human osteoblast-like HepG2 cell imaging.

  2. Adsorptive removal of dibenzothiophene from model fuels over one-pot synthesized PTA@MIL-101(Cr) hybrid material.

    Science.gov (United States)

    Jia, Shao-Yi; Zhang, Yan-Fei; Liu, Yong; Qin, Feng-Xiang; Ren, Hai-Tao; Wu, Song-Hai

    2013-11-15

    Hybrid nanomaterials comprising phosphotungstic acid (PTA) and MIL-101(Cr) were prepared through one-pot synthesis and post-modification methods and then were used as adsorbents of dibenzothiophene (DBT) from simulated diesel fuels. Samples obtained by different ways (encapsulation and impregnation) were characterized by nitrogen adsorption, transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrum (FT-IR) and series of adsorption experiments. The equilibrium adsorption capacities of PTA@MIL-101(Cr) illustrated that the direct introduction of PTA into MIL-101(Cr) during synthesis resulted in a 10.7% increase compared with MIL-101(Cr). However, porous hybrid adsorbent PTA/MIL-101(Cr) prepared via post-modification method exhibited lower adsorption capacity than virgin MIL-101(Cr). The theoretical maximum adsorption capacity (Q0) of PTA@MIL-101(Cr) is 136.5mg S/g adsorbent, 4.2 times of MIL-101(Cr). Even in competitive adsorption between aromatic compounds, which possess strong affinity with MOFs, and DBT, PTA@MIL-101(Cr) and MIL-101(Cr) remained their effectiveness in removal of DBT in the system. Based on these results, it can be presumed that MIL-101(Cr), modified properly, can be used as a promising adsorbent for eliminating aromatics and S-compounds in commercial fuels simultaneously. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. One-Pot Synthesis of Novel Chiral β-Amino Acid Derivatives by Enantioselective Mannich Reactions Catalyzed by Squaramide Cinchona Alkaloids

    Directory of Open Access Journals (Sweden)

    Kankan Zhang

    2013-05-01

    Full Text Available An efficient one-pot synthesis of novel β-amino acid derivatives containing a thiadiazole moiety was developed using a chiral squaramide cinchona alkaloid as organocatalyst. The reactions afforded chiral β-amino acid derivatives in moderate yields and with moderate to excellent enantioselectivities. The present study demonstrated for the first time the use of a Mannich reaction catalyzed by a chiral bifunctional organocatalyst for the one-pot synthesis of novel β-amino acid derivatives bearing a 1,3,4-thiadiazole moiety on nitrogen.

  4. Mild one-pot Horner-Wadsworth-Emmons olefination and intramolecular N-arylation for the syntheses of indoles, all regio-isomeric azaindoles, and thienopyrroles.

    Science.gov (United States)

    Choi, Ji Hye; Lim, Hwan Jung

    2015-05-14

    The syntheses of various N-protected aromatic-ring fused pyrrole-2-carboxylate derivatives have been accomplished using mild one-pot Horner-Wadsworth-Emmons olefination and Cu-catalyzed intramolecular N-arylation reactions. The optimized mild one-pot reaction conditions of various 2-bromo arylcarboxaldehydes with commercially available N-protected phosphonoglycine trimethylesters gave the desired aromatic-ring fused pyrrole-2-carboxylates, such as substituted indole-, all regio-isomeric azaindole-, and thienopyrrole-2-carboxylates, in good to excellent yields. These conditions showed broad substrate compatibility, without the loss of the protecting group.

  5. One-pot engineering TiO2/graphene interface for enhanced adsorption and photocatalytic degradation of multiple organics.

    Science.gov (United States)

    Song, Jianhua; Ling, Yun; Xie, Yu; Liu, Lianjun; Zhu, Huihua

    2018-06-13

    It is challenging to design a multifunctional structure or composite for simultaneously adsorb and photocatalytic degrade organic pollutants in water. Towards this goal, this work innovatively engineered interfacial sites between TiO2 particles and reduced graphene oxide (RGO) sheets by employing in situ one-pot one-step solvothermal method. The interface was associated with the content of RGO, solvothermal time and solvent ratio of n-pentanol to n-hexane. It was found that when at a moderate amount of RGO (25%), TiO2 nanoparticles were well dispersed on the surface of RGO or wrapped by RGO, thus leading to a fully contact and strong interaction to form Ti - O - C interfacial structure. But when at a low content of RGO (6%), TiO2 aggregates were mixture of nanosheets, nanoparticles and nanorods. 25%RGO/TiO2 also had 175% higher surface area (146m2/g), 95% larger volume (0.339 cm3/g) and smaller band gap than 6%RGO/TiO2. More importantly, 25%RGO/TiO2 demonstrated higher adsorption efficiency (25%) and 4 times faster degradation rate than TiO2 (0%). It also exhibited good capability to eliminate multiple organics and stable long-term cycle performance (up to 93% retention after 30 cycles). Its superiority was attributed to the large surface area and unique interface between TiO2 and RGO, which not only provided more active sites to capture pollutants but also enhanced charge transfer (3 µA/cm2, 5 times higher than TiO2). This work offered a promising way to purify water through engineering new materials structure and integrating adsorption and photodegradation technologies. © 2018 IOP Publishing Ltd.

  6. One-pot hydrothermal synthesis, characterization, and electrochemical properties of rGO/MnFe2O4 nanocomposites

    Science.gov (United States)

    Kotutha, Isara; Swatsitang, Ekaphan; Meewassana, Worawat; Maensiri, Santi

    2015-06-01

    In this work, a simple facile route for preparing an rGO/MnFe2O4 nanocomposite through a one-pot hydrothermal approach was demonstrated. Graphite oxide (GO) was prepared from graphite powder by a modified Hummers method. Fe(NO3)2 • 9H2O and Mn(NO3)2 • H2O were used as the precursors for the preparation of the rGO/MnFe2O4 nanocomposite. The formation of the rGO/MnFe2O4 nanocomposite was confirmed by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and Rama spectroscopy (Raman). The specific surface area of the prepared composite obtained by Brunauer-Emmett-Teller (BET) analysis was lower than that of pure rGO but higher than that of pure MnFe2O4. Consequently, the electrochemical performance was investigated by using a three-electrode cell system in 6.0 M KOH. The results show that the specific capacitance was determined to be 190.3, 276.9, and 144.5 F/g at a scan rate of 10 mV/s, and 194.9, 274.6, and 134.4 F/g at a current density of 5.0 A/g for rGO, rGO/(5 mmol) MnFe2O4, and rGO/(10 mmol) MnFe2O4, respectively. These results suggest that the composite of MnFe2O4 nanoparticles on an rGO nanosheet can improve the capacitive behavior of the fabricated electrode, but the electrochemical properties are reduced when the MnFe2O4 concentration ratio is high.

  7. A catechol-like phenolic ligand-functionalized hydrothermal carbon: One-pot synthesis, characterization and sorption behavior toward uranium

    International Nuclear Information System (INIS)

    Li, Bo; Ma, Lijian; Tian, Yin; Yang, Xiaodan; Li, Juan; Bai, Chiyao; Yang, Xiaoyu; Zhang, Shuang; Li, Shoujian; Jin, Yongdong

    2014-01-01

    Highlights: • A new catechol-like ligand-functionalized hydrothermal carbon sorbent is synthesized. • A combination of bayberry tannin and glyoxal is firstly used as starting materials. • Simple, economically viable and environment-friendly synthesis method. • The sorbent exhibits high sorption capacity and distinct selectivity for uranium. - Abstract: We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g −1 under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0–4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed

  8. A catechol-like phenolic ligand-functionalized hydrothermal carbon: One-pot synthesis, characterization and sorption behavior toward uranium

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Ma, Lijian; Tian, Yin; Yang, Xiaodan; Li, Juan; Bai, Chiyao; Yang, Xiaoyu; Zhang, Shuang; Li, Shoujian, E-mail: sjli000616@scu.edu.cn; Jin, Yongdong, E-mail: jinyongdong@scu.edu.cn

    2014-04-01

    Highlights: • A new catechol-like ligand-functionalized hydrothermal carbon sorbent is synthesized. • A combination of bayberry tannin and glyoxal is firstly used as starting materials. • Simple, economically viable and environment-friendly synthesis method. • The sorbent exhibits high sorption capacity and distinct selectivity for uranium. - Abstract: We proposed a new approach for preparing an efficient uranium-selective solid phase extractant (HTC-btg) by choosing bayberry tannin as the main building block and especially glyoxal as crosslinking agent via a simple, economic, and green one-pot hydrothermal synthesis. The results of characterization and analysis show that after addition of glyoxal into only bayberry tannin-based hydrothermal reaction system, the as-synthesized HTC-btg displayed higher thermal stability, larger specific surface area and more than doubled surface phenolic hydroxyl groups. The sorption behavior of the sorbents toward uranium under various conditions was investigated in detail and the results indicated that the process is fast, endothermic, spontaneous, and pseudo-second-order chemisorption. The U(VI) sorption capacity reached up to 307.3 mg g{sup −1} under the current experimental conditions. The selective sorption in a specially designed multi-ion solution containing 12 co-existing cations over the range of pH 1.0–4.5 shown that the amount of uranium sorbed accounts for about 53% of the total sorption amount at pH 4.5 and distinctively about 85%, unreported so far to our knowledge, at pH 2.0. Finally, a possible mechanism involving interaction between uranyl ions and phenolic hydroxyl groups on HTC-btg was proposed.

  9. Microwave-assisted one-pot synthesis of metal/metal oxide nanoparticles on graphene and their electrochemical applications

    International Nuclear Information System (INIS)

    Wang Shuangyin; Jiang San Ping; Wang Xin

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → Microwave polyol method is efficient to deposit nanoparticles on graphene. → SnO 2 /graphene is more efficient than graphene for supercapacitor. → PtRu/graphene is more active than commercial PtRu/C for methanol oxidation. - Abstract: An effective synthesis strategy of hybrid metal (PtRu)/metal oxide (SnO 2 ) nanoparticles on graphene nanocomposites is developed using a microwave-assisted one-pot reaction process. The mixture of ethylene glycol (EG) and water is used as both solvent and reactant. In the reaction system for the synthesis of SnO 2 /graphene nanocomposite, EG not only reduces graphene oxide (GO) to graphene, but also results in the formation of SnO 2 facilitated by the presence of a small amount of water. On the other hand, in the reaction system for preparation of PtRu/graphene nanocomposites, EG acts as solvent and reducing agent for reduction of PtRu nanoparticles from their precursors and reduction of graphene from graphene oxide. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) characterizations confirm the feasibility of the microwave-assisted reaction system to simultaneously reduce graphene oxide and to form SnO 2 or PtRu nanoparticles. The as-synthesized SnO 2 /graphene hybrid composites show a much higher supercapacitance than the pure graphene, and the as-prepared PtRu/graphene show much better electrocatalytic activity for methanol oxidation compared to the commercial E-TEK PtRu/C electrocatalysts.

  10. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors

    International Nuclear Information System (INIS)

    Chen, Nali; Ren, Yapeng; Kong, Peipei; Tan, Lin; Feng, Huixia; Luo, Yongchun

    2017-01-01

    Highlights: • A new method to prepare reduced graphene oxide/polyaniline composite is developed. • Aniline serves as a reduction for graphene oxide under weak alkali condition. • Different characterizations confirm that GO can be effectively reduced by aniline. • A high specific capacitance of 524.4 F·g"−"1 is obtained at 0.5 A·g"−"1. - Abstract: Reduced graphene oxide/polyaniline (rGO/PANI) composites are prepared through an effective in situ one-pot synthesis route that includes the reduction of graphene oxide (GO) by aniline under weak alkali condition via hydrothermal method and then followed by in situ polymerization of aniline. X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope are employed to reveal that GO is successfully reduced by aniline under weak alkali condition and PANI can be deposited on the surfaces of reduced graphene oxide (rGO) sheets. The effect of rGO is optimized by tuning the mass ratios of aniline to GO to improve the electrochemical performance of rGO/PANI composites. The maximum specific capacitance of rGO/PANI composites achieves 524.4 F/g with a mass ratio of aniline to GO 10:1 at a current density of 0.5 A/g, in comparison to the specific capacitance of 397 F/g at the same current density of pure PANI. Particularly, the specific capacity retention rate is 81.1% after 2000 cycles at 100 mv/s scan rate, which is an improvement over that of pure PANI (55.5%).

  11. One-Pot Enzymatic Synthesis of D-Arylalanines Using Phenylalanine Ammonia Lyase and L-Amino Acid Deaminase.

    Science.gov (United States)

    Zhu, Longbao; Feng, Guoqiang; Ge, Fei; Song, Ping; Wang, Taotao; Liu, Yi; Tao, Yugui; Zhou, Zhemin

    2018-06-08

    The phenylalanine ammonia-lyase (AvPAL) from Anabaena variabilis catalyzes the amination of substituent trans-cinnamic acid (t-CA) to produce racemic D,L-enantiomer arylalanine mixture owing to its low stereoselectivity. To produce high optically pure D-arylalanine, a modified AvPAL with high D-selectivity is expected. Based on the analyses of catalytic mechanism and structure, the Asn347 residue in the active site was proposed to control stereoselectivity. Therefore, Asn347 was mutated to construct mutant AvPAL-N347A, the stereoselectivity of AvPAL-N347A for D-enantiomer arylalanine was 2.3-fold higher than that of wild-type AvPAL (WtPAL). Furthermore, the residual L-enantiomer product in reaction solution could be converted into the D-enantiomer product through stereoselective oxidation by PmLAAD and nonselective reduction by reducing agent NH 3 BH 3 . At optimal conditions, the conversion rate of t-CA and optical purity (enantiomeric excess (ee D )) of D-phenylalanine reached 82% and exceeded 99%, respectively. The two enzymes displayed activity toward a broad range of substrate and could be used to efficiently synthesize D-arylalanine with different groups on the phenyl ring. Among these D-arylalanines, the yield of m-nitro-D-phenylalanine was highest and reached 96%, and the ee D exceeded 99%. This one-pot synthesis using AvPAL and PmLAAD has prospects for industrial application.

  12. In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Nali [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Ren, Yapeng; Kong, Peipei; Tan, Lin [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Feng, Huixia, E-mail: fenghx@lut.cn [College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, Gansu (China); Luo, Yongchun, E-mail: luoyc@lut.cn [State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, Gansu (China)

    2017-01-15

    Highlights: • A new method to prepare reduced graphene oxide/polyaniline composite is developed. • Aniline serves as a reduction for graphene oxide under weak alkali condition. • Different characterizations confirm that GO can be effectively reduced by aniline. • A high specific capacitance of 524.4 F·g{sup −1} is obtained at 0.5 A·g{sup −1}. - Abstract: Reduced graphene oxide/polyaniline (rGO/PANI) composites are prepared through an effective in situ one-pot synthesis route that includes the reduction of graphene oxide (GO) by aniline under weak alkali condition via hydrothermal method and then followed by in situ polymerization of aniline. X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, ultraviolet-visible spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope are employed to reveal that GO is successfully reduced by aniline under weak alkali condition and PANI can be deposited on the surfaces of reduced graphene oxide (rGO) sheets. The effect of rGO is optimized by tuning the mass ratios of aniline to GO to improve the electrochemical performance of rGO/PANI composites. The maximum specific capacitance of rGO/PANI composites achieves 524.4 F/g with a mass ratio of aniline to GO 10:1 at a current density of 0.5 A/g, in comparison to the specific capacitance of 397 F/g at the same current density of pure PANI. Particularly, the specific capacity retention rate is 81.1% after 2000 cycles at 100 mv/s scan rate, which is an improvement over that of pure PANI (55.5%).

  13. Microwave Assisted Expeditious and Green Cu(II-Clay Catalyzed Domino One-Pot Three Component Synthesis of 2H-indazoles

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad Dar

    2018-01-01

    How to Cite: Dar, B.A., Safvi, S.W., Rizvi, M.A. (2018. Microwave Assisted Expeditious and Green Cu(II-Clay Catalyzed Domino One-Pot Three Component Synthesis of 2H-indazoles. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 82-88 (doi:10.9767/bcrec.13.1.963.82-88

  14. One-pot synthesis of Pd-Pt@Pd core-shell nanocrystals with enhanced electrocatalytic activity for formic acid oxidation

    KAUST Repository

    Yuan, Qiang; Huang, Dabing; Wang, Honghui; Zhou, Zhiyou; Wang, Qingxiao

    2014-01-01

    Well-defined Pd-Pt@Pd core-shell nanocrystals with a Pd-Pt alloy core and a conformal Pd shell of ~2-3 nm were directly synthesized through a one-pot, aqueous solution approach without any preformed Pd or Pt seeds. These Pd-Pt@Pd core

  15. A one-pot synthesis of 1,6,9,13-tetraoxadispiro(4.2.4.2)tetradecane by hydrodeoxygenation of xylose using a palladium catalyst

    Science.gov (United States)

    In an effort to expand the number of biobased chemicals available from sugars, xylose has been converted to 1,6,9,13-tetraoxadispiro(4.2.4.2)tetradecane in a one-pot reaction using palladium supported on silica-alumina as the catalyst. The title compound is produced in 35-40% yield under 7 MPa H2 pr...

  16. Efficient one-pot enzymatic synthesis of alpha-(1 -> 4)-glucosidic disaccharides through a coupled reaction catalysed by Lactobacillus acidophilus NCFM maltose phosphorylase

    DEFF Research Database (Denmark)

    Nakai, Hiroyuki; Dilokpimol, Adiphol; Abou Hachem, Maher

    2010-01-01

    Lactobacillus acidophilus NCFM maltose phosphorylase (LaMalP) of glycoside hydrolase family 65 catalysed enzymatic synthesis of alpha-(1 -> 4)-glucostdic disacchandes from maltose and five monosacchandes in a coupled phosphorolysis/reverse phosphorolysis one-pot reaction Thus phosphorolysis...

  17. One-pot synthesis of spiropyrroloquinoline-isoindolinone and their aza-analogs via the Ugi-4CR/metal-free intramolecular bis-annulation process.

    Science.gov (United States)

    Ghandi, Mehdi; Zarezadeh, Nahid; Abbasi, Alireza

    2015-08-14

    This presentation discloses a one-pot synthesis of a series of spiropyrroloquinoline isoindolinone and spiropyrroloquinoline aza-isoindolinone scaffolds. The reaction proceeds by the combination of a Ugi four-component reaction (4CR) and two intramolecular cyclizations under metal-free conditions. The proof of the structures relies on analytical investigation and X-ray crystallography.

  18. One-pot synthesis of multisubstituted 2-aminoquinolines from annulation of 1-aryl tetrazoles with internal alkynes via double C-H activation and denitrogenation.

    Science.gov (United States)

    Zhang, Lei; Zheng, Liyao; Guo, Biao; Hua, Ruimao

    2014-12-05

    An efficient, one-pot synthesis of multisubstituted 2-aminoquinolines from 1-aryl tetrazoles and internal alkynes has been developed. The reaction involves cyclization of 1-aryl tetrazoles with internal alkynes via rhodium(III)-catalyzed double C-H activation and copper(II)-mediated denitrogenation.

  19. One-pot Microwave-Assisted Synthesis of 1H-Phenanthro[9,10- d][1,2,3]triazole

    Directory of Open Access Journals (Sweden)

    Mehrak Faraji

    2008-09-01

    Full Text Available In this study, a fast and good yield one-pot microwave-assisted synthesis (45 seconds of 1H-phenanthro[9,10-d][1,2,3]triazole by a 1,3-dipolar cycloaddition reaction of sodium azide and 9-bromophenanthrene in the presence of potassium tert-butoxide in DMSO as solvent is reported.

  20. Synthesis of unnatural amino acids via microwave-assisted regio-selective one-pot multi-component reactions of sulfamidates

    Science.gov (United States)

    Synthesis of triazole-based unnatural amino acids, triazole bisaminoacids and β-amino triazole has been described via stereo and regioselective one-pot multi-component reaction of sulfamidates, sodium azide, and alkynes under MW irradiation conditions. The developed method is app...

  1. Room-temperature Pd-catalyzed C-H chlorination by weak coordination: one-pot synthesis of 2-chlorophenols with excellent regioselectivity.

    Science.gov (United States)

    Sun, Xiuyun; Sun, Yonghui; Zhang, Chao; Rao, Yu

    2014-02-07

    A room-temperature Pd(II)-catalyzed regioselective chlorination reaction has been developed for a facile one-pot synthesis of a broad range of 2-chlorophenols. The reaction demonstrates an excellent regioselectivity and reactivity for C-H chlorination. This reaction represents one of the rare examples of mild C-H functionalization at ambient temperature.

  2. Natrolite zeolite: A natural and reusable catalyst for one-pot synthesis of α-aminophosphonates under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Siavash Bahari

    2017-02-01

    Full Text Available α-Aminophosphonates are synthesized efficiently by one-pot reaction of aldehydes or ketones, amines, trialkyl phosphites in the presence of Natrolite zeolite as a natural catalyst under solvent-free conditions. Furthermore, the catalyst can be reused several times without any significant loss of catalytic activity.

  3. One-pot Synthesis of Benzimidazoles and Benzothiazoles in the Presence of Fe(HSO4)3 as a New and Efficient Oxidant

    International Nuclear Information System (INIS)

    Eshghi, Hossein; Rahimizadeh, Mohammad; Shiri, Ali; Sedaghat, Parisa

    2012-01-01

    A series of substituted benzimidazoles and benzothiazoles were prepared through the one-pot reaction of ο-phenylenediamine and ο-aminothiophenol with various aldehydes in the presence of ferric hydrogensulfate both in EtOH and water as solvent. The reactions proceed smoothly in excellent yield, high chemoselectivity and with an easy work-up

  4. One-Pot Synthesis of N-(α-Peroxy)Indole/Carbazole via Chemoselective Three-Component Condensation Reaction in Open Atmosphere

    KAUST Repository

    Wang, Xinbo; Pan, Yupeng; Huang, Kuo-Wei; Lai, Zhiping

    2015-01-01

    A facile one-pot synthesis of N-(α-peroxy)indole and N-(α-peroxy)carbazole has been developed using metal-free, organo-acid-catalyzed three-component condensation reactions of indole/carbazole, aldehyde, and peroxide. Based on the reaction

  5. Sequential one-pot synthesis of imidazoles and 2H-imidazolones from β-ketoamines, acylating agents and ammonium acetate

    Energy Technology Data Exchange (ETDEWEB)

    Jalani, Hitesh B.; Venkateswararao, Edda; Manickam, Manoj; Jung, Sang Hun [College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon (Korea, Republic of)

    2016-12-15

    An efficient, practical, straight forward, and transition metal-free three-component synthesis of diversely substituted imidazoles and 2H-imidazolones from β-ketoamines, acylating agents, and ammonium acetate has been described herein. This approach involves [3+1+1] cyclization through consecutive formation of three C–N bonds as a sequence of initial amidation of β-ketoamines with acylating agent, β-iminoketoamide formation with ammonia, and acid catalyzed concomitant cyclodehydration to afford the imidazoles and 2H-imidazolones. This methodology has advantages such as single flask operation, readily available starting materials, mild conditions, broad functional groups tolerance, and simple work-up procedure.

  6. One-pot synthesis of a Ni–Mn{sub 3}O{sub 4} nanocomposite for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Guo-rong, E-mail: grxu@hnust.edu.cn; Shi, Jin-jin; Dong, Wen-hao; Wen, Ya; Min, Xiang-ping; Tang, An-ping

    2015-05-05

    Highlights: • Ni–Mn{sub 3}O{sub 4} nanocomposites have been synthesized simply. • Mn{sub 3}O{sub 4} particles were deposited on surface of Ni particles with OH functional groups. • Ni–Mn{sub 3}O{sub 4} composites could be quickly conditioned to birnessite-type MnO{sub 2}. • A specific capacitance of 230 F g{sup −1} was obtained for Ni (17.3%)–Mn{sub 3}O{sub 4} nanocomposite. - Abstract: Ni–Mn{sub 3}O{sub 4} nanocomposite has been prepared successfully by chemical oxidation in an alkaline solution of Mn{sup 2+} on the surface of Ni nanoparticles with OH functional groups using one-pot method. The obtained Ni–Mn{sub 3}O{sub 4} nanocomposite was characterized using a scanning electron microscope (SEM), a transmission electron microscope (TEM), X-ray diffraction (XRD) analysis and various electrochemical techniques, such as cyclic voltammetry (CV), galvanostatic charge/discharge (GC/D) and electrochemical impedance spectroscopy (EIS). The average crystal sizes of Mn{sub 3}O{sub 4} were found to decrease linearly with increasing Ni content in the Ni–Mn{sub 3}O{sub 4} composite. The Ni–Mn{sub 3}O{sub 4} nanocomposite could be easily conditioned and inverted to birnessite-type MnO{sub 2}. A specific capacitance of 230 F g{sup −1} (based on pure Mn{sub 3}O{sub 4}) was obtained for the Ni (17.3%)–Mn{sub 3}O{sub 4} nanocomposite at a current rate of 0.25 A g{sup −1}, and 94% of the initial capacitance was retained after 1000 GC/D cycles at a current rate of 1 A g{sup −1}. It is concluded that the Ni–Mn{sub 3}O{sub 4} nanocomposite is a promising electrode materials for supercapacitors.

  7. Facile one-pot formulation of TRAIL-embedded paclitaxel-bound albumin nanoparticles for the treatment of pancreatic cancer.

    Science.gov (United States)

    Min, Sun Young; Byeon, Hyeong Jun; Lee, Changkyu; Seo, Jisoo; Lee, Eun Seong; Shin, Beom Soo; Choi, Han-Gon; Lee, Kang Choon; Youn, Yu Seok

    2015-10-15

    Nanoparticle albumin-bound (nab™) technology is an effective way of delivering hydrophobic chemotherapeutics. We developed a one-pot/one-step formulation of paclitaxel (PTX)-bound albumin nanoparticles with embedded tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/PTX HSA-NP) for the treatment of pancreatic cancer. TRAIL/PTX HSA-NPs were fabricated using a high-pressure homogenizer at a TRAIL feeding ratio of 0.2%, 1.0%, and 2.0%. TRAIL/PTX HSA-NPs were spherical and became larger in size (170-230 nm) with increasing TRAIL amount (0.2-2.0%). The loading efficiencies of PTX were in the range of ∼86.4% and significantly low at 2.0% TRAIL (60.4%). Specifically, the inhibitory concentrations (IC50) of TRAIL (1.0 or 2.0%)/PTX HSA-NPs were >20-fold lower than that of plain PTX-HSA NP (0.032±0.06, 0.022±0.005, and 0.96±0.15 ng/ml, respectively) in pancreatic Mia Paca-2 cells. Considering TRAIL loading, bioactivity, and particle size, TRAIL(1.0%)/PTX HSA-NPs were determined as the optimal candidate for further studies. TRAIL(1.0%)/PTX HSA-NPs displayed substantially greater apoptotic activity than plain PTX HSA-NP in both FACS and TUNEL analysis. The loaded PTX and TRAIL were gradually released from the TRAIL(1.0%)/PTX HSA-NPs until ∼24 h, which is considered to be a sufficient time for delivery to the tumor tissue. TRAIL(1.0%)/PTX HSA-NP displayed markedly more antitumor efficacy than plain PTX HSA-NP in Mia Paca-2 cell-xenografted mice in terms of tumor volume (size) and weight (213.9 mm(3) and 0.18 g vs. 1126.8 mm(3) and 0.80 g, respectively). These improved in vitro and in vivo performances were due to the combined synergistic effects of PTX and TRAIL. We believe that this TRAIL/PTX HSA-NP would have potential as a novel apoptosis-based anticancer agent. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. In situ one-pot preparation of superparamagnetic hydrophilic porous microspheres for covalently immobilizing penicillin G acylase to synthesize amoxicillin

    Science.gov (United States)

    Xue, Ping; Gu, Yaohua; Su, Weiguang; Shuai, Huihui; Wang, Julan

    2016-01-01

    Magnetic hydrophilic porous microspheres were successfully one-pot synthesized for the first time via in situ inverse suspension polymerization of glycidyl methacrylate, N,N‧-methylene bisacrylamide and 2-hydroxyethyl methacrylate in the presence of Fe3+ and Fe2+ dispersed in formamide, which were denoted as magnetic Fe3O4-GMH microspheres. The morphology and properties of magnetic Fe3O4-GMH microspheres were characterized by SEM, VSM, XRD, FTIR, and so on. The formamide content had an important influence on the morphology of Fe3O4-GMH, and nearly perfectly spherical Fe3O4-GMH particles were formed when the amount of formamide was 15 ml. The diameters of the microspheres were in the range of 100-200 μm and Fe3O4-GMH exhibited superparamagnetic behavior with the saturation magnetization of 5.44 emu/g. The specific surface area of microspheres was 138.7 m2/g, the average pore diameter and pore volume were 15.1 nm and 0.60 cm3/g, respectively. The content of oxirane groups on Fe3O4-GMH was 0.40 mmol/g. After penicillin G acylase (PGA) was covalently immobilized on Fe3O4-GMH microspheres, the catalytic performance for amoxicillin synthesis by 6-aminopenicillanic acid and D-hydroxyphenylglycine methyl ester was largely improved. As a result, 90.1% amoxicillin yield and 1.18 of the synthesis/hydrolysis (S/H) ratio were achieved on PGA/Fe3O4-GMH with ethylene glycol as solvent, but only 62.6% amoxicillin yield and 0.37 of the S/H ratio were obtained on free PGA under the same reaction conditions. Furthermore, the amoxicillin yield and S/H ratio were still kept at 88.2% and 1.06, respectively after the immobilized PGA was magnetically separated and recycled for 10 times, indicating that PGA/Fe3O4-GMH had a very good reusability.

  9. B(C6F5)3 catalyzed one-pot three-component Biginelli reaction: An ...

    Indian Academy of Sciences (India)

    highlights of the present protocol is low catalyst loading, low toxicity, compatibility with acid-labile-protecting groups, short ... potent orally active antihypertensive agents.4c,d More- ... applications in drug industries.4g,h The expansion of.

  10. A facile one-pot hydrothermal method to prepare europium-doped titania hollow phosphors and their sensitized luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Feng Xuan; Yang Ling; Zhang Nianchun [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Western Huangpu Road, Guangzhou 510632 (China); Liu Yingliang, E-mail: tliuyl@jnu.edu.c [Department of Chemistry and Institute of Nanochemistry, Jinan University, 601 Western Huangpu Road, Guangzhou 510632 (China)

    2010-09-17

    Research highlights: {yields} The strongest emission intensity was observed with TiO{sub 2}:Eu{sub 0.2} hollow spheres and TiO{sub 2}:Eu{sub 0.2} hollow spheres calcining at 550 {sup o}C. Moreover, the strongest excitation of TiO{sub 2}:Eu{sub 0.2} hollow spheres transferred from 400 to 500 {sup o}C and the effective nonradiative energy transfer from the TiO{sub 2} hollow spheres host matrix to Eu{sup 3+} ions crystal field states was realized due to changes of crystalline field in the environment around Eu{sup 3+} ions occupying Ti{sup 4+} sites. The proposed energy transfer mechanism was that UV light is absorbed in the band of TiO{sub 2} hollow spheres crystal and then the energy is relaxed to the defect states of TiO{sub 2} host. The energy can transfer to the crystal states of Eu{sup 3+} ions ({sup 7}F{sub j}, j = 0, 1, 2, 3 and 4), which results in efficient photoluminescence. The fluorescent intensity of TiO{sub 2}:Eu{sub 0.2} hollow spheres was 2.2 times as strong as that of TiO{sub 2}:Eu{sub 0.2} bulk material. - Abstract: Monodisperse europium-activated titania hollow phosphors had been synthesized by a facile one-pot hydrothermal method using carbon spheres as hard templates. Samples were characterized by X-ray powder diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, energy dispersive spectrometer and photoluminescence spectrum. The strongest emission intensity was observed with TiO{sub 2}:Eu{sub 0.2} hollow spheres and TiO{sub 2}:Eu{sub 0.2} hollow spheres calcining at 550 {sup o}C. Moreover, the strongest excitation of TiO{sub 2}:Eu{sub 0.2} hollow spheres transferred from 400 to 500 {sup o}C and the effective nonradiative energy transfer from the TiO{sub 2} hollow spheres host matrix to Eu{sup 3+} ions crystal field states was realized due to changes of crystalline field in the environment around Eu{sup 3+} ions occupying Ti{sup 4+} sites. The proposed energy transfer mechanism was that UV light is absorbed in the band

  11. Sequential psychological and pharmacological therapies for comorbid and primary insomnia: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Morin, Charles M; Edinger, Jack D; Krystal, Andrew D; Buysse, Daniel J; Beaulieu-Bonneau, Simon; Ivers, Hans

    2016-03-03

    Chronic insomnia is a prevalent disorder associated with significant psychosocial, health, and economic impacts. Cognitive behavioral therapies (CBTs) and benzodiazepine receptor agonist (BzRA) medications are the most widely supported therapeutic approaches for insomnia management. However, few investigations have directly compared their relative and combined benefits, and even fewer have tested the benefits of sequential treatment for those who do not respond to initial insomnia therapy. Moreover, insomnia treatment studies have been limited by small, highly screened study samples, fixed-dose, and fixed-agent pharmacotherapy strategies that do not represent usual clinical practices. This study will address these limitations. This is a two-site randomized controlled trial, which will enroll 224 adults who meet the criteria for a chronic insomnia disorder with or without comorbid psychiatric disorders. Prospective participants will complete clinical assessments and polysomnography and then will be randomly assigned to first-stage therapy involving either behavioral therapy (BT) or zolpidem. Treatment outcomes will be assessed after 6 weeks, and treatment remitters will be followed for the next 12 months on maintenance therapy. Those not achieving remission will be offered randomization to a second, 6-week treatment, again involving either pharmacotherapy (zolpidem or trazodone) or psychological therapy (BT or cognitive therapy (CT)). All participants will be re-evaluated 12 weeks after the protocol initiation and at 3-, 6-, 9-, and 12-month follow-ups. Insomnia remission, defined categorically as a score Insomnia Severity Index, a patient-reported outcome, will serve as the primary endpoint for treatment comparisons. Secondary outcomes will include sleep parameters derived from daily sleep diaries and from polysomnography, subjective measures of fatigue, mood, quality of life, and functional impairments; and measures of adverse events; dropout rates; and treatment

  12. Selective One-Pot Production of High-Grade Diesel-Range Alkanes from Furfural and 2-Methylfuran over Pd/NbOPO4.

    Science.gov (United States)

    Xia, Qineng; Xia, Yinjiang; Xi, Jinxu; Liu, Xiaohui; Zhang, Yongguang; Guo, Yong; Wang, Yanqin

    2017-02-22

    A one-pot method for the selective production of high-grade diesel-range alkanes from biomass-derived furfural and 2-methylfuran (2-MF) was developed by combining the hydroxyalkylation/alkylation (HAA) condensation of furfural with 2-MF and the subsequent hydrodeoxygenation (HDO) over a multifunctional Pd/NbOPO 4 catalyst. The effects of various reaction conditions as well as a variety of solid-acid catalysts and metal-loaded NbOPO 4 catalysts were systematically investigated to optimize the reaction conditions for both reactions. Under the optimal reaction conditions up to 89.1 % total yield of diesel-range alkanes was obtained from furfural and 2-MF by this one-pot method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Iodine-catalyzed Csp3-H functionalization of methylhetarenes: One-pot synthesis and cytotoxic evaluation of heteroarenyl-benzimidazoles and benzothiazole.

    Science.gov (United States)

    Baig, Mirza Feroz; Shaik, Siddiq Pasha; Nayak, V Lakshma; Alarifi, Abdullah; Kamal, Ahmed

    2017-09-01

    An efficient one-pot synthetic procedure has been developed for the preparation of heteroarenyl-benzimidazoles via oxidative C sp3 -H functionalization with o-phenylenediamine using I 2 -DMSO in open air from easily available starting materials. Based on a logical plan a spectrum of multi fundamental reactions like iodination, Kornblum oxidation and amination were brought into one-pot. By using this simple method a library of heteroarenyl-benzimidazoles derivatives (3a-t and 5a-g) and heteroarenyl-benzothiazole (3u) have been synthesized in good to excellent yield and screened for their cytotoxicity against a group of four human cancer cell lines. Among them 3h, 3q and 5b showed significant cytotoxic activities with an IC 50 of 1.69, 1.62 and 2.81µM respectively against lung cancer (A549) cell line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. One-pot synthesis of well-defined polyether/polyester block copolymers and terpolymers by a highly efficient catalyst switch approach

    KAUST Repository

    Alamri, Haleema

    2016-04-20

    A highly efficient methodology, based on a novel catalyst switch approach with rapid crossover characteristics, was developed for the one-pot synthesis of block co/terpolymers of cyclic ethers and esters. This new approach, which takes advantage of one of the best catalysts for epoxide (t-BuP4) and cyclic ester (t-BuP2) polymerization, opens new horizons toward the synthesis of cyclic ether/ester complex macromolecular architectures. © The Royal Society of Chemistry 2016.

  15. Protecting-group-free synthesis of taiwaniaquinone H using a one-pot thermal ring expansion/4π-electrocyclization strategy.

    Science.gov (United States)

    Yan, Xiuxiang; Hu, Xiangdong

    2014-06-06

    A strategy to the 6-5-6 tricyclic scaffold of taiwaniaquinoids was established on the basis of a one-pot thermal ring expansion/4π-electrocyclization process. The efficiency of this methodology has been demonstrated through its application in the total synthesis of taiwaniaquinone H, which has been accomplished in three steps and 14% overall yield in a protecting-group-free manner starting from commercially available materials.

  16. One-pot synthesis of well-defined polyether/polyester block copolymers and terpolymers by a highly efficient catalyst switch approach

    KAUST Repository

    Alamri, Haleema; Hadjichristidis, Nikolaos

    2016-01-01

    A highly efficient methodology, based on a novel catalyst switch approach with rapid crossover characteristics, was developed for the one-pot synthesis of block co/terpolymers of cyclic ethers and esters. This new approach, which takes advantage of one of the best catalysts for epoxide (t-BuP4) and cyclic ester (t-BuP2) polymerization, opens new horizons toward the synthesis of cyclic ether/ester complex macromolecular architectures. © The Royal Society of Chemistry 2016.

  17. One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging.

    Science.gov (United States)

    Hussain, Sahid; Won, Nayoun; Nam, Jutaek; Bang, Jiwon; Chung, Hyokyun; Kim, Sungjee

    2009-07-13

    True colors: High-quality InP and InP/ZnS quantum dots (QDs) are obtained by means of a simple one-pot method in the presence of polyethylene glycol (PEG). Rapid and size-controlled reactions lead to highly crystalline and nearly monodisperse QDs at relatively low temperatures. The particles emit from cyan blue to far-red, and are successfully used in cellular imaging (see figure).

  18. One-pot synthesis of Pd-Pt@Pd core-shell nanocrystals with enhanced electrocatalytic activity for formic acid oxidation

    KAUST Repository

    Yuan, Qiang

    2014-01-01

    Well-defined Pd-Pt@Pd core-shell nanocrystals with a Pd-Pt alloy core and a conformal Pd shell of ~2-3 nm were directly synthesized through a one-pot, aqueous solution approach without any preformed Pd or Pt seeds. These Pd-Pt@Pd core-shell nanocrystals show an enhanced electrocatalytic activity for formic acid oxidation compared with commercial Pd black. This journal is © 2014 The Royal Society of Chemistry.

  19. Application of sulfonic acid functionalized nanoporous silica (SBA-Pr-SO3H in the green one-pot synthesis of triazoloquinazolinones and benzimidazoquinazolinones

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammadi Ziarani

    2015-01-01

    Full Text Available Sulfonic acid functionalized SBA-15 (SBA-Pr-SO3H with a pore size of 6 nm was proven to be an efficient heterogeneous nanoporous solid acid catalyst in the green one-pot synthesis of triazoloquinazolinones and benzimidazoquinazolinones from the reaction of aromatic aldehydes with 3-amino-1,2,4-triazole (or 2-aminobenzimidazole and dimedone under solvent free conditions.

  20. A concise synthesis of benzimidazoles via the microwave-assisted one-pot batch reaction of amino acids up to a 10-g scale.

    Science.gov (United States)

    Peng, Pai; Xiong, Jin-Feng; Mo, Guang-Zhen; Zheng, Jia-Li; Chen, Ren-Hong; Chen, Xiao-Yun; Wang, Zhao-Yang

    2014-10-01

    An efficient method for the synthesis of aminomethyl benzimidazoles is developed by using a one-pot batch reaction between amino acids and o-phenylenediamines. This reaction proceeds smoothly in an unmodified household microwave oven, even though scale-up is to 10 g. A desirable method for the quick synthesis of benzimidazoles, which are used as a kind of important intermediates in drug synthesis, is provided by the scale-up utilization of amino acid resource.

  1. One-pot, two-step synthesis of imidazo[1,2-a]benzimidazoles via a multicomponent [4 + 1] cycloaddition reaction.

    Science.gov (United States)

    Hsiao, Ya-Shan; Narhe, Bharat D; Chang, Ying-Sheng; Sun, Chung-Ming

    2013-10-14

    A one-pot, two-step synthesis of imidazo[1,2-a]benzimidazoles has been achieved by a three-component reaction of 2-aminobenzimidazoles with an aromatic aldehyde and an isocyanide. The reaction involving condensation of 2-aminobenzimidazole with an aldehyde is run under microwave activation to generate an imine intermediate under basic conditions which then undergoes [4 + 1] cycloaddition with an isocyanide.

  2. Simple one-pot synthesis of platinum-palladium nanoflowers with enhanced catalytic activity and methanol-tolerance for oxygen reduction in acid media

    International Nuclear Information System (INIS)

    Zheng, Jie-Ning; He, Li-Li; Chen, Fang-Yi; Wang, Ai-Jun; Xue, Meng-Wei; Feng, Jiu-Ju

    2014-01-01

    Graphical abstract: PtPd nanoflowers were fabricated by one-pot solvothermal co-reduction method in oleylamine system, which exhibited the improved electrocatalytic activity and higher methanol tolerance for oxygen reduction, compared with commercial Pt and Pd black catalysts. - Highlights: • Bimetallic alloyed PtPd nanoflowers are prepared by a simple one-pot solvothermal co-reduction method. • PtPd nanoflowers display high catalytic performance for ORR dominated by a four-electron pathway. • PtPd nanoflowers show good methanol tolerance for ORR. - Abstract: In this work, bimetallic alloyed platinum-palladium (PtPd) nanoflowers are fabricated by one-pot solvothermal co-reduction of Pt (II) acetylacetonate and Pd (II) acetylacetonate in oleylamine system. The as-prepared nanostructures show the enhanced electrocatalytic activity for oxygen reduction reaction (ORR), dominated by a four-electron pathway based on the Koutecky-Levich plots, mainly owing to the inhibition of the formation of Pt–OH ad via the downshift of d-band center for Pt. Meanwhile, PtPd nanoflowers display good methanol tolerance and improved stability for ORR. The chronoamperometry test reveals that the current of PtPd nanoflowers remains 45.9% of its original value within 6000 s, much higher than those of commercial Pt (36.7%) and Pd (32.2%) black catalysts. Therefore, PtPd nanoflowers with unique interconnected structures can be used as a promising cathode catalyst in direct methanol fuel cells

  3. One-pot synthesis of stable colloidal solutions of MFe{sub 2}O{sub 4} nanoparticles using oleylamine as solvent and stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Mirabet, Leonardo [Departament de Química, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain); Solano, Eduardo, E-mail: eduardo.solano@uab.cat [Departament de Química, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain); Martínez-Julián, Fernando; Guzmán, Roger [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain); Arbiol, Jordi [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), 08019 Barcelona (Spain); Puig, Teresa; Obradors, Xavier; Pomar, Alberto [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain); Yáñez, Ramón; Ros, Josep [Departament de Química, Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Bellaterra (Spain); Ricart, Susagna [Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra (Spain)

    2013-03-15

    Highlights: ► One-pot synthesis of ferrite magnetic nanoparticles (<10 nm) in non-polar media. ► Nanoparticles present high monocrystal quality and monodispersion. ► Superparamagnetic behavior at room temperature. ► Nanoparticles transfer to polar media via ligand exchange. - Abstract: An easy, efficient, reproducible and scalable one-pot synthetic methodology to obtain magnetic spinel ferrite nanoparticles has been developed. This approach is based on one-pot thermal decomposition of Fe(acac){sub 3} and M(acac){sub 2} (M = Co, Mn, Cu and Zn) in oleylamine, which also acts as a capping ligand, by producing stable colloidal dispersions of nanoparticles in non-polar solvents. The properties of the nanoparticles have been studied via different techniques, such as transmission electron microscopy, which shows that nanoparticles are monocrystallines and a narrow dispersion in size; magnetic analyses have demonstrated that the resulting ferrite nanoparticles show high saturation values and superparamagnetic behavior at room temperature; X-ray diffraction has also been performed, and it confirms that the synthesized nanoparticles have a spinel structure. Complementarily, ligand exchange has been also carried out in order to produce dispersions of the synthesized nanoparticles in polar media.

  4. Dynamic mechanistic modeling of the multienzymatic one-pot reduction of dehydrocholic acid to 12-keto ursodeoxycholic acid with competing substrates and cofactors.

    Science.gov (United States)

    Sun, Boqiao; Hartl, Florian; Castiglione, Kathrin; Weuster-Botz, Dirk

    2015-01-01

    Ursodeoxycholic acid (UDCA) is a bile acid which is used as pharmaceutical for the treatment of several diseases, such as cholesterol gallstones, primary sclerosing cholangitis or primary biliary cirrhosis. A potential chemoenzymatic synthesis route of UDCA comprises the two-step reduction of dehydrocholic acid to 12-keto-ursodeoxycholic acid (12-keto-UDCA), which can be conducted in a multienzymatic one-pot process using 3α-hydroxysteroid dehydrogenase (3α-HSDH), 7β-hydroxysteroid dehydrogenase (7β-HSDH), and glucose dehydrogenase (GDH) with glucose as cosubstrate for the regeneration of cofactor. Here, we present a dynamic mechanistic model of this one-pot reduction which involves three enzymes, four different bile acids, and two different cofactors, each with different oxidation states. In addition, every enzyme faces two competing substrates, whereas each bile acid and cofactor is formed or converted by two different enzymes. First, the kinetic mechanisms of both HSDH were identified to follow an ordered bi-bi mechanism with EBQ-type uncompetitive substrate inhibition. Rate equations were then derived for this mechanism and for mechanisms describing competing substrates. After the estimation of the model parameters of each enzyme independently by progress curve analyses, the full process model of a simple batch-process was established by coupling rate equations and mass balances. Validation experiments of the one-pot multienzymatic batch process revealed high prediction accuracy of the process model and a model analysis offered important insight to the identification of optimum reaction conditions. © 2015 American Institute of Chemical Engineers.

  5. A novel one-pot process for near-net-shape fabrication of open-porous resorbable hydroxyapatite/protein composites and in vivo assessment

    International Nuclear Information System (INIS)

    Mueller, Berit; Koch, Dietmar; Lutz, Rainer; Schlegel, Karl A.; Treccani, Laura; Rezwan, Kurosch

    2014-01-01

    We present a mild one-pot freeze gelation process for fabricating near-net, complex-shaped hydroxyapatite scaffolds and to directly incorporate active proteins during scaffold processing. In particular, the direct protein incorporation enables a simultaneous adjustment and control of scaffold microstructure, porosity, resorbability and enhancement of initial mechanical and handling stability. Two proteins, serum albumin and lysozyme, are selected and their effect on scaffold stability and microstructure investigated by biaxial strength tests, electron microscopy, and mercury intrusion porosimetry. The resulting hydroxyapatite/protein composites feature adjustable porosities from 50% to 70% and a mechanical strength ranging from 2 to 6 MPa comparable to that of human spongiosa without any sintering step. Scaffold degradation behaviour and protein release are assessed by in vitro studies. A preliminary in vivo assessment of scaffold biocompatibility and resorption behaviour in adult domestic pigs is discussed. After implantation, composites were resorbed up to 50% after only 4 weeks and up to 65% after 8 weeks. In addition, 14% new bone formation after 4 weeks and 37% after 8 weeks were detected. All these investigations demonstrate the outstanding suitability of the one-pot-process to create, in a customisable and reliable way, biocompatible scaffolds with sufficient mechanical strength for handling and surgical insertion, and for potential use as biodegradable bone substitutes and versatile platform for local drug delivery. - Highlights: • We present a one-pot process for directly incorporating protein into HAp scaffolds. • The effect of two model proteins, BSA and LSZ, on scaffold properties is analysed. • HAp/protein scaffolds feature a mechanical strength comparable to human spongiosa. • BSA incorporation in scaffolds leads to strength increase despite porosity increment. • New bone formation in-vivo exceeds established xenograft bone substitutes

  6. One-pot, green, rapid synthesis of flowerlike gold nanoparticles/reduced graphene oxide composite with regenerated silk fibroin as efficient oxygen reduction electrocatalysts.

    Science.gov (United States)

    Xu, Shengjie; Yong, Liu; Wu, Peiyi

    2013-02-01

    Flowerlike gold nanoparticles (Au NPs)/reduced graphene oxide (RGO) composites were fabricated by a facile, one-pot, environmentally friendly method in the presence of regenerated silk fibroin (RSF). The influences of reaction time, temperature, and HAuCl(4): RGO ratio on the morphology of Au NPs loaded on RGO sheets were discussed and a tentative mechanism for the formation of flowerlike Au NPs/RGO composite was proposed. In addition, the flowerlike Au NPs/RGO composite showed superior catalytic performance for oxygen reduction reaction (ORR) to Au/RGO composites with other morphologies. Our work provides an alternative facile and green approach to synthesize functional metal/RGO composites.

  7. An efficient synthesis of β-amino ketone compounds through one-pot three-component Mannich-type reactions using bismuth nitrate as catalyst

    Directory of Open Access Journals (Sweden)

    S. Sheik Mansoor

    2015-07-01

    Full Text Available Three components one-pot Mannich reaction of aromatic ketone, aromatic aldehyde and aromatic amines has been efficiently catalyzed by recyclable bismuth nitrate (Bi(NO33, BN at ambient temperature to give various β-amino carbonyl compounds in high yields. This method has advantages of mild condition, no environmental pollution, and simple work-up procedures. Most importantly, β-amino carbonyl compounds with ortho-substituted aromatic amines are obtained in acceptable to moderate yields by this methodology.

  8. Xylitol production from waste xylose mother liquor containing miscellaneous sugars and inhibitors: one-pot biotransformation by Candida tropicalis and recombinant Bacillus subtilis.

    Science.gov (United States)

    Wang, Hengwei; Li, Lijuan; Zhang, Lebin; An, Jin; Cheng, Hairong; Deng, Zixin

    2016-05-16

    The process of industrial xylitol production is a massive source of organic pollutants, such as waste xylose mother liquor (WXML), a viscous reddish-brown liquid. Currently, WXML is difficult to reuse due to its miscellaneous low-cost sugars, high content of inhibitors and complex composition. WXML, as an organic pollutant of hemicellulosic hydrolysates, accumulates and has become an issue of industrial concern in China. Previous studies have focused only on the catalysis of xylose in the hydrolysates into xylitol using one strain, without considering the removal of other miscellaneous sugars, thus creating an obstacle to subsequent large-scale purification. In the present study, we aimed to develop a simple one-pot biotransformation to produce high-purity xylitol from WXML to improve its economic value. In the present study, we developed a procedure to produce xylitol from WXML, which combines detoxification, biotransformation and removal of by-product sugars (purification) in one bioreactor using two complementary strains, Candida tropicalis X828 and Bacillus subtilis Bs12. At the first stage of micro-aerobic biotransformation, the yeast cells were allowed to grow and metabolized glucose and the inhibitors furfural and hydroxymethyl furfural (HMF), and converted xylose into xylitol. At the second stage of aerobic biotransformation, B. subtilis Bs12 was activated and depleted the by-product sugars. The one-pot process was successfully scaled up from shake flasks to 5, 150 L and 30 m(3) bioreactors. Approximately 95 g/L of pure xylitol could be obtained from the medium containing 400 g/L of WXML at a yield of 0.75 g/g xylose consumed, and the by-product sugars glucose, L-arabinose and galactose were depleted simultaneously. Our results demonstrate that the one-pot procedure is a viable option for the industrial application of WXML to produce value-added chemicals. The integration of complementary strains in the biotransformation of hemicellulosic hydrolysates is

  9. One-pot synthesis of 4′-alkyl-4-cyanobiaryls on the basis of the terephthalonitrile dianion and neutral aromatic nitrile cross-coupling

    Directory of Open Access Journals (Sweden)

    Roman Yu. Peshkov

    2016-07-01

    Full Text Available A convenient one-pot approach to alkylcyanobiaryls is described. The method is based on biaryl cross-coupling between the sodium salt of the terephthalonitrile dianion and a neutral aromatic nitrile in liquid ammonia, and successive alkylation of the long-lived anionic intermediate with alkyl bromides. The reaction is compatible with benzonitriles that contain methyl, methoxy and phenyl groups, fluorine atoms, and a 1-cyanonaphthalene residue. The variety of ω-substituted alkyl bromides, including an extra bromine atom, a double bond, cyano and ester groups, as well as a 1,3-dioxane fragment are suitable as alkylation reagents.

  10. Synthesis of 3-substituted 4-piperidinones via a one-pot tandem oxidation-cyclization-oxidation process: stereodivergent reduction to 3,4-disubstituted piperidines.

    Science.gov (United States)

    Bahia, Perdip S; Snaith, John S

    2004-04-30

    A novel approach to 3-substituted 4-piperidinones is described. The one-pot tandem oxidation-cyclization-oxidation of unsaturated alcohols 1a-e by PCC or PCC and trifluoromethanesulfonic acid affords piperidinones 2a-e in good yield. Reduction of 2a-e by L-Selectride gives the corresponding cis 3,4-disubstituted piperidines with diastereomeric ratios of >99:1. By contrast, reduction of 2a-e by Al-isopropoxydiisobutylalane gives the trans products with diastereomeric ratios of up to 99:1.

  11. One-Pot Click Access to a Cyclodextrin Dimer-Based Novel Aggregation Induced Emission Sensor and Monomer-Based Chiral Stationary Phase

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    2016-11-01

    Full Text Available A ‘two birds, one stone’ strategy was developed via a one-pot click reaction to simultaneously prepare a novel cyclodextrin (CD dimer based aggregation induced emission (AIE sensor (AIE-DCD and a monomer based chiral stationary phase (CSP-MCD for chiral high performance liquid chromatography (CHPLC. AIE-DCD was found to afford satisfactory AIE response for specific detection of Zn2+ with a detection limit of 50 nM. CSP-MCD exhibits excellent enantioseparation ability toward dansyl amino acids, where the resolution of dansyl amino leucine reaches 5.43.

  12. A Highly Stereocontrolled, One-Pot Approach toward Pyrrolobenzoxazinones and Pyrroloquinazolinones through a Lewis Acid-Catalyzed [3 + 2]-Cycloannulation Process.

    Science.gov (United States)

    Boomhoff, Michael; Ukis, Rostyslav; Schneider, Christoph

    2015-08-21

    We report herein a stereocontrolled [3 + 2]-cycloheteroannulation of bis-silyl dienediolate 1 with 2-aminobenzoic acid- and 2-aminobenzamide-derived imines to furnish highly substituted pyrrolo[1,2-a]benzoxazinones 3 and pyrrolo[1,2-a]quinazolinones 4, respectively, in good overall yields. This one-pot process rapidly generates molecular complexity and comprises a Lewis acid-catalyzed, vinylogous Mannich reaction of 1 followed by an intramolecular N,O-acetal- and N,N-aminal formation, respectively, which proceeds with good to excellent stereocontrol.

  13. One-pot nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles on self-assembled rosette nanotubes.

    Science.gov (United States)

    Chhabra, Rahul; Moralez, Jesus G; Raez, Jose; Yamazaki, Takeshi; Cho, Jae-Young; Myles, Andrew J; Kovalenko, Andriy; Fenniri, Hicham

    2010-01-13

    A one-pot strategy for the nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles (NPs) on self-assembled rosette nanotubes (RNTs) is described. Tapping-mode atomic force microscopy, transmission electron microscopy, energy-dispersive X-ray analysis, and selected-area electron diffraction were used to establish the structure and organization of this hybrid material. Notably, we found that the Au NPs formed were nearly monodisperse clusters of Au(55) (1.4-1.5 nm) nestled in pockets on the RNT surface.

  14. One-Pot Synthesis of Cu2ZnSnSe4 Nanoplates and their Visible-Light-Driven Photocatalytic Activity

    Science.gov (United States)

    Han, Zhenzhen; Li, Nan; Shi, Aihua; Wang, Haohua; Ma, Feng; Lv, Yi; Wu, Rongqian

    2018-01-01

    A SeO2 ethanol solution as the facile precursor has been used for the preparation of quaternary Cu2ZnSnSe4 (CZTSe) nanoplates. Monodispersed single-phase CZTSe nanoplates have been prepared successfully by a facile one-pot thermal chemical method. The as-prepared CZTSe nanoplates show uniform morphology with a bandgap of 1.4 eV. As a proof of concept, the CZTSe nanoplates have been used as a visible-light-driven photocatalyst for Rhodamine B dye degradation and show high photocatalytic activity and stability. The excellent dye removal is mainly ascribed to the efficient light utilization of CZTSe nanoplates.

  15. One-pot synthesis of 2,5-dihydropyrroles from terminal alkynes, azides, and propargylic alcohols by relay actions of copper, rhodium, and gold.

    Science.gov (United States)

    Miura, Tomoya; Tanaka, Takamasa; Matsumoto, Kohei; Murakami, Masahiro

    2014-12-01

    Relay actions of copper, rhodium, and gold formulate a one-pot multistep pathway, which directly gives 2,5-dihydropyrroles starting from terminal alkynes, sulfonyl azides, and propargylic alcohols. Initially, copper-catalyzed 1,3-dipolar cycloaddition of terminal alkynes with sulfonyl azides affords 1-sulfonyl-1,2,3-triazoles, which then react with propargylic alcohols under the catalysis of rhodium. The resulting alkenyl propargyl ethers subsequently undergo the thermal Claisen rearrangement to give α-allenyl-α-amino ketones. Finally, a gold catalyst prompts 5-endo cyclization to produce 2,5-dihydropyrroles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. An efficient one-pot three-component synthesis of α-amino nitriles via Strecker reaction catalysed by bismuth(III nitrate

    Directory of Open Access Journals (Sweden)

    S. Sheik Mansoor

    2016-09-01

    Full Text Available A convenient and efficient one-pot method for the synthesis of a variety of α-amino nitriles from aldehydes, amines and trimethylsilyl cyanide (TMSCN in the presence of a catalytic amount of Bi(NO33 at room temperature in acetonitrile (MeCN is described. The significant features of this method are simple work-up procedure, inexpensive and non-toxic catalyst, shorter reaction times and excellent product yields. The catalyst Bi(NO33 can be reused. The reusability of the catalyst has been studied for the synthesis of various amino nitriles.

  17. One-Pot Conversion of Epoxidized Soybean Oil (ESO into Soy-Based Polyurethanes by MoCl2O2 Catalysis

    Directory of Open Access Journals (Sweden)

    Vincenzo Pantone

    2017-02-01

    Full Text Available An innovative and eco-friendly one-pot synthesis of bio-based polyurethanes is proposed via the epoxy-ring opening of epoxidized soybean oil (ESO with methanol, followed by the reaction of methoxy bio-polyols intermediates with 2,6-tolyl-diisocyanate (TDI. Both synthetic steps, methanolysis and polyurethane linkage formation, are promoted by a unique catalyst, molybdenum(VI dichloride dioxide (MoCl2O2, which makes this procedure an efficient, cost-effective, and environmentally safer method amenable to industrial scale-up.

  18. A Simple, Rapid and Mild One Pot Synthesis of Benzene Ring Acylated and Demethylated Analogues of Harmine under Solvent-free Conditions

    Directory of Open Access Journals (Sweden)

    Bina S. Siddiqui

    2008-08-01

    Full Text Available A simple, rapid, solvent-free, room temperature one pot synthesis of benzene ring acylated and demethylated analogues of harmine using acyl halides/acid anhydrides and AlCl3 has been developed. Eight different acyl halides/acid anhydrides were used in the synthesis. The resulting mixture of products was separated by column chromatography to afford 10- and 12-monoacyl analogues, along with 10,12-diacyl-11-hydroxy products. In five cases the corresponding 10-acyl-11-hydroxy analogues were also obtained. Yields from the eight syntheses (29 products in total were in the 6-34% range and all compounds were fully characterized.

  19. Size-controlled one-pot synthesis of fluorescent cadmium sulfide semiconductor nanoparticles in an apoferritin cavity

    International Nuclear Information System (INIS)

    Iwahori, K; Yamashita, I

    2008-01-01

    A simple size-controlled synthesis of cadmium sulfide (CdS) nanoparticle (NP) cores in the cavity of apoferritin from horse spleen (HsAFr) was performed by a slow chemical reaction synthesis and a two-step synthesis protocol. We found that the CdS NP core synthesis was slow and that premature CdS NP cores were formed in the apoferritin cavity when the concentration of ammonia water was low. It was proven that the control of the ammonia water concentration can govern the CdS NP core synthesis and successfully produce size-controlled CdS NP cores with diameters from 4.7 to 7.1 nm with narrow size dispersion. X-ray powder diffraction (XRD), energy dispersive spectroscopy (EDS) analysis and high-resolution transmission electron microscopy (HR-TEM) observation characterized the CdS NP cores obtained as cubic polycrystalline NPs, which showed photoluminescence with red shifts depending on their diameters. From the research of CdS NP core synthesis in the recombinant apoferritins, the zeta potential of apoferritin is important for the biomineralization of CdS NP cores in the apoferritin cavity. These synthesized CdS NPs with different photoluminescence properties will be applicable in a wide variety of nano-applications.

  20. Synthesis of Functional Block Copolymers Carrying One Poly( p -phenylenevinylene) and One Nonconjugated Block in a Facile One-Pot Procedure

    KAUST Repository

    Menk, Florian

    2016-02-29

    Block copolymers composed of a MEH-PPV block and a nonconjugated functional block (molecular weights between 5 and 90 kg/mol) were synthesized in a facile one-pot procedure via ROMP. This one-pot procedure permits the synthesis of numerous block copolymers with little effort. Amphiphilic block copolymers were obtained via incorporation of oxanorbornene carrying a PEG side chain as well as via postpolymerization modification of a reactive ester carrying norbornene derivative with methoxypoly(ethylene glycol)amine. These amphiphilic block copolymers can be self-assembled into micelles exhibiting different sizes (60-95 nm), morphologies (micelles or fused, caterpillar-like micelles), and optical properties depending on the polymer composition and the micellization procedure. Furthermore, the reactive ester carrying block copolymers enabled the introduction of anchor groups which facilitated the preparation of nanocomposites with CdSe/CdZnS core-shell QDs. The obtained composites were studied using time-resolved photoluminescence measurements. The results revealed an increased interaction based on an accelerated decay of the QD emission for composites as compared to the mixture of the QDs with unfunctionalized polymers. © 2016 American Chemical Society.

  1. One-pot synthesis of hollow structured upconversion luminescent β-NaYF4:Yb0.2Er0.02 nanoparticles

    International Nuclear Information System (INIS)

    Wu, Qinglong; Pei, Jianfeng; De, Gejihu

    2014-01-01

    Monodisperse, uniform, and hollow structured hexagonal sodium yttrium fluoride nanoparticles co-doped with Yb 3+ and Er 3+ (NaYF 4 :Yb 3+ , Er 3+ ) were successfully prepared by a facile one-pot thermal decomposition route. The crystal structure, morphology and upconversion spectra of the sample were investigated using X-ray powder diffractometer, transmission electron microscope, and fluorescence spectrophotometer with an external 980 nm single-wavelength diode laser. The synthesized nanoparticles were easily dispersed in nonpolar solvents, showed an extremely narrow particle distribution, and were determined to have a diameter about (14.3)±(1.1) nm. Moreover, the nanoparticles were dispersed in water via modification of the capping oleic acid ligand by HCl. To the synthesis of such monidisperse, water-soluble, hollow structured lanthanide-doped upconversion nanoparticles may lead to potential applications in drug delivery and bioimaging. - Highlights: • Hollow structured hexagonal NaYF 4 :Yb 0.2 Er 0.02 luminescent nanoparticles were prepared by a facile one-pot thermal decomposition route. • HCl was used to render the nanoparticles to water solubility. • The bright green light and transparent solution indicate that as-treated water-soluble nanoparticles may lead to potential applications in drug delivery and bioimaging

  2. Synthesis of Functional Block Copolymers Carrying One Poly( p -phenylenevinylene) and One Nonconjugated Block in a Facile One-Pot Procedure

    KAUST Repository

    Menk, Florian; Shin, Suyong; Kim, Kyung-Oh; Scherer, Martin; Gehrig, Dominik; Laquai, Fré dé ric; Choi, Tae-Lim; Zentel, Rudolf

    2016-01-01

    Block copolymers composed of a MEH-PPV block and a nonconjugated functional block (molecular weights between 5 and 90 kg/mol) were synthesized in a facile one-pot procedure via ROMP. This one-pot procedure permits the synthesis of numerous block copolymers with little effort. Amphiphilic block copolymers were obtained via incorporation of oxanorbornene carrying a PEG side chain as well as via postpolymerization modification of a reactive ester carrying norbornene derivative with methoxypoly(ethylene glycol)amine. These amphiphilic block copolymers can be self-assembled into micelles exhibiting different sizes (60-95 nm), morphologies (micelles or fused, caterpillar-like micelles), and optical properties depending on the polymer composition and the micellization procedure. Furthermore, the reactive ester carrying block copolymers enabled the introduction of anchor groups which facilitated the preparation of nanocomposites with CdSe/CdZnS core-shell QDs. The obtained composites were studied using time-resolved photoluminescence measurements. The results revealed an increased interaction based on an accelerated decay of the QD emission for composites as compared to the mixture of the QDs with unfunctionalized polymers. © 2016 American Chemical Society.

  3. Ordered and disordered evolution of the pore mesostructure in hybrid silica anti-reflective films obtained by one-pot self-assembly method

    Energy Technology Data Exchange (ETDEWEB)

    Ghazzal, Mohamed N., E-mail: g_nawfel@yahoo.fr; Debecker, Damien P.; Gaigneaux, Eric M.

    2016-07-29

    Hybrid mesoporous silica films were prepared in acid-catalysed medium using a one-pot self-assembly method. A gradual content of methyl groups was introduced into the inorganic framework by co-condensation of tetraethyl orthosilicate and methyltriethoxysilane. To better understand how the ordered and disordered transition occurs in mesoporous hybrid organosilica sytem as function of the MTES molar ratio in the starting solution, textural, chemical and optical properties of the films were studied by transmission electronic microscopy (TEM), grazing-incident small angle X-ray scattering (GISAXS), transmission Fourier transformed infrared (FTIR) and UV–visible spectroscopy. Increasing the loading of the incorporated organic groups (up to 40% in the starting solution) led simultaneously to a disorganization of the pore mesostructure and a reduction in the pore diameter. Concomitantly, a disordered domain of the silica rings in the walls was observed, which created bond strains in the silica wall contributing also to the disorganization of the pore mesostructure. Furthermore, an optimal MTES content was identified in order to obtain antireflection coatings, exhibiting low reflection in the visible range. - Highlights: • Mesoporous hybrid silica films where prepared by one-pot co-condensation of MTES and TEOS. • Ordered and disordered mesostructures were studied as function as variable MTES molar ratio. • A rearrangement of the silica cyclic species occurred as the molar ratio of MTES increases. • Transmittance of the silica coatings is affected by the MTES molar ratio.

  4. Controllable one-pot synthesis of various one-dimensional Bi2S3 nanostructures and their enhanced visible-light-driven photocatalytic reduction of Cr(VI)

    International Nuclear Information System (INIS)

    Hu, Enlai; Gao, Xuehui; Etogo, Atangana; Xie, Yunlong; Zhong, Yijun; Hu, Yong

    2014-01-01

    Highlights: • 1D Bi 2 S 3 nanostructures were prepared by a facile ethanol-assisted one-pot reaction. • The size and morphology of the products can be conveniently varied. • The sulfur source plays a crucial role in determining the morphologies of products. • 1D Bi 2 S 3 nanostructures exhibit enhanced photocatalytic reduction of Cr(VI). • Bi 2 S 3 nanowires exhibit the highest photoreduction activity among three samples. - Abstract: One-dimensional (1D) Bi 2 S 3 nanostructures with various morphologies, including nanowires, nanorods, and nanotubes, have been successfully synthesized through a facile ethanol-assisted one-pot reaction. It is found that the size, morphology and structure of the products can be conveniently varied or controlled by simply adjusting the volume ratio of ethanol and water in the reaction system. Further experimental results indicate that sulfur source also plays the other crucial role in determining the product morphology. The synthetic strategy developed in this work is highly efficient in producing 1D Bi 2 S 3 nanostructures with high quality and large quantity. Photocatalysis experiments show the as-prepared 1D Bi 2 S 3 nanostructures possess significantly enhanced photocatalytic reduction of Cr(VI) when exposed to visible light irradiation. Especially, Bi 2 S 3 nanowires exhibit the highest photocatalytic activity and can be used repeatedly after washed with dilute HCl

  5. Facile one-pot synthesis of 1-amido alkyl-2-naphthols by RuCl2(PPh3)3-catalyzed multi-component reactions

    International Nuclear Information System (INIS)

    Zhu, Xiaoyan; Lee, Yong Rok; Kim, Sung Hong

    2012-01-01

    We have developed an efficient and general synthesis of 1-amidoalkyl-2-naphthols by RuCl 2 (PPh 3 ) 3 -catalyzed one-pot multi-component reaction of 2-naphthol with aromatic aldehydes and amides. The advantages of these methodologies are easy handling, mild reaction conditions, and use of an effective and non-toxic catalyst. Molecules bearing 1,3-amino oxygenated functional groups have been reported to exhibit a variety of biological and pharmacological activities including nucleoside antibiotics and HIV protease inhibitors such as ritonavir and lipinavir. Importantly, 1-amidoalkyl-2-naphthols can be easily converted to biologically active 1-aminomethyl-2-naphthols by amide hydrolysis. These compounds also exhibit potent antihypertensive, adrenoceptor-blocking, and Ca +2 channel-blocking activities. Because of the importance of these compounds, numerous methods for the synthesis of 1-amidoalkyl-2-naphthols have been described. The reported methods mainly include one-pot three-component reactions of 2-naphthol, aromatic aldehydes, and amides

  6. One-pot fabrication of graphene sheets decorated Co2P-Co hollow nanospheres for advanced lithium ion battery anodes

    International Nuclear Information System (INIS)

    Xie, Qingshui; Zeng, Deqian; Gong, Pingyun; Huang, Jian; Ma, Yating; Wang, Laisen; Peng, Dong-Liang

    2017-01-01

    Highlights: • Co 2 P-Co hollow nanospheres with graphene sheets decoration are prepared through one-pot solution approach. • Co 2 P-Co/graphene nanocomposites reveal greatly enhanced lithium storage performances than Co 2 P-Co counterparts. • The superb electrochemical performances derive from dual modification of graphene sheets and metal Co as well as their hollow configuration. - Abstract: The fabrication of Co 2 P-Co (Co-P composites) hollow nanospheres with graphene sheets decoration through one-pot solution approach is demonstrated and their potential as the anode materials for lithium ion batteries is assessed. A large specific capacity of 929 mA h g −1 can be retained for Co-P/graphene nanocomposites at 100 mA g −1 after 200 cycles. When cycled at a large current density of 2.0C, the Co-P/graphene nanocomposites deliver a decent reversible capacity of 567 mA h g −1 , which is much higher than the theoretical capacity of traditional graphite anode (372 mA h g −1 ). The obviously enhanced lithium storage properties of Co-P/graphene nanocomposites are put down to the dual modification of graphene sheets and metal Co as well as their hollow structures.

  7. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Vaibhavkumar N. [Applied Chemistry Department, S. V. National Institute of Technology, Surat, 395 007 (India); Jha, Sanjay [Gujarat Agricultural Biotechnology Institute, Navsari Agricultural University, Surat, 395007 (India); Kailasa, Suresh Kumar, E-mail: sureshkumarchem@gmail.com [Applied Chemistry Department, S. V. National Institute of Technology, Surat, 395 007 (India)

    2014-05-01

    We are reporting highly economical plant-based hydrothermal method for one-pot green synthesis of water-dispersible fluorescent carbon dots (CDs) by using Saccharum officinarum juice as precursor. The synthesized CDs were characterized by UV-visible, fluorescence, Fourier transform infrared (FT-IR), dynamic light scattering (DLS), high-resolution transmission electron microscopic (HR-TEM), and laser scanning confocal microscopic techniques. The CDs are well dispersed in water with an average size of ∼ 3 nm and showed bright blue fluorescence under UV-light (λ{sub ex} = 365 nm). These CDs acted as excellent fluorescent probes in cellular imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae). - Highlights: • One-pot green synthesis was used for fluorescent CDs. • FT-IR, DLS, and TEM were used for the characterization of CDs. • The CDs are well dispersed in water with an average size of ∼ 3 nm. • The CDs acted as fluorescent probes for imaging of bacteria and yeast cells.

  8. Facile and efficient one-pot solvothermal and microwave-assisted synthesis of stable colloidal solutions of MFe2O4 spinel magnetic nanoparticles

    International Nuclear Information System (INIS)

    Solano, Eduardo; Perez-Mirabet, Leonardo; Martinez-Julian, Fernando; Guzmán, Roger; Arbiol, Jordi; Puig, Teresa; Obradors, Xavier; Yañez, Ramón; Pomar, Alberto; Ricart, Susagna; Ros, Josep

    2012-01-01

    Well-defined synthesis conditions of high quality MFe 2 O 4 (M = Mn, Fe, Co, Ni, Zn, and Cu) spinel ferrite magnetic nanoparticles, with diameters below 10 nm, have been described based on facile and efficient one-pot solvothermal or microwave-assisted heating procedures. Both methods are reproducible and scalable and allow forming concentrated stable colloidal solutions in polar solvents, but microwave-assisted heating allows reducing 15 times the required annealing time and leads to an enhanced monodispersity of the nanoparticles. Non-agglomerated nanoparticles dispersions have been achieved using a simple one-pot approach where a single compound, triethyleneglycol, behaves at the same time as solvent and capping ligand. A narrow nanoparticle size distribution and high quality crystallinity have been achieved through selected nucleation and growth conditions. High resolution transmission electron microscopy images and electron energy loss spectroscopy analysis confirm the expected structure and composition and show that similar crystal faceting has been formed in both synthetic approaches. The spinel nanoparticles behave as ferrimagnets with a high saturation magnetization and are superparamagnetic at room temperature. The influence of synthesis route on phase purity and unconventional magnetic properties is discussed in some particular cases such as CuFe 2 O 4 , CoFe 2 O 4 , and ZnFe 2 O 4 .

  9. Lithium-Acetate-Mediated Biginelli One-Pot Multicomponent Synthesis under Solvent-Free Conditions and Cytotoxic Activity against the Human Lung Cancer Cell Line A549 and Breast Cancer Cell Line MCF7

    Directory of Open Access Journals (Sweden)

    Harshita Sachdeva

    2012-01-01

    Full Text Available Various Biginelli compounds (dihydropyrimidinones have been synthesized efficiently and in high yields under mild, solvent-free, and eco-friendly conditions in a one-pot reaction of 1,3-dicarbonyl compounds, aldehydes, and urea/thiourea/acetyl thiourea using lithium-acetate as a novel catalyst without the addition of any proton source. Comparative catalytic efficiency of lithium-acetate and polyphosphoric acid to catalyze Biginelli condensation is also studied under neat conditions. The reaction is carried out in the absence of any solvent and represents an improvement of the classical Biginelli protocol and an advantage in comparison with FeCl3·6H2O, NiCl2·6H2O and CoCl2·6H2O that were used with HCl as a cocatalyst. Compared to classical Biginelli reaction conditions, the present method has advantages of good yields, short reaction times, and experimental simplicity. The obtained products have been identified by spectral (1H NMR and IR data and their melting points. The prepared compounds are evaluated for anticancer activity against two human cancer cell lines (lung cancer cell line A549 and breast cancer cell line MCF7.

  10. The Influence of Mineralogy on Recovering Organic Acids from Mars Analogue Materials Using the One-Pot Derivatization Experiment on the Sample Analysis at Mars(SAM) Instrument Suite

    Science.gov (United States)

    Stalport, Fabien; Glavin, Daniel P.; Eigenbrode, J. L.; Bish, D.; Blake, D.; Coll, P.; Szopa, C.; Buch, A.; McAdam, A.; Dworkin, J. P.; hide

    2012-01-01

    The search for complex organic molecules on Mars, including important biomolecules such as amino acids and carboxylic acids, will require a chemical extraction and a derivatization step to transform these organic compounds into species that are sufficiently volatile to be detected by gas chromatography mass spectrometry (GCMS). We have developed a ''one-pot'' extraction and chemical derivatization protocol using N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide (MTBSTFA) and dimethylformamide (DMF) for the Sample Analysis at Mars (SAM) experiment instrument suite on NASA's the Mars Science Laboratory (MSL) mission. The temperature and duration of the derivatization reaction, pre-concentration of chemical derivatives, and gas chromatographic separation parameters have been optimized under SAM instrument design constraints. MTBSTFA/DMF extraction and derivatization at 300 1C for several minutes of a variety of terrestrial Mars analog materials facilitated the detection of amino acids and carboxylic acids in a surface soil sample collected from the Atacama Desert and a carbonate-rich stromatolite sample from Svalbard. However, the rapid reaction of MTBSTFA with water in several analog materials that contained high abundances of hydrated minerals, and the possible deactivation of derivatized compounds by iron oxides, as detected by XRD/XRF using the CheMin field unit Terra, proved to be highly problematic for the direct extraction of organics using MTBSTFA. The combination of pyrolysis and two different wet-chemical derivatization methods employed by SAM should enable a wide range of organic compounds to be detected by GCMS if present on Mars.

  11. Ultrasonic irradiation-promoted one-pot synthesis of CH3NH3PbBr3 quantum dots without using flammable CH3NH2 precursor

    Science.gov (United States)

    Jiang, Han; Wang, Chunlei; Lv, Changgui; Xu, Shuhong; Zhu, Li; Zhang, Ruohu; Cui, Yiping

    2017-02-01

    At present, the CH3NH3PbBr3 quantum dots (QDs) reported in the literature usually contain two synthesis steps: the initial preparation of CH3NH3Br via the reaction of flammable CH3NH2 and HBr, together with the subsequent formation of CH3NH3PbBr3 QDs. To avoid the use of dangerous CH3NH2, this work develops a novel one-pot method for synthesizing CH3NH3PbBr3 QDs using safe and commercially available reactants (CH3NH3Cl, KBr and PbCl2). It is found that ultrasonic treatment plays a key role during the synthesis of CH3NH3PbBr3 QDs. Without ultrasonic irradiation, it is not possible to synthesize CH3NH3PbBr3 QDs under heating or vigorous stirring. Aliquots of samples taken at different ultrasonic irradiation time intervals show a time-dependent redshift in the emission wavelength. This suggests the formation of CH3NH3PbCl3 QDs first, followed by the formation of CH3NH3PbBr3 QDs through ultrasonically promoted halide exchange. Moreover, mixed CH3NH3PbCl x Br3-x QDs with a tunable emission wavelength can also be prepared through this one-pot method by controlling the ultrasonic irradiation time. In comparison to the previous two-step method, the current one-pot method is simpler, less time-consuming and does not use flammable CH3NH2. The as-prepared CH3NH3PbBr3 QDs show a comparable photoluminescence (PL) quantum yield (QY) to that of the literature. What is more, the ultrasonic time-controlled emission wavelength of CH3NH3PbCl x Br3-x QDs also provides an alternative way of tuning QD emission to the traditional way of controlling the halide ratios.

  12. In vivo angiogenesis screening and mechanism of action of novel tanshinone derivatives produced by one-pot combinatorial modification of natural tanshinone mixture from Salvia miltiorrhiza.

    Directory of Open Access Journals (Sweden)

    Zhe-Rui Zhang

    Full Text Available Natural products present in low quantity in herb medicines constitute an important source of chemical diversity. However, the isolation of sufficient amounts of these low abundant constituents for structural modification has been a challenge for several decades and subsequently halts research on the utilization of this important source of chemical entities for drug discovery and development. And, pro-angiogenic therapies are being explored as options to treat cardio-cerebral vascular diseases and wound healing recently. The present study investigates the pro-angiogenic potential of tanshinone derivatives produced by one-pot synthesis using zebrafish model.In order to address the difficulty of chemical modification of low abundant constituents in herb medicines, a novel one-pot combinatorial modification was used to diversify a partially purified tanshinone mixture from Salvia miltiorrhiza. This led to the isolation of ten new imidazole-tanshinones (Compounds 1-10 and one oxazole-tanshinone (Compound 11, the structures of which were characterized by spectroscopic methods in combination with single-crystal X-ray crystallographic analysis. The angiogenesis activities of the new tanshinone derivatives were determined in an experimental model of chemical-induced blood vessels damage in zebrafish. Of all the tested new derivatives, compound 10 exhibited the most potent vascular protective and restorative activity with an EC50 value of 0.026 µM. Moreover, the mechanism underlying the pro-angiogenesis effect of 10 probably involved the VEGF/FGF-Src-MAPK and PI3K-P38 signalling pathways by gene expression analysis and a blocking assay with pathways-specific kinase inhibitors.Taken together, our study demonstrated the more distinctive pro-angiogenic properties of 10 than other tanshinones and revealed 10 has potential for development as a pro-angiogenic agent for diseases associated with insufficient angiogenesis. Our results highlighted the great

  13. β–Cyclodextrin–Propyl Sulfonic Acid Catalysed One-Pot Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles as Local Anesthetic Agents

    Directory of Open Access Journals (Sweden)

    Yan Ran

    2015-11-01

    Full Text Available Some functionalized 1,2,4,5-tetrasubstituted imidazole derivatives were synthesized using a one-pot, four component reaction involving 1,2-diketones, aryl aldehydes, ammonium acetate and substituted aromatic amines. The synthesis has been efficiently carried out in a solvent free medium using β-cyclodextrin-propyl sulfonic acid as a catalyst to afford the target compounds in excellent yields. The local anesthetic effect of these derivatives was assessed in comparison to lidocaine as a standard using a rabbit corneal and mouse tail anesthesia model. The three most potent promising compounds were subjected to a rat sciatic nerve block assay where they showed considerable local anesthetic activity, along with minimal toxicity. Among the tested analogues, 4-(1-benzyl-4,5-diphenyl-1H-imidazol-2-yl-N,N-dimethylaniline (5g was identified as most potent analogue with minimal toxicity. It was further characterized by a more favourable therapeutic index than the standard.

  14. One-pot facile synthesis of 4-amino-1,8-naphthalimide derived Tröger's bases via a nucleophilic displacement approach.

    Science.gov (United States)

    Shanmugaraju, Sankarasekaran; McAdams, Deirdre; Pancotti, Francesca; Hawes, Chris S; Veale, Emma B; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2017-09-13

    We report here a novel one-pot synthetic strategy for the synthesis of a family of N-alkyl-1,8-naphthalimide based Tröger's bases via a nucleophilic substitution reaction of a common 'precursor' (or a 'synthon') N-aryl-1,8-naphthalimide Tröger's base heated at 80 °C in neat aliphatic primary amine, in overall yield of 65-96%. This methodology provides an efficient and one-step facile route to design 1,8-naphthalimide derived Tröger's base structures in analytically pure form without the use of column chromatography purification, that can be used in medicinal chemistry and as supramolecular scaffolds. We also report the formation of the corresponding anhydride, and the crystallographic analysis of two of the resulting products, that of the N-phenyl-4-amino-1,8-naphthalimide and the anhydride derived Tröger's bases.

  15. One-Pot Facile Methodology to Synthesize Chitosan-ZnO-Graphene Oxide Hybrid Composites for Better Dye Adsorption and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Anandhavelu Sanmugam

    2017-11-01

    Full Text Available Novel chitosan–ZnO–graphene oxide hybrid composites were prepared using a one-pot chemical strategy, and their dye adsorption characteristics and antibacterial activity were demonstrated. The prepared chitosan and the hybrids such as chitosan–ZnO and chitosan–ZnO–graphene oxide were characterized by UV-Vis absorption spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The thermal and mechanical properties indicate a significant improvement over chitosan in the hybrid composites. Dye adsorption experiments were carried out using methylene blue and chromium complex as model pollutants with the function of dye concentration. The antibacterial properties of chitosan and the hybrids were tested against Gram-positive and Gram-negative bacterial species, which revealed minimum inhibitory concentrations (MICs of 0.1 µg/mL.

  16. l-Glutamic acid assisted eco-friendly one-pot synthesis of sheet-assembled platinum-palladium alloy networks for methanol oxidation and oxygen reduction reactions.

    Science.gov (United States)

    Shi, Ya-Cheng; Mei, Li-Ping; Wang, Ai-Jun; Yuan, Tao; Chen, Sai-Sai; Feng, Jiu-Ju

    2017-10-15

    In this work, bimetallic platinum-palladium sheet-assembled alloy networks (PtPd SAANs) were facilely synthesized by an eco-friendly one-pot aqueous approach under the guidance of l-glutamic acid at room temperature, without any additive, seed, toxic or organic solvent involved. l-Glutamic acid was served as the green shape-director and weak-stabilizing agent. A series of characterization techniques were employed to examine the morphology, structure and formation mechanism of the product. The architectures exhibited improved electrocatalytic activity and durable ability toward methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) in contrast with commercial Pt black and Pd black catalysts. This is ascribed to the unique structures of the obtained PtPd SAANs and the synergistic effects of the bimetals. These results demonstrate the potential application of the prepared catalyst in fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. One-Pot Synthesis of Size- and Composition-Controlled Ni-Rich NiPt Alloy Nanoparticles in a Reverse Microemulsion System and Their Application

    KAUST Repository

    Biausque, Gregory

    2017-08-16

    Bimetallic nanoparticles have been the subject of numerous research studies in the nanotechnology field, in particular for catalytic applications. Control of the size, morphology, and composition has become a key challenge due to the relationship between these parameters and the catalytic behavior of the particles in terms of activity, selectivity, and stability. Here, we present a one-pot air synthesis of 2 nm NiPt nanoparticles with a narrow size distribution. Control of the size and composition of the alloy particles is achieved at ambient temperature, in the aqueous phase, by the simultaneous reduction of nickel and platinum precursors with hydrazine, using a reverse microemulsion system. After deposition on an alumina support, this Ni-rich nanoalloy exhibits unprecedented stability under the harsh conditions of methane dry reforming.

  18. One-pot green synthesis of zinc oxide nano rice and its application as sonocatalyst for degradation of organic dye and synthesis of 2-benzimidazole derivatives

    Science.gov (United States)

    Paul, Bappi; Vadivel, Sethumathavan; Dhar, Siddhartha Sankar; Debbarma, Shyama; Kumaravel, M.

    2017-05-01

    In this paper, we report novel and green approach for one-pot biosynthesis of zinc oxide (ZnO) nanoparticles (NPs). Highly stable and hexagonal phase ZnO nanoparticles were synthesized using seeds extract from the tender pods of Parkia roxburghii and characterized by XRD, FT-IR, EDX, TEM, and N2 adsorption-desorption (BET) studies. The present method of synthesis of ZnO NPs is very efficient and cost effective. The powder XRD pattern furnished evidence for the formation of hexagonal close packing structure of ZnO NPs having average crystallite size 25.6 nm. The TEM image reveals rice shapes ZnO NPs are with an average diameter of 40-60 nm. The as-synthesized ZnO NPs has proved to be an excellent sonocatalysts for degradation of organic dye and synthesis of 2-benzimidazole derivatives.

  19. One-Pot Synthesis of Size- and Composition-Controlled Ni-Rich NiPt Alloy Nanoparticles in a Reverse Microemulsion System and Their Application

    KAUST Repository

    Biausque, Gregory; Laveille, Paco; Anjum, Dalaver H.; Zhang, Bei; Zhang, Xixiang; Caps, Valerie; Basset, Jean-Marie

    2017-01-01

    Bimetallic nanoparticles have been the subject of numerous research studies in the nanotechnology field, in particular for catalytic applications. Control of the size, morphology, and composition has become a key challenge due to the relationship between these parameters and the catalytic behavior of the particles in terms of activity, selectivity, and stability. Here, we present a one-pot air synthesis of 2 nm NiPt nanoparticles with a narrow size distribution. Control of the size and composition of the alloy particles is achieved at ambient temperature, in the aqueous phase, by the simultaneous reduction of nickel and platinum precursors with hydrazine, using a reverse microemulsion system. After deposition on an alumina support, this Ni-rich nanoalloy exhibits unprecedented stability under the harsh conditions of methane dry reforming.

  20. A facile one-pot solvothermal method for synthesis of magnetically recoverable Pd-Fe3O4 hybrid nanocatalysts for the Mizoroki-Heck reaction

    Science.gov (United States)

    Zhen, Fangchen; Ran, Maofei; Chu, Wei; Jiang, Chengfa; Sun, Wenjing

    2018-03-01

    Pd-Fe3O4 hybrid nanostructures were prepared using a simple one-pot hydrothermal method. The prepared materials were characterized by Fourier transform-infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma, N2 adsorption-desorption, and vibrating sample magnetometry. This self-assembled nanosystem acted as an efficient magnetically recyclable noble metal-based multi-functional nanocatalyst. It showed excellent catalytic activity and stability for the Heck reaction of iodobenzene and styrene under mild conditions. The methods used to prepare the Pd-Fe3O4 catalysts were simple and low-cost, which will be useful for the large-scale development and application of a magnetically recoverable Pd catalyst.

  1. Elucidation of the structure-property relationship of p-type organic semiconductors through rapid library construction via a one-pot, Suzuki-Miyaura coupling reaction.

    Science.gov (United States)

    Fuse, Shinichiro; Matsumura, Keisuke; Wakamiya, Atsushi; Masui, Hisashi; Tanaka, Hiroshi; Yoshikawa, Susumu; Takahashi, Takashi

    2014-09-08

    The elucidation of the structure-property relationship is an important issue in the development of organic electronics. Combinatorial synthesis and the evaluation of systematically modified compounds is a powerful tool in the work of elucidating structure-property relationships. In this manuscript, D-π-A structure, 32 p-type organic semiconductors were rapidly synthesized via a one-pot, Suzuki-Miyaura coupling with subsequent Knoevenagel condensation. Evaluation of the solubility and photovoltaic properties of the prepared compounds revealed that the measured solubility was strongly correlated with the solubility parameter (SP), as reported by Fedors. In addition, the SPs were correlated with the Jsc of thin-film organic solar cells prepared using synthesized compounds. Among the evaluated photovoltaic properties of the solar cells, Jsc and Voc had strong correlations with the photoconversion efficiency (PCE).

  2. Use of Elemental Sulfur or Selenium in a Novel One-Pot Copper-Catalyzed Tandem Cyclization of Functionalized Ynamides Leading to Benzosultams.

    Science.gov (United States)

    Siva Reddy, Alla; Kumara Swamy, K C

    2015-06-19

    A novel and efficient [Cu]-catalyzed one-pot regio- and stereospecific synthesis of benzo[1,4,2]dithiazine 1,1-dioxides and benzo[1,4,2]thiaselenazine 1,1-dioxides by cyclization of functionalized ynamides with elemental sulfur/selenium has been developed. Its generality is elegantly illustrated by extension to benzodithiazepines and benzothiaselenazepines. Involvement of water in the reaction is demonstrated by the incorporation of (2)D at the olefinic site by using D2O in place of water. Selective oxidation at sulfur in benzo[1,4,2]dithiazine 1,1-dioxide by using mCPBA as the oxidizing agent is also described.

  3. On the one pot syntheses of chromeno[4,3-b]pyridine-3-carboxylate and chromeno[3,4-c]pyridine-3-carboxylate and dihydropyridines

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete-Encina, Patricio A.; Vega-Retter, Christian, E-mail: pnavarre@vtr.ne [Universidad de Chile, Santiago (Chile). Facultad de Ciencias Quimicas y Farmaceuticas. Lab. de Sintesis Organica y Fisicoquimica; Salazar, Ricardo; Perez, Karina; Squella, Juan A.; Nunez-Vergara, Luis J. [Universidad de Chile, Santiago (Chile). Fac. de Ciencias Quimicas y Farmaceuticas. Lab. de Bioelectroquimica

    2010-07-01

    Substituted chromenos, dihydropyridines and pyridines have been important in the syntheses of compounds having interesting pharmacological properties. Therefore, we found of interest to synthesize chromenopyridines and chromeno dihydropyridines (i.e., fused chromeno and dihydropyridine or pyridine rings) to further study their biological activity. Here, we propose one-pot syntheses for substituted ethyl-2,4-dimethyl-5-oxo-5H-chromeno[4,3-b]pyridine-3-carboxylates, ethyl-2,4-dimethyl-5-oxo-5H-chromeno[3,4-c]pyridine-3-carboxylates and their respective 1,4-dihydropyridines based on a modified Hantzsch pyridine synthesis using 2-hydroxyaryl aldehydes, with electron withdrawing and electron donating groups on the phenyl ring, as starting reactants. Sixteen compounds were synthesized by the described method and fully characterized. An average yield of 37% was obtained for the different derivatives. (author)

  4. Ultrasound assisted one pot expeditious synthesis of new pyrido[2,3-d]pyrimidine analogues using mild and inexpensive 4-dimethylaminopyridine (DMAP catalyst

    Directory of Open Access Journals (Sweden)

    Ajmal R. Bhat

    2017-09-01

    Full Text Available The one-pot three-component reaction for the synthesis of pyrido[2,3-d]pyrimidine derivatives has been reported via initial Knoevenagel, subsequent addition and final heterocyclization of substituted aromatic aldehydes, cyanoacetamide and 6-aminouracil in N,N-dimethylformamide (DMF solvent using 4-dimethylaminopyridine (DMAP as new organocatalyst under ultrasound irradiation. The results showed that a series of aromatic aldehydes were successfully used to prepare the targeted pyrido[2,3-d]pyrimidine derivatives with good to excellent yields (81–93% and there is no major effect on the yield of product by electron donating/withdrawing substituents. Short reaction time, environment friendly procedure, excellent yields, inexpensive and readily available catalyst are the advantages of this procedure. All synthesized compounds were characterized by IR, 1HNMR, 13CNMR and mass spectral data.

  5. Preparation of magnetic albumin nanoparticles via a simple and one-pot desolvation and co-precipitation method for medical and pharmaceutical applications.

    Science.gov (United States)

    Nosrati, Hamed; Salehiabar, Marziyeh; Manjili, Hamidreza Kheiri; Danafar, Hossein; Davaran, Soodabeh

    2018-03-01

    In this study, iron oxide magnetic bovine serum albumin core-shell nanoparticles (BSA coated IONPs) with narrow particle size distribution were synthesized under one-pot reaction via the desolvation and chemical co-precipitation method. Functionalized IONPs were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) techniques. Furthermore, vibrating sample magnetometer (VSM) analysis show these nanoparticles (NPs) have an excellent magnetic properties. Cellular toxicity of IONPs was also investigated on HFF2 cell lines. Additionally, a hemolysis test of as prepared core-shell NPs were performed. The presence of albumin as a biomolecule coating on the surface of IONPs showed an improving effect to reduce the cytotoxicity. The properties of the designed NPs propose the BSA coated IONPs as a promising candidate for multifunctional biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. CuI nanoparticles as new, efficient and reusable catalyst for the one-pot synthesis of 1,4-dihydro pyridines

    International Nuclear Information System (INIS)

    Safaeighomi, Javad; Ziarati, Abolfazl; Teymuri, Raheleh

    2012-01-01

    A simple one-pot synthesis of two derivatives of 1,4-dihydro pyridines has been described under reflux conditions using copper iodide nanoparticles (CuI NPs) as a catalyst in high yields. This method demonstrated four-component coupling reactions of aldehydes and ammonium acetate via two pathways. In one route, the reaction was performed using 2 eq ethyl acetoacetate while in the other one 1 eq ethyl acetoacetate and 1 eq malononitrile were used. The CuI NPs was reused and recycled without any loss of activity and product yield. It is noteworthy to state that wide range of the 1,4-dihydro pyridines have attracted large interest due to pharmacological and biological activities

  7. Simple and Efficient One-Pot Synthesis, Spectroscopic Characterization and Crystal Structure of Methyl 5-(4-Chlorobenzoyloxy-1-phenyl-1H-pyrazole-3-carboxylate

    Directory of Open Access Journals (Sweden)

    Imtiaz Khan

    2012-07-01

    Full Text Available A facile one-pot synthesis of methyl 5-(4-chlorobenzoyloxy-1-phenyl-1H-pyrazole-3-carboxylate (4 is described. The title compound was efficiently synthesized by the reaction of phenyl hydrazine, dimethyl acetylenedicarboxylate and 4-chlorobenzoyl chloride in dichloromethane under reflux in good yield. The structure of the target compound was deduced by modern spectroscopic and analytical techniques and unequivocally confirmed by a single crystal X-ray diffraction analysis. The crystal of the title compound belongs to orthorhombic system, space group P 21 21 21 with cell parameters a = 6.6491(3 Å, b = 7.9627(6 Å, c = 30.621(5 Å, α = β = γ = 90° and Z = 4. The crystal packing of the compound (4 is stabilized by an offset π-stacking between the planar benzoyl-substituted diazole moieties.

  8. Ultrafine PEG-coated poly(lactic-co-glycolic acid) nanoparticles formulated by hydrophobic surfactant-assisted one-pot synthesis for biomedical applications.

    Science.gov (United States)

    Chu, Chih-Hang; Wang, Yu-Chao; Huang, Hsin-Ying; Wu, Li-Chen; Yang, Chung-Shi

    2011-05-06

    A novel method was developed for the one-pot synthesis of ultrafine poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs), using an emulsion solvent evaporation formulation method. Using either cetyltrimethylammonium bromide (CTAB) or poly(ethylene glycol)-distearyl phosphoethanolamine (PEGPE) as an oily emulsifier during the emulsion process, produced PLGA particle sizes of less than 50 nm, constituting a breakthrough in emulsion formulation methods. The yield of ultrafine PLGA NPs increased with PEGPE/PLGA ratio, reaching a plateau at around 85%, when the PEGPE/PLGA ratio reached 3:1. The PEGPE-PLGA NPs exhibited high drug loading content, reduced burst release, good serum stability, and enhanced cell uptake rate compared with traditional PLGA NPs. Sub-50 nm diameter PEG-coated ultrafine PLGA NPs show great potential for in vivo drug delivery systems.

  9. Eco-efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones at room temperature in water.

    Science.gov (United States)

    Tian, Xin-Chuan; Huang, Xing; Wang, Dan; Gao, Feng

    2014-01-01

    An efficient one-pot synthesis of quinazoline-2,4(1H,3H)-diones was developed. First, the reactions of anthranilic acid derivatives with potassium cyanate afforded the corresponding urea derivatives. Then, cyclization of the urea derivatives with NaOH afforded the monosodium salts of benzoylene urea. Finally, HCl treatment afforded the desired products in near-quantitative yields. This is an eco-efficient method because all the reactions were carried out in water, and the desired products were obtained simply by filtration. The aqueous filtrate was the only waste generated from the reaction. We scaled up the reaction to 1 kg starting material, thus establishing an alternative approach for the green synthesis of quinazoline-2,4(1H,3H)-diones in the chemical and pharmaceutical industries.

  10. An alkaline one-pot reaction to synthesize luminescent Eu-BTC MOF nanorods, highly pure and water-insoluble, under room conditions

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Velazquez, D. Y., E-mail: dyolotzin@correo.azc.uam.mx; Alejandre-Zuniga, B. Y.; Loera-Serna, S.; Ortiz, E. M. [Universidad Autónoma Metropolitana-Azcapotzalco, División de Ciencias Básicas e Ingeniería (Mexico); Morales-Ramirez, A. de J. [CIITEC IPN, Instituto Politécnico Nacional (Mexico); Garfias-Garcia, E. [Universidad Autónoma Metropolitana-Azcapotzalco, División de Ciencias Básicas e Ingeniería (Mexico); Garcia-Murillo, A. [CIITEC IPN, Instituto Politécnico Nacional (Mexico); Falcony, C. [Centro de Investigación y Estudios Avanzados, Departamento de Física (Mexico)

    2016-12-15

    The increasing demand for optoelectronic devices requires the development of luminescent materials with high luminescence efficiency and low energy demands, and the metalorganic frameworks (MOFs) with lanthanides ions offer great potential in this area. The metalorganic materials provide properties of flexibility, low density, low-cost methods of synthesis, and insolubility in water, which gives them an advantage over traditional phosphors. In this study, a benzenetricarboxylate ligand (BTC) with a Eu{sup 3+} MOF was synthesized, and its structural and luminescent properties were measured. The metalorganic compound was generated in a one-pot reaction from europium nitrate and trimesic acid precursors. Through characterization by X-ray diffraction powder, infrared spectroscopy, SEM structural characterization, and luminescent spectroscopy, the formation of Europium benzenetricarboxylate (Eu-BTC) MOF nanorods was tested and the calculated value was in the range of 30–60 nm. A red luminescent emission with high intensity was observed for all the procedures.

  11. An efficient one-pot two catalyst system in the construction of 2-substituted benzimidazoles: synthesis of benzimidazo[1,2-c]quinazolines.

    Science.gov (United States)

    Cimarelli, Cristina; Di Nicola, Matteo; Diomedi, Simone; Giovannini, Riccardo; Hamprecht, Dieter; Properzi, Roberta; Sorana, Federico; Marcantoni, Enrico

    2015-12-28

    The benzimidazole core is a common moiety in a large number of natural products and pharmacologically active small molecules. The synthesis of novel benzimidazole derivatives remains a main focus in medicinal research. In continuation of the efforts towards Ce(III) catalysts for organic transformations, we observed for the first time the activity of the iodide ion and copper cation in activating CeCl3·7H2O in the selective formation of prototypical 2-substituted benzimidazoles. The one-pot CeCl3·7H2O-CuI catalytic system procedure includes the cyclo-dehydrogenation of aniline Schiff's bases, generated in situ from the condensation of 1,2-phenylenediamine and aldehydes, followed by the oxidation with iodine, which works as a hydrogen sponge. Mild reaction conditions, good to excellent yields, and clean reactions make the procedure a useful contribution to the synthesis of biologically active fused heterocycles containing benzimidazoquinazolines.

  12. On the one pot syntheses of chromeno[4,3-b]pyridine-3-carboxylate and chromeno[3,4-c]pyridine-3-carboxylate and dihydropyridines

    International Nuclear Information System (INIS)

    Navarrete-Encina, Patricio A.; Vega-Retter, Christian; Salazar, Ricardo; Perez, Karina; Squella, Juan A.; Nunez-Vergara, Luis J.

    2010-01-01

    Substituted chromenos, dihydropyridines and pyridines have been important in the syntheses of compounds having interesting pharmacological properties. Therefore, we found of interest to synthesize chromenopyridines and chromeno dihydropyridines (i.e., fused chromeno and dihydropyridine or pyridine rings) to further study their biological activity. Here, we propose one-pot syntheses for substituted ethyl-2,4-dimethyl-5-oxo-5H-chromeno[4,3-b]pyridine-3-carboxylates, ethyl-2,4-dimethyl-5-oxo-5H-chromeno[3,4-c]pyridine-3-carboxylates and their respective 1,4-dihydropyridines based on a modified Hantzsch pyridine synthesis using 2-hydroxyaryl aldehydes, with electron withdrawing and electron donating groups on the phenyl ring, as starting reactants. Sixteen compounds were synthesized by the described method and fully characterized. An average yield of 37% was obtained for the different derivatives. (author)

  13. One-pot synthesis of porous Fe{sub 3}O{sub 4} shell/silver core nanocomposites used as recyclable magnetic antibacterial agents

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Weijun, E-mail: wjfang81@gmail.com [College of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui (China); Zheng, Jun; Chen, Cheng [Center of Modern Experimental Technology, Anhui University, Hefei 230039, Anhui (China); Zhang, Huabing; Lu, Yunxia [College of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui (China); Ma, Ling [Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian (China); Chen, Guangjun [College of Basic Medicine, Anhui Medical University, Hefei 230032, Anhui (China)

    2014-05-01

    Porous Fe{sub 3}O{sub 4} shell/silver core nanocomposites featuring sustainable and recyclable antibacterial activity have been successfully prepared via a facile one-pot hydrothermal method. The unique structural feature of the Ag@Fe{sub 3}O{sub 4} nanocomposites with Ag embedded in porous Fe{sub 3}O{sub 4} shell endows them with the ability of sustained-release of silver ions. Their antimicrobial activity studies were investigated on both Gram negative Escherichia coli and Gram positive Bacillus subtilis, which demonstrate that the nanocomposites are highly toxic to microorganisms and exhibit sustainable antibacterial activity. Besides, the Ag@Fe{sub 3}O{sub 4} nanocomposites can be separated easily from the medium by a small magnet, which provided an effective way to eliminate the residual nanosilver from the surroundings. We finally demonstrate that the recovered nanocomposites exhibit recyclable antibacterial activity, acting as an ideal long-acting antibacterial agent. - Highlights: • The porous Fe{sub 3}O{sub 4} shell/silver core nanocomposites have been successfully prepared via a simple one-pot hydrothermal method. • The as-prepared Ag@Fe{sub 3}O{sub 4} nanocomposites exhibit high antibacterial activity against both Gram-positive and Gram-negative bacteria. • The porous Fe{sub 3}O{sub 4} shell/silver core nanocomposites show a stronger antibacterial ability than the solid Fe{sub 3}O{sub 4} shell/silver core nanocomposites. • The recovery nanocomposites still have antibacterial activity and can be reused.

  14. Cyanogel-derived N-doped C nanosheets immobilizing Pd-P nanoparticles: One-pot synthesis and enhanced hydrogenation catalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao; Yan, Xiaohong; Huang, Yundi; Zhang, Mengru; Tang, Yawen; Sun, Dongmei; Xu, Lin, E-mail: njuxulin@gmail.com; Wei, Shaohua, E-mail: weishaohua@njnu.edu.cn

    2017-02-28

    Highlights: • Cyanogel-bridged approach was developed for the synthesis of Pd-P@N-Cnanosheets. • Pd-P@N-C nanosheets exhibit high activity and stability for reduction of 4-NP. • Compositional and structural advantages account for the high catalytic activity. • The feasible synthesis could be extendable to other carbon-based nanohybrids. - Abstract: For Pd-based nanocatalysts, stabilization of Pd nanoparticles on carbon support could not only effectively avoid particle aggregation and maintain catalytic stability during catalytic processes, but also facilitate enhancing the catalytic activity due to the synergy between Pd nanoparticles and carbon support. Furthermore, the incorporation of non-metal of phosphorus (P) into Pd could effectively modulate the electronic structure of Pd and thus help to boost the catalytic properties. However, one-pot synthesis of such nanohybrids remains a great challenge due to the distinct physiochemical properties of Pd, P and C components. Herein, we demonstrate a one-pot and scalable synthesis of highly dispersed PdP alloy nanoparticle-immobilized on N-doped graphitic carbon nanosheets (abbreviated as Pd-P@N-C nanosheets) by using inorganic-organic hybrid cyanogel as a reaction precursor. In virtue of both compositional and structural advantages, the as-synthesized Pd-P@N-C nanosheets manifest a superior catalytic activity and stability toward the hydrogenation of 4-nitrophenol (4-NP). We believe that the present work will provide a feasible and versatile strategy for the development of efficient catalysts for environmental remediation and can also be extendable to other carbon-based nanohybrids with desirable functionalities.

  15. The novel synthesis of highly water-soluble few-layer graphene nanosheets by a simple one-pot chemical route and without any modification

    Energy Technology Data Exchange (ETDEWEB)

    Tadjarodi, Azadeh, E-mail: tajarodi@iust.ac.ir; Ferdowsi, Somayeh Moazen

    2016-11-01

    In this study, a simple one-pot and scalable process including mild oxidation of graphite in mixture of H{sub 2}SO{sub 4}/KMnO{sub 4} at 60 °C was developed to synthesize water-soluble graphene. In this process, effects of the oxidant amount and reaction time on oxidation and exfoliation degree of graphite were explored. At this temperature, most oxygen-containing functional groups were introduced at the edges of graphite by preserving the pristine sp{sup 2}carbon-bonded structure. These functional groups were responsible for exfoliation of edge-functionalized graphite (EFG) sheets to edge-graphene oxide (EGO). Various techniques including atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman and Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction pattern (XRD) and direct-current measurements proved that resulting EGO was formed from few-layer graphene nanosheets (GNS) with sub-2 nm thickness, low-defect sites in basal plane owing good solubility in water from pH 6 to 11 through electrostatic stabilization, as determined by zeta-potentiometry. This low-cost and high-efficiency solution processing techniques has enabled to produce aqueous graphene dispersions without need to use polymeric or surfactant stabilizers for many technological applications. - Highlights: • Water-soluble graphene was synthesized by a simple one-pot and scalable process. • This process did not utilize any reduction agents, stabilizer and ultrasonication. • The effects of oxidant amount and reaction time on process were explored.

  16. One-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production using the whole solid-state fermentation medium of mixed filamentous fungi.

    Science.gov (United States)

    Maehara, Larissa; Pereira, Sandra C; Silva, Adilson J; Farinas, Cristiane S

    2018-02-01

    The efficient use of renewable lignocellulosic feedstocks to obtain biofuels and other bioproducts is a key requirement for a sustainable biobased economy. This requires novel and effective strategies to reduce the cost contribution of the cellulolytic enzymatic cocktails needed to convert the carbohydrates into simple sugars, in order to make large-scale commercial processes economically competitive. Here, we propose the use of the whole solid-state fermentation (SSF) medium of mixed filamentous fungi as an integrated one-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production. Ten different individual and mixed cultivations of commonly used industrial filamentous fungi (Aspergillus niger, Aspergillus oryzae, Trichoderma harzianum, and Trichoderma reesei) were performed under SSF and the whole media (without the extraction step) were used in the hydrolysis of pretreated sugarcane bagasse. The cocultivation of T. reesei with A. oryzae increased the amount of glucose released by around 50%, compared with individual cultivations. The release of glucose and reducing sugars achieved using the whole SSF medium was around 3-fold higher than obtained with the enzyme extract. The addition of soybean protein (0.5% w/w) during the hydrolysis reaction further significantly improved the saccharification performance by blocking the lignin and avoiding unproductive adsorption of enzymes. The results of the alcoholic fermentation validated the overall integrated process, with a volumetric ethanol productivity of 4.77 g/L.h, representing 83.5% of the theoretical yield. These findings demonstrate the feasibility of the proposed one-pot integrated strategy using the whole SSF medium of mixed filamentous fungi for on-site enzymes production, biomass hydrolysis, and ethanol production. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  17. Aqueous hydrodechlorination of 4-chlorophenol over an Rh/reduced graphene oxide synthesized by a facile one-pot solvothermal process under mild conditions

    International Nuclear Information System (INIS)

    Ren, Yanlin; Fan, Guangyin; Wang, Chenyu

    2014-01-01

    Graphical abstract: The Rh nanoparticles/reduced graphene oxide (Rh NPs/RGO) nanocatalyst synthesized by a solvothermal technique showed high activity and stability for the hydrodechlorination of 4-chlorophenol under mild conditions. - Highlights: • Rh/RGO was synthesized through a one-pot polyol reduction of GO and RhCl 3 . • Complete HDC of 4-chlorophenol was obtained in aqueous phase without any additive. • The Rh/RGO exhibited an excellent catalytic performance for HDC reaction. - Abstract: Reduced graphene oxide (RGO) supported rhodium nanoparticles (Rh-NPs/RGO) was synthesized through one-pot polyol co-reduction of graphene oxide (GO) and rhodium chloride. The catalytic property of Rh-NPs/RGO was investigated for the aqueous phase hydrodechlorination (HDC) of 4-chlorophenol (4-CP). A complete conversion of 4-CP into high valued products of cyclohexanone (selectivity: 23.2%) and cyclohexanol (selectivity: 76.8%) was successfully achieved at 303 K and balloon hydrogen pressure in a short reaction time of 50 min when 1.5 g/L of 4-CP was introduced. By comparing with Rh-NPs deposited on the other supports, Rh-NPs/RGO delivered the highest initial rate (111.4 mmol/g Rh min) for 4-CP HDC reaction under the identical conditions. The substantial catalytic activity of Rh-NPs/RGO can be ascribed to the small and uniform particle size of Rh (average particle size was 1.7 ± 0.14 nm) on the surface of the RGO sheets and an electron-deficient state of Rh in the catalyst as a result of the strong interaction between the active sites and the surface function groups of RGO

  18. In situ deposition of graphene nanosheets on wood surface by one-pot hydrothermal method for enhanced UV-resistant ability

    International Nuclear Information System (INIS)

    Wan, Caichao; Jiao, Yue; Li, Jian

    2015-01-01

    Graphical abstract: - Highlights: • The graphene/wood nanocomposites were fabricated via a mild fast one-pot hydrothermal method. • Graphene nanosheets were in situ deposited on the surface of the wood matrix. • The incorporation of graphene nanosheets results in the improvement in the thermal stability of the graphene/wood. • The graphene/wood exhibits superior UV resistance performance. - Abstract: Graphene nanosheets were successfully in situ deposited on the surface of the wood matrix via a mild fast one-pot hydrothermal method, and the resulting hybrid graphene/wood (GW) were characterized by scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy, and thermogravimetric analysis (TGA). According to the results, the wood matrix was evenly coated by dense uninterrupted multilayer graphene membrane structure, which was formed by layer-by-layer self-assembly of graphene nanosheets. Meanwhile, the graphene coating also induced significant improvement in the thermal stability of GW in comparison with that of the original wood (OW). Accelerated weathering tests were employed to measure and determine the UV-resistant ability of OW and GW. After about six hundred hours of experiments, the surface color change of GW was much less than that of OW; besides, the Fourier transform infrared spectroscopy (FTIR) analysis also proved the less significant changes in surface chemical compositions of GW. The results both indicated that the graphene coating effectively protected wood surface from UV damage. Therefore, this class of GW composite might be expected to be served as high-performance wooden building material for outdoor or some particular harsh environments like strong UV radiation regions use

  19. Synthesis of single phase chalcopyrite CuIn1−xGaxSe2 (0 ≤ x ≤ 1) nanoparticles by one-pot method

    International Nuclear Information System (INIS)

    Han, Zhaoxia; Zhang, Dawei; Chen, Qinmiao; Hong, Ruijin; Tao, Chunxian; Huang, Yuanshen; Ni, Zhengji; Zhuang, Songlin

    2014-01-01

    Graphical abstract: - Highlights: • A facile and rapid one-pot synthesis method is presented. • The effects of various Ga contents are investigated. • Single phase chalcopyrite CuIn 1−x Ga x Se 2 nanoparticles can be easily synthesized. • The phase formation sequence is from CuSe to CuGaSe 2 , then to CuIn 1−x Ga x Se 2 . • The possible reaction mechanism of CuIn 1−x Ga x Se 2 nanoparticles is proposed. - Abstract: Single phase chalcopyrite and near stoichiometric CuIn 1−x Ga x Se 2 (0 ≤ x ≤ 1) nanoparticles were successfully synthesized by using a facile and rapid one-pot method. The effects of various Ga contents on crystal phase, morphology, element composition and absorption spectrum of the as-synthesized CuIn 1−x Ga x Se 2 nanoparticles were investigated in detail. The XRD and Raman patterns indicated that the as-synthesized nanoparticles had a single phase chalcopyrite structure, and the diffraction peaks shifted toward larger diffraction angles or higher frequencies with increasing Ga content. The FE-SEM images showed that the as-synthesized nanoparticles were polydispersed in both size and shape, and the nanoparticles with higher Ga content were more prone to aggregate. The Vis–IR absorption spectra showed strong absorption in the entire visible light region. The estimated band gap increased from 1.00 eV to 1.68 eV as Ga content increasing

  20. Revalorization of selected municipal solid wastes as new precursors of "green" nanocellulose via a novel one-pot isolation system: A source perspective.

    Science.gov (United States)

    Chen, You Wei; Lee, Hwei Voon

    2018-02-01

    In the present work, four types of newly chosen municipal solid wastes (Panax ginseng, spent tea residue, waste cotton cloth, and old corrugated cardboard) were studied as the promising sources for nanocellulose, which has efficiently re-engineered the structure of waste products into highly valuable nanocellulose materials. The nanocellulose was produced directly via a facile one-pot oxidative hydrolysis process by using H 2 O 2 /Cr(NO 3 ) 3 solution as the bleaching agent and hydrolysis medium under acidic condition. The isolated nanocellulose products were well-characterized in terms of chemical composition, product yield, morphological structure and thermal properties. The study has found that the crystallinity index of the obtained nanocellulose products were significantly higher (62.2-83.6%) than that of its starting material due to the successive elimination of lignin, hemicellulose and amorphous regions of cellulose, which were in good agreement with the FTIR analysis. The evidence of the successful production of nanocellulose was given by TEM observation which has revealed the fibril widths were ranging from 15.6 to 46.2nm, with high cellulose content (>90%), depending on the cellulosic origin. The physicochemical properties of processed samples have confirmed that the isolation of high purity nanocellulose materials from different daily spent products is possible. The comparative study can help to provide a deep insight on the possibility of revalorizing the municipal solid wastes into nanocellulose via the simple and versatile one-pot isolation system, which has high potential to be used in commercial applications for sustainable development. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. One-pot hydrothermal growth of raspberry-like CeO{sub 2} on CuO microsphere as copper-based catalyst for Rochow reaction

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zheying [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Li, Jing [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Shi, Laishun, E-mail: lshunsh@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Ji, Yongjun, E-mail: yjji@ipe.ac.cn [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Zhong, Ziyi [School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Su, Fabing, E-mail: fbsu@ipe.ac.cn [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-12-30

    Graphical abstract: - Highlights: • Ce–CuO composites were prepared via a one-pot and template-free hydrothermal method. • Ce–CuO consisted of raspberry-like CeO{sub 2} particles dispersed on porous CuO microspheres. • CuO microspheres were formed by self-assembly of nanorods. • Ce–CuO exhibited superior catalytic activity for dimethyldichlorosilane synthesis. - Abstract: In this work, we prepared a novel structure comprising of raspberry-like CeO{sub 2} deposited on CuO microspheres (Ce–CuO) for Rochow reaction. The synthesis was carried out via a facile one-pot hydrothermal reaction without using any template, in which, the basic copper carbonate microspheres were first formed via self-assembly of basic copper carbonate nanorods, followed with deposition of cerium hydroxide. After calcination, they were transformed into Ce–CuO but still maintained the hierarchical structure, and meanwhile, mesoporous structure was formed (for simplicity, we will only state them as metal oxide in the following context). The samples were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), and scanning electron microscopy (SEM) techniques. When used as a Cu-based catalyst, Ce–CuO exhibited superior catalytic property to the single CuO, CeO{sub 2} and their physically mixture in the Rochow reaction with dimethyldichlorosilane (M2) selectivity increased from ca. 65 to 83.7%. The higher M2 selectivity of Ce–CuO is mainly due to its larger surface area and the synergistic effect between CuO and CeO{sub 2}. This work demonstrates that catalytic performance of the Cu-based can be improved by adding Ce rare-earth element and by carefully controlling their structures.

  2. Exfoliated Pd/HNb{sub 3}O{sub 8} nanosheet as highly efficient bifunctional catalyst for one-pot cascade reaction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Nahaeng; Chung, Young-Min, E-mail: ymchung@kunsan.ac.kr

    2016-05-01

    Graphical abstract: - Highlights: • Ultrathin and highly acidic HNb{sub 3}O{sub 8} nanosheet was prepared by exfoliation of layered niobium oxide. • Pd/HNb{sub 3}O{sub 8} nanosheet showed excellent catalytic performance for one-pot cascade reaction. • The reaction performance of Pd/HNb{sub 3}O{sub 8} nanosheet is 7.1 and 1.2 times higher than that of layered Pd/KNb{sub 3}O{sub 8} or Pd/HNb{sub 3}O{sub 8}, respectively. • Significant promoting effect of support acidity on the reaction performance was observed. - Abstract: Ultrathin two-dimensional metal oxide nanosheets have drawn attention as potential solid acid catalysts owing to their strong acidity, attributed to the bridged OH groups formed on the nanosheets. In this study, a new class of bifunctional acid–metal catalyst was realized by the deposition of Pd on layered niobium oxide (KNb{sub 3}O{sub 8} and HNb{sub 3}O{sub 8}) or its exfoliated nanosheet (Pd/HNb{sub 3}O{sub 8}-NS) and applied to one-pot cascade deacetalization and hydrogenation. It was found that the acid strength of the support exerted a large influence not only on the promotion of the first deacetalization step, but also on the acceleration of the subsequent hydrogenation step. Comparative experiments using a series of Pd/HZSM-5 catalysts with different acidities reconfirmed the crucial role of acid strength on hydrogenation. However, the superior catalytic activity of Pd/HNb{sub 3}O{sub 8}-NS for hydrogenation compared to that of Pd/HZSM-5 of similar acidity suggests a more efficient ensemble effect of the strong acid sites with the nearby metal sites on the nanosheet surface. Among the catalysts used, Pd/HNb{sub 3}O{sub 8}-NS showed the best catalytic performance for one-pot cascade reaction affording the desired product (benzyl alcohol) in approximately 92% yield, which was 7.1 and 1.2 times higher than that of layered Pd/KNb{sub 3}O{sub 8} or Pd/HNb{sub 3}O{sub 8}, respectively. The excellent catalytic performance of Pd/HNb{sub 3

  3. Combining silver- and organocatalysis: an enantioselective sequential catalytic approach towards pyrano-annulated pyrazoles.

    Science.gov (United States)

    Hack, Daniel; Chauhan, Pankaj; Deckers, Kristina; Mizutani, Yusuke; Raabe, Gerhard; Enders, Dieter

    2015-02-11

    A one-pot asymmetric Michael addition/hydroalkoxylation sequence, catalyzed by a sequential catalytic system consisting of a squaramide and a silver salt, provides a new series of chiral pyrano-annulated pyrazole derivatives in excellent yields (up to 95%) and high enantioselectivities (up to 97% ee).

  4. One-pot synthesis of strongly fluorescent DNA-CuInS2 quantum dots for label-free and ultrasensitive detection of anthrax lethal factor DNA

    International Nuclear Information System (INIS)

    Liu, Ziping; Su, Xingguang

    2016-01-01

    Herein, high quality DNA-CuInS 2 QDs are facilely synthesized through a one-pot hydrothermal method with fluorescence quantum yield as high as 23.4%, and the strongly fluorescent DNA-CuInS 2 QDs have been utilized as a novel fluorescent biosensor for label-free and ultrasensitive detection of anthrax lethal factor DNA. L-Cysteine (L-Cys) and a specific-sequence DNA are used as co-ligands to stabilize the CuInS 2 QDs. The specific-sequence DNA consists of two domains: phosphorothiolates domain (sulfur-containing variants of the usual phosphodiester backbone) controls the nanocrystal passivation and serves as a ligand, and the functional domain (non-phosphorothioates) controls the biorecognition. The as-prepared DNA-CuInS 2 QDs have high stability, good water-solubility and low toxicity. Under the optimized conditions, a linear correlation was established between the fluorescence intensity ratio I/I 0 (I 0 is the original fluorescence intensity of DNA-CuInS 2 QDs, and I is the fluorescence intensity of DNA-CuInS 2 QDs/GO with the addition of various concentrations of anthrax lethal factor DNA) and the concentration of anthrax lethal factor DNA in the range of 0.029–0.733 nmol L −1 with a detection limit of 0.013 nmol L −1 . The proposed method has been successfully applied to the determination of anthrax lethal factor DNA sequence in human serum samples with satisfactory results. Because of low toxicity and fine biocompatibility, DNA-CuInS 2 QDs also hold potential applications in bioimaging. - Highlights: • Strongly fluorescent DNA-QDs were successfully prepared by a one-pot hydrothermal method with quantum yield up to 23.4%. • A biosensor for label-free detection of anthrax lethal factor DNA was established based on the as-prepared DNA-QDs. • The DNA sensor took advantage of the feature that ssDNA binds to GO with significantly higher affinity than dsDNA. • Good sensitivity and selectivity were obtained. • This method was utilized to detect

  5. Facile one-pot synthesis of nickel-incorporated titanium dioxide/graphene oxide composites: Enhancement of photodegradation under visible-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thanh-Truc [School of Chemical Engineering, University of Ulsan, Daehakro 93, Nam-gu, Ulsan 44610 (Korea, Republic of); Nguyen-Huy, Chinh [School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919 (Korea, Republic of); Shin, Eun Woo, E-mail: ewshin@ulsan.ac.kr [School of Chemical Engineering, University of Ulsan, Daehakro 93, Nam-gu, Ulsan 44610 (Korea, Republic of)

    2016-07-30

    Highlights: • Ni-incorporated TiO{sub 2}/graphene oxide materials were prepared by facile one-pot method. • Raman spectra identified a small fraction of NiTiO{sub 3} at high Ni containing materials. • Graphene oxide acted as adsorption sites and inhibited the agglomeration of Ni particles. • The formation of NiTiO{sub 3} at high Ni content improved photoactivity under visible light. - Abstract: Nickel (Ni)—incorporated titanium dioxide (TiO{sub 2})/graphene oxide composite photocatalysts were prepared by anchoring the TiO{sub 2} and Ni onto the surface of graphene oxide (GO) sheets by a straightforward microwave-assisted, one-pot method for the first time. The as-prepared composite photocatalysts with high Ni content (40–50 wt%) showed good adsorption capacity in the dark and high reaction rate constants under visible illumination while the composite photocatalysts with low Ni content (5–10 wt%) exhibited weak activity. An anatase phase, a small amount of rutile phase and Ni metal were detected using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Raman measurements identified a small fraction of NiTiO{sub 3} only at high Ni content. The formation of NiTiO{sub 3} and the increase in the specific surface area (SSA) for 40 and 50 wt% Ni-loaded catalysts improved the adsorption capacity and photocatalytic activity upon exposure to visible light, resulting in very effective removal of dye contaminants under visible light irradiation. Increasing the Ni content up to 40 and 50 wt% induced not only a structural change affording high porosity but also a narrowing of the band gap to 2.51 eV. Meanwhile, the presence of GO in the composite photocatalysts inhibited the agglomeration of Ni particles even at high Ni content, resulting in similar Ni particle sizes regardless of the Ni content. At the same time, Ni metal accelerated the reduction of the GO sheets, as evidenced by the Raman data.

  6. A facile one-pot fabrication of polyphosphazene microsphere/carbon fiber hybrid reinforcement and its effect on the interfacial adhesion of epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); School of Mechanical and Electronic Engineering, Ningbo Dahongying University, Ningbo 315175 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Haibing, E-mail: xuhaibing@nimte.ac.cn [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Liu, Dong; Yan, Chun [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China); Zhu, Yingdan, E-mail: y.zhu@nimte.ac.cn [Zhejiang Provincial Key Laboratory of Robotics and Intelligent Manufacturing Equipment Technology, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Ningbo 315201 (China)

    2017-07-15

    Graphical abstract: Carbon fiber was successfully functionalized with a layer of coating and poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres (PZSMS) by in situ polymerization. The enhancement of surface roughness can improve obviously the interfacial properties through providing more contact points and increasing mechanical interlocking between carbon fiber and epoxy matrix. Moreover, the cyclomatrix-type polyphosphazene coating and PZSMS distributed on the fibers surface can heal the surface defects to some extent and assist in holding back or absorbing excessive stress, resulting in the improvement of tensile strength. - Highlights: • Polyphosphazene microspheres/CF hybrid reinforcements were prepared via a novel and facile one-pot in situ polymerization. • Plenty of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces. • The multi-scale hybrid CF reinforcement enhanced the interfacial adhesion of CF/epoxy composites obviously. • The tensile strength of multi-scale hybrid CF also showed an obvious increase. - Abstract: Introducing nanoscale reinforcements into the interface between carbon fiber (CF) and resin is an effective approach to improve the interfacial adhesion of CF composites. In this paper, a facile one-pot polymerization process provides a rapid and efficient method for preparing polyphosphazene microspheres/CF hybrid reinforcement using hexachlorocyclotriphosphazene (HCCP) and bis(4-hydroxyphenyl) sulfone (BPS) as monomers. By the in situ polymerization modification, HCCP and BPS were successfully cross-linked and deposited on the CF surface. Scanning electron microscope and atomic force microscopy images show that poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces and the surface roughness of fibers is enhanced obviously. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm that the

  7. One-pot synthesis of strongly fluorescent DNA-CuInS{sub 2} quantum dots for label-free and ultrasensitive detection of anthrax lethal factor DNA

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ziping; Su, Xingguang, E-mail: suxg@jlu.edu.cn

    2016-10-26

    Herein, high quality DNA-CuInS{sub 2} QDs are facilely synthesized through a one-pot hydrothermal method with fluorescence quantum yield as high as 23.4%, and the strongly fluorescent DNA-CuInS{sub 2} QDs have been utilized as a novel fluorescent biosensor for label-free and ultrasensitive detection of anthrax lethal factor DNA. L-Cysteine (L-Cys) and a specific-sequence DNA are used as co-ligands to stabilize the CuInS{sub 2} QDs. The specific-sequence DNA consists of two domains: phosphorothiolates domain (sulfur-containing variants of the usual phosphodiester backbone) controls the nanocrystal passivation and serves as a ligand, and the functional domain (non-phosphorothioates) controls the biorecognition. The as-prepared DNA-CuInS{sub 2} QDs have high stability, good water-solubility and low toxicity. Under the optimized conditions, a linear correlation was established between the fluorescence intensity ratio I/I{sub 0} (I{sub 0} is the original fluorescence intensity of DNA-CuInS{sub 2} QDs, and I is the fluorescence intensity of DNA-CuInS{sub 2} QDs/GO with the addition of various concentrations of anthrax lethal factor DNA) and the concentration of anthrax lethal factor DNA in the range of 0.029–0.733 nmol L{sup −1} with a detection limit of 0.013 nmol L{sup −1}. The proposed method has been successfully applied to the determination of anthrax lethal factor DNA sequence in human serum samples with satisfactory results. Because of low toxicity and fine biocompatibility, DNA-CuInS{sub 2} QDs also hold potential applications in bioimaging. - Highlights: • Strongly fluorescent DNA-QDs were successfully prepared by a one-pot hydrothermal method with quantum yield up to 23.4%. • A biosensor for label-free detection of anthrax lethal factor DNA was established based on the as-prepared DNA-QDs. • The DNA sensor took advantage of the feature that ssDNA binds to GO with significantly higher affinity than dsDNA. • Good sensitivity and selectivity were

  8. A facile one-pot fabrication of polyphosphazene microsphere/carbon fiber hybrid reinforcement and its effect on the interfacial adhesion of epoxy composites

    International Nuclear Information System (INIS)

    Chen, Xiang; Xu, Haibing; Liu, Dong; Yan, Chun; Zhu, Yingdan

    2017-01-01

    Graphical abstract: Carbon fiber was successfully functionalized with a layer of coating and poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres (PZSMS) by in situ polymerization. The enhancement of surface roughness can improve obviously the interfacial properties through providing more contact points and increasing mechanical interlocking between carbon fiber and epoxy matrix. Moreover, the cyclomatrix-type polyphosphazene coating and PZSMS distributed on the fibers surface can heal the surface defects to some extent and assist in holding back or absorbing excessive stress, resulting in the improvement of tensile strength. - Highlights: • Polyphosphazene microspheres/CF hybrid reinforcements were prepared via a novel and facile one-pot in situ polymerization. • Plenty of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces. • The multi-scale hybrid CF reinforcement enhanced the interfacial adhesion of CF/epoxy composites obviously. • The tensile strength of multi-scale hybrid CF also showed an obvious increase. - Abstract: Introducing nanoscale reinforcements into the interface between carbon fiber (CF) and resin is an effective approach to improve the interfacial adhesion of CF composites. In this paper, a facile one-pot polymerization process provides a rapid and efficient method for preparing polyphosphazene microspheres/CF hybrid reinforcement using hexachlorocyclotriphosphazene (HCCP) and bis(4-hydroxyphenyl) sulfone (BPS) as monomers. By the in situ polymerization modification, HCCP and BPS were successfully cross-linked and deposited on the CF surface. Scanning electron microscope and atomic force microscopy images show that poly(cyclotriphosphazene-co-4,4′-sulfonyldiphonel) microspheres were introduced onto the CF surfaces and the surface roughness of fibers is enhanced obviously. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm that the

  9. One-pot hydrothermal synthesis of Ni-doped ZnIn{sub 2}S{sub 4} nanostructured film photoelectrodes with enhanced photoelectrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Bing; Chen, Zhihong; Liu, Qiong; Zhang, Zhengguo; Fang, Xiaoming, E-mail: cexmfang@scut.edu.cn

    2016-05-01

    Graphical abstract: - Highlights: • Ni-doped ZnIn{sub 2}S{sub 4} photoelectrodes were synthesized by one-pot hydrothermal method. • Enhanced PEC performances are achieved by Ni-doped ZnIn{sub 2}S{sub 4} film photoelectrodes. • Ni-doped ZnIn{sub 2}S{sub 4} photoelectrodes possess superior photocarriers transfer abilities. • The optimal Ni content of ZnIn{sub 2}S{sub 4} photoelectrode is 2 wt%. - Abstract: Nanostructured Ni-doped ZnIn{sub 2}S{sub 4} films were prepared on the FTO conductive glass substrates by a one-pot hydrothermal method. The obtained films consist of nanosheets perpendicular to the FTO glass substrate, exhibiting a net-like porous microstructure. The doping of Ni into the lattice of ZnIn{sub 2}S{sub 4} is revealed by the X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) characterizations. The results from the energy-dispersive spectroscopy (EDS) and X-ray photoelectron spectrometer (XPS) confirm the existence of Ni in the doped sample. The optical absorption of the Ni-doped samples is slightly stronger than that of the undoped one. Compared with the undoped sample, the Ni-doped ZnIn{sub 2}S{sub 4} photoelectrodes show enhanced photocurrent response and reach a maximum at the Ni content of 2 wt%. The carrier concentration and mobility of all the samples were estimated by using Hall measurements. The carrier concentration decreases with the increase of Ni content, and 2 wt% Ni-doped ZnIn{sub 2}S{sub 4} photoelectrode has the highest mobility, which is up to 840 cm{sup 2}/Vs. The results from the electrochemical impedance spectroscopy (EIS) measurements indicate that the lowest charge transfer resistance is achieved by the 2 wt% Ni-doped ZnIn{sub 2}S{sub 4} photoelectrode, agreeing with its best PEC performance. The photocurrent densities vs. time curves demonstrate that the stability of the 2 wt% Ni-doped ZnIn{sub 2}S{sub 4} photoelectrode is better than that of the undoped one. The enhanced PEC performance

  10. One-pot preparation of a mixed-mode organic-silica hybrid monolithic capillary column and its application in determination of endogenous gibberellins in plant tissues.

    Science.gov (United States)

    Zhang, Zheng; Hao, Yan-Hong; Ding, Jun; Xu, Sheng-Nan; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-10-16

    A newly improved one-pot method, based on "thiol-ene" click chemistry and sol-gel approach in microemulsion system, was developed for the preparation of C8/PO(OH)2-silica hybrid monolithic capillary column. The prepared monolith possesses large specific surface area, narrow mesopore size distribution and high column efficiency. The monolithic column was demonstrated to have cation exchange/reversed-phase (CX/RP) mixed-mode retention for analytes on nano-liquid chromatography (nano-LC). On the basis of the developed nano-LC system with MS detector coupled to pipette tip solid phase extraction (PT-SPE) and derivatization process, we then realized simultaneous determination of 10 gibberellins (GAs) with low limits of detection (LODs, 0.003-0.025 ng/mL). Furthermore, 6 endogenous GAs in only 5mg rice leaves (fresh weight) were successfully detected and quantified. The developed PT-SPE-nano-LC-MS strategy may offer promising applications in the determination of low abundant bioactive molecules from complex matrix. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A Green One-Pot Synthesis of 4-Hydroxychromenylarylmethyl- 6-Hydroxypyrimidine-2,4-Diones Using Titanium Dioxide Nanowires as an Effective and Recyclable Catalyst.

    Science.gov (United States)

    Eskandari, Khalil; Karami, Bahador

    2016-01-01

    Since a wide range of biological and pharmaceutical activities of barbituric acid, 4-hydroxycoumarin and their derivatives have been disclosed until now, in the domain of our interest to find newly catalytic routes for highly efficient synthesis of potentially interesting biologically active organic compounds, and extension of their areas, herein we introduce a three component combinatorial reaction based on (N,N-dimethyl)barbituric acid and 4- hydroxycoumarin scaffolds. All starting materials were purchased from Merck chemical company and were applied without further purifications. Catalytic reaction between barbituric acid (or N,N-dimethyl barbituric acid), 4-hydroxycoumarin, and a wide range of aryl aldehydes by employing titanium dioxide nanowires (TiO2 NWs) is successfully performed under solvent-free conditions at 100 °C, and led efficiently to obtain target products. From loading above mentioned three component reaction, starting materials in the presence of catalytic amounts of TiO2 NWs as a key factor were condensed together via three C-C bond formation to obtain 12 newly prepared compounds. This procedure profits some advantages such as an efficiency, environmental safety and high recyclability of nano-catalyst. In this work, by the use of a green adapted method in a condensation three component reaction catalyzed by TiO2 NWs as an efficient nano-catalyst, some newly prepared products were prepared in a one pot, and the scope of potentially interesting biologically active organic compounds which can be duly considered by biologists and pharmacologists was developed.

  12. Generation of efficient mutants of endoglycosidase from Streptococcus pyogenes and their application in a novel one-pot transglycosylation reaction for antibody modification.

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Iwamoto

    Full Text Available The fine structures of Fc N-glycan modulate the biological functions and physicochemical properties of antibodies. By remodeling N-glycan to obtain a homogeneous glycoform or chemically modified glycan, antibody characteristics can be controlled or modified. Such remodeling can be achieved by transglycosylation reactions using a mutant of endoglycosidase from Streptococcus pyogenes (Endo-S and glycan oxazoline. In this study, we generated improved mutants of Endo-S by introducing additional mutations to the D233Q mutant. Notably, Endo-S D233Q/Q303L, D233Q/E350Q, and several other mutations resulted in transglycosylation efficiencies exceeding 90%, with a single-digit donor-to-substrate ratio of five, and D233Q/Y402F/D405A and several other mutations resulted in slightly reduced transglycosylation efficiencies accompanied by no detectable hydrolysis activity for 48 h. We further demonstrated that the combined use of mutants of Endo-S with Endo-M or Endo-CC, endoglycosidases from Mucor hiemalis and Coprinopsis cinerea, enables one-pot transglycosylation from sialoglycopeptide to antibodies. This novel reaction enables glycosylation remodeling of antibodies, without the chemical synthesis of oxazoline in advance or in situ.

  13. One-pot solvothermal synthesis of ordered intermetallic Pt2In3 as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    Science.gov (United States)

    Jana, Rajkumar; Peter, Sebastian C.

    2016-10-01

    Ordered intermetallic Pt2In3 nanoparticles have been synthesized by superhydride reduction of K2PtCl4 and InCl3.xH2O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt2In3 intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt2In3 catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be 3.2 and 2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt2In3 nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell.

  14. One-pot electrospinning and gas-sensing properties of LaMnO3 perovskite/SnO2 heterojunction nanofibers

    Science.gov (United States)

    Chen, Dongdong; Yi, Jianxin

    2018-03-01

    Using nanostructured composite materials is an effective way to obtain high-performance gas sensors. This work used p-type LaMnO3 perovskite-structured semiconductor as a novel promoter for SnO2 nanofibers and studied the gas-sensing characteristics. Nanofibers of 0-2.5-mol% LaMnO3/SnO2 were synthesized via one-pot electrospinning. Compared with pristine SnO2, LaMnO3/SnO2 composite nanofibers exhibited smaller particle size (10-30 nm) and higher BET surface area. XPS revealed that oxygen surface absorption decreased with increasing LaMnO3 content. 0.3-mol% LaMnO3/SnO2 exhibited significantly enhanced ethanol sensitivity relative to pristine SnO2. A response of 20 was obtained at the optimum temperature of 260 °C for 100-ppm ethanol. Higher LaMnO3 loading led to decrease of the ethanol response. The impact of LaMnO3 loading on the sensing behavior of SnO2 nanofibers was discussed in terms of p-n heterojunction formation and changes in the microstructure and catalytic properties.

  15. The silver nanowires synthesized using different molecule weight of polyvinyl pyrrolidone for controlling diameter and length by one-pot polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Junaidi, E-mail: junaidi.1982@fmipa.unila.ac.id [Departement of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Departement of Physics, Lampung University, Bandar Lampung (Indonesia); Triyana, K., E-mail: triyana@ugm.ac.id; Suharyadi, E.; Harsojo [Departement of Physics, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Nanomaterials Research Group, Universitas Gadjah Mada, Yogyakarta, 55281 (Indonesia); Hui, H.; Wu, L. Y. L., E-mail: ylwu@simtech.a-star.edu.sg [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)

    2016-06-17

    In this paper, we report our investigation on the effect of the molecular weight and molar ratio of polyvinyl pyrrolidone (PVP) and silver nitrate (AgNO{sub 3}) for controlling diameter and length of the silver nanowires synthesized with a high-aspect-ratio. The silver nanowires synthesized by one-pot polyol method at a constant temperature oil bath of 130°C. Different molecule weights of PVP, i.e. 55 K, 360 K, and 1300 K were used combined with different molar ratios of [PVP:Ag]. The UV–vis spectrophotometry and Field-emission scanning electron microscopy (FE-SEM) were employed to characterize the silver nanowires. The results show that the molecular weight and molar ratio of [PVP:Ag] are very important for controlling growth and properties of the silver nanowires. The diameter and length of silver nanowires are obtained 80 to 140 nm and 30 to 70 µm, respectively. The higher molecular weight of PVP, the greater diameter and length of silver nanowires.

  16. Preparation of a long-alkyl-chain-based hybrid monolithic column with mixed-mode interactions using a "one-pot" process for pressurized capillary electrochromatography.

    Science.gov (United States)

    Lyu, Haixia; Zhao, Heqing; Qin, Wenfei; Xie, Zenghong

    2017-12-01

    A simple "one-pot" approach for the preparation of a new vinyl-functionalized organic-inorganic hybrid monolithic column is described. In this improved method, the hydrolyzed alkoxysilanes of tetramethoxysilane and triethoxyvinylsilane were used as precursors for the synthesis of a silica-based monolith, while 1-hexadecene and sodium ethylenesulfonate were used as vinyl functional monomers along with azobisisobutyronitrile as an initiator. The effects of reaction temperature, urea content, and composition of organic monomers on the column properties (e.g. morphology, mechanical stability, and chromatographic performance) were investigated. The monolithic column was used for the separation of neutral solutes by reversed-phase pressurized capillary. Furthermore, the monolith can separate various aromatic amines, which indicated its excellent cation-exchange capability and hydrophobic interactions. The baseline separation of the aromatic amines was obtained with a column efficiency of up to 78 000 plates/m. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. One-pot synthesis of CoNiO{sub 2} single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Du, Weimin, E-mail: dwmchem@163.com; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao [Anyang Normal University, College of Chemistry and Chemical Engineering (China); Qian, Xuefeng [Shanghai Jiao Tong University, School of Chemistry and Chemical Technology (China)

    2015-09-15

    A facile one-pot solvothermal method has been developed to synthesize CoNiO{sub 2} single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO{sub 2} nanoparticles belong to cubic structure with narrow size-distribution (8–10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO{sub 2} nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO{sub 2} nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0–1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge–discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO{sub 2} nanoparticles possess the promising potential application in the field of high-performance energy storage.

  18. One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    Science.gov (United States)

    Du, Weimin; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao; Qian, Xuefeng

    2015-09-01

    A facile one-pot solvothermal method has been developed to synthesize CoNiO2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO2 nanoparticles belong to cubic structure with narrow size-distribution (8-10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0-1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge-discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO2 nanoparticles possess the promising potential application in the field of high-performance energy storage.

  19. One-Pot Synthesis of Tunable Crystalline Ni3 S4 @Amorphous MoS2 Core/Shell Nanospheres for High-Performance Supercapacitors.

    Science.gov (United States)

    Zhang, Yu; Sun, Wenping; Rui, Xianhong; Li, Bing; Tan, Hui Teng; Guo, Guilue; Madhavi, Srinivasan; Zong, Yun; Yan, Qingyu

    2015-08-12

    Transition metal sulfides gain much attention as electrode materials for supercapacitors due to their rich redox chemistry and high electrical conductivity. Designing hierarchical nanostructures is an efficient approach to fully utilize merits of each component. In this work, amorphous MoS(2) is firstly demonstrated to show specific capacitance 1.6 times as that of the crystalline counterpart. Then, crystalline core@amorphous shell (Ni(3)S(4)@MoS(2)) is prepared by a facile one-pot process. The diameter of the core and the thickness of the shell can be independently tuned. Taking advantages of flexible protection of amorphous shell and high capacitance of the conductive core, Ni(3)S(4) @amorphous MoS(2) nanospheres are tested as supercapacitor electrodes, which exhibit high specific capacitance of 1440.9 F g(-1) at 2 A g(-1) and a good capacitance retention of 90.7% after 3000 cycles at 10 A g(-1). This design of crystalline core@amorphous shell architecture may open up new strategies for synthesizing promising electrode materials for supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. One pot synthesis of nanosized anion doped TiO{sub 2}: Effect of irradiation of sound waves on surface morphology and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Sharotri, Nidhi, E-mail: nidhisliet11@gmail.com; Sud, Dhiraj, E-mail: author-suddhiraj@yahoo.com [Department of Chemistry, Sant Longowal Institute of Engineering and Technology, (Deemed University), Longowal 148106, Sangrur, Punjab (India)

    2015-08-28

    Commercialization of AOP’s for remediation of pollutants from environmental matrix required the process to be operated by solar light. Semiconductor TiO{sub 2} has emerged as an effective and preferred photocatalyst in the field of environmental photocatalysis due to its; (i) biological and chemical inertness (ii) resistance to chemical and photo corrosion, (iii) can absorb natural UV light due to appropriate energetic separation between its valence and conduction band. However, unfortunately the optical band gap of TiO{sub 2} (3.0-3.23 eV) with absorption cut off ∼ 380 nm, enables it to harness only a small fraction (∼ 5%) of the entire solar spectrum. One of the current areas of research is modification of TiO{sub 2} photocatalyst. In present paper one pot greener synthesis from titanium isopropoxide and hydroxylamine hydrochloride has been used as titanium and nitrogen precursor under ultrasonic waves. The as synthesized TiO{sub 2} nanomaterials were dried at 100°C and further calcinated at different temperatures. The effect of reaction parameters such as ultrasonication time on the yield, surface morphology, spectroscopic data and optical properties was also investigated. The results confirm that the anatase phase is a main phase with a crystallite size of 35-77 nm and the calculated band gap of nanomaterials varies from 2.10-3.1 eV.

  1. Discovery of core-structurally novel PTP1B inhibitors with specific selectivity containing oxindole-fused spirotetrahydrofurochroman by one-pot reaction.

    Science.gov (United States)

    Dong, Suzhen; Lei, Yubing; Jia, Shikun; Gao, Lixin; Li, Jia; Zhu, Tong; Liu, Shunying; Hu, Wenhao

    2017-02-15

    Protein tyrosine phosphatase 1B (PTP1B) has been proposed to be an ideal target for treatment of type II diabetes and obesity. However, no druggable PTP1B inhibitor has been established and there is still an urgent demand for the development of structurally novel PTPIB inhibitor. Herein, we reported core-structurally novel PTP1B inhibitors with low micromole-ranged inhibitory activity by one-pot reaction from simple starting materials. Further studies demonstrated some of these active compounds had a specific selectivity over other PTPs. The structure and activity relationship was also described. The best active and selective compound 5e inhibited PTP1B activity with an IC 50 of 4.53μM. Molecular docking analysis further demonstrated that compound 5e bound to the active pocket of PTP1B. The results might provide some insights for further development of new drugs for type II diabetes and obesity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. One-Pot Soft-Template Synthesis of Nanostructured Copper-Supported Mesoporous Carbon FDU-15 Electrocatalysts for Efficient CO2 Reduction.

    Science.gov (United States)

    Şahin, Nihat Ege; Comminges, Clément; Le Valant, Anthony; Kiener, Julien; Parmentier, Julien; Napporn, Teko W; Melinte, Georgian; Ersen, Ovidiu; Kokoh, Kouakou B

    2018-03-14

    Copper-supported mesoporous carbon nanocatalysts (Cu/FDU-15) were synthesized using an easy and convenient one-pot soft-template method for low-overvoltage CO 2 electroreduction. TEM imaging revealed the presence of large Cu nanoparticles (diameter 140 nm) with Cu 2 O nanoparticles (16 nm) as an additional phase. From the electron tomography observations, we found that the copper particles were placed inside and on the exterior surface of the porous FDU-15 support, providing an accessible surface for electrocatalytic reactions. CO 2 electrolyses showed that the mesostructured Cu/FDU-15-350 cathode materials were active towards CO 2 conversion to formic acid with 22 % Faradaic efficiency at a remarkably low overpotential of 290 mV, hydrogen being the only side-product. The catalyst's activity correlates to the calculated metallic surface area, as determined from a geometrical model, confirming that the mesoporous channels act as a diffusion path for the CO 2 molecule, and that the whole Cu surface is accessible to CO 2 , even if particles are entrapped in the carbon matrix. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. One pot synthesis, growth mechanism and optical properties of Zn{sub 1-x}Cd{sub x}Se graded core/shell and alloy nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sonawane, Kiran G. [Department of Physics, University of Pune, Pune 411 007 (India); Patil, K.R. [Centre for Materials Characterization, National Chemical Laboratory, Pune 411 008 (India); Mahamuni, Shailaja, E-mail: shailajamahamuni@yahoo.co.in [Department of Physics, University of Pune, Pune 411 007 (India)

    2013-03-15

    Comparatively higher photoluminescence yield along with robustness of core/shell semiconductor nanocrystals make them attractive candidates for studying intricate quantum size effects. Here, we report, one pot synthesis of Zn{sub 1-x}Cd{sub x}Se graded core/shell structures by exploiting change in the reactivity of precursors. Optical and structural measurements indicate formation of graded structure. Growth mechanism probed by inductively coupled plasma atomic emission spectroscopy shows formation of graded core/shell structure, with CdSe rich core and ZnSe rich shell. Annealing these nanocrystals, in chemical bath, leads to diffusion of Cd from core to shell region. Formation of Zn{sub 1-x}Cd{sub x}Se alloy is also observed in X-ray photoelectron spectroscopic measurements, confirming the diffusion of Cd from core to shell region. Substantially high photoluminescence quantum efficiency of 60% with narrow line width of about 27 nm, was observed and is attributable to the reduced strain due to graded core/shell structure. - Highlights: Black-Right-Pointing-Pointer Graded CdSe/ZnSe core-shell nanocrystals are synthesized exploiting reactivity of precursors. Black-Right-Pointing-Pointer Growth mechanism is probed using ICP-AES spectroscopy. Black-Right-Pointing-Pointer Reduced strain leads to luminescence efficiency as high as 60%. Black-Right-Pointing-Pointer Alloy formation by annealing in chemical bath is probed using XPS.

  4. A microwave assisted one-pot route synthesis of bimetallic PtPd alloy cubic nanocomposites and their catalytic reduction for 4-nitrophenol

    Science.gov (United States)

    Zhang, Jian; Gan, Wei; Fu, Xucheng; Hao, Hequn

    2017-10-01

    We herein report a simple, rapid, and eco-friendly chemical route to the one-pot synthesis of bimetallic PtPd alloy cubic nanocomposites under microwave irradiation. During this process, water was employed as an environmentally benign solvent, while dimethylformamide served as a mild reducing agent, and polyvinylpyrrolidone was used as both a dispersant and a stabilizer. The structure, morphology, and composition of the resulting alloy nanocomposites were examined by x-ray diffraction, transmission electron microscopy, and energy dispersive x-ray spectroscopy. A detailed study was then carried out into the catalytic activity of the PtPd nanocomposites with a Pt:Pd molar ratio of 50:50 in the reduction of 4-nitrophenol (4-NP) by sodium borohydride as a model reaction. Compared with pristine Pt and Pd monometallic nanoparticles (PtNPs and PdNPs), the bimetallic PtPd alloy nanocomposites exhibited enhanced catalytic activities and were readily recyclable in the reduction of 4-NP due to synergistic effects.

  5. One-pot synthesis of nitrogen and sulfur co-doped graphene supported MoS2 as high performance anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Liu, Qiuhong; Wu, Zhenjun; Ma, Zhaoling; Dou, Shuo; Wu, Jianghong; Tao, Li; Wang, Xin; Ouyang, Canbing; Shen, Anli; Wang, Shuangyin

    2015-01-01

    Highlights: • Nitrogen and sulfur co-doped graphene supported MoS 2 nanosheets were successfully prepared and used as anode materials for Li-ion batteries. • The as-prepared anode materials show excellent stability in Li-ion batteries. • The materials show high reversible capacity for lithium ion batteries. - Abstract: Nitrogen and sulfur co-doped graphene supported MoS 2 (MoS 2 /NS-G) nanosheets were prepared through a one-pot thermal annealing method. The as prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman spectra and electrochemical techniques. The MoS 2 /NS-G shows high reversible capacity about 1200 mAh/g at current density of 150 mA/g and excellent stability in Li-ion batteries. It was demonstrated the co-doping of graphene by N and S could significantly enhance the durability of MoS 2 as anode materials for Li-ion batteries

  6. One-dimensional growth of hexagonal rods of metastable h-MoO3 using one-pot, rapid and environmentally benign supercritical fluid processing

    Science.gov (United States)

    Thangasamy, Pitchai; Shanmugapriya, Vadivel; Sathish, Marappan

    2018-05-01

    A facile and one-pot supercritical fluid method was demonstrated for the synthesis of phase pure crystalline h-MoO3 microrods within a short reaction time of 5 min at 400 °C. The formation of h-MoO3 was confirmed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and Raman spectroscopic analysis. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) images clearly revealed the formation of hexagonal h-MoO3 rods. Further, photoluminescence emission peaks corresponding to band to band transition was observed in the h-MoO3 microrods. It was observed that when increasing the reaction time from 5 min to 30 min at 400 °C, h-MoO3 microrods undergoes disintegration to α-MoO3 thin nanorods. Interestingly, h-MoO3 microrods were also formed in a reaction time of 30 min at 400 °C when reducing the volume of nitric acid from 1 mL to ∼0.5 mL. The short reaction time and simple synthetic strategy makes this method can be suitable for the synthesis of other semiconductor nanomaterials for diverse applications.

  7. Efficient one-pot synthesis of Ag nanoparticles loaded on N-doped multiphase TiO2 hollow nanorod arrays with enhanced photocatalytic activity

    International Nuclear Information System (INIS)

    Wu Min; Yang Beifang; Lv Yan; Fu Zhengping; Xu Jiao; Guo Ting; Zhao Yongxun

    2010-01-01

    The simultaneous Ag loaded and N-doped TiO 2 hollow nanorod arrays with various contents of silver (Ag/N-THNAs) were successfully synthesized on glass substrates by one-pot liquid phase deposition (LPD) method using ZnO nanorod arrays as template. The catalysts were characterized by Raman spectrum, field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscope (HRTEM), ultraviolet-vis (UV-vis) absorption spectrum and X-ray photoelectron spectroscopy (XPS). The results suggest that AgNO 3 additive in the precursor solutions not only can promote the anatase-to-rutile phase transition, but also influence the amount of N doping in the samples. The photocatalytic activity of all the samples was evaluated by photodegradation of methylene blue (MB) in aqueous solution. The sample exhibited the highest photocatalytic activity under UV light illumination when the AgNO 3 concentration in the precursor solution was 0.03 M, due to Ag nanoparticles acting as electron sinks; When the AgNO 3 concentration was 0.07 M, the sample performed best under visible light illumination, attributed to the synergetic effects of Ag loading, N doping, and the multiphase structure (anatase/rutile).

  8. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase.

    Science.gov (United States)

    Tang, Aiwei; Hu, Zunlan; Yin, Zhe; Ye, Haihang; Yang, Chunhe; Teng, Feng

    2015-05-21

    A simple one-pot colloidal method has been described to engineer ternary CuInS2 nanocrystals with different crystal phases and morphologies, in which dodecanethiol is chosen as the sulfur source and the capping ligands. By a careful choice of the anions in the metal precursors and manipulation of the reaction conditions including the reactant molar ratios and the reaction temperature, CuInS2 nanocrystals with chalcopyrite, zincblende and wurtzite phases have been successfully synthesized. The type of anion in the metal precursors has been found to be essential for determining the crystal phase and morphology of the as-obtained CuInS2 nanocrystals. In particular, the presence of Cl(-) ions plays an important role in the formation of CuInS2 nanoplates with a wurtzite-zincblende polytypism structure. In addition, the molar ratios of Cu to In precursors have a significant effect on the crystal phase and morphology, and the intermediate Cu2S-CuInS2 heteronanostructures are formed which are critical for the anisotropic growth of CuInS2 nanocrystals. Furthermore, the optical absorption results of the as-obtained CuInS2 nanocrystals exhibit a strong dependence on the crystal phase and size.

  9. One-pot synthesis of reduced graphene oxide supported PtCuy catalysts with enhanced electro-catalytic activity for the methanol oxidation reaction

    International Nuclear Information System (INIS)

    Peng, Xinglan; Zhao, Yanchun; Chen, Duhong; Fan, Yanfang; Wang, Xiao; Wang, Weili; Tian, Jianniao

    2014-01-01

    The outstanding performance PtCu y (y = 1,2,3) alloy nanoparticles supported on reduced graphene oxide (rGO) have been synthesized by a facile, efficient, one-pot hydrothermal synthesis approach. The as-prepared PtCu y /rGO catalysts are comprehensively characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy. Cyclic voltammetry, CO-stripping voltammetry and chronoamperometry results reveal that the PtCu y /rGO catalysts have higher electro-catalytic activity, more negative onset oxidative potential, more excellent tolerance ability for CO poisoning and enhanced stability for the electro-oxidation of methanol compared to pure Pt/rGO. As far as the as-made PtCu y /rGO catalysts are concerned, the PtCu 2 /rGO exhibits the highest electro-catalytic activity. The mechanism of the promoting effect of Cu on Pt is explained based on the electronic modification effect. The nature of interfacial interactions between the Pt-Cu active metal phase and the rGO supporting materials is crucial to achieving high performance

  10. One-pot fabrication of FRET-based fluorescent probe for detecting copper ion and sulfide anion in 100% aqueous media

    Science.gov (United States)

    Lv, Kun; Chen, Jian; Wang, Hong; Zhang, Peisheng; Yu, Maolin; Long, Yunfei; Yi, Pinggui

    2017-04-01

    The design of effective tools for detecting copper ion (Cu2 +) and sulfide anion (S2 -) is of great importance due to the abnormal level of Cu2 + and S2 - has been associated with an increase in risk of many diseases. Herein, we report on the fabrication of fluorescence resonance energy transfer (FRET) based fluorescent probe PF (PEI-FITC) for detecting Cu2 + and S2 - in 100% aqueous media via a facile one-pot method by covalent linking fluorescein isothiocyanate (FITC) with branched-polyethylenimine (b-PEI). PF could selectively coordinate with Cu2 + among 10 metal ions to form PF-Cu2 + complex, resulting in fluorescence quenching through FRET mechanism. Furthermore, the in situ generated PF-Cu2 + complex can be used to selectively detect S2 - based on the displacement approach, resulting in an off-on type sensing. There is no obvious interference from other anions, such as Cl-, NO3-, ClO4-, SO42 -, HCO3-, CO32 -, Br-, HPO42 -, F- and S2O32 -. In addition, PF was successfully used to determine Cu2 + and S2 - in human serum and tap water samples. Therefore, the FRET-based probe PF may provide a new method for selective detection of multifarious analysts in biological and environmental applications, and even hold promise for application in more complicated systems.

  11. One-pot solvothermal synthesis of graphene wrapped rice-like ferrous carbonate nanoparticles as anode materials for high energy lithium-ion batteries

    Science.gov (United States)

    Zhang, Fan; Zhang, Ruihan; Feng, Jinkui; Ci, Lijie; Xiong, Shenglin; Yang, Jian; Qian, Yitai; Li, Lifei

    2014-11-01

    Well dispersed rice-like FeCO3 nanoparticles were produced and combined with reduced graphene oxide (RGO) via a one-pot solvothermal route. SEM characterization shows that rice-like FeCO3 nanoparticles are homogeneously anchored on the surface of the graphene nanosheets; the addition of RGO is helpful to form a uniform morphology and reduce the particle size of FeCO3 to nano-grade. As anode materials for lithium-ion batteries, the FeCO3/RGO nanocomposites exhibit significantly improved lithium storage properties with a large reversible capacity of 1345 mA h g-1 for the first cycle and a capacity retention of 1224 mA h g-1 after 50 cycles with a good rate capability compared with pure FeCO3 particles. The superior electrochemical performance of the FeCO3/RGO nanocomposite electrode compared to the pure FeCO3 electrode can be attributed to the well dispersed RGO which enhances the electronic conductivity and accommodates the volume change during the conversion reactions. Our study shows that the FeCO3/RGO nanocomposite could be a suitable candidate for high capacity lithium-ion batteries.

  12. One-pot preparation of magnetic carbon adsorbent derived from pomelo peel for magnetic solid-phase extraction of pollutants in environmental waters.

    Science.gov (United States)

    Huang, Youfang; Peng, Jinghe; Huang, Xiaojia

    2018-04-20

    In this work, magnetic carbon material derived from pomelo peels (MCMPs) was conveniently fabricated utilizing one-pot synthesis method and employed as adsorbent of magnetic solid-phase extraction (MSPE). Several characterized measures including infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometer were used to investigate the morphology, spectroscopic and magnetic properties of prepared adsorbent. Apolar parabens and polar fluoroquinolones (FQs) were used to investigate the extraction performance of MCMPs. Under the optimized extraction conditions, the MCMPs displayed satisfactory extraction performance for target analytes. At the same time, the MCMPs/MSPE was combined with HPLC-DAD for the sensitive determination of parabens and FQs in real-life water samples. Results showed that the limits of detection (S/N = 3) for parabens and FQs were in the ranges of 0.011-0.053 μg/L and 0.012-0.46 μg/L, respectively. The spiked recoveries were in the range of 76.6-116% for parabens and 80.2-114% for FQs with good repeatability (relative standard deviations less than 10%). In comparison to reported methods, the developed MCMPs/MSPE-HPLC-DAD showed some merits including low-cost, simplicity, satisfactory sensitivity and green non-pollution. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. A one-pot synthesis of 1,6,9,13-tetraoxadispiro(4.2.4.2)tetradecane by hydrodeoxygenation of xylose using a palladium catalyst.

    Science.gov (United States)

    Jackson, Michael A; Blackburn, Judith A; Price, Neil P J; Vermillion, Karl E; Peterson, Steven C; Ferrence, Gregory M

    2016-09-02

    In an effort to expand the number of biobased chemicals available from sugars, xylose has been converted to 1,6,9,13-tetraoxadispiro(4.2.4.2)tetradecane in a one-pot reaction using palladium supported on silica-alumina as the catalyst. The title compound is produced in 35-40% yield under 7 MPa H2 pressure at 733 K using 3-10 wt%Pd on silica-alumina catalyst. It is isolated using a combination of liquid-liquid extractions and flash chromatography. This dimer can be converted to its monomer, 2-hydroxy-(2-hydroxymethyl)tetrahydrofuran, which ring opens under acid conditions to 1,5-dihydroxy-2-pentanone. This diol can then be esterified with vinylacetate in phosphate buffer to produce 1,5-bis(acetyloxy)-2-pentanone which is an inhibitor of mammalian 11β-hydroxysteroid dehydrogenase 1. (1)H and (13)C nmr spectra of each of these species are reported. The single crystal X-ray structure of the title compound is also reported. These data were collected in a temperature range of 100 K-273 K and show a solid state phase change from triclinic to monoclinic between 175 K and 220 K without a conformational change. Published by Elsevier Ltd.

  14. One-pot synthesis of biocompatible boronic acid-functionalized poly(methyl methacrylate) nanoparticles at sub-100 nm scale for glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Sakalak, Huseyin [Selcuk University, Metallurgy and Materials Engineering (Turkey); Ulasan, Mehmet; Yavuz, Emine [Selcuk University, Advanced Technology Research and Application Center (Turkey); Camli, Sevket Tolga, E-mail: tolgacamli@gmail.com [Biyotez Machinery Chemistry R& D Co. Ltd. (Turkey); Yavuz, Mustafa Selman, E-mail: selmanyavuz@selcuk.edu.tr [Selcuk University, Metallurgy and Materials Engineering (Turkey)

    2014-12-15

    Poly(methyl methacrylate) nanoparticles containing 4-vinylphenyl boronic acid were synthesized in one pot by surfactant-free emulsion polymerization. The nanoparticles were characterized by scanning electron microscopy and dynamic light scattering. Boron content in the nanoparticles was confirmed by electron-dispersive X-ray spectroscopy. In polymerization process, several co-monomer ratios were studied in order to obtain optimum nanoparticle size. Average hydrodynamic diameter and polydispersity index of nanoparticles versus variation of acetone percentage in the solvent mixture and total monomer concentration were investigated. The effect of boronic acid concentration in the monomer mixture on nanoparticle size and size distribution was also reported. Without further functionalization to the nanoparticles, the catechol dye, alizarin red S, was bound to boronic acid-containing nanoparticles. These nanoparticles behave as a nanosensor by which glucose or fructose can be easily detected. Dye-containing nanoparticles were undertaken displacement reaction by glucose or fructose. The glucose or fructose content was also monitored by UV–Visible spectrophotometer. Furthermore, cytotoxicity studies of boronic acid-carrying poly(methyl methacrylate) nanoparticles were carried out in 3T3 cells, which showed no toxicity effect on the cells.

  15. One-pot synthesis of CoNiO2 single-crystalline nanoparticles as high-performance electrode materials of asymmetric supercapacitors

    International Nuclear Information System (INIS)

    Du, Weimin; Gao, Yanping; Tian, Qingqing; Li, Dan; Zhang, Zhenhu; Guo, Jiaojiao; Qian, Xuefeng

    2015-01-01

    A facile one-pot solvothermal method has been developed to synthesize CoNiO 2 single-crystalline nanoparticles. Crystal phase, morphology, crystal lattice, and composition of the obtained products were characterized by X-ray diffraction, scanning electron microscope, high-resolution transmission electron microscopy, and energy-dispersive X-ray analysis, respectively. Results revealed that the as-synthesized CoNiO 2 nanoparticles belong to cubic structure with narrow size-distribution (8–10 nm). Subsequently, new asymmetric supercapacitors were successfully assembled with CoNiO 2 nanoparticles as positive electrode and activated carbon as negative electrode. The electrochemical results show that asymmetric supercapacitors based on CoNiO 2 nanoparticles possess excellent supercapacitor properties, i.e., a stable electrochemical window of 0–1.7 V, higher energy density of 24.0 Wh/kg at a power density of 415.4 W/kg, and excellent cycling stability (96.8 % capacitance retention after 5000 charge–discharge cycles). Meanwhile, both a light-emitting diode and a mini fan can be powered by two series connection asymmetric supercapacitors. These results imply that the present asymmetric supercapacitors based on CoNiO 2 nanoparticles possess the promising potential application in the field of high-performance energy storage.

  16. Chelator-Accelerated One-Pot ‘Click’ Labeling of Small Molecule Tracers with 2-[18F]Fluoroethyl Azide

    Directory of Open Access Journals (Sweden)

    Erik Årstad

    2013-05-01

    Full Text Available 2-[18F]Fluoroethyl azide ([18F]FEA can readily be obtained by nucleophilic substitution of 2-azidoethyl-4-toluenesulfonate with [18F]fluoride (half-life 110 min, and has become widely used as a reagent for ‘click’ labeling of PET tracers. However, distillation of [18F]FEA is typically required, which is time-consuming and unpractical for routine applications. In addition, copper(I-catalyzed cycloaddition of [18F]FEA with non-activated alkynes, and with substrates containing labile functional groups, can be challenging. Herein, we report a highly efficient and practical ligand-accelerated one-pot/two-step method for ‘click’ labeling of small molecule tracers with [18F]FEA. The method exploits the ability of the copper(I ligand bathophenanthrolinedisulfonate to accelerate the rate of the cycloaddition reaction. As a result, alkynes can be added directly to the crude reaction mixture containing [18F]FEA, and as cyclisation occurs almost immediately at room temperature, the reaction is tolerant to labile functional groups. The method was demonstrated by reacting [18F]FEA with a series of alkyne-functionalized 6-halopurines to give the corresponding triazoles in 55–76% analytical radiochemical yield.

  17. Soft-to-hard templating to well-dispersed N-doped mesoporous carbon nanospheres via one-pot carbon/silica source copolymerization

    Institute of Scientific and Technical Information of China (English)

    Qinglu Kong; Lingxia Zhang; Min Wang; Mengli Li; Heliang Yao; Jianlin Shi

    2016-01-01

    Here we report a new approach referred as "softto-hard templating" strategy via the copolymerization of carbon source (dopamine) and silica source (tetraethyl orthosilicate) for the synthesis of well dispersed N-doped mesoporous carbon nanospheres (MCNs),which exhibit high performance for electrochemical supercapacitor.This method overcomes the shortcoming of uncontrolled dispersity and complicated procedures of soft-or hard-tem-plating methods,respectively.Moreover,the synthesized MCNs feature enriched heteroatom N-doping and easy functionalization by noble-metal nanoparticles during the one-pot synthesis.All the above characters make the asprepared MCNs a promising platform in a variety of applications.To demonstrate the applicability of the synthesized nitrogen-doped MCNs,this material has been employed as an electrode for high-performance electrochemical supercapacitor,which shows a capacitance of 223 and 140 F/g at current densities of 0.5 and 10 A/g in 1 mol/L KOH electrolyte,respectively.

  18. One-Pot Synthesis of CoSex -rGO Composite Powders by Spray Pyrolysis and Their Application as Anode Material for Sodium-Ion Batteries.

    Science.gov (United States)

    Park, Gi Dae; Kang, Yun Chan

    2016-03-14

    A simple one-pot synthesis of metal selenide/reduced graphene oxide (rGO) composite powders for application as anode materials in sodium-ion batteries was developed. The detailed mechanism of formation of the CoSe(x)-rGO composite powders that were selected as the first target material in the spray pyrolysis process was studied. The crumple-structured CoSe(x)-rGO composite powders prepared by spray pyrolysis at 800 °C had a crystal structure consisting mainly of Co0.85 Se with a minor phase of CoSe2. The bare CoSe(x) powders prepared for comparison had a spherical shape and hollow structure. The discharge capacities of the CoSe(x)-rGO composite and bare CoSe(x) powders in the 50th cycle at a constant current density of 0.3 A g(-1) were 420 and 215 mA h g(-1), respectively, and their capacity retentions measured from the second cycle were 80 and 46%, respectively. The high structural stability of the CoSe(x)-rGO composite powders for repeated sodium-ion charge and discharge processes resulted in superior sodium-ion storage properties compared to those of the bare CoSe(x) powders. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. One pot synthesis of magnetic graphene/carbon nanotube composites as magnetic dispersive solid-phase extraction adsorbent for rapid determination of oxytetracycline in sewage water.

    Science.gov (United States)

    Sun, Yunyun; Tian, Jing; Wang, Lu; Yan, Hongyuan; Qiao, Fengxia; Qiao, Xiaoqiang

    2015-11-27

    A simple and time-saving one pot synthesis of magnetic graphene/carbon nanotube composites (M-G/CNTs) was developed that could avoid the tedious drying process of graphite oxide, and G/CNTs were modified by Fe3O4 nanoparticles in the reduction procedure. It contributed to a shorten duration of the synthesis process of M-G/CNTs. The obtained M-G/CNTs were characterized and the results indicated that CNTs and Fe3O4 nanoparticles were served as spacer distributing to the layers of graphene, which was beneficial for enlarging surface area and improving extraction efficiency. Moreover, M-G/CNTs showed good magnetic property and outstanding thermal stability. Then M-G/CNTs were applied as adsorbent of magnetic dispersive solid-phase extraction for rapid extraction and determination of oxytetracycline in sewage water. Under the optimum conditions, good linearity was obtained in the range of 20-800ngmL(-1) and the recoveries were ranged from 95.5% to 112.5% with relative standard deviations less than 5.8%. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. One Pot Synthesis of Pt/Graphene Composite Using Polyamidoamine/Chitosan as a Template and Its Electrocatalysis for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Yanli Wang

    2016-10-01

    Full Text Available A one-pot hydrothermal strategy was used to synthesize Pt/GNs (PAMAM & Pt/GNs (CS composites. Pt nanoparticles are deposited onto graphene sheets (GNs via synchronous reduction of K2PtCl4 and graphene oxide (GO under hydrothermal conditons without additional reducing agent. During the synthesis process, polyamidoamine (PAMAM or chitosan (CS was used as a template respectively to obtain shape controlled Pt particles on the surface of GNs, leading to the formation of flower-like Pt nanoclusters for Pt/GNs (PAMAM and uniform spherical Pt nanoparticles for Pt/GNs (CS. PAMAM and CS are simultaneously served as intrinsic reducing agents to accelerate reduction process; ensuring excellent electrical conductivity of the composites. Electrochemical tests show that Pt/GNs (PAMAM and Pt/GNs (CS have much higher electrocatalytic activity and better stability toward methanol oxidation reaction (MOR in comparison with counterpart Pt/GNs and the commercially available 20% Pt/C catalyst (Pt/C due to their better dispersion of Pt particles, stronger interaction between Pt and substrate materials, and better electron transfer capability.

  1. One-pot synthesis of gold nanoclusters with bright red fluorescence and good biorecognition abilities for visualization fluorescence enhancement detection of E. coli.

    Science.gov (United States)

    Liu, Jiali; Lu, Lili; Xu, Suying; Wang, Leyu

    2015-03-01

    A facile one-pot strategy was developed for the synthesis of lysozyme functionalized fluorescence gold nanoclusters (AuNCs). The lysozymes added to reduce Au(3+) ions and stabilize the AuNCs during the synthesis were coated on the AuNCs surface and retained their specific recognition ability for bacteria such as Escherichia coli (E. coli). Based on such ability, these AuNCs were specifically attached onto the surface of E. coli, which resulted in great red fluorescence enhancement. Nevertheless, the bovine serum albumin (BSA) stabilized AuNCs could not recognize E. coli and no fluorescence enhancement was observed. Upon the addition of E. coli, the red fluorescence intensity of lysozyme-AuNCs was enhanced linearly over the range of 2.4×10(4) -6.0×10(6) CFU/mL of E. coli with high sensitivity (LOD=2.0×10(4) CFU/mL, S/N=3). The visualization fluorescence evolution may enable the rapid and real-time detection of bacteria. This study may be extended to other functional proteins such as antibody, enzyme, and peptide functionalized nanoclusters while retaining the bioactivity of coating proteins and find wide applications in the fields of biochemistry and biomedicine. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. One-pot synthesis of a graphene oxide coated with an imprinted sol–gel for use in electrochemical sensing of paracetamole

    International Nuclear Information System (INIS)

    Luo, Jing; Cong, Jiaojiao; Fang, Ruixue; Fei, Xiaoma; Liu, Xiaoya

    2014-01-01

    A route is described for the preparation of a composite consisting of graphene oxide and a molecularly imprinted sol–gel polymer (GO/MIPs) through one-pot room temperature polymerization in aqueous solution. The material was obtained by mixing graphene oxide with the monomers (phenyltriethoxysilane and tetramethoxysilane) and the template paracetamole, followed by sol–gel copolymerization and extraction. The monomer and template concentrations and the incubation time were optimized. The composite was characterized by FTIR, TGA, XRD, Raman spectroscopy and SEM. It was then deposited as a thin film acting as a molecular recognition element on a glassy carbon electrode to obtain an electrochemical sensor for paracetamole. The electrode displayed an excellent recognition capacity toward paracetamole compared to its analogs. The peak current is linearly proportional to the concentration of paracetamole in the 0.1 μM to 80 μM range, and the detection limit is 20 nM (at an SNR of 3). Hence, this electrode possesses a wider response range and lower detection limit compared to most previously reported electrochemical sensors for paracetamole. It also exhibits excellent stability and has been successfully used to determine paracetamole in tablets and spiked human urine samples. (author)

  3. Metal Nanoparticles Covered with a Metal-Organic Framework: From One-Pot Synthetic Methods to Synergistic Energy Storage and Conversion Functions.

    Science.gov (United States)

    Kobayashi, Hirokazu; Mitsuka, Yuko; Kitagawa, Hiroshi

    2016-08-01

    Hybrid materials composed of metal nanoparticles and metal-organic frameworks (MOFs) have attracted much attention in many applications, such as enhanced gas storage and catalytic, magnetic, and optical properties, because of the synergetic effects between the metal nanoparticles and MOFs. In this Forum Article, we describe our recent progress on novel synthetic methods to produce metal nanoparticles covered with a MOF (metal@MOF). We first present Pd@copper(II) 1,3,5-benzenetricarboxylate (HKUST-1) as a novel hydrogen-storage material. The HKUST-1 coating on Pd nanocrystals results in a remarkably enhanced hydrogen-storage capacity and speed in the Pd nanocrystals, originating from charge transfer from Pd nanocrystals to HKUST-1. Another material, Pd-Au@Zn(MeIM)2 (ZIF-8, where HMeIM = 2-methylimidazole), exhibits much different catalytic activity for alcohol oxidation compared with Pd-Au nanoparticles, indicating a design guideline for the development of composite catalysts with high selectivity. A composite material composed of Cu nanoparticles and Cr3F(H2O)2O{C6H3(CO2)3}2 (MIL-100-Cr) demonstrates higher catalytic activity for CO2 reduction into methanol than Cu/γ-Al2O3. We also present novel one-pot synthetic methods to produce composite materials including Pd/ZIF-8 and Ni@Ni2(dhtp) (MOF-74, where H4dhtp = 2,5-dihydroxyterephthalic acid).

  4. One-pot synthesis of Fe3O4@Chitosan-pSDCalix hybrid nanomaterial for the detection and removal of Hg2+ ion from aqueous media

    Science.gov (United States)

    Bhatti, Asif Ali; Oguz, Mehmet; Yilmaz, Mustafa

    2018-03-01

    New one pot mesoporous hybrid material containing iron nanoparticles fabricated with chitosan and p-sulfonato dansyl calix[4]arene composite (Fe3O4@Chitosan-pSDCalix) has been susccessfully synthesized. These mesoporous fluorescence iron nanoparticles were applied for the detection and removal of environmentally toxic Hg2+ ion from aqueous media. Different techniques were applied to confirm the preparation of Fe3O4@Chitosan-pSDCalix such as HRTEM, TGA/DTA, FTIR and XRD. Synthesized nanoparticles have average size of 17 nm with pore size of 0.19 nm as revealed from HRTEM images. Fluorescence study follow the photoinduced electron transfer process after addition of Hg2+ in the solution with decrease in intensity. Confocal microscope images were also acquired to confirm the presence of Hg2+ on nanoparticles. Adsorption study suggests that the removal of Hg2+ from aqueous media follows Langmuir adsorption isotherm. These studies suggest the synthesized Fe3O4@Chitosan-pSDCalix is an efficient hybrid material for the detection and removal of Hg2+ ion from aqueous media, and that it can also be used in biomolecules for the detection of toxic metal ions.

  5. The silver nanowires synthesized using different molecule weight of polyvinyl pyrrolidone for controlling diameter and length by one-pot polyol method

    International Nuclear Information System (INIS)

    Junaidi; Triyana, K.; Suharyadi, E.; Harsojo; Hui, H.; Wu, L. Y. L.

    2016-01-01

    In this paper, we report our investigation on the effect of the molecular weight and molar ratio of polyvinyl pyrrolidone (PVP) and silver nitrate (AgNO 3 ) for controlling diameter and length of the silver nanowires synthesized with a high-aspect-ratio. The silver nanowires synthesized by one-pot polyol method at a constant temperature oil bath of 130°C. Different molecule weights of PVP, i.e. 55 K, 360 K, and 1300 K were used combined with different molar ratios of [PVP:Ag]. The UV–vis spectrophotometry and Field-emission scanning electron microscopy (FE-SEM) were employed to characterize the silver nanowires. The results show that the molecular weight and molar ratio of [PVP:Ag] are very important for controlling growth and properties of the silver nanowires. The diameter and length of silver nanowires are obtained 80 to 140 nm and 30 to 70 µm, respectively. The higher molecular weight of PVP, the greater diameter and length of silver nanowires.

  6. One-pot synthesis of multifunctional nanoscale metal-organic frameworks as an effective antibacterial agent against multidrug-resistant Staphylococcus aureus

    Science.gov (United States)

    Chowdhuri, Angshuman Ray; Das, Balaram; Kumar, Amit; Tripathy, Satyajit; Roy, Somenath; Sahu, Sumanta Kumar

    2017-03-01

    Drug-resistant bacteria are an increasingly serious threat to global public health. In particular, infections from multidrug-resistant (MDR) Gram-positive bacteria (i.e. Staphylococcus aureus) are growing global health concerns. In this work, we report the first use of nanoscale metal-organic frameworks (NMOFs) coencapsulating an antibiotic (vancomycin) and targeting ligand (folic acid) in one pot to enhance therapeutic efficacy against MDR S. aureus. Zeolitic imidazolate framework (ZIF-8) NMOFs, which have globular morphologies coencapsulating vancomycin and folic acid, are characterized by transmission electron microscopy, field-emission scanning electron microscopy, powder x-ray diffraction, ulltraviolet-visible spectroscopy, and dynamic light-scattering techniques. We determined that the presence of folic acid on the surface of the NMOFs is significant in the sense of effective uptake by MDR S. aureus through endocytosis. The functionalized NMOFs transport vancomycin across the cell wall of MDR S. aureus and enhance antibacterial activity, which has been confirmed from studies of the minimum inhibitory concentration, minimum bactericidal concentration, cytotoxicity of bacterial cells, and generation of reactive oxygen species. This work shows that functionalized NMOFs hold great promise for effective treatment of MDR S. aureus.

  7. One-pot synthesis of biocompatible boronic acid-functionalized poly(methyl methacrylate) nanoparticles at sub-100 nm scale for glucose sensing

    International Nuclear Information System (INIS)

    Sakalak, Huseyin; Ulasan, Mehmet; Yavuz, Emine; Camli, Sevket Tolga; Yavuz, Mustafa Selman

    2014-01-01

    Poly(methyl methacrylate) nanoparticles containing 4-vinylphenyl boronic acid were synthesized in one pot by surfactant-free emulsion polymerization. The nanoparticles were characterized by scanning electron microscopy and dynamic light scattering. Boron content in the nanoparticles was confirmed by electron-dispersive X-ray spectroscopy. In polymerization process, several co-monomer ratios were studied in order to obtain optimum nanoparticle size. Average hydrodynamic diameter and polydispersity index of nanoparticles versus variation of acetone percentage in the solvent mixture and total monomer concentration were investigated. The effect of boronic acid concentration in the monomer mixture on nanoparticle size and size distribution was also reported. Without further functionalization to the nanoparticles, the catechol dye, alizarin red S, was bound to boronic acid-containing nanoparticles. These nanoparticles behave as a nanosensor by which glucose or fructose can be easily detected. Dye-containing nanoparticles were undertaken displacement reaction by glucose or fructose. The glucose or fructose content was also monitored by UV–Visible spectrophotometer. Furthermore, cytotoxicity studies of boronic acid-carrying poly(methyl methacrylate) nanoparticles were carried out in 3T3 cells, which showed no toxicity effect on the cells

  8. Ratiometric Fluorescence Sensing and Real-Time Detection of Water in Organic Solvents with One-Pot Synthesis of Ru@MIL-101(Al)-NH2.

    Science.gov (United States)

    Yin, Hua-Qing; Yang, Ji-Chun; Yin, Xue-Bo

    2017-12-19

    Ratiometric fluorescence detection attracts much attention because of its decreased environmental influence and easy-to-differentiate color and intensity change. Herein, a guest-encapsulation metal-organic framework (MOF), Ru@MIL-NH 2 , is prepared with 2-aminoterephthalic acid, AlCl 3 , and Ru(bpy) 3 2+ by a simple one-pot method for ratiometric fluorescence sensing of water in organic solvents. The rational selection of the excitation wavelength provides dual emission at 465 and 615 nm from Ru@MIL-NH 2 under a single excitation of 300 nm. High sensitivity, low detection limit (0.02% v/v), wide response range (0-100%), and fast response (less than 1 min) are obtained for ratiometric fluorescence sensing of water under single excitation with Ru@MIL-NH 2 as the probe. Moreover, the result of water content is independent of the concentration of Ru@MIL-NH 2 as the merit of ratiometric fluorescence detection. The response mechanism reveals that the protonation of the nitrogen atom of the MIL-NH 2 , the π-conjugation system, and the stable fluorescence of Ru(bpy) 3 2+ achieve the ratiometric fluorescence. The analysis of real spirit samples confirms the proposed method. A test strip is prepared with Ru@MIL-NH 2 for convenient use. We believe that such turn-on ratiometric host-guest MOFs and the rational selection of excitation wavelength will offer guidance for ratiometric fluorescence detection with wide applications.

  9. Microwave Assisted Convenient One-Pot Synthesis of Coumarin Derivatives via Pechmann Condensation Catalyzed by FeF3 under Solvent-Free Conditions and Antimicrobial Activities of the Products

    Directory of Open Access Journals (Sweden)

    Vahid Vahabi

    2014-08-01

    Full Text Available A rapid and efficient solvent-free one-pot synthesis of coumarin derivatives by Pechmann condensation reactions of phenols with ethyl acetoacetate using FeF3 as a catalyst under microwave irradiation is described. This one-pot synthesis on a solid inorganic support provides the products in good yields. The newly synthesized compounds were systematically characterized by IR, 1H-NMR, 13C-NMR, MS and elemental CHN analyses. The proposed solvent-free microwave irradiation method using the environmentally friendly catalyst FeF3 offers the unique advantages of high yields, shorter reaction times, easy and quick isolation of the products, excellent chemoselectivity, and a one-pot, green synthesis. The products were screened for antimicrobial activity, and the results showed that the compounds reacted against all the tested bacteria.

  10. Effect of CdS Growth Time on the Optical Properties of One-Pot Preparation of CdS-Ag2S Binary Compounds

    Science.gov (United States)

    Karimipour, M.; Izadian, L.; Molaei, M.

    2018-02-01

    CdS-Ag2S binary nanoparticles were synthesized using a facile one-pot microwave irradiation method. The effect of initial nucleation of CdS quantum dots (QDs) using 3 min, 5 min, and 7 min of microwave irradiation on the optical properties of the final compound was studied. The composition and crystal structure of the compounds were verified using energy dispersive x-ray spectroscopy and x-ray diffraction. They revealed that existence of Ag and Cd elements with an atomic ratio of 0.19 crystalizes in the form of monoclinic Ag2S and hexagonal CdS. Scanning electron microscope images showed a spherical morphology of the resultant compound, and transmission electron microscope images showed the formation of fine particles of CdS-Ag2S composites with an average size of 5-7 nm and 10-14 nm for CdS and Ag2S, respectively. Photoluminescence spectroscopy revealed that the initial growth time of CdS has a crucial effect on the emission of binary compounds such that for 3 min and 5 min of irradiation of CdS solution, the binary compound obtains strong red and considerable near-IR emission (850 nm), but for longer time, it rapidly quenches. The results indicate that the strong red emission can be tuned from 600 nm up to 700 nm with prolonging nucleation time of CdS. This study also emphasized that the origin of red emission strongly depends on the size and defects created in the CdS QDs.

  11. Three-dimensional sea-urchin-like hierarchical TiO{sub 2} microspheres synthesized by a one-pot hydrothermal method and their enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yi, E-mail: zhouyihn@163.com [Department of Chemical and Biological Engineering, Changsha University of Science and Technology, Hunan, 410114 (China); Huang, Yan; Li, Dang; He, Wenhong [Department of Chemical and Biological Engineering, Changsha University of Science and Technology, Hunan, 410114 (China)

    2013-07-15

    Graphical abstract: SEM images of the samples synthesized at different hydrothermal temperatures for 8 h: (a) 75; (b) 100; (c) 120; and (d) 140°C, followed by calcination at 450 °C for 2 h. Highlights: ► Effects of calcination temperature on the phase transformation were studied. ► Effects of hydrothermal temperature and time on the morphology growth were studied. ► A two-stage reaction mechanism for the formation was presented. ► The photocatalytic activity was evaluated under sunlight irradiation. ► Effects of calcination temperature on the photocatalytic activity were studied. - Abstract: Novel three-dimensional sea-urchin-like hierarchical TiO{sub 2} superstructures were synthesized on a Ti plate in a mixture of H{sub 2}O{sub 2} and NaOH aqueous solution by a facile one-pot hydrothermal method at a low temperature, followed by protonation and calcination. The results of series of electron microscopy characterizations suggested that the hierarchical TiO{sub 2} superstructures consisted of numerous one-dimensional nanostructures. The microspheres were approximately 2–4 μm in diameter, and the one-dimensional TiO{sub 2} nanostructures were up to 600–700 nm long. A two-stage reaction mechanism, i.e., initial growth and then assembly, was proposed for the formation of these architectures. The three-dimensional sea-urchin-like hierarchical TiO{sub 2} microstructures showed excellent photocatalytic activity for the degradation of Rhodamine B aqueous solution under sunlight irradiation, which was attributed to the special three-dimensional hierarchical superstructure, and increased number of surface active sites. This novel superstructure has promising use in practical aqueous purification.

  12. One-pot hydrothermal synthesis of mesoporous Zn(x)Cd(1-x)S/reduced graphene oxide hybrid material and its enhanced photocatalytic activity.

    Science.gov (United States)

    Wang, Xinwei; Tian, Hongwei; Cui, Xiaoqiang; Zheng, Weitao; Liu, Yichun

    2014-09-14

    We successfully synthesized mesoporous Zn(x)Cd(1-x)S/reduced graphene oxide (Z(x)CSG) hybrid materials as photocatalysts using a facile one-pot hydrothermal reaction, in which graphene oxide (GO) was easily reduced (RGO), and simultaneously Zn(x)Cd(1-x)S (Z(x)CS) nanoparticles (NPs) with a mesoporous structure were uniformly dispersed on the RGO sheets. By well tuning the band gap from 3.42 to 2.21 eV by changing the molar ratio of Zn/Cd (or Zn content), Z(x)CSG with an optimal zinc content has been found to have a significant absorption in the visible light (VL) region. In addition, under VL irradiation (λ > 420 nm), Z(x)CSG also showed zinc content-dependent photocatalytic efficiencies for the degradation of methylene blue (MB). Our findings are that, among Z(x)CSG, Z(0.4)CSG displayed not only a superior photodegradation efficiency of MB (98%), but also good removal efficiency of total organic carbon (TOC) (67%). Furthermore, Z(0.4)CSG had a high photocatalytic stability, and could be used repeatedly. The enhanced photocatalytic activity for Z(0.4)CSG could be attributed to a synergistic effect between mesoporous Z(x)CS NPs and RGO, including the optimal band gap and the moderate conduction band position for ZxCS (compared to CdS), efficient separation and transfer ability of photogenerated electron/hole pairs in the presence of RGO sheets, and relatively high surface area for both mesoporous Z(x)CS NPs and RGO.

  13. Non-injection and one-pot approach to CdSe: Eu3+ hybrid nanocrystals with tunable photoluminescence from green to red

    International Nuclear Information System (INIS)

    Kong, Lingcan; Chu, Xuefeng; Wang, Chuanxi; Yang, Xiaotian; Zhou, Lei

    2017-01-01

    Europium ion-doped CdSe hybrid nanocrystals (CdSe:Eu 3+ NCs) as a class of new luminescent materials have drawn increasing attention in recent years owing to their remarkable optical properties. In this paper, we report a facile method to prepare CdSe:Eu 3+ NCs using oleic acid (OA) as the capping agent. With this non-injection and one-pot synthesized approach, the formation and surface passivation of CdSe:Eu 3+ NCs are performed simultaneously and result in intrinsic luminescence. The as-prepared CdSe:Eu 3+ NCs are characterized by transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy (EDX). Their optical properties are also studied by UV–vis and photoluminescence spectra. Moreover, the effects of feed ratios and reaction temperatures on the optical properties are further investigated. The results show that the luminescent spectra of CdSe:Eu 3+ NCs are tunable from green (490 nm) to red (630 nm) and gradually redshift with the increase of the nanoparticle size from 2.5 to 4.4 nm. Upon decoration with 2-thenoyltrifluoroacetone (TTA), the luminescence of europium ion drastically increases and efficient energy transfer from CdSe host to the europium ion is proposed. In addition, an MTT and apoptosis assay show CdSe:Eu 3+ NCs have low cellular toxicity and could be used as fluorescence imaging for human epithelial type 2 (Hep-2) cells. These properties make CdSe:Eu 3+ NCs a potential candidate for biological labeling, immunoassays, and optical sensing.

  14. One-pot synthesis of Zn{sub x}Cd{sub 1-x}S nanocrystals with tunable optical properties from molecular precursors

    Energy Technology Data Exchange (ETDEWEB)

    Chen Zhigang, E-mail: zgchen@dhu.edu.c [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Tian Qiwei; Song Yuelin [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China); Yang Jianmao [Research Center for Analysis and Measurement, Donghua University, Shanghai 201620 (China); Hu Junqing, E-mail: hu.junqing@dhu.edu.c [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620 (China)

    2010-09-17

    We have reported a non-injection one-pot synthesis of the alloyed Zn{sub x}Cd{sub 1-x}S semiconductor nanocrystals (SNCs) with controlled shapes and compositions. This non-injection approach involves heating two molecular precursors (cadmium ethylxanthate and zinc ethylxanthate) as metal and S sources in organic solvents at 320 {sup o}C for 30 min, which results in the thermal decompositions of the molecular precursors to produce Zn{sub x}Cd{sub 1-x}S. The effects of solvents and compositions on the shapes and structures of Zn{sub x}Cd{sub 1-x}S SNCs have been investigated. The mixture solvent containing oleic acid, paraffin oil and oleylamine (such as a volume ratio: 1/2/1) results in the preparation of uniform Zn{sub x}Cd{sub 1-x}S nanoparticles with diameters of 7-13 nm, while pure oleylamine or the mixture of oleylamine and paraffin oil as the solvent leads to the formation of uniform Zn{sub x}Cd{sub 1-x}S nanorods. Monodisperse wurtzite Zn{sub x}Cd{sub 1-x}S nanorods with different compositions have been prepared in pure oleylamine, and no obvious effects of the compositions on their shapes are found. Their alloying nature is consistently confirmed by the results of high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) and optical measurements. These alloyed Zn{sub x}Cd{sub 1-x}S nanorods exhibit composition-dependent absorption and emission properties, and therefore they can be promising candidates as emitting materials.

  15. Autoclave mediated one-pot-one-minute synthesis of AgNPs and Au-Ag nanocomposite from Melia azedarach bark extract with antimicrobial activity against food pathogens.

    Science.gov (United States)

    Pani, Alok; Lee, Joong Hee; Yun, Soon-Ii

    2016-01-01

    The increasing use of nanoparticles and nanocomposite in pharmaceutical and processed food industry have increased the demand for nontoxic and inert metallic nanostructures. Chemical and physical method of synthesis of nanostructures is most popular in industrial production, despite the fact that these methods are labor intensive and/or generate toxic effluents. There has been an increasing demand for rapid, ecofriendly and relatively cheaper synthesis of nanostructures. Here, we propose a strategy, for one-minute green synthesis of AgNPs and a one-pot one-minute green synthesis of Au-Ag nanocomposite, using Melia azedarach bark aqueous extract as reducing agent. The hydrothermal mechanism of the autoclave technology has been successfully used in this study to accelerate the nucleation and growth of nano-crystals. The study also presents high antimicrobial potential of the synthesized nano solutions against common food and water born pathogens. The multistep characterization and analysis of the synthesized nanomaterial samples, using UV-visible spectroscopy, ICP-MS, FT-IR, EDX, XRD, HR-TEM and FE-SEM, also reveal the reaction dynamics of AgNO3, AuCl3 and plant extract in synthesis of the nanoparticles and nanocomposite. The antimicrobial effectiveness of the synthesized Au-Ag nanocomposite, with high gold to silver ratio, reduces the dependency on the AgNPs, which is considered to be environmentally more toxic than the gold counterpart. We hope that this new strategy will change the present course of green synthesis. The rapidity of synthesis will also help in industrial scale green production of nanostructures using Melia azedarach.

  16. One pot synthesis of new poly(vinyl alcohol) blended natural polymer based magnetic hydrogel beads: Controlled natural anticancer alkaloid delivery system.

    Science.gov (United States)

    Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Lenin, Nayagam; Sankarganesh, Murugesan; Dhaveethu Raja, Jeyaraj; Rajesh, Jegathalaprathaban

    2018-02-01

    Facile one-pot synthesis has been demonstrated for new biocompatible and dual responsive magnetic iron oxide nanoparticles cross-linked poly(vinyl alcohol) (PVA) blended natural polymer chitosan (CS) based hydrogel beads (mCS-PVA) as a controlled natural anticancer alkaloid Luotonin A (LuA) delivery system. The prepared magnetic hydrogel beads were characterized using powder X-ray diffraction measurement, Fourier transform-infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and vibrating sample magnetometer. The magnetic hydrogel beads are exhibited significant water retention and follow the second order kinetic model in swelling study. The swelling ratio of the magnetic gel beads increased by the addition of PVA and showed a maximum swelling ratio of 40.83 ± 1.01 g/g and follows non-Fickian water transport mechanism. Stimuli responsive mCS and mCS-PVA hydrogel beads functionalized with LuA is demonstrated for controlled release at physiological pH and under magnetic field. The magnetic hydrogel beads show highest LuA releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 73.33 ± 1.44%. This efficacy may also be tuned by altering the external magnetic field as well as the weight percentage (wt %) of polyethylene glycol. It is clearly that the newly produced magnetic hydrogel beads can be served as an effective intestinal LuA delivery system. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 543-551, 2018. © 2017 Wiley Periodicals, Inc.

  17. Fe2.25W0.75O4/reduced graphene oxide nanocomposites for novel bifunctional photocatalyst: One-pot synthesis, magnetically recyclable and enhanced photocatalytic property

    International Nuclear Information System (INIS)

    Guo, Jinxue; Jiang, Bin; Zhang, Xiao; Zhou, Xiaoyu; Hou, Wanguo

    2013-01-01

    Fe 2.25 W 0.75 O 4 /reduced graphene oxide (RGO) composites were prepared for application of novel bifunctional photocatalyst via simple one-pot hydrothermal method, employing graphene oxide (GO), Na 2 WO 4 , FeSO 4 and sodium dodecyl benzene sulfonate (SDBS) as the precursors. Transmission electron microscope (TEM) results indicate that the well-dispersed Fe 2.25 W 0.75 O 4 nanoparticles were deposited on the surface of RGO sheets homogeneously. Magnetic characterization reveals that Fe 2.25 W 0.75 O 4 and Fe 2.25 W 0.75 O 4 /RGO show ferromagnetic behaviors. So this novel bifunctional photocatalyst could achieve magnetic separation and collection with the aid of external magnet. The composites exhibit enhanced photocatalytic performance on degradation of methyl orange (MO) compared with pure Fe 2.25 W 0.75 O 4 under low-power ultraviolet light irradiation due to the introduction of RGO. Moreover, this hybrid catalyst possesses long-term excellent photocatalytic performance due to its good thermal stability. This bifunctional photocatalyst, which combines magnetic property and excellent photocatalytic activity, would be a perfect candidate in applications of catalytic elimination of environmental pollutants and other areas. - Graphical abstract: Magnetically recyclable Fe 2.25 W 0.75 O 4 /reduced graphene oxide nanocomposites with enhanced photocatalytic property Display Omitted - Highlights: ●Fe 2.25 W 0.75 O 4 growth, deposition and GO reduction occurred simultaneously. ●Composite possessed ferromagnetic and enhanced photocatalytic properties. ●Composite is utilized as a magnetically separable and high-efficient photocatalyst. ●Photocatalyst showed good photocatalytic and thermal stability during cyclic use

  18. One-pot fabrication of NiFe2O4 nanoparticles on α-Ni(OH)2 nanosheet for enhanced water oxidation

    Science.gov (United States)

    Chen, Hong; Yan, Junqing; Wu, Huan; Zhang, Yunxia; Liu, Shengzhong (Frank)

    2016-08-01

    Water splitting has been intensively investigated as a promising solution to resolve the future environmental and energy crises. The oxygen evolution reaction (OER) of the photo- and electric field-induced water splitting limits the development of other reactions, including hydrogen evolution reaction (HER). Fe, Ni and NiFe (hydro) oxide-based catalysts are generally acknowledged among the best candidates of OER catalysts for water splitting. Herein, we developed a one-pot simple hydrothermal process to assemble NiFe2O4 nanoparticles onto the α-Ni(OH)2 nanosheets. The first formed NiFe2O4 under high temperature and pressure environment induces and assists the α-Ni(OH)2 formation without any further additives, because the distance between the neighboring Ni atoms in the cubic NiFe2O4 is similar to that in the α-Ni(OH)2 {003} facets. We have synthesized a series of NiFe2O4/α-Ni(OH)2 compounds and find that the overpotential decreases with the increase of Ni(OH)2 content while the OER kinetics stays unchanged, suggesting that Ni(OH)2 plays a major role in overpotential while NiFe2O4 mainly affects the OER kinetics. The obtained NiFe2O4/α-Ni(OH)2 compounds is also found to be a promising co-catalyst for the photocatalytic water oxidation. In fact, it is even more active than the noble PtOx with acceptable stability for the oxygen generation.

  19. One-pot, facile fabrication of a Ag3PO4-based ternary Z-scheme photocatalyst with excellent visible-light photoactivity and anti-photocorrosion performance

    Science.gov (United States)

    Xie, Mingyuan; Zhang, Tailiang

    2018-04-01

    Ag3PO4 can-not be widely used as an efficient photocatalyst in practical applications because of its susceptibility to photocorrosion. In this study, a novel, ternary Z-scheme photocatalytic system containing graphene oxide (GO), Ag3PO4 and SnS2 was fabricated by a one-pot, mild, in-situ precipitation method successfully. Using Rhodamine B (RhB) as the target of elimination, GO/Ag3PO4/SnS2 exhibited outstanding photocatalytic and anti-photocorrosion properties compared with those of Ag3PO4, Ag3PO4/SnS2 and GO/Ag3PO4. RhB was thoroughly degraded over the optimized GO/Ag3PO4/SnS2 nanocomposite after only 15 min under visible-light irradiation; this result is approximately 2.14, 3.33 and 5.83 times faster than that of GO/Ag3PO4, Ag3PO4/SnS2 and Ag3PO4, respectively. After three reuses, the photocatalytic activity of the ternary composite slightly decreased but remained 2.36, 4.08 and 12.70 times higher than those of the reused GO/Ag3PO4, Ag3PO4/SnS2 and Ag3PO4, respectively. In this system, the efficient separation and migration of the photoinduced current carriers in Ag3PO4 was realized through a double Z-scheme electron-transfer mechanism in which the GO nanosheets acted as the photocatalyst and electron mediator, thereby enhancing the photoactivity and stability of Ag3PO4. The present study provides a new perspective for enhancing photocatalytic and anti-photocorrosion performances in perishable photocatalysts for organic sewage and other environmental contamination treatments.

  20. Laser-assisted one-pot fabrication of calcium phosphate-based submicrospheres with internally crystallized magnetite nanoparticles through chemical precipitation.

    Science.gov (United States)

    Nakamura, Maki; Oyane, Ayako; Sakamaki, Ikuko; Ishikawa, Yoshie; Shimizu, Yoshiki; Kawaguchi, Kenji

    2015-04-14

    In this paper, we have further developed our simple (one-pot) and rapid (short irradiation time) laser fabrication process of submicrometer spheres composed of amorphous calcium iron phosphate. In our previous process, laser irradiation was applied to a calcium phosphate (CaP) reaction mixture supplemented with ferric ions (Fe(3+)) as a light-absorbing agent. Because the intention of the present study was to fabricate magnetite-encapsulated CaP-based submicrometer spheres, ferrous ions (Fe(2+)) were used as a light-absorbing agent rather than ferric ions. The ferrous ions served as a light-absorbing agent and facilitated the fabrication of submicrometer and micrometer spheres of amorphous calcium iron phosphate. The sphere formation and growth were better promoted by the use of ferrous ions as compared with the use of ferric ions. The chemical composition of the spheres was controllable through adjustment of the experimental conditions. By the addition of sodium hydroxide to the CaP reaction mixture supplemented with ferrous ions, fabrication of CaP-based magnetic submicrometer spheres was successfully achieved. Numerous magnetite and wüstite nanoparticles were coprecipitated or segregated into the CaP-based spherical amorphous matrix via light-material interaction during the CaP precipitation process. The magnetic properties of the magnetite and wüstite formed in the CaP-based spheres were investigated by magnetization measurements. The present process and the resulting CaP-based spheres are expected to have great potential for biomedical applications.

  1. One-pot solvothermal synthesis of ordered intermetallic Pt{sub 2}In{sub 3} as stable and efficient electrocatalyst towards direct alcohol fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Jana, Rajkumar; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in

    2016-10-15

    Ordered intermetallic Pt{sub 2}In{sub 3} nanoparticles have been synthesized by superhydride reduction of K{sub 2}PtCl{sub 4} and InCl{sub 3}.xH{sub 2}O precursors using facile, one-pot solvothermal method. We report surfactant free solvothermal synthesis of a novel ordered Pt{sub 2}In{sub 3} intermetallic nanoparticles for the first time. The structure and morphology of the catalyst has been confirmed by powder X-ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, energy-dispersive spectrometry and X-ray photoelectron spectroscopy. The electrocatalytic properties of the catalysts have been investigated by cyclic voltammetry and chronoamperometry. The as prepared Pt{sub 2}In{sub 3} catalyst exhibit far superior electrocatalytic activity and stability towards alcohol oxidation over commercial Pt/C. The specific activity of as synthesized catalyst was found to be ~3.2 and ~2.3 times higher than commercial Pt/C for methanol and ethanol oxidation, respectively. This improved activity and durability of the Pt{sub 2}In{sub 3} nanoparticles can make the catalyst an ideal catalyst candidate for direct alcohol fuel cell. - Graphical abstract: The ordered structure of Pt{sub 2}In{sub 3} nanoparticles synthesized by solvothermal method has confirmed through XRD and TEM. Cyclic voltametry and chronoamperometry showed improved catalytic activity and stability compared to commercial Pt/C. - Highlights: • Ordered Pt{sub 2}In{sub 3} nanoparticles were synthesized by solvothermal method. • Electrooxidation of alcohols on Pt{sub 2}In{sub 3} catalyst was investigated in acidic medium. • Pt{sub 2}In{sub 3} catalyst has superior catalytic activity compared to commercial Pt/C. • Pt{sub 2}In{sub 3} catalyst exhibited much higher stability than commercial Pt/C.

  2. Non-injection and one-pot approach to CdSe: Eu{sup 3+} hybrid nanocrystals with tunable photoluminescence from green to red

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingcan, E-mail: konglingcan2010@163.com [Wuxi Center for Disease Control and Prevention (China); Chu, Xuefeng [Jilin Jianzhu University, Jilin Provincial Key Laboratory of Architectural Electricity & Comprehensive Energy Saving, School of Electrical and Electronic Information Engineering (China); Wang, Chuanxi, E-mail: wangcx@jiangnan.edu.cn [Jiangnan University, China-Australia Joint Research Centre for Functional Molecular Materials, School of Chemical & Material Engineering (China); Yang, Xiaotian [Jilin Jianzhu University, Jilin Provincial Key Laboratory of Architectural Electricity & Comprehensive Energy Saving, School of Electrical and Electronic Information Engineering (China); Zhou, Lei [Wuxi Center for Disease Control and Prevention (China)

    2017-01-15

    Europium ion-doped CdSe hybrid nanocrystals (CdSe:Eu{sup 3+} NCs) as a class of new luminescent materials have drawn increasing attention in recent years owing to their remarkable optical properties. In this paper, we report a facile method to prepare CdSe:Eu{sup 3+} NCs using oleic acid (OA) as the capping agent. With this non-injection and one-pot synthesized approach, the formation and surface passivation of CdSe:Eu{sup 3+} NCs are performed simultaneously and result in intrinsic luminescence. The as-prepared CdSe:Eu{sup 3+} NCs are characterized by transmission electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy (EDX). Their optical properties are also studied by UV–vis and photoluminescence spectra. Moreover, the effects of feed ratios and reaction temperatures on the optical properties are further investigated. The results show that the luminescent spectra of CdSe:Eu{sup 3+} NCs are tunable from green (490 nm) to red (630 nm) and gradually redshift with the increase of the nanoparticle size from 2.5 to 4.4 nm. Upon decoration with 2-thenoyltrifluoroacetone (TTA), the luminescence of europium ion drastically increases and efficient energy transfer from CdSe host to the europium ion is proposed. In addition, an MTT and apoptosis assay show CdSe:Eu{sup 3+} NCs have low cellular toxicity and could be used as fluorescence imaging for human epithelial type 2 (Hep-2) cells. These properties make CdSe:Eu{sup 3+} NCs a potential candidate for biological labeling, immunoassays, and optical sensing.

  3. One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties

    KAUST Repository

    Chen, Jun Song; Li, Chang Ming; Zhou, Wen Wen; Yan, Qing Yu; Archer, Lynden A.; Lou, Xiong Wen

    2009-01-01

    -out Ostwald ripening mechanism. More importantly, this facile one-pot process can be extended to fabricate rattle-type hollow structures using α-Fe2O3@SnO2 as an example. Furthermore, the electrochemical lithium storage properties have been investigated

  4. Facile synthesis of NaYF4:Yb, Ln/NaYF4:Yb core/shell upconversion nanoparticles via successive ion layer adsorption and one-pot reaction technique

    NARCIS (Netherlands)

    Zeng, Q.; Xue, B.; Zhang, Y.; Wang, D.; Liu, X.; Tu, L.; Zhao, H.; Kong, X.; Zhang, H.

    2013-01-01

    The facile one-pot synthesis of NaYF4:Yb, Ln/NaYF4:Yb core/shell (CS) upconversion nanoparticles (UCNPs) was firstly developed through the successive ion layer adsorption and reaction (SILAR) technique, which represents an attractive alternative to conventional synthesis utilizing the chloride of Ln

  5. Acyl and silyl group effects in reactivity-based one-pot glycosylation: synthesis of embryonic stem cell surface carbohydrates Lc4 and IV(2)Fuc-Lc4.

    Science.gov (United States)

    Hsu, Yun; Lu, Xin-An; Zulueta, Medel Manuel L; Tsai, Chih-Ming; Lin, Kuo-I; Hung, Shang-Cheng; Wong, Chi-Huey

    2012-03-14

    Relative reactivity evaluations showed the graded arming of toluenyl thioglucosides by variously positioned silyl groups but not by their acyl counterparts. These findings were applied in reactivity-based one-pot assembly of linker-attached Lc(4) and IV(2)Fuc-Lc(4), which are components of human embryonic stem cell surface. The sugar-galectin-1 binding was also examined.

  6. One-pot synthesis of Cu/ZnO/ZnAl2O4 catalysts and their catalytic performance in glycerol hydrogenolysis

    KAUST Repository

    Tan, Hua

    2013-01-01

    In this work, a series of Cu/ZnO/ZnAl2O4 catalysts with different metal molar fractions (Cu:Zn:Al) were successfully prepared using a one-pot method via the evaporation-induced self-assembly (EISA) of Pluronic P123 and the corresponding metal precursors. The catalysts were characterized using N2 adsorption, H2 temperature-programmed reduction (H2-TPR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectra (XPS). The catalytic properties of the resulting Cu/ZnO/ZnAl2O4 with different molar fractions of metals were investigated for the selective hydrogenolysis of glycerol to 1,2-propanediol (1,2-PDO). It was observed that the ZnAl2O 4 support exerts a strong positive effect on the catalytic activity of the copper-based catalysts, and the presence of ZnO further improves the catalytic activity of the Cu/ZnAl2O4 catalysts. The Cu/ZnO/ZnAl2O4 catalyst (Cu10Zn 30Al60, Cu/Zn/Al molar ratio is 10:30:60), which was the best catalyst, exhibited the highest yield (79%) of 1,2-PDO with 85.8% glycerol conversion and 92.1% 1,2-PDO selectivity at 180 °C reaction temperature in 80 wt% glycerol aqueous solution over 10 h reaction time. The high catalytic activity was attributed to the presence of the ZnAl2O4 support, the strong interaction between ZnO and Cu nanoparticles and the small particle size of ZnO and Cu. Moreover, the Cu/ZnO/ZnAl2O4 catalysts exhibited higher stability than Cu/ZnO and Cu/ZnO/Al2O 3 catalysts prepared by a co-precipitation method during consecutive cycling experiments, which is due to the high chemical and thermal stability of crystalline ZnAl2O4 under harsh reaction conditions. This journal is © The Royal Society of Chemistry.

  7. One-pot high-yield synthesis of single-crystalline gold nanorods using glycerol as a low-cost and eco-friendly reducing agent

    Energy Technology Data Exchange (ETDEWEB)

    Parveen, Rashida [University of São Paulo, Institute of Chemistry of São Carlos (Brazil); Gomes, Janaina F. [Universidade Federal de São Carlos, Departamento de Engenharia Química (Brazil); Ullah, Sajjad [University of São Paulo, Institute of Chemistry of São Carlos (Brazil); Acuña, José J. S. [Universidade Federal do ABC, Centro de Ciências Naturais e Humanas (Brazil); Tremiliosi-Filho, Germano, E-mail: germano@iqsc.usp.br [University of São Paulo, Institute of Chemistry of São Carlos (Brazil)

    2015-10-15

    The formation of gold nanorods (AuNRs) has recently attracted great attention due to their shape-dependent optical properties that are important for many applications. The development of simpler and safer methods for the high-yield synthesis of AuNRs employing low-cost and easily handled reagents is thus of great importance. Here, we introduce, for the first time, a one-pot seedless method for the preparation of single-crystalline AuNRs in almost 100 % yield based on the use of glycerol in alkaline medium as an eco-friendly, low-cost and pH-tunable reducing agent. The synthesized AuNRs were characterized by UV–Vis–NIR spectroscopy, FEG–SEM and HRTEM. The effect of the presence of capping agent (CTAB) and the concentration of reactants (glycerol, NaOH and AgNO{sub 3}) on the yield and aspect ratio (AR) of AuNRs is discussed. The AR and yield of AuNRs showed a clear dependence on the pH and temperature of the reaction mixture as well as on the concentration of AgNO{sub 3} added as an auxiliary reagent. The longitudinal plasmon resonance band of the resulting AuNRs can be tuned between 620 and 1200 nm by varying the reaction conditions. AuNRs with an aspect ratio (AR) of around 4 were obtained in almost 100 % yield at room temperature and under mild reducing environment. The formation of AuNRs is faster at higher pH (>11) and higher temperature (>30 °C), but the AuNR yield is smaller (<70 %). Variation in the pH of the reaction mixture in the range 12–13.5 results in the formation of AuNRs with different ARs and in different yields (27–99 %). Detailed study of the AuNRs crystallography by HRTEM showed that the AuNRs grow in [001] direction and have a perfect single-crystalline fcc structure, free from structural faults or dislocations. The present green method, which introduces glycerol as a tunable reducing agent with a pH-dependent reducing power, can provide a more general strategy for the preparation of a wide range of metallic nanoparticles.

  8. One pot synthesis of GDP-mannose by a multi-enzyme cascade for enzymatic assembly of lipid-linked oligosaccharides.

    Science.gov (United States)

    Rexer, Thomas F T; Schildbach, Anna; Klapproth, Jan; Schierhorn, Angelika; Mahour, Reza; Pietzsch, Markus; Rapp, Erdmann; Reichl, Udo

    2018-01-01

    Glycosylation of proteins is a key function of the biosynthetic-secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Glycosylated proteins play a crucial role in cell trafficking and signaling, cell-cell adhesion, blood-group antigenicity, and immune response. In addition, the glycosylation of proteins is an important parameter in the optimization of many glycoprotein-based drugs such as monoclonal antibodies. In vitro glycoengineering of proteins requires glycosyltransferases as well as expensive nucleotide sugars. Here, we present a designed pathway consisting of five enzymes, glucokinase (Glk), phosphomannomutase (ManB), mannose-1-phosphate-guanyltransferase (ManC), inorganic pyrophosphatase (PmPpA), and 1-domain polyphosphate kinase 2 (1D-Ppk2) expressed in E. coli for the cell-free production and regeneration of GDP-mannose from mannose and polyphosphate with catalytic amounts of GDP and ADP. It was shown that GDP-mannose is produced at various conditions, that is pH 7-8, temperature 25-35°C and co-factor concentrations of 5-20 mM MgCl 2 . The maximum reaction rate of GDP-mannose achieved was 2.7 μM/min at 30°C and 10 mM MgCl 2 producing 566 nmol GDP-mannose after a reaction time of 240 min. With respect to the initial GDP concentration (0.8 mM) this is equivalent to a yield of 71%. Additionally, the cascade was coupled to purified, transmembrane-deleted Alg1 (ALG1ΔTM), the first mannosyltransferase in the ER-associated lipid-linked oligosaccharide (LLO) assembly. Thereby, in a one-pot reaction, phytanyl-PP-(GlcNAc) 2 -Man 1 was produced with efficient nucleotide sugar regeneration for the first time. Phytanyl-PP-(GlcNAc) 2 -Man 1 can serve as a substrate for the synthesis of LLO for the cell-free in vitro glycosylation of proteins. A high-performance anion exchange chromatography method with UV and conductivity detection (HPAEC-UV/CD) assay was optimized and validated to determine the enzyme kinetics. The established

  9. Synthesis of three-dimensional rare-earth ions doped CNTs-GO-Fe{sub 3}O{sub 4} hybrid structures using one-pot hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Guo, E-mail: guogao@sjtu.edu.cn [Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhang, Qiang; Cheng, Xin-Bing [Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Sun, Rongjin [Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Shapter, Joseph G., E-mail: joe.shapter@flinders.edu.au [School of Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide 5042 (Australia); Yin, Ting [Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Cui, Daxiang, E-mail: dxcui@sjtu.edu.cn [Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Technology, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-15

    Rechargeable lithium ion batteries (LIBs) are currently the dominant power source for all sorts of electronic devices due to their low cost and high energy density. The cycling stability of LIBs is significantly compromised due to the broad satellite peak for many anode materials. Herein, we develop a facile hydrothermal process for preparing rare-earth (Er, Tm) ions doped three-dimensional (3D) transition metal oxides/carbon hybrid nanocomposites, namely CNTs-GO-Fe{sub 3}O{sub 4}, CNTs-GO-Fe{sub 3}O{sub 4}-Er and CNTs-GO-Fe{sub 3}O{sub 4}-Tm. The GO sheets and CNTs are interlinked by ultrafine Fe{sub 3}O{sub 4} nanoparticles forming three-dimensional (3D) architectures. When evaluated as anode materials for LIBs, the CNTs-GO-Fe{sub 3}O{sub 4} hybrid composites have a bigger broad satellite peak. As for the CNTs-GO-Fe{sub 3}O{sub 4}-Er and CNTs-GO-Fe{sub 3}O{sub 4}-Tm hybrid composites, the broad satellite peak can be completely eliminated. When the current density changes from 5 C back to 0.1 C, the capacity of CNTs-GO-Fe{sub 3}O{sub 4}-Tm hybrid composites can recover to 1023.9 mAhg{sup −1}, indicating an acceptable rate capability. EIS tests show that the charge transfer resistance does not change significantly after 500 cycles, demonstrating that the cycling stability of CNTs-GO-Fe{sub 3}O{sub 4}-Tm hybrid composites are superior to CNTs-GO-Fe{sub 3}O{sub 4} and CNTs-GO-Fe{sub 3}O{sub 4}-Er hybrid structures. - Graphical abstract: One-pot hydrothermal method for synthesis of rare-earth ions doped CNTs-GO-Fe{sub 3}O{sub 4} hybrid structures as anode materials of LIBs have been reported. - Highlights: • We report the synthesis of rare-earth ions doped CNTs-GO-Fe{sub 3}O{sub 4} hybrid structures. • The hybrid structures can improve the cycling stability of lithium storage. • As for anode materials, the broad satellite peak can be completely eliminated. • When the rate return back to 0.1 C, the capacity can recover to 1023.9 mAhg{sup −1}. • After 500

  10. Synthesis of three-dimensional rare-earth ions doped CNTs-GO-Fe3O4 hybrid structures using one-pot hydrothermal method

    International Nuclear Information System (INIS)

    Gao, Guo; Zhang, Qiang; Cheng, Xin-Bing; Sun, Rongjin; Shapter, Joseph G.; Yin, Ting; Cui, Daxiang

    2015-01-01

    Rechargeable lithium ion batteries (LIBs) are currently the dominant power source for all sorts of electronic devices due to their low cost and high energy density. The cycling stability of LIBs is significantly compromised due to the broad satellite peak for many anode materials. Herein, we develop a facile hydrothermal process for preparing rare-earth (Er, Tm) ions doped three-dimensional (3D) transition metal oxides/carbon hybrid nanocomposites, namely CNTs-GO-Fe 3 O 4 , CNTs-GO-Fe 3 O 4 -Er and CNTs-GO-Fe 3 O 4 -Tm. The GO sheets and CNTs are interlinked by ultrafine Fe 3 O 4 nanoparticles forming three-dimensional (3D) architectures. When evaluated as anode materials for LIBs, the CNTs-GO-Fe 3 O 4 hybrid composites have a bigger broad satellite peak. As for the CNTs-GO-Fe 3 O 4 -Er and CNTs-GO-Fe 3 O 4 -Tm hybrid composites, the broad satellite peak can be completely eliminated. When the current density changes from 5 C back to 0.1 C, the capacity of CNTs-GO-Fe 3 O 4 -Tm hybrid composites can recover to 1023.9 mAhg −1 , indicating an acceptable rate capability. EIS tests show that the charge transfer resistance does not change significantly after 500 cycles, demonstrating that the cycling stability of CNTs-GO-Fe 3 O 4 -Tm hybrid composites are superior to CNTs-GO-Fe 3 O 4 and CNTs-GO-Fe 3 O 4 -Er hybrid structures. - Graphical abstract: One-pot hydrothermal method for synthesis of rare-earth ions doped CNTs-GO-Fe 3 O 4 hybrid structures as anode materials of LIBs have been reported. - Highlights: • We report the synthesis of rare-earth ions doped CNTs-GO-Fe 3 O 4 hybrid structures. • The hybrid structures can improve the cycling stability of lithium storage. • As for anode materials, the broad satellite peak can be completely eliminated. • When the rate return back to 0.1 C, the capacity can recover to 1023.9 mAhg −1 . • After 500 cycles, the hybrid structures still exhibited excellent cycling stability

  11. One-pot hydrothermal synthesis of zirconium dioxide nanoparticles decorated reduced graphene oxide composite as high performance electrochemical sensing and biosensing platform

    International Nuclear Information System (INIS)

    Teymourian, Hazhir; Salimi, Abdollah; Firoozi, Somayeh; Korani, Aazam; Soltanian, Saied

    2014-01-01

    Graphical abstract: - Highlights: • One pot hydrothermal synthesis used for preparing of ZrO 2 NPs reduced graphene oxide. • Electrocatalytic activity of ZrO 2 /rGO improved in compared to ZrO 2 based C- materials. • ZrO 2 NPs/rGO modified GCE was used for electrocatalytic reduction of O 2 and H 2 O 2 . • ZrO 2 NPs/rGO/GCE shows excellent ability to simultaneous detection of AA,UA and DP. • With immobilization of GOX onto ZrO 2 NPs/rGO a sensitive glucose biosensor fabricated. - Abstract: We report on the synthesis of zirconium dioxide-reduced graphene oxide composite (ZrO 2 -rGO) and its application as a novel architecture for electrochemical sensing and biosensing purposes. ZrO 2 -rGO hybrid is synthesized through a simple one-step hydrothermal route, where the reduction of GO and the in-situ generation of ZrO 2 nanoparticles (NPs) occurred simultaneously. Characterization of the resultant hybrid material using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy clearly indicated the homogeneous dispersion of ZrO 2 NPs with particle sizes of ∼5 nm on rGO sheets. The potential application of ZrO 2 -rGO modified glassy carbon electrode (ZrO 2 -rGO/GC) for electroanalytical purposes was demonstrated by using several important electroactive compounds as representative examples (i.e., O 2 , hydrogen peroxide (H 2 O 2 ), glucose, ascorbic acid (AA), dopamine (DA) and uric acid (UA)). Electrochemical control experiments by using different composites of ZrO 2 /graphite, ZrO 2 /Active Carbon and ZrO 2 electrodeposited on activated GC electrode revealed that the ZrO 2 -rGO composite possessed superior electrocatalytic activitiy towards the catalytic reduction of O 2 and H 2 O 2 at more reduced overpotentials. The linear range of H 2 O 2 concentration was from 0.10 to 1340 μM with the detection limit of 20 nM (S/N = 3). Furthermore, via immobilization of glucose oxidase (GOx) enzyme onto the

  12. Green technological approach to synthesis hydrophobic stable crystalline calcite particles with one-pot synthesis for oil-water separation during oil spill cleanup.

    Science.gov (United States)

    Wu, Min-Nan; Maity, Jyoti Prakash; Bundschuh, Jochen; Li, Che-Feng; Lee, Chin-Rong; Hsu, Chun-Mei; Lee, Wen-Chien; Huang, Chung-Ho; Chen, Chien-Yen

    2017-10-15

    The process of separating oil and water from oil/water mixtures is an attractive strategy to answer the menace caused by industrial oil spills and oily wastewater. In addition, water coproduced during hydrocarbon exploitation, which can be an economic burden and risk for freshwater resources, can become an important freshwater source after suitable water-oil separation. For oil-water separation purposes, considerable attention has been paid to the preparation of hydrophobic-oleophilic materials with modified surface roughness. However, due to issues of thermodynamic instability, costly and complex methods as well as lack of ecofriendly compounds, most of hydrophobic surface modified particles are of limited practical application. The study presents a facile procedure, to synthesize crystalline particles of calcite, which is the most stable polymorph of CaCO 3 from industrial CaCO 3 using oleic acid as an additive in a one-pot synthesis method. The XRD results show that the synthesized particles were a well-crystallized form of calcite. The FTIR results reflect the appearance of the alkyl groups from the oleic acid in synthesized particles which promotes the production of calcite with 'rice shape' (1.64 μm) (aggregated by spherical nanoparticle of 19.56 nm) morphology with concomitant changes in its surface wettability from hydrophilic to hydrophobic. The synthesized particles exhibited near to super hydrophobicity with ∼99% active ratio and a contact angle of 143.8°. The synthesized hydrophobic calcite particles had an oleophilic nature where waste diesel oil adsorption capacity of synthesized calcium carbonate (HCF) showed a very high (>99%) and fast (7 s) oil removal from oil-water mixture. The functional group of long alkyl chain including of CO bounds may play critical roles for adsorption of diesel oils. Moreover, the thermodynamically stable crystalline polymorph calcite (compared to vaterite) exhibited excellent recyclability. The isothermal study

  13. Catalytic asymmetric epoxidation of alpha,beta-unsaturated amides: efficient synthesis of beta-aryl alpha-hydroxy amides using a one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process.

    Science.gov (United States)

    Nemoto, Tetsuhiro; Kakei, Hiroyuki; Gnanadesikan, Vijay; Tosaki, Shin-Ya; Ohshima, Takashi; Shibasaki, Masakatsu

    2002-12-11

    The catalytic asymmetric epoxidation of alpha,beta-unsaturated amides using Sm-BINOL-Ph3As=O complex was succeeded. Using 5-10 mol % of the asymmetric catalyst, a variety of amides were epoxidized efficiently, yielding the corresponding alpha,beta-epoxy amides in up to 99% yield and in more than 99% ee. Moreover, the novel one-pot tandem process, one-pot tandem catalytic asymmetric epoxidation-Pd-catalyzed epoxide opening process, was developed. This method was successfully utilized for the efficient synthesis of beta-aryl alpha-hydroxy amides, including beta-aryllactyl-leucine methyl esters. Interestingly, it was found that beneficial modifications on the Pd catalyst were achieved by the constituents of the first epoxidation, producing a more suitable catalyst for the Pd-catalyzed epoxide opening reaction in terms of chemoselectivity.

  14. One-pot synthesis of novel 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives via an Ugi-azide 4CR process.

    Science.gov (United States)

    Ghandi, Mehdi; Salahi, Saleh; Taheri, Abuzar; Abbasi, Alireza

    2018-05-01

    A facile one-pot method has been developed for the synthesis of novel pyrrolo[2,1-a]pyrazine scaffolds. A variety of 1-(1H-tetrazol-5-yl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazine derivatives were obtained in moderate to high yields in methanol using a one-pot four-component condensation of 1-(2-bromoethyl)-1H-pyrrole-2-carbaldehyde, amine, isocyanide and sodium azide at room temperature. These reactions presumably proceed via a domino imine formation, intramolecular annulation and Ugi-azide reaction. Unambiguous assignment of the molecular structures was carried out by single-crystal X-ray diffraction.

  15. Multicomponent Reaction of Z-Chlorooximes, Isocyanides, and Hydroxylamines as Hypernucleophilic Traps. A One-Pot Route to Aminodioximes and Their Transformation into 5-Amino-1,2,4-oxadiazoles by Mitsunobu-Beckmann Rearrangement.

    Science.gov (United States)

    Mercalli, Valentina; Massarotti, Alberto; Varese, Monica; Giustiniano, Mariateresa; Meneghetti, Fiorella; Novellino, Ettore; Tron, Gian Cesare

    2015-10-02

    Synthetically useful aminodioximes are prepared via a novel three-component reaction among Z-chlorooximes, isocyanides, and hydroxylamines by exploiting the preferential attack of isocyanides to nitrile N-oxides via a [3 + 1] cycloaddition reaction. The results of quantum mechanical studies of the reaction mechanism are also discussed. Furthermore, the one-pot conversion of aminodioximes to 1,2,3-oxadiazole-5-amines via Mitsunobu-Beckmann rearrangement is reported for the first time.

  16. One-pot synthesis of biocompatible Te-phenol formaldehyde resin core-shell nanowires with uniform size and unique fluorescent properties by a synergized soft-hard template process

    International Nuclear Information System (INIS)

    Qian Haisheng; Zhu Enbo; Zheng Shunji; Yang Xingyun; Li Liangchao; Tong Guoxiu; Li Zhengquan; Hu Yong; Guo Changfa; Guo Huichen

    2010-01-01

    One-pot hydrothermal process has been developed to synthesize uniform Te-phenol formaldehyde resin core-shell nanowires with unique fluorescent properties. A synergistic soft-hard template mechanism has been proposed to explain the formation of the core-shell nanowires. The Te-phenol formaldehyde resin core-shell nanowires display unique fluorescent properties, which give strong luminescent emission in the blue-violet and green regions with excitation wavelengths of 270 nm and 402 nm, respectively.

  17. One-pot synthesis of biocompatible Te@phenol formaldehyde resin core-shell nanowires with uniform size and unique fluorescent properties by a synergized soft-hard template process.

    Science.gov (United States)

    Qian, Haisheng; Zhu, Enbo; Zheng, Shunji; Li, Zhengquan; Hu, Yong; Guo, Changfa; Yang, Xingyun; Li, Liangchao; Tong, Guoxiu; Guo, Huichen

    2010-12-10

    One-pot hydrothermal process has been developed to synthesize uniform Te@phenol formaldehyde resin core-shell nanowires with unique fluorescent properties. A synergistic soft-hard template mechanism has been proposed to explain the formation of the core-shell nanowires. The Te@phenol formaldehyde resin core-shell nanowires display unique fluorescent properties, which give strong luminescent emission in the blue-violet and green regions with excitation wavelengths of 270 nm and 402 nm, respectively.

  18. One-pot synthesis of biocompatible Te-phenol formaldehyde resin core-shell nanowires with uniform size and unique fluorescent properties by a synergized soft-hard template process

    Energy Technology Data Exchange (ETDEWEB)

    Qian Haisheng; Zhu Enbo; Zheng Shunji; Yang Xingyun; Li Liangchao; Tong Guoxiu [Department of Chemistry, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004 (China); Li Zhengquan; Hu Yong; Guo Changfa [Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004 (China); Guo Huichen, E-mail: shqian@zjnu.cn, E-mail: ghch-2004@hotmail.com [State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 11, Lanzhou, Gansu 730046 (China)

    2010-12-10

    One-pot hydrothermal process has been developed to synthesize uniform Te-phenol formaldehyde resin core-shell nanowires with unique fluorescent properties. A synergistic soft-hard template mechanism has been proposed to explain the formation of the core-shell nanowires. The Te-phenol formaldehyde resin core-shell nanowires display unique fluorescent properties, which give strong luminescent emission in the blue-violet and green regions with excitation wavelengths of 270 nm and 402 nm, respectively.

  19. An efficient and high-yielding one-pot synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-diones catalyzed by sodium hydrogen carbonate under solvent-free conditions

    OpenAIRE

    Asieh Vafaee; Abolghasem Davoodnia; Mehdi Pordel; Mohammad Reza Bozorgmehr

    2015-01-01

    Sodium hydrogen carbonate, NaHCO3, efficiently catalyzes the one-pot, three-component reaction of phthalhydrazide, an aromatic aldehyde, and malononitrile or ethyl cyanoacetate under solvent-free conditions, to afford the corresponding 1H-pyrazolo[1,2-b]phthalazine-5,10-diones in high yields. Easy work‐up, inexpensive and readily available catalyst and avoiding the use of harmful organic solvents are other advantages of this simple procedure.

  20. Facial One-Pot Synthesis of D 3h Symmetric Bicyclocalix[2]arene[2]triazines and Their Layered Comb Self-Assembly

    KAUST Repository

    Chen, Yin; Jiahui, Wang; Xu, Hai; Qianqian, Li; Jing, Jiang

    2017-01-01

    A number of D3h symmetric bicyclocalix[2]arene[2]triazine core compounds were synthesized via a general and good-yielding (43-48% yield) facile protocol starting from cyanuric halides, phloroglucinol and K2CO3 under very mild reaction conditions

  1. Preparation of Bottlebrush Polymers via a One-Pot Ring-Opening Polymerization (ROP) and Ring-Opening Metathesis Polymerization (ROMP) Grafting-Through Strategy.

    Science.gov (United States)

    Radzinski, Scott C; Foster, Jeffrey C; Matson, John B

    2016-04-01

    Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess of 10(6) Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d,l-lactide initiated by an alcohol-functionalized norbornene. ROMP grafting-through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size-exclusion chromatographic and (1)H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain-free transmission electron microscopy on graphene oxide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. One Pot Selective Arylation of 2-Bromo-5-Chloro Thiophene; Molecular Structure Investigation via Density Functional Theory (DFT), X-ray Analysis, and Their Biological Activities.

    Science.gov (United States)

    Rasool, Nasir; Kanwal, Aqsa; Rasheed, Tehmina; Ain, Quratulain; Mahmood, Tariq; Ayub, Khurshid; Zubair, Muhammad; Khan, Khalid Mohammed; Arshad, Muhammad Nadeem; M Asiri, Abdullah; Zia-Ul-Haq, Muhammad; Jaafar, Hawa Z E

    2016-06-28

    Synthesis of 2,5-bisarylthiophenes was accomplished by sequential Suzuki cross coupling reaction of 2-bromo-5-chloro thiophenes. Density functional theory (DFT) studies were carried out at the B3LYP/6-31G(d, p) level of theory to compare the geometric parameters of 2,5-bisarylthiophenes with those from X-ray diffraction results. The synthesized compounds are screened for in vitro bacteria scavenging abilities. At the concentration of 50 and 100 μg/mL, compounds 2b, 2c, 2d, 3c, and 3f with IC50-values of 51.4, 52.10, 58.0, 56.2, and 56.5 μg/mL respectively, were found most potent against E. coli. Among all the synthesized compounds 2a, 2d, 3c, and 3e with the least values of IC50 77, 76.26, 79.13 μg/mL respectively showed significant antioxidant activities. Almost all of the compounds showed good antibacterial activity against Escherichia coli, whereas 2-chloro-5-(4-methoxyphenyl) thiophene (2b) was found most active among all synthesized compound with an IC50 value of 51.4 μg/mL. All of the synthesized compounds were screened for nitric oxide scavenging activity as well. Frontier molecular orbitals (FMOs) and molecular electrostatic potentials of the target compounds were also studied theoretically to account for their relative reactivity.

  3. Ionic liquid promoted one pot approach for the synthesis of pyrido[1,2-c][1,3,5]thiadiazin-4-ones and thiazolo[3,2-c][1,3,5]thiadiazin-4-ones in water

    Directory of Open Access Journals (Sweden)

    I.R. Siddiqui

    2018-02-01

    Full Text Available A novel three component one pot methodology for rapid access to pyrido[1,2-c][1,3,5]thiadiazin-4-ones and thiazolo[3,2-c][1,3,5]thiadiazin-4-ones has been developed. A task specific ionic liquid [bmIm]SCN has been used as thiocyanating reagent. The reaction provides high yields of the product and proceeds at ambient reaction conditions in water. The use of water as the reaction medium and easy recyclability of the ionic liquid used as a reagent as well as promoter of the reaction endows the reaction with green aspects.

  4. One-pot synthesis of hybrid gel by use of tributylstannyl ester of polymeric silicic acid, chlorosilane and organic monomer; Keisan no toribuchiru sutanniru esuteru kobuntai, kuroroshiran oyobi yuki monoma wo mochiita haiburiddo geru no ichidankai gosei

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, O. [National Defense Academy, Kanagawa (Japan). Dept. of Chemistry; Sugisaki, T. [Lintec Co. Ltd., Saitama (Japan); Tomono, M.; Oikawa, M.; Kageyama, T. [Kanto-Gakuin Univ., Kanagawa (Japan)

    1999-12-10

    Organic-inorganic hybrid gels were obtained efficiently by one-pot procedure from tributylstannyl ester of polymeric silicic acid (PTBS), chloro (3-methacryloyloxypropyl) dimethylsilane (1a), and common monomers such as styrene, acrylonitrile, and methyl methacrylate. In the reaction system, substitution of tributylstannyl groups of PTBS by silyl groups of 1a and copolymerization of methacryloyloxy group of 1a with a monomer proceeded simultaneously under UV irradiation at room temperature. The resulting gel should be consisted of covalently bonded three components an regarded as a nanocomposite material The use of another chlorosilane 1b, which had cyanopropyl group, with 1a led to formation of a multifunctional hybrid gel. (author)

  5. Ultrasound-Promoted One-Pot, Three-Component Synthesis of Spiro[indoline-3,1'-pyrazolo[1,2-b]phthalazine] Derivatives

    Directory of Open Access Journals (Sweden)

    Daqing Shi

    2012-07-01

    Full Text Available A series of 3'-aminospiro[indoline-3,1'-pyrazolo[1,2-b]phthalazine]-2,5',10'-trione derivatives have been synthesized by a one-pot three-component reaction of isatin, malononitrile or ethyl cyanoacetate and phthalhydrazide catalyzed by piperidine under ultrasound irradiation. For comparison the reactions were carried out under both conventional and ultrasonic conditions. In general, improvement in rates and yields were observed when the reactions were carried out under sonication compared with classical conditions.

  6. Sn-PILC: A novel Efficient and Recyclable Catalyst for One-pot Three Component Povarov’s Inverse-electron-demand Hetero Diels-Alder Reaction for a Facile Synthesis of Tetrahydropyranoquinoline Derivatives under Neat Conditions

    Directory of Open Access Journals (Sweden)

    Megha Rai

    2016-07-01

    Full Text Available The Povarov’s inverse-electron-demand hetero Diels–Alder one-pot three components reaction of aromatic aldehyde, aromatic amine with DHF has been developed using Sn-PILC as a catalyst under a neat condition which may helpful to society to get pharmacologically more active compounds. In the present study a novel series of tetrahydroquinoline 4(a-f were synthesized and characterized by IR, 1HNMR, 13CNMR, Mass spectral analysis and elemental analysis. The synthetic details and characterization results are discussed. DOI: http://dx.doi.org/10.17807/orbital.v8i3.801

  7. A Facile Synthesis of New 2-Amino-4H-pyran-3-carbonitriles by a One-Pot Reaction of ,′-Bis(arylidene Cycloalkanones and Malononitrile in the Presence of KCO

    Directory of Open Access Journals (Sweden)

    Zahed Karimi-Jaberi

    2012-01-01

    Full Text Available A rapid and environmentally friendly method is developed for the synthesis of a series of new substituted 2-amino-4H-pyran-3-carbonitriles through a one-pot condensation of malononitrile and ,-bis(arylidene cycloalkanones in ethanol by using K2CO3 as a catalyst. Short experimental reaction times, excellent yields, no need to use cumbersome apparatus for purification of the products, and inexpensiveness and commercially availability of the catalyst are the advantages of this method.

  8. Combining multi-catalysis and multi-component systems for the development of one-pot asymmetric reactions: stereoselective synthesis of highly functionalized bicyclo[4.4.0]decane-1,6-diones.

    Science.gov (United States)

    Ramachary, Dhevalapally B; Sakthidevi, Rajasekar

    2008-07-21

    We have developed a direct amine/acid-catalyzed stereoselective hydrogenation of a variety of Wieland-Miescher (W-M) ketones, Hajos-Parrish (H-P) ketones and their analogs with organic hydrides (Hantzsch esters) as the hydrogen source. This astonishingly simple and biomimetic approach was used to construct highly functionalized chiral bicyclo[4.4.0]decane-1,6-diones in a diastereoselective fashion. This is an example of the development of a new technology by the combination of multiple catalysts and components in one pot to deliver highly functionalized chiral molecules.

  9. Facial One-Pot Synthesis of D 3h Symmetric Bicyclocalix[2]arene[2]triazines and Their Layered Comb Self-Assembly

    KAUST Repository

    Chen, Yin

    2017-11-23

    A number of D3h symmetric bicyclocalix[2]arene[2]triazine core compounds were synthesized via a general and good-yielding (43-48% yield) facile protocol starting from cyanuric halides, phloroglucinol and K2CO3 under very mild reaction conditions. These cage-like compounds are tolerate with different reaction conditions and can be derived with other functional groups in high yield. The X-ray crystal structures show these compounds have slightly distorted D3h symmetric structures. Due to the unique molecular topological structure, bicyclocalix[2]arene[2]triazine molecules form unique layered comb networks when hydrogen bond groups exist (such as CO2H, B(OH)2), which represent a new kind of building block unit for supramolecular architectures.

  10. A phosphine mediated sequential annulation process of 2-tosylaminochalcones with MBH carbonates to construct functionalized aza-benzobicyclo[4.3.0] derivatives.

    Science.gov (United States)

    Zhang, Qinglong; Zhu, Yannan; Jin, Hongxing; Huang, You

    2017-04-04

    A novel phosphine mediated sequential annulation process to construct functionalized aza-benzobicyclo[4.3.0] derivatives has been developed involving a one-pot sequential catalytic and stoichiometric process, which generates a series of benzobicyclo[4.3.0] compounds containing one quaternary center with up to 94% yield and 20 : 1 dr value. In this reaction, MBH carbonates act as 1,2,3-C 3 synthons.

  11. One pot synthesis of CdS/TiO{sub 2} hetero-nanostructures for enhanced H{sub 2} production from water and removal of pollutants from aqueous streams

    Energy Technology Data Exchange (ETDEWEB)

    Mani, A. Daya; Subrahmanyam, Ch., E-mail: csubbu@iith.ac.in

    2016-01-15

    Highlights: • Novel one pot synthesis of CdS/TiO{sub 2} hetero nanostructures by combustion synthesis. • Excellent visible light photocatalytic activity for H{sub 2} production from water. • Enhanced activity for the removal of Cr(VI) from aqueous streams. - Abstract: To achieve more effective coupling of cadmium sulfide (CdS) to the TiO{sub 2}, single step synthesis of CdS/TiO{sub 2} composites is advantageous. In the present study a novel one pot synthesis of several CdS/TiO{sub 2} hetero-nanostructures was explored through combustion technique. As the process involves the simultaneous nucleation of CdS and TiO{sub 2} it leads to the proper connectivity between the constituent materials. All the catalysts were characterized by using several techniques and the excellent visible light activity of the composites has been asserted by the H{sub 2} production from water containing sacrificial reagents, removal of methylene blue and Cr(VI) from aqueous streams. Therefore the present synthetic strategy which is devoid of using molecular linker at interface is more suitable for solar applications, which require faster rates of electron transfer at the hetero junctions.

  12. One-Pot Synthesis of Dialkyl Hexane-1,6-Dicarbamate from 1,6-Hexanediamine, Urea, and Alcohol over Zinc-Incorporated Berlinite (ZnAlPO4 Catalyst

    Directory of Open Access Journals (Sweden)

    Da-Lei Sun

    2016-02-01

    Full Text Available Dialkyl hexane-1,6-dicarbamate was synthesized, for the first time, by a one-pot reaction of 1,6-hexanediamine (HDA, urea, and alcohols, including methanol, ethanol, propanol, and butanol, in a self-designed batch reactor, using zinc-incorporated berlinite (ZnAlPO4 as a catalyst. The yield of dibutyl hexane-1,6-dicarbamate (2 was systematically investigated as a function of Zn/Al molar ratio, reaction temperature, reaction time, catalyst usage and urea/HDA/butanol molar ratio. Based on these studies, the optimized reaction conditions were as follows: molar ratio urea/HDA/butanol = 2.6:1:8.6, catalyst usage = 3.0 g, reaction temperature = 493 K, reaction time = 6 h and reaction pressure = 1.2 MPa; a yield of 2 of 89.7% was achieved over the ZnAlPO4 (molar ratio Zn/Al = 0.04 catalyst. The catalysts were characterized by X-ray photoelectric spectroscopy (XPS and scanning electron microscope (SEM. Additionally, based on these experimental results, it was also proposed that the catalysis recycle of the one-pot synthesis of 2 from urea, HDA, and butanol over the ZnAlPO4 catalyst.

  13. Sulfonic acid functionalized boron nitride nanomaterials as a microwave-assisted efficient and highly biologically active one-pot synthesis of piperazinyl-quinolinyl fused Benzo[c]acridine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Murugesan, Arul; Gengan, R.M., E-mail: genganrm@dut.ac.za; Krishnan, Anand

    2017-02-15

    Boron nitride nano material based solid acid catalyst was found to be an efficient and reusable sulfonic acid catalyst for the synthesis of one-pot Knoevenagel and Michael type reactions in 3, 3-dimethyl-9-(2-(4-methylpiperazin-1-yl) quinolin-3-yl)-3, 4, 9, 10-tetrahydroacridin-1(2H)-one derivatives under microwave irradiation conditions. The catalyst was prepared by mixing boron nitrile and (3-mercaptopropyl) trimethoxysilane. This is simple and safe method for the preparation of solid acid catalysts. The morphological properties of catalyst determined by using FT-IR, XRD, TEM, SEM and Raman spectroscopy. The synthesised catalyst was employed in Knoevenagel and Michael type reactions to synthesise novel piperazinyl-quinolinyl based acridine derivatives. Furthermore the newly-synthesised compounds have been used for molecular docking in DNA binding studies. The method developed in this study has the advantages of good yield, simplicity coupled with safety and short reaction time. Most importantly it was found that the solid acid catalyst can be recycled with only 5% loss of activity. - Highlights: • One-pot Synthesis of Knoevenagel and Michel type reactions. • Synthesis of Sulfonic acid Functionalized Boron nitride nano materials. • Synthesis of piperazinyl-quinolinyl fused Benzo[c]acridine derivatives under Microwave irradiation. • Molecular docking studies were performed on piperazinyl-quinolinyl acridine derivatives using DNA.

  14. Microwave assisted one-pot catalyst free green synthesis of new methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylates as potent in vitro antibacterial and antifungal activity

    Directory of Open Access Journals (Sweden)

    Ajmal R. Bhat

    2015-11-01

    Full Text Available An efficiently simple protocol for the synthesis of methyl 7 amino-4-oxo-5-phenyl-2-thioxo-2, 3, 4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylates via one-pot three component condensation pathway is established via microwave irradiation using varied benzaldehyde derivatives, methylcyanoacetate and thio-barbituric acid in water as a green solvent. A variety of functionalized substrates were found to react under this methodology due to its easy operability and offers several advantages like, high yields (78–94%, short reaction time (3–6 min, safety and environment friendly without used any catalyst. The synthesized compounds (4a–4k showed comparatively good in vitro antimicrobial and antifungal activities against different strains. The Compounds 4a, 4b, 4c, 4d 4e and 4f showed maximum antimicrobial activity against Staphylococcus aureus, Bacillus cereus (gram-positive bacteria, Escherichia coli, Klebshiella pneumonia, Pseudomonas aeruginosa (gram-negative bacteria. The synthesized compound 4f showed maximum antifungal activity against Aspergillus Niger and Penicillium chrysogenum strains. Streptomycin is used as standard for bacterial studies and Mycostatin as standards for fungal studies. Structure of all newly synthesized products was characterized on the basis of IR, 1H NMR, 13C NMR and mass spectral analysis.

  15. A shortcut to high-affinity Ga-68 and Cu-64 radiopharmaceuticals: one-pot click chemistry trimerisation on the TRAP platform.

    Science.gov (United States)

    Baranyai, Zsolt; Reich, Dominik; Vágner, Adrienn; Weineisen, Martina; Tóth, Imre; Wester, Hans-Jürgen; Notni, Johannes

    2015-06-28

    Due to its 3 carbonic acid groups being available for bioconjugation, the TRAP chelator (1,4,7-triazacyclononane-1,4,7-tris(methylene(2-carboxyethylphosphinic acid))) is chosen for the synthesis of trimeric bioconjugates for radiolabelling. We optimized a protocol for bio-orthogonal TRAP conjugation via Cu(I)-catalyzed Huisgen-cycloaddition of terminal azides and alkynes (CuAAC), including a detailed investigation of kinetic properties of Cu(II)-TRAP complexes. TRAP building blocks for CuAAC, TRAP(alkyne)3 and TRAP(azide)3 were obtained by amide coupling of propargylamine/3-azidopropyl-1-amine, respectively. For Cu(II) complexes of neat and triply amide-functionalized TRAP, the equilibrium properties as well as pseudo-first-order Cu(II)-transchelation, using 10 to 30 eq. of NOTA and EDTA, were studied by UV-spectrophotometry. Dissociation of any Cu(II)-TRAP species was found to be independent on the nature or excess of a competing chelator, confirming a proton-driven two-step mechanism. The respective thermodynamic stability constants (log K(ML): 19.1 and 17.6) and dissociation rates (k: 38 × 10(-6) and 7 × 10(-6) s(-1), 298 K, pH 4) show that the Cu(II) complex of the TRAP-conjugate possesses lower thermodynamic stability but higher kinetic inertness. At pH 2-3, its demetallation with NOTA was complete within several hours/days at room temperature, respectively, enabling facile Cu(II) removal after click coupling by direct addition of NOTA trihydrochloride to the CuAAC reaction mixture. Notwithstanding this, an extrapolated dissociation half life of >100 h at 37 °C and pH 7 confirms the suitability of TRAP-bioconjugates for application in Cu-64 PET (cf. t(1/2)(Cu-64) = 12.7 h). To showcase advantages of the method, TRAP(DUPA-Pep)3, a trimer of the PSMA inhibitor DUPA-Pep, was synthesized using 1 eq. TRAP(alkyne)3, 3.3 eq. DUPA-Pep-azide, 10 eq. Na ascorbate, and 1.2 eq. Cu(II)-acetate. Its PSMA affinity (IC50), determined by the competition assay on LNCa

  16. Sequential Banking.

    OpenAIRE

    Bizer, David S; DeMarzo, Peter M

    1992-01-01

    The authors study environments in which agents may borrow sequentially from more than one leader. Although debt is prioritized, additional lending imposes an externality on prior debt because, with moral hazard, the probability of repayment of prior loans decreases. Equilibrium interest rates are higher than they would be if borrowers could commit to borrow from at most one bank. Even though the loan terms are less favorable than they would be under commitment, the indebtedness of borrowers i...

  17. One-pot oxidation and bromination of 3,4-diaryl-2,5-dihydrothiophenes using Br2: synthesis and application of 3,4-diaryl-2,5-dibromothiophenes.

    Science.gov (United States)

    Dang, Yizhe; Chen, Yi

    2007-08-31

    A class of 3,4-diaryl-2,5-dibromothiophenes (1b-5b) was synthesized by a one-pot reaction of 3,4-diaryl-2,5-dihydrothiophenes with Br2 reagent in excellent yield (83-92%). It was found that Br2 performed a double function (oxidation and bromination) during the conversion of 3,4-diaryl-2,5-dihydrothiophenes to 3,4-diaryl-2,5-dibromothiophenes. The application of 3,4-diaryl-2,5-dibromothiophenes used as building blocks was also investigated. Employing 3,4-diphenyl-2,5-dibromothiophene (1b) as a template, a class of 2,3,4,5-tetraarylthiophenes was prepared by the Suzuki coupling reaction. This provided a new and simple approach to the preparation of 2,3,4,5-tetraarylthiophenes.

  18. Synthesis of 2-Amino-3-hydroxy-3H-indoles via Palladium-Catalyzed One-Pot Reaction of Isonitriles, Oxygen, and N-Tosylhydrazones Derived from 2-Acylanilines.

    Science.gov (United States)

    Chu, Haoke; Dai, Qiang; Jiang, Yan; Cheng, Jiang

    2017-08-04

    A cyanide-free one-pot procedure was developed to access 2-amino-3-hydroxy-3H-indoles, which involved: (1) in situ formation of ketenimines by the reaction of N'-(1-(2-aminophenyl)ethylidene)-p-tosylhydrazones with isonitriles; (2) the intramolecular nucleophilic attack of ketenimines by the amino in phenyl furnishing the ring closure leading to 2-aminoindoles; (3) the oxidation of 2-aminoindoles by O 2 leading to 2-amino-3-hydroxy-3H-indoles. This strategy represents not only a key compliment to the sporadic synthetic methods toward 2-amino-3-hydroxy-3H-indoles but also progress in N-tosylhydrazone, isonitrile, and ketenimine chemistry.

  19. One-pot formation of SnO2 hollow nanospheres and α-Fe2O3@SnO2 nanorattles with large void space and their lithium storage properties

    KAUST Repository

    Chen, Jun Song

    2009-01-01

    In this work, uniform SnO2 hollow nanospheres with large void space have been synthesized by a modified facile method. The void space can be easily controlled by varying the reaction time. The formation of interior void space is based on an inside-out Ostwald ripening mechanism. More importantly, this facile one-pot process can be extended to fabricate rattle-type hollow structures using α-Fe2O3@SnO2 as an example. Furthermore, the electrochemical lithium storage properties have been investigated. It is found that α-Fe2O3@SnO 2 nanorattles manifest a much lower initial irreversible loss and higher reversible capacity compared to SnO2 hollow spheres. This interesting finding supports a general hypothesis that a synergistic effect between functional core and shell materials can lead to improved lithium storage capabilities. © The Royal Society of Chemistry 2009.

  20. PEG1000-Based Dicationic Acidic Ionic Liquid Catalyzed One-Pot Synthesis of 4-Aryl-3-Methyl-1-Phenyl-1H-Benzo[h]pyrazolo [3,4-b]quinoline-5,10-Diones via Multicomponent Reactions

    Directory of Open Access Journals (Sweden)

    Yi-Ming Ren

    2015-09-01

    Full Text Available A novel and green approach for efficient and rapid synthesis of 4-aryl-3-methyl-1-phenyl-1H-benzo[h]pyrazolo[3,4-b]quinoline-5,10-diones has been accomplished by the one-pot condensation reaction of aromatic aldehydes, 3-methyl-1-phenyl-1H-pyrazol-5-amine and 2-hydroxynaphthalene-1,4-dione using PEG1000-based dicationic acidic ionic liquid (PEG1000-DAIL as a catalyst was reported. Recycling studies have shown that the PEG1000-DAIL can be readily recovered and reused several times without significant loss of activity. The key advantages are the short reaction time, high yields, simple workup, and recovered catalyst.

  1. Nano crystalline ZnO catalyzed one pot three-component synthesis of 7-alkyl-6H,7H- naphtho[1',2':5,6]pyrano[3,2-c] chromen-6-ones under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    M. J. Piltan

    2016-08-01

    Full Text Available In the present paper, an efficient one-pot synthesis of 7-alkyl-6H,7H-naphtho[1',2':5,6]pyrano[3,2-c]chromen-6-ones is described by three-component reaction of β-naphthol, aromatic aldehydes and 4-hydroxycoumarin using ZnO nanoparticles under solvent-free conditions. The present method provides a novel and efficient procedure for the synthesis of chromene derivatives with some advantageous such as short reaction times, easy workup, high yields, wide range of products, reusability of the catalyst, little catalyst loading and green conditions in the presence of ZnO nanoparticles (7 mol% at 110 ºC.

  2. Copper-doped silica cuprous sulfate: A highly efficient heterogeneous nano-catalyst for one-pot three-component synthesis of 1-H-2-substituted benzimidazoles from 2-bromoanilines, aldehydes, and [bmim]N3

    Directory of Open Access Journals (Sweden)

    Somayeh Behrouz

    2018-03-01

    Full Text Available A facile and highly efficient one-pot three-component synthesis of 1-H-2-substituted benzimidazole derivatives from readily available substrates catalyzed by copper-doped silica cuprous sulfate (CDSCS is described. In this method, treatment of diverse 2-bromoanilines, aldehydes, and [bmim]N3 in DMF at 110 °C in the presence of CDSCS as a highly efficient heterogeneous nano-catalyst affords the corresponding 1-H-2-substituted benzimidazoles in good to excellent yields. The CDSCS is an inexpensive and stable nano-catalyst that could be simply prepared, recovered and reused for many consecutive reaction runs without significant loss of its activity.

  3. Facile one-pot construction of α-Fe_2O_3/g-C_3N_4 heterojunction for arsenic removal by synchronous visible light catalysis oxidation and adsorption

    International Nuclear Information System (INIS)

    Sun, Suwen; Ji, Chunnuan; Wu, Lingling; Chi, Shenghua; Qu, Rongjun; Li, Yan; Lu, Yangxiao; Sun, Changmei; Xue, Zhongxin

    2017-01-01

    α-Fe_2O_3/g-C_3N_4 composites with heterojunction were prepared by facile one-pot synthesis using ferric chloride and dicyandiamide as precursors. The newly formed composites were applied to remove arsenic from aqueous solution for the first time through synchronous visible light catalysis oxidation and adsorption. α-Fe_2O_3/g-C_3N_4 composites were characterized by wide-angle X-ray powder diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, UV–Vis diffuse reflectance spectroscopy, and BET surface analysis. Under visible light irradiation, As(III) was oxidized to As(V) efficiently on the surface of α-Fe_2O_3/g-C_3N_4. In addition, the oxidized arsenic could be adsorbed in situ, resulting in the effective arsenic removal. The enhancement of photocatalytic activity the composites was attributed to the construction of heterojunction between α-Fe_2O_3 and g-C_3N_4. A possible oxidation mechanism of the as-composites for As(III) under visible light irradiation was also elucidated. - Highlights: • α-Fe_2O_3/g-C_3N_4 composites with heterojunction was prepared by facile one-pot synthesis. • The photocatalytic activity of α-Fe_2O_3/g-C_3N_4 composites under visible light irradiation for As(III) was evaluated. • Synchronous visible light catalysis oxidation and adsorption were achieved for the removal of arsenic. • The reasonable oxidation mechanism of the composites for As(III) under visible light irradiation was investigated.

  4. Facile one-pot construction of α-Fe{sub 2}O{sub 3}/g-C{sub 3}N{sub 4} heterojunction for arsenic removal by synchronous visible light catalysis oxidation and adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Suwen; Ji, Chunnuan, E-mail: 1842355613@qq.com; Wu, Lingling; Chi, Shenghua; Qu, Rongjun; Li, Yan; Lu, Yangxiao; Sun, Changmei; Xue, Zhongxin

    2017-06-15

    α-Fe{sub 2}O{sub 3}/g-C{sub 3}N{sub 4} composites with heterojunction were prepared by facile one-pot synthesis using ferric chloride and dicyandiamide as precursors. The newly formed composites were applied to remove arsenic from aqueous solution for the first time through synchronous visible light catalysis oxidation and adsorption. α-Fe{sub 2}O{sub 3}/g-C{sub 3}N{sub 4} composites were characterized by wide-angle X-ray powder diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, UV–Vis diffuse reflectance spectroscopy, and BET surface analysis. Under visible light irradiation, As(III) was oxidized to As(V) efficiently on the surface of α-Fe{sub 2}O{sub 3}/g-C{sub 3}N{sub 4}. In addition, the oxidized arsenic could be adsorbed in situ, resulting in the effective arsenic removal. The enhancement of photocatalytic activity the composites was attributed to the construction of heterojunction between α-Fe{sub 2}O{sub 3} and g-C{sub 3}N{sub 4}. A possible oxidation mechanism of the as-composites for As(III) under visible light irradiation was also elucidated. - Highlights: • α-Fe{sub 2}O{sub 3}/g-C{sub 3}N{sub 4} composites with heterojunction was prepared by facile one-pot synthesis. • The photocatalytic activity of α-Fe{sub 2}O{sub 3}/g-C{sub 3}N{sub 4} composites under visible light irradiation for As(III) was evaluated. • Synchronous visible light catalysis oxidation and adsorption were achieved for the removal of arsenic. • The reasonable oxidation mechanism of the composites for As(III) under visible light irradiation was investigated.

  5. Controllable synthesis of Bi{sub 2}WO{sub 6} nanoplate self-assembled hierarchical erythrocyte microspheres via a one-pot hydrothermal reaction with enhanced visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhenya; Huang, Lin; Xie, Yanyu; Lin, Zheguan; Fan, Yunyan; Liu, Dan; Chen, Lu; Zhang, Zizhong, E-mail: z.zhang@fzu.edu.cn; Wang, Xuxu

    2017-05-01

    Highlights: • Bi{sub 2}WO{sub 6} hierarchical erythrocyte structure was designed by F{sup −}-assisted one-pot reaction. • Erythrocyte structure enhanced the visible-light photocatalytic activity of Bi{sub 2}WO{sub 6}. • Superoxide radical anions and h{sup +} were the main active species for RhB degradation. - Abstract: This work provides a simple approach of the F{sup −}-assisted one-pot hydrothermal reaction to successfully synthesize Bi{sub 2}WO{sub 6} hierarchical erythrocyte microspheres. The importance role of F{sup −} was systematically investigated by comparing different type of halogen ions, hydrothermal temperature and time. The possible growth mechanism of Bi{sub 2}WO{sub 6} hierarchical structures was proposed. The hierarchical erythrocytes were formed through the well-ordered and oriented self-assembly of thin Bi{sub 2}WO{sub 6} nanoplate primary subunits. F{sup −} ions were absorbed on Bi{sub 2}WO{sub 6} nanoplate surface to suppress the nanoplate stack but to induce a self-assembly through the edge interaction of Bi{sub 2}WO{sub 6} nanoplates into erythrocyte-like hierarchical microspheres superstructures. This erythrocyte structure narrowed the band gap energy and enhanced the visible-light photocatalytic activity of Bi{sub 2}WO{sub 6}. Moreover, superoxide radical anions and h{sup +} were revealed as the main active species responding for the RhB degradation on Bi{sub 2}WO{sub 6} under visible light irradiation.

  6. Tuning the Solubility of Copper Complex in Atom Transfer Radical Self-Condensing Vinyl Polymerizations to Control Polymer Topology via One-Pot to the Synthesis of Hyperbranched Core Star Polymers

    Directory of Open Access Journals (Sweden)

    Zong-Cheng Chen

    2014-09-01

    Full Text Available In this paper, we propose a simple one-pot methodology for proceeding from atom transfer reaction-induced conventional free radical polymerization (AT-FRP to atom transfer self-condensing vinyl polymerization (AT-SCVP through manipulation of the catalyst phase homogeneity (i.e., CuBr/2,2'-bipyridine (CuBr/Bpy in a mixture of styrene (St, 4-vinyl benzyl chloride (VBC, and ethyl 2-bromoisobutyrate. Tests of the solubilities of CuBr/Bpy and CuBr2/Bpy under various conditions revealed that both temperature and solvent polarity were factors affecting the solubility of these copper complexes. Accordingly, we obtained different polymer topologies when performing AT-SCVP in different single solvents. We investigated two different strategies to control the polymer topology in one-pot: varying temperature and varying solvent polarity. In both cases, different fractions of branching revealed the efficacy of varying the polymer topology. To diversify the functionality of the peripheral space, we performed chain extensions of the resulting hyperbranched poly(St-co-VBC macroinitiator (name as: hbPSt MI with either St or tBA (tert-butyl acrylate. The resulting hyperbranched core star polymer had high molecular weights (hbPSt-g-PSt: Mn = 25,000, Đ = 1.77; hbPSt-g-PtBA: Mn = 27,000, Đ = 1.98; hydrolysis of the tert-butyl groups of the later provided a hyperbranched core star polymer featuring hydrophilic poly(acrylic acid segments.

  7. One-Pot Silver Nanoring Synthesis

    Directory of Open Access Journals (Sweden)

    Drogat Nicolas

    2009-01-01

    Full Text Available Abstract Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  8. One-Pot Silver Nanoring Synthesis

    Science.gov (United States)

    Drogat, Nicolas; Granet, Robert; Sol, Vincent; Krausz, Pierre

    2010-03-01

    Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV-vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH and reaction temperature. Particles were analysed by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. A reaction pathway is proposed to explain silver nanoring formation.

  9. One-pot silver nanoring synthesis.

    OpenAIRE

    Drogat , Nicolas; Granet , Robert; Sol , Vincent; Krausz , Pierre

    2009-01-01

    Abstract Silver colloidal nanorings have been synthesized by reducing silver ions with NaBH4 in trisodium citrate buffers. pH increase, by addition of NaOH, was used to speed up reduction reaction. The UV–vis absorption spectra of resulting silver nanorings showed two peaks accounting for transverse and longitudinal surface plasmon resonance, at ≈400 nm, and between 600 and 700 nm, respectively. The shapes of these silver nanoparticles (nanorings) depended on AgNO3/NaBH4 ratio, pH...

  10. An Efficient One-Pot Protocol for the Synthesis of Substituted 3,4-Dihydropyrimidin-2(1H-ones Using Metallophthalocyanines (MPcs as Potent Heterogeneous Catalysts: Synthesis, Characterization, Aggregation and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Naceur Hamdi

    2017-04-01

    Full Text Available In this study, novel phthalonitrile 3 and their corresponding metal-free 4 and metallophthalocyanine derivatives 5–7 bearing 2-isopropenyl-4-methoxy-1-methylbenzene groups were synthesized and characterized. 3,4-Dihydropyrimidinones have been synthesized by a modified Biginelli-type reaction with various metallophthalocyanines 5–7 as catalysts. Compared to the classical Biginielli reaction, the new method has the advantages of good yield and short reaction time. Among the various metallophthalocyanines studied, cobalt (II-phthalocyanine was found to be most active for this transformation. The newly prepared compounds were characterized using elemental analyses, MS, IR, 1H/13C-NMR and UV-Vis spectroscopy. In addition; the 3,4-dihydropyrimidinones (DHPMs 8–12 were investigated for antimicrobial activities and revealed good activity. The minimum inhibitory concentration (MIC was determined by the microdilution technique in Mueller-Hinton broth. The MICs were recorded after 24 hours of incubation at 37 °C. These results are promising, showing these compounds are biologically active.

  11. Quantitative O-glycomics based on improvement of the one-pot method for nonreductive O-glycan release and simultaneous stable isotope labeling with 1-(d0/d5)phenyl-3-methyl-5-pyrazolone followed by mass spectrometric analysis.

    Science.gov (United States)

    Wang, Chengjian; Zhang, Ping; Jin, Wanjun; Li, Lingmei; Qiang, Shan; Zhang, Ying; Huang, Linjuan; Wang, Zhongfu

    2017-01-06

    Rapid, simple and versatile methods for quantitative analysis of glycoprotein O-glycans are urgently required for current studies on protein O-glycosylation patterns and the search for disease O-glycan biomarkers. Relative quantitation of O-glycans using stable isotope labeling followed by mass spectrometric analysis represents an ideal and promising technique. However, it is hindered by the shortage of reliable nonreductive O-glycan release methods as well as the too large or too small inconstant mass difference between the light and heavy isotope form derivatives of O-glycans, which results in difficulties during the recognition and quantitative analysis of O-glycans by mass spectrometry. Herein we report a facile and versatile O-glycan relative quantification strategy, based on an improved one-pot method that can quantitatively achieve nonreductive release and in situ chromophoric labeling of intact mucin-type O-glycans in one step. In this study, the one-pot method is optimized and applied for quantitative O-glycan release and tagging with either non-deuterated (d 0 -) or deuterated (d 5 -) 1-phenyl-3-methyl-5-pyrazolone (PMP). The obtained O-glycan derivatives feature a permanent 10-Da mass difference between the d 0 - and d 5 -PMP forms, allowing complete discrimination and comparative quantification of these isotopically labeled O-glycans by mass spectrometric techniques. Moreover, the d 0 - and d 5 -PMP derivatives of O-glycans also have a relatively high hydrophobicity as well as a strong UV adsorption, especially suitable for high-resolution separation and high-sensitivity detection by RP-HPLC-UV. We have refined the conditions for the one-pot reaction as well as the corresponding sample purification approach. The good quantitation feasibility, reliability and linearity of this strategy have been verified using bovine fetuin and porcine stomach mucin as model O-glycoproteins. Additionally, we have also successfully applied this method to the quantitative

  12. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A

    International Nuclear Information System (INIS)

    Xiao, Xin; Hao, Rong; Liang, Min; Zuo, Xiaoxi; Nan, Junmin; Li, Laisheng; Zhang, Weide

    2012-01-01

    Highlights: ► Synthesis of 3D BiOI/BiOCl microspheres by a one-pot template-free solvothermal method. ► Photocatalyst is BiOI/BiOCl composites. ► BiOI/BiOCl composites have enhanced visible-light photocatalytic ability to bisphenol-A. ► A simple and direct photodegradation pathway of bisphenol-A is proposed. - Abstract: Three-dimensional (3D) BiOI/BiOCl composite microspheres with enhanced visible-light photodegradation activity of bisphenol-A (BPA) are synthesized by a simple, one-pot, template-free, solvothermal method using BiI 3 and BiCl 3 as precursors. These 3D hierarchical microspheres with heterojunction structures are composed of 2D nanosheets and have composition-dependent absorption properties in the ultraviolet and visible light regions. The photocatalytic oxidation of BPA over BiOI/BiOCl composites followed pseudo first-order kinetics according to the Langmuir–Hinshelwood model. The highest photodegradation efficiency of BPA, i.e., nearly 100%, was observed with the BiOI/BiOCl composite (containing 90% BiOI) using a catalyst dosage of 1 g L −1 in the BPA solution (C 0 = 20 mg L −1 , pH = 7.0) under visible light irradiation for 60 min. Under these conditions, the reaction rate constant was more than 4 and 20 times greater than that of pure BiOI and the commercially available Degussa P25, respectively. The superior photocatalytic activity of this composite catalyst is attributed to the suitable band gap energies and the low recombination rate of the photogenerated electron–hole pairs due to the presence of BiOI/BiOCl heterostructures. Only one intermediate at m/z 151 was observed in the photodegradation process of BPA by liquid chromatography combined with mass spectrometry (LC–MS) analysis, and a simple and hole-predominated photodegradation pathway of BPA was subsequently proposed. Furthermore, this photocatalyst exhibited a high mineralization ratio, high stability and easy separation for recycling use, suggesting that it is a

  13. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xin [School of Chemistry and Environment, South China Normal University, Key Lab of Theoretical Chemistry of Environment, Guangzhou 510006 (China); Nano Science Research Center, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Hao, Rong; Liang, Min; Zuo, Xiaoxi [School of Chemistry and Environment, South China Normal University, Key Lab of Theoretical Chemistry of Environment, Guangzhou 510006 (China); Nan, Junmin, E-mail: jmnan@scnu.edu.cn [School of Chemistry and Environment, South China Normal University, Key Lab of Theoretical Chemistry of Environment, Guangzhou 510006 (China); Li, Laisheng [School of Chemistry and Environment, South China Normal University, Key Lab of Theoretical Chemistry of Environment, Guangzhou 510006 (China); Zhang, Weide [Nano Science Research Center, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Synthesis of 3D BiOI/BiOCl microspheres by a one-pot template-free solvothermal method. Black-Right-Pointing-Pointer Photocatalyst is BiOI/BiOCl composites. Black-Right-Pointing-Pointer BiOI/BiOCl composites have enhanced visible-light photocatalytic ability to bisphenol-A. Black-Right-Pointing-Pointer A simple and direct photodegradation pathway of bisphenol-A is proposed. - Abstract: Three-dimensional (3D) BiOI/BiOCl composite microspheres with enhanced visible-light photodegradation activity of bisphenol-A (BPA) are synthesized by a simple, one-pot, template-free, solvothermal method using BiI{sub 3} and BiCl{sub 3} as precursors. These 3D hierarchical microspheres with heterojunction structures are composed of 2D nanosheets and have composition-dependent absorption properties in the ultraviolet and visible light regions. The photocatalytic oxidation of BPA over BiOI/BiOCl composites followed pseudo first-order kinetics according to the Langmuir-Hinshelwood model. The highest photodegradation efficiency of BPA, i.e., nearly 100%, was observed with the BiOI/BiOCl composite (containing 90% BiOI) using a catalyst dosage of 1 g L{sup -1} in the BPA solution (C{sub 0} = 20 mg L{sup -1}, pH = 7.0) under visible light irradiation for 60 min. Under these conditions, the reaction rate constant was more than 4 and 20 times greater than that of pure BiOI and the commercially available Degussa P25, respectively. The superior photocatalytic activity of this composite catalyst is attributed to the suitable band gap energies and the low recombination rate of the photogenerated electron-hole pairs due to the presence of BiOI/BiOCl heterostructures. Only one intermediate at m/z 151 was observed in the photodegradation process of BPA by liquid chromatography combined with mass spectrometry (LC-MS) analysis, and a simple and hole-predominated photodegradation pathway of BPA was subsequently proposed. Furthermore, this photocatalyst

  14. One-pot synthesis of La0.7Sr0.3MnO3 supported on flower-like CeO2 as electrocatalyst for oxygen reduction reaction in aluminum-air batteries

    Science.gov (United States)

    Xue, Yejian; Huang, Heran; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping

    2017-08-01

    A novel La0.7Sr0.3MnO3-CeO2 (LSM-CeO2) hybrid catalyst for oxygen reduction reaction (ORR) has been synthesized by a facile one-pot method. The flower-like CeO2 with the diameter of about 3 μm is formed by the agglomeration of nanosheets with the thickness of about 40 nm. The LSM particles with the diameter of about 150 nm are well distributed on the flower-like CeO2, thus the interaction between LSM and CeO2 is built. Therefore, the LSM-CeO2 composite catalyst exhibits the much higher catalytic activity toward ORR with the direct four-electron transfer mechanism in alkaline solution than LSM or CeO2. Furthermore, the stability of LSM-CeO2 is superior to that of Pt/C, and the current retention is 93% after 100000 s. The maximum power density of the aluminum-air battery using LSM-CeO2 as the ORRC can reach 238 mW cm-2, which is about 29% higher than that with LSM (184 mW cm-2). It indicates that LSM-CeO2 composite material is a promising cathodic electrocatalyst for metal-air batteries.

  15. One-pot synthesis of MoS2/In2S3 ultrathin nanoflakes with mesh-shaped structure on indium tin oxide as photocathode for enhanced photo-and electrochemical hydrogen evolution reaction

    Science.gov (United States)

    Sun, Baoliang; Shan, Fei; Jiang, Xinxin; Ji, Jing; Wang, Feng

    2018-03-01

    A bifunctional MoS2/In2S3 hybrid composite that has both photo- and electrocatalytic activity toward hydrogen evolution reaction (HER) is prepared by a facile one pot hydrothermal method. The characterizations by scanning electron microscope (SEM), high resolution transmission electron microscope (HRTEM) and Photoluminescence (PL) shows that the MoS2/In2S3 hybrid exhibits ultrathin nanoflakes with mesh-shaped structure on transparent conductive substrates, and the as prepared catalyst composite obviously improves the separation of electro-hole pairs. The as prepared hybrid nanosheets with Mo:In of 1/2 integrate In-doped MoS2 to reduce the stacking and increase the active surface area. The novel mesh-shaped nanostructure with a moderate degree of disorder provides not only simultaneously intrinsic conductivity and defects but also higher electrochemically active surface area (ECSA). By electrochemical measurements, such as linear sweep voltammetry (LSV), electrochemical impedance spectroscope (EIS) and cyclic voltammetry (CV), we find that the MoS2/In2S3 hybrid possesses much better photo/electrochemical activity than pristine MoS2 or In2S3. MoS2/In2S3 ultrathin nanoflaks are anticipated to be a superior photoelectrocatalyst for PEC cells, and the rational use of the MoS2/In2S3 cathode offers a new avenue toward achieving effective photo-assistant electrocatalytic activity.

  16. A facile one-pot preparation of Co3O4/g-C3N4 heterojunctions with excellent electrocatalytic activity for the detection of environmental phenolic hormones

    Science.gov (United States)

    Sun, Yanjuan; Jiang, Jizhou; Liu, Yi; Wu, Shengli; Zou, Jing

    2018-02-01

    The Co3O4/g-C3N4 heterojunctions were prepared by a facile one-pot thermal decomposition technique. Compared with g-C3N4, it was found that Co3O4/g-C3N4 heterojunctions possessed a higher Brunner-Emmet-Teller (BET) surface area, which was beneficial to the diffusion of aim molecules on the electrode surfaces. And the optimal Co3O4/g-C3N4 heterojunctions exhibited a narrower band gap and a higher donor density, resulting in an excellent electrocatalytic activity for environmental phenolic hormones. Moreover, the Co3O4/g-C3N4 heterojunctions were used for the electrochemical sensing of environmental phenolic hormones such as bisphenol A, pentachlorophenol, p-nitrophenol and octylphenol. All detection ranges reached three orders of magnitude, showing a lower limit of detection of 10-9 mol L-1. So, sensitivity and accurate determination of environmental phenolic hormones in real water samples may use this Co3O4/g-C3N4 heterojunctions modified electrode.

  17. One-pot hydrothermal synthesis and characterization of CoFe{sub 2}O{sub 4} nanoparticles and its application as magnetically recoverable catalyst in oxidation of alcohols by periodic acid

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar, E-mail: ssd_iitg@hotmail.com

    2016-09-15

    A novel and facile approach for one-pot synthesis of spinel cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles (NPs) is presented here. The synthesis involves homogeneous chemical precipitation followed by hydrothermal heating, using tributylamine (TBA) as a hydroxylating agent. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized CoFe{sub 2}O{sub 4} NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N{sub 2} adsorption-desorption isotherm (BET) and vibrating sample magnetometry (VSM). TEM image showed formation of spherical particles of sizes 2–30 nm. These NPs were used as magnetically recoverable catalyst in oxidation of alcohols to their corresponding aldehydes by periodic acid. This oxidative procedure is found to be highly efficient affording products in very high yield and selectivity. The easy magnetic separation of the catalyst and efficient reusability are key features of this methodology. - Highlights: • Hydrothermal synthesis of CoFe{sub 2}O{sub 4} NPs with (C{sub 4}H{sub 9}){sub 3}N as hydroxylating agent. • The TEM images showed the particles to be spherical in shape with sizes 2–30 nm. • CoFe{sub 2}O{sub 4} was used as recyclable catalyst for oxidation of alcohols by periodic acid.

  18. An Active Alkali-Exchanged Faujasite Catalyst for p-Xylene Production via the One-Pot Diels-Alder Cycloaddition/Dehydration Reaction of 2,5-Dimethylfuran with Ethylene.

    Science.gov (United States)

    Rohling, Roderigh Y; Uslamin, Evgeny; Zijlstra, Bart; Tranca, Ionut C; Filot, Ivo A W; Hensen, Emiel J M; Pidko, Evgeny A

    2018-02-02

    The one-pot Diels-Alder cycloaddition (DAC)/dehydration (D) tandem reaction between 2,5-dimethylfuran and ethylene is a potent pathway toward biomass-derived p -xylene. In this work, we present a cheap and active low-silica potassium-exchanged faujasite (KY, Si/Al = 2.6) catalyst. Catalyst optimization was guided by a computational study of the DAC/D reaction mechanism over different alkali-exchanged faujasites using periodic density functional theory calculations complemented by microkinetic modeling. Two types of faujasite models were compared, i.e., a high-silica alkali-exchanged faujasite model representing isolated active cation sites and a low-silica alkali-exchanged faujasite in which the reaction involves several cations in the proximity. The mechanistic study points to a significant synergetic cooperative effect of the ensemble of cations in the faujasite supercage on the DAC/D reaction. Alignment of the reactants by their interactions with the cationic sites and stabilization of reaction intermediates contribute to the high catalytic performance. Experiments confirmed the prediction that KY is the most active catalyst among low-silica alkali-exchanged faujasites. This work is an example of how the catalytic reactivity of zeolites depends on multiple interactions between the zeolite and reagents.

  19. Facile synthesis of red- to near-infrared-emitting CdTe{sub x}Se{sub 1-x} alloyed quantum dots via a noninjection one-pot route

    Energy Technology Data Exchange (ETDEWEB)

    Liao Lifang; Zhang Hua [Key Laboratory for Advanced Materials, Department of Chemistry, East China University of Science and Technology, Shanghai 200237 (China); Zhong Xinhua, E-mail: zhongxh@ecust.edu.c [Key Laboratory for Advanced Materials, Department of Chemistry, East China University of Science and Technology, Shanghai 200237 (China)

    2011-02-15

    High-quality CdTeSe colloidal nanocrystals with gradient distribution of components, consisting of Te-rich inner cores and Se-rich outer shells, were synthesized in a 'green' solvent paraffin via a noninjection one-pot approach with the use of cadmium oxide (CdO), elemental tellurium, and elemental selenium as Cd, Te, and Se sources, respectively. All of these reactants were loaded at room temperature. This features synthetic reproducibility and large-scale capability. The bandgap engineering of the obtained CdTeSe QDs can be conveniently realized through the variation of growth temperature. Red- to near-infrared-emitting (620-780 nm) QDs with nearly identical particle sizes can be obtained when the reaction temperature was changed from 180 to 280 {sup o}C with the fixation of precursor feed ratio at 5Cd-0.5Te-0.5Se. The as-prepared CdTeSe QDs exhibit PL QY as high as 53%. The resulting CdTeSe QDs were characterized by UV-vis and photoluminescence spectroscopy, powder X-ray diffraction, transmission electron microscopy, and inductively coupled plasma atomic emission spectroscopy.

  20. One-pot synthesis of zeolitic imidazolate framework-8/poly (methyl methacrylate-ethyleneglycol dimethacrylate) monolith coating for stir bar sorptive extraction of phytohormones from fruit samples followed by high performance liquid chromatography-ultraviolet detection.

    Science.gov (United States)

    You, Linna; He, Man; Chen, Beibei; Hu, Bin

    2017-11-17

    In this work, zeolitic imidazolate framework-8 (ZIF-8)/poly (methyl methacrylate-ethyleneglycol dimethacrylate) (MMA-EGDMA) composite monolith was in situ synthesized on stir bar by one-pot polymerization. Compared with the neat monolith, ZIF-8/poly(MMA-EGDMA) composite monolith has larger surface area and pore volume. It also exhibits higher extraction efficiency for target phytohormones than poly(MMA-EGDMA) monolith and commercial polyethylene glycol (PEG) coated stir bar. Based on it, a method of ZIF-8/poly(MMA-EGDMA) monolith coated stir bar sorptive extraction (SBSE)-high performance liquid chromatography-ultraviolet detection (HPLC-UV) was established for the analysis of five phytohormones in apple and pear samples. The developed method exhibited low limits of detection (0.11-0.51μg/L), wide linear range (0.5-500μg/L) and good recoveries (82.7-111%), which demonstrated good application potential of the ZIF-8/monolith coated stir bar in trace analysis of organic compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. One-Pot Synthesis, X-Ray Diffraction and MAS NMR Spectroscopic Study of Gallosilicate Nitrate Cancrinite Na8[GaSiO4]6(NO34(H2O6

    Directory of Open Access Journals (Sweden)

    Ashok V. Borhade

    2010-01-01

    Full Text Available One-pot synthetic gallosilicate nitrate cancrinite (CAN framework topology have been synthesized under hydrothermal conditions at 100 °C. The synthesized product was characterized by, X-ray powder diffraction, IR, Raman and 29Si, 23Na MAS NMR spectroscopy, SEM and thermogravimetry. The crystal structure refinement of pure nitrate cancrinite has been carried out from X-ray data using Rietveld refinement method. Gallosilicate cancrinite Na8[GaSiO4]6(NO34(H2O6 crystalline hexagonal with space group P63 and a = 12.77981 Å (2, c = 5.20217 Å (1, (Rwp = 0.0696 Rp = 0.0527. The results by MAS NMR spectroscopy confirmed the alternating Si, Ga ordering of the gallosilicate framework for a Si/Ga ratio of 1.0. A distribution of the quadrupolar interaction of the sodium cations caused by the enclatherated water molecules and motional effects can be suggested from the 23Na MAS NMR. Thermogravimetric investigation shows the extent of nitrate entrapment, stability within the cancrinite cage and decomposition properties. SEM clearly shows the hexagonal needle shaped crystals of nitrate cancrinite.

  2. One pot synthesis, X-ray crystal structure of 2-(2‧-hydroxyphenyl)oxazolo[4,5-b]pyridine derivatives and studies of their optical properties

    Science.gov (United States)

    Briseño-Ortega, Horacio; Juárez-Guerra, Lizbeth; Rojas-Lima, Susana; Mendoza-Huizar, Luis Humberto; Vázquez-García, Rosa A.; Farfán, Norberto; Arcos-Ramos, Rafael; Santillan, Rosa; López-Ruiz, Heralio

    2018-04-01

    A series of five 2-(2-hydroxyphenyl)oxazolo [4,5-b]pyridines (HPOP) (3a-e), where four are novel, were synthesized by a mild, one pot, phenylboronic acid-NaCN catalyzed reaction. Spectroscopic characterization and photophysical properties of these compounds are reported. Absorption and excitation spectra of the compounds were dependent on the substituents in the phenyl ring. Fluorescence quantum yields (0.009-0.538) were associated with the donor strength and the position of the substituents. Also, DFT analysis allowed us to determine the contribution of diethylamino and methoxy moieties to the π-system, which is in agreement with the experimental data analyzed in solution and by cyclic voltammetry. The results obtained in the solid state by single-crystal X-ray diffraction experiments indicate that, the quasi-planarity envisioned for the explored compounds is present, supporting the hypothesis that both the H-bonding of a hydroxyl group to the Cdbnd N moiety and a donor groups such as diethylamino and methoxy moieties favor an electronic communication. Due to the facile synthesis and their photophysical properties, the novel HPOP 3a-e have potential application as organic semiconductors.

  3. One-pot, template- and surfactant-free solvothermal synthesis of high-crystalline Fe{sub 3}O{sub 4} nanostructures with adjustable morphologies and high magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Zong, Yan; Xin, Hongna; Zhang, Jiarui [School of Physics, Northwest University, Xi’an 710000 (China); Li, Xinghua, E-mail: lixinghua04@gmail.com [School of Physics, Northwest University, Xi’an 710000 (China); Feng, Juan [School of Physics, Northwest University, Xi’an 710000 (China); Deng, Xia [School of Physical Science and Technology, Lanzhou University, Lanzhou 730000 (China); Sun, Yong [School of Physics, Northwest University, Xi’an 710000 (China); Zheng, Xinliang, E-mail: zhengxl@nwu.edu.cn [School of Physics, Northwest University, Xi’an 710000 (China)

    2017-02-01

    In the present study, high-crystalline and well-defined Fe{sub 3}O{sub 4} nanostructures with tunable morphologies were fabricated through a facile one-pot solvothermal approach. The morphology, crystal structure and chemical compositions of the products were characterized at the nanoscale. X-ray diffraction and selected area electron diffraction patterns indicate that the products have a pure spinel phase without the presence of any other impurity. Based on the transmission electron microscope technology, shape evolution of the products were investigated. Several morphologies including irregular particles, clusters, hollow sphere and octahedrons can be obtained by only adjusting the amount of NaOH without using any surfactant. Magnetism investigations show that all the products perform ferromagnetic behavior with high saturation magnetization at room temperature, which mainly originates from their high crystalline nature and template-free fabrication process. - Highlights: • Fe{sub 3}O{sub 4} were prepared by a template- and surfactant-free solvothermal route. • The shapes of Fe{sub 3}O{sub 4} nanostructures can be controlled by changing the amount of NaOH. • All the Fe{sub 3}O{sub 4} nanostructures with different shapes have high magnetization values.

  4. One-pot synthesis of ternary zero-valent iron/phosphotungstic acid/g-C3N4 composite and its high performance for removal of arsenic(V) from water

    Science.gov (United States)

    Chen, Chunhua; Xu, Jia; Yang, Zhihua; Zhang, Li; Cao, Chunhua; Xu, Zhihua; Liu, Jiyan

    2017-12-01

    Ternary zero-valent iron/phos photungstic acid/g-C3N4 composite (Fe0@PTA/g-C3N4) was synthesized via photoreduction of iron (II) ions assisted by phosphotungstic acid (PTA) over g-C3N4 flakes. The as-prepared Fe0@PTA/g-C3N4 was investigated for removal of As(III) and As(V) species from water. The result showed that Fe0@PTA/g-C3N4 exhibited a better performance for As(V) removal than As(III) species from water, and the maximum adsorption capacity for As(V) was 70.3 mg/g, much higher than most of the reported adsorbents. As(V) removal by the Fe0@PTA/g-C3N4 adsorbent is mainly via a chemical process, synergistically occurring of reduction of As(V) and oxidation of Fe0. Moreover, the Fe0@PTA/g-C3N4 adsorbent showed effective As(V) removal from the simulated industrial wastewater and underground water. This study demonstrates that Fe0@PTA/g-C3N4 can be a potential adsorbent for As(V) removal due to its high performance, and simple one-pot synthesis process.

  5. One-pot hydrothermal synthesis and characterization of CoFe2O4 nanoparticles and its application as magnetically recoverable catalyst in oxidation of alcohols by periodic acid

    International Nuclear Information System (INIS)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar

    2016-01-01

    A novel and facile approach for one-pot synthesis of spinel cobalt ferrite (CoFe 2 O 4 ) nanoparticles (NPs) is presented here. The synthesis involves homogeneous chemical precipitation followed by hydrothermal heating, using tributylamine (TBA) as a hydroxylating agent. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized CoFe 2 O 4 NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N 2 adsorption-desorption isotherm (BET) and vibrating sample magnetometry (VSM). TEM image showed formation of spherical particles of sizes 2–30 nm. These NPs were used as magnetically recoverable catalyst in oxidation of alcohols to their corresponding aldehydes by periodic acid. This oxidative procedure is found to be highly efficient affording products in very high yield and selectivity. The easy magnetic separation of the catalyst and efficient reusability are key features of this methodology. - Highlights: • Hydrothermal synthesis of CoFe 2 O 4 NPs with (C 4 H 9 ) 3 N as hydroxylating agent. • The TEM images showed the particles to be spherical in shape with sizes 2–30 nm. • CoFe 2 O 4 was used as recyclable catalyst for oxidation of alcohols by periodic acid.

  6. Rapid, controllable, one-pot and room-temperature aqueous synthesis of ZnO:Cu nanoparticles by pulsed UV laser and its application for photocatalytic degradation of methyl orange.

    Science.gov (United States)

    Arabi, Mozhgan; Baizaee, Seyyed Mahdy; Bahador, Alireza; Otaqsara, Seyed Mohammad Taheri

    2018-05-01

    Zinc oxide (ZnO) and ZnO:Cu nanoparticles (NPs) were synthesized using a rapid, controllable, one-pot and room-temperature pulsed UV-laser assisted method. UV-laser irradiation was used as an effective energy source in order to gain better control over the NPs size and morphology in aqueous media. Parameters effective in laser assisted synthesis of NPs such as irradiation time and laser shot repetition rate were optimized. Photoluminescence (PL) spectra of ZnO NPs showed a broad emission with two trap state peaks located at 442 and 485 nm related to electronic transition from zinc interstitial level (I Zn ) to zinc vacancy level (V Zn ) and electronic transition from conduction band to the oxygen vacancy level (V O ), respectively. For ZnO:Cu NPs, trap state emissions disappeared completely and a copper (Cu)-related emission appeared. PL intensity of Cu-related emission increased with the increase in concentration of Cu 2+ , so that for molar ratio of Cu:Zn 2%, optimal value of PL intensity was obtained. The photocatalytic activity of Cu-doped ZnO revealed 50 and 100% increasement than that of undoped NPs under UV and visible irradiation, respectively. The enhanced photocatalytic activity could be attributed to smaller crystal size, as well as creation of impurity acceptor levels (T 2 ) inside the ZnO energy band gap. Copyright © 2017 John Wiley & Sons, Ltd.

  7. One Pot Synthesis, Photophysical and X-ray Studies of Novel Highly Fluorescent Isoquinoline Derivatives with Higher Antibacterial Efficacy Based on the In-vitro and Density Functional Theory.

    Science.gov (United States)

    Asiri, Abdullah M; Khan, Salman A; Al-Thaqafy, Saad H; Sharma, Kamlesh

    2015-05-01

    Series of cyano substituted isoquinoline dyes were synthesized by one-pot multicomponent reactions (MCRs) of aldehydes, malononitrile, 6-methoxy-1,2,3,4-tetrahydro-naphthalin-1-one and ammonium acetate. Results obtained from spectroscopic (FT-IR, (1)H-NMR, (13)C-NMR, EI-MS) and elemental analysis of synthesized compounds was in agreement with their chemical structures. Structure of the compound was further conformed by X-ray crystallographic. UV-vis and fluorescence spectroscopy measurements provided that all compounds are good absorbent and fluorescent. Fluorescence polarity study demonstrated that these compounds were sensitive to the polarity of the microenvironment provided by different solvents. In addition, spectroscopic and physicochemical parameters, including electronic absorption, extenction coefficient, Stokes shift, oscillator strength transition dipole moment and fluorescence quantum yield were investigated in order to explore the analytical potential of synthesized compounds. The anti-bacterial activity of these compounds were first studied in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria. The minimum inhibitory concentration was then determined with the reference of standard drug chloramphenicol. The results displayed that compound 3 was better inhibitors of both types of the bacteria (Gram-positive and Gram-negative) than chloramphenicol. Furthermore, quantum chemistry calculations using DFT/6-31-G* level of theory confirm the results. Dipole moment and frontier molecular orbitals were also investigated.

  8. The effects of rhythm control strategies versus rate control strategies for atrial fibrillation and atrial flutter: a protocol for a systematic review with meta-analysis and Trial Sequential Analysis.

    Science.gov (United States)

    Sethi, Naqash J; Safi, Sanam; Nielsen, Emil E; Feinberg, Joshua; Gluud, Christian; Jakobsen, Janus C

    2017-03-06

    Atrial fibrillation is the most common arrhythmia of the heart with a prevalence of approximately 2% in the western world. Atrial flutter, another arrhythmia, occurs less often with an incidence of approximately 200,000 new patients per year in the USA. Patients with atrial fibrillation and atrial flutter have an increased risk of death and morbidities. The management of atrial fibrillation and atrial flutter is often based on interventions aiming at either a rhythm control strategy or a rate control strategy. The evidence on the comparable effects of these strategies is unclear. This protocol for a systematic review aims at identifying the best overall treatment strategy for atrial fibrillation and atrial flutter. This protocol for a systematic review was performed following the recommendations of the Cochrane Collaboration and the eight-step assessment procedure suggested by Jakobsen and colleagues. We plan to include all relevant randomised clinical trials assessing the effects of any rhythm control strategy versus any rate control strategy. We plan to search the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, LILACS, Science Citation Index Expanded on Web of Science, and BIOSIS to identify relevant trials. Any eligible trial will be assessed and classified as either high risk of bias or low risk of bias, and our conclusions will be based on trials with low risk of bias. The analyses of the extracted data will be performed using Review Manager 5 and Trial Sequential Analysis. For both our primary and secondary outcomes, we will create a 'Summary of Findings' table and use GRADE assessment to assess the quality of the evidence. The results of this systematic review have the potential to benefit thousands of patients worldwide as well as healthcare systems and healthcare economy. PROSPERO CRD42016051433.

  9. Rose-like monodisperse bismuth subcarbonate hierarchical hollow microspheres: One-pot template-free fabrication and excellent visible light photocatalytic activity and photochemical stability for NO removal in indoor air

    International Nuclear Information System (INIS)

    Dong, Fan; Lee, S.C.; Wu, Zhongbiao; Huang, Yu; Fu, Min; Ho, Wing-Kei; Zou, Shichun; Wang, Bo

    2011-01-01

    Graphical abstract: Rose-like monodisperse hierarchical nitrogen doped (BiO) 2 CO 3 hollow microspheres fabricated by a one-pot template-free method exhibit excellent visible light photocatalytic activity and photochemical stability in the removal of NO in indoor air. The special hierarchical microstructure, the high charge separation efficiency and two-band-gap structure in all contribute to the outstanding photocatalytic performance. Highlights: → Rose-like monodisperse hierarchical (BiO) 2 CO 3 hollow microspheres are fabricated. → The (BiO) 2 CO 3 microspheres are self-assembled of single-crystalline nanosheets. → Nitrogen is in situ doped into the lattice of hierarchical (BiO) 2 CO 3 microspheres. → The (BiO) 2 CO 3 microspheres exhibit outstanding visible light activity for NO removal. → The (BiO) 2 CO 3 microspheres also exhibit high photochemical stability. - Abstract: Rose-like monodisperse hierarchical (BiO) 2 CO 3 hollow microspheres are fabricated by a one-pot template-free method for the first time based on hydrothermal treatment of ammonia bismuth citrate and urea in water. The microstructure and band structure of the as-prepared (BiO) 2 CO 3 superstructure are characterized in detail by X-ray diffraction, Raman spectroscopy, Fourier transform-infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, N 2 adsorption-desorption isotherms, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The monodisperse hierarchical (BiO) 2 CO 3 microspheres are constructed by the self-assembly of single-crystalline nanosheets. The aggregation of nanosheets result in the formation of three dimensional hierarchical framework containing mesopores and macropores, which is favorable for efficient transport of reaction molecules and harvesting of photo-energy. The result reveals the existence of special two-band-gap structure (3.25 and 2.0 eV) for (BiO) 2 CO 3 . The band gap of 3.25 eV is intrinsic and the

  10. One-pot synthesis of porphyrin functionalized γ-Fe{sub 2}O{sub 3} nanocomposites as peroxidase mimics for H{sub 2}O{sub 2} and glucose detection

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingyun, E-mail: qyliu@sdust.edu.cn; Zhang, Leyou; Li, Hui; Jia, Qingyan; Jiang, Yanling; Yang, Yanting; Zhu, Renren

    2015-10-01

    Meso-tetrakis(4-carboxyphenyl)-porphyrin-functionalized γ-Fe{sub 2}O{sub 3} nanoparticles (H{sub 2}TCPP-γ-Fe{sub 2}O{sub 3}) were successfully prepared by one-pot method under hydrothermal conditions and were found to possess intrinsic peroxidase-like activity. The H{sub 2}TCPP-γ-Fe{sub 2}O{sub 3} nanocomposites can catalytically oxidize peroxidase substrate 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H{sub 2}O{sub 2} to produce a blue color reaction, which can be easily observed by the naked eye. Furthermore, kinetic studies indicate that the H{sub 2}TCPP-γ-Fe{sub 2}O{sub 3} nanocomposites have an even higher affinity to TMB than that of the natural enzyme, horseradish peroxidase (HRP). On the basis of the high activity, the reaction provides a simple, sensitive and selective method for colorimetric detection of H{sub 2}O{sub 2} over a range of 10–100 μM with a minimum detection limit of 1.73 μM. Moreover, H{sub 2}TCPP-γ-Fe{sub 2}O{sub 3}/glucose oxidase (GOx)/TMB system provides a novel colorimetric sensor for glucose and shows good response toward glucose detection over a range of 5–25 μM with a minimum detection limit of 2.54 μM. The results indicated that it is a simple, cheap, convenient, highly selective, sensitive and easy handling colorimetric assay. Results of a fluorescent probe suggest that the catalase-mimic activity of the H{sub 2}TCPP-γ-Fe{sub 2}O{sub 3} nanocomposites effectively catalyze the decomposition of H{sub 2}O{sub 2} into H{sub 2}O and O{sub 2}. - Graphical abstract: 5,10,15,20-Tetrakis(4-carboxyl phenyl)-porphyrin (H{sub 2}TCPP)-γ-Fe{sub 2}O{sub 3} nanocomposites were demonstrated to possess intrinsic peroxidase-like activity and showed a higher catalytic activity, compared to that of γ-Fe{sub 2}O{sub 3} nanoparticles alone. - Highlights: • Porphyrin-functionalized γ-Fe{sub 2}O{sub 3} nanoparticles were prepared by one-pot method. • The porphyrin-γ-Fe{sub 2}O{sub 3} nanocomposites were found to possess

  11. Facile, one-pot and scalable synthesis of highly emissive aqueous-based Ag,Ni:ZnCdS/ZnS core/shell quantum dots with high chemical and optical stability

    Science.gov (United States)

    Sahraei, Reza; Soheyli, Ehsan; Faraji, Zahra; Soleiman-Beigi, Mohammad

    2017-11-01

    We report here on a one-pot, mild and low cost aqueous-based synthetic route for the preparation of colloidally stable and highly luminescent dual-doped Ag,Ni:ZnCdS/ZnS core/shell quantum dots (QDs). The pure dopant emission of the Ni-doped core/shell QDs was found to be highly affected by the presence of a second dopant ion (Ag+). Results showed that the PL emission intensity increases while its peak position experiences an obvious blue shift with an increase in the content of Ag+ ions. Regarding the optical observations, we provide a simple scheme for absorption-recombination processes of the carriers through impurity centers. To obtain optimum conditions with a better emission characteristic, we also study the effect of different reaction parameters, such as refluxing temperature, the pH of the core and shell solution, molar ratio of the dopant ions (Ni:(Zn+Cd) and Ag:(Zn+Cd)), and concentration of the core and shell precursors. Nonetheless, the most effective parameter is the presence of the ZnS shell in a suitable amount to eliminate surface trap states and enhance their emission intensity. It can also improve the bio-compatibility of the prepared QDs by restricting the Cd2+ toxic ions inside the core of the QDs. The present suggested route also revealed the remarkable optical and chemical stability of the colloidal QDs which establishes them as a decent kind of nano-scale structure for light emitting applications, especially in biological technologies. The suggested process also has the potential to be scaled-up while maintaining the emission characteristics and structural quality necessary for industrial applications in optoelectronic devices.

  12. Ultrathin ZnSe nanowires: one-pot synthesis via a heat-triggered precursor slow releasing route, controllable Mn doping and application in UV and near-visible light detection.

    Science.gov (United States)

    Li, Dong; Xing, Guanjie; Tang, Shilin; Li, Xiaohong; Fan, Louzhen; Li, Yunchao

    2017-10-12

    We report herein a heat-triggered precursor slow releasing route for the one-pot synthesis of ultrathin ZnSe nanowires (NWs), which relies on the gradual dissolving of Se powder into oleylamine containing a soluble Zn precursor under heating. This route allows the reaction system to maintain a high monomer concentration throughout the entire reaction process, thus enabling the generation of ZnSe NWs with diameter down to 2.1 nm and length approaching 400 nm. The size-dependent optical properties and band-edge energy levels of the ZnSe NWs were then explored in depth by UV-visible spectroscopy and cyclic voltammetry, respectively. Considering their unique absorption properties, these NWs were specially utilized for fabricating photoelectrochemical-type photodetectors (PDs). Impressively, the PDs based on the ZnSe NWs with diameters of 2.1 and 4.5 nm exhibited excellent responses to UVA and near-visible light, respectively: both possessed ultrahigh on/off ratios (5150 for UVA and 4213 for near-visible light) and ultrawide linear response ranges (from 2.0 to 9000 μW cm -2 for UVA and 5.0 to 8000 μW cm -2 for near-visible light). Furthermore, these ZnSe NWs were selectively doped with various amounts of Mn 2+ to tune their emission properties. As a result, ZnSe NW film-based photochromic cards were creatively developed for visually detecting UVA and near-visible radiation.

  13. One-Pot Synthesis of Cu-Nanocluster-Decorated Brookite TiO2 Quasi-Nanocubes for Enhanced Activity and Selectivity of CO2 Photoreduction to CH4.

    Science.gov (United States)

    Jin, Jingpeng; Luo, Jiang; Zan, Ling; Peng, Tianyou

    2017-11-17

    A new kind of metallic Cu-loaded brookite TiO 2 composite, in which Cu nanoclusters with a small size of 1-3 nm are decorated on brookite TiO 2 quasi nanocube (BTN) surfaces (hereafter referred to as Cu-BTN), is synthesized via a one-pot hydrothermal process and then used as photocatalyst for CO 2 reduction. It was found that the decoration of Cu nanoclusters on BTN surfaces can improve the activity and selectivity of CO 2 photoreduction to CH 4 , and 1.5 % Cu-BTN gives a maximum overall photocatalytic activity (150.9 μmol g -1  h -1 ) for CO/CH 4 production, which is ≈11.4 and ≈3.3 times higher than those of pristine BTN (13.2 μmol g -1  h -1 ) and Ag-BTN (45.2 μmol g -1  h -1 ). Moreover, the resultant Cu-BTN products can promote the selective generation of CH 4 as compared to CO due to the number of surface oxygen vacancies and the CO 2 /H 2 O adsorption behavior, which differs from that of the pristine BTN. The present results demonstrate that brookite TiO 2 would be a potential effective photocatalyst for CO 2 photoreduction, and that Cu nanoclusters can act as an inexpensive and efficient co-catalyst alternative to the commonly used noble metals to improve the photoactivity and selectivity for CO 2 reduction to CH 4 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Microwave-assisted one-pot radiosynthesis of 2′-deoxy-2′-[18F]fluoro-5-methyl-1-β-D-arabinofuranosyluracil ([18F]-FMAU)

    International Nuclear Information System (INIS)

    Chen, Kai; Li Zibo; Conti, Peter S.

    2012-01-01

    Objectives: [ 18 F]-FMAU is a PET tracer being evaluated for imaging cell proliferation. Current multi-step procedures of [ 18 F]-FMAU synthesis are time-consuming, resulting in low radiochemical yield and inconvenient applications for the clinic. We have previously reported the use of Friedel-Crafts catalysts for an improved synthesis of [ 18 F]-FMAU. In this study, we investigated the efficiency of microwave-assisted radiosynthesis of [ 18 F]-FMAU in comparison with conventional thermal conditions. Methods: A simplified one-pot synthesis of [ 18 F]-FMAU was developed under microwave conditions. Various reaction times, temperatures, and microwave powers were systematically explored to optimize the coupling reaction of 2-deoxy-2-[ 18 F]fluoro-1,3,5-tri-O-benzoyl-D-arabinofuranose ([ 18 F]-sugar) and bis-2,4-(trimethylsilyloxy)-5-methyluracil (silylated uracil) in the presence of a Friedel-Crafts catalyst, trimethylsilyl trifluoromethanesulfonate (TMSOTf). Results: Microwave significantly enhanced the coupling efficiency of [ 18 F]-sugar and silylated uracil by reducing the reaction time to 10 min (6-fold reduction as compared to conventional heating) at 95 °C. Base hydrolysis followed by high-performance liquid chromatography purification produced the desired [ 18 F]-FMAU. The overall radiochemical yield was 20 ± 4% (decay corrected, n = 3). Radiochemical purity was > 99% and specific activity was > 400 mCi/μmol. The α/β anomer ratio was 1:2. The radiosynthesis time was about 90 min from the end of bombardment. Conclusions: A reliable microwave-assisted approach has been developed for routine synthesis of [ 18 F]-FMAU. The new approach affords a simplified process with shorter synthesis time and higher radiochemical yield as compared to conventional heating. A fully automated microwave-assisted synthesis of [ 18 F]-FMAU can be readily achieved under new reaction conditions.

  15. A comparison investigation of optical, structural and luminescence properties of CdOxTe1-x and CdTexSe1-x nanoparticles prepared by a simple one pot method

    Science.gov (United States)

    Kiprotich, Sharon; Onani, Martin O.; Dejene, Francis B.

    2018-04-01

    We present L-cysteine capped CdOXTe1-X and CdTeXSe1-X nanoparticles (NPs) prepared in one pot. The as-prepared CdOXTe1-X NPs were found to have a hexagonal crystal structure of CdTe with a cubic phase of CdO. There was, however, change in phase to cubic type when 2 mM of Se was introduced into the CdTe at 60 min of reaction time. The average crystallite sizes obtained from X-ray diffraction analysis for CdOXTe1-X and CdTeXSe1-X NPs were in the range of 10-36 nm. The diffraction peaks shifted to higher diffraction angle with longer growth time. Scanning electron microscope images display change in shape and size as reaction progress. Photoluminescence (PL) emission was observed to shift from 510-566 nm and 620-653 nm for CdOXTe1-X and CdTeXSe1-X NPs respectively followed by variation in the peak intensities. The emission spectra displayed a good symmetry and a narrow full width at half maximum ranging from 41 to 100 nm in both cases. The absorbance analysis of the as-prepared NPs displayed well-resolved absorption bands. The optical band gaps of the as-prepared NPs were found to decrease with increase in reaction time. Reaction parameters such as pH, reaction time, reaction temperature and the molar concentration could have major effects on the optical properties of the as-prepared nanoparticles hence their need to control them.

  16. Facile one-pot synthesis of Ni2+-doped (NH4)2V3O8 nanoflakes@Ni foam with visible-light-driven photovoltaic behavior for supercapacitor application

    Science.gov (United States)

    Zhou, Qingfeng; Gong, Yun; Lin, Jianhua

    2018-05-01

    In the present work, Ni2+-doped (NH4)2V3O8 nanoflakes are in situ grown on Ni foam through a facile one-pot hydrothermal technique in a NH4VO3 aqueous solution. The Ni2+-doped (NH4)2V3O8@Ni foam composite material can be used as binder- and conductivity agent-free electrode in supercapacitor, it manifests a large specific capacitance of 465.5 F g-1 at a current density of 0.2 A g-1 and a superior rate capability of 317.5 F g-1 at 10 A g-1, which is beneficial from its three-dimensional porous architecture cross-linked by the ultrathin Ni2+-doped (NH4)2V3O8 nanoflakes on Ni foam. Meanwhile, the Ni2+-doped (NH4)2V3O8@Ni foam//Activated carbon asymmetric supercapacitor can deliver a maximum energy density of 20.1 W h kg-1 at a power density of 752.0 W kg-1. Significantly, the Ni2+-doped (NH4)2V3O8@Ni foam electrode possesses reversible electrochromic behavior, and it shows obvious visible light-driven photoresponse with much higher specific capacitance (645.3 F g-1 at 0.5 A g-1) under illumination (650 nm > λ > 350 nm, 100 mW cm-2), which is probably associated with the semiconducting characteristics of the spin-polarized (NH4)2V3O8 and the quantum confinement effect of the nanoflakes.

  17. A selective C-H insertion/olefination protocol for the synthesis of α-methylene-γ-butyrolactone natural products.

    Science.gov (United States)

    Lloyd, Matthew G; D'Acunto, Mariantonietta; Taylor, Richard J K; Unsworth, William P

    2016-02-07

    A regio- and stereoselective one-pot C-H insertion/olefination protocol has been developed for the late stage installation of α-methylene-γ-butyrolactones into conformationally restricted cyclohexanol-derivatives. The method has been successfully applied in the total synthesis of eudesmanolide natural product frameworks, including α-cyclocostunolide.

  18. STRIDER: Sildenafil Therapy In Dismal prognosis Early-onset intrauterine growth Restriction--a protocol for a systematic review with individual participant data and aggregate data meta-analysis and trial sequential analysis.

    Science.gov (United States)

    Ganzevoort, Wessel; Alfirevic, Zarko; von Dadelszen, Peter; Kenny, Louise; Papageorghiou, Aris; van Wassenaer-Leemhuis, Aleid; Gluud, Christian; Mol, Ben Willem; Baker, Philip N

    2014-03-11

    In pregnancies complicated by early-onset extreme fetal growth restriction, there is a high risk of preterm birth and an overall dismal fetal prognosis. Sildenafil has been suggested to improve this prognosis. The first aim of this review is to assess whether sildenafil benefits or harms these babies. The second aim is to analyse if these effects are modified in a clinically meaningful way by factors related to the women or the trial protocol. The STRIDER (Sildenafil Therapy In Dismal prognosis Early-onset intrauterine growth Restriction) Individual Participant Data (IPD) Study Group will conduct a prospective IPD and aggregate data systematic review with meta-analysis and trial sequential analysis. The STRIDER IPD Study Group started trial planning and funding applications in 2012. Three trials will be launched in 2014, recruiting for three years. Further trials are planned to commence in 2015.The primary outcome for babies is being alive at term gestation without evidence of serious adverse neonatal outcome. The latter is defined as severe central nervous system injury (severe intraventricular haemorrhage (grade 3 and 4) or cystic periventricular leukomalacia, demonstrated by ultrasound and/or magnetic resonance imaging) or other severe morbidity (bronchopulmonary dysplasia, retinopathy of prematurity requiring treatment, or necrotising enterocolitis requiring surgery). The secondary outcomes are improved fetal growth velocity assessed by ultrasound abdominal circumference measurements, gestational age and birth weight (centile) at delivery, and age-adequate performance on the two-year Bayley scales of infant and toddler development-III (composite cognitive score and composite motor score). Subgroup and sensitivity analyses in the IPD meta-analysis include assessment of the influence of several patient characteristics: an abnormal or normal serum level of placental growth factor, absent/reversed umbilical arterial end diastolic flow at commencement of treatment

  19. PVP-SDS软模板引导常温水相一锅法合成银纳米棒%Aqueous Synthesis of Silver Nanorods at Normal Temperature in One-pot Directed by Soft Templates of PVP-SDS

    Institute of Scientific and Technical Information of China (English)

    方云; 吴梦洁; 任月萍; 江明

    2011-01-01

    Uniform multiply twinned particles(MTP) of nanosilver were synthesized in polyvinylpyrroli-done(PVP) and sodium dodecyl sulfate(SDS) aggregations soft template solution by using ammoniacal sil-ver ions as reaction precursor and glucose as reducing agent.Subsequently,the MTP which were(50±5) nm in diameter spontaneously grew into silver nanorods.The surface plasma resonance peak of these silver MTP appeared at 441 nm and their XRD diffraction pattern revealed that they were face-centric structure(fcc) with the strongest diffraction peak at the(111) lattice plane.The lattice fringes and twin planes of the MTP were observed by the high-resolution transmission electron microscopy(HRTEM) and the quintuple twinned structure of the MTP was further validated by the selected area electron diffraction(SAED).It is deduced that the as-prepared MTP of nanosilver with high growth activities could further grow induced by the PVP-SDS template.Eventually,anisotropy silver nanorods were simply prepared in one-pot by virtue of the restricted Ostwald ripening assisted by PVP-SDS soft template at normal temperature.This is a novel route instead of the conventional polyol-assisted and crystal seed-induced hyperthernal methods,which could evidently increase the applicability of the wet-chemical methods and markedly reduce the cost to pre-pare one-dimensional nanosilver materials.%以银氨络离子为前躯体,葡萄糖为还原剂,在聚乙烯吡咯烷酮(PVP)和十二烷基硫酸钠(SDS)组成的软模板中反应,首先得到形貌均一、粒径为(50±5)nm的纳米银颗粒,随后自发生长成银纳米棒.测试结果表明纳米银颗粒的等离子共振吸收峰在441 nm处,XRD表明其为面心立方体,在(111)晶面有最强吸收;高分辨透射电镜(HRTEM)观察到的晶格条纹和孪晶面证实其为多重孪晶(MTP),选区电子衍射(SAED)进一步证实了其具有五重孪晶结构.由于孪晶结构具

  20. One-pot solvothermal synthesis of Co{sub 1−x}Mn{sub x}C{sub 2}O{sub 4} and their application as anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Wei An Elijah [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute @ NTU (ERI-N), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553 (Singapore); Cheah, Yan Ling; Wong, Chui Ling [Energy Research Institute @ NTU (ERI-N), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553 (Singapore); Hng, Huey Hoon [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Madhavi, Srinivasan, E-mail: madhavi@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute @ NTU (ERI-N), Nanyang Technological University, 50 Nanyang Drive, Singapore 637553 (Singapore); TUM CREATE Center for Electromobility, 1 CREATE Way, #10-02 CREATE Tower, Singapore 138602 (Singapore)

    2015-07-25

    Graphical abstract: MnC{sub 2}O{sub 4} exhibited good cycling stability while CoC{sub 2}O{sub 4} showed severe capacity fading phenomenon after 40 cycles. Notably, mixed solid solution having Co{sub 0.52}Mn{sub 0.48}C{sub 2}O{sub 4} composition improved the specific reversible discharge capacity to a stable value of ∼1000 mA h g{sup −1} (1 C-rate). - Highlights: • Mixed metal oxalates are synthesized by solvothermal method for the first time. • We control morphologies by varying solvent mixtures and transition metal types. • Li/Co{sub 0.52}Mn{sub 0.48}C{sub 2}O{sub 4} is the best capacity and rate-performing cell in this study. • The positive synergistic effect is attributed to optimal Co:Mn mole ratio. • Properties of Co give high capacity values while Mn give good cycling stability. - Abstract: A facile one-pot solvothermal route has been developed to synthesize phase pure M{sub x}C{sub 2}O{sub 4}⋅2H{sub 2}O (M = Mn, Co; 0 < x ⩽ 1) microstructures without employing any hard/soft template and their electrochemical performance in lithium-ion batteries has been systematically investigated. Morphology, microstructure and composition of the synthesized materials are characterized by field emission-scanning electron microscopy, X-ray diffraction and energy-dispersive X-ray spectroscopy. Anhydrous micron-sized MnC{sub 2}O{sub 4} and CoC{sub 2}O{sub 4} exhibits specific reversible discharge capacity of ∼800 and 950 mA h g{sup −1} respectively, at 1 C-rate. MnC{sub 2}O{sub 4} exhibited good cycling stability while CoC{sub 2}O{sub 4} showed severe capacity fading phenomenon after 40 cycles, thereafter attaining 400–600 mA h g{sup −1} for all C-rates. Interestingly, mixed solid solution having Co{sub 0.52}Mn{sub 0.48}C{sub 2}O{sub 4} composition improved the specific reversible discharge capacity to a stable value of ∼1000 mA h g{sup −1} (1 C-rate), which is one of the highest reported values for such oxalates. The cycling stability of this

  1. 一步法合成载铁有序介孔碳材料的形成机理%Mechanism of the synthesis of ordered Fe-containing mesoporous carbon composite materials in one-pot

    Institute of Scientific and Technical Information of China (English)

    凌晓凤; 顾娟; 李健生; 孙秀云; 韩卫清; 沈锦优; 王连军

    2012-01-01

    采用软模板路线以三嵌段共聚物F127为模板剂,间苯二酚-甲醛缩聚所形成酚醛树脂(RF)为碳源,与酚羟基有络合作用的无机铁盐为金属前体,在无外加酸碱催化剂的条件下,利用铁盐的水解反应形成酚醛缩聚所需酸性环境,多组分共组装一步合成了载铁有序介孔碳材料(Fe/OMC)。对Fe/OMC合成各阶段过程进行了分析,利用X射线衍射、透射电子显微镜等手段对材料进行表征,比较了不同老化时间、硝酸铁投加量及酚醛比例等合成条件对材料结构的影响规律。结果表明,在较长的老化时间(≥60 h)、适宜的n(Fe)/n(R)比(0.05~0.2)和n(R)/n(F)比[(1/1.5)~(1/2)]条件下,均可形成有序的介孔结构。在此基础上,提出了载铁有序介孔碳材料的形成机理。%Ordered Fe-containing mesoporous carbon composite materials(Fe/OMC)have been synthesized via soft-templating routes by using triblock copolymer F127 as a template agent,resorcinol(R)-formaldehyde(F)as a carbon precursor,inorganic iron salts having complex reaction with phenols as a metal precursor in one-pot.The main strategy of this approach was to utilize the acidity self-generated from the hydrolysis of inorganic salts in the aqueous solutions as the catalyst for RF polymerization,where no addition of mineral acids was necessary.The resultant Fe/OMC materials were characterized by X-ray diffraction,Transmission electron microscopy.The influences of the aging time,the dosage of iron nitrate and the molar ratio of R/F on the structure of the obtained materials were investigated.Results show that the ordered mesoporous structure can be obtained under the synthetic condition of the aging time≥60 h,n(Fe)/n(R)=0.05— 0.2,n(R)/n(F)=1/1.5— 1/2.0.Moreover,a possible mechanism of the synthesis of Fe/OMC was proposed.

  2. Process tomography via sequential measurements on a single quantum system

    CSIR Research Space (South Africa)

    Bassa, H

    2015-09-01

    Full Text Available The authors utilize a discrete (sequential) measurement protocol to investigate quantum process tomography of a single two-level quantum system, with an unknown initial state, undergoing Rabi oscillations. The ignorance of the dynamical parameters...

  3. Synthesis of substituted mono- and diindole C-nucleoside analogues from sugar terminal alkynes by sequential sonogashira/heteroannulation reaction.

    Science.gov (United States)

    Zhang, Fuyi; Mu, Delong; Wang, Liming; Du, Pengfei; Han, Fen; Zhao, Yufen

    2014-10-17

    The synthesis of substituted mono- and diindole C-nucleoside analogues has been achieved in good to excellent yields by sequential Sonogashira coupling/NaAuCl4-catalyzed heteroannulation reactions of substituted 2-iodoanilines with various sugar terminal alkynes in one pot. The method is general, mild, and efficient and suitable for a wide range of sugar substrates, and 42 examples are given. The amino group of the substituted 2-iodoanilines is unprotected. The sugar terminal alkynes include furanosides, pyranosides, and acyclic glycosides with free hydroxyl groups, sensitive functional subtituents, and various protecting groups having different steric hindrance.

  4. The improved syntheses of 5-substituted 2'-[18F]fluoro-2'-deoxy-arabinofuranosyluracil derivatives ([18F]FAU, [18F]FEAU, [18F]FFAU, [18F]FCAU, [18F]FBAU and [18F]FIAU) using a multistep one-pot strategy

    International Nuclear Information System (INIS)

    Cai Hancheng; Li Zibo; Conti, Peter S.

    2011-01-01

    Introduction: We and others have previously reported a four-step radiosynthesis of a series of 2'-deoxy-2'-[ 18 F]fluoro-5-substituted-1-β-D-arabinofuranosyluracil derivatives including [ 18 F]FAU, [ 18 F]FEAU, [ 18 F]FFAU, [ 18 F]FCAU, [ 18 F]FBAU and [ 18 F]FIAU as thymidine derivatives for tumor proliferation and/or reporter gene expression imaging with positron emission tomography (PET). Although the radiosynthesis has been proven to be reproducible and efficient, this complicated multistep reaction is difficult to incorporate into an automated cGMP-compliant radiosynthesis module for routine production. Recently, we have developed a simple and efficient one-pot method for routine production of [ 18 F]FMAU. In this study, we studied the feasibility of radiosynthesizing [ 18 F]FAU, [ 18 F]FEAU, [ 18 F]FFAU, [ 18 F]FCAU, [ 18 F]FBAU and [ 18 F]FIAU using this newly developed method. Methods: Similar to the radiosynthesis of [ 18 F]FMAU, 5-substituted 2'-[ 18 F]fluoro-2'-deoxy-arabinofuranosyluracil derivatives ([ 18 F]FAU, [ 18 F]FEAU, [ 18 F]FFAU, [ 18 F]FCAU, [ 18 F]FBAU and [ 18 F]FIAU) were synthesized in one-pot radiosynthesis module in the presence of Friedel-Crafts catalyst TMSOTf and HMDS. Results: This one-pot radiosynthesis method could be used to produce [ 18 F]FAU, [ 18 F]FEAU, [ 18 F]FFAU, [ 18 F]FCAU, [ 18 F]FBAU and [ 18 F]FIAU. The overall radiochemical yields of these tracers varied from 4.1%±0.8% to 10.1%±1.9% (decay-corrected, n=4). The overall reaction time was reduced from 210 min to 150 min from the end of bombardment, and the radiochemical purity was >99%. Conclusions: The improved radiosyntheses of [ 18 F]FAU, [ 18 F]FEAU, [ 18 F]FFAU, [ 18 F]FCAU, [ 18 F]FBAU and [ 18 F]FIAU have been achieved with reasonable yields and high purity using a multistep one-pot method. The synthetic time has been reduced, and the reaction procedures have been significantly simplified. The success of this approach may make PET tracers [ 18 F]FAU, [ 18 F

  5. Synthesis and Characterization of a Novel Nanosilica Supported Bipyridinium Chloride Nanocomposite and its Application as a Basic Catalyst in the One-pot Preparation of Tetrahydrobenzo[b]pyran, Dihydropyrano[3,2-c]chromene and Dihydropyrano[4,3-b]pyran Derivatives

    Directory of Open Access Journals (Sweden)

    Ali Reza Kiasat

    2016-07-01

    Full Text Available A novel rice-husk-silica supported n-propyl bipyridinium chloride (RHPrBPCl has been prepared. Due to the basicity of RHPrBPCl, it was decided to evaluate its catalytic activity in the one-pot preparation of tetrahydrobenzo[b]pyran, dihydropyrano[3,2-c]chromene and dihydropyrano[4,3-b]pyran derivatives. The catalyst was characterized by FT-IR, SEM and TGA analyses. This methodology offers several advantages including easy work-up procedure, high yields of the products, short reaction times, recyclable catalyst and green reaction medium.

  6. A green one-pot three-component synthesis of spirooxindoles under conventional heating conditions or microwave irradiation by using Fe{sub 3}O{sub 4}@SiO{sub 2}-imid-PMA{sup n} magnetic porous nanospheres as a recyclable catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeilpour, Mohsen, E-mail: m1250m551085@yahoo.com [Chemistry Department, College of Science, Shiraz University, Shiraz (Iran, Islamic Republic of); Javidi, Jaber, E-mail: JaberJavidi@gmail.com [Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Divar, Masoumeh [Chemistry Department, College of Science, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2017-02-01

    An efficient, green and environmentally procedure for the synthesis of spirooxindole derivatives has been developed by a one-pot three-component reaction of isatin derivatives, activated methylene, and 1,3-dicarbonyl compounds in the presence of Fe{sub 3}O{sub 4}@SiO{sub 2}-imid-PMA{sup n} magnetic nanocatalyst under conventional heating conditions in water or microwave irradiation under solvent-free conditions. The reactions under conventional heating conditions were compared with the microwave-assisted reactions. The suggested method offers several advantages such as excellent yields, short reaction times, operational simplicity, a cleaner reaction, absence of any tedious workup or purification and ease of recovery and reusability of the catalyst by a magnetic field. In addition, the excellent catalytic performance in a water medium and the easy preparation, thermal stability and separation of the catalyst make it a good heterogeneous system and a useful alternative to other heterogeneous catalysts. The catalyst can be easily recovered by a magnetic field and reused for six consecutive reaction cycles without significant loss of activity. Also, the morphology of Fe{sub 3}O{sub 4}@SiO{sub 2}-imid-PMA{sup n}, particle size distribution and leaching of nano H{sub 3}PMo{sub 12}O{sub 40} (PMA{sup n}) after reaction cycles were investigated by scanning electron microscopy (SEM), dynamic light scattering (DLS), and inductively coupled plasma (ICP) analyzer. - Graphical abstract: An efficient, green and environmentally procedure for the synthesis of spirooxindole derivatives has been developed by a one-pot three-component reaction of isatin derivatives, activated methylene, and 1,3-dicarbonyl compounds in the presence of Fe{sub 3}O{sub 4}@SiO{sub 2}-imid-PMA{sup n} magnetic nanocatalyst under conventional heating conditions in water or microwave irradiation under solvent-free conditions. - Highlights: • Using of Fe{sub 3}O{sub 4}@SiO{sub 2}-imid-PMA{sup n} magnetic

  7. Sequential charged particle reaction

    International Nuclear Information System (INIS)

    Hori, Jun-ichi; Ochiai, Kentaro; Sato, Satoshi; Yamauchi, Michinori; Nishitani, Takeo

    2004-01-01

    The effective cross sections for producing the sequential reaction products in F82H, pure vanadium and LiF with respect to the 14.9-MeV neutron were obtained and compared with the estimation ones. Since the sequential reactions depend on the secondary charged particles behavior, the effective cross sections are corresponding to the target nuclei and the material composition. The effective cross sections were also estimated by using the EAF-libraries and compared with the experimental ones. There were large discrepancies between estimated and experimental values. Additionally, we showed the contribution of the sequential reaction on the induced activity and dose rate in the boundary region with water. From the present study, it has been clarified that the sequential reactions are of great importance to evaluate the dose rates around the surface of cooling pipe and the activated corrosion products. (author)

  8. Sequential stochastic optimization

    CERN Document Server

    Cairoli, Renzo

    1996-01-01

    Sequential Stochastic Optimization provides mathematicians and applied researchers with a well-developed framework in which stochastic optimization problems can be formulated and solved. Offering much material that is either new or has never before appeared in book form, it lucidly presents a unified theory of optimal stopping and optimal sequential control of stochastic processes. This book has been carefully organized so that little prior knowledge of the subject is assumed; its only prerequisites are a standard graduate course in probability theory and some familiarity with discrete-paramet

  9. Sequential memory: Binding dynamics

    Science.gov (United States)

    Afraimovich, Valentin; Gong, Xue; Rabinovich, Mikhail

    2015-10-01

    Temporal order memories are critical for everyday animal and human functioning. Experiments and our own experience show that the binding or association of various features of an event together and the maintaining of multimodality events in sequential order are the key components of any sequential memories—episodic, semantic, working, etc. We study a robustness of binding sequential dynamics based on our previously introduced model in the form of generalized Lotka-Volterra equations. In the phase space of the model, there exists a multi-dimensional binding heteroclinic network consisting of saddle equilibrium points and heteroclinic trajectories joining them. We prove here the robustness of the binding sequential dynamics, i.e., the feasibility phenomenon for coupled heteroclinic networks: for each collection of successive heteroclinic trajectories inside the unified networks, there is an open set of initial points such that the trajectory going through each of them follows the prescribed collection staying in a small neighborhood of it. We show also that the symbolic complexity function of the system restricted to this neighborhood is a polynomial of degree L - 1, where L is the number of modalities.

  10. Sequential Dependencies in Driving

    Science.gov (United States)

    Doshi, Anup; Tran, Cuong; Wilder, Matthew H.; Mozer, Michael C.; Trivedi, Mohan M.

    2012-01-01

    The effect of recent experience on current behavior has been studied extensively in simple laboratory tasks. We explore the nature of sequential effects in the more naturalistic setting of automobile driving. Driving is a safety-critical task in which delayed response times may have severe consequences. Using a realistic driving simulator, we find…

  11. Mining compressing sequential problems

    NARCIS (Netherlands)

    Hoang, T.L.; Mörchen, F.; Fradkin, D.; Calders, T.G.K.

    2012-01-01

    Compression based pattern mining has been successfully applied to many data mining tasks. We propose an approach based on the minimum description length principle to extract sequential patterns that compress a database of sequences well. We show that mining compressing patterns is NP-Hard and

  12. Microwave assisted highly efficient one-pot multi-component synthesis of novel 2-(tetrasubstituted-1H-pyrrol-3-yl-4H-chroman-4-ones catalyzed by heterogeneous reusable silica gel supported polyphosphoric acid (PPA/SiO2

    Directory of Open Access Journals (Sweden)

    Sumit Kumar

    2018-02-01

    Full Text Available A solvent-free, eco-friendly and facile approach for the synthesis of highly functionalized tetrasubstituted pyrroles has been reported through one-pot four-component reaction of aldehyde, amine, nitroalkane and 1,3-diketone using silica gel supported polyphosphoric acid (PPA–SiO2 under microwave condition. The reaction occured through the in situ formation of β-keto enamine and nitrostyrene analog following Michael addition and finally intramolecular annulation affording the products in good yields. The key features of the present method include clean reaction, mild conditions, low catalyst loading, straightforward, high to excellent yields, short reaction time, avoiding use of harmful metal catalyst and organic solvent, environmentally friendly compared to the existing methods, recovery and reusability of catalyst and easy workup procedure.

  13. Tandem and sequential multi-enzymatic syntheses

    NARCIS (Netherlands)

    Kim, B.G.; Ahn, J.H.; Sello, G.; Di Gennaro, P.; van Herk, T.; Hartog, A.F.; Wever, R.; Oroz-Guinea, I.; Sánchez-Moreno, I.; García-Junceda, E.; Wu, B.; Szymanski, W.; Feringa, B.L.; Janssen, D.B.; Villo, L.; Kreen, M.; Kudryashova, M.; Metsala, A.; Tamp, S.; Lille, ü.; Pehk, T.; Parve, O.; McClean, K.; Eddowes, P.; Whittall, J.; Sutton, P.W.

    2012-01-01

    This chapter contains sections titled: Production of Isorhamnetin 3-O-Glucoside in Escherichia coli Using Engineered Glycosyltransferase Multienzymatic Preparation of (−)-3-(Oxiran-2-yl)Benzoic Acid Enzymatic Synthesis of Carbohydrates from Dihydroxyacetone and Aldehydes by a One Pot Enzyme Cascade

  14. SHORT COMMUNICATION A NOVEL ONE-POT SYNTHESIS OF ...

    African Journals Online (AJOL)

    Preferred Customer

    Department of Chemistry, School of Sciences, Payame Noor University (PNU), 19395-3697,. Iran. (Received ... reaction, the yield is a function of the reaction time and the best time for all reactions was completed after 5 h. ... environmental impact, and low cost, which make it a useful and attractive process for the synthesis of ...

  15. SHORT COMMUNICATION A NOVEL ONE-POT SYNTHESIS OF ...

    African Journals Online (AJOL)

    Preferred Customer

    compounds represent an important class of naturally occurring substances characterized by highly pronounced biological properties. The spirooxindole .... Transmission electron microscopy (TEM) image of nano-ZnO at 100 nm. Preparation of ...

  16. An efficient one-pot synthesis of carbazole fused benzoquinolines ...

    Indian Academy of Sciences (India)

    KRIPALAYA RATHEESH ARYA

    2018-03-28

    org/ 10.1007/ ..... 1(a-d). 2. 3(a-d). 120°C. 1,3 a: R1 = R2 = R3 = H b: R1 = CH3, R2 = R3 = H c: R1 = R2 = H ..... moted green Friedländer synthesis: a versatile new malic ... and Curini M 2011 An alternative quinoline synthesis by.

  17. Nickel nanoparticles: A highly efficient catalyst for one pot synthesis ...

    Indian Academy of Sciences (India)

    and KANIKA VIJ. Department of Chemistry, University of Delhi, Delhi 110 007, India ... Keywords. PVP-stabilized Ni nanoparticles; ethylene glycol; tetraketones; biscoumarins; ... ing interest in using nickel nanoparticles in organic synthesis ...

  18. Facile one-pot synthesis of functionalized organophosphonate ...

    Indian Academy of Sciences (India)

    WINTEC

    The reaction of phosphorus trichloride with 2,6-diisopropyl phenol in the presence of LiCl under reflux ... on a Perkin Elmer Spectrum One FT–IR spectrometer. Microanalyses were performed on a Thermo Finni- gan (FLASH EA .... 3.1 Synthesis and characterization .... and no other signals corresponding to the formation.

  19. One-pot facile green synthesis of biocidal silver nanoparticles

    Science.gov (United States)

    Nudrat Hazarika, Shabiha; Gupta, Kuldeep; Shamin, Khan Naseem Ahmed Mohammed; Bhardwaj, Pushpender; Boruah, Ratan; Yadav, Kamlesh K.; Naglot, Ashok; Deb, P.; Mandal, M.; Doley, Robin; Veer, Vijay; Baruah, Indra; Namsa, Nima D.

    2016-07-01

    The plant root extract mediated green synthesis method produces monodispersed spherical shape silver nanoparticles (AgNPs) with a size range of 15-30 nm as analyzed by atomic force and transmission electron microscopy. The material showed potent antibacterial and antifungal properties. Synthesized AgNPs display a characteristic surface plasmon resonance peak at 420 nm in UV-Vis spectroscopy. X-ray diffractometer analysis revealed the crystalline and face-centered cubic geometry of in situ prepared AgNPs. Agar well diffusion and a colony forming unit assay demonstrated the potent biocidal activity of AgNPs against Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas diminuta and Mycobacterium smegmatis. Intriguingly, the phytosynthesized AgNPs exhibited activity against pathogenic fungi, namely Trichophyton rubrum, Aspergillus versicolor and Candida albicans. Scanning electron microscopy observations indicated morphological changes in the bacterial cells incubated with silver nanoparticles. The genomic DNA isolated from the bacteria was incubated with an increasing concentration of AgNPs and the replication fidelity of 16S rDNA was observed by performing 18 and 35 cycles PCR. The replication efficiency of small (600 bp) and large (1500 bp) DNA fragments in the presence of AgNPs were compromised in a dose-dependent manner. The results suggest that the Thalictrum foliolosum root extract mediated synthesis of AgNPs could be used as a promising antimicrobial agent against clinical pathogens.

  20. An efficient domino one-pot synthesis of novel spirofuran ...

    Indian Academy of Sciences (India)

    AFSHIN YAZDANI-ELAH-ABADI

    Abstract. A simple and convenient multi-component domino reaction has been described for the synthesis of novel ... interest due to their pharmaceutical and biological activ- ..... We gratefully acknowledge financial support from the Research.