WorldWideScience

Sample records for sequence variants implicate

  1. Discovery of rare variants via sequencing: implications for the design of complex trait association studies.

    Directory of Open Access Journals (Sweden)

    Bingshan Li

    2009-05-01

    Full Text Available There is strong evidence that rare variants are involved in complex disease etiology. The first step in implicating rare variants in disease etiology is their identification through sequencing in both randomly ascertained samples (e.g., the 1,000 Genomes Project and samples ascertained according to disease status. We investigated to what extent rare variants will be observed across the genome and in candidate genes in randomly ascertained samples, the magnitude of variant enrichment in diseased individuals, and biases that can occur due to how variants are discovered. Although sequencing cases can enrich for casual variants, when a gene or genes are not involved in disease etiology, limiting variant discovery to cases can lead to association studies with dramatically inflated false positive rates.

  2. Exome sequence analysis and follow up genotyping implicates rare ULK1 variants to be involved in susceptibility to schizophrenia

    Science.gov (United States)

    Al Eissa, Mariam M.; Fiorentino, Alessia; Sharp, Sally I.; O'Brien, Niamh L.; Wolfe, Kate; Giaroli, Giovanni; Curtis, David; Bass, Nicholas J.

    2017-01-01

    Summary Schizophrenia (SCZ) is a severe, highly heritable psychiatric disorder. Elucidation of the genetic architecture of the disorder will facilitate greater understanding of the altered underlying neurobiological mechanisms. The aim of this study was to identify likely aetiological variants in subjects affected with SCZ. Exome sequence data from a SCZ cas–control sample from Sweden was analysed for likely aetiological variants using a weighted burden test. Suggestive evidence implicated the UNC‐51‐like kinase (ULK1) gene, and it was observed that four rare variants that were more common in the Swedish SCZ cases were also more common in UK10K SCZ cases, as compared to obesity cases. These three missense variants and one intronic variant were genotyped in the University College London cohort of 1304 SCZ cases and 1348 ethnically matched controls. All four variants were more common in the SCZ cases than controls and combining them produced a result significant at P = 0.02. The results presented here demonstrate the importance of following up exome sequencing studies using additional datasets. The roles of ULK1 in autophagy and mTOR signalling strengthen the case that these pathways may be important in the pathophysiology of SCZ. The findings reported here await independent replication. PMID:29148569

  3. Investigation of the role of TCF4 rare sequence variants in schizophrenia.

    Science.gov (United States)

    Basmanav, F Buket; Forstner, Andreas J; Fier, Heide; Herms, Stefan; Meier, Sandra; Degenhardt, Franziska; Hoffmann, Per; Barth, Sandra; Fricker, Nadine; Strohmaier, Jana; Witt, Stephanie H; Ludwig, Michael; Schmael, Christine; Moebus, Susanne; Maier, Wolfgang; Mössner, Rainald; Rujescu, Dan; Rietschel, Marcella; Lange, Christoph; Nöthen, Markus M; Cichon, Sven

    2015-07-01

    Transcription factor 4 (TCF4) is one of the most robust of all reported schizophrenia risk loci and is supported by several genetic and functional lines of evidence. While numerous studies have implicated common genetic variation at TCF4 in schizophrenia risk, the role of rare, small-sized variants at this locus-such as single nucleotide variants and short indels which are below the resolution of chip-based arrays requires further exploration. The aim of the present study was to investigate the association between rare TCF4 sequence variants and schizophrenia. Exon-targeted resequencing was performed in 190 German schizophrenia patients. Six rare variants at the coding exons and flanking sequences of the TCF4 gene were identified, including two missense variants and one splice site variant. These six variants were then pooled with nine additional rare variants identified in 379 European participants of the 1000 Genomes Project, and all 15 variants were genotyped in an independent German sample (n = 1,808 patients; n = 2,261 controls). These data were then analyzed using six statistical methods developed for the association analysis of rare variants. No significant association (P power analyses suggest that further research into the possible involvement of rare TCF4 sequence variants in schizophrenia risk is warranted by the assessment of larger cohorts with higher statistical power to identify rare variant associations. © 2015 Wiley Periodicals, Inc.

  4. Germline Variants in Targeted Tumor Sequencing Using Matched Normal DNA.

    Science.gov (United States)

    Schrader, Kasmintan A; Cheng, Donavan T; Joseph, Vijai; Prasad, Meera; Walsh, Michael; Zehir, Ahmet; Ni, Ai; Thomas, Tinu; Benayed, Ryma; Ashraf, Asad; Lincoln, Annie; Arcila, Maria; Stadler, Zsofia; Solit, David; Hyman, David M; Hyman, David; Zhang, Liying; Klimstra, David; Ladanyi, Marc; Offit, Kenneth; Berger, Michael; Robson, Mark

    2016-01-01

    Tumor genetic sequencing identifies potentially targetable genetic alterations with therapeutic implications. Analysis has concentrated on detecting tumor-specific variants, but recognition of germline variants may prove valuable as well. To estimate the burden of germline variants identified through routine clinical tumor sequencing. Patients with advanced cancer diagnoses eligible for studies of targeted agents at Memorial Sloan Kettering Cancer Center are offered tumor-normal sequencing with MSK-IMPACT, a 341-gene panel. We surveyed the germline variants seen in 187 overlapping genes with Mendelian disease associations in 1566 patients who had undergone tumor profiling between March and October 2014. The number of presumed pathogenic germline variants (PPGVs) and variants of uncertain significance per person in 187 genes associated with single-gene disorders and the proportions of individuals with PPGVs in clinically relevant gene subsets, in genes consistent with known tumor phenotypes, and in genes with evidence of second somatic hits in their tumors. The mean age of the 1566 patients was 58 years, and 54% were women. Presumed pathogenic germline variants in known Mendelian disease-associated genes were identified in 246 of 1566 patients (15.7%; 95% CI, 14.0%-17.6%), including 198 individuals with mutations in genes associated with cancer susceptibility. Germline findings in cancer susceptibility genes were concordant with the individual's cancer type in only 81 of 198 cases (40.9%; 95% CI, 34.3%-47.9%). In individuals with PPGVs retained in the tumor, somatic alteration of the other allele was seen in 39 of 182 cases (21.4%; 95% CI, 16.1%-28.0%), of which 13 cases did not show a known correlation of the germline mutation and a known syndrome. Mutations in non-cancer-related Mendelian disease genes were seen in 55 of 1566 cases (3.5%; 95% CI, 27.1%-45.4%). Almost every individual had more than 1 variant of uncertain significance (1565 of 1566 patients; 99

  5. When is it MODY? Challenges in the Interpretation of Sequence Variants in MODY Genes

    Science.gov (United States)

    Althari, Sara; Gloyn, Anna L.

    2015-01-01

    The genomics revolution has raised more questions than it has provided answers. Big data from large population-scale resequencing studies are increasingly deconstructing classic notions of Mendelian disease genetics, which support a simplistic correlation between mutational severity and phenotypic outcome. The boundaries are being blurred as the body of evidence showing monogenic disease-causing alleles in healthy genomes, and in the genomes of individu-als with increased common complex disease risk, continues to grow. In this review, we focus on the newly emerging challenges which pertain to the interpretation of sequence variants in genes implicated in the pathogenesis of maturity-onset diabetes of the young (MODY), a presumed mono-genic form of diabetes characterized by Mendelian inheritance. These challenges highlight the complexities surrounding the assignments of pathogenicity, in particular to rare protein-alerting variants, and bring to the forefront some profound clinical diagnostic implications. As MODY is both genetically and clinically heterogeneous, an accurate molecular diagnosis and cautious extrapolation of sequence data are critical to effective disease management and treatment. The biological and translational value of sequence information can only be attained by adopting a multitude of confirmatory analyses, which interrogate variant implication in disease from every possible angle. Indeed, studies which have effectively detected rare damaging variants in known MODY genes in normoglycemic individuals question the existence of a sin-gle gene mutation scenario: does monogenic diabetes exist when the genetic culprits of MODY have been systematical-ly identified in individuals without MODY? PMID:27111119

  6. Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol

    Science.gov (United States)

    Lange, Leslie A.; Hu, Youna; Zhang, He; Xue, Chenyi; Schmidt, Ellen M.; Tang, Zheng-Zheng; Bizon, Chris; Lange, Ethan M.; Smith, Joshua D.; Turner, Emily H.; Jun, Goo; Kang, Hyun Min; Peloso, Gina; Auer, Paul; Li, Kuo-ping; Flannick, Jason; Zhang, Ji; Fuchsberger, Christian; Gaulton, Kyle; Lindgren, Cecilia; Locke, Adam; Manning, Alisa; Sim, Xueling; Rivas, Manuel A.; Holmen, Oddgeir L.; Gottesman, Omri; Lu, Yingchang; Ruderfer, Douglas; Stahl, Eli A.; Duan, Qing; Li, Yun; Durda, Peter; Jiao, Shuo; Isaacs, Aaron; Hofman, Albert; Bis, Joshua C.; Correa, Adolfo; Griswold, Michael E.; Jakobsdottir, Johanna; Smith, Albert V.; Schreiner, Pamela J.; Feitosa, Mary F.; Zhang, Qunyuan; Huffman, Jennifer E.; Crosby, Jacy; Wassel, Christina L.; Do, Ron; Franceschini, Nora; Martin, Lisa W.; Robinson, Jennifer G.; Assimes, Themistocles L.; Crosslin, David R.; Rosenthal, Elisabeth A.; Tsai, Michael; Rieder, Mark J.; Farlow, Deborah N.; Folsom, Aaron R.; Lumley, Thomas; Fox, Ervin R.; Carlson, Christopher S.; Peters, Ulrike; Jackson, Rebecca D.; van Duijn, Cornelia M.; Uitterlinden, André G.; Levy, Daniel; Rotter, Jerome I.; Taylor, Herman A.; Gudnason, Vilmundur; Siscovick, David S.; Fornage, Myriam; Borecki, Ingrid B.; Hayward, Caroline; Rudan, Igor; Chen, Y. Eugene; Bottinger, Erwin P.; Loos, Ruth J.F.; Sætrom, Pål; Hveem, Kristian; Boehnke, Michael; Groop, Leif; McCarthy, Mark; Meitinger, Thomas; Ballantyne, Christie M.; Gabriel, Stacey B.; O’Donnell, Christopher J.; Post, Wendy S.; North, Kari E.; Reiner, Alexander P.; Boerwinkle, Eric; Psaty, Bruce M.; Altshuler, David; Kathiresan, Sekar; Lin, Dan-Yu; Jarvik, Gail P.; Cupples, L. Adrienne; Kooperberg, Charles; Wilson, James G.; Nickerson, Deborah A.; Abecasis, Goncalo R.; Rich, Stephen S.; Tracy, Russell P.; Willer, Cristen J.; Gabriel, Stacey B.; Altshuler, David M.; Abecasis, Gonçalo R.; Allayee, Hooman; Cresci, Sharon; Daly, Mark J.; de Bakker, Paul I.W.; DePristo, Mark A.; Do, Ron; Donnelly, Peter; Farlow, Deborah N.; Fennell, Tim; Garimella, Kiran; Hazen, Stanley L.; Hu, Youna; Jordan, Daniel M.; Jun, Goo; Kathiresan, Sekar; Kang, Hyun Min; Kiezun, Adam; Lettre, Guillaume; Li, Bingshan; Li, Mingyao; Newton-Cheh, Christopher H.; Padmanabhan, Sandosh; Peloso, Gina; Pulit, Sara; Rader, Daniel J.; Reich, David; Reilly, Muredach P.; Rivas, Manuel A.; Schwartz, Steve; Scott, Laura; Siscovick, David S.; Spertus, John A.; Stitziel, Nathaniel O.; Stoletzki, Nina; Sunyaev, Shamil R.; Voight, Benjamin F.; Willer, Cristen J.; Rich, Stephen S.; Akylbekova, Ermeg; Atwood, Larry D.; Ballantyne, Christie M.; Barbalic, Maja; Barr, R. Graham; Benjamin, Emelia J.; Bis, Joshua; Boerwinkle, Eric; Bowden, Donald W.; Brody, Jennifer; Budoff, Matthew; Burke, Greg; Buxbaum, Sarah; Carr, Jeff; Chen, Donna T.; Chen, Ida Y.; Chen, Wei-Min; Concannon, Pat; Crosby, Jacy; Cupples, L. Adrienne; D’Agostino, Ralph; DeStefano, Anita L.; Dreisbach, Albert; Dupuis, Josée; Durda, J. Peter; Ellis, Jaclyn; Folsom, Aaron R.; Fornage, Myriam; Fox, Caroline S.; Fox, Ervin; Funari, Vincent; Ganesh, Santhi K.; Gardin, Julius; Goff, David; Gordon, Ora; Grody, Wayne; Gross, Myron; Guo, Xiuqing; Hall, Ira M.; Heard-Costa, Nancy L.; Heckbert, Susan R.; Heintz, Nicholas; Herrington, David M.; Hickson, DeMarc; Huang, Jie; Hwang, Shih-Jen; Jacobs, David R.; Jenny, Nancy S.; Johnson, Andrew D.; Johnson, Craig W.; Kawut, Steven; Kronmal, Richard; Kurz, Raluca; Lange, Ethan M.; Lange, Leslie A.; Larson, Martin G.; Lawson, Mark; Lewis, Cora E.; Levy, Daniel; Li, Dalin; Lin, Honghuang; Liu, Chunyu; Liu, Jiankang; Liu, Kiang; Liu, Xiaoming; Liu, Yongmei; Longstreth, William T.; Loria, Cay; Lumley, Thomas; Lunetta, Kathryn; Mackey, Aaron J.; Mackey, Rachel; Manichaikul, Ani; Maxwell, Taylor; McKnight, Barbara; Meigs, James B.; Morrison, Alanna C.; Musani, Solomon K.; Mychaleckyj, Josyf C.; Nettleton, Jennifer A.; North, Kari; O’Donnell, Christopher J.; O’Leary, Daniel; Ong, Frank; Palmas, Walter; Pankow, James S.; Pankratz, Nathan D.; Paul, Shom; Perez, Marco; Person, Sharina D.; Polak, Joseph; Post, Wendy S.; Psaty, Bruce M.; Quinlan, Aaron R.; Raffel, Leslie J.; Ramachandran, Vasan S.; Reiner, Alexander P.; Rice, Kenneth; Rotter, Jerome I.; Sanders, Jill P.; Schreiner, Pamela; Seshadri, Sudha; Shea, Steve; Sidney, Stephen; Silverstein, Kevin; Smith, Nicholas L.; Sotoodehnia, Nona; Srinivasan, Asoke; Taylor, Herman A.; Taylor, Kent; Thomas, Fridtjof; Tracy, Russell P.; Tsai, Michael Y.; Volcik, Kelly A.; Wassel, Chrstina L.; Watson, Karol; Wei, Gina; White, Wendy; Wiggins, Kerri L.; Wilk, Jemma B.; Williams, O. Dale; Wilson, Gregory; Wilson, James G.; Wolf, Phillip; Zakai, Neil A.; Hardy, John; Meschia, James F.; Nalls, Michael; Singleton, Andrew; Worrall, Brad; Bamshad, Michael J.; Barnes, Kathleen C.; Abdulhamid, Ibrahim; Accurso, Frank; Anbar, Ran; Beaty, Terri; Bigham, Abigail; Black, Phillip; Bleecker, Eugene; Buckingham, Kati; Cairns, Anne Marie; Caplan, Daniel; Chatfield, Barbara; Chidekel, Aaron; Cho, Michael; Christiani, David C.; Crapo, James D.; Crouch, Julia; Daley, Denise; Dang, Anthony; Dang, Hong; De Paula, Alicia; DeCelie-Germana, Joan; Drumm, Allen DozorMitch; Dyson, Maynard; Emerson, Julia; Emond, Mary J.; Ferkol, Thomas; Fink, Robert; Foster, Cassandra; Froh, Deborah; Gao, Li; Gershan, William; Gibson, Ronald L.; Godwin, Elizabeth; Gondor, Magdalen; Gutierrez, Hector; Hansel, Nadia N.; Hassoun, Paul M.; Hiatt, Peter; Hokanson, John E.; Howenstine, Michelle; Hummer, Laura K.; Kanga, Jamshed; Kim, Yoonhee; Knowles, Michael R.; Konstan, Michael; Lahiri, Thomas; Laird, Nan; Lange, Christoph; Lin, Lin; Lin, Xihong; Louie, Tin L.; Lynch, David; Make, Barry; Martin, Thomas R.; Mathai, Steve C.; Mathias, Rasika A.; McNamara, John; McNamara, Sharon; Meyers, Deborah; Millard, Susan; Mogayzel, Peter; Moss, Richard; Murray, Tanda; Nielson, Dennis; Noyes, Blakeslee; O’Neal, Wanda; Orenstein, David; O’Sullivan, Brian; Pace, Rhonda; Pare, Peter; Parker, H. Worth; Passero, Mary Ann; Perkett, Elizabeth; Prestridge, Adrienne; Rafaels, Nicholas M.; Ramsey, Bonnie; Regan, Elizabeth; Ren, Clement; Retsch-Bogart, George; Rock, Michael; Rosen, Antony; Rosenfeld, Margaret; Ruczinski, Ingo; Sanford, Andrew; Schaeffer, David; Sell, Cindy; Sheehan, Daniel; Silverman, Edwin K.; Sin, Don; Spencer, Terry; Stonebraker, Jackie; Tabor, Holly K.; Varlotta, Laurie; Vergara, Candelaria I.; Weiss, Robert; Wigley, Fred; Wise, Robert A.; Wright, Fred A.; Wurfel, Mark M.; Zanni, Robert; Zou, Fei; Nickerson, Deborah A.; Rieder, Mark J.; Green, Phil; Shendure, Jay; Akey, Joshua M.; Bustamante, Carlos D.; Crosslin, David R.; Eichler, Evan E.; Fox, P. Keolu; Fu, Wenqing; Gordon, Adam; Gravel, Simon; Jarvik, Gail P.; Johnsen, Jill M.; Kan, Mengyuan; Kenny, Eimear E.; Kidd, Jeffrey M.; Lara-Garduno, Fremiet; Leal, Suzanne M.; Liu, Dajiang J.; McGee, Sean; O’Connor, Timothy D.; Paeper, Bryan; Robertson, Peggy D.; Smith, Joshua D.; Staples, Jeffrey C.; Tennessen, Jacob A.; Turner, Emily H.; Wang, Gao; Yi, Qian; Jackson, Rebecca; Peters, Ulrike; Carlson, Christopher S.; Anderson, Garnet; Anton-Culver, Hoda; Assimes, Themistocles L.; Auer, Paul L.; Beresford, Shirley; Bizon, Chris; Black, Henry; Brunner, Robert; Brzyski, Robert; Burwen, Dale; Caan, Bette; Carty, Cara L.; Chlebowski, Rowan; Cummings, Steven; Curb, J. David; Eaton, Charles B.; Ford, Leslie; Franceschini, Nora; Fullerton, Stephanie M.; Gass, Margery; Geller, Nancy; Heiss, Gerardo; Howard, Barbara V.; Hsu, Li; Hutter, Carolyn M.; Ioannidis, John; Jiao, Shuo; Johnson, Karen C.; Kooperberg, Charles; Kuller, Lewis; LaCroix, Andrea; Lakshminarayan, Kamakshi; Lane, Dorothy; Lasser, Norman; LeBlanc, Erin; Li, Kuo-Ping; Limacher, Marian; Lin, Dan-Yu; Logsdon, Benjamin A.; Ludlam, Shari; Manson, JoAnn E.; Margolis, Karen; Martin, Lisa; McGowan, Joan; Monda, Keri L.; Kotchen, Jane Morley; Nathan, Lauren; Ockene, Judith; O’Sullivan, Mary Jo; Phillips, Lawrence S.; Prentice, Ross L.; Robbins, John; Robinson, Jennifer G.; Rossouw, Jacques E.; Sangi-Haghpeykar, Haleh; Sarto, Gloria E.; Shumaker, Sally; Simon, Michael S.; Stefanick, Marcia L.; Stein, Evan; Tang, Hua; Taylor, Kira C.; Thomson, Cynthia A.; Thornton, Timothy A.; Van Horn, Linda; Vitolins, Mara; Wactawski-Wende, Jean; Wallace, Robert; Wassertheil-Smoller, Sylvia; Zeng, Donglin; Applebaum-Bowden, Deborah; Feolo, Michael; Gan, Weiniu; Paltoo, Dina N.; Sholinsky, Phyliss; Sturcke, Anne

    2014-01-01

    Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98th or <2nd percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments. PMID:24507775

  7. Identifying structural variants using linked-read sequencing data.

    Science.gov (United States)

    Elyanow, Rebecca; Wu, Hsin-Ta; Raphael, Benjamin J

    2017-11-03

    Structural variation, including large deletions, duplications, inversions, translocations, and other rearrangements, is common in human and cancer genomes. A number of methods have been developed to identify structural variants from Illumina short-read sequencing data. However, reliable identification of structural variants remains challenging because many variants have breakpoints in repetitive regions of the genome and thus are difficult to identify with short reads. The recently developed linked-read sequencing technology from 10X Genomics combines a novel barcoding strategy with Illumina sequencing. This technology labels all reads that originate from a small number (~5-10) DNA molecules ~50Kbp in length with the same molecular barcode. These barcoded reads contain long-range sequence information that is advantageous for identification of structural variants. We present Novel Adjacency Identification with Barcoded Reads (NAIBR), an algorithm to identify structural variants in linked-read sequencing data. NAIBR predicts novel adjacencies in a individual genome resulting from structural variants using a probabilistic model that combines multiple signals in barcoded reads. We show that NAIBR outperforms several existing methods for structural variant identification - including two recent methods that also analyze linked-reads - on simulated sequencing data and 10X whole-genome sequencing data from the NA12878 human genome and the HCC1954 breast cancer cell line. Several of the novel somatic structural variants identified in HCC1954 overlap known cancer genes. Software is available at compbio.cs.brown.edu/software. braphael@princeton.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  8. Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population.

    Science.gov (United States)

    Yousri, Noha A; Fakhro, Khalid A; Robay, Amal; Rodriguez-Flores, Juan L; Mohney, Robert P; Zeriri, Hassina; Odeh, Tala; Kader, Sara Abdul; Aldous, Eman K; Thareja, Gaurav; Kumar, Manish; Al-Shakaki, Alya; Chidiac, Omar M; Mohamoud, Yasmin A; Mezey, Jason G; Malek, Joel A; Crystal, Ronald G; Suhre, Karsten

    2018-01-23

    Metabolomics-genome-wide association studies (mGWAS) have uncovered many metabolic quantitative trait loci (mQTLs) influencing human metabolic individuality, though predominantly in European cohorts. By combining whole-exome sequencing with a high-resolution metabolomics profiling for a highly consanguineous Middle Eastern population, we discover 21 common variant and 12 functional rare variant mQTLs, of which 45% are novel altogether. We fine-map 10 common variant mQTLs to new metabolite ratio associations, and 11 common variant mQTLs to putative protein-altering variants. This is the first work to report common and rare variant mQTLs linked to diseases and/or pharmacological targets in a consanguineous Arab cohort, with wide implications for precision medicine in the Middle East.

  9. mirVAFC: A Web Server for Prioritizations of Pathogenic Sequence Variants from Exome Sequencing Data via Classifications.

    Science.gov (United States)

    Li, Zhongshan; Liu, Zhenwei; Jiang, Yi; Chen, Denghui; Ran, Xia; Sun, Zhong Sheng; Wu, Jinyu

    2017-01-01

    Exome sequencing has been widely used to identify the genetic variants underlying human genetic disorders for clinical diagnoses, but the identification of pathogenic sequence variants among the huge amounts of benign ones is complicated and challenging. Here, we describe a new Web server named mirVAFC for pathogenic sequence variants prioritizations from clinical exome sequencing (CES) variant data of single individual or family. The mirVAFC is able to comprehensively annotate sequence variants, filter out most irrelevant variants using custom criteria, classify variants into different categories as for estimated pathogenicity, and lastly provide pathogenic variants prioritizations based on classifications and mutation effects. Case studies using different types of datasets for different diseases from publication and our in-house data have revealed that mirVAFC can efficiently identify the right pathogenic candidates as in original work in each case. Overall, the Web server mirVAFC is specifically developed for pathogenic sequence variant identifications from family-based CES variants using classification-based prioritizations. The mirVAFC Web server is freely accessible at https://www.wzgenomics.cn/mirVAFC/. © 2016 WILEY PERIODICALS, INC.

  10. Identification of Candidate Gene Variants in Korean MODY Families by Whole-Exome Sequencing.

    Science.gov (United States)

    Shim, Ye Jee; Kim, Jung Eun; Hwang, Su-Kyeong; Choi, Bong Seok; Choi, Byung Ho; Cho, Eun-Mi; Jang, Kyoung Mi; Ko, Cheol Woo

    2015-01-01

    To date, 13 genes causing maturity-onset diabetes of the young (MODY) have been identified. However, there is a big discrepancy in the genetic locus between Asian and Caucasian patients with MODY. Thus, we conducted whole-exome sequencing in Korean MODY families to identify causative gene variants. Six MODY probands and their family members were included. Variants in the dbSNP135 and TIARA databases for Koreans and the variants with minor allele frequencies >0.5% of the 1000 Genomes database were excluded. We selected only the functional variants (gain of stop codon, frameshifts and nonsynonymous single-nucleotide variants) and conducted a case-control comparison in the family members. The selected variants were scanned for the previously introduced gene set implicated in glucose metabolism. Three variants c.620C>T:p.Thr207Ile in PTPRD, c.559C>G:p.Gln187Glu in SYT9, and c.1526T>G:p.Val509Gly in WFS1 were respectively identified in 3 families. We could not find any disease-causative alleles of known MODY 1-13 genes. Based on the predictive program, Thr207Ile in PTPRD was considered pathogenic. Whole-exome sequencing is a valuable method for the genetic diagnosis of MODY. Further evaluation is necessary about the role of PTPRD, SYT9 and WFS1 in normal insulin release from pancreatic beta cells. © 2015 S. Karger AG, Basel.

  11. Microsatellite Instability Use in Mismatch Repair Gene Sequence Variant Classification

    Directory of Open Access Journals (Sweden)

    Bryony A. Thompson

    2015-03-01

    Full Text Available Inherited mutations in the DNA mismatch repair genes (MMR can cause MMR deficiency and increased susceptibility to colorectal and endometrial cancer. Microsatellite instability (MSI is the defining molecular signature of MMR deficiency. The clinical classification of identified MMR gene sequence variants has a direct impact on the management of patients and their families. For a significant proportion of cases sequence variants of uncertain clinical significance (also known as unclassified variants are identified, constituting a challenge for genetic counselling and clinical management of families. The effect on protein function of these variants is difficult to interpret. The presence or absence of MSI in tumours can aid in determining the pathogenicity of associated unclassified MMR gene variants. However, there are some considerations that need to be taken into account when using MSI for variant interpretation. The use of MSI and other tumour characteristics in MMR gene sequence variant classification will be explored in this review.

  12. Whole-exome sequencing of individuals from an isolated population implicates rare risk variants in bipolar disorder

    DEFF Research Database (Denmark)

    Lescai, F; Als, T D; Li, Q

    2017-01-01

    Bipolar disorder affects about 1% of the world's population, and its estimated heritability is about 75%. Only few whole genome or whole-exome sequencing studies in bipolar disorder have been reported, and no rare coding variants have yet been robustly identified. The use of isolated populations...... PITPNM2 missense variant, which is located in a highly significant schizophrenia GWAS locus. Likewise, PIK3C2A identified in the gene-based analysis is located in a combined bipolar and schizophrenia GWAS locus. Our results show support both for existing findings in the literature, as well as for new...... risk genes, and identify rare variants that might provide additional information on the underlying biology of bipolar disorder....

  13. Predicting effects of noncoding variants with deep learning-based sequence model.

    Science.gov (United States)

    Zhou, Jian; Troyanskaya, Olga G

    2015-10-01

    Identifying functional effects of noncoding variants is a major challenge in human genetics. To predict the noncoding-variant effects de novo from sequence, we developed a deep learning-based algorithmic framework, DeepSEA (http://deepsea.princeton.edu/), that directly learns a regulatory sequence code from large-scale chromatin-profiling data, enabling prediction of chromatin effects of sequence alterations with single-nucleotide sensitivity. We further used this capability to improve prioritization of functional variants including expression quantitative trait loci (eQTLs) and disease-associated variants.

  14. Whole-genome sequencing and genetic variant analysis of a Quarter Horse mare.

    KAUST Repository

    Doan, Ryan; Cohen, Noah D; Sawyer, Jason; Ghaffari, Noushin; Johnson, Charlie D; Dindot, Scott V

    2012-01-01

    BACKGROUND: The catalog of genetic variants in the horse genome originates from a few select animals, the majority originating from the Thoroughbred mare used for the equine genome sequencing project. The purpose of this study was to identify genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs) in the genome of an individual Quarter Horse mare sequenced by next-generation sequencing. RESULTS: Using massively parallel paired-end sequencing, we generated 59.6 Gb of DNA sequence from a Quarter Horse mare resulting in an average of 24.7X sequence coverage. Reads were mapped to approximately 97% of the reference Thoroughbred genome. Unmapped reads were de novo assembled resulting in 19.1 Mb of new genomic sequence in the horse. Using a stringent filtering method, we identified 3.1 million SNPs, 193 thousand INDELs, and 282 CNVs. Genetic variants were annotated to determine their impact on gene structure and function. Additionally, we genotyped this Quarter Horse for mutations of known diseases and for variants associated with particular traits. Functional clustering analysis of genetic variants revealed that most of the genetic variation in the horse's genome was enriched in sensory perception, signal transduction, and immunity and defense pathways. CONCLUSIONS: This is the first sequencing of a horse genome by next-generation sequencing and the first genomic sequence of an individual Quarter Horse mare. We have increased the catalog of genetic variants for use in equine genomics by the addition of novel SNPs, INDELs, and CNVs. The genetic variants described here will be a useful resource for future studies of genetic variation regulating performance traits and diseases in equids.

  15. Whole-genome sequencing and genetic variant analysis of a Quarter Horse mare.

    KAUST Repository

    Doan, Ryan

    2012-02-17

    BACKGROUND: The catalog of genetic variants in the horse genome originates from a few select animals, the majority originating from the Thoroughbred mare used for the equine genome sequencing project. The purpose of this study was to identify genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs) in the genome of an individual Quarter Horse mare sequenced by next-generation sequencing. RESULTS: Using massively parallel paired-end sequencing, we generated 59.6 Gb of DNA sequence from a Quarter Horse mare resulting in an average of 24.7X sequence coverage. Reads were mapped to approximately 97% of the reference Thoroughbred genome. Unmapped reads were de novo assembled resulting in 19.1 Mb of new genomic sequence in the horse. Using a stringent filtering method, we identified 3.1 million SNPs, 193 thousand INDELs, and 282 CNVs. Genetic variants were annotated to determine their impact on gene structure and function. Additionally, we genotyped this Quarter Horse for mutations of known diseases and for variants associated with particular traits. Functional clustering analysis of genetic variants revealed that most of the genetic variation in the horse\\'s genome was enriched in sensory perception, signal transduction, and immunity and defense pathways. CONCLUSIONS: This is the first sequencing of a horse genome by next-generation sequencing and the first genomic sequence of an individual Quarter Horse mare. We have increased the catalog of genetic variants for use in equine genomics by the addition of novel SNPs, INDELs, and CNVs. The genetic variants described here will be a useful resource for future studies of genetic variation regulating performance traits and diseases in equids.

  16. Whole-exome sequencing of individuals from an isolated population implicates rare risk variants in bipolar disorder

    DEFF Research Database (Denmark)

    Lescai, F; Als, T D; Li, Q

    2017-01-01

    Bipolar disorder affects about 1% of the world's population, and its estimated heritability is about 75%. Only few whole genome or whole-exome sequencing studies in bipolar disorder have been reported, and no rare coding variants have yet been robustly identified. The use of isolated populations...

  17. Comparison and evaluation of two exome capture kits and sequencing platforms for variant calling.

    Science.gov (United States)

    Zhang, Guoqiang; Wang, Jianfeng; Yang, Jin; Li, Wenjie; Deng, Yutian; Li, Jing; Huang, Jun; Hu, Songnian; Zhang, Bing

    2015-08-05

    To promote the clinical application of next-generation sequencing, it is important to obtain accurate and consistent variants of target genomic regions at low cost. Ion Proton, the latest updated semiconductor-based sequencing instrument from Life Technologies, is designed to provide investigators with an inexpensive platform for human whole exome sequencing that achieves a rapid turnaround time. However, few studies have comprehensively compared and evaluated the accuracy of variant calling between Ion Proton and Illumina sequencing platforms such as HiSeq 2000, which is the most popular sequencing platform for the human genome. The Ion Proton sequencer combined with the Ion TargetSeq Exome Enrichment Kit together make up TargetSeq-Proton, whereas SureSelect-Hiseq is based on the Agilent SureSelect Human All Exon v4 Kit and the HiSeq 2000 sequencer. Here, we sequenced exonic DNA from four human blood samples using both TargetSeq-Proton and SureSelect-HiSeq. We then called variants in the exonic regions that overlapped between the two exome capture kits (33.6 Mb). The rates of shared variant loci called by two sequencing platforms were from 68.0 to 75.3% in four samples, whereas the concordance of co-detected variant loci reached 99%. Sanger sequencing validation revealed that the validated rate of concordant single nucleotide polymorphisms (SNPs) (91.5%) was higher than the SNPs specific to TargetSeq-Proton (60.0%) or specific to SureSelect-HiSeq (88.3%). With regard to 1-bp small insertions and deletions (InDels), the Sanger sequencing validated rates of concordant variants (100.0%) and SureSelect-HiSeq-specific (89.6%) were higher than those of TargetSeq-Proton-specific (15.8%). In the sequencing of exonic regions, a combination of using of two sequencing strategies (SureSelect-HiSeq and TargetSeq-Proton) increased the variant calling specificity for concordant variant loci and the sensitivity for variant loci called by any one platform. However, for the

  18. Regularized rare variant enrichment analysis for case-control exome sequencing data.

    Science.gov (United States)

    Larson, Nicholas B; Schaid, Daniel J

    2014-02-01

    Rare variants have recently garnered an immense amount of attention in genetic association analysis. However, unlike methods traditionally used for single marker analysis in GWAS, rare variant analysis often requires some method of aggregation, since single marker approaches are poorly powered for typical sequencing study sample sizes. Advancements in sequencing technologies have rendered next-generation sequencing platforms a realistic alternative to traditional genotyping arrays. Exome sequencing in particular not only provides base-level resolution of genetic coding regions, but also a natural paradigm for aggregation via genes and exons. Here, we propose the use of penalized regression in combination with variant aggregation measures to identify rare variant enrichment in exome sequencing data. In contrast to marginal gene-level testing, we simultaneously evaluate the effects of rare variants in multiple genes, focusing on gene-based least absolute shrinkage and selection operator (LASSO) and exon-based sparse group LASSO models. By using gene membership as a grouping variable, the sparse group LASSO can be used as a gene-centric analysis of rare variants while also providing a penalized approach toward identifying specific regions of interest. We apply extensive simulations to evaluate the performance of these approaches with respect to specificity and sensitivity, comparing these results to multiple competing marginal testing methods. Finally, we discuss our findings and outline future research. © 2013 WILEY PERIODICALS, INC.

  19. Single-variant and multi-variant trend tests for genetic association with next-generation sequencing that are robust to sequencing error.

    Science.gov (United States)

    Kim, Wonkuk; Londono, Douglas; Zhou, Lisheng; Xing, Jinchuan; Nato, Alejandro Q; Musolf, Anthony; Matise, Tara C; Finch, Stephen J; Gordon, Derek

    2012-01-01

    As with any new technology, next-generation sequencing (NGS) has potential advantages and potential challenges. One advantage is the identification of multiple causal variants for disease that might otherwise be missed by SNP-chip technology. One potential challenge is misclassification error (as with any emerging technology) and the issue of power loss due to multiple testing. Here, we develop an extension of the linear trend test for association that incorporates differential misclassification error and may be applied to any number of SNPs. We call the statistic the linear trend test allowing for error, applied to NGS, or LTTae,NGS. This statistic allows for differential misclassification. The observed data are phenotypes for unrelated cases and controls, coverage, and the number of putative causal variants for every individual at all SNPs. We simulate data considering multiple factors (disease mode of inheritance, genotype relative risk, causal variant frequency, sequence error rate in cases, sequence error rate in controls, number of loci, and others) and evaluate type I error rate and power for each vector of factor settings. We compare our results with two recently published NGS statistics. Also, we create a fictitious disease model based on downloaded 1000 Genomes data for 5 SNPs and 388 individuals, and apply our statistic to those data. We find that the LTTae,NGS maintains the correct type I error rate in all simulations (differential and non-differential error), while the other statistics show large inflation in type I error for lower coverage. Power for all three methods is approximately the same for all three statistics in the presence of non-differential error. Application of our statistic to the 1000 Genomes data suggests that, for the data downloaded, there is a 1.5% sequence misclassification rate over all SNPs. Finally, application of the multi-variant form of LTTae,NGS shows high power for a number of simulation settings, although it can have

  20. Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller.

    Science.gov (United States)

    Xu, Chang; Nezami Ranjbar, Mohammad R; Wu, Zhong; DiCarlo, John; Wang, Yexun

    2017-01-03

    Detection of DNA mutations at very low allele fractions with high accuracy will significantly improve the effectiveness of precision medicine for cancer patients. To achieve this goal through next generation sequencing, researchers need a detection method that 1) captures rare mutation-containing DNA fragments efficiently in the mix of abundant wild-type DNA; 2) sequences the DNA library extensively to deep coverage; and 3) distinguishes low level true variants from amplification and sequencing errors with high accuracy. Targeted enrichment using PCR primers provides researchers with a convenient way to achieve deep sequencing for a small, yet most relevant region using benchtop sequencers. Molecular barcoding (or indexing) provides a unique solution for reducing sequencing artifacts analytically. Although different molecular barcoding schemes have been reported in recent literature, most variant calling has been done on limited targets, using simple custom scripts. The analytical performance of barcode-aware variant calling can be significantly improved by incorporating advanced statistical models. We present here a highly efficient, simple and scalable enrichment protocol that integrates molecular barcodes in multiplex PCR amplification. In addition, we developed smCounter, an open source, generic, barcode-aware variant caller based on a Bayesian probabilistic model. smCounter was optimized and benchmarked on two independent read sets with SNVs and indels at 5 and 1% allele fractions. Variants were called with very good sensitivity and specificity within coding regions. We demonstrated that we can accurately detect somatic mutations with allele fractions as low as 1% in coding regions using our enrichment protocol and variant caller.

  1. HGVS Recommendations for the Description of Sequence Variants: 2016 Update.

    Science.gov (United States)

    den Dunnen, Johan T; Dalgleish, Raymond; Maglott, Donna R; Hart, Reece K; Greenblatt, Marc S; McGowan-Jordan, Jean; Roux, Anne-Francoise; Smith, Timothy; Antonarakis, Stylianos E; Taschner, Peter E M

    2016-06-01

    The consistent and unambiguous description of sequence variants is essential to report and exchange information on the analysis of a genome. In particular, DNA diagnostics critically depends on accurate and standardized description and sharing of the variants detected. The sequence variant nomenclature system proposed in 2000 by the Human Genome Variation Society has been widely adopted and has developed into an internationally accepted standard. The recommendations are currently commissioned through a Sequence Variant Description Working Group (SVD-WG) operating under the auspices of three international organizations: the Human Genome Variation Society (HGVS), the Human Variome Project (HVP), and the Human Genome Organization (HUGO). Requests for modifications and extensions go through the SVD-WG following a standard procedure including a community consultation step. Version numbers are assigned to the nomenclature system to allow users to specify the version used in their variant descriptions. Here, we present the current recommendations, HGVS version 15.11, and briefly summarize the changes that were made since the 2000 publication. Most focus has been on removing inconsistencies and tightening definitions allowing automatic data processing. An extensive version of the recommendations is available online, at http://www.HGVS.org/varnomen. © 2016 WILEY PERIODICALS, INC.

  2. VPA: an R tool for analyzing sequencing variants with user-specified frequency pattern

    Directory of Open Access Journals (Sweden)

    Hu Qiang

    2012-01-01

    Full Text Available Abstract Background The massive amounts of genetic variant generated by the next generation sequencing systems demand the development of effective computational tools for variant prioritization. Findings VPA (Variant Pattern Analyzer is an R tool for prioritizing variants with specified frequency pattern from multiple study subjects in next-generation sequencing study. The tool starts from individual files of variant and sequence calls and extract variants with user-specified frequency pattern across the study subjects of interest. Several position level quality criteria can be incorporated into the variant extraction. It can be used in studies with matched pair design as well as studies with multiple groups of subjects. Conclusions VPA can be used as an automatic pipeline to prioritize variants for further functional exploration and hypothesis generation. The package is implemented in the R language and is freely available from http://vpa.r-forge.r-project.org.

  3. Evaluation of exome variants using the Ion Proton Platform to sequence error-prone regions.

    Science.gov (United States)

    Seo, Heewon; Park, Yoomi; Min, Byung Joo; Seo, Myung Eui; Kim, Ju Han

    2017-01-01

    The Ion Proton sequencer from Thermo Fisher accurately determines sequence variants from target regions with a rapid turnaround time at a low cost. However, misleading variant-calling errors can occur. We performed a systematic evaluation and manual curation of read-level alignments for the 675 ultrarare variants reported by the Ion Proton sequencer from 27 whole-exome sequencing data but that are not present in either the 1000 Genomes Project and the Exome Aggregation Consortium. We classified positive variant calls into 393 highly likely false positives, 126 likely false positives, and 156 likely true positives, which comprised 58.2%, 18.7%, and 23.1% of the variants, respectively. We identified four distinct error patterns of variant calling that may be bioinformatically corrected when using different strategies: simplicity region, SNV cluster, peripheral sequence read, and base inversion. Local de novo assembly successfully corrected 201 (38.7%) of the 519 highly likely or likely false positives. We also demonstrate that the two sequencing kits from Thermo Fisher (the Ion PI Sequencing 200 kit V3 and the Ion PI Hi-Q kit) exhibit different error profiles across different error types. A refined calling algorithm with better polymerase may improve the performance of the Ion Proton sequencing platform.

  4. Evaluation of exome variants using the Ion Proton Platform to sequence error-prone regions.

    Directory of Open Access Journals (Sweden)

    Heewon Seo

    Full Text Available The Ion Proton sequencer from Thermo Fisher accurately determines sequence variants from target regions with a rapid turnaround time at a low cost. However, misleading variant-calling errors can occur. We performed a systematic evaluation and manual curation of read-level alignments for the 675 ultrarare variants reported by the Ion Proton sequencer from 27 whole-exome sequencing data but that are not present in either the 1000 Genomes Project and the Exome Aggregation Consortium. We classified positive variant calls into 393 highly likely false positives, 126 likely false positives, and 156 likely true positives, which comprised 58.2%, 18.7%, and 23.1% of the variants, respectively. We identified four distinct error patterns of variant calling that may be bioinformatically corrected when using different strategies: simplicity region, SNV cluster, peripheral sequence read, and base inversion. Local de novo assembly successfully corrected 201 (38.7% of the 519 highly likely or likely false positives. We also demonstrate that the two sequencing kits from Thermo Fisher (the Ion PI Sequencing 200 kit V3 and the Ion PI Hi-Q kit exhibit different error profiles across different error types. A refined calling algorithm with better polymerase may improve the performance of the Ion Proton sequencing platform.

  5. An integrative variant analysis suite for whole exome next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Challis Danny

    2012-01-01

    Full Text Available Abstract Background Whole exome capture sequencing allows researchers to cost-effectively sequence the coding regions of the genome. Although the exome capture sequencing methods have become routine and well established, there is currently a lack of tools specialized for variant calling in this type of data. Results Using statistical models trained on validated whole-exome capture sequencing data, the Atlas2 Suite is an integrative variant analysis pipeline optimized for variant discovery on all three of the widely used next generation sequencing platforms (SOLiD, Illumina, and Roche 454. The suite employs logistic regression models in conjunction with user-adjustable cutoffs to accurately separate true SNPs and INDELs from sequencing and mapping errors with high sensitivity (96.7%. Conclusion We have implemented the Atlas2 Suite and applied it to 92 whole exome samples from the 1000 Genomes Project. The Atlas2 Suite is available for download at http://sourceforge.net/projects/atlas2/. In addition to a command line version, the suite has been integrated into the Genboree Workbench, allowing biomedical scientists with minimal informatics expertise to remotely call, view, and further analyze variants through a simple web interface. The existing genomic databases displayed via the Genboree browser also streamline the process from variant discovery to functional genomics analysis, resulting in an off-the-shelf toolkit for the broader community.

  6. Locus Reference Genomic sequences: An improved basis for describing human DNA variants

    KAUST Repository

    Dalgleish, Raymond; Flicek, Paul; Cunningham, Fiona; Astashyn, Alex; Tully, Raymond E; Proctor, Glenn; Chen, Yuan; McLaren, William M; Larsson, Pontus; Vaughan, Brendan W; Bé roud, Christophe; Dobson, Glen; Lehvä slaiho, Heikki; Taschner, Peter EM; den Dunnen, Johan T; Devereau, Andrew; Birney, Ewan; Brookes, Anthony J; Maglott, Donna R

    2010-01-01

    As our knowledge of the complexity of gene architecture grows, and we increase our understanding of the subtleties of gene expression, the process of accurately describing disease-causing gene variants has become increasingly problematic. In part, this is due to current reference DNA sequence formats that do not fully meet present needs. Here we present the Locus Reference Genomic (LRG) sequence format, which has been designed for the specifi c purpose of gene variant reporting. The format builds on the successful National Center for Biotechnology Information (NCBI) RefSeqGene project and provides a single-fi le record containing a uniquely stable reference DNA sequence along with all relevant transcript and protein sequences essential to the description of gene variants. In principle, LRGs can be created for any organism, not just human. In addition, we recognize the need to respect legacy numbering systems for exons and amino acids and the LRG format takes account of these. We hope that widespread adoption of LRGs - which will be created and maintained by the NCBI and the European Bioinformatics Institute (EBI) - along with consistent use of the Human Genome Variation Society (HGVS)- approved variant nomenclature will reduce errors in the reporting of variants in the literature and improve communication about variants aff ecting human health. Further information can be found on the LRG web site (http://www.lrg-sequence.org). 2010 Dalgleish et al.; licensee BioMed Central Ltd.

  7. Locus Reference Genomic sequences: An improved basis for describing human DNA variants

    KAUST Repository

    Dalgleish, Raymond

    2010-04-15

    As our knowledge of the complexity of gene architecture grows, and we increase our understanding of the subtleties of gene expression, the process of accurately describing disease-causing gene variants has become increasingly problematic. In part, this is due to current reference DNA sequence formats that do not fully meet present needs. Here we present the Locus Reference Genomic (LRG) sequence format, which has been designed for the specifi c purpose of gene variant reporting. The format builds on the successful National Center for Biotechnology Information (NCBI) RefSeqGene project and provides a single-fi le record containing a uniquely stable reference DNA sequence along with all relevant transcript and protein sequences essential to the description of gene variants. In principle, LRGs can be created for any organism, not just human. In addition, we recognize the need to respect legacy numbering systems for exons and amino acids and the LRG format takes account of these. We hope that widespread adoption of LRGs - which will be created and maintained by the NCBI and the European Bioinformatics Institute (EBI) - along with consistent use of the Human Genome Variation Society (HGVS)- approved variant nomenclature will reduce errors in the reporting of variants in the literature and improve communication about variants aff ecting human health. Further information can be found on the LRG web site (http://www.lrg-sequence.org). 2010 Dalgleish et al.; licensee BioMed Central Ltd.

  8. Weighting sequence variants based on their annotation increases power of whole-genome association studies

    DEFF Research Database (Denmark)

    Sveinbjornsson, Gardar; Albrechtsen, Anders; Zink, Florian

    2016-01-01

    The consensus approach to genome-wide association studies (GWAS) has been to assign equal prior probability of association to all sequence variants tested. However, some sequence variants, such as loss-of-function and missense variants, are more likely than others to affect protein function...... for the family-wise error rate (FWER), using as weights the enrichment of sequence annotations among association signals. We show that this weighted adjustment increases the power to detect association over the standard Bonferroni correction. We use the enrichment of associations by sequence annotation we have...

  9. Whole-Genome Sequencing and Variant Analysis of Human Papillomavirus 16 Infections.

    Science.gov (United States)

    van der Weele, Pascal; Meijer, Chris J L M; King, Audrey J

    2017-10-01

    Human papillomavirus (HPV) is a strongly conserved DNA virus, high-risk types of which can cause cervical cancer in persistent infections. The most common type found in HPV-attributable cancer is HPV16, which can be subdivided into four lineages (A to D) with different carcinogenic properties. Studies have shown HPV16 sequence diversity in different geographical areas, but only limited information is available regarding HPV16 diversity within a population, especially at the whole-genome level. We analyzed HPV16 major variant diversity and conservation in persistent infections and performed a single nucleotide polymorphism (SNP) comparison between persistent and clearing infections. Materials were obtained in the Netherlands from a cohort study with longitudinal follow-up for up to 3 years. Our analysis shows a remarkably large variant diversity in the population. Whole-genome sequences were obtained for 57 persistent and 59 clearing HPV16 infections, resulting in 109 unique variants. Interestingly, persistent infections were completely conserved through time. One reinfection event was identified where the initial and follow-up samples clustered differently. Non-A1/A2 variants seemed to clear preferentially ( P = 0.02). Our analysis shows that population-wide HPV16 sequence diversity is very large. In persistent infections, the HPV16 sequence was fully conserved. Sequencing can identify HPV16 reinfections, although occurrence is rare. SNP comparison identified no strongly acting effect of the viral genome affecting HPV16 infection clearance or persistence in up to 3 years of follow-up. These findings suggest the progression of an early HPV16 infection could be host related. IMPORTANCE Human papillomavirus 16 (HPV16) is the predominant type found in cervical cancer. Progression of initial infection to cervical cancer has been linked to sequence properties; however, knowledge of variants circulating in European populations, especially with longitudinal follow-up, is

  10. Pooled Sequencing of 531 Genes in Inflammatory Bowel Disease Identifies an Associated Rare Variant in BTNL2 and Implicates Other Immune Related Genes

    Science.gov (United States)

    Prescott, Natalie J.; Lehne, Benjamin; Stone, Kristina; Lee, James C.; Taylor, Kirstin; Knight, Jo; Papouli, Efterpi; Mirza, Muddassar M.; Simpson, Michael A.; Spain, Sarah L.; Lu, Grace; Fraternali, Franca; Bumpstead, Suzannah J.; Gray, Emma; Amar, Ariella; Bye, Hannah; Green, Peter; Chung-Faye, Guy; Hayee, Bu’Hussain; Pollok, Richard; Satsangi, Jack; Parkes, Miles; Barrett, Jeffrey C.; Mansfield, John C.; Sanderson, Jeremy; Lewis, Cathryn M.; Weale, Michael E.; Schlitt, Thomas; Mathew, Christopher G.

    2015-01-01

    The contribution of rare coding sequence variants to genetic susceptibility in complex disorders is an important but unresolved question. Most studies thus far have investigated a limited number of genes from regions which contain common disease associated variants. Here we investigate this in inflammatory bowel disease by sequencing the exons and proximal promoters of 531 genes selected from both genome-wide association studies and pathway analysis in pooled DNA panels from 474 cases of Crohn’s disease and 480 controls. 80 variants with evidence of association in the sequencing experiment or with potential functional significance were selected for follow up genotyping in 6,507 IBD cases and 3,064 population controls. The top 5 disease associated variants were genotyped in an extension panel of 3,662 IBD cases and 3,639 controls, and tested for association in a combined analysis of 10,147 IBD cases and 7,008 controls. A rare coding variant p.G454C in the BTNL2 gene within the major histocompatibility complex was significantly associated with increased risk for IBD (p = 9.65x10−10, OR = 2.3[95% CI = 1.75–3.04]), but was independent of the known common associated CD and UC variants at this locus. Rare (T) or decreased risk (IL12B p.V298F, and NICN p.H191R) of IBD. These results provide additional insights into the involvement of the inhibition of T cell activation in the development of both sub-phenotypes of inflammatory bowel disease. We suggest that although rare coding variants may make a modest overall contribution to complex disease susceptibility, they can inform our understanding of the molecular pathways that contribute to pathogenesis. PMID:25671699

  11. ISVASE: identification of sequence variant associated with splicing event using RNA-seq data.

    Science.gov (United States)

    Aljohi, Hasan Awad; Liu, Wanfei; Lin, Qiang; Yu, Jun; Hu, Songnian

    2017-06-28

    Exon recognition and splicing precisely and efficiently by spliceosome is the key to generate mature mRNAs. About one third or a half of disease-related mutations affect RNA splicing. Software PVAAS has been developed to identify variants associated with aberrant splicing by directly using RNA-seq data. However, it bases on the assumption that annotated splicing site is normal splicing, which is not true in fact. We develop the ISVASE, a tool for specifically identifying sequence variants associated with splicing events (SVASE) by using RNA-seq data. Comparing with PVAAS, our tool has several advantages, such as multi-pass stringent rule-dependent filters and statistical filters, only using split-reads, independent sequence variant identification in each part of splicing (junction), sequence variant detection for both of known and novel splicing event, additional exon-exon junction shift event detection if known splicing events provided, splicing signal evaluation, known DNA mutation and/or RNA editing data supported, higher precision and consistency, and short running time. Using a realistic RNA-seq dataset, we performed a case study to illustrate the functionality and effectiveness of our method. Moreover, the output of SVASEs can be used for downstream analysis such as splicing regulatory element study and sequence variant functional analysis. ISVASE is useful for researchers interested in sequence variants (DNA mutation and/or RNA editing) associated with splicing events. The package is freely available at https://sourceforge.net/projects/isvase/ .

  12. Multiplexed enrichment of rare DNA variants via sequence-selective and temperature-robust amplification

    Science.gov (United States)

    Wu, Lucia R.; Chen, Sherry X.; Wu, Yalei; Patel, Abhijit A.; Zhang, David Yu

    2018-01-01

    Rare DNA-sequence variants hold important clinical and biological information, but existing detection techniques are expensive, complex, allele-specific, or don’t allow for significant multiplexing. Here, we report a temperature-robust polymerase-chain-reaction method, which we term blocker displacement amplification (BDA), that selectively amplifies all sequence variants, including single-nucleotide variants (SNVs), within a roughly 20-nucleotide window by 1,000-fold over wild-type sequences. This allows for easy detection and quantitation of hundreds of potential variants originally at ≤0.1% in allele frequency. BDA is compatible with inexpensive thermocycler instrumentation and employs a rationally designed competitive hybridization reaction to achieve comparable enrichment performance across annealing temperatures ranging from 56 °C to 64 °C. To show the sequence generality of BDA, we demonstrate enrichment of 156 SNVs and the reliable detection of single-digit copies. We also show that the BDA detection of rare driver mutations in cell-free DNA samples extracted from the blood plasma of lung-cancer patients is highly consistent with deep sequencing using molecular lineage tags, with a receiver operator characteristic accuracy of 95%. PMID:29805844

  13. Sequencing of sporadic Attention-Deficit Hyperactivity Disorder (ADHD) identifies novel and potentially pathogenic de novo variants and excludes overlap with genes associated with autism spectrum disorder.

    Science.gov (United States)

    Kim, Daniel Seung; Burt, Amber A; Ranchalis, Jane E; Wilmot, Beth; Smith, Joshua D; Patterson, Karynne E; Coe, Bradley P; Li, Yatong K; Bamshad, Michael J; Nikolas, Molly; Eichler, Evan E; Swanson, James M; Nigg, Joel T; Nickerson, Deborah A; Jarvik, Gail P

    2017-06-01

    Attention-Deficit Hyperactivity Disorder (ADHD) has high heritability; however, studies of common variation account for ADHD variance. Using data from affected participants without a family history of ADHD, we sought to identify de novo variants that could account for sporadic ADHD. Considering a total of 128 families, two analyses were conducted in parallel: first, in 11 unaffected parent/affected proband trios (or quads with the addition of an unaffected sibling) we completed exome sequencing. Six de novo missense variants at highly conserved bases were identified and validated from four of the 11 families: the brain-expressed genes TBC1D9, DAGLA, QARS, CSMD2, TRPM2, and WDR83. Separately, in 117 unrelated probands with sporadic ADHD, we sequenced a panel of 26 genes implicated in intellectual disability (ID) and autism spectrum disorder (ASD) to evaluate whether variation in ASD/ID-associated genes were also present in participants with ADHD. Only one putative deleterious variant (Gln600STOP) in CHD1L was identified; this was found in a single proband. Notably, no other nonsense, splice, frameshift, or highly conserved missense variants in the 26 gene panel were identified and validated. These data suggest that de novo variant analysis in families with independently adjudicated sporadic ADHD diagnosis can identify novel genes implicated in ADHD pathogenesis. Moreover, that only one of the 128 cases (0.8%, 11 exome, and 117 MIP sequenced participants) had putative deleterious variants within our data in 26 genes related to ID and ASD suggests significant independence in the genetic pathogenesis of ADHD as compared to ASD and ID phenotypes. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Screening of whole genome sequences identified high-impact variants for stallion fertility.

    Science.gov (United States)

    Schrimpf, Rahel; Gottschalk, Maren; Metzger, Julia; Martinsson, Gunilla; Sieme, Harald; Distl, Ottmar

    2016-04-14

    Stallion fertility is an economically important trait due to the increase of artificial insemination in horses. The availability of whole genome sequence data facilitates identification of rare high-impact variants contributing to stallion fertility. The aim of our study was to genotype rare high-impact variants retrieved from next-generation sequencing (NGS)-data of 11 horses in order to unravel harmful genetic variants in large samples of stallions. Gene ontology (GO) terms and search results from public databases were used to obtain a comprehensive list of human und mice genes predicted to participate in the regulation of male reproduction. The corresponding equine orthologous genes were searched in whole genome sequence data of seven stallions and four mares and filtered for high-impact genetic variants using SnpEFF, SIFT and Polyphen 2 software. All genetic variants with the missing homozygous mutant genotype were genotyped on 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. Mixed linear model analysis was employed for an association analysis with de-regressed estimated breeding values of the paternal component of the pregnancy rate per estrus (EBV-PAT). We screened next generation sequenced data of whole genomes from 11 horses for equine genetic variants in 1194 human and mice genes involved in male fertility and linked through common gene ontology (GO) with male reproductive processes. Variants were filtered for high-impact on protein structure and validated through SIFT and Polyphen 2. Only those genetic variants were followed up when the homozygote mutant genotype was missing in the detection sample comprising 11 horses. After this filtering process, 17 single nucleotide polymorphism (SNPs) were left. These SNPs were genotyped in 337 fertile stallions of 19 breeds using KASP genotyping assays or PCR-RFLP. An association analysis in 216 Hanoverian stallions revealed a significant association of the splice-site disruption variant

  15. Analysis of mtDNA sequence variants in colorectal adenomatous polyps

    Directory of Open Access Journals (Sweden)

    Grizzle William

    2010-10-01

    Full Text Available Abstract Colorectal tumors mostly arise from sporadic adenomatous polyps. Polyps are defined as a mass of cells that protrudes into the lumen of the colon. Adenomatous polyps are benign neoplasms that, by definition display some characteristics of dysplasia. It has been shown that polyps were benign tumors which may undergo malignant transformation. Adenomatous polyps have been classified into three histologic types; tubular, tubulovillous, and villous with increasing malignant potential. The ability to differentially diagnose these colorectal adenomatous polyps is important for therapeutic intervention. To date, little efforts have been directed to identifying genetic changes involved in adenomatous polyps. This study was designed to examine the relevance of mitochondrial genome alterations in the three adenomatous polyps. Using high resolution restriction endonucleases and PCR-based sequencing, fifty-seven primary fresh frozen tissues of adenomatous polyps (37 tumors and 20 matched surrounding normal tissues obtained from the southern regional Cooperative Human Tissue Network (CHTN and Grady Memorial Hospital at Atlanta were screened with three mtDNA regional primer pairs that spanned 5.9 kbp. Results from our data analyses revealed the presence of forty-four variants in some of these mitochondrial genes that the primers spanned; COX I, II, III, ATP 6, 8, CYT b, ND 5, 6 and tRNAs. Based on the MITODAT database as a sequence reference, 25 of the 44 (57% variants observed were unreported. Notably, a heteroplasmic variant C8515G/T in the MT-ATP 8 gene and a germline variant 8327delA in the tRNAlys was observed in all the tissue samples of the three adenomatous polyps in comparison to the referenced database sequence. A germline variant G9055A in the MT-ATP 6 gene had a frequency of 100% (17/17 in tubular and 57% (13/23 in villous adenomas; no corresponding variant was in tubulovillous adenomas. Furthermore, A9006G variant at MT-ATP 6 gene was

  16. GenProBiS: web server for mapping of sequence variants to protein binding sites.

    Science.gov (United States)

    Konc, Janez; Skrlj, Blaz; Erzen, Nika; Kunej, Tanja; Janezic, Dusanka

    2017-07-03

    Discovery of potentially deleterious sequence variants is important and has wide implications for research and generation of new hypotheses in human and veterinary medicine, and drug discovery. The GenProBiS web server maps sequence variants to protein structures from the Protein Data Bank (PDB), and further to protein-protein, protein-nucleic acid, protein-compound, and protein-metal ion binding sites. The concept of a protein-compound binding site is understood in the broadest sense, which includes glycosylation and other post-translational modification sites. Binding sites were defined by local structural comparisons of whole protein structures using the Protein Binding Sites (ProBiS) algorithm and transposition of ligands from the similar binding sites found to the query protein using the ProBiS-ligands approach with new improvements introduced in GenProBiS. Binding site surfaces were generated as three-dimensional grids encompassing the space occupied by predicted ligands. The server allows intuitive visual exploration of comprehensively mapped variants, such as human somatic mis-sense mutations related to cancer and non-synonymous single nucleotide polymorphisms from 21 species, within the predicted binding sites regions for about 80 000 PDB protein structures using fast WebGL graphics. The GenProBiS web server is open and free to all users at http://genprobis.insilab.org. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. The Use of Non-Variant Sites to Improve the Clinical Assessment of Whole-Genome Sequence Data.

    Directory of Open Access Journals (Sweden)

    Alberto Ferrarini

    Full Text Available Genetic testing, which is now a routine part of clinical practice and disease management protocols, is often based on the assessment of small panels of variants or genes. On the other hand, continuous improvements in the speed and per-base costs of sequencing have now made whole exome sequencing (WES and whole genome sequencing (WGS viable strategies for targeted or complete genetic analysis, respectively. Standard WGS/WES data analytical workflows generally rely on calling of sequence variants respect to the reference genome sequence. However, the reference genome sequence contains a large number of sites represented by rare alleles, by known pathogenic alleles and by alleles strongly associated to disease by GWAS. It's thus critical, for clinical applications of WGS and WES, to interpret whether non-variant sites are homozygous for the reference allele or if the corresponding genotype cannot be reliably called. Here we show that an alternative analytical approach based on the analysis of both variant and non-variant sites from WGS data allows to genotype more than 92% of sites corresponding to known SNPs compared to 6% genotyped by standard variant analysis. These include homozygous reference sites of clinical interest, thus leading to a broad and comprehensive characterization of variation necessary to an accurate evaluation of disease risk. Altogether, our findings indicate that characterization of both variant and non-variant clinically informative sites in the genome is necessary to allow an accurate clinical assessment of a personal genome. Finally, we propose a highly efficient extended VCF (eVCF file format which allows to store genotype calls for sites of clinical interest while remaining compatible with current variant interpretation software.

  18. A machine learning model to determine the accuracy of variant calls in capture-based next generation sequencing.

    Science.gov (United States)

    van den Akker, Jeroen; Mishne, Gilad; Zimmer, Anjali D; Zhou, Alicia Y

    2018-04-17

    Next generation sequencing (NGS) has become a common technology for clinical genetic tests. The quality of NGS calls varies widely and is influenced by features like reference sequence characteristics, read depth, and mapping accuracy. With recent advances in NGS technology and software tools, the majority of variants called using NGS alone are in fact accurate and reliable. However, a small subset of difficult-to-call variants that still do require orthogonal confirmation exist. For this reason, many clinical laboratories confirm NGS results using orthogonal technologies such as Sanger sequencing. Here, we report the development of a deterministic machine-learning-based model to differentiate between these two types of variant calls: those that do not require confirmation using an orthogonal technology (high confidence), and those that require additional quality testing (low confidence). This approach allows reliable NGS-based calling in a clinical setting by identifying the few important variant calls that require orthogonal confirmation. We developed and tested the model using a set of 7179 variants identified by a targeted NGS panel and re-tested by Sanger sequencing. The model incorporated several signals of sequence characteristics and call quality to determine if a variant was identified at high or low confidence. The model was tuned to eliminate false positives, defined as variants that were called by NGS but not confirmed by Sanger sequencing. The model achieved very high accuracy: 99.4% (95% confidence interval: +/- 0.03%). It categorized 92.2% (6622/7179) of the variants as high confidence, and 100% of these were confirmed to be present by Sanger sequencing. Among the variants that were categorized as low confidence, defined as NGS calls of low quality that are likely to be artifacts, 92.1% (513/557) were found to be not present by Sanger sequencing. This work shows that NGS data contains sufficient characteristics for a machine-learning-based model to

  19. Whole-Exome Sequencing Reveals Clinically Relevant Variants in Family Affected with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jiaxiu Zhou

    2016-10-01

    Full Text Available Chromosomal microarray (CMA has been suggested as a first tier clinical diagnostic test for ASD. High-throughput sequencing (HTS has associated hundreds of genes associated with ASD. Whole Exome Sequencing (WES was used in combination with CMA to identify clinically-relevant ASD variants. In prior work, a trio-based (father, mother, and proband WGS (Whole Genome Sequencing was used to reveal clinically-relevant de novo, or inherited, rare variants in half (16 / 32 of the ASD families in which all probands had normal, or VOUS (Variant of Uncertain Clinical Significance, CMA results. In this study, after CMA screening chromosome structural abnormalities of a proband affected with ASD, a WES was performed on the patient and parents. Some rare de novo, and inherited, variants were detected using trio-based bioinformatics analysis. ASD variants were ranked by SFARI Gene score, HPO (human phenotype ontology, protein function damage, and manual searching PubMed. Sanger sequencing was used to validated some candidate variants in family members. A de novo homozygous mutation in SPG11 (p.C209F, two inherited, compound-heterozygote mutations in SCN9A (p.Q10R and p.R1893H and BEST1 (p.A135V and p.A297V were confirmed. Heterozygous mutations in TSC1 (p.S487C and SHANK2 (p.Arg569His inherited from mother were also confirmed.

  20. CDKL5 variants

    Science.gov (United States)

    Kalscheuer, Vera M.; Hennig, Friederike; Leonard, Helen; Downs, Jenny; Clarke, Angus; Benke, Tim A.; Armstrong, Judith; Pineda, Mercedes; Bailey, Mark E.S.; Cobb, Stuart R.

    2017-01-01

    Objective: To provide new insights into the interpretation of genetic variants in a rare neurologic disorder, CDKL5 deficiency, in the contexts of population sequencing data and an updated characterization of the CDKL5 gene. Methods: We analyzed all known potentially pathogenic CDKL5 variants by combining data from large-scale population sequencing studies with CDKL5 variants from new and all available clinical cohorts and combined this with computational methods to predict pathogenicity. Results: The study has identified several variants that can be reclassified as benign or likely benign. With the addition of novel CDKL5 variants, we confirm that pathogenic missense variants cluster in the catalytic domain of CDKL5 and reclassify a purported missense variant as having a splicing consequence. We provide further evidence that missense variants in the final 3 exons are likely to be benign and not important to disease pathology. We also describe benign splicing and nonsense variants within these exons, suggesting that isoform hCDKL5_5 is likely to have little or no neurologic significance. We also use the available data to make a preliminary estimate of minimum incidence of CDKL5 deficiency. Conclusions: These findings have implications for genetic diagnosis, providing evidence for the reclassification of specific variants previously thought to result in CDKL5 deficiency. Together, these analyses support the view that the predominant brain isoform in humans (hCDKL5_1) is crucial for normal neurodevelopment and that the catalytic domain is the primary functional domain. PMID:29264392

  1. A comparison of 454 sequencing and clonal sequencing for the characterization of hepatitis C virus NS3 variants

    NARCIS (Netherlands)

    Ho, Cynthia K. Y.; Welkers, Matthijs R. A.; Thomas, Xiomara V.; Sullivan, James C.; Kieffer, Tara L.; Reesink, Henk W.; Rebers, Sjoerd P. H.; de Jong, Menno D.; Schinkel, Janke; Molenkamp, Richard

    2015-01-01

    We compared 454 amplicon sequencing with clonal sequencing for the characterization of intra-host hepatitis C virus (HCV) NS3 variants. Clonal and 454 sequences were obtained from 12 patients enrolled in a clinical phase I study for telaprevir, an NS3-4a protease inhibitor. Thirty-nine datasets were

  2. Re-Ranking Sequencing Variants in the Post-GWAS Era for Accurate Causal Variant Identification

    Science.gov (United States)

    Faye, Laura L.; Machiela, Mitchell J.; Kraft, Peter; Bull, Shelley B.; Sun, Lei

    2013-01-01

    Next generation sequencing has dramatically increased our ability to localize disease-causing variants by providing base-pair level information at costs increasingly feasible for the large sample sizes required to detect complex-trait associations. Yet, identification of causal variants within an established region of association remains a challenge. Counter-intuitively, certain factors that increase power to detect an associated region can decrease power to localize the causal variant. First, combining GWAS with imputation or low coverage sequencing to achieve the large sample sizes required for high power can have the unintended effect of producing differential genotyping error among SNPs. This tends to bias the relative evidence for association toward better genotyped SNPs. Second, re-use of GWAS data for fine-mapping exploits previous findings to ensure genome-wide significance in GWAS-associated regions. However, using GWAS findings to inform fine-mapping analysis can bias evidence away from the causal SNP toward the tag SNP and SNPs in high LD with the tag. Together these factors can reduce power to localize the causal SNP by more than half. Other strategies commonly employed to increase power to detect association, namely increasing sample size and using higher density genotyping arrays, can, in certain common scenarios, actually exacerbate these effects and further decrease power to localize causal variants. We develop a re-ranking procedure that accounts for these adverse effects and substantially improves the accuracy of causal SNP identification, often doubling the probability that the causal SNP is top-ranked. Application to the NCI BPC3 aggressive prostate cancer GWAS with imputation meta-analysis identified a new top SNP at 2 of 3 associated loci and several additional possible causal SNPs at these loci that may have otherwise been overlooked. This method is simple to implement using R scripts provided on the author's website. PMID:23950724

  3. Exome Sequencing Identifies Potential Risk Variants for Mendelian Disorders at High Prevalence in Qatar

    Science.gov (United States)

    Rodriguez-Flores, Juan L.; Fakhro, Khalid; Hackett, Neil R.; Salit, Jacqueline; Fuller, Jennifer; Agosto-Perez, Francisco; Gharbiah, Maey; Malek, Joel A.; Zirie, Mahmoud; Jayyousi, Amin; Badii, Ramin; Al-Marri, Ajayeb Al-Nabet; Chouchane, Lotfi; Stadler, Dora J.; Hunter-Zinck, Haley; Mezey, Jason G.; Crystal, Ronald G.

    2013-01-01

    Exome sequencing of families of related individuals has been highly successful in identifying genetic polymorphisms responsible for Mendelian disorders. Here, we demonstrate the value of the reverse approach, where we use exome sequencing of a sample of unrelated individuals to analyze allele frequencies of known causal mutations for Mendelian diseases. We sequenced the exomes of 100 individuals representing the three major genetic subgroups of the Qatari population (Q1 Bedouin, Q2 Persian-South Asian, Q3 African) and identified 37 variants in 33 genes with effects on 36 clinically significant Mendelian diseases. These include variants not present in 1000 Genomes and variants at high frequency when compared to 1000 Genomes populations. Several of these Mendelian variants were only segregating in one Qatari subpopulation, where the observed subpopulation specificity trends were confirmed in an independent population of 386 Qataris. Pre-marital genetic screening in Qatar tests for only 4 out of the 37, such that this study provides a set of Mendelian disease variants with potential impact on the epidemiological profile of the population that could be incorporated into the testing program if further experimental and clinical characterization confirms high penetrance. PMID:24123366

  4. Deep Sequencing of Three Loci Implicated in Large-Scale Genome-Wide Association Study Smoking Meta-Analyses.

    Science.gov (United States)

    Clark, Shaunna L; McClay, Joseph L; Adkins, Daniel E; Aberg, Karolina A; Kumar, Gaurav; Nerella, Sri; Xie, Linying; Collins, Ann L; Crowley, James J; Quakenbush, Corey R; Hillard, Christopher E; Gao, Guimin; Shabalin, Andrey A; Peterson, Roseann E; Copeland, William E; Silberg, Judy L; Maes, Hermine; Sullivan, Patrick F; Costello, Elizabeth J; van den Oord, Edwin J

    2016-05-01

    Genome-wide association study meta-analyses have robustly implicated three loci that affect susceptibility for smoking: CHRNA5\\CHRNA3\\CHRNB4, CHRNB3\\CHRNA6 and EGLN2\\CYP2A6. Functional follow-up studies of these loci are needed to provide insight into biological mechanisms. However, these efforts have been hampered by a lack of knowledge about the specific causal variant(s) involved. In this study, we prioritized variants in terms of the likelihood they account for the reported associations. We employed targeted capture of the CHRNA5\\CHRNA3\\CHRNB4, CHRNB3\\CHRNA6, and EGLN2\\CYP2A6 loci and flanking regions followed by next-generation deep sequencing (mean coverage 78×) to capture genomic variation in 363 individuals. We performed single locus tests to determine if any single variant accounts for the association, and examined if sets of (rare) variants that overlapped with biologically meaningful annotations account for the associations. In total, we investigated 963 variants, of which 71.1% were rare (minor allele frequency < 0.01), 6.02% were insertion/deletions, and 51.7% were catalogued in dbSNP141. The single variant results showed that no variant fully accounts for the association in any region. In the variant set results, CHRNB4 accounts for most of the signal with significant sets consisting of directly damaging variants. CHRNA6 explains most of the signal in the CHRNB3\\CHRNA6 locus with significant sets indicating a regulatory role for CHRNA6. Significant sets in CYP2A6 involved directly damaging variants while the significant variant sets suggested a regulatory role for EGLN2. We found that multiple variants implicating multiple processes explain the signal. Some variants can be prioritized for functional follow-up. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Whole-exome sequencing identified a variant in EFTUD2 gene in establishing a genetic diagnosis.

    Science.gov (United States)

    Rengasamy Venugopalan, S; Farrow, E G; Lypka, M

    2017-06-01

    Craniofacial anomalies are complex and have an overlapping phenotype. Mandibulofacial Dysostosis and Oculo-Auriculo-Vertebral Spectrum are conditions that share common craniofacial phenotype and present a challenge in arriving at a diagnosis. In this report, we present a case of female proband who was given a differential diagnosis of Treacher Collins syndrome or Hemifacial Microsomia without certainty. Prior genetic testing reported negative for 22q deletion and FGFR screenings. The objective of this study was to demonstrate the critical role of whole-exome sequencing in establishing a genetic diagnosis of the proband. The participants were 14½-year-old affected female proband/parent trio. Proband/parent trio were enrolled in the study. Surgical tissue sample from the proband and parental blood samples were collected and prepared for whole-exome sequencing. Illumina HiSeq 2500 instrument was used for sequencing (125 nucleotide reads/84X coverage). Analyses of variants were performed using custom-developed software, RUNES and VIKING. Variant analyses following whole-exome sequencing identified a heterozygous de novo pathogenic variant, c.259C>T (p.Gln87*), in EFTUD2 (NM_004247.3) gene in the proband. Previous studies have reported that the variants in EFTUD2 gene were associated with Mandibulofacial Dysostosis with Microcephaly. Patients with facial asymmetry, micrognathia, choanal atresia and microcephaly should be analyzed for variants in EFTUD2 gene. Next-generation sequencing techniques, such as whole-exome sequencing offer great promise to improve the understanding of etiologies of sporadic genetic diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Multiplexed resequencing analysis to identify rare variants in pooled DNA with barcode indexing using next-generation sequencer.

    Science.gov (United States)

    Mitsui, Jun; Fukuda, Yoko; Azuma, Kyo; Tozaki, Hirokazu; Ishiura, Hiroyuki; Takahashi, Yuji; Goto, Jun; Tsuji, Shoji

    2010-07-01

    We have recently found that multiple rare variants of the glucocerebrosidase gene (GBA) confer a robust risk for Parkinson disease, supporting the 'common disease-multiple rare variants' hypothesis. To develop an efficient method of identifying rare variants in a large number of samples, we applied multiplexed resequencing using a next-generation sequencer to identification of rare variants of GBA. Sixteen sets of pooled DNAs from six pooled DNA samples were prepared. Each set of pooled DNAs was subjected to polymerase chain reaction to amplify the target gene (GBA) covering 6.5 kb, pooled into one tube with barcode indexing, and then subjected to extensive sequence analysis using the SOLiD System. Individual samples were also subjected to direct nucleotide sequence analysis. With the optimization of data processing, we were able to extract all the variants from 96 samples with acceptable rates of false-positive single-nucleotide variants.

  7. Identification of novel mutations and sequence variants in the SOX2 and CHX10 genes in patients with anophthalmia/microphthalmia

    Science.gov (United States)

    Zhou, Jie; Kherani, Femida; Bardakjian, Tanya M.; Katowitz, James; Hughes, Nkecha; Schimmenti, Lisa A.; Schneider, Adele

    2008-01-01

    Purpose Mutations in the SOX2 and CHX10 genes have been reported in patients with anophthalmia and/or microphthalmia. In this study, we evaluated 34 anophthalmic/microphthalmic patient DNA samples (two sets of siblings included) for mutations and sequence variants in SOX2 and CHX10. Methods Conformational sensitive gel electrophoresis (CSGE) was used for the initial SOX2 and CHX10 screening of 34 affected individuals (two sets of siblings), five unaffected family members, and 80 healthy controls. Patient samples containing heteroduplexes were selected for sequence analysis. Base pair changes in SOX2 and CHX10 were confirmed by sequencing bidirectionally in patient samples. Results Two novel heterozygous mutations and two sequence variants (one known) in SOX2 were identified in this cohort. Mutation c.310 G>T (p. Glu104X), found in one patient, was in the region encoding the high mobility group (HMG) DNA-binding domain and resulted in a change from glutamic acid to a stop codon. The second mutation, noted in two affected siblings, was a single nucleotide deletion c.549delC (p. Pro184ArgfsX19) in the region encoding the activation domain, resulting in a frameshift and premature termination of the coding sequence. The shortened protein products may result in the loss of function. In addition, a novel nucleotide substitution c.*557G>A was identified in the 3′-untranslated region in one patient. The relationship between the nucleotide change and the protein function is indeterminate. A known single nucleotide polymorphism (c. *469 C>A, SNP rs11915160) was also detected in 2 of the 34 patients. Screening of CHX10 identified two synonymous sequence variants, c.471 C>T (p.Ser157Ser, rs35435463) and c.579 G>A (p. Gln193Gln, novel SNP), and one non-synonymous sequence variant, c.871 G>A (p. Asp291Asn, novel SNP). The non-synonymous polymorphism was also present in healthy controls, suggesting non-causality. Conclusions These results support the role of SOX2 in ocular

  8. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data.

    Science.gov (United States)

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne-Vibeke; Kruse, Torben A; Larsen, Martin Jakob

    2016-01-01

    Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.

  9. The Quest for Rare Variants: Pooled Multiplexed Next Generation Sequencing in Plants

    Directory of Open Access Journals (Sweden)

    Fabio eMarroni

    2012-06-01

    Full Text Available Next generation sequencing (NGS instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, only three research groups working in plant sciences have exploited this potentiality. They showed that pooled NGS can provide results in excellent agreement with those obtained by individual Sanger sequencing. Aim of this review is to convey to the reader the general ideas underlying the use of pooled NGS for the identification of rare variants. To facilitate a thorough understanding of the possibilities of the method we will explain in detail the variations in study design and discuss their advantages and disadvantages. We will show that information on allele frequency obtained by pooled next generation sequencing can be used to accurately compute basic population genetics indexes such as allele frequency, nucleotide diversity and Tajima’s D. Finally we will discuss applications and future perspectives of the multiplexed NGS approach.

  10. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data.

    Directory of Open Access Journals (Sweden)

    Anne Bruun Krøigård

    Full Text Available Next generation sequencing is extensively applied to catalogue somatic mutations in cancer, in research settings and increasingly in clinical settings for molecular diagnostics, guiding therapy decisions. Somatic variant callers perform paired comparisons of sequencing data from cancer tissue and matched normal tissue in order to detect somatic mutations. The advent of many new somatic variant callers creates a need for comparison and validation of the tools, as no de facto standard for detection of somatic mutations exists and only limited comparisons have been reported. We have performed a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small deletions and insertions. We report a large variation in the number of calls from the nine somatic variant callers on the same sequencing data and highly variable agreement. Sequencing depth had markedly diverse impact on individual callers, as for some callers, increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high sensitivity and robustness to changes in sequencing depths.

  11. Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names

    Directory of Open Access Journals (Sweden)

    Jens H. Kuhn

    2014-09-01

    Full Text Available Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information’s (NCBI’s RefSeq is a non-redundant, curated database for reference (or type nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [ (////variant designation>-], we report consensus decisions from a majority of past and currently active filovirus experts on the eight filovirus type variants and isolates to be represented in RefSeq, their final designations, and their associated sequences.

  12. Integrated mRNA and microRNA transcriptome sequencing characterizes sequence variants and mRNA–microRNA regulatory network in nasopharyngeal carcinoma model systems

    Directory of Open Access Journals (Sweden)

    Carol Ying-Ying Szeto

    2014-01-01

    Full Text Available Nasopharyngeal carcinoma (NPC is a prevalent malignancy in Southeast Asia among the Chinese population. Aberrant regulation of transcripts has been implicated in many types of cancers including NPC. Herein, we characterized mRNA and miRNA transcriptomes by RNA sequencing (RNASeq of NPC model systems. Matched total mRNA and small RNA of undifferentiated Epstein–Barr virus (EBV-positive NPC xenograft X666 and its derived cell line C666, well-differentiated NPC cell line HK1, and the immortalized nasopharyngeal epithelial cell line NP460 were sequenced by Solexa technology. We found 2812 genes and 149 miRNAs (human and EBV to be differentially expressed in NP460, HK1, C666 and X666 with RNASeq; 533 miRNA–mRNA target pairs were inversely regulated in the three NPC cell lines compared to NP460. Integrated mRNA/miRNA expression profiling and pathway analysis show extracellular matrix organization, Beta-1 integrin cell surface interactions, and the PI3K/AKT, EGFR, ErbB, and Wnt pathways were potentially deregulated in NPC. Real-time quantitative PCR was performed on selected mRNA/miRNAs in order to validate their expression. Transcript sequence variants such as short insertions and deletions (INDEL, single nucleotide variant (SNV, and isomiRs were characterized in the NPC model systems. A novel TP53 transcript variant was identified in NP460, HK1, and C666. Detection of three previously reported novel EBV-encoded BART miRNAs and their isomiRs were also observed. Meta-analysis of a model system to a clinical system aids the choice of different cell lines in NPC studies. This comprehensive characterization of mRNA and miRNA transcriptomes in NPC cell lines and the xenograft provides insights on miRNA regulation of mRNA and valuable resources on transcript variation and regulation in NPC, which are potentially useful for mechanistic and preclinical studies.

  13. Whole-Exome Sequencing Identifies One De Novo Variant in the FGD6 Gene in a Thai Family with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Chuphong Thongnak

    2018-01-01

    Full Text Available Autism spectrum disorder (ASD has a strong genetic basis, although the genetics of autism is complex and it is unclear. Genetic testing such as microarray or sequencing was widely used to identify autism markers, but they are unsuccessful in several cases. The objective of this study is to identify causative variants of autism in two Thai families by using whole-exome sequencing technique. Whole-exome sequencing was performed with autism-affected children from two unrelated families. Each sample was sequenced on SOLiD 5500xl Genetic Analyzer system followed by combined bioinformatics pipeline including annotation and filtering process to identify candidate variants. Candidate variants were validated, and the segregation study with other family members was performed using Sanger sequencing. This study identified a possible causative variant for ASD, c.2951G>A, in the FGD6 gene. We demonstrated the potential for ASD genetic variants associated with ASD using whole-exome sequencing and a bioinformatics filtering procedure. These techniques could be useful in identifying possible causative ASD variants, especially in cases in which variants cannot be identified by other techniques.

  14. Exome sequencing identifies three novel candidate genes implicated in intellectual disability.

    Directory of Open Access Journals (Sweden)

    Zehra Agha

    Full Text Available Intellectual disability (ID is a major health problem mostly with an unknown etiology. Recently exome sequencing of individuals with ID identified novel genes implicated in the disease. Therefore the purpose of the present study was to identify the genetic cause of ID in one syndromic and two non-syndromic Pakistani families. Whole exome of three ID probands was sequenced. Missense variations in two plausible novel genes implicated in autosomal recessive ID were identified: lysine (K-specific methyltransferase 2B (KMT2B, zinc finger protein 589 (ZNF589, as well as hedgehog acyltransferase (HHAT with a de novo mutation with autosomal dominant mode of inheritance. The KMT2B recessive variant is the first report of recessive Kleefstra syndrome-like phenotype. Identification of plausible causative mutations for two recessive and a dominant type of ID, in genes not previously implicated in disease, underscores the large genetic heterogeneity of ID. These results also support the viewpoint that large number of ID genes converge on limited number of common networks i.e. ZNF589 belongs to KRAB-domain zinc-finger proteins previously implicated in ID, HHAT is predicted to affect sonic hedgehog, which is involved in several disorders with ID, KMT2B associated with syndromic ID fits the epigenetic module underlying the Kleefstra syndromic spectrum. The association of these novel genes in three different Pakistani ID families highlights the importance of screening these genes in more families with similar phenotypes from different populations to confirm the involvement of these genes in pathogenesis of ID.

  15. Contributions of Function-Altering Variants in Genes Implicated in Pubertal Timing and Body Mass for Self-Limited Delayed Puberty.

    Science.gov (United States)

    Howard, Sasha R; Guasti, Leonardo; Poliandri, Ariel; David, Alessia; Cabrera, Claudia P; Barnes, Michael R; Wehkalampi, Karoliina; O'Rahilly, Stephen; Aiken, Catherine E; Coll, Anthony P; Ma, Marcella; Rimmington, Debra; Yeo, Giles S H; Dunkel, Leo

    2018-02-01

    Self-limited delayed puberty (DP) is often associated with a delay in physical maturation, but although highly heritable the causal genetic factors remain elusive. Genome-wide association studies of the timing of puberty have identified multiple loci for age at menarche in females and voice break in males, particularly in pathways controlling energy balance. We sought to assess the contribution of rare variants in such genes to the phenotype of familial DP. We performed whole-exome sequencing in 67 pedigrees (125 individuals with DP and 35 unaffected controls) from our unique cohort of familial self-limited DP. Using a whole-exome sequencing filtering pipeline one candidate gene [fat mass and obesity-associated gene (FTO)] was identified. In silico, in vitro, and mouse model studies were performed to investigate the pathogenicity of FTO variants and timing of puberty in FTO+/- mice. We identified potentially pathogenic, rare variants in genes in linkage disequilibrium with genome-wide association studies of age at menarche loci in 283 genes. Of these, five genes were implicated in the control of body mass. After filtering for segregation with trait, one candidate, FTO, was retained. Two FTO variants, found in 14 affected individuals from three families, were also associated with leanness in these patients with DP. One variant (p.Leu44Val) demonstrated altered demethylation activity of the mutant protein in vitro. Fto+/- mice displayed a significantly delayed timing of pubertal onset (P puberty in the general population may contribute to the pathogenesis of self-limited DP. Copyright © 2017 Endocrine Society

  16. Common 5S rRNA variants are likely to be accepted in many sequence contexts

    Science.gov (United States)

    Zhang, Zhengdong; D'Souza, Lisa M.; Lee, Youn-Hyung; Fox, George E.

    2003-01-01

    Over evolutionary time RNA sequences which are successfully fixed in a population are selected from among those that satisfy the structural and chemical requirements imposed by the function of the RNA. These sequences together comprise the structure space of the RNA. In principle, a comprehensive understanding of RNA structure and function would make it possible to enumerate which specific RNA sequences belong to a particular structure space and which do not. We are using bacterial 5S rRNA as a model system to attempt to identify principles that can be used to predict which sequences do or do not belong to the 5S rRNA structure space. One promising idea is the very intuitive notion that frequently seen sequence changes in an aligned data set of naturally occurring 5S rRNAs would be widely accepted in many other 5S rRNA sequence contexts. To test this hypothesis, we first developed well-defined operational definitions for a Vibrio region of the 5S rRNA structure space and what is meant by a highly variable position. Fourteen sequence variants (10 point changes and 4 base-pair changes) were identified in this way, which, by the hypothesis, would be expected to incorporate successfully in any of the known sequences in the Vibrio region. All 14 of these changes were constructed and separately introduced into the Vibrio proteolyticus 5S rRNA sequence where they are not normally found. Each variant was evaluated for its ability to function as a valid 5S rRNA in an E. coli cellular context. It was found that 93% (13/14) of the variants tested are likely valid 5S rRNAs in this context. In addition, seven variants were constructed that, although present in the Vibrio region, did not meet the stringent criteria for a highly variable position. In this case, 86% (6/7) are likely valid. As a control we also examined seven variants that are seldom or never seen in the Vibrio region of 5S rRNA sequence space. In this case only two of seven were found to be potentially valid. The

  17. The quest for rare variants: pooled multiplexed next generation sequencing in plants.

    Science.gov (United States)

    Marroni, Fabio; Pinosio, Sara; Morgante, Michele

    2012-01-01

    Next generation sequencing (NGS) instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, few research groups working in plant sciences have exploited this potentiality, showing that pooled NGS provides results in excellent agreement with those obtained by individual Sanger sequencing. The aim of this review is to convey to the reader the general ideas underlying the use of pooled NGS for the identification of rare variants. To facilitate a thorough understanding of the possibilities of the method, we will explain in detail the possible experimental and analytical approaches and discuss their advantages and disadvantages. We will show that information on allele frequency obtained by pooled NGS can be used to accurately compute basic population genetics indexes such as allele frequency, nucleotide diversity, and Tajima's D. Finally, we will discuss applications and future perspectives of the multiplexed NGS approach.

  18. MYO7A and USH2A gene sequence variants in Italian patients with Usher syndrome.

    Science.gov (United States)

    Sodi, Andrea; Mariottini, Alessandro; Passerini, Ilaria; Murro, Vittoria; Tachyla, Iryna; Bianchi, Benedetta; Menchini, Ugo; Torricelli, Francesca

    2014-01-01

    To analyze the spectrum of sequence variants in the MYO7A and USH2A genes in a group of Italian patients affected by Usher syndrome (USH). Thirty-six Italian patients with a diagnosis of USH were recruited. They received a standard ophthalmologic examination, visual field testing, optical coherence tomography (OCT) scan, and electrophysiological tests. Fluorescein angiography and fundus autofluorescence imaging were performed in selected cases. All the patients underwent an audiologic examination for the 0.25-8,000 Hz frequencies. Vestibular function was evaluated with specific tests. DNA samples were analyzed for sequence variants of the MYO7A gene (for USH1) and the USH2A gene (for USH2) with direct sequencing techniques. A few patients were analyzed for both genes. In the MYO7A gene, ten missense variants were found; three patients were compound heterozygous, and two were homozygous. Thirty-four USH2A gene variants were detected, including eight missense variants, nine nonsense variants, six splicing variants, and 11 duplications/deletions; 19 patients were compound heterozygous, and three were homozygous. Four MYO7A and 17 USH2A variants have already been described in the literature. Among the novel mutations there are four USH2A large deletions, detected with multiplex ligation dependent probe amplification (MLPA) technology. Two potentially pathogenic variants were found in 27 patients (75%). Affected patients showed variable clinical pictures without a clear genotype-phenotype correlation. Ten variants in the MYO7A gene and 34 variants in the USH2A gene were detected in Italian patients with USH at a high detection rate. A selective analysis of these genes may be valuable for molecular analysis, combining diagnostic efficiency with little time wastage and less resource consumption.

  19. The Quest for Rare Variants: Pooled Multiplexed Next Generation Sequencing in Plants

    OpenAIRE

    Fabio eMarroni; Sara ePinosio; Sara ePinosio; Michele eMorgante

    2012-01-01

    Next generation sequencing (NGS) instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, only three research groups working in plant sciences have exploited this potentiality. They showed that pooled NGS can provide results in excellent agreement with those obt...

  20. The Quest for Rare Variants: Pooled Multiplexed Next Generation Sequencing in Plants

    OpenAIRE

    Marroni, Fabio; Pinosio, Sara; Morgante, Michele

    2012-01-01

    Next generation sequencing (NGS) instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, few research groups working in plant sciences have exploited this potentiality, showing that pooled NGS provides results in excellent agreement with those obtained by indiv...

  1. Computational Approach to Annotating Variants of Unknown Significance in Clinical Next Generation Sequencing.

    Science.gov (United States)

    Schulz, Wade L; Tormey, Christopher A; Torres, Richard

    2015-01-01

    Next generation sequencing (NGS) has become a common technology in the clinical laboratory, particularly for the analysis of malignant neoplasms. However, most mutations identified by NGS are variants of unknown clinical significance (VOUS). Although the approach to define these variants differs by institution, software algorithms that predict variant effect on protein function may be used. However, these algorithms commonly generate conflicting results, potentially adding uncertainty to interpretation. In this review, we examine several computational tools used to predict whether a variant has clinical significance. In addition to describing the role of these tools in clinical diagnostics, we assess their efficacy in analyzing known pathogenic and benign variants in hematologic malignancies. Copyright© by the American Society for Clinical Pathology (ASCP).

  2. An abundance of rare functional variants in 202 drug target genes sequenced in 14.002 people

    DEFF Research Database (Denmark)

    Nelson, Matthew R.; Wegmann, Daniel; Ehm, Margaret G.

    2012-01-01

    Rare genetic variants contribute to complex disease risk; however, the abundance of rare variants in human populations remains unknown. We explored this spectrum of variation by sequencing 202 genes encoding drug targets in 14,002 individuals. We find rare variants are abundant (1 every 17 bases)...

  3. Amino acid substitutions in genetic variants of human serum albumin and in sequences inferred from molecular cloning

    International Nuclear Information System (INIS)

    Takahashi, N.; Takahashi, Y.; Blumberg, B.S.; Putnam, F.W.

    1987-01-01

    The structural changes in four genetic variants of human serum albumin were analyzed by tandem high-pressure liquid chromatography (HPLC) of the tryptic peptides, HPLC mapping and isoelectric focusing of the CNBr fragments, and amino acid sequence analysis of the purified peptides. Lysine-372 of normal (common) albumin A was changed to glutamic acid both in albumin Naskapi, a widespread polymorphic variant of North American Indians, and in albumin Mersin found in Eti Turks. The two variants also exhibited anomalous migration in NaDodSO 4 /PAGE, which is attributed to a conformational change. The identity of albumins Naskapi and Mersin may have originated through descent from a common mid-Asiatic founder of the two migrating ethnic groups, or it may represent identical but independent mutations of the albumin gene. In albumin Adana, from Eti Turks, the substitution site was not identified but was localized to the region from positions 447 through 548. The substitution of aspartic acid-550 by glycine was found in albumin Mexico-2 from four individuals of the Pima tribe. Although only single-point substitutions have been found in these and in certain other genetic variants of human albumin, five differences exist in the amino acid sequences inferred from cDNA sequences by workers in three other laboratories. However, our results on albumin A and on 14 different genetic variants accord with the amino acid sequence of albumin deduced from the genomic sequence. The apparent amino acid substitutions inferred from comparison of individual cDNA sequences probably reflect artifacts in cloning or in cDNA sequence analysis rather than polymorphism of the coding sections of the albumin gene

  4. Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing.

    Science.gov (United States)

    Schuurs-Hoeijmakers, Janneke H M; Vulto-van Silfhout, Anneke T; Vissers, Lisenka E L M; van de Vondervoort, Ilse I G M; van Bon, Bregje W M; de Ligt, Joep; Gilissen, Christian; Hehir-Kwa, Jayne Y; Neveling, Kornelia; del Rosario, Marisol; Hira, Gausiya; Reitano, Santina; Vitello, Aurelio; Failla, Pinella; Greco, Donatella; Fichera, Marco; Galesi, Ornella; Kleefstra, Tjitske; Greally, Marie T; Ockeloen, Charlotte W; Willemsen, Marjolein H; Bongers, Ernie M H F; Janssen, Irene M; Pfundt, Rolph; Veltman, Joris A; Romano, Corrado; Willemsen, Michèl A; van Bokhoven, Hans; Brunner, Han G; de Vries, Bert B A; de Brouwer, Arjan P M

    2013-12-01

    Intellectual disability (ID) is a common neurodevelopmental disorder affecting 1-3% of the general population. Mutations in more than 10% of all human genes are considered to be involved in this disorder, although the majority of these genes are still unknown. We investigated 19 small non-consanguineous families with two to five affected siblings in order to identify pathogenic gene variants in known, novel and potential ID candidate genes. Non-consanguineous families have been largely ignored in gene identification studies as small family size precludes prior mapping of the genetic defect. Using exome sequencing, we identified pathogenic mutations in three genes, DDHD2, SLC6A8, and SLC9A6, of which the latter two have previously been implicated in X-linked ID phenotypes. In addition, we identified potentially pathogenic mutations in BCORL1 on the X-chromosome and in MCM3AP, PTPRT, SYNE1, and ZNF528 on autosomes. We show that potentially pathogenic gene variants can be identified in small, non-consanguineous families with as few as two affected siblings, thus emphasising their value in the identification of syndromic and non-syndromic ID genes.

  5. Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes.

    Science.gov (United States)

    Astuti, Galuh D N; van den Born, L Ingeborgh; Khan, M Imran; Hamel, Christian P; Bocquet, Béatrice; Manes, Gaël; Quinodoz, Mathieu; Ali, Manir; Toomes, Carmel; McKibbin, Martin; El-Asrag, Mohammed E; Haer-Wigman, Lonneke; Inglehearn, Chris F; Black, Graeme C M; Hoyng, Carel B; Cremers, Frans P M; Roosing, Susanne

    2018-01-10

    Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 ( SNRNP200 ) and Zinc Finger Protein 513 ( ZNF513 ), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 ( DHX32 ) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.

  6. Leveraging long read sequencing from a single individual to provide a comprehensive resource for benchmarking variant calling methods.

    Science.gov (United States)

    Mu, John C; Tootoonchi Afshar, Pegah; Mohiyuddin, Marghoob; Chen, Xi; Li, Jian; Bani Asadi, Narges; Gerstein, Mark B; Wong, Wing H; Lam, Hugo Y K

    2015-09-28

    A high-confidence, comprehensive human variant set is critical in assessing accuracy of sequencing algorithms, which are crucial in precision medicine based on high-throughput sequencing. Although recent works have attempted to provide such a resource, they still do not encompass all major types of variants including structural variants (SVs). Thus, we leveraged the massive high-quality Sanger sequences from the HuRef genome to construct by far the most comprehensive gold set of a single individual, which was cross validated with deep Illumina sequencing, population datasets, and well-established algorithms. It was a necessary effort to completely reanalyze the HuRef genome as its previously published variants were mostly reported five years ago, suffering from compatibility, organization, and accuracy issues that prevent their direct use in benchmarking. Our extensive analysis and validation resulted in a gold set with high specificity and sensitivity. In contrast to the current gold sets of the NA12878 or HS1011 genomes, our gold set is the first that includes small variants, deletion SVs and insertion SVs up to a hundred thousand base-pairs. We demonstrate the utility of our HuRef gold set to benchmark several published SV detection tools.

  7. Sequence variants of the LCORL gene and its association with ...

    Indian Academy of Sciences (India)

    Y. J. HAN

    [Han Y. J., Chen Y., Liu Y. and Liu X. L. 2017 Sequence variants of the LCORL gene and its association with growth and carcass traits in. Qinchuan cattle in China. J. Genet. 96, xx–xx]. Introduction. Genetically selecting is a better way to satisfy the growing customer requirement with the development of beef cattle industry ...

  8. Identification of Five Novel Variants in Chinese Oculocutaneous Albinism by Targeted Next-Generation Sequencing.

    Science.gov (United States)

    Qiu, Biyuan; Ma, Tao; Peng, Chunyan; Zheng, Xiaoqin; Yang, Jiyun

    2018-04-01

    The diagnosis of oculocutaneous albinism (OCA) is established using clinical signs and symptoms. OCA is, however, a highly genetically heterogeneous disease with mutations identified in at least nineteen unique genes, many of which produce overlapping phenotypic traits. Thus, differentiating genetic OCA subtypes for diagnoses and genetic counseling is challenging, based on clinical presentation alone, and would benefit from a comprehensive molecular diagnostic. To develop and validate a more comprehensive, targeted, next-generation-sequencing-based diagnostic for the identification of OCA-causing variants. The genomic DNA samples from 28 OCA probands were analyzed by targeted next-generation sequencing (NGS), and the candidate variants were confirmed through Sanger sequencing. We observed mutations in the TYR, OCA2, and SLC45A2 genes in 25/28 (89%) patients with OCA. We identified 38 pathogenic variants among these three genes, including 5 novel variants: c.1970G>T (p.Gly657Val), c.1669A>C (p.Thr557Pro), c.2339-2A>C, and c.1349C>G (p.Thr450Arg) in OCA2; c.459_470delTTTTGCTGCCGA (p.Ala155_Phe158del) in SLC45A2. Our findings expand the mutational spectrum of OCA in the Chinese population, and the assay we developed should be broadly useful as a molecular diagnostic, and as an aid for genetic counseling for OCA patients.

  9. Identification of rare paired box 3 variant in strabismus by whole exome sequencing

    Directory of Open Access Journals (Sweden)

    Hui-Min Gong

    2017-08-01

    Full Text Available AIM: To identify the potentially pathogenic gene variants that contributes to the etiology of strabismus. METHODS: A Chinese pedigree with strabismus was collected and the exomes of two affected individuals were sequenced using the next-generation sequencing technology. The resulting variants from exome sequencing were filtered by subsequent bioinformatics methods and the candidate mutation was verified as heterozygous in the affected proposita and her mother by sanger sequencing. RESULTS: Whole exome sequencing and filtering identified a nonsynonymous mutation c.434G-T transition in paired box 3 (PAX3 in the two affected individuals, which were predicted to be deleterious by more than 4 bioinformatics programs. This altered amino acid residue was located in the conserved PAX domain of PAX3. This gene encodes a member of the PAX family of transcription factors, which play critical roles during fetal development. Mutations in PAX3 were associated with Waardenburg syndrome with strabismus. CONCLUSION: Our results report that the c.434G-T mutation (p.R145L in PAX3 may contribute to strabismus, expanding our understanding of the causally relevant genes for this disorder.

  10. De novo assembly and next-generation sequencing to analyse full-length gene variants from codon-barcoded libraries.

    Science.gov (United States)

    Cho, Namjin; Hwang, Byungjin; Yoon, Jung-ki; Park, Sangun; Lee, Joongoo; Seo, Han Na; Lee, Jeewon; Huh, Sunghoon; Chung, Jinsoo; Bang, Duhee

    2015-09-21

    Interpreting epistatic interactions is crucial for understanding evolutionary dynamics of complex genetic systems and unveiling structure and function of genetic pathways. Although high resolution mapping of en masse variant libraries renders molecular biologists to address genotype-phenotype relationships, long-read sequencing technology remains indispensable to assess functional relationship between mutations that lie far apart. Here, we introduce JigsawSeq for multiplexed sequence identification of pooled gene variant libraries by combining a codon-based molecular barcoding strategy and de novo assembly of short-read data. We first validate JigsawSeq on small sub-pools and observed high precision and recall at various experimental settings. With extensive simulations, we then apply JigsawSeq to large-scale gene variant libraries to show that our method can be reliably scaled using next-generation sequencing. JigsawSeq may serve as a rapid screening tool for functional genomics and offer the opportunity to explore evolutionary trajectories of protein variants.

  11. Analysis of common SHOX gene sequence variants and ∼4.9-kb ...

    Indian Academy of Sciences (India)

    [Solc R., Hirschfeldova K., Kebrdlova V. and Baxova A. 2014 Analysis of common SHOX gene sequence variants ... based on a Gibbs sampling strategy were done using .... SHOX (short stature homeobox) are an important cause of growth.

  12. Novel Genetic Variants of Sporadic Atrial Septal Defect (ASD) in a Chinese Population Identified by Whole-Exome Sequencing (WES).

    Science.gov (United States)

    Liu, Yong; Cao, Yu; Li, Yaxiong; Lei, Dongyun; Li, Lin; Hou, Zong Liu; Han, Shen; Meng, Mingyao; Shi, Jianlin; Zhang, Yayong; Wang, Yi; Niu, Zhaoyi; Xie, Yanhua; Xiao, Benshan; Wang, Yuanfei; Li, Xiao; Yang, Lirong; Wang, Wenju; Jiang, Lihong

    2018-03-05

    BACKGROUND Recently, mutations in several genes have been described to be associated with sporadic ASD, but some genetic variants remain to be identified. The aim of this study was to use whole-exome sequencing (WES) combined with bioinformatics analysis to identify novel genetic variants in cases of sporadic congenital ASD, followed by validation by Sanger sequencing. MATERIAL AND METHODS Five Han patients with secundum ASD were recruited, and their tissue samples were analyzed by WES, followed by verification by Sanger sequencing of tissue and blood samples. Further evaluation using blood samples included 452 additional patients with sporadic secundum ASD (212 male and 240 female patients) and 519 healthy subjects (252 male and 267 female subjects) for further verification by a multiplexed MassARRAY system. Bioinformatic analyses were performed to identify novel genetic variants associated with sporadic ASD. RESULTS From five patients with sporadic ASD, a total of 181,762 genomic variants in 33 exon loci, validated by Sanger sequencing, were selected and underwent MassARRAY analysis in 452 patients with ASD and 519 healthy subjects. Three loci with high mutation frequencies, the 138665410 FOXL2 gene variant, the 23862952 MYH6 gene variant, and the 71098693 HYDIN gene variant were found to be significantly associated with sporadic ASD (PASD (PASD, and supported the use of WES and bioinformatics analysis to identify disease-associated mutations.

  13. Genetic mapping and exome sequencing identify variants associated with five novel diseases.

    Directory of Open Access Journals (Sweden)

    Erik G Puffenberger

    Full Text Available The Clinic for Special Children (CSC has integrated biochemical and molecular methods into a rural pediatric practice serving Old Order Amish and Mennonite (Plain children. Among the Plain people, we have used single nucleotide polymorphism (SNP microarrays to genetically map recessive disorders to large autozygous haplotype blocks (mean = 4.4 Mb that contain many genes (mean = 79. For some, uninformative mapping or large gene lists preclude disease-gene identification by Sanger sequencing. Seven such conditions were selected for exome sequencing at the Broad Institute; all had been previously mapped at the CSC using low density SNP microarrays coupled with autozygosity and linkage analyses. Using between 1 and 5 patient samples per disorder, we identified sequence variants in the known disease-causing genes SLC6A3 and FLVCR1, and present evidence to strongly support the pathogenicity of variants identified in TUBGCP6, BRAT1, SNIP1, CRADD, and HARS. Our results reveal the power of coupling new genotyping technologies to population-specific genetic knowledge and robust clinical data.

  14. GxGrare: gene-gene interaction analysis method for rare variants from high-throughput sequencing data.

    Science.gov (United States)

    Kwon, Minseok; Leem, Sangseob; Yoon, Joon; Park, Taesung

    2018-03-19

    With the rapid advancement of array-based genotyping techniques, genome-wide association studies (GWAS) have successfully identified common genetic variants associated with common complex diseases. However, it has been shown that only a small proportion of the genetic etiology of complex diseases could be explained by the genetic factors identified from GWAS. This missing heritability could possibly be explained by gene-gene interaction (epistasis) and rare variants. There has been an exponential growth of gene-gene interaction analysis for common variants in terms of methodological developments and practical applications. Also, the recent advancement of high-throughput sequencing technologies makes it possible to conduct rare variant analysis. However, little progress has been made in gene-gene interaction analysis for rare variants. Here, we propose GxGrare which is a new gene-gene interaction method for the rare variants in the framework of the multifactor dimensionality reduction (MDR) analysis. The proposed method consists of three steps; 1) collapsing the rare variants, 2) MDR analysis for the collapsed rare variants, and 3) detect top candidate interaction pairs. GxGrare can be used for the detection of not only gene-gene interactions, but also interactions within a single gene. The proposed method is illustrated with 1080 whole exome sequencing data of the Korean population in order to identify causal gene-gene interaction for rare variants for type 2 diabetes. The proposed GxGrare performs well for gene-gene interaction detection with collapsing of rare variants. GxGrare is available at http://bibs.snu.ac.kr/software/gxgrare which contains simulation data and documentation. Supported operating systems include Linux and OS X.

  15. Integrative analysis of functional genomic annotations and sequencing data to identify rare causal variants via hierarchical modeling

    Directory of Open Access Journals (Sweden)

    Marinela eCapanu

    2015-05-01

    Full Text Available Identifying the small number of rare causal variants contributing to disease has beena major focus of investigation in recent years, but represents a formidable statisticalchallenge due to the rare frequencies with which these variants are observed. In thiscommentary we draw attention to a formal statistical framework, namely hierarchicalmodeling, to combine functional genomic annotations with sequencing data with theobjective of enhancing our ability to identify rare causal variants. Using simulations weshow that in all configurations studied, the hierarchical modeling approach has superiordiscriminatory ability compared to a recently proposed aggregate measure of deleteriousness,the Combined Annotation-Dependent Depletion (CADD score, supportingour premise that aggregate functional genomic measures can more accurately identifycausal variants when used in conjunction with sequencing data through a hierarchicalmodeling approach

  16. Homozygous sequence variants in the WNT10B gene underlie split hand/foot malformation

    Directory of Open Access Journals (Sweden)

    Asmat Ullah

    2018-01-01

    Full Text Available Abstract Split-hand/split-foot malformation (SHFM, also known as ectrodactyly is a rare genetic disorder. It is a clinically and genetically heterogeneous group of limb malformations characterized by absence/hypoplasia and/or median cleft of hands and/or feet. To date, seven genes underlying SHFM have been identified. This study described four consanguineous families (A-D segregating SHFM in an autosomal recessive manner. Linkage in the families was established to chromosome 12p11.1–q13.13 harboring WNT10B gene. Sequence analysis identified a novel homozygous nonsense variant (p.Gln154* in exon 4 of the WNT10B gene in two families (A and B. In the other two families (C and D, a previously reported variant (c.300_306dupAGGGCGG; p.Leu103Argfs*53 was detected. This study further expands the spectrum of the sequence variants reported in the WNT10B gene, which result in the split hand/foot malformation.

  17. Evolution of simeprevir-resistant variants over time by ultra-deep sequencing in HCV genotype 1b.

    Science.gov (United States)

    Akuta, Norio; Suzuki, Fumitaka; Sezaki, Hitomi; Suzuki, Yoshiyuki; Hosaka, Tetsuya; Kobayashi, Masahiro; Kobayashi, Mariko; Saitoh, Satoshi; Ikeda, Kenji; Kumada, Hiromitsu

    2014-08-01

    Using ultra-deep sequencing technology, the present study was designed to investigate the evolution of simeprevir-resistant variants (amino acid substitutions of aa80, aa155, aa156, and aa168 positions in HCV NS3 region) over time. In Toranomon Hospital, 18 Japanese patients infected with HCV genotype 1b, received triple therapy of simeprevir/PEG-IFN/ribavirin (DRAGON or CONCERT study). Sustained virological response rate was 67%, and that was significantly higher in patients with IL28B rs8099917 TT than in those with non-TT. Six patients, who did not achieve sustained virological response, were tested for resistant variants by ultra-deep sequencing, at the baseline, at the time of re-elevation of viral loads, and at 96 weeks after the completion of treatment. Twelve of 18 resistant variants, detected at re-elevation of viral load, were de novo resistant variants. Ten of 12 de novo resistant variants become undetectable over time, and that five of seven resistant variants, detected at baseline, persisted over time. In one patient, variants of Q80R at baseline (0.3%) increased at 96-week after the cessation of treatment (10.2%), and de novo resistant variants of D168E (0.3%) also increased at 96-week after the cessation of treatment (9.7%). In conclusion, the present study indicates that the emergence of simeprevir-resistant variants after the start of treatment could not be predicted at baseline, and the majority of de novo resistant variants become undetectable over time. Further large-scale prospective studies should be performed to investigate the clinical utility in detecting simeprevir-resistant variants. © 2014 Wiley Periodicals, Inc.

  18. Exome sequencing and genetic testing for MODY.

    Directory of Open Access Journals (Sweden)

    Stefan Johansson

    Full Text Available Genetic testing for monogenic diabetes is important for patient care. Given the extensive genetic and clinical heterogeneity of diabetes, exome sequencing might provide additional diagnostic potential when standard Sanger sequencing-based diagnostics is inconclusive.The aim of the study was to examine the performance of exome sequencing for a molecular diagnosis of MODY in patients who have undergone conventional diagnostic sequencing of candidate genes with negative results.We performed exome enrichment followed by high-throughput sequencing in nine patients with suspected MODY. They were Sanger sequencing-negative for mutations in the HNF1A, HNF4A, GCK, HNF1B and INS genes. We excluded common, non-coding and synonymous gene variants, and performed in-depth analysis on filtered sequence variants in a pre-defined set of 111 genes implicated in glucose metabolism.On average, we obtained 45 X median coverage of the entire targeted exome and found 199 rare coding variants per individual. We identified 0-4 rare non-synonymous and nonsense variants per individual in our a priori list of 111 candidate genes. Three of the variants were considered pathogenic (in ABCC8, HNF4A and PPARG, respectively, thus exome sequencing led to a genetic diagnosis in at least three of the nine patients. Approximately 91% of known heterozygous SNPs in the target exomes were detected, but we also found low coverage in some key diabetes genes using our current exome sequencing approach. Novel variants in the genes ARAP1, GLIS3, MADD, NOTCH2 and WFS1 need further investigation to reveal their possible role in diabetes.Our results demonstrate that exome sequencing can improve molecular diagnostics of MODY when used as a complement to Sanger sequencing. However, improvements will be needed, especially concerning coverage, before the full potential of exome sequencing can be realized.

  19. A power set-based statistical selection procedure to locate susceptible rare variants associated with complex traits with sequencing data.

    Science.gov (United States)

    Sun, Hokeun; Wang, Shuang

    2014-08-15

    Existing association methods for rare variants from sequencing data have focused on aggregating variants in a gene or a genetic region because of the fact that analysing individual rare variants is underpowered. However, these existing rare variant detection methods are not able to identify which rare variants in a gene or a genetic region of all variants are associated with the complex diseases or traits. Once phenotypic associations of a gene or a genetic region are identified, the natural next step in the association study with sequencing data is to locate the susceptible rare variants within the gene or the genetic region. In this article, we propose a power set-based statistical selection procedure that is able to identify the locations of the potentially susceptible rare variants within a disease-related gene or a genetic region. The selection performance of the proposed selection procedure was evaluated through simulation studies, where we demonstrated the feasibility and superior power over several comparable existing methods. In particular, the proposed method is able to handle the mixed effects when both risk and protective variants are present in a gene or a genetic region. The proposed selection procedure was also applied to the sequence data on the ANGPTL gene family from the Dallas Heart Study to identify potentially susceptible rare variants within the trait-related genes. An R package 'rvsel' can be downloaded from http://www.columbia.edu/∼sw2206/ and http://statsun.pusan.ac.kr. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Tools for analyzing genetic variants from sequencing data Case study: short tandem repeats

    OpenAIRE

    Gymrek, Melissa

    2016-01-01

    This was presented as a BitesizeBio Webinar entitled "Tools for analyzing genetic variants from sequencing data Case study: short tandem repeats"Accompanying scripts can be accessed on github:https://github.com/mgymrek/mgymrek-bitesizebio-webinar 

  1. Association Between Variants of PRDM1 and NDP52 and Crohn's Disease, Based on Exome Sequencing and Functional Studies

    DEFF Research Database (Denmark)

    Ellinghaus, David; Zhang, Hu; Zeissig, Sebastian

    2013-01-01

    BACKGROUND & AIMS: Genome-wide association studies (GWAS) have identified 140 Crohn's disease (CD) susceptibility loci. For most loci, the variants that cause disease are not known and the genes affected by these variants have not been identified. We aimed to identify variants that cause CD through...... detailed sequencing, genetic association, expression, and functional studies. METHODS: We sequenced whole exomes of 42 unrelated subjects with CD and 5 healthy subjects (controls) and then filtered single nucleotide variants by incorporating association results from meta-analyses of CD GWAS and in silico...... mutation effect prediction algorithms. We then genotyped 9348 subjects with CD, 2868 subjects with ulcerative colitis, and 14,567 control subjects and associated variants analyzed in functional studies using materials from subjects and controls and in vitro model systems. RESULTS: We identified rare...

  2. A Python package for parsing, validating, mapping and formatting sequence variants using HGVS nomenclature.

    Science.gov (United States)

    Hart, Reece K; Rico, Rudolph; Hare, Emily; Garcia, John; Westbrook, Jody; Fusaro, Vincent A

    2015-01-15

    Biological sequence variants are commonly represented in scientific literature, clinical reports and databases of variation using the mutation nomenclature guidelines endorsed by the Human Genome Variation Society (HGVS). Despite the widespread use of the standard, no freely available and comprehensive programming libraries are available. Here we report an open-source and easy-to-use Python library that facilitates the parsing, manipulation, formatting and validation of variants according to the HGVS specification. The current implementation focuses on the subset of the HGVS recommendations that precisely describe sequence-level variation relevant to the application of high-throughput sequencing to clinical diagnostics. The package is released under the Apache 2.0 open-source license. Source code, documentation and issue tracking are available at http://bitbucket.org/hgvs/hgvs/. Python packages are available at PyPI (https://pypi.python.org/pypi/hgvs). Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  3. Prescreening whole exome sequencing results from patients with retinal degeneration for variants in genes associated with retinal degeneration

    Directory of Open Access Journals (Sweden)

    Bryant L

    2017-12-01

    Full Text Available Laura Bryant,1 Olga Lozynska,1 Albert M Maguire,1–3 Tomas S Aleman,1–3 Jean Bennett1–3 1Center for Advanced Retinal and Ocular Therapeutics (CAROT, FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; 2Department of Ophthalmology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA; 3Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA Background: Accurate clinical diagnosis and prognosis of retinal degeneration can be aided by the identification of the disease-causing genetic variant. It can confirm the clinical diagnosis as well as inform the clinician of the risk for potential involvement of other organs such as kidneys. It also aids in genetic counseling for affected individuals who want to have a child. Finally, knowledge of disease-causing variants informs laboratory investigators involved in translational research. With the advent of next-generation sequencing, identifying pathogenic mutations is becoming easier, especially the identification of novel pathogenic variants.Methods: We used whole exome sequencing on a cohort of 69 patients with various forms of retinal degeneration and in whom screens for previously identified disease-causing variants had been inconclusive. All potential pathogenic variants were verified by Sanger sequencing and, when possible, segregation analysis of immediate relatives. Potential variants were identified by using a semi-masked approach in which rare variants in candidate genes were identified without knowledge of the clinical diagnosis (beyond “retinal degeneration” or inheritance pattern. After the initial list of genes was prioritized, genetic diagnosis and inheritance pattern were taken into account.Results: We identified the likely pathogenic variants in 64% of the subjects. Seven percent had a single

  4. The influence of VKORC1 and CYP2C9 gene sequence variants on the stability of maintenance phase warfarin treatment

    DEFF Research Database (Denmark)

    Skov, Jane; Bladbjerg, Else-Marie; Leppin, Anja

    2013-01-01

    alleles require lower doses and have increased risk of overanticoagulation. METHODS: We investigated the influence of the above sequence variants on stability of maintenance phase warfarin therapy in a prospective study of 300 consecutive patients followed for one year at an anticoagulant clinic. RESULTS...... of common gene sequence variants in CYP2C9 and VKORC1 on stability of maintenance phase warfarin therapy. Patients attending an anticoagulant clinic using computer-assisted dosage were safely monitored regardless of these sequence variants, but for the small subgroup of patients with the CYP2C9 genotype *2...

  5. The Personal Genome Project Canada: findings from whole genome sequences of the inaugural 56 participants.

    Science.gov (United States)

    Reuter, Miriam S; Walker, Susan; Thiruvahindrapuram, Bhooma; Whitney, Joe; Cohn, Iris; Sondheimer, Neal; Yuen, Ryan K C; Trost, Brett; Paton, Tara A; Pereira, Sergio L; Herbrick, Jo-Anne; Wintle, Richard F; Merico, Daniele; Howe, Jennifer; MacDonald, Jeffrey R; Lu, Chao; Nalpathamkalam, Thomas; Sung, Wilson W L; Wang, Zhuozhi; Patel, Rohan V; Pellecchia, Giovanna; Wei, John; Strug, Lisa J; Bell, Sherilyn; Kellam, Barbara; Mahtani, Melanie M; Bassett, Anne S; Bombard, Yvonne; Weksberg, Rosanna; Shuman, Cheryl; Cohn, Ronald D; Stavropoulos, Dimitri J; Bowdin, Sarah; Hildebrandt, Matthew R; Wei, Wei; Romm, Asli; Pasceri, Peter; Ellis, James; Ray, Peter; Meyn, M Stephen; Monfared, Nasim; Hosseini, S Mohsen; Joseph-George, Ann M; Keeley, Fred W; Cook, Ryan A; Fiume, Marc; Lee, Hin C; Marshall, Christian R; Davies, Jill; Hazell, Allison; Buchanan, Janet A; Szego, Michael J; Scherer, Stephen W

    2018-02-05

    The Personal Genome Project Canada is a comprehensive public data resource that integrates whole genome sequencing data and health information. We describe genomic variation identified in the initial recruitment cohort of 56 volunteers. Volunteers were screened for eligibility and provided informed consent for open data sharing. Using blood DNA, we performed whole genome sequencing and identified all possible classes of DNA variants. A genetic counsellor explained the implication of the results to each participant. Whole genome sequencing of the first 56 participants identified 207 662 805 sequence variants and 27 494 copy number variations. We analyzed a prioritized disease-associated data set ( n = 1606 variants) according to standardized guidelines, and interpreted 19 variants in 14 participants (25%) as having obvious health implications. Six of these variants (e.g., in BRCA1 or mosaic loss of an X chromosome) were pathogenic or likely pathogenic. Seven were risk factors for cancer, cardiovascular or neurobehavioural conditions. Four other variants - associated with cancer, cardiac or neurodegenerative phenotypes - remained of uncertain significance because of discrepancies among databases. We also identified a large structural chromosome aberration and a likely pathogenic mitochondrial variant. There were 172 recessive disease alleles (e.g., 5 individuals carried mutations for cystic fibrosis). Pharmacogenomics analyses revealed another 3.9 potentially relevant genotypes per individual. Our analyses identified a spectrum of genetic variants with potential health impact in 25% of participants. When also considering recessive alleles and variants with potential pharmacologic relevance, all 56 participants had medically relevant findings. Although access is mostly limited to research, whole genome sequencing can provide specific and novel information with the potential of major impact for health care. © 2018 Joule Inc. or its licensors.

  6. Multi-species sequence comparison reveals conservation of ghrelin gene-derived splice variants encoding a truncated ghrelin peptide.

    Science.gov (United States)

    Seim, Inge; Jeffery, Penny L; Thomas, Patrick B; Walpole, Carina M; Maugham, Michelle; Fung, Jenny N T; Yap, Pei-Yi; O'Keeffe, Angela J; Lai, John; Whiteside, Eliza J; Herington, Adrian C; Chopin, Lisa K

    2016-06-01

    The peptide hormone ghrelin is a potent orexigen produced predominantly in the stomach. It has a number of other biological actions, including roles in appetite stimulation, energy balance, the stimulation of growth hormone release and the regulation of cell proliferation. Recently, several ghrelin gene splice variants have been described. Here, we attempted to identify conserved alternative splicing of the ghrelin gene by cross-species sequence comparisons. We identified a novel human exon 2-deleted variant and provide preliminary evidence that this splice variant and in1-ghrelin encode a C-terminally truncated form of the ghrelin peptide, termed minighrelin. These variants are expressed in humans and mice, demonstrating conservation of alternative splicing spanning 90 million years. Minighrelin appears to have similar actions to full-length ghrelin, as treatment with exogenous minighrelin peptide stimulates appetite and feeding in mice. Forced expression of the exon 2-deleted preproghrelin variant mirrors the effect of the canonical preproghrelin, stimulating cell proliferation and migration in the PC3 prostate cancer cell line. This is the first study to characterise an exon 2-deleted preproghrelin variant and to demonstrate sequence conservation of ghrelin gene-derived splice variants that encode a truncated ghrelin peptide. This adds further impetus for studies into the alternative splicing of the ghrelin gene and the function of novel ghrelin peptides in vertebrates.

  7. Exomic sequencing of immune-related genes reveals novel candidate variants associated with alopecia universalis.

    Directory of Open Access Journals (Sweden)

    Seungbok Lee

    Full Text Available Alopecia areata (AA is a common autoimmune disorder mostly presented as round patches of hair loss and subclassified into alopecia totalis/alopecia universalis (AT/AU based on the area of alopecia. Although AA is relatively common, only 5% of AA patients progress to AT/AU, which affect the whole scalp and whole body respectively. To determine genetic determinants of this orphan disease, we undertook whole-exome sequencing of 6 samples from AU patients, and 26 variants in immune-related genes were selected as candidates. When an additional 14 AU samples were genotyped for these candidates, 6 of them remained at the level of significance in comparison with 155 Asian controls (p<1.92×10(-3. Linkage disequilibrium was observed between some of the most significant SNPs, including rs41559420 of HLA-DRB5 (p<0.001, OR 44.57 and rs28362679 of BTNL2 (p<0.001, OR 30.21. While BTNL2 was reported as a general susceptibility gene of AA previously, HLA-DRB5 has not been implicated in AA. In addition, we found several genetic variants in novel genes (HLA-DMB, TLR1, and PMS2 and discovered an additional locus on HLA-A, a known susceptibility gene of AA. This study provides further evidence for the association of previously reported genes with AA and novel findings such as HLA-DRB5, which might represent a hidden culprit gene for AU.

  8. Complete Nucleotide Sequence Analysis of the Norovirus GII.4 Sydney Variant in South Korea

    Directory of Open Access Journals (Sweden)

    Ji-Sun Park

    2015-01-01

    Full Text Available Norovirus is the primary cause of acute gastroenteritis in individuals of all ages. In Australia, a new strain of norovirus (GII.4 was identified in March 2012, and this strain has spread rapidly around the world. In August 2012, this new GII.4 strain was identified in patients in South Korea. Therefore, to examine the characteristics of the epidemic norovirus GII.4 2012 variant in South Korea, we conducted KM272334 full-length genomic analysis. The genome of the gg-12-08-04 strain consisted of 7,558 bp and contained three open reading frame (ORF composites throughout the whole genome: ORF1 (5,100 bp, ORF2 (1,623 bp, and ORF3 (807 bp. Phylogenetic analyses showed that gg-12-08-04 belonged to the GII.4 Sydney 2012 variant, sharing 98.92% nucleotide similarity with this variant strain. According to SimPlot analysis, the gg-12-08-04 strain was a recombinant strain with breakpoint at the ORF1/2 junction between Osaka 2007 and Apeldoorn 2008 strains. This study is the first report of the complete sequence of the GII.4 Sydney 2012 strain in South Korea. Therefore, this may represent the standard sequence of the norovirus GII.4 2012 variant in South Korea and could therefore be useful for the development of norovirus vaccines.

  9. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

    Science.gov (United States)

    Turcot, Valérie; Lu, Yingchang; Highland, Heather M; Schurmann, Claudia; Justice, Anne E; Fine, Rebecca S; Bradfield, Jonathan P; Esko, Tõnu; Giri, Ayush; Graff, Mariaelisa; Guo, Xiuqing; Hendricks, Audrey E; Karaderi, Tugce; Lempradl, Adelheid; Locke, Adam E; Mahajan, Anubha; Marouli, Eirini; Sivapalaratnam, Suthesh; Young, Kristin L; Alfred, Tamuno; Feitosa, Mary F; Masca, Nicholas G D; Manning, Alisa K; Medina-Gomez, Carolina; Mudgal, Poorva; Ng, Maggie C Y; Reiner, Alex P; Vedantam, Sailaja; Willems, Sara M; Winkler, Thomas W; Abecasis, Gonçalo; Aben, Katja K; Alam, Dewan S; Alharthi, Sameer E; Allison, Matthew; Amouyel, Philippe; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Bang, Lia E; Barroso, Inês; Bastarache, Lisa; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Brumat, Marco; Burt, Amber A; Butterworth, Adam S; Campbell, Peter T; Cappellani, Stefania; Carey, David J; Catamo, Eulalia; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der I; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Corominas Galbany, Jordi; Cox, Amanda J; Crosslin, David S; Cuellar-Partida, Gabriel; D'Eustacchio, Angela; Danesh, John; Davies, Gail; Bakker, Paul I W; Groot, Mark C H; Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; Heijer, Martin; Hollander, Anneke I; Ruijter, Hester M; Dennis, Joe G; Denny, Josh C; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dubé, Marie-Pierre; Dunning, Alison M; Easton, Douglas F; Edwards, Todd L; Ellinghaus, David; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Farooqi, I Sadaf; Faul, Jessica D; Fauser, Sascha; Feng, Shuang; Ferrannini, Ele; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franco, Oscar H; Franke, Andre; Franks, Paul W; Friedrich, Nele; Frikke-Schmidt, Ruth; Galesloot, Tessel E; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Gibson, Jane; Giedraitis, Vilmantas; Gjesing, Anette P; Gordon-Larsen, Penny; Gorski, Mathias; Grabe, Hans-Jörgen; Grant, Struan F A; Grarup, Niels; Griffiths, Helen L; Grove, Megan L; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeff; Hakonarson, Hakon; Hammerschlag, Anke R; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Have, Christian T; Hayward, Caroline; He, Liang; Heard-Costa, Nancy L; Heath, Andrew C; Heid, Iris M; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Holmen, Oddgeir L; Hovingh, G Kees; Howson, Joanna M M; Hu, Yao; Huang, Paul L; Huffman, Jennifer E; Ikram, M Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jia, Yucheng; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon L R; Karpe, Fredrik; Kathiresan, Sekar; Kee, Frank; Kiemeney, Lambertus A; Kim, Eric; Kitajima, Hidetoshi; Komulainen, Pirjo; Kooner, Jaspal S; Kooperberg, Charles; Korhonen, Tellervo; Kovacs, Peter; Kuivaniemi, Helena; Kutalik, Zoltán; Kuulasmaa, Kari; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A; Lamparter, David; Lange, Ethan M; Lange, Leslie A; Langenberg, Claudia; Larson, Eric B; Lee, Nanette R; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Keng-Hung; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Ching-Ti; Liu, Dajiang J; Liu, Yongmei; Lo, Ken S; Lophatananon, Artitaya; Lotery, Andrew J; Loukola, Anu; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Männistö, Satu; Marenne, Gaëlle; Mazul, Angela L; McCarthy, Mark I; McKean-Cowdin, Roberta; Medland, Sarah E; Meidtner, Karina; Milani, Lili; Mistry, Vanisha; Mitchell, Paul; Mohlke, Karen L; Moilanen, Leena; Moitry, Marie; Montgomery, Grant W; Mook-Kanamori, Dennis O; Moore, Carmel; Mori, Trevor A; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Narisu, Narisu; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Nyholt, Dale R; O'Connel, Jeffrey R; O'Donoghue, Michelle L; Olde Loohuis, Loes M; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin N A; Palmer, Nicholette D; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John R B; Pers, Tune H; Person, Thomas N; Peters, Annette; Petersen, Eva R B; Peyser, Patricia A; Pirie, Ailith; Polasek, Ozren; Polderman, Tinca J; Puolijoki, Hannu; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Renström, Frida; Rheinberger, Myriam; Ridker, Paul M; Rioux, John D; Rivas, Manuel A; Roberts, David J; Robertson, Neil R; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sapkota, Yadav; Sattar, Naveed; Schoen, Robert E; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati H; Sheu, Wayne H-H; Sim, Xueling; Slater, Andrew J; Small, Kerrin S; Smith, Albert V; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Stefansson, Kari; Steinthorsdottir, Valgerdur; Stirrups, Kathleen E; Strauch, Konstantin; Stringham, Heather M; Stumvoll, Michael; Sun, Liang; Surendran, Praveen; Swift, Amy J; Tada, Hayato; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Uusitupa, Matti; Laan, Sander W; Duijn, Cornelia M; Leeuwen, Nienke; van Setten, Jessica; Vanhala, Mauno; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Velez Edwards, Digna R; Vermeulen, Sita H; Veronesi, Giovanni; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Völker, Uwe; Vuckovic, Dragana; Wagenknecht, Lynne E; Walker, Mark; Wallentin, Lars; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Ware, Erin B; Wareham, Nicholas J; Warren, Helen R; Waterworth, Dawn M; Wessel, Jennifer; White, Harvey D; Willer, Cristen J; Wilson, James G; Witte, Daniel R; Wood, Andrew R; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zhou, Wei; Zondervan, Krina T; Rotter, Jerome I; Pospisilik, John A; Rivadeneira, Fernando; Borecki, Ingrid B; Deloukas, Panos; Frayling, Timothy M; Lettre, Guillaume; North, Kari E; Lindgren, Cecilia M; Hirschhorn, Joel N; Loos, Ruth J F

    2018-01-01

    Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.

  10. Exome sequencing reveals frequent deleterious germline variants in cancer susceptibility genes in women with invasive breast cancer undergoing neoadjuvant chemotherapy.

    Science.gov (United States)

    Ellingson, Marissa S; Hart, Steven N; Kalari, Krishna R; Suman, Vera; Schahl, Kimberly A; Dockter, Travis J; Felten, Sara J; Sinnwell, Jason P; Thompson, Kevin J; Tang, Xiaojia; Vedell, Peter T; Barman, Poulami; Sicotte, Hugues; Eckel-Passow, Jeanette E; Northfelt, Donald W; Gray, Richard J; McLaughlin, Sarah A; Moreno-Aspitia, Alvaro; Ingle, James N; Moyer, Ann M; Visscher, Daniel W; Jones, Katie; Conners, Amy; McDonough, Michelle; Wieben, Eric D; Wang, Liewei; Weinshilboum, Richard; Boughey, Judy C; Goetz, Matthew P

    2015-09-01

    When sequencing blood and tumor samples to identify targetable somatic variants for cancer therapy, clinically relevant germline variants may be uncovered. We evaluated the prevalence of deleterious germline variants in cancer susceptibility genes in women with breast cancer referred for neoadjuvant chemotherapy and returned clinically actionable results to patients. Exome sequencing was performed on blood samples from women with invasive breast cancer referred for neoadjuvant chemotherapy. Germline variants within 142 hereditary cancer susceptibility genes were filtered and reviewed for pathogenicity. Return of results was offered to patients with deleterious variants in actionable genes if they were not aware of their result through clinical testing. 124 patients were enrolled (median age 51) with the following subtypes: triple negative (n = 43, 34.7%), HER2+ (n = 37, 29.8%), luminal B (n = 31, 25%), and luminal A (n = 13, 10.5%). Twenty-eight deleterious variants were identified in 26/124 (21.0%) patients in the following genes: ATM (n = 3), BLM (n = 1), BRCA1 (n = 4), BRCA2 (n = 8), CHEK2 (n = 2), FANCA (n = 1), FANCI (n = 1), FANCL (n = 1), FANCM (n = 1), FH (n = 1), MLH3 (n = 1), MUTYH (n = 2), PALB2 (n = 1), and WRN (n = 1). 121/124 (97.6%) patients consented to return of research results. Thirteen (10.5%) had actionable variants, including four that were returned to patients and led to changes in medical management. Deleterious variants in cancer susceptibility genes are highly prevalent in patients with invasive breast cancer referred for neoadjuvant chemotherapy undergoing exome sequencing. Detection of these variants impacts medical management.

  11. Identification of Alternative Splice Variants Using Unique Tryptic Peptide Sequences for Database Searches.

    Science.gov (United States)

    Tran, Trung T; Bollineni, Ravi C; Strozynski, Margarita; Koehler, Christian J; Thiede, Bernd

    2017-07-07

    Alternative splicing is a mechanism in eukaryotes by which different forms of mRNAs are generated from the same gene. Identification of alternative splice variants requires the identification of peptides specific for alternative splice forms. For this purpose, we generated a human database that contains only unique tryptic peptides specific for alternative splice forms from Swiss-Prot entries. Using this database allows an easy access to splice variant-specific peptide sequences that match to MS data. Furthermore, we combined this database without alternative splice variant-1-specific peptides with human Swiss-Prot. This combined database can be used as a general database for searching of LC-MS data. LC-MS data derived from in-solution digests of two different cell lines (LNCaP, HeLa) and phosphoproteomics studies were analyzed using these two databases. Several nonalternative splice variant-1-specific peptides were found in both cell lines, and some of them seemed to be cell-line-specific. Control and apoptotic phosphoproteomes from Jurkat T cells revealed several nonalternative splice variant-1-specific peptides, and some of them showed clear quantitative differences between the two states.

  12. Effect of sequence variants on variance in glucose levels predicts type 2 diabetes risk and accounts for heritability.

    Science.gov (United States)

    Ivarsdottir, Erna V; Steinthorsdottir, Valgerdur; Daneshpour, Maryam S; Thorleifsson, Gudmar; Sulem, Patrick; Holm, Hilma; Sigurdsson, Snaevar; Hreidarsson, Astradur B; Sigurdsson, Gunnar; Bjarnason, Ragnar; Thorsson, Arni V; Benediktsson, Rafn; Eyjolfsson, Gudmundur; Sigurdardottir, Olof; Olafsson, Isleifur; Zeinali, Sirous; Azizi, Fereidoun; Thorsteinsdottir, Unnur; Gudbjartsson, Daniel F; Stefansson, Kari

    2017-09-01

    Sequence variants that affect mean fasting glucose levels do not necessarily affect risk for type 2 diabetes (T2D). We assessed the effects of 36 reported glucose-associated sequence variants on between- and within-subject variance in fasting glucose levels in 69,142 Icelanders. The variant in TCF7L2 that increases fasting glucose levels increases between-subject variance (5.7% per allele, P = 4.2 × 10 -10 ), whereas variants in GCK and G6PC2 that increase fasting glucose levels decrease between-subject variance (7.5% per allele, P = 4.9 × 10 -11 and 7.3% per allele, P = 7.5 × 10 -18 , respectively). Variants that increase mean and between-subject variance in fasting glucose levels tend to increase T2D risk, whereas those that increase the mean but reduce variance do not (r 2 = 0.61). The variants that increase between-subject variance increase fasting glucose heritability estimates. Intuitively, our results show that increasing the mean and variance of glucose levels is more likely to cause pathologically high glucose levels than increase in the mean offset by a decrease in variance.

  13. Whole-Exome Sequencing in Searching for New Variants Associated With the Development of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Marina V. Shulskaya

    2018-05-01

    Full Text Available Background: Parkinson’s disease (PD is a complex disease with its monogenic forms accounting for less than 10% of all cases. Whole-exome sequencing (WES technology has been used successfully to find mutations in large families. However, because of the late onset of the disease, only small families and unrelated patients are usually available. WES conducted in such cases yields in a large number of candidate variants. There are currently a number of imperfect software tools that allow the pathogenicity of variants to be evaluated.Objectives: We analyzed 48 unrelated patients with an alleged autosomal dominant familial form of PD using WES and developed a strategy for selecting potential pathogenetically significant variants using almost all available bioinformatics resources for the analysis of exonic areas.Methods: DNA sequencing of 48 patients with excluded frequent mutations was performed using an Illumina HiSeq 2500 platform. The possible pathogenetic significance of identified variants and their involvement in the pathogenesis of PD was assessed using SNP and Variation Suite (SVS, Combined Annotation Dependent Depletion (CADD and Rare Exome Variant Ensemble Learner (REVEL software. Functional evaluation was performed using the Pathway Studio database.Results: A significant reduction in the search range from 7082 to 25 variants in 23 genes associated with PD or neuronal function was achieved. Eight (FXN, MFN2, MYOC, NPC1, PSEN1, RET, SCN3A and SPG7 were the most significant.Conclusions: The multistep approach developed made it possible to conduct an effective search for potential pathogenetically significant variants, presumably involved in the pathogenesis of PD. The data obtained need to be further verified experimentally.

  14. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity

    OpenAIRE

    Turcot, Valérie; Lu, Yingchang; Highland, Heather M; Schurmann, Claudia; Justice, Anne E; Fine, Rebecca S; Bradfield, Jonathan P; Esko, Tõnu; Giri, Ayush; Graff, Mariaelisa; Guo, Xiuqing; Hendricks, Audrey E; Karaderi, Tugce; Lempradl, Adelheid; Locke, Adam E

    2018-01-01

    Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in...

  15. Molecular detection and characterization of Hop stunt viroid sequence variants from naturally infected pomegranate (Punica granatum L. in Tunisia

    Directory of Open Access Journals (Sweden)

    Faten GORSANE

    2010-09-01

    Full Text Available Tunisian pomegranate Hop stunt viroid (HSVd variants are described. Dot-blot hybridization, S-Page, and reverse transcription polymerase chain reaction (RT-PCR of RNA extracts from infected tissues were carried out. Results obtained by these techniques were confirmed by cDNA sequencing. The genetic diversity among the Tunisian variants was investigated, which also involved analysis of sequences of previously described HSVd variants from Tunisian citrus var. clementine and fig, and from fruit trees from other Mediterranean countries. Phylogenetic analysis showed that Tunisian pomegranate HSVd variants were clustered into two groups: a cachexia strain within the citrus type group and a recombinant citrus-plum type group. Results also showed a high haplotype diversity which was not related either to the host or to the geographical origin. Selective neutrality and genetic network tests suggest that the HSVd isolates have spread rapidly.

  16. VirVarSeq: a low-frequency virus variant detection pipeline for Illumina sequencing using adaptive base-calling accuracy filtering.

    Science.gov (United States)

    Verbist, Bie M P; Thys, Kim; Reumers, Joke; Wetzels, Yves; Van der Borght, Koen; Talloen, Willem; Aerssens, Jeroen; Clement, Lieven; Thas, Olivier

    2015-01-01

    In virology, massively parallel sequencing (MPS) opens many opportunities for studying viral quasi-species, e.g. in HIV-1- and HCV-infected patients. This is essential for understanding pathways to resistance, which can substantially improve treatment. Although MPS platforms allow in-depth characterization of sequence variation, their measurements still involve substantial technical noise. For Illumina sequencing, single base substitutions are the main error source and impede powerful assessment of low-frequency mutations. Fortunately, base calls are complemented with quality scores (Qs) that are useful for differentiating errors from the real low-frequency mutations. A variant calling tool, Q-cpileup, is proposed, which exploits the Qs of nucleotides in a filtering strategy to increase specificity. The tool is imbedded in an open-source pipeline, VirVarSeq, which allows variant calling starting from fastq files. Using both plasmid mixtures and clinical samples, we show that Q-cpileup is able to reduce the number of false-positive findings. The filtering strategy is adaptive and provides an optimized threshold for individual samples in each sequencing run. Additionally, linkage information is kept between single-nucleotide polymorphisms as variants are called at the codon level. This enables virologists to have an immediate biological interpretation of the reported variants with respect to their antiviral drug responses. A comparison with existing SNP caller tools reveals that calling variants at the codon level with Q-cpileup results in an outstanding sensitivity while maintaining a good specificity for variants with frequencies down to 0.5%. The VirVarSeq is available, together with a user's guide and test data, at sourceforge: http://sourceforge.net/projects/virtools/?source=directory. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Exome sequencing analysis reveals variants in primary immunodeficiency genes in patients with very early onset inflammatory bowel disease.

    Science.gov (United States)

    Kelsen, Judith R; Dawany, Noor; Moran, Christopher J; Petersen, Britt-Sabina; Sarmady, Mahdi; Sasson, Ariella; Pauly-Hubbard, Helen; Martinez, Alejandro; Maurer, Kelly; Soong, Joanne; Rappaport, Eric; Franke, Andre; Keller, Andreas; Winter, Harland S; Mamula, Petar; Piccoli, David; Artis, David; Sonnenberg, Gregory F; Daly, Mark; Sullivan, Kathleen E; Baldassano, Robert N; Devoto, Marcella

    2015-11-01

    Very early onset inflammatory bowel disease (VEO-IBD), IBD diagnosed at 5 years of age or younger, frequently presents with a different and more severe phenotype than older-onset IBD. We investigated whether patients with VEO-IBD carry rare or novel variants in genes associated with immunodeficiencies that might contribute to disease development. Patients with VEO-IBD and parents (when available) were recruited from the Children's Hospital of Philadelphia from March 2013 through July 2014. We analyzed DNA from 125 patients with VEO-IBD (age, 3 wk to 4 y) and 19 parents, 4 of whom also had IBD. Exome capture was performed by Agilent SureSelect V4, and sequencing was performed using the Illumina HiSeq platform. Alignment to human genome GRCh37 was achieved followed by postprocessing and variant calling. After functional annotation, candidate variants were analyzed for change in protein function, minor allele frequency less than 0.1%, and scaled combined annotation-dependent depletion scores of 10 or less. We focused on genes associated with primary immunodeficiencies and related pathways. An additional 210 exome samples from patients with pediatric IBD (n = 45) or adult-onset Crohn's disease (n = 20) and healthy individuals (controls, n = 145) were obtained from the University of Kiel, Germany, and used as control groups. Four hundred genes and regions associated with primary immunodeficiency, covering approximately 6500 coding exons totaling more than 1 Mbp of coding sequence, were selected from the whole-exome data. Our analysis showed novel and rare variants within these genes that could contribute to the development of VEO-IBD, including rare heterozygous missense variants in IL10RA and previously unidentified variants in MSH5 and CD19. In an exome sequence analysis of patients with VEO-IBD and their parents, we identified variants in genes that regulate B- and T-cell functions and could contribute to pathogenesis. Our analysis could lead to the

  18. CDKL5 variants: Improving our understanding of a rare neurologic disorder.

    Science.gov (United States)

    Hector, Ralph D; Kalscheuer, Vera M; Hennig, Friederike; Leonard, Helen; Downs, Jenny; Clarke, Angus; Benke, Tim A; Armstrong, Judith; Pineda, Mercedes; Bailey, Mark E S; Cobb, Stuart R

    2017-12-01

    To provide new insights into the interpretation of genetic variants in a rare neurologic disorder, CDKL5 deficiency, in the contexts of population sequencing data and an updated characterization of the CDKL5 gene. We analyzed all known potentially pathogenic CDKL5 variants by combining data from large-scale population sequencing studies with CDKL5 variants from new and all available clinical cohorts and combined this with computational methods to predict pathogenicity. The study has identified several variants that can be reclassified as benign or likely benign. With the addition of novel CDKL5 variants, we confirm that pathogenic missense variants cluster in the catalytic domain of CDKL5 and reclassify a purported missense variant as having a splicing consequence. We provide further evidence that missense variants in the final 3 exons are likely to be benign and not important to disease pathology. We also describe benign splicing and nonsense variants within these exons, suggesting that isoform hCDKL5_5 is likely to have little or no neurologic significance. We also use the available data to make a preliminary estimate of minimum incidence of CDKL5 deficiency. These findings have implications for genetic diagnosis, providing evidence for the reclassification of specific variants previously thought to result in CDKL5 deficiency. Together, these analyses support the view that the predominant brain isoform in humans (hCDKL5_1) is crucial for normal neurodevelopment and that the catalytic domain is the primary functional domain.

  19. Human GRIN2B variants in neurodevelopmental disorders

    Directory of Open Access Journals (Sweden)

    Chun Hu

    2016-10-01

    Full Text Available The development of whole exome/genome sequencing technologies has given rise to an unprecedented volume of data linking patient genomic variability to brain disorder phenotypes. A surprising number of variants have been found in the N-methyl-d-aspartate receptor (NMDAR gene family, with the GRIN2B gene encoding the GluN2B subunit being implicated in many cases of neurodevelopmental disorders, which are psychiatric conditions originating in childhood and include language, motor, and learning disorders, autism spectrum disorder (ASD, attention deficit hyperactivity disorder (ADHD, developmental delay, epilepsy, and schizophrenia. The GRIN2B gene plays a crucial role in normal neuronal development and is important for learning and memory. Mutations in human GRIN2B were distributed throughout the entire gene in a number of patients with various neuropsychiatric and developmental disorders. Studies that provide functional analysis of variants are still lacking, however current analysis of de novo variants that segregate with disease cases such as intellectual disability, developmental delay, ASD or epileptic encephalopathies reveal altered NMDAR function. Here, we summarize the current reports of disease-associated variants in GRIN2B from patients with multiple neurodevelopmental disorders, and discuss implications, highlighting the importance of functional analysis and precision medicine therapies.

  20. Exome sequencing in an admixed isolated population indicates NFXL1 variants confer a risk for specific language impairment.

    Directory of Open Access Journals (Sweden)

    Pía Villanueva

    2015-03-01

    Full Text Available Children affected by Specific Language Impairment (SLI fail to acquire age appropriate language skills despite adequate intelligence and opportunity. SLI is highly heritable, but the understanding of underlying genetic mechanisms has proved challenging. In this study, we use molecular genetic techniques to investigate an admixed isolated founder population from the Robinson Crusoe Island (Chile, who are affected by a high incidence of SLI, increasing the power to discover contributory genetic factors. We utilize exome sequencing in selected individuals from this population to identify eight coding variants that are of putative significance. We then apply association analyses across the wider population to highlight a single rare coding variant (rs144169475, Minor Allele Frequency of 4.1% in admixed South American populations in the NFXL1 gene that confers a nonsynonymous change (N150K and is significantly associated with language impairment in the Robinson Crusoe population (p = 2.04 × 10-4, 8 variants tested. Subsequent sequencing of NFXL1 in 117 UK SLI cases identified four individuals with heterozygous variants predicted to be of functional consequence. We conclude that coding variants within NFXL1 confer an increased risk of SLI within a complex genetic model.

  1. Whole-exome sequencing reveals genetic variants associated with chronic kidney disease characterized by tubulointerstitial damages in North Central Region, Sri Lanka.

    Science.gov (United States)

    Nanayakkara, Shanika; Senevirathna, S T M L D; Parahitiyawa, Nipuna B; Abeysekera, Tilak; Chandrajith, Rohana; Ratnatunga, Neelakanthi; Hitomi, Toshiaki; Kobayashi, Hatasu; Harada, Kouji H; Koizumi, Akio

    2015-09-01

    The familial clustering observed in chronic kidney disease of uncertain etiology (CKDu) characterized by tubulointerstitial damages in the North Central Region of Sri Lanka strongly suggests the involvement of genetic factors in its pathogenesis. The objective of the present study is to use whole-exome sequencing to identify the genetic variants associated with CKDu. Whole-exome sequencing of eight CKDu cases and eight controls was performed, followed by direct sequencing of candidate loci in 301 CKDu cases and 276 controls. Association study revealed rs34970857 (c.658G > A/p.V220M) located in the KCNA10 gene encoding a voltage-gated K channel as the most promising SNP with the highest odds ratio of 1.74. Four rare variants were identified in gene encoding Laminin beta2 (LAMB2) which is known to cause congenital nephrotic syndrome. Three out of four variants in LAMB2 were novel variants found exclusively in cases. Genetic investigations provide strong evidence on the presence of genetic susceptibility for CKDu. Possibility of presence of several rare variants associated with CKDu in this population is also suggested.

  2. Burden of rare variants in ALS genes influences survival in familial and sporadic ALS.

    Science.gov (United States)

    Pang, Shirley Yin-Yu; Hsu, Jacob Shujui; Teo, Kay-Cheong; Li, Yan; Kung, Michelle H W; Cheah, Kathryn S E; Chan, Danny; Cheung, Kenneth M C; Li, Miaoxin; Sham, Pak-Chung; Ho, Shu-Leong

    2017-10-01

    Genetic variants are implicated in the development of amyotrophic lateral sclerosis (ALS), but it is unclear whether the burden of rare variants in ALS genes has an effect on survival. We performed whole genome sequencing on 8 familial ALS (FALS) patients with superoxide dismutase 1 (SOD1) mutation and whole exome sequencing on 46 sporadic ALS (SALS) patients living in Hong Kong and found that 67% had at least 1 rare variant in the exons of 40 ALS genes; 22% had 2 or more. Patients with 2 or more rare variants had lower probability of survival than patients with 0 or 1 variant (p = 0.001). After adjusting for other factors, each additional rare variant increased the risk of respiratory failure or death by 60% (p = 0.0098). The presence of the rare variant was associated with the risk of ALS (Odds ratio 1.91, 95% confidence interval 1.03-3.61, p = 0.03), and ALS patients had higher rare variant burden than controls (MB, p = 0.004). Our findings support an oligogenic basis with the burden of rare variants affecting the development and survival of ALS. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. The Contribution of Mosaic Variants to Autism Spectrum Disorder.

    Science.gov (United States)

    Freed, Donald; Pevsner, Jonathan

    2016-09-01

    De novo mutation is highly implicated in autism spectrum disorder (ASD). However, the contribution of post-zygotic mutation to ASD is poorly characterized. We performed both exome sequencing of paired samples and analysis of de novo variants from whole-exome sequencing of 2,388 families. While we find little evidence for tissue-specific mosaic mutation, multi-tissue post-zygotic mutation (i.e. mosaicism) is frequent, with detectable mosaic variation comprising 5.4% of all de novo mutations. We identify three mosaic missense and likely-gene disrupting mutations in genes previously implicated in ASD (KMT2C, NCKAP1, and MYH10) in probands but none in siblings. We find a strong ascertainment bias for mosaic mutations in probands relative to their unaffected siblings (p = 0.003). We build a model of de novo variation incorporating mosaic variants and errors in classification of mosaic status and from this model we estimate that 33% of mosaic mutations in probands contribute to 5.1% of simplex ASD diagnoses (95% credible interval 1.3% to 8.9%). Our results indicate a contributory role for multi-tissue mosaic mutation in some individuals with an ASD diagnosis.

  4. The Contribution of Mosaic Variants to Autism Spectrum Disorder.

    Directory of Open Access Journals (Sweden)

    Donald Freed

    2016-09-01

    Full Text Available De novo mutation is highly implicated in autism spectrum disorder (ASD. However, the contribution of post-zygotic mutation to ASD is poorly characterized. We performed both exome sequencing of paired samples and analysis of de novo variants from whole-exome sequencing of 2,388 families. While we find little evidence for tissue-specific mosaic mutation, multi-tissue post-zygotic mutation (i.e. mosaicism is frequent, with detectable mosaic variation comprising 5.4% of all de novo mutations. We identify three mosaic missense and likely-gene disrupting mutations in genes previously implicated in ASD (KMT2C, NCKAP1, and MYH10 in probands but none in siblings. We find a strong ascertainment bias for mosaic mutations in probands relative to their unaffected siblings (p = 0.003. We build a model of de novo variation incorporating mosaic variants and errors in classification of mosaic status and from this model we estimate that 33% of mosaic mutations in probands contribute to 5.1% of simplex ASD diagnoses (95% credible interval 1.3% to 8.9%. Our results indicate a contributory role for multi-tissue mosaic mutation in some individuals with an ASD diagnosis.

  5. Evaluation of Nine Somatic Variant Callers for Detection of Somatic Mutations in Exome and Targeted Deep Sequencing Data

    DEFF Research Database (Denmark)

    Krøigård, Anne Bruun; Thomassen, Mads; Lænkholm, Anne Vibeke

    2016-01-01

    a comprehensive evaluation using exome sequencing and targeted deep sequencing data of paired tumor-normal samples from five breast cancer patients to evaluate the performance of nine publicly available somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper, Strelka, VarScan 2...

  6. Pervasive within-Mitochondrion Single-Nucleotide Variant Heteroplasmy as Revealed by Single-Mitochondrion Sequencing

    Directory of Open Access Journals (Sweden)

    Jacqueline Morris

    2017-12-01

    Full Text Available Summary: A number of mitochondrial diseases arise from single-nucleotide variant (SNV accumulation in multiple mitochondria. Here, we present a method for identification of variants present at the single-mitochondrion level in individual mouse and human neuronal cells, allowing for extremely high-resolution study of mitochondrial mutation dynamics. We identified extensive heteroplasmy between individual mitochondrion, along with three high-confidence variants in mouse and one in human that were present in multiple mitochondria across cells. The pattern of variation revealed by single-mitochondrion data shows surprisingly pervasive levels of heteroplasmy in inbred mice. Distribution of SNV loci suggests inheritance of variants across generations, resulting in Poisson jackpot lines with large SNV load. Comparison of human and mouse variants suggests that the two species might employ distinct modes of somatic segregation. Single-mitochondrion resolution revealed mitochondria mutational dynamics that we hypothesize to affect risk probabilities for mutations reaching disease thresholds. : Morris et al. use independent sequencing of multiple individual mitochondria from mouse and human brain cells to show high pervasiveness of mutations. The mutations are heteroplasmic within single mitochondria and within and between cells. These findings suggest mechanisms by which mutations accumulate over time, resulting in mitochondrial dysfunction and disease. Keywords: single mitochondrion, single cell, human neuron, mouse neuron, single-nucleotide variation

  7. Molecular Cloning and Expression of Sequence Variants of Manganese Superoxide Dismutase Genes from Wheat

    Science.gov (United States)

    Reactive oxygen species (ROS) are very harmful to living organisms due to the potential oxidation of membrane lipids, DNA, proteins, and carbohydrates. Transformed E.coli strain QC 871, superoxide dismutase (SOD) double-mutant, with three sequence variant MnSOD1, MnSOD2, and MnSOD3 manganese supero...

  8. Fine-scale patterns of population stratification confound rare variant association tests.

    Directory of Open Access Journals (Sweden)

    Timothy D O'Connor

    Full Text Available Advances in next-generation sequencing technology have enabled systematic exploration of the contribution of rare variation to Mendelian and complex diseases. Although it is well known that population stratification can generate spurious associations with common alleles, its impact on rare variant association methods remains poorly understood. Here, we performed exhaustive coalescent simulations with demographic parameters calibrated from exome sequence data to evaluate the performance of nine rare variant association methods in the presence of fine-scale population structure. We find that all methods have an inflated spurious association rate for parameter values that are consistent with levels of differentiation typical of European populations. For example, at a nominal significance level of 5%, some test statistics have a spurious association rate as high as 40%. Finally, we empirically assess the impact of population stratification in a large data set of 4,298 European American exomes. Our results have important implications for the design, analysis, and interpretation of rare variant genome-wide association studies.

  9. FamSeq: a variant calling program for family-based sequencing data using graphics processing units.

    Directory of Open Access Journals (Sweden)

    Gang Peng

    2014-10-01

    Full Text Available Various algorithms have been developed for variant calling using next-generation sequencing data, and various methods have been applied to reduce the associated false positive and false negative rates. Few variant calling programs, however, utilize the pedigree information when the family-based sequencing data are available. Here, we present a program, FamSeq, which reduces both false positive and false negative rates by incorporating the pedigree information from the Mendelian genetic model into variant calling. To accommodate variations in data complexity, FamSeq consists of four distinct implementations of the Mendelian genetic model: the Bayesian network algorithm, a graphics processing unit version of the Bayesian network algorithm, the Elston-Stewart algorithm and the Markov chain Monte Carlo algorithm. To make the software efficient and applicable to large families, we parallelized the Bayesian network algorithm that copes with pedigrees with inbreeding loops without losing calculation precision on an NVIDIA graphics processing unit. In order to compare the difference in the four methods, we applied FamSeq to pedigree sequencing data with family sizes that varied from 7 to 12. When there is no inbreeding loop in the pedigree, the Elston-Stewart algorithm gives analytical results in a short time. If there are inbreeding loops in the pedigree, we recommend the Bayesian network method, which provides exact answers. To improve the computing speed of the Bayesian network method, we parallelized the computation on a graphics processing unit. This allowed the Bayesian network method to process the whole genome sequencing data of a family of 12 individuals within two days, which was a 10-fold time reduction compared to the time required for this computation on a central processing unit.

  10. Association between sequence variants in panicle development genes and the number of spikelets per panicle in rice.

    Science.gov (United States)

    Jang, Su; Lee, Yunjoo; Lee, Gileung; Seo, Jeonghwan; Lee, Dongryung; Yu, Yoye; Chin, Joong Hyoun; Koh, Hee-Jong

    2018-01-15

    Balancing panicle-related traits such as panicle length and the numbers of primary and secondary branches per panicle, is key to improving the number of spikelets per panicle in rice. Identifying genetic information contributes to a broader understanding of the roles of gene and provides candidate alleles for use as DNA markers. Discovering relations between panicle-related traits and sequence variants allows opportunity for molecular application in rice breeding to improve the number of spikelets per panicle. In total, 142 polymorphic sites, which constructed 58 haplotypes, were detected in coding regions of ten panicle development gene and 35 sequence variants in six genes were significantly associated with panicle-related traits. Rice cultivars were clustered according to their sequence variant profiles. One of the four resultant clusters, which contained only indica and tong-il varieties, exhibited the largest average number of favorable alleles and highest average number of spikelets per panicle, suggesting that the favorable allele combination found in this cluster was beneficial in increasing the number of spikelets per panicle. Favorable alleles identified in this study can be used to develop functional markers for rice breeding programs. Furthermore, stacking several favorable alleles has the potential to substantially improve the number of spikelets per panicle in rice.

  11. Next generation sequencing identifies abnormal Y chromosome and candidate causal variants in premature ovarian failure patients.

    Science.gov (United States)

    Lee, Yujung; Kim, Changshin; Park, YoungJoon; Pyun, Jung-A; Kwack, KyuBum

    2016-12-01

    Premature ovarian failure (POF) is characterized by heterogeneous genetic causes such as chromosomal abnormalities and variants in causal genes. Recently, development of techniques made next generation sequencing (NGS) possible to detect genome wide variants including chromosomal abnormalities. Among 37 Korean POF patients, XY karyotype with distal part deletions of Y chromosome, Yp11.32-31 and Yp12 end part, was observed in two patients through NGS. Six deleterious variants in POF genes were also detected which might explain the pathogenesis of POF with abnormalities in the sex chromosomes. Additionally, the two POF patients had no mutation in SRY but three non-synonymous variants were detected in genes regarding sex reversal. These findings suggest candidate causes of POF and sex reversal and show the propriety of NGS to approach the heterogeneous pathogenesis of POF. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Single nucleotide variants and InDels identified from whole-genome re-sequencing of Guzerat, Gyr, Girolando and Holstein cattle breeds.

    Directory of Open Access Journals (Sweden)

    Nedenia Bonvino Stafuzza

    Full Text Available Whole-genome re-sequencing, alignment and annotation analyses were undertaken for 12 sires representing four important cattle breeds in Brazil: Guzerat (multi-purpose, Gyr, Girolando and Holstein (dairy production. A total of approximately 4.3 billion reads from an Illumina HiSeq 2000 sequencer generated for each animal 10.7 to 16.4-fold genome coverage. A total of 27,441,279 single nucleotide variations (SNVs and 3,828,041 insertions/deletions (InDels were detected in the samples, of which 2,557,670 SNVs and 883,219 InDels were novel. The submission of these genetic variants to the dbSNP database significantly increased the number of known variants, particularly for the indicine genome. The concordance rate between genotypes obtained using the Bovine HD BeadChip array and the same variants identified by sequencing was about 99.05%. The annotation of variants identified numerous non-synonymous SNVs and frameshift InDels which could affect phenotypic variation. Functional enrichment analysis was performed and revealed that variants in the olfactory transduction pathway was over represented in all four cattle breeds, while the ECM-receptor interaction pathway was over represented in Girolando and Guzerat breeds, the ABC transporters pathway was over represented only in Holstein breed, and the metabolic pathways was over represented only in Gyr breed. The genetic variants discovered here provide a rich resource to help identify potential genomic markers and their associated molecular mechanisms that impact economically important traits for Gyr, Girolando, Guzerat and Holstein breeding programs.

  13. Kinetic and sequence-structure-function analysis of known LinA variants with different hexachlorocyclohexane isomers.

    Directory of Open Access Journals (Sweden)

    Pooja Sharma

    Full Text Available BACKGROUND: Here we report specific activities of all seven naturally occurring LinA variants towards three different isomers, α, γ and δ, of a priority persistent pollutant, hexachlorocyclohexane (HCH. Sequence-structure-function differences contributing to the differences in their stereospecificity for α-, γ-, and δ-HCH and enantiospecificity for (+- and (--α -HCH are also discussed. METHODOLOGY/PRINCIPAL FINDINGS: Enzyme kinetic studies were performed with purified LinA variants. Models of LinA2(B90A A110T, A111C, A110T/A111C and LinA1(B90A were constructed using the FoldX computer algorithm. Turnover rates (min(-1 showed that the LinAs exhibited differential substrate affinity amongst the four HCH isomers tested. α-HCH was found to be the most preferred substrate by all LinA's, followed by the γ and then δ isomer. CONCLUSIONS/SIGNIFICANCE: The kinetic observations suggest that LinA-γ1-7 is the best variant for developing an enzyme-based bioremediation technology for HCH. The majority of the sequence variation in the various linA genes that have been isolated is not neutral, but alters the enantio- and stereoselectivity of the encoded proteins.

  14. Genotype call for chromosomal deletions using read-depth from whole genome sequence variants in cattle

    DEFF Research Database (Denmark)

    Mesbah-Uddin, Md; Guldbrandtsen, Bernt; Lund, Mogens Sandø

    2018-01-01

    We presented a deletion genotyping (copy-number estimation) method that leverages population-scale whole genome sequence variants data from 1K bull genomes project (1KBGP) to build reference panel for imputation. To estimate deletion-genotype likelihood, we extracted read-depth (RD) data of all...

  15. Screening for single nucleotide variants, small indels and exon deletions with a next-generation sequencing based gene panel approach for Usher syndrome.

    Science.gov (United States)

    Krawitz, Peter M; Schiska, Daniela; Krüger, Ulrike; Appelt, Sandra; Heinrich, Verena; Parkhomchuk, Dmitri; Timmermann, Bernd; Millan, Jose M; Robinson, Peter N; Mundlos, Stefan; Hecht, Jochen; Gross, Manfred

    2014-09-01

    Usher syndrome is an autosomal recessive disorder characterized both by deafness and blindness. For the three clinical subtypes of Usher syndrome causal mutations in altogether 12 genes and a modifier gene have been identified. Due to the genetic heterogeneity of Usher syndrome, the molecular analysis is predestined for a comprehensive and parallelized analysis of all known genes by next-generation sequencing (NGS) approaches. We describe here the targeted enrichment and deep sequencing for exons of Usher genes and compare the costs and workload of this approach compared to Sanger sequencing. We also present a bioinformatics analysis pipeline that allows us to detect single-nucleotide variants, short insertions and deletions, as well as copy number variations of one or more exons on the same sequence data. Additionally, we present a flexible in silico gene panel for the analysis of sequence variants, in which newly identified genes can easily be included. We applied this approach to a cohort of 44 Usher patients and detected biallelic pathogenic mutations in 35 individuals and monoallelic mutations in eight individuals of our cohort. Thirty-nine of the sequence variants, including two heterozygous deletions comprising several exons of USH2A, have not been reported so far. Our NGS-based approach allowed us to assess single-nucleotide variants, small indels, and whole exon deletions in a single test. The described diagnostic approach is fast and cost-effective with a high molecular diagnostic yield.

  16. Evaluation of a 5-tier scheme proposed for classification of sequence variants using bioinformatic and splicing assay data

    DEFF Research Database (Denmark)

    Walker, Logan C; Whiley, Phillip J; Houdayer, Claude

    2013-01-01

    BRCA1 and 176 BRCA2 unique variants, from 77 publications. At least six independent reviewers from research and/or clinical settings comprehensively examined splicing assay methods and data reported for 22 variant assays of 21 variants in four publications, and classified the variants using the 5-tier......Splicing assays are commonly undertaken in the clinical setting to assess the clinical relevance of sequence variants in disease predisposition genes. A 5-tier classification system incorporating both bioinformatic and splicing assay information was previously proposed as a method to provide...... of results, and the lack of quantitative data for the aberrant transcripts. We propose suggestions for minimum reporting guidelines for splicing assays, and improvements to the 5-tier splicing classification system to allow future evaluation of its performance as a clinical tool....

  17. Semantic prioritization of novel causative genomic variants

    KAUST Repository

    Boudellioua, Imene

    2017-04-17

    Discriminating the causative disease variant(s) for individuals with inherited or de novo mutations presents one of the main challenges faced by the clinical genetics community today. Computational approaches for variant prioritization include machine learning methods utilizing a large number of features, including molecular information, interaction networks, or phenotypes. Here, we demonstrate the PhenomeNET Variant Predictor (PVP) system that exploits semantic technologies and automated reasoning over genotype-phenotype relations to filter and prioritize variants in whole exome and whole genome sequencing datasets. We demonstrate the performance of PVP in identifying causative variants on a large number of synthetic whole exome and whole genome sequences, covering a wide range of diseases and syndromes. In a retrospective study, we further illustrate the application of PVP for the interpretation of whole exome sequencing data in patients suffering from congenital hypothyroidism. We find that PVP accurately identifies causative variants in whole exome and whole genome sequencing datasets and provides a powerful resource for the discovery of causal variants.

  18. Semantic prioritization of novel causative genomic variants

    KAUST Repository

    Boudellioua, Imene; Mohamad Razali, Rozaimi; Kulmanov, Maxat; Hashish, Yasmeen; Bajic, Vladimir B.; Goncalves-Serra, Eva; Schoenmakers, Nadia; Gkoutos, Georgios V.; Schofield, Paul N.; Hoehndorf, Robert

    2017-01-01

    Discriminating the causative disease variant(s) for individuals with inherited or de novo mutations presents one of the main challenges faced by the clinical genetics community today. Computational approaches for variant prioritization include machine learning methods utilizing a large number of features, including molecular information, interaction networks, or phenotypes. Here, we demonstrate the PhenomeNET Variant Predictor (PVP) system that exploits semantic technologies and automated reasoning over genotype-phenotype relations to filter and prioritize variants in whole exome and whole genome sequencing datasets. We demonstrate the performance of PVP in identifying causative variants on a large number of synthetic whole exome and whole genome sequences, covering a wide range of diseases and syndromes. In a retrospective study, we further illustrate the application of PVP for the interpretation of whole exome sequencing data in patients suffering from congenital hypothyroidism. We find that PVP accurately identifies causative variants in whole exome and whole genome sequencing datasets and provides a powerful resource for the discovery of causal variants.

  19. Human papillomavirus type-16 variants in Quechua aboriginals from Argentina.

    Science.gov (United States)

    Picconi, María Alejandra; Alonio, Lidia Virginia; Sichero, Laura; Mbayed, Viviana; Villa, Luisa Lina; Gronda, Jorge; Campos, Rodolfo; Teyssié, Angélica

    2003-04-01

    Cervical carcinoma is the leading cause of cancer death in Quechua indians from Jujuy (northwestern Argentina). To determine the prevalence of HPV-16 variants, 106 HPV-16 positive cervical samples were studied, including 33 low-grade squamous intraepithelial lesions (LSIL), 28 high-grade squamous intraepithelial lesions (HSIL), 9 invasive cervical cancer (ICC), and 36 samples from women with normal colposcopy and cytology. HPV genome variability was examined in the L1 and E6 genes by PCR-hybridization. In a subset of 20 samples, a LCR fragment was also analyzed by PCR-sequencing. Most variants belonged to the European branch with subtle differences that depended on the viral gene fragment studied. Only about 10% of the specimens had non-European variants, including eight Asian-American, two Asian, and one North-American-1. E6 gene analysis revealed that 43% of the samples were identical to HPV-16 prototype, while 57% corresponded to variants. Interestingly, the majority (87%) of normal smears had HPV-16 prototype, whereas variants were detected mainly in SIL and ICC. LCR sequencing yielded 80% of variants, including 69% of European, 19% Asian-American, and 12% Asian. We identified a new variant, the Argentine Quechua-51 (AQ-51), similar to B-14 plus two additional changes: G7842-->A and A7837-->C; phylogenetic inference allocated it in the Asian-American branch. The high proportion of European variants may reflect Spanish colonial influence on these native Inca descendants. The predominance of HPV-16 variants in pathologic samples when compared to normal controls could have implications for the natural history of cervical lesions. Copyright 2003 Wiley-Liss, Inc.

  20. Prevalence of pathogenic germline variants detected by multigene sequencing in unselected Japanese patients with ovarian cancer.

    Science.gov (United States)

    Hirasawa, Akira; Imoto, Issei; Naruto, Takuya; Akahane, Tomoko; Yamagami, Wataru; Nomura, Hiroyuki; Masuda, Kiyoshi; Susumu, Nobuyuki; Tsuda, Hitoshi; Aoki, Daisuke

    2017-12-22

    Pathogenic germline BRCA1 , BRCA2 ( BRCA1/2 ), and several other gene variants predispose women to primary ovarian, fallopian tube, and peritoneal carcinoma (OC), although variant frequency and relevance information is scarce in Japanese women with OC. Using targeted panel sequencing, we screened 230 unselected Japanese women with OC from our hospital-based cohort for pathogenic germline variants in 75 or 79 OC-associated genes. Pathogenic variants of 11 genes were identified in 41 (17.8%) women: 19 (8.3%; BRCA1 ), 8 (3.5%; BRCA2 ), 6 (2.6%; mismatch repair genes), 3 (1.3%; RAD51D ), 2 (0.9%; ATM ), 1 (0.4%; MRE11A ), 1 ( FANCC ), and 1 ( GABRA6 ). Carriers of BRCA1/2 or any other tested gene pathogenic variants were more likely to be diagnosed younger, have first or second-degree relatives with OC, and have OC classified as high-grade serous carcinoma (HGSC). After adjustment for these variables, all 3 features were independent predictive factors for pathogenic variants in any tested genes whereas only the latter two remained for variants in BRCA1/2 . Our data indicate similar variant prevalence in Japanese patients with OC and other ethnic groups and suggest that HGSC and OC family history may facilitate genetic predisposition prediction in Japanese patients with OC and referring high-risk patients for genetic counseling and testing.

  1. Houston Methodist variant viewer: An application to support clinical laboratory interpretation of next-generation sequencing data for cancer

    Directory of Open Access Journals (Sweden)

    Paul A Christensen

    2017-01-01

    Full Text Available Introduction: Next-generation-sequencing (NGS is increasingly used in clinical and research protocols for patients with cancer. NGS assays are routinely used in clinical laboratories to detect mutations bearing on cancer diagnosis, prognosis and personalized therapy. A typical assay may interrogate 50 or more gene targets that encompass many thousands of possible gene variants. Analysis of NGS data in cancer is a labor-intensive process that can become overwhelming to the molecular pathologist or research scientist. Although commercial tools for NGS data analysis and interpretation are available, they are often costly, lack key functionality or cannot be customized by the end user. Methods: To facilitate NGS data analysis in our clinical molecular diagnostics laboratory, we created a custom bioinformatics tool termed Houston Methodist Variant Viewer (HMVV. HMVV is a Java-based solution that integrates sequencing instrument output, bioinformatics analysis, storage resources and end user interface. Results: Compared to the predicate method used in our clinical laboratory, HMVV markedly simplifies the bioinformatics workflow for the molecular technologist and facilitates the variant review by the molecular pathologist. Importantly, HMVV reduces time spent researching the biological significance of the variants detected, standardizes the online resources used to perform the variant investigation and assists generation of the annotated report for the electronic medical record. HMVV also maintains a searchable variant database, including the variant annotations generated by the pathologist, which is useful for downstream quality improvement and research projects. Conclusions: HMVV is a clinical grade, low-cost, feature-rich, highly customizable platform that we have made available for continued development by the pathology informatics community.

  2. Whole Exome Sequencing in Females with Autism Implicates Novel and Candidate Genes

    Directory of Open Access Journals (Sweden)

    Merlin G. Butler

    2015-01-01

    Full Text Available Classical autism or autistic disorder belongs to a group of genetically heterogeneous conditions known as Autism Spectrum Disorders (ASD. Heritability is estimated as high as 90% for ASD with a recently reported compilation of 629 clinically relevant candidate and known genes. We chose to undertake a descriptive next generation whole exome sequencing case study of 30 well-characterized Caucasian females with autism (average age, 7.7 ± 2.6 years; age range, 5 to 16 years from multiplex families. Genomic DNA was used for whole exome sequencing via paired-end next generation sequencing approach and X chromosome inactivation status. The list of putative disease causing genes was developed from primary selection criteria using machine learning-derived classification score and other predictive parameters (GERP2, PolyPhen2, and SIFT. We narrowed the variant list to 10 to 20 genes and screened for biological significance including neural development, function and known neurological disorders. Seventy-eight genes identified met selection criteria ranging from 1 to 9 filtered variants per female. Five females presented with functional variants of X-linked genes (IL1RAPL1, PIR, GABRQ, GPRASP2, SYTL4 with cadherin, protocadherin and ankyrin repeat gene families most commonly altered (e.g., CDH6, FAT2, PCDH8, CTNNA3, ANKRD11. Other genes related to neurogenesis and neuronal migration (e.g., SEMA3F, MIDN, were also identified.

  3. Supplementation of Nucleosides During Selection can Reduce Sequence Variant Levels in CHO Cells Using GS/MSX Selection System.

    Science.gov (United States)

    Tang, Danming; Lam, Cynthia; Louie, Salina; Hoi, Kam Hon; Shaw, David; Yim, Mandy; Snedecor, Brad; Misaghi, Shahram

    2018-01-01

    In the process of generating stable monoclonal antibody (mAb) producing cell lines, reagents such as methotrexate (MTX) or methionine sulfoximine (MSX) are often used. However, using such selection reagent(s) increases the possibility of having higher occurrence of sequence variants in the expressed antibody molecules due to the effects of MTX or MSX on de novo nucleotide synthesis. Since MSX inhibits glutamine synthase (GS) and results in both amino acid and nucleoside starvation, it is questioned whether supplementing nucleosides into the media could lower sequence variant levels without affecting titer. The results show that the supplementation of nucleosides to the media during MSX selection decreased genomic DNA mutagenesis rates in the selected cells, probably by reducing nucleotide mis-incorporation into the DNA. Furthermore, addition of nucleosides enhance clone recovery post selection and does not affect antibody expression. It is further observed that nucleoside supplements lowered DNA mutagenesis rates only at the initial stage of the clone selection and do not have any effect on DNA mutagenesis rates after stable cell lines are established. Therefore, the data suggests that addition of nucleosides during early stages of MSX selection can lower sequence variant levels without affecting titer or clone stability in antibody expression. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. New genetic variants of LATS1 detected in urinary bladder and colon cancer.

    Science.gov (United States)

    Saadeldin, Mona K; Shawer, Heba; Mostafa, Ahmed; Kassem, Neemat M; Amleh, Asma; Siam, Rania

    2014-01-01

    LATS1, the large tumor suppressor 1 gene, encodes for a serine/threonine kinase protein and is implicated in cell cycle progression. LATS1 is down-regulated in various human cancers, such as breast cancer, and astrocytoma. Point mutations in LATS1 were reported in human sarcomas. Additionally, loss of heterozygosity of LATS1 chromosomal region predisposes to breast, ovarian, and cervical tumors. In the current study, we investigated LATS1 genetic variations including single nucleotide polymorphisms (SNPs), in 28 Egyptian patients with either urinary bladder or colon cancers. The LATS1 gene was amplified and sequenced and the expression of LATS1 at the RNA level was assessed in 12 urinary bladder cancer samples. We report, the identification of a total of 29 variants including previously identified SNPs within LATS1 coding and non-coding sequences. A total of 18 variants were novel. Majority of the novel variants, 13, were mapped to intronic sequences and un-translated regions of the gene. Four of the five novel variants located in the coding region of the gene, represented missense mutations within the serine/threonine kinase catalytic domain. Interestingly, LATS1 RNA steady state levels was lost in urinary bladder cancerous tissue harboring four specific SNPs (16045 + 41736 + 34614 + 56177) positioned in the 5'UTR, intron 6, and two silent mutations within exon 4 and exon 8, respectively. This study identifies novel single-base-sequence alterations in the LATS1 gene. These newly identified variants could potentially be used as novel diagnostic or prognostic tools in cancer.

  5. Analysis of protein-altering variants in telomerase genes and their association with MUC5B common variant status in patients with idiopathic pulmonary fibrosis: a candidate gene sequencing study.

    Science.gov (United States)

    Dressen, Amy; Abbas, Alexander R; Cabanski, Christopher; Reeder, Janina; Ramalingam, Thirumalai R; Neighbors, Margaret; Bhangale, Tushar R; Brauer, Matthew J; Hunkapiller, Julie; Reeder, Jens; Mukhyala, Kiran; Cuenco, Karen; Tom, Jennifer; Cowgill, Amy; Vogel, Jan; Forrest, William F; Collard, Harold R; Wolters, Paul J; Kropski, Jonathan A; Lancaster, Lisa H; Blackwell, Timothy S; Arron, Joseph R; Yaspan, Brian L

    2018-06-08

    Idiopathic pulmonary fibrosis (IPF) risk has a strong genetic component. Studies have implicated variations at several loci, including TERT, surfactant genes, and a single nucleotide polymorphism at chr11p15 (rs35705950) in the intergenic region between TOLLIP and MUC5B. Patients with IPF who have risk alleles at rs35705950 have longer survival from the time of IPF diagnosis than do patients homozygous for the non-risk allele, whereas patients with shorter telomeres have shorter survival times. We aimed to assess whether rare protein-altering variants in genes regulating telomere length are enriched in patients with IPF homozygous for the non-risk alleles at rs35705950. Between Nov 1, 2014, and Nov 1, 2016, we assessed blood samples from patients aged 40 years or older and of European ancestry with sporadic IPF from three international phase 3 clinical trials (INSPIRE, CAPACITY, ASCEND), one phase 2 study (RIFF), and US-based observational studies (Vanderbilt Clinical Interstitial Lung Disease Registry and the UCSF Interstitial Lung Disease Clinic registry cohorts) at the Broad Institute (Cambridge, MA, USA) and Human Longevity (San Diego, CA, USA). We also assessed blood samples from non-IPF controls in several clinical trials. We did whole-genome sequencing to assess telomere length and identify rare protein-altering variants, stratified by rs35705950 genotype. We also assessed rare functional variation in TERT exons and compared telomere length and disease progression across genotypes. We assessed samples from 1510 patients with IPF and 1874 non-IPF controls. 30 (3%) of 1046 patients with an rs35705950 risk allele had a rare protein-altering variant in TERT compared with 34 (7%) of 464 non-risk allele carriers (odds ratio 0·40 [95% CI 0·24-0·66], p=0·00039). Subsequent analyses identified enrichment of rare protein-altering variants in PARN and RTEL1, and rare variation in TERC in patients with IPF compared with controls. We expanded our study population to

  6. De novo and inherited private variants in MAP1B in periventricular nodular heterotopia.

    Science.gov (United States)

    Heinzen, Erin L; O'Neill, Adam C; Zhu, Xiaolin; Allen, Andrew S; Bahlo, Melanie; Chelly, Jamel; Dobyns, William B; Freytag, Saskia; Guerrini, Renzo; Leventer, Richard J; Poduri, Annapurna; Robertson, Stephen P; Walsh, Christopher A; Zhang, Mengqi

    2018-05-08

    Periventricular nodular heterotopia (PVNH) is a malformation of cortical development commonly associated with epilepsy. We exome sequenced 202 individuals with sporadic PVNH to identify novel genetic risk loci. We first performed a trio-based analysis and identified 219 de novo variants. Although no novel genes were implicated in this initial analysis, PVNH cases were found overall to have a significant excess of nonsynonymous de novo variants in intolerant genes (p = 3.27x10-7), suggesting a role for rare new alleles in genes yet to be associated with the condition. Using a gene-level collapsing analysis comparing cases and controls, we identified a genome-wide significant signal driven by four ultra-rare loss-of-function heterozygous variants in MAP1B, including one de novo variant. In at least one instance, the MAP1B variant was inherited from a parent with previously undiagnosed PVNH. The PVNH was frontally predominant and associated with perisylvian polymicrogyria. These results implicate MAP1B in PVNH. More broadly, our findings suggest that detrimental mutations likely arising in immediately preceding generations with incomplete penetrance may also be responsible for some apparently sporadic diseases.

  7. CLEVER: Clique-Enumerating Variant Finder

    NARCIS (Netherlands)

    Marschall, T.; Costa, I.; Canzar, S.; bauer, m; Klau, G.W.; Schliep, A.; Schönhuth, A.

    2012-01-01

    Motivation: Next-generation sequencing techniques have facilitated a large-scale analysis of human genetic variation. Despite the advances in sequencing speed, the computational discovery of structural variants is not yet standard. It is likely that many variants have remained undiscovered in most

  8. European external quality control study on the competence of laboratories to recognize rare sequence variants resulting in unusual genotyping results.

    Science.gov (United States)

    Márki-Zay, János; Klein, Christoph L; Gancberg, David; Schimmel, Heinz G; Dux, László

    2009-04-01

    Depending on the method used, rare sequence variants adjacent to the single nucleotide polymorphism (SNP) of interest may cause unusual or erroneous genotyping results. Because such rare variants are known for many genes commonly tested in diagnostic laboratories, we organized a proficiency study to assess their influence on the accuracy of reported laboratory results. Four external quality control materials were processed and sent to 283 laboratories through 3 EQA organizers for analysis of the prothrombin 20210G>A mutation. Two of these quality control materials contained sequence variants introduced by site-directed mutagenesis. One hundred eighty-nine laboratories participated in the study. When samples gave a usual result with the method applied, the error rate was 5.1%. Detailed analysis showed that more than 70% of the failures were reported from only 9 laboratories. Allele-specific amplification-based PCR had a much higher error rate than other methods (18.3% vs 2.9%). The variants 20209C>T and [20175T>G; 20179_20180delAC] resulted in unusual genotyping results in 67 and 85 laboratories, respectively. Eighty-three (54.6%) of these unusual results were not recognized, 32 (21.1%) were attributed to technical issues, and only 37 (24.3%) were recognized as another sequence variant. Our findings revealed that some of the participating laboratories were not able to recognize and correctly interpret unusual genotyping results caused by rare SNPs. Our study indicates that the majority of the failures could be avoided by improved training and careful selection and validation of the methods applied.

  9. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction

    DEFF Research Database (Denmark)

    Gudbjartsson, Daniel F; Bjornsdottir, Unnur S; Halapi, Eva

    2009-01-01

    Eosinophils are pleiotropic multifunctional leukocytes involved in initiation and propagation of inflammatory responses and thus have important roles in the pathogenesis of inflammatory diseases. Here we describe a genome-wide association scan for sequence variants affecting eosinophil counts.......2 x 10(-10) and 6.5 x 10(-19), respectively). A SNP at IL1RL1 associated with asthma (P = 5.5 x 10(-12)) in a collection of ten different populations (7,996 cases and 44,890 controls). SNPs at WDR36, IL33 and MYB that showed suggestive association with eosinophil counts were also associated...

  10. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity

    DEFF Research Database (Denmark)

    Thorleifsson, Gudmar; Walters, G Bragi; Gudbjartsson, Daniel F

    2009-01-01

    Obesity results from the interaction of genetic and environmental factors. To search for sequence variants that affect variation in two common measures of obesity, weight and body mass index (BMI), both of which are highly heritable, we performed a genome-wide association (GWA) study with 305......,846 SNPs typed in 25,344 Icelandic, 2,998 Dutch, 1,890 European Americans and 1,160 African American subjects and combined the results with previously published results from the Diabetes Genetics Initiative (DGI) on 3,024 Scandinavians. We selected 43 variants in 19 regions for follow-up in 5,586 Danish...... individuals and compared the results to a genome-wide study on obesity-related traits from the GIANT consortium. In total, 29 variants, some correlated, in 11 chromosomal regions reached a genome-wide significance threshold of P

  11. Sequence analysis-based characterization and identification of neurovirulence-associated variants of 36 EV71 strains from China.

    Science.gov (United States)

    Xu, Jun; Wang, Fang; Zhao, Desheng; Liu, Jiang; Su, Hong; Wang, Baolong

    2018-03-30

    Enterovirus 71 (EV71) is the main pathogen of hand-foot-mouth disease (HFMD) and causes several neurological complications. As new strains of EV71 are constantly discovered, it is important to understand the genomic characteristics of the viruses and the mechanism of virulence. Herein, we isolated five strains of EV71 from HFMD patients with or without neurovirulence and sequenced their whole genomes. We then performed whole genome sequence analysis of totally 36 EV71 strains. The phylogenetic analysis of the VP1 region revealed all five isolated strains are clustered into C4a of C4 subgenotype. In addition, by comparing the complete genome sequences of 36 strains, 253 variable amino acid positions were found, 14 of which were identified to be associated with neurovirulence (P < 0.05). Moreover, a similar pattern of amino acid variants combination was identified in four strains without neurovirulence, indicating this type of variant pattern might be associated with avirulence. The strains with neurovirulence appeared to be distinguished from those without neurovirulence by the variants in VP1 and P2 regions, implying VP1 and P2 are the important regions associated with neurovirulence. Indeed, 3-D modeling of VP1 and P2 regions of non-neurovirulent and neurovirulent strains revealed that the different variants resulted in different protein structures and amino acid composition of ligand binding site, which might account for their difference in neurovirulence. In summary, our study reveals 14 variable amino acid positions of VP1, P2 and P3 regions are related to the virulence and that mutations in the capsid proteins of EV71 might contribute to neurovirulence. © 2018 Wiley Periodicals, Inc.

  12. Rare variant testing across methods and thresholds using the multi-kernel sequence kernel association test (MK-SKAT).

    Science.gov (United States)

    Urrutia, Eugene; Lee, Seunggeun; Maity, Arnab; Zhao, Ni; Shen, Judong; Li, Yun; Wu, Michael C

    Analysis of rare genetic variants has focused on region-based analysis wherein a subset of the variants within a genomic region is tested for association with a complex trait. Two important practical challenges have emerged. First, it is difficult to choose which test to use. Second, it is unclear which group of variants within a region should be tested. Both depend on the unknown true state of nature. Therefore, we develop the Multi-Kernel SKAT (MK-SKAT) which tests across a range of rare variant tests and groupings. Specifically, we demonstrate that several popular rare variant tests are special cases of the sequence kernel association test which compares pair-wise similarity in trait value to similarity in the rare variant genotypes between subjects as measured through a kernel function. Choosing a particular test is equivalent to choosing a kernel. Similarly, choosing which group of variants to test also reduces to choosing a kernel. Thus, MK-SKAT uses perturbation to test across a range of kernels. Simulations and real data analyses show that our framework controls type I error while maintaining high power across settings: MK-SKAT loses power when compared to the kernel for a particular scenario but has much greater power than poor choices.

  13. Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2 transcripts

    Directory of Open Access Journals (Sweden)

    Brewster Brooke L

    2010-05-01

    Full Text Available Abstract Background Genetic screening of breast cancer patients and their families have identified a number of variants of unknown clinical significance in the breast cancer susceptibility genes, BRCA1 and BRCA2. Evaluation of such unclassified variants may be assisted by web-based bioinformatic prediction tools, although accurate prediction of aberrant splicing by unclassified variants affecting exonic splice enhancers (ESEs remains a challenge. Methods This study used a combination of RT-PCR analysis and splicing reporter minigene assays to assess five unclassified variants in the BRCA2 gene that we had previously predicted to disrupt an ESE using bioinformatic approaches. Results Analysis of BRCA2 c.8308 G > A (p.Ala2770Thr by mRNA analysis, and BRCA2 c.8962A > G (p.Ser2988Gly, BRCA2 c.8972G > A (p.Arg2991His, BRCA2 c.9172A > G (p.Ser3058Gly, and BRCA2 c.9213G > T (p.Glu3071Asp by a minigene assay, revealed no evidence for aberrant splicing. Conclusions These results illustrate the need for improved methods for predicting functional ESEs and the potential consequences of sequence variants contained therein.

  14. A novel homozygous truncating GNAT1 mutation implicated in retinal degeneration

    OpenAIRE

    Carrigan, Matthew; Duignan, Emma; Humphries, Pete; Palfi, Arpad; Kenna, Paul F; Farrar, G Jane

    2015-01-01

    Background The GNAT1 gene encodes the ? subunit of the rod transducin protein, a key element in the rod phototransduction cascade. Variants in GNAT1 have been implicated in stationary night-blindness in the past, but unlike other proteins in the same pathway, it has not previously been implicated in retinitis pigmentosa. Methods A panel of 182 retinopathy-associated genes was sequenced to locate disease-causing mutations in patients with inherited retinopathies. Results Sequencing revealed a ...

  15. Sequence variants of the DFNB31 gene among Usher syndrome patients of diverse origin

    Science.gov (United States)

    Aller, Elena; Jaijo, Teresa; van Wijk, Erwin; Ebermann, Inga; Kersten, Ferry; García-García, Gema; Voesenek, Krysta; Aparisi, María José; Hoefsloot, Lies; Cremers, Cor; Díaz-Llopis, Manuel; Pennings, Ronald; Bolz, Hanno J.; Kremer, Hannie; Millán, José M.

    2010-01-01

    Purpose It has been demonstrated that mutations in deafness, autosomal recessive 31 (DFNB31), the gene encoding whirlin, is responsible for nonsyndromic hearing loss (NSHL; DFNB31) and Usher syndrome type II (USH2D). We screened DFNB31 in a large cohort of patients with different clinical subtypes of Usher syndrome (USH) to determine the prevalence of DFNB31 mutations among USH patients. Methods DFNB31 was screened in 149 USH2, 29 USH1, six atypical USH, and 11 unclassified USH patients from diverse ethnic backgrounds. Mutation detection was performed by direct sequencing of all coding exons. Results We identified 38 different variants among 195 patients. Most variants were clearly polymorphic, but at least two out of the 15 nonsynonymous variants (p.R350W and p.R882S) are predicted to impair whirlin structure and function, suggesting eventual pathogenicity. No putatively pathogenic mutation was found in the second allele of patients with these mutations. Conclusions DFNB31 is not a major cause of USH. PMID:20352026

  16. Formulaic Sequences and the Implications for Second Language Learning

    Science.gov (United States)

    Xu, Qi

    2016-01-01

    The present paper is a review of literature in relation to formulaic sequences and the implications for second language learning. The formulaic sequence is a significant part of our language, and plays an essential role in both first and second language learning. The paper first introduces the definition, classifications, and major features of…

  17. 8q24 sequence variants in relation to prostate cancer risk among men of African descent: A case-control study

    Directory of Open Access Journals (Sweden)

    VanCleave Tiva T

    2010-06-01

    Full Text Available Abstract Background Human chromosome 8q24 has been implicated in prostate tumorigenesis. Methods Consequently, we evaluated seven 8q24 sequence variants relative to prostate cancer (PCA in a case-control study involving men of African descent. Genetic alterations were detected in germ-line DNA from 195 incident PCA cases and 531 controls using TaqMan polymerase chain reaction (PCR. Results Inheritance of the 8q24 rs16901979 T allele corresponded to a 2.5-fold increase in the risk of developing PCA for our test group. These findings were validated using multifactor dimensionality reduction (MDR and permutation testing (p = 0.038. The remaining 8q24 targets were not significantly related to PCA outcomes. Conclusions Although compelling evidence suggests that the 8q24 rs16901979 locus may serve as an effective PCA predictor, our findings require additional evaluation in larger studies.

  18. Exome sequencing is an efficient tool for variant late-infantile neuronal ceroid lipofuscinosis molecular diagnosis.

    Directory of Open Access Journals (Sweden)

    Liliana Catherine Patiño

    Full Text Available The neuronal ceroid-lipofuscinoses (NCL is a group of neurodegenerative disorders characterized by epilepsy, visual failure, progressive mental and motor deterioration, myoclonus, dementia and reduced life expectancy. Classically, NCL-affected individuals have been classified into six categories, which have been mainly defined regarding the clinical onset of symptoms. However, some patients cannot be easily included in a specific group because of significant variation in the age of onset and disease progression. Molecular genetics has emerged in recent years as a useful tool for enhancing NCL subtype classification. Fourteen NCL genetic forms (CLN1 to CLN14 have been described to date. The variant late-infantile form of the disease has been linked to CLN5, CLN6, CLN7 (MFSD8 and CLN8 mutations. Despite advances in the diagnosis of neurodegenerative disorders mutations in these genes may cause similar phenotypes, which rends difficult accurate candidate gene selection for direct sequencing. Three siblings who were affected by variant late-infantile NCL are reported in the present study. We used whole-exome sequencing, direct sequencing and in silico approaches to identify the molecular basis of the disease. We identified the novel c.1219T>C (p.Trp407Arg and c.1361T>C (p.Met454Thr MFSD8 pathogenic mutations. Our results highlighted next generation sequencing as a novel and powerful methodological approach for the rapid determination of the molecular diagnosis of NCL. They also provide information regarding the phenotypic and molecular spectrum of CLN7 disease.

  19. Calling genotypes from public RNA-sequencing data enables identification of genetic variants that affect gene-expression levels

    NARCIS (Netherlands)

    Deelen, Patrick; Zhernakova, Daria V.; de Haan, Mark; van der Sijde, Marijke; Bonder, Marc Jan; Karjalainen, Juha; van der Velde, K. Joeri; Abbott, Kristin M.; Fu, Jingyuan; Wijmenga, Cisca; Sinke, Richard J.; Swertz, Morris A.; Franke, Lude

    2015-01-01

    Background: RNA-sequencing (RNA-seq) is a powerful technique for the identification of genetic variants that affect gene-expression levels, either through expression quantitative trait locus (eQTL) mapping or through allele-specific expression (ASE) analysis. Given increasing numbers of RNA-seq

  20. Data on the evolutionary history of the V(DJ recombination-activating protein 1 – RAG1 coupled with sequence and variant analyses

    Directory of Open Access Journals (Sweden)

    Abhishek Kumar

    2016-09-01

    Full Text Available RAG1 protein is one of the key component of RAG complex regulating the V(DJ recombination. There are only few studies for RAG1 concerning evolutionary history, detailed sequence and mutational hotspots. Herein, we present out datasets used for the recent comprehensive study of RAG1 based on sequence, phylogenetic and genetic variant analyses (Kumar et al., 2015 [1]. Protein sequence alignment helped in characterizing the conserved domains and regions of RAG1. It also aided in unraveling ancestral RAG1 in the sea urchin. Human genetic variant analyses revealed 751 mutational hotspots, located both in the coding and the non-coding regions. For further analysis and discussion, see (Kumar et al., 2015 [1].

  1. Quantitative Single-letter Sequencing: a method for simultaneously monitoring numerous known allelic variants in single DNA samples

    Directory of Open Access Journals (Sweden)

    Duborjal Hervé

    2008-02-01

    Full Text Available Abstract Background Pathogens such as fungi, bacteria and especially viruses, are highly variable even within an individual host, intensifying the difficulty of distinguishing and accurately quantifying numerous allelic variants co-existing in a single nucleic acid sample. The majority of currently available techniques are based on real-time PCR or primer extension and often require multiplexing adjustments that impose a practical limitation of the number of alleles that can be monitored simultaneously at a single locus. Results Here, we describe a novel method that allows the simultaneous quantification of numerous allelic variants in a single reaction tube and without multiplexing. Quantitative Single-letter Sequencing (QSS begins with a single PCR amplification step using a pair of primers flanking the polymorphic region of interest. Next, PCR products are submitted to single-letter sequencing with a fluorescently-labelled primer located upstream of the polymorphic region. The resulting monochromatic electropherogram shows numerous specific diagnostic peaks, attributable to specific variants, signifying their presence/absence in the DNA sample. Moreover, peak fluorescence can be quantified and used to estimate the frequency of the corresponding variant in the DNA population. Using engineered allelic markers in the genome of Cauliflower mosaic virus, we reliably monitored six different viral genotypes in DNA extracted from infected plants. Evaluation of the intrinsic variance of this method, as applied to both artificial plasmid DNA mixes and viral genome populations, demonstrates that QSS is a robust and reliable method of detection and quantification for variants with a relative frequency of between 0.05 and 1. Conclusion This simple method is easily transferable to many other biological systems and questions, including those involving high throughput analysis, and can be performed in any laboratory since it does not require specialized

  2. Cumulative role of rare and common putative functional genetic variants at NPAS3 in schizophrenia susceptibility.

    Science.gov (United States)

    González-Peñas, Javier; Arrojo, Manuel; Paz, Eduardo; Brenlla, Julio; Páramo, Mario; Costas, Javier

    2015-10-01

    Schizophrenia may be considered a human-specific disorder arisen as a maladaptive by-product of human-specific brain evolution. Therefore, genetic variants involved in susceptibility to schizophrenia may be identified among those genes related to acquisition of human-specific traits. NPAS3, a transcription factor involved in central nervous system development and neurogenesis, seems to be implicated in the evolution of human brain, as it is the human gene with most human-specific accelerated elements (HAEs), i.e., .mammalian conserved regulatory sequences with accelerated evolution in the lineage leading to humans after human-chimpanzee split. We hypothesize that any nucleotide variant at the NPAS3 HAEs may lead to altered susceptibility to schizophrenia. Twenty-one variants at these HAEs detected by the 1000 genomes Project, as well as five additional variants taken from psychiatric genome-wide association studies, were genotyped in 538 schizophrenic patients and 539 controls from Galicia. Analyses at the haplotype level or based on the cumulative role of the variants assuming different susceptibility models did not find any significant association in spite of enough power under several plausible scenarios regarding direction of effect and the specific role of rare and common variants. These results suggest that, contrary to our hypothesis, the special evolution of the NPAS3 HAEs in Homo relaxed the strong constraint on sequence that characterized these regions during mammalian evolution, allowing some sequence changes without any effect on schizophrenia risk. © 2015 Wiley Periodicals, Inc.

  3. Population genetic implications from sequence variation in four Y chromosome genes.

    Science.gov (United States)

    Shen, P; Wang, F; Underhill, P A; Franco, C; Yang, W H; Roxas, A; Sung, R; Lin, A A; Hyman, R W; Vollrath, D; Davis, R W; Cavalli-Sforza, L L; Oefner, P J

    2000-06-20

    Some insight into human evolution has been gained from the sequencing of four Y chromosome genes. Primary genomic sequencing determined gene SMCY to be composed of 27 exons that comprise 4,620 bp of coding sequence. The unfinished sequencing of the 5' portion of gene UTY1 was completed by primer walking, and a total of 20 exons were found. By using denaturing HPLC, these two genes, as well as DBY and DFFRY, were screened for polymorphic sites in 53-72 representatives of the five continents. A total of 98 variants were found, yielding nucleotide diversity estimates of 2.45 x 10(-5), 5. 07 x 10(-5), and 8.54 x 10(-5) for the coding regions of SMCY, DFFRY, and UTY1, respectively, with no variant having been observed in DBY. In agreement with most autosomal genes, diversity estimates for the noncoding regions were about 2- to 3-fold higher and ranged from 9. 16 x 10(-5) to 14.2 x 10(-5) for the four genes. Analysis of the frequencies of derived alleles for all four genes showed that they more closely fit the expectation of a Luria-Delbrück distribution than a distribution expected under a constant population size model, providing evidence for exponential population growth. Pairwise nucleotide mismatch distributions date the occurrence of population expansion to approximately 28,000 years ago. This estimate is in accord with the spread of Aurignacian technology and the disappearance of the Neanderthals.

  4. TIAM1 variants improve clinical outcome in neuroblastoma.

    Science.gov (United States)

    Sanmartín, Elena; Yáñez, Yania; Fornés-Ferrer, Victoria; Zugaza, José L; Cañete, Adela; Castel, Victoria; Font de Mora, Jaime

    2017-07-11

    Identification of tumor driver mutations is crucial for improving clinical outcome using a personalized approach to the treatment of cancer. Neuroblastoma is a tumor of the peripheral sympathetic nervous system for which only a few driver alterations have been described including MYCN amplification and ALK mutations. We assessed 106 primary neuroblastoma tumors by next generation sequencing using a customized amplicon-based gene panel. Our results reveal that genetic variants in TIAM1 gene associate with better clinical outcome, suggesting a role for these TIAM1 variants in preventing progression of this disease. The detected variants are located within the different domains of TIAM1 that signal to the upstream regulator RAS and downstream effector molecules MYC and RAC, which are all implicated in neuroblastoma etiology and progression. Clinical outcome was improved in tumors where a TIAM1 variant was present concomitantly with either ALK mutation or MYCN amplification. Given the function of these signaling molecules in cell survival, proliferation, differentiation and neurite outgrowth, our data suggest that the TIAM1-mediated network is essential to neuroblastoma and thus, inhibiting TIAM1 reflects a rational strategy for improving therapy efficacy in neuroblastoma.

  5. Nonsyndromic cleft lip with or without cleft palate: Increased burden of rare variants within Gremlin-1, a component of the bone morphogenetic protein 4 pathway.

    Science.gov (United States)

    Al Chawa, Taofik; Ludwig, Kerstin U; Fier, Heide; Pötzsch, Bernd; Reich, Rudolf H; Schmidt, Gül; Braumann, Bert; Daratsianos, Nikolaos; Böhmer, Anne C; Schuencke, Hannah; Alblas, Margrieta; Fricker, Nadine; Hoffmann, Per; Knapp, Michael; Lange, Christoph; Nöthen, Markus M; Mangold, Elisabeth

    2014-06-01

    The genes Gremlin-1 (GREM1) and Noggin (NOG) are components of the bone morphogenetic protein 4 pathway, which has been implicated in craniofacial development. Both genes map to recently identified susceptibility loci (chromosomal region 15q13, 17q22) for nonsyndromic cleft lip with or without cleft palate (nsCL/P). The aim of the present study was to determine whether rare variants in either gene are implicated in nsCL/P etiology. The complete coding regions, untranslated regions, and splice sites of GREM1 and NOG were sequenced in 96 nsCL/P patients and 96 controls of Central European ethnicity. Three burden and four nonburden tests were performed. Statistically significant results were followed up in a second case-control sample (n = 96, respectively). For rare variants observed in cases, segregation analyses were performed. In NOG, four rare sequence variants (minor allele frequency elements. © 2014 Wiley Periodicals, Inc.

  6. Deep sequencing of atrial fibrillation patients with mitral valve regurgitation shows no evidence of mosaicism but reveals novel rare germline variants

    DEFF Research Database (Denmark)

    Gregers, Emilie; Ahlberg, Gustav; Christensen, Thea

    2017-01-01

    the HaloPlex Target Enrichment System. MuTect software was used for identification of somatic point variants. We functionally characterized selected variants using electrophysiologic techniques. RESULTS: No somatic variants were identified in the cardiac tissue. Thirty-three patients (75%) had a rare...... patient population undergoing surgery for mitral valve regurgitation (MVR) to determine whether these patients are genetically predisposed to AF. METHODS: DNA was extracted from blood and left atrial tissue from 44 AF patients with MVR. Using next-generation sequencing, we investigated 110 genes using...... germline variation in ≥1 candidate genes. Fourteen variants were novel. Fifteen variants were predicted damaging or likely damaging in ≥6 in silico predictions. We identified rare variants in genes never directly associated with AF: KCNE4, SCN4B, NEURL1, and CAND2. Interestingly, 7 patients (16%) had...

  7. Influenza virus sequence feature variant type analysis: evidence of a role for NS1 in influenza virus host range restriction.

    Science.gov (United States)

    Noronha, Jyothi M; Liu, Mengya; Squires, R Burke; Pickett, Brett E; Hale, Benjamin G; Air, Gillian M; Galloway, Summer E; Takimoto, Toru; Schmolke, Mirco; Hunt, Victoria; Klem, Edward; García-Sastre, Adolfo; McGee, Monnie; Scheuermann, Richard H

    2012-05-01

    Genetic drift of influenza virus genomic sequences occurs through the combined effects of sequence alterations introduced by a low-fidelity polymerase and the varying selective pressures experienced as the virus migrates through different host environments. While traditional phylogenetic analysis is useful in tracking the evolutionary heritage of these viruses, the specific genetic determinants that dictate important phenotypic characteristics are often difficult to discern within the complex genetic background arising through evolution. Here we describe a novel influenza virus sequence feature variant type (Flu-SFVT) approach, made available through the public Influenza Research Database resource (www.fludb.org), in which variant types (VTs) identified in defined influenza virus protein sequence features (SFs) are used for genotype-phenotype association studies. Since SFs have been defined for all influenza virus proteins based on known structural, functional, and immune epitope recognition properties, the Flu-SFVT approach allows the rapid identification of the molecular genetic determinants of important influenza virus characteristics and their connection to underlying biological functions. We demonstrate the use of the SFVT approach to obtain statistical evidence for effects of NS1 protein sequence variations in dictating influenza virus host range restriction.

  8. Somatic cancer variant curation and harmonization through consensus minimum variant level data

    Directory of Open Access Journals (Sweden)

    Deborah I. Ritter

    2016-11-01

    Full Text Available Abstract Background To truly achieve personalized medicine in oncology, it is critical to catalog and curate cancer sequence variants for their clinical relevance. The Somatic Working Group (WG of the Clinical Genome Resource (ClinGen, in cooperation with ClinVar and multiple cancer variant curation stakeholders, has developed a consensus set of minimal variant level data (MVLD. MVLD is a framework of standardized data elements to curate cancer variants for clinical utility. With implementation of MVLD standards, and in a working partnership with ClinVar, we aim to streamline the somatic variant curation efforts in the community and reduce redundancy and time burden for the interpretation of cancer variants in clinical practice. Methods We developed MVLD through a consensus approach by i reviewing clinical actionability interpretations from institutions participating in the WG, ii conducting extensive literature search of clinical somatic interpretation schemas, and iii survey of cancer variant web portals. A forthcoming guideline on cancer variant interpretation, from the Association of Molecular Pathology (AMP, can be incorporated into MVLD. Results Along with harmonizing standardized terminology for allele interpretive and descriptive fields that are collected by many databases, the MVLD includes unique fields for cancer variants such as Biomarker Class, Therapeutic Context and Effect. In addition, MVLD includes recommendations for controlled semantics and ontologies. The Somatic WG is collaborating with ClinVar to evaluate MVLD use for somatic variant submissions. ClinVar is an open and centralized repository where sequencing laboratories can report summary-level variant data with clinical significance, and ClinVar accepts cancer variant data. Conclusions We expect the use of the MVLD to streamline clinical interpretation of cancer variants, enhance interoperability among multiple redundant curation efforts, and increase submission of

  9. Identifying pathogenicity of human variants via paralog-based yeast complementation.

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2017-05-01

    Full Text Available To better understand the health implications of personal genomes, we now face a largely unmet challenge to identify functional variants within disease-associated genes. Functional variants can be identified by trans-species complementation, e.g., by failure to rescue a yeast strain bearing a mutation in an orthologous human gene. Although orthologous complementation assays are powerful predictors of pathogenic variation, they are available for only a few percent of human disease genes. Here we systematically examine the question of whether complementation assays based on paralogy relationships can expand the number of human disease genes with functional variant detection assays. We tested over 1,000 paralogous human-yeast gene pairs for complementation, yielding 34 complementation relationships, of which 33 (97% were novel. We found that paralog-based assays identified disease variants with success on par with that of orthology-based assays. Combining all homology-based assay results, we found that complementation can often identify pathogenic variants outside the homologous sequence region, presumably because of global effects on protein folding or stability. Within our search space, paralogy-based complementation more than doubled the number of human disease genes with a yeast-based complementation assay for disease variation.

  10. Making the most of RNA-seq: Pre-processing sequencing data with Opossum for reliable SNP variant detection [version 2; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Laura Oikkonen

    2017-03-01

    Full Text Available Identifying variants from RNA-seq (transcriptome sequencing data is a cost-effective and versatile complement to whole-exome (WES and whole-genome sequencing (WGS analysis. RNA-seq (transcriptome sequencing is primarily considered a method of gene expression analysis but it can also be used to detect DNA variants in expressed regions of the genome. However, current variant callers do not generally behave well with RNA-seq data due to reads encompassing intronic regions. We have developed a software programme called Opossum to address this problem. Opossum pre-processes RNA-seq reads prior to variant calling, and although it has been designed to work specifically with Platypus, it can be used equally well with other variant callers such as GATK HaplotypeCaller. In this work, we show that using Opossum in conjunction with either Platypus or GATK HaplotypeCaller maintains precision and improves the sensitivity for SNP detection compared to the GATK Best Practices pipeline. In addition, using it in combination with Platypus offers a substantial reduction in run times compared to the GATK pipeline so it is ideal when there are only limited time or computational resources available.

  11. Whole-exome sequencing implicates DGKH as a risk gene for panic disorder in the Faroese population

    DEFF Research Database (Denmark)

    Gregersen, Noomi; Lescai, Francesco; Liang, Jieqin

    2016-01-01

    attacks, and genetic factors have been estimated to explain around 40% of the risk. In this study the potential enrichment of PD risk variants was explored based on whole-exome sequencing of 54 patients with PD and 211 control individuals from the Faroese population. No genome-wide significant......The demographic history of the isolated population of the Faroe Islands may have induced enrichment of variants rarely seen in outbred European populations, including enrichment of risk variants for panic disorder (PD). PD is a common mental disorder, characterized by recurring and unprovoked panic...... mental disorders. Additionally, we found an enrichment of PD risk variants in the Faroese population; variants with otherwise low frequency in more outbreed European populations. © 2016 Wiley Periodicals, Inc....

  12. Detection of de novo single nucleotide variants in offspring of atomic-bomb survivors close to the hypocenter by whole-genome sequencing.

    Science.gov (United States)

    Horai, Makiko; Mishima, Hiroyuki; Hayashida, Chisa; Kinoshita, Akira; Nakane, Yoshibumi; Matsuo, Tatsuki; Tsuruda, Kazuto; Yanagihara, Katsunori; Sato, Shinya; Imanishi, Daisuke; Imaizumi, Yoshitaka; Hata, Tomoko; Miyazaki, Yasushi; Yoshiura, Koh-Ichiro

    2018-03-01

    Ionizing radiation released by the atomic bombs at Hiroshima and Nagasaki, Japan, in 1945 caused many long-term illnesses, including increased risks of malignancies such as leukemia and solid tumours. Radiation has demonstrated genetic effects in animal models, leading to concerns over the potential hereditary effects of atomic bomb-related radiation. However, no direct analyses of whole DNA have yet been reported. We therefore investigated de novo variants in offspring of atomic-bomb survivors by whole-genome sequencing (WGS). We collected peripheral blood from three trios, each comprising a father (atomic-bomb survivor with acute radiation symptoms), a non-exposed mother, and their child, none of whom had any past history of haematological disorders. One trio of non-exposed individuals was included as a control. DNA was extracted and the numbers of de novo single nucleotide variants in the children were counted by WGS with sequencing confirmation. Gross structural variants were also analysed. Written informed consent was obtained from all participants prior to the study. There were 62, 81, and 42 de novo single nucleotide variants in the children of atomic-bomb survivors, compared with 48 in the control trio. There were no gross structural variants in any trio. These findings are in accord with previously published results that also showed no significant genetic effects of atomic-bomb radiation on second-generation survivors.

  13. A map of human genome variation from population-scale sequencing.

    Science.gov (United States)

    Abecasis, Gonçalo R; Altshuler, David; Auton, Adam; Brooks, Lisa D; Durbin, Richard M; Gibbs, Richard A; Hurles, Matt E; McVean, Gil A

    2010-10-28

    The 1000 Genomes Project aims to provide a deep characterization of human genome sequence variation as a foundation for investigating the relationship between genotype and phenotype. Here we present results of the pilot phase of the project, designed to develop and compare different strategies for genome-wide sequencing with high-throughput platforms. We undertook three projects: low-coverage whole-genome sequencing of 179 individuals from four populations; high-coverage sequencing of two mother-father-child trios; and exon-targeted sequencing of 697 individuals from seven populations. We describe the location, allele frequency and local haplotype structure of approximately 15 million single nucleotide polymorphisms, 1 million short insertions and deletions, and 20,000 structural variants, most of which were previously undescribed. We show that, because we have catalogued the vast majority of common variation, over 95% of the currently accessible variants found in any individual are present in this data set. On average, each person is found to carry approximately 250 to 300 loss-of-function variants in annotated genes and 50 to 100 variants previously implicated in inherited disorders. We demonstrate how these results can be used to inform association and functional studies. From the two trios, we directly estimate the rate of de novo germline base substitution mutations to be approximately 10(-8) per base pair per generation. We explore the data with regard to signatures of natural selection, and identify a marked reduction of genetic variation in the neighbourhood of genes, due to selection at linked sites. These methods and public data will support the next phase of human genetic research.

  14. Construction of a combinatorial pipeline using two somatic variant  calling  methods  for whole exome sequence data of gastric cancer.

    Science.gov (United States)

    Kohmoto, Tomohiro; Masuda, Kiyoshi; Naruto, Takuya; Tange, Shoichiro; Shoda, Katsutoshi; Hamada, Junichi; Saito, Masako; Ichikawa, Daisuke; Tajima, Atsushi; Otsuji, Eigo; Imoto, Issei

    2017-01-01

    High-throughput next-generation sequencing is a powerful tool to identify the genotypic landscapes of somatic variants and therapeutic targets in various cancers including gastric cancer, forming the basis for personalized medicine in the clinical setting. Although the advent of many computational algorithms leads to higher accuracy in somatic variant calling, no standard method exists due to the limitations of each method. Here, we constructed a new pipeline. We combined two different somatic variant callers with different algorithms, Strelka and VarScan 2, and evaluated performance using whole exome sequencing data obtained from 19 Japanese cases with gastric cancer (GC); then, we characterized these tumors based on identified driver molecular alterations. More single nucleotide variants (SNVs) and small insertions/deletions were detected by Strelka and VarScan 2, respectively. SNVs detected by both tools showed higher accuracy for estimating somatic variants compared with those detected by only one of the two tools and accurately showed the mutation signature and mutations of driver genes reported for GC. Our combinatorial pipeline may have an advantage in detection of somatic mutations in GC and may be useful for further genomic characterization of Japanese patients with GC to improve the efficacy of GC treatments. J. Med. Invest. 64: 233-240, August, 2017.

  15. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure underpinning obesity

    Science.gov (United States)

    Turcot, Valérie; Lu, Yingchang; Highland, Heather M; Schurmann, Claudia; Justice, Anne E; Fine, Rebecca S; Bradfield, Jonathan P; Esko, Tõnu; Giri, Ayush; Graff, Mariaelisa; Guo, Xiuqing; Hendricks, Audrey E; Karaderi, Tugce; Lempradl, Adelheid; Locke, Adam E; Mahajan, Anubha; Marouli, Eirini; Sivapalaratnam, Suthesh; Young, Kristin L; Alfred, Tamuno; Feitosa, Mary F; Masca, Nicholas GD; Manning, Alisa K; Medina-Gomez, Carolina; Mudgal, Poorva; Ng, Maggie CY; Reiner, Alex P; Vedantam, Sailaja; Willems, Sara M; Winkler, Thomas W; Abecasis, Goncalo; Aben, Katja K; Alam, Dewan S; Alharthi, Sameer E; Allison, Matthew; Amouyel, Philippe; Asselbergs, Folkert W; Auer, Paul L; Balkau, Beverley; Bang, Lia E; Barroso, Inês; Bastarache, Lisa; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F; Blüher, Matthias; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P; Bowden, Donald W; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Brumat, Marco; Burt, Amber A; Butterworth, Adam S; Campbell, Peter T; Cappellani, Stefania; Carey, David J; Catamo, Eulalia; Caulfield, Mark J; Chambers, John C; Chasman, Daniel I; Chen, Yii-Der Ida; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S; Cook, James P; Corley, Janie; Galbany, Jordi Corominas; Cox, Amanda J; Crosslin, David S; Cuellar-Partida, Gabriel; D'Eustacchio, Angela; Danesh, John; Davies, Gail; de Bakker, Paul IW; de Groot, Mark CH; de Mutsert, Renée; Deary, Ian J; Dedoussis, George; Demerath, Ellen W; den Heijer, Martin; den Hollander, Anneke I; den Ruijter, Hester M; Dennis, Joe G; Denny, Josh C; Di Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dubé, Marie-Pierre; Dunning, Alison M; Easton, Douglas F; Edwards, Todd L; Ellinghaus, David; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Farooqi, I. Sadaf; Faul, Jessica D; Fauser, Sascha; Feng, Shuang; Ferrannini, Ele; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franco, Oscar H; Franke, Andre; Franks, Paul W; Friedrich, Nele; Frikke-Schmidt, Ruth; Galesloot, Tessel E.; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Gibson, Jane; Giedraitis, Vilmantas; Gjesing, Anette P; Gordon-Larsen, Penny; Gorski, Mathias; Grabe, Hans-Jörgen; Grant, Struan FA; Grarup, Niels; Griffiths, Helen L; Grove, Megan L; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeff; Hakonarson, Hakon; Hammerschlag, Anke R; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B; Hattersley, Andrew T; Have, Christian T; Hayward, Caroline; He, Liang; Heard-Costa, Nancy L; Heath, Andrew C; Heid, Iris M; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Holmen, Oddgeir L; Hovingh, G Kees; Howson, Joanna MM; Hu, Yao; Huang, Paul L; Huffman, Jennifer E; Ikram, M Arfan; Ingelsson, Erik; Jackson, Anne U; Jansson, Jan-Håkan; Jarvik, Gail P; Jensen, Gorm B; Jia, Yucheng; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jukema, J Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon LR; Karpe, Fredrik; Kathiresan, Sekar; Kee, Frank; Kiemeney, Lambertus A; Kim, Eric; Kitajima, Hidetoshi; Komulainen, Pirjo; Kooner, Jaspal S; Kooperberg, Charles; Korhonen, Tellervo; Kovacs, Peter; Kuivaniemi, Helena; Kutalik, Zoltán; Kuulasmaa, Kari; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A; Lamparter, David; Lange, Ethan M; Lange, Leslie A; Langenberg, Claudia; Larson, Eric B; Lee, Nanette R; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Keng-Hung; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Ching-Ti; Liu, Dajiang J; Liu, Yongmei; Lo, Ken Sin; Lophatananon, Artitaya; Lotery, Andrew J; Loukola, Anu; Luan, Jian'an; Lubitz, Steven A; Lyytikäinen, Leo-Pekka; Männistö, Satu; Marenne, Gaëlle; Mazul, Angela L; McCarthy, Mark I; McKean-Cowdin, Roberta; Medland, Sarah E; Meidtner, Karina; Milani, Lili; Mistry, Vanisha; Mitchell, Paul; Mohlke, Karen L; Moilanen, Leena; Moitry, Marie; Montgomery, Grant W; Mook-Kanamori, Dennis O; Moore, Carmel; Mori, Trevor A; Morris, Andrew D; Morris, Andrew P; Müller-Nurasyid, Martina; Munroe, Patricia B; Nalls, Mike A; Narisu, Narisu; Nelson, Christopher P; Neville, Matt; Nielsen, Sune F; Nikus, Kjell; Njølstad, Pål R; Nordestgaard, Børge G; Nyholt, Dale R; O'Connel, Jeffrey R; O’Donoghue, Michelle L.; Olde Loohuis, Loes M; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J; Padmanabhan, Sandosh; Palmer, Colin NA; Palmer, Nicholette D; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L; Peloso, Gina M; Pennell, Craig E; Perola, Markus; Perry, James A; Perry, John RB; Pers, Tune H; Person, Thomas N; Peters, Annette; Petersen, Eva RB; Peyser, Patricia A; Pirie, Ailith; Polasek, Ozren; Polderman, Tinca J; Puolijoki, Hannu; Raitakari, Olli T; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Renström, Frida; Rheinberger, Myriam; Ridker, Paul M; Rioux, John D; Rivas, Manuel A; Roberts, David J; Robertson, Neil R; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J; Sapkota, Yadav; Sattar, Naveed; Schoen, Robert E; Schreiner, Pamela J; Schulze, Matthias B; Scott, Robert A; Segura-Lepe, Marcelo P; Shah, Svati H; Sheu, Wayne H-H; Sim, Xueling; Slater, Andrew J; Small, Kerrin S; Smith, Albert Vernon; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K; Starr, John M; Stefansson, Kari; Steinthorsdottir, Valgerdur; Stirrups, Kathleen E; Strauch, Konstantin; Stringham, Heather M; Stumvoll, Michael; Sun, Liang; Surendran, Praveen; Swift, Amy J; Tada, Hayato; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D; Teumer, Alexander; Thompson, Deborah J; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Thuesen, Betina H; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P; Uher, Rudolf; Uitterlinden, André G; Uusitupa, Matti; van der Laan, Sander W; van Duijn, Cornelia M; van Leeuwen, Nienke; van Setten, Jessica; Vanhala, Mauno; Varbo, Anette; Varga, Tibor V; Varma, Rohit; Velez Edwards, Digna R; Vermeulen, Sita H; Veronesi, Giovanni; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Völker, Uwe; Vuckovic, Dragana; Wagenknecht, Lynne E; Walker, Mark; Wallentin, Lars; Wang, Feijie; Wang, Carol A; Wang, Shuai; Wang, Yiqin; Ware, Erin B; Wareham, Nicholas J; Warren, Helen R; Waterworth, Dawn M; Wessel, Jennifer; White, Harvey D; Willer, Cristen J; Wilson, James G; Witte, Daniel R; Wood, Andrew R; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhao, Wei; Zhou, Wei; Zondervan, Krina T; Rotter, Jerome I; Pospisilik, John A; Rivadeneira, Fernando; Borecki, Ingrid B; Deloukas, Panos; Frayling, Timothy M; Lettre, Guillaume; North, Kari E; Lindgren, Cecilia M; Hirschhorn, Joel N; Loos, Ruth JF

    2018-01-01

    Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, non-coding variants from which pinpointing causal genes remains challenging. Here, we combined data from 718,734 individuals to discover rare and low-frequency (MAFobesity, two (MC4R, KSR2) previously observed in extreme obesity, and two variants in GIPR. Effect sizes of rare variants are ~10 times larger than of common variants, with the largest effect observed in carriers of an MC4R stop-codon (p.Tyr35Ter, MAF=0.01%), weighing ~7kg more than non-carriers. Pathway analyses confirmed enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically-supported therapeutic targets to treat obesity. PMID:29273807

  16. Performance of ACMG-AMP Variant-Interpretation Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium.

    Science.gov (United States)

    Amendola, Laura M; Jarvik, Gail P; Leo, Michael C; McLaughlin, Heather M; Akkari, Yassmine; Amaral, Michelle D; Berg, Jonathan S; Biswas, Sawona; Bowling, Kevin M; Conlin, Laura K; Cooper, Greg M; Dorschner, Michael O; Dulik, Matthew C; Ghazani, Arezou A; Ghosh, Rajarshi; Green, Robert C; Hart, Ragan; Horton, Carrie; Johnston, Jennifer J; Lebo, Matthew S; Milosavljevic, Aleksandar; Ou, Jeffrey; Pak, Christine M; Patel, Ronak Y; Punj, Sumit; Richards, Carolyn Sue; Salama, Joseph; Strande, Natasha T; Yang, Yaping; Plon, Sharon E; Biesecker, Leslie G; Rehm, Heidi L

    2016-06-02

    Evaluating the pathogenicity of a variant is challenging given the plethora of types of genetic evidence that laboratories consider. Deciding how to weigh each type of evidence is difficult, and standards have been needed. In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published guidelines for the assessment of variants in genes associated with Mendelian diseases. Nine molecular diagnostic laboratories involved in the Clinical Sequencing Exploratory Research (CSER) consortium piloted these guidelines on 99 variants spanning all categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign). Nine variants were distributed to all laboratories, and the remaining 90 were evaluated by three laboratories. The laboratories classified each variant by using both the laboratory's own method and the ACMG-AMP criteria. The agreement between the two methods used within laboratories was high (K-alpha = 0.91) with 79% concordance. However, there was only 34% concordance for either classification system across laboratories. After consensus discussions and detailed review of the ACMG-AMP criteria, concordance increased to 71%. Causes of initial discordance in ACMG-AMP classifications were identified, and recommendations on clarification and increased specification of the ACMG-AMP criteria were made. In summary, although an initial pilot of the ACMG-AMP guidelines did not lead to increased concordance in variant interpretation, comparing variant interpretations to identify differences and having a common framework to facilitate resolution of those differences were beneficial for improving agreement, allowing iterative movement toward increased reporting consistency for variants in genes associated with monogenic disease. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Implication of the presence of a variant hepatic artery during the Whipple procedure.

    Science.gov (United States)

    Rubio-Manzanares-Dorado, Mercedes; Marín-Gómez, Luis Miguel; Aparicio-Sánchez, Daniel; Suárez-Artacho, Gonzalo; Bellido, Carmen; Álamo, José María; Serrano-Díaz-Canedo, Juan; Padillo-Ruiz, Francisco Javier; Gómez-Bravo, Miguel Ángel

    2015-07-01

    The anatomical variants of the hepatic artery may have important implications for pancreatic cancer surgery. The aim of our study is to compare the outcome following a pancreatoduodenectomy (PD) in patients with or without a variant hepatic artery arising from superior mesenteric artery. We reviewed 151 patients with periampullary tumoral pathology. All patients underwent oncological PD between January 2005 and February 2012. Our series was divided into two groups: Group A: Patients with a hepatic artery arising from superior mesenteric artery; and Group B: Patients without a hepatic artery arising from superior mesenteric artery. We expressed the results as mean +/- standard deviation for continuous variables and percentages for qualitative variables. Statistical tests were considered significant if p < 0.05. We identified 11 patients with a hepatic artery arising from superior mesenteric artery (7.3%). The most frequent variant was an aberrant right hepatic artery (n = 7), following by the accessory right hepatic artery (n = 2) and the common hepatic artery trunk arising from the superior mesenteric artery (n = 2). In 73% of cases the diagnosis of the variant was intraoperative. R0 resection was performed in all patients with a hepatic artery arising from superior mesenteric artery. There were no significant differences in the tumor resection margins and the incidence of postoperative complications. Oncological PD is feasible by the presence of a hepatic artery arising from superior mesenteric artery. The complexity of having it does not seem to influence in tumor resection margins, complications and survival.

  18. Autozygosity reveals recessive mutations and novel mechanisms in dominant genes: implications in variant interpretation

    KAUST Repository

    Monies, Dorota

    2017-04-06

    The purpose of this study is to describe recessive alleles in strictly dominant genes. Identifying recessive mutations in genes for which only dominant disease or risk alleles have been reported can expand our understanding of the medical relevance of these genes both phenotypically and mechanistically. The Saudi population is enriched for autozygosity, which enhances the homozygous occurrence of alleles, including pathogenic alleles in genes that have been associated only with a dominant inheritance pattern.Exome sequencing of patients from consanguineous families with likely recessive phenotypes was performed. In one family, the genotype of the deceased children was inferred from their parents due to lack of available samples.We describe the identification of 11 recessive variants (5 of which are reported here for the first time) in 11 genes for which only dominant disease or risk alleles have been reported. The observed phenotypes for these recessive variants were novel (e.g., FBN2-related myopathy and CSF1R-related brain malformation and osteopetrosis), typical (e.g., ACTG2-related visceral myopathy), or an apparently healthy state (e.g., PDE11A), consistent with the corresponding mouse knockout phenotypes.Our results show that, in the era of genomic sequencing and

  19. Coval: improving alignment quality and variant calling accuracy for next-generation sequencing data.

    Directory of Open Access Journals (Sweden)

    Shunichi Kosugi

    Full Text Available Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads that remained in alignments after local realignment and error correction of mismatched reads. The error correction is executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample. We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in 'targeted' alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel identification. Coval is available at http://sourceforge.net/projects/coval105/.

  20. Generic and sequence-variant specific molecular assays for the detection of the highly variable Grapevine leafroll-associated virus 3.

    Science.gov (United States)

    Chooi, Kar Mun; Cohen, Daniel; Pearson, Michael N

    2013-04-01

    Grapevine leafroll-associated virus 3 (GLRaV-3) is an economically important virus, which is found in all grapevine growing regions worldwide. Its accurate detection in nursery and field samples is of high importance for certification schemes and disease management programmes. To reduce false negatives that can be caused by sequence variability, a new universal primer pair was designed against a divergent sequence data set, targeting the open reading frame 4 (heat shock protein 70 homologue gene), and optimised for conventional one-step RT-PCR and one-step SYBR Green real-time RT-PCR assays. In addition, primer pairs for the simultaneous detection of specific GLRaV-3 variants from groups 1, 2, 6 (specifically NZ-1) and the outlier NZ2 variant, and the generic detection of variants from groups 1 to 5 were designed and optimised as a conventional one-step multiplex RT-PCR assay using the plant nad5 gene as an internal control (i.e. one-step hexaplex RT-PCR). Results showed that the generic and variant specific assays detected in vitro RNA transcripts from a range of 1×10(1)-1×10(8) copies of amplicon per μl diluted in healthy total RNA from Vitis vinifera cv. Cabernet Sauvignon. Furthermore, the assays were employed effectively to screen 157 germplasm and 159 commercial field samples. Thus results demonstrate that the GLRaV-3 generic and variant-specific assays are prospective tools that will be beneficial for certification schemes and disease management programmes, as well as biological and epidemiological studies of the divergent GLRaV-3 populations. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A clinically driven variant prioritization framework outperforms purely computational approaches for the diagnostic analysis of singleton WES data.

    Science.gov (United States)

    Stark, Zornitza; Dashnow, Harriet; Lunke, Sebastian; Tan, Tiong Y; Yeung, Alison; Sadedin, Simon; Thorne, Natalie; Macciocca, Ivan; Gaff, Clara; Oshlack, Alicia; White, Susan M; James, Paul A

    2017-11-01

    Rapid identification of clinically significant variants is key to the successful application of next generation sequencing technologies in clinical practice. The Melbourne Genomics Health Alliance (MGHA) variant prioritization framework employs a gene prioritization index based on clinician-generated a priori gene lists, and a variant prioritization index (VPI) based on rarity, conservation and protein effect. We used data from 80 patients who underwent singleton whole exome sequencing (WES) to test the ability of the framework to rank causative variants highly, and compared it against the performance of other gene and variant prioritization tools. Causative variants were identified in 59 of the patients. Using the MGHA prioritization framework the average rank of the causative variant was 2.24, with 76% ranked as the top priority variant, and 90% ranked within the top five. Using clinician-generated gene lists resulted in ranking causative variants an average of 8.2 positions higher than prioritization based on variant properties alone. This clinically driven prioritization approach significantly outperformed purely computational tools, placing a greater proportion of causative variants top or in the top 5 (permutation P-value=0.001). Clinicians included 40 of the 49 WES diagnoses in their a priori list of differential diagnoses (81%). The lists generated by PhenoTips and Phenomizer contained 14 (29%) and 18 (37%) of these diagnoses respectively. These results highlight the benefits of clinically led variant prioritization in increasing the efficiency of singleton WES data analysis and have important implications for developing models for the funding and delivery of genomic services.

  2. Integrating sequencing technologies in personal genomics: optimal low cost reconstruction of structural variants.

    Directory of Open Access Journals (Sweden)

    Jiang Du

    2009-07-01

    Full Text Available The goal of human genome re-sequencing is obtaining an accurate assembly of an individual's genome. Recently, there has been great excitement in the development of many technologies for this (e.g. medium and short read sequencing from companies such as 454 and SOLiD, and high-density oligo-arrays from Affymetrix and NimbelGen, with even more expected to appear. The costs and sensitivities of these technologies differ considerably from each other. As an important goal of personal genomics is to reduce the cost of re-sequencing to an affordable point, it is worthwhile to consider optimally integrating technologies. Here, we build a simulation toolbox that will help us optimally combine different technologies for genome re-sequencing, especially in reconstructing large structural variants (SVs. SV reconstruction is considered the most challenging step in human genome re-sequencing. (It is sometimes even harder than de novo assembly of small genomes because of the duplications and repetitive sequences in the human genome. To this end, we formulate canonical problems that are representative of issues in reconstruction and are of small enough scale to be computationally tractable and simulatable. Using semi-realistic simulations, we show how we can combine different technologies to optimally solve the assembly at low cost. With mapability maps, our simulations efficiently handle the inhomogeneous repeat-containing structure of the human genome and the computational complexity of practical assembly algorithms. They quantitatively show how combining different read lengths is more cost-effective than using one length, how an optimal mixed sequencing strategy for reconstructing large novel SVs usually also gives accurate detection of SNPs/indels, how paired-end reads can improve reconstruction efficiency, and how adding in arrays is more efficient than just sequencing for disentangling some complex SVs. Our strategy should facilitate the sequencing of

  3. The clinical implications of variants of vena cava inferior and aorta on retroperitoneal surgery

    Directory of Open Access Journals (Sweden)

    S. V. Mukhtarulina

    2014-12-01

    Full Text Available Objective: to study variants of retroperitoneal vascular structure and its clinical implications on retroperitoneal surgery in patients with cervical cancer IA–IIB stage.Materials and methods. 101 patients who underwent paraaortic and bilateral pelvic lymphadenectomy were included in this study. 10 patients of the first group with anomalies of inferior vena cava, renal arteries and veins, common iliac vein and ovarian vessels were compared with 91 patients of the second group without anomalies.Results. Variants of major retroperitoneal vascular structure were present in 10 (9.9 % patients. Supernumerary renal arteries and veins observed in 5 (4.9 % patients; retroaortic left renal vein type I and II – in 3 (3.0 % patients. Double vena cava inferior detected in 1 (1.0 % patient. Patients with variants of retroperitoneal vascular structures hadn’t vessel injury. There was no difference in intraoperative hemorrhage, transfusion red blood cell, rate of intraoperative hemoglobin and removed paraaortic lymph nodes between the groups. Risk factors for intraoperative bleeding in patients with cervical cancer, depending on the presence or absence of anomalies of retroperitoneal vessels had no significant difference.Conclusion. Despite the fact that the variants of retroperitoneal vascular structures are rare (9.9 %, the success of retroperitoneal surgery is associated with the knowledge of vascular variations which decrease serious, life-threatening complications.

  4. A novel pathogenic variant in an Iranian Ataxia telangiectasia family revealed by next-generation sequencing followed by in silico analysis.

    Science.gov (United States)

    Tabatabaiefar, Mohammad Amin; Alipour, Paria; Pourahmadiyan, Azam; Fattahi, Najmeh; Shariati, Laleh; Golchin, Neda; Mohammadi-Asl, Javad

    2017-08-15

    Ataxia telangiectasia (A-T) is a neurodegenerative autosomal recessive disorder with the main characteristics of progressive cerebellar degeneration, sensitivity to ionizing radiation, immunodeficiency, telangiectasia, premature aging, recurrent sinopulmonary infections, and increased risk of malignancy, especially of lymphoid origin. Ataxia Telangiectasia Mutated gene, ATM, as a causative gene for the A-T disorder, encodes the ATM protein, which plays an important role in the activation of cell-cycle checkpoints and initiation of DNA repair in response to DNA damage. Targeted next-generation sequencing (NGS) was performed on an Iranian 5-year-old boy presented with truncal and limb ataxia, telangiectasia of the eye, Hodgkin lymphoma, hyper pigmentation, total alopecia, hepatomegaly, and dysarthria. Sanger sequencing was used to confirm the candidate pathogenic variants. Computational docking was done using the HEX software to examine how this change affects the interactions of ATM with the upstream and downstream proteins. Three different variants were identified comprising two homozygous SNPs and one novel homozygous frameshift variant (c.80468047delTA, p.Thr2682ThrfsX5), which creates a stop codon in exon 57 leaving the protein truncated at its C-terminal portion. Therefore, the activation and phosphorylation of target proteins are lost. Moreover, the HEX software confirmed that the mutated protein lost its interaction with upstream and downstream proteins. The variant was classified as pathogenic based on the American College of Medical Genetics and Genomics guideline. This study expands the spectrum of ATM pathogenic variants in Iran and demonstrates the utility of targeted NGS in genetic diagnostics. Copyright © 2017. Published by Elsevier B.V.

  5. Whole genome sequencing reveals a novel deletion variant in the KIT gene in horses with white spotted coat colour phenotypes.

    Science.gov (United States)

    Dürig, N; Jude, R; Holl, H; Brooks, S A; Lafayette, C; Jagannathan, V; Leeb, T

    2017-08-01

    White spotting phenotypes in horses can range in severity from the common white markings up to completely white horses. EDNRB, KIT, MITF, PAX3 and TRPM1 represent known candidate genes for such phenotypes in horses. For the present study, we re-investigated a large horse family segregating a variable white spotting phenotype, for which conventional Sanger sequencing of the candidate genes' individual exons had failed to reveal the causative variant. We obtained whole genome sequence data from an affected horse and specifically searched for structural variants in the known candidate genes. This analysis revealed a heterozygous ~1.9-kb deletion spanning exons 10-13 of the KIT gene (chr3:77,740,239_77,742,136del1898insTATAT). In continuity with previously named equine KIT variants we propose to designate the newly identified deletion variant W22. We had access to 21 horses carrying the W22 allele. Four of them were compound heterozygous W20/W22 and had a completely white phenotype. Our data suggest that W22 represents a true null allele of the KIT gene, whereas the previously identified W20 leads to a partial loss of function. These findings will enable more precise genetic testing for depigmentation phenotypes in horses. © 2017 Stichting International Foundation for Animal Genetics.

  6. Annotating pathogenic non-coding variants in genic regions.

    Science.gov (United States)

    Gelfman, Sahar; Wang, Quanli; McSweeney, K Melodi; Ren, Zhong; La Carpia, Francesca; Halvorsen, Matt; Schoch, Kelly; Ratzon, Fanni; Heinzen, Erin L; Boland, Michael J; Petrovski, Slavé; Goldstein, David B

    2017-08-09

    Identifying the underlying causes of disease requires accurate interpretation of genetic variants. Current methods ineffectively capture pathogenic non-coding variants in genic regions, resulting in overlooking synonymous and intronic variants when searching for disease risk. Here we present the Transcript-inferred Pathogenicity (TraP) score, which uses sequence context alterations to reliably identify non-coding variation that causes disease. High TraP scores single out extremely rare variants with lower minor allele frequencies than missense variants. TraP accurately distinguishes known pathogenic and benign variants in synonymous (AUC = 0.88) and intronic (AUC = 0.83) public datasets, dismissing benign variants with exceptionally high specificity. TraP analysis of 843 exomes from epilepsy family trios identifies synonymous variants in known epilepsy genes, thus pinpointing risk factors of disease from non-coding sequence data. TraP outperforms leading methods in identifying non-coding variants that are pathogenic and is therefore a valuable tool for use in gene discovery and the interpretation of personal genomes.While non-coding synonymous and intronic variants are often not under strong selective constraint, they can be pathogenic through affecting splicing or transcription. Here, the authors develop a score that uses sequence context alterations to predict pathogenicity of synonymous and non-coding genetic variants, and provide a web server of pre-computed scores.

  7. Implication of the presence of a variant hepatic artery during the Whipple procedure

    Directory of Open Access Journals (Sweden)

    Mercedes Rubio-Manzanares-Dorado

    2015-07-01

    Full Text Available Introduction: The anatomical variants of the hepatic artery may have important implications for pancreatic cancer surgery. The aim of our study is to compare the outcome following a pancreatoduodenectomy (PD in patients with or without a variant hepatic artery arising from superior mesenteric artery. Material and methods: We reviewed 151 patients with periampullary tumoral pathology. All patients underwent oncological PD between January 2005 and February 2012. Our series was divided into two groups: Group A: Patients with a hepatic artery arising from superior mesenteric artery; and Group B: Patients without a hepatic artery arising from superior mesenteric artery. We expressed the results as mean ± standard deviation for continuous variables and percentages for qualitative variables. Statistical tests were considered significant if p < 0.05. Results: We identified 11 patients with a hepatic artery arising from superior mesenteric artery (7.3%. The most frequent variant was an aberrant right hepatic artery (n = 7, following by the accessory right hepatic artery (n = 2 and the common hepatic artery trunk arising from the superior mesenteric artery (n = 2. In 73% of cases the diagnosis of the variant was intraoperative. R0 resection was performed in all patients with a hepatic artery arising from superior mesenteric artery. There were no significant differences in the tumor resection margins and the incidence of postoperative complications. Conclusion: Oncological PD is feasible by the presence of a hepatic artery arising from superior mesenteric artery. The complexity of having it does not seem to influence in tumor resection margins, complications and survival.

  8. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity

    NARCIS (Netherlands)

    Turcot, Valérie; Lu, Yingchang; Highland, Heather M; Schurmann, Claudia; Justice, Anne E.; Fine, Rebecca S; Bradfield, Jonathan P.; Esko, Tõnu; Giri, Ayush; Graff, Mariaelisa; Guo, Xiuqing; Hendricks, Audrey E.; Karaderi, Tugce; Lempradl, Adelheid; Locke, Adam E.; Mahajan, Anubha; Marouli, Eirini; Sivapalaratnam, Suthesh; Young, Kristin L; Alfred, Tamuno; Feitosa, Mary F.; Masca, Nicholas G D; Manning, Alisa K.; Medina-Gomez, Carolina; Mudgal, Poorva; Ng, Maggie C Y; Reiner, Alex P.; Vedantam, Sailaja; Willems, Sara M; Winkler, Thomas W.; Abecasis, Gonçalo; Aben, Katja K H; Alam, Dewan S.; Alharthi, Sameer E; Allison, Matthew A.; Amouyel, Philippe; Asselbergs, Folkert W; Auer, Paul L.; Balkau, Beverley; Bang, Lia E; Barroso, Inês; Bastarache, Lisa; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F.; Blüher, Matthias; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A; Bork-Jensen, Jette; Bots, Michiel L; Bottinger, Erwin P.; Bowden, Donald W.; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H; Broer, Linda; Brumat, Marco; Burt, Amber; Butterworth, Adam S.; Campbell, Peter T.; Cappellani, Stefania; Carey, David J; Catamo, Eulalia; Caulfield, Mark J.; Chambers, John C.; Chasman, Daniel I.; Chen, Yii-Der Ida; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y; Cocca, Massimiliano; Collins, Francis S.; Cook, James P.; Corley, Janie; Corominas Galbany, Jordi; Cox, Amanda J; Crosslin, David S; Cuellar-Partida, Gabriel; D'Eustacchio, Angela; Danesh, John; Davies, Gail; De Bakker, Paul I W; de Groot, Mark C H; de Mutsert, Renée; Deary, Ian J.; Dedoussis, George; Demerath, Ellen W.; den Heijer, Martin; Den Hollander, Anneke I.; Ruijter, Hester M; Dennis, Joe G; Denny, Josh C; Angelantonio, Emanuele Di; Drenos, Fotios; Du, Mengmeng; Dubé, Marie-Pierre; Dunning, Alison M.; Easton, Douglas F.; Edwards, Todd L.; Ellinghaus, David; Ellinor, Patrick T; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Farooqi, I. Sadaf; Faul, Jessica D.; Fauser, Sascha; Feng, Shuang; Ferrannini, Ele; Ferrieres, Jean; Florez, Jose C; Ford, Ian; Fornage, Myriam; Franco, Oscar H.; Franke, Andre; Franks, Paul W.; Friedrich, Nele; Frikke-Schmidt, Ruth; Galesloot, Tessel E.; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Gibson, Jane; Giedraitis, Vilmantas; Gjesing, Anette P; Gordon-Larsen, Penny; Gorski, Mathias; Grabe, Hans-Jörgen; Grant, Struan F. A.; Grarup, Niels; Griffiths, Helen L; Grove, Megan L.; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeff; Hakonarson, Hakon; Hammerschlag, Anke R; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B.; Hattersley, Andrew T.; Have, Christian T; Hayward, Caroline; He, Liang; Heard-Costa, Nancy L.; Heath, Andrew C.; Heid, Iris M.; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W; Holmen, Oddgeir L; Hovingh, G. Kees; Howson, Joanna M M; Hu, Yao; Huang, Paul L; Huffman, Jennifer E.; Ikram, M. Arfan; Ingelsson, Erik; Jackson, Anne U.; Jansson, Jan Håkan; Jarvik, Gail P; Jensen, Gorm B; Jia, Yucheng; Johansson, Stefan; Jørgensen, Marit E; Jørgensen, Torben; Jukema, J. Wouter; Kahali, Bratati; Kahn, René S; Kähönen, Mika; Kamstrup, Pia R; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon L. R.; Karpe, Fredrik; Kathiresan, Sekar; Kee, Frank; Kiemeney, Lambertus A.; Kim, Eric; Kitajima, Hidetoshi; Komulainen, Pirjo; Kooner, Jaspal S.; Kooperberg, Charles; Korhonen, Tellervo; Kovacs, Peter; Kuivaniemi, Helena; Kutalik, Zoltán; Kuulasmaa, Kari; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A.; Lamparter, David; Lange, Ethan M.; Lange, Leslie A.; Langenberg, Claudia; Larson, Eric B.; Lee, Nanette R.; Lehtimäki, Terho; Lewis, Cora E; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Keng-Hung; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Ching-Ti; Liu, Dajiang J.; Liu, Yongmei; Lo, Ken Sin; Lophatananon, Artitaya; Lotery, Andrew J.; Loukola, Anu; Luan, Jian'an; Lubitz, Steven A.; Lyytikäinen, Leo-Pekka; Männistö, Satu; Marenne, Gaëlle; Mazul, Angela L; McCarthy, Mark I.; McKean-Cowdin, Roberta; Medland, Sarah E.; Meidtner, Karina; Milani, Lili; Mistry, Vanisha; Mitchell, Paul; Mohlke, Karen L.; Moilanen, Leena; Moitry, Marie; Montgomery, Grant W.; Mook-Kanamori, Dennis O; Moore, Carmel; Mori, Trevor A; Morris, Andrew D.; Morris, Andrew P.; Müller-Nurasyid, Martina; Munroe, Patricia B.; Nalls, Mike A.; Narisu, Narisu; Nelson, Christopher P.; Neville, Matt; Nielsen, Sune F.; Nikus, Kjell; Njølstad, Pål Rasmus; Nordestgaard, Børge G.; Nyholt, Dale R.; O'Connel, Jeffrey R.; O'Donoghue, Michelle L; Olde Loohuis, Loes M; Ophoff, Roel A; Owen, Katharine R; Packard, Chris J.; Padmanabhan, Sandosh; Palmer, Colin N. A.; Palmer, Nicholette D.; Pasterkamp, Gerard; Patel, Aniruddh P; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L.; Peloso, Gina M.; Pennell, Craig E.; Perola, Markus; Perry, James A; Perry, John R. B.; Pers, Tune H.; Person, Thomas N; Peters, Annette; Petersen, Eva R B; Peyser, Patricia A.; Pirie, Ailith; Polasek, Ozren; Polderman, Tinca J; Puolijoki, Hannu; Raitakari, Olli T.; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F; Renström, Frida; Rheinberger, Myriam; Ridker, Paul M.; Rioux, John D.; Rivas, Manuel A; Roberts, David J; Robertson, Neil R.; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S.; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J.; Sapkota, Yadav; Sattar, Naveed; Schoen, Robert E.; Schreiner, Pamela J.; Schulze, Matthias B.; Scott, Robert A.; Segura-Lepe, Marcelo P; Shah, Svati H; Sheu, Wayne H. -H.; Sim, Xueling; Slater, Andrew J; Small, Kerrin S; Smith, Albert V.; Southam, Lorraine; Spector, Timothy D; Speliotes, Elizabeth K.; Starr, John M.; Stefansson, Kari; Steinthorsdottir, Valgerdur; Stirrups, Kathleen E; Strauch, Konstantin; Stringham, Heather M.; Stumvoll, Michael; Sun, Liang Dan; Surendran, Praveen; Swift, Amy J.; Tada, Hayato; Tansey, Katherine E; Tardif, Jean-Claude; Taylor, Kent D.; Teumer, Alexander; Thompson, Deborah J.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Thuesen, Betina Heinsbek; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P.; Uher, Rudolf; Uitterlinden, André G.; Uusitupa, Matti; Laan, Sander W; Van Duijn, Cornelia M.; Leeuwen, Nienke; van Setten, Jessica; Vanhala, Mauno; Varbo, Anette; Varga, Tibor V.; Varma, Rohit; Velez Edwards, Digna R; Vermeulen, Sita H H M; Veronesi, Giovanni; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F; Völker, Uwe; Vuckovic, Dragana; Wagenknecht, Lynne E.; Walker, Mark; Wallentin, Lars; Wang, Feijie; Wang, Carol A.; Wang, Shuai; Wang, Yiqin; Ware, Erin B.; Wareham, Nicholas J.; Warren, Helen R.; Waterworth, Dawn M.; Wessel, Jennifer; White, Harvey D; Willer, Cristen J.; Wilson, James G.; Witte, Daniel R; Wood, Andrew R.; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M.; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhou, Wei; Zondervan, Krina T.; Rotter, Jerome I.; Pospisilik, John A; Rivadeneira, Fernando; Borecki, Ingrid B.; Deloukas, Panos; Frayling, Timothy M.; Lettre, Guillaume; North, Kari E.; Lindgren, Cecilia M.; Hirschhorn, Joel N.; Loos, Ruth J. F.

    Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734

  9. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity

    NARCIS (Netherlands)

    Turcot, Valérie; Lu, Yingchang; Highland, Heather M.; Schurmann, Claudia; Justice, Anne E.; Fine, Rebecca S.; Bradfield, Jonathan P.; Esko, Tõnu; Giri, Ayush; Graff, Mariaelisa; Guo, Xiuqing; Hendricks, Audrey E.; Karaderi, Tugce; Lempradl, Adelheid; Locke, Adam E.; Mahajan, Anubha; Marouli, Eirini; Sivapalaratnam, Suthesh; Young, Kristin L.; Alfred, Tamuno; Feitosa, Mary F.; Masca, Nicholas G. D.; Manning, Alisa K.; Medina-Gomez, Carolina; Mudgal, Poorva; Ng, Maggie C. Y.; Reiner, Alex P.; Vedantam, Sailaja; Willems, Sara M.; Winkler, Thomas W.; Abecasis, Gonçalo; Aben, Katja K.; Alam, Dewan S.; Alharthi, Sameer E.; Allison, Matthew; Amouyel, Philippe; Asselbergs, Folkert W.; Auer, Paul L.; Balkau, Beverley; Bang, Lia E.; Barroso, Inês; Bastarache, Lisa; Benn, Marianne; Bergmann, Sven; Bielak, Lawrence F.; Blüher, Matthias; Boehnke, Michael; Boeing, Heiner; Boerwinkle, Eric; Böger, Carsten A.; Bork-Jensen, Jette; Bots, Michiel L.; Bottinger, Erwin P.; Bowden, Donald W.; Brandslund, Ivan; Breen, Gerome; Brilliant, Murray H.; Broer, Linda; Brumat, Marco; Burt, Amber A.; Butterworth, Adam S.; Campbell, Peter T.; Cappellani, Stefania; Carey, David J.; Catamo, Eulalia; Caulfield, Mark J.; Chambers, John C.; Chasman, Daniel I.; Chen, Yii-der I.; Chowdhury, Rajiv; Christensen, Cramer; Chu, Audrey Y.; Cocca, Massimiliano; Collins, Francis S.; Cook, James P.; Corley, Janie; Corominas Galbany, Jordi; Cox, Amanda J.; Crosslin, David S.; Cuellar-Partida, Gabriel; D'Eustacchio, Angela; Danesh, John; Davies, Gail; Bakker, Paul I. W.; Groot, Mark C. H.; Mutsert, Renée; Deary, Ian J.; Dedoussis, George; Demerath, Ellen W.; Heijer, Martin; Hollander, Anneke I.; Ruijter, Hester M.; Dennis, Joe G.; Denny, Josh C.; Angelantonio, Emanuele; Drenos, Fotios; Du, Mengmeng; Dubé, Marie-Pierre; Dunning, Alison M.; Easton, Douglas F.; Edwards, Todd L.; Ellinghaus, David; Ellinor, Patrick T.; Elliott, Paul; Evangelou, Evangelos; Farmaki, Aliki-Eleni; Farooqi, I. Sadaf; Faul, Jessica D.; Fauser, Sascha; Feng, Shuang; Ferrannini, Ele; Ferrieres, Jean; Florez, Jose C.; Ford, Ian; Fornage, Myriam; Franco, Oscar H.; Franke, Andre; Franks, Paul W.; Friedrich, Nele; Frikke-Schmidt, Ruth; Galesloot, Tessel E.; Gan, Wei; Gandin, Ilaria; Gasparini, Paolo; Gibson, Jane; Giedraitis, Vilmantas; Gjesing, Anette P.; Gordon-Larsen, Penny; Gorski, Mathias; Grabe, Hans-Jörgen; Grant, Struan F. A.; Grarup, Niels; Griffiths, Helen L.; Grove, Megan L.; Gudnason, Vilmundur; Gustafsson, Stefan; Haessler, Jeff; Hakonarson, Hakon; Hammerschlag, Anke R.; Hansen, Torben; Harris, Kathleen Mullan; Harris, Tamara B.; Hattersley, Andrew T.; Have, Christian T.; Hayward, Caroline; He, Liang; Heard-Costa, Nancy L.; Heath, Andrew C.; Heid, Iris M.; Helgeland, Øyvind; Hernesniemi, Jussi; Hewitt, Alex W.; Holmen, Oddgeir L.; Hovingh, G. Kees; Howson, Joanna M. M.; Hu, Yao; Huang, Paul L.; Huffman, Jennifer E.; Ikram, M. Arfan; Ingelsson, Erik; Jackson, Anne U.; Jansson, Jan-Håkan; Jarvik, Gail P.; Jensen, Gorm B.; Jia, Yucheng; Johansson, Stefan; Jørgensen, Marit E.; Jørgensen, Torben; Jukema, J. Wouter; Kahali, Bratati; Kahn, René S.; Kähönen, Mika; Kamstrup, Pia R.; Kanoni, Stavroula; Kaprio, Jaakko; Karaleftheri, Maria; Kardia, Sharon L. R.; Karpe, Fredrik; Kathiresan, Sekar; Kee, Frank; Kiemeney, Lambertus A.; Kim, Eric; Kitajima, Hidetoshi; Komulainen, Pirjo; Kooner, Jaspal S.; Kooperberg, Charles; Korhonen, Tellervo; Kovacs, Peter; Kuivaniemi, Helena; Kutalik, Zoltán; Kuulasmaa, Kari; Kuusisto, Johanna; Laakso, Markku; Lakka, Timo A.; Lamparter, David; Lange, Ethan M.; Lange, Leslie A.; Langenberg, Claudia; Larson, Eric B.; Lee, Nanette R.; Lehtimäki, Terho; Lewis, Cora E.; Li, Huaixing; Li, Jin; Li-Gao, Ruifang; Lin, Honghuang; Lin, Keng-Hung; Lin, Li-An; Lin, Xu; Lind, Lars; Lindström, Jaana; Linneberg, Allan; Liu, Ching-Ti; Liu, Dajiang J.; Liu, Yongmei; Lo, Ken S.; Lophatananon, Artitaya; Lotery, Andrew J.; Loukola, Anu; Luan, Jian'an; Lubitz, Steven A.; Lyytikäinen, Leo-Pekka; Männistö, Satu; Marenne, Gaëlle; Mazul, Angela L.; McCarthy, Mark I.; McKean-Cowdin, Roberta; Medland, Sarah E.; Meidtner, Karina; Milani, Lili; Mistry, Vanisha; Mitchell, Paul; Mohlke, Karen L.; Moilanen, Leena; Moitry, Marie; Montgomery, Grant W.; Mook-Kanamori, Dennis O.; Moore, Carmel; Mori, Trevor A.; Morris, Andrew D.; Morris, Andrew P.; Müller-Nurasyid, Martina; Munroe, Patricia B.; Nalls, Mike A.; Narisu, Narisu; Nelson, Christopher P.; Neville, Matt; Nielsen, Sune F.; Nikus, Kjell; Njølstad, Pål R.; Nordestgaard, Børge G.; Nyholt, Dale R.; O'Connel, Jeffrey R.; O'Donoghue, Michelle L.; Olde Loohuis, Loes M.; Ophoff, Roel A.; Owen, Katharine R.; Packard, Chris J.; Padmanabhan, Sandosh; Palmer, Colin N. A.; Palmer, Nicholette D.; Pasterkamp, Gerard; Patel, Aniruddh P.; Pattie, Alison; Pedersen, Oluf; Peissig, Peggy L.; Peloso, Gina M.; Pennell, Craig E.; Perola, Markus; Perry, James A.; Perry, John R. B.; Pers, Tune H.; Person, Thomas N.; Peters, Annette; Petersen, Eva R. B.; Peyser, Patricia A.; Pirie, Ailith; Polasek, Ozren; Polderman, Tinca J.; Puolijoki, Hannu; Raitakari, Olli T.; Rasheed, Asif; Rauramaa, Rainer; Reilly, Dermot F.; Renström, Frida; Rheinberger, Myriam; Ridker, Paul M.; Rioux, John D.; Rivas, Manuel A.; Roberts, David J.; Robertson, Neil R.; Robino, Antonietta; Rolandsson, Olov; Rudan, Igor; Ruth, Katherine S.; Saleheen, Danish; Salomaa, Veikko; Samani, Nilesh J.; Sapkota, Yadav; Sattar, Naveed; Schoen, Robert E.; Schreiner, Pamela J.; Schulze, Matthias B.; Scott, Robert A.; Segura-Lepe, Marcelo P.; Shah, Svati H.; Sheu, Wayne H.-H.; Sim, Xueling; Slater, Andrew J.; Small, Kerrin S.; Smith, Albert V.; Southam, Lorraine; Spector, Timothy D.; Speliotes, Elizabeth K.; Starr, John M.; Stefansson, Kari; Steinthorsdottir, Valgerdur; Stirrups, Kathleen E.; Strauch, Konstantin; Stringham, Heather M.; Stumvoll, Michael; Sun, Liang; Surendran, Praveen; Swift, Amy J.; Tada, Hayato; Tansey, Katherine E.; Tardif, Jean-Claude; Taylor, Kent D.; Teumer, Alexander; Thompson, Deborah J.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Thuesen, Betina H.; Tönjes, Anke; Tromp, Gerard; Trompet, Stella; Tsafantakis, Emmanouil; Tuomilehto, Jaakko; Tybjaerg-Hansen, Anne; Tyrer, Jonathan P.; Uher, Rudolf; Uitterlinden, André G.; Uusitupa, Matti; Laan, Sander W.; Duijn, Cornelia M.; Leeuwen, Nienke; van Setten, Jessica; Vanhala, Mauno; Varbo, Anette; Varga, Tibor V.; Varma, Rohit; Velez Edwards, Digna R.; Vermeulen, Sita H.; Veronesi, Giovanni; Vestergaard, Henrik; Vitart, Veronique; Vogt, Thomas F.; Völker, Uwe; Vuckovic, Dragana; Wagenknecht, Lynne E.; Walker, Mark; Wallentin, Lars; Wang, Feijie; Wang, Carol A.; Wang, Shuai; Wang, Yiqin; Ware, Erin B.; Wareham, Nicholas J.; Warren, Helen R.; Waterworth, Dawn M.; Wessel, Jennifer; White, Harvey D.; Willer, Cristen J.; Wilson, James G.; Witte, Daniel R.; Wood, Andrew R.; Wu, Ying; Yaghootkar, Hanieh; Yao, Jie; Yao, Pang; Yerges-Armstrong, Laura M.; Young, Robin; Zeggini, Eleftheria; Zhan, Xiaowei; Zhang, Weihua; Zhao, Jing Hua; Zhao, Wei; Zhou, Wei; Zondervan, Krina T.; Rotter, Jerome I.; Pospisilik, John A.; Rivadeneira, Fernando; Borecki, Ingrid B.; Deloukas, Panos; Frayling, Timothy M.; Lettre, Guillaume; North, Kari E.; Lindgren, Cecilia M.; Hirschhorn, Joel N.; Loos, Ruth J. F.

    2018-01-01

    Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734

  10. Large-scale analysis of peptide sequence variants: the case for high-field asymmetric waveform ion mobility spectrometry.

    Science.gov (United States)

    Creese, Andrew J; Smart, Jade; Cooper, Helen J

    2013-05-21

    Large scale analysis of proteins by mass spectrometry is becoming increasingly routine; however, the presence of peptide isomers remains a significant challenge for both identification and quantitation in proteomics. Classes of isomers include sequence inversions, structural isomers, and localization variants. In many cases, liquid chromatography is inadequate for separation of peptide isomers. The resulting tandem mass spectra are composite, containing fragments from multiple precursor ions. The benefits of high-field asymmetric waveform ion mobility spectrometry (FAIMS) for proteomics have been demonstrated by a number of groups, but previously work has focused on extending proteome coverage generally. Here, we present a systematic study of the benefits of FAIMS for a key challenge in proteomics, that of peptide isomers. We have applied FAIMS to the analysis of a phosphopeptide library comprising the sequences GPSGXVpSXAQLX(K/R) and SXPFKXpSPLXFG(K/R), where X = ADEFGLSTVY. The library has defined limits enabling us to make valid conclusions regarding FAIMS performance. The library contains numerous sequence inversions and structural isomers. In addition, there are large numbers of theoretical localization variants, allowing false localization rates to be determined. The FAIMS approach is compared with reversed-phase liquid chromatography and strong cation exchange chromatography. The FAIMS approach identified 35% of the peptide library, whereas LC-MS/MS alone identified 8% and LC-MS/MS with strong cation exchange chromatography prefractionation identified 17.3% of the library.

  11. Variants of cellobiohydrolases

    Energy Technology Data Exchange (ETDEWEB)

    Bott, Richard R.; Foukaraki, Maria; Hommes, Ronaldus Wilhelmus; Kaper, Thijs; Kelemen, Bradley R.; Kralj, Slavko; Nikolaev, Igor; Sandgren, Mats; Van Lieshout, Johannes Franciscus Thomas; Van Stigt Thans, Sander

    2018-04-10

    Disclosed are a number of homologs and variants of Hypocrea jecorina Ce17A (formerly Trichoderma reesei cellobiohydrolase I or CBH1), nucleic acids encoding the same and methods for producing the same. The homologs and variant cellulases have the amino acid sequence of a glycosyl hydrolase of family 7A wherein one or more amino acid residues are substituted and/or deleted.

  12. Whole Exome Sequencing for a Patient with Rubinstein-Taybi Syndrome Reveals de Novo Variants besides an Overt CREBBP Mutation

    Directory of Open Access Journals (Sweden)

    Hee Jeong Yoo

    2015-03-01

    Full Text Available Rubinstein-Taybi syndrome (RSTS is a rare condition with a prevalence of 1 in 125,000–720,000 births and characterized by clinical features that include facial, dental, and limb dysmorphology and growth retardation. Most cases of RSTS occur sporadically and are caused by de novo mutations. Cytogenetic or molecular abnormalities are detected in only 55% of RSTS cases. Previous genetic studies have yielded inconsistent results due to the variety of methods used for genetic analysis. The purpose of this study was to use whole exome sequencing (WES to evaluate the genetic causes of RSTS in a young girl presenting with an Autism phenotype. We used the Autism diagnostic observation schedule (ADOS and Autism diagnostic interview revised (ADI-R to confirm her diagnosis of Autism. In addition, various questionnaires were used to evaluate other psychiatric features. We used WES to analyze the DNA sequences of the patient and her parents and to search for de novo variants. The patient showed all the typical features of Autism, WES revealed a de novo frameshift mutation in CREBBP and de novo sequence variants in TNC and IGFALS genes. Mutations in the CREBBP gene have been extensively reported in RSTS patients, while potential missense mutations in TNC and IGFALS genes have not previously been associated with RSTS. The TNC and IGFALS genes are involved in central nervous system development and growth. It is possible for patients with RSTS to have additional de novo variants that could account for previously unexplained phenotypes.

  13. A PYY Q62P variant linked to human obesity

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Kavaslar, Nihan; Schackwitz, Wendy; Ustaszewska,Anna; Collier, John Michael; Hebert, Sybil; Doelle, Heather; Dent,Robert; Pennacchio, Len A.; McPherson, Ruth

    2005-06-27

    Members of the pancreatic polypeptide family and the irreceptors have been implicated in the control of food intake in rodents and humans. To investigate whether nucleotide changes in these candidate genes result in abnormal weight in humans, we sequenced the coding exons and splice sites of seven family members (NPY, PYY, PPY, NPY1R, NPY2R, NPY4R, and NPY5R) in a large cohort of extremely obese (n=379) and lean (n=378) individuals. In total we found eleven rare non-synonymous variants, four of which exhibited familial segregation, NPY1R L53P and PPY P63L with leanness and NPY2R D42G and PYY Q62P with obesity. Functional analysis of the obese variants revealed NPY2R D42G to have reduced cell surface expression, while previous cell culture based studies indicated variant PYY Q62P to have altered receptor binding selectivity and we show that it fails to reduce food intake through mouse peptide injection experiments. These results support that rare non-synonymous variants within these genes can alter susceptibility to human body mass index extremes.

  14. Improvements in the HbVar database of human hemoglobin variants and thalassemia mutations for population and sequence variation studies.

    NARCIS (Netherlands)

    G.P. Patrinos (George); B. Giardine (Belinda); C. Riemer (Cathy); W. Miller (Webb); D.H. Chui (David); N.P. Anagnou (Nicholas); H. Wajcman (Henri); R.C. Hardison (Ross)

    2004-01-01

    textabstractHbVar (http://globin.cse.psu.edu/globin/hbvar/) is a relational database developed by a multi-center academic effort to provide up-to-date and high quality information on the genomic sequence changes leading to hemoglobin variants and all types of thalassemia and

  15. A multifactorial likelihood model for MMR gene variant classification incorporating probabilities based on sequence bioinformatics and tumor characteristics: a report from the Colon Cancer Family Registry.

    Science.gov (United States)

    Thompson, Bryony A; Goldgar, David E; Paterson, Carol; Clendenning, Mark; Walters, Rhiannon; Arnold, Sven; Parsons, Michael T; Michael D, Walsh; Gallinger, Steven; Haile, Robert W; Hopper, John L; Jenkins, Mark A; Lemarchand, Loic; Lindor, Noralane M; Newcomb, Polly A; Thibodeau, Stephen N; Young, Joanne P; Buchanan, Daniel D; Tavtigian, Sean V; Spurdle, Amanda B

    2013-01-01

    Mismatch repair (MMR) gene sequence variants of uncertain clinical significance are often identified in suspected Lynch syndrome families, and this constitutes a challenge for both researchers and clinicians. Multifactorial likelihood model approaches provide a quantitative measure of MMR variant pathogenicity, but first require input of likelihood ratios (LRs) for different MMR variation-associated characteristics from appropriate, well-characterized reference datasets. Microsatellite instability (MSI) and somatic BRAF tumor data for unselected colorectal cancer probands of known pathogenic variant status were used to derive LRs for tumor characteristics using the Colon Cancer Family Registry (CFR) resource. These tumor LRs were combined with variant segregation within families, and estimates of prior probability of pathogenicity based on sequence conservation and position, to analyze 44 unclassified variants identified initially in Australasian Colon CFR families. In addition, in vitro splicing analyses were conducted on the subset of variants based on bioinformatic splicing predictions. The LR in favor of pathogenicity was estimated to be ~12-fold for a colorectal tumor with a BRAF mutation-negative MSI-H phenotype. For 31 of the 44 variants, the posterior probabilities of pathogenicity were such that altered clinical management would be indicated. Our findings provide a working multifactorial likelihood model for classification that carefully considers mode of ascertainment for gene testing. © 2012 Wiley Periodicals, Inc.

  16. Novel and ultra-rare damaging variants in neuropeptide signaling are associated with disordered eating behaviors.

    Directory of Open Access Journals (Sweden)

    Michael Lutter

    Full Text Available Eating disorders develop through a combination of genetic vulnerability and environmental stress, however the genetic basis of this risk is unknown.To understand the genetic basis of this risk, we performed whole exome sequencing on 93 unrelated individuals with eating disorders (38 restricted-eating and 55 binge-eating to identify novel damaging variants. Candidate genes with an excessive burden of predicted damaging variants were then prioritized based upon an unbiased, data-driven bioinformatic analysis. One top candidate pathway was empirically tested for therapeutic potential in a mouse model of binge-like eating.An excessive burden of novel damaging variants was identified in 186 genes in the restricted-eating group and 245 genes in the binge-eating group. This list is significantly enriched (OR = 4.6, p<0.0001 for genes involved in neuropeptide/neurotrophic pathways implicated in appetite regulation, including neurotensin-, glucagon-like peptide 1- and BDNF-signaling. Administration of the glucagon-like peptide 1 receptor agonist exendin-4 significantly reduced food intake in a mouse model of 'binge-like' eating.These findings implicate ultra-rare and novel damaging variants in neuropeptide/neurotropic factor signaling pathways in the development of eating disorder behaviors and identify glucagon-like peptide 1-receptor agonists as a potential treatment for binge eating.

  17. Screening of SHOX gene sequence variants in Saudi Arabian children with idiopathic short stature.

    Science.gov (United States)

    Alharthi, Abdulla A; El-Hallous, Ehab I; Talaat, Iman M; Alghamdi, Hamed A; Almalki, Matar I; Gaber, Ahmed

    2017-10-01

    Short stature affects approximately 2%-3% of children, representing one of the most frequent disorders for which clinical attention is sought during childhood. Despite assumed genetic heterogeneity, mutations or deletions in the short stature homeobox-containing gene ( SHOX ) are frequently detected in subjects with short stature. Idiopathic short stature (ISS) refers to patients with short stature for various unknown reasons. The goal of this study was to screen all the exons of SHOX to identify related mutations. We screened all the exons of SHOX for mutations analysis in 105 ISS children patients (57 girls and 48 boys) living in Taif governorate, KSA using a direct DNA sequencing method. Height, arm span, and sitting height were recorded, and subischial leg length was calculated. A total of 30 of 105 ISS patients (28%) contained six polymorphic variants in exons 1, 2, 4, and 6. One mutation was found in the DNA domain binding region of exon 4. Three of these polymorphic variants were novel, while the others were reported previously. There were no significant differences in anthropometric measures in ISS patients with and without identifiable polymorphic variants in SHOX . In Saudi Arabia ISS patients, rather than SHOX , it is possible that new genes are involved in longitudinal growth. Additional molecular analysis is required to diagnose and understand the etiology of this disease.

  18. RareVar: A Framework for Detecting Low-Frequency Single-Nucleotide Variants.

    Science.gov (United States)

    Hao, Yangyang; Xuei, Xiaoling; Li, Lang; Nakshatri, Harikrishna; Edenberg, Howard J; Liu, Yunlong

    2017-07-01

    Accurate identification of low-frequency somatic point mutations in tumor samples has important clinical utilities. Although high-throughput sequencing technology enables capturing such variants while sequencing primary tumor samples, our ability for accurate detection is compromised when the variant frequency is close to the sequencer error rate. Most current experimental and bioinformatic strategies target mutations with ≥5% allele frequency, which limits our ability to understand the cancer etiology and tumor evolution. We present an experimental and computational modeling framework, RareVar, to reliably identify low-frequency single-nucleotide variants from high-throughput sequencing data under standard experimental protocols. RareVar protocol includes a benchmark design by pooling DNAs from already sequenced individuals at various concentrations to target variants at desired frequencies, 0.5%-3% in our case. By applying a generalized, linear model-based, position-specific error model, followed by machine-learning-based variant calibration, our approach outperforms existing methods. Our method can be applied on most capture and sequencing platforms without modifying the experimental protocol.

  19. Mitochondrial DNA sequence data reveals association of haplogroup U with psychosis in bipolar disorder.

    Science.gov (United States)

    Frye, Mark A; Ryu, Euijung; Nassan, Malik; Jenkins, Gregory D; Andreazza, Ana C; Evans, Jared M; McElroy, Susan L; Oglesbee, Devin; Highsmith, W Edward; Biernacka, Joanna M

    2017-01-01

    Converging genetic, postmortem gene-expression, cellular, and neuroimaging data implicate mitochondrial dysfunction in bipolar disorder. This study was conducted to investigate whether mitochondrial DNA (mtDNA) haplogroups and single nucleotide variants (SNVs) are associated with sub-phenotypes of bipolar disorder. MtDNA from 224 patients with Bipolar I disorder (BPI) was sequenced, and association of sequence variations with 3 sub-phenotypes (psychosis, rapid cycling, and adolescent illness onset) was evaluated. Gene-level tests were performed to evaluate overall burden of minor alleles for each phenotype. The haplogroup U was associated with a higher risk of psychosis. Secondary analyses of SNVs provided nominal evidence for association of psychosis with variants in the tRNA, ND4 and ND5 genes. The association of psychosis with ND4 (gene that encodes NADH dehydrogenase 4) was further supported by gene-level analysis. Preliminary analysis of mtDNA sequence data suggests a higher risk of psychosis with the U haplogroup and variation in the ND4 gene implicated in electron transport chain energy regulation. Further investigation of the functional consequences of this mtDNA variation is encouraged. Copyright © 2016. Published by Elsevier Ltd.

  20. The Number of Candidate Variants in Exome Sequencing for Mendelian Disease under No Genetic Heterogeneity

    Directory of Open Access Journals (Sweden)

    Jo Nishino

    2013-01-01

    Full Text Available There has been recent success in identifying disease-causing variants in Mendelian disorders by exome sequencing followed by simple filtering techniques. Studies generally assume complete or high penetrance. However, there are likely many failed and unpublished studies due in part to incomplete penetrance or phenocopy. In this study, the expected number of candidate single-nucleotide variants (SNVs in exome data for autosomal dominant or recessive Mendelian disorders was investigated under the assumption of “no genetic heterogeneity.” All variants were assumed to be under the “null model,” and sample allele frequencies were modeled using a standard population genetics theory. To investigate the properties of pedigree data, full-sibs were considered in addition to unrelated individuals. In both cases, particularly regarding full-sibs, the number of SNVs remained very high without controls. The high efficacy of controls was also confirmed. When controls were used with a relatively large total sample size (e.g., N=20, 50, filtering incorporating of incomplete penetrance and phenocopy efficiently reduced the number of candidate SNVs. This suggests that filtering is useful when an assumption of no “genetic heterogeneity” is appropriate and could provide general guidelines for sample size determination.

  1. Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration.

    Science.gov (United States)

    Iqbal, Zafar; Püttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka E L M; de Brouwer, Arjan P M; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein; Ropers, Hans-Hilger; Riazuddin, Sheikh; Kahrizi, Kimia; van Bokhoven, Hans

    2016-03-01

    AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenting with moderate to severe intellectual disability, global developmental delay, and speech impairment without neurodegeneration. By the combination of homozygosity mapping and next generation sequencing, we identified two homozygous missense variants, p.(Gly299Arg) and p.(Val176Gly), in the gene AIMP1 that co-segregated with the phenotype in the respective families. Molecular modeling of the variants revealed deleterious effects on the protein structure that are predicted to result in reduced AIMP1 function. Our findings indicate that the clinical spectrum for AIMP1 defects is broader than witnessed so far.

  2. Missense variants in AIMP1 gene are implicated in autosomal recessive intellectual disability without neurodegeneration

    Science.gov (United States)

    Iqbal, Zafar; Püttmann, Lucia; Musante, Luciana; Razzaq, Attia; Zahoor, Muhammad Yasir; Hu, Hao; Wienker, Thomas F; Garshasbi, Masoud; Fattahi, Zohreh; Gilissen, Christian; Vissers, Lisenka ELM; de Brouwer, Arjan PM; Veltman, Joris A; Pfundt, Rolph; Najmabadi, Hossein; Ropers, Hans-Hilger; Riazuddin, Sheikh; Kahrizi, Kimia; van Bokhoven, Hans

    2016-01-01

    AIMP1/p43 is a multifunctional non-catalytic component of the multisynthetase complex. The complex consists of nine catalytic and three non-catalytic proteins, which catalyze the ligation of amino acids to their cognate tRNA isoacceptors for use in protein translation. To date, two allelic variants in the AIMP1 gene have been reported as the underlying cause of autosomal recessive primary neurodegenerative disorder. Here, we present two consanguineous families from Pakistan and Iran, presenting with moderate to severe intellectual disability, global developmental delay, and speech impairment without neurodegeneration. By the combination of homozygosity mapping and next generation sequencing, we identified two homozygous missense variants, p.(Gly299Arg) and p.(Val176Gly), in the gene AIMP1 that co-segregated with the phenotype in the respective families. Molecular modeling of the variants revealed deleterious effects on the protein structure that are predicted to result in reduced AIMP1 function. Our findings indicate that the clinical spectrum for AIMP1 defects is broader than witnessed so far. PMID:26173967

  3. Two variants on chromosome 17 confer prostate cancer risk, and the one in TCF2 protects against type 2 diabetes

    DEFF Research Database (Denmark)

    Gudmundsson, Julius; Sulem, Patrick; Steinthorsdottir, Valgerdur

    2007-01-01

    attributable risk is substantial. One of the variants is in TCF2 (HNF1beta), a gene known to be mutated in individuals with maturity-onset diabetes of the young type 5. Results from eight case-control groups, including one West African and one Chinese, demonstrate that this variant confers protection against...... 17 with the disease. These two variants, 33 Mb apart, fall within a region previously implicated by family-based linkage studies on prostate cancer. The risks conferred by these variants are moderate individually (allele odds ratio of about 1.20), but because they are common, their joint population......We performed a genome-wide association scan to search for sequence variants conferring risk of prostate cancer using 1,501 Icelandic men with prostate cancer and 11,290 controls. Follow-up studies involving three additional case-control groups replicated an association of two variants on chromosome...

  4. A recurrent, non-penetrant sequence variant, p.Arg266Cys in Growth/Differentiation Factor 3 (GDF3 in a female with unilateral anophthalmia and skeletal anomalies

    Directory of Open Access Journals (Sweden)

    Tanya Bardakjian

    2017-09-01

    Conclusions and importance: Although transfection studies with the p.Arg266Cys mutation have shown that this amino acid substitution is likely to impair function, non-penetrance for the ocular defects was apparent in this family and has been observed in other families with sequence variants in GDF3. We conclude p.Arg266Cys and other GDF3 mutations can be non-penetrant, making pathogenicity more difficult to establish when sequence variants in this gene are present in patients with structural eye defects.

  5. Targeted assembly of short sequence reads.

    Directory of Open Access Journals (Sweden)

    René L Warren

    Full Text Available As next-generation sequence (NGS production continues to increase, analysis is becoming a significant bottleneck. However, in situations where information is required only for specific sequence variants, it is not necessary to assemble or align whole genome data sets in their entirety. Rather, NGS data sets can be mined for the presence of sequence variants of interest by localized assembly, which is a faster, easier, and more accurate approach. We present TASR, a streamlined assembler that interrogates very large NGS data sets for the presence of specific variants by only considering reads within the sequence space of input target sequences provided by the user. The NGS data set is searched for reads with an exact match to all possible short words within the target sequence, and these reads are then assembled stringently to generate a consensus of the target and flanking sequence. Typically, variants of a particular locus are provided as different target sequences, and the presence of the variant in the data set being interrogated is revealed by a successful assembly outcome. However, TASR can also be used to find unknown sequences that flank a given target. We demonstrate that TASR has utility in finding or confirming genomic mutations, polymorphisms, fusions and integration events. Targeted assembly is a powerful method for interrogating large data sets for the presence of sequence variants of interest. TASR is a fast, flexible and easy to use tool for targeted assembly.

  6. Harnessing Omics Big Data in Nine Vertebrate Species by Genome-Wide Prioritization of Sequence Variants with the Highest Predicted Deleterious Effect on Protein Function.

    Science.gov (United States)

    Rozman, Vita; Kunej, Tanja

    2018-05-10

    Harnessing the genomics big data requires innovation in how we extract and interpret biologically relevant variants. Currently, there is no established catalog of prioritized missense variants associated with deleterious protein function phenotypes. We report in this study, to the best of our knowledge, the first genome-wide prioritization of sequence variants with the most deleterious effect on protein function (potentially deleterious variants [pDelVars]) in nine vertebrate species: human, cattle, horse, sheep, pig, dog, rat, mouse, and zebrafish. The analysis was conducted using the Ensembl/BioMart tool. Genes comprising pDelVars in the highest number of examined species were identified using a Python script. Multiple genomic alignments of the selected genes were built to identify interspecies orthologous potentially deleterious variants, which we defined as the "ortho-pDelVars." Genome-wide prioritization revealed that in humans, 0.12% of the known variants are predicted to be deleterious. In seven out of nine examined vertebrate species, the genes encoding the multiple PDZ domain crumbs cell polarity complex component (MPDZ) and the transforming acidic coiled-coil containing protein 2 (TACC2) comprise pDelVars. Five interspecies ortho-pDelVars were identified in three genes. These findings offer new ways to harness genomics big data by facilitating the identification of functional polymorphisms in humans and animal models and thus provide a future basis for optimization of protocols for whole genome prioritization of pDelVars and screening of orthologous sequence variants. The approach presented here can inform various postgenomic applications such as personalized medicine and multiomics study of health interventions (iatromics).

  7. Precise detection of de novo single nucleotide variants in human genomes.

    Science.gov (United States)

    Gómez-Romero, Laura; Palacios-Flores, Kim; Reyes, José; García, Delfino; Boege, Margareta; Dávila, Guillermo; Flores, Margarita; Schatz, Michael C; Palacios, Rafael

    2018-05-07

    The precise determination of de novo genetic variants has enormous implications across different fields of biology and medicine, particularly personalized medicine. Currently, de novo variations are identified by mapping sample reads from a parent-offspring trio to a reference genome, allowing for a certain degree of differences. While widely used, this approach often introduces false-positive (FP) results due to misaligned reads and mischaracterized sequencing errors. In a previous study, we developed an alternative approach to accurately identify single nucleotide variants (SNVs) using only perfect matches. However, this approach could be applied only to haploid regions of the genome and was computationally intensive. In this study, we present a unique approach, coverage-based single nucleotide variant identification (COBASI), which allows the exploration of the entire genome using second-generation short sequence reads without extensive computing requirements. COBASI identifies SNVs using changes in coverage of exactly matching unique substrings, and is particularly suited for pinpointing de novo SNVs. Unlike other approaches that require population frequencies across hundreds of samples to filter out any methodological biases, COBASI can be applied to detect de novo SNVs within isolated families. We demonstrate this capability through extensive simulation studies and by studying a parent-offspring trio we sequenced using short reads. Experimental validation of all 58 candidate de novo SNVs and a selection of non-de novo SNVs found in the trio confirmed zero FP calls. COBASI is available as open source at https://github.com/Laura-Gomez/COBASI for any researcher to use. Copyright © 2018 the Author(s). Published by PNAS.

  8. A NOS1 variant implicated in cognitive performance influences evoked neural responses during a high density EEG study of early visual perception.

    LENUS (Irish Health Repository)

    O'Donoghue, Therese

    2012-05-01

    The nitric oxide synthasase-1 gene (NOS1) has been implicated in mental disorders including schizophrenia and variation in cognition. The NOS1 variant rs6490121 identified in a genome wide association study of schizophrenia has recently been associated with variation in general intelligence and working memory in both patients and healthy participants. Whether this variant is also associated with variation in early sensory processing remains unclear.

  9. Making the most of RNA-seq: Pre-processing sequencing data with Opossum for reliable SNP variant detection [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Laura Oikkonen

    2017-01-01

    Full Text Available Identifying variants from RNA-seq (transcriptome sequencing data is a cost-effective and versatile alternative to whole-genome sequencing. However, current variant callers do not generally behave well with RNA-seq data due to reads encompassing intronic regions. We have developed a software programme called Opossum to address this problem. Opossum pre-processes RNA-seq reads prior to variant calling, and although it has been designed to work specifically with Platypus, it can be used equally well with other variant callers such as GATK HaplotypeCaller. In this work, we show that using Opossum in conjunction with either Platypus or GATK HaplotypeCaller maintains precision and improves the sensitivity for SNP detection compared to the GATK Best Practices pipeline. In addition, using it in combination with Platypus offers a substantial reduction in run times compared to the GATK pipeline so it is ideal when there are only limited time or computational resources available.

  10. Dataset of mitochondrial genome variants in oncocytic tumors

    Directory of Open Access Journals (Sweden)

    Lihua Lyu

    2018-04-01

    Full Text Available This dataset presents the mitochondrial genome variants associated with oncocytic tumors. These data were obtained by Sanger sequencing of the whole mitochondrial genomes of oncocytic tumors and the adjacent normal tissues from 32 patients. The mtDNA variants are identified after compared with the revised Cambridge sequence, excluding those defining haplogroups of our patients. The pathogenic prediction for the novel missense variants found in this study was performed with the Mitimpact 2 program.

  11. Exome Sequencing and the Management of Neurometabolic Disorders.

    Science.gov (United States)

    Tarailo-Graovac, Maja; Shyr, Casper; Ross, Colin J; Horvath, Gabriella A; Salvarinova, Ramona; Ye, Xin C; Zhang, Lin-Hua; Bhavsar, Amit P; Lee, Jessica J Y; Drögemöller, Britt I; Abdelsayed, Mena; Alfadhel, Majid; Armstrong, Linlea; Baumgartner, Matthias R; Burda, Patricie; Connolly, Mary B; Cameron, Jessie; Demos, Michelle; Dewan, Tammie; Dionne, Janis; Evans, A Mark; Friedman, Jan M; Garber, Ian; Lewis, Suzanne; Ling, Jiqiang; Mandal, Rupasri; Mattman, Andre; McKinnon, Margaret; Michoulas, Aspasia; Metzger, Daniel; Ogunbayo, Oluseye A; Rakic, Bojana; Rozmus, Jacob; Ruben, Peter; Sayson, Bryan; Santra, Saikat; Schultz, Kirk R; Selby, Kathryn; Shekel, Paul; Sirrs, Sandra; Skrypnyk, Cristina; Superti-Furga, Andrea; Turvey, Stuart E; Van Allen, Margot I; Wishart, David; Wu, Jiang; Wu, John; Zafeiriou, Dimitrios; Kluijtmans, Leo; Wevers, Ron A; Eydoux, Patrice; Lehman, Anna M; Vallance, Hilary; Stockler-Ipsiroglu, Sylvia; Sinclair, Graham; Wasserman, Wyeth W; van Karnebeek, Clara D

    2016-06-09

    Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patient's clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Children's Hospital Foundation and others.).

  12. Draft genome and sequence variant data of the oomycete Pythium insidiosum strain Pi45 from the phylogenetically-distinct Clade-III

    Directory of Open Access Journals (Sweden)

    Weerayuth Kittichotirat

    2017-12-01

    Full Text Available Pythium insidiosum is a unique oomycete microorganism, capable of infecting humans and animals. The organism can be phylogenetically categorized into three distinct clades: Clade-I (strains from the Americas; Clade-II (strains from Asia and Australia, and Clade–III (strains from Thailand and the United States. Two draft genomes of the P. insidiosum Clade-I strain CDC-B5653 and Clade-II strain Pi-S are available in the public domain. The genome of P. insidiosum from the distinct Clade-III, which is distantly-related to the other two clades, is lacking. Here, we report the draft genome sequence of the P. insidiosum strain Pi45 (also known as MCC13; isolated from a Thai patient with pythiosis; accession numbers BCFM01000001-BCFM01017277 as a representative strain of the phylogenetically-distinct Clade-III. We also report a genome-scale data set of sequence variants (i.e., SNPs and INDELs found in P. insidiosum (accessible online at the Mendeley database: http://dx.doi.org/10.17632/r75799jy6c.1. Keywords: Pythium insidiosum, Pythiosis, Draft genome, Sequence variant

  13. Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate.

    Directory of Open Access Journals (Sweden)

    Benjamin Georgi

    2014-03-01

    Full Text Available Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders.

  14. Genomic View of Bipolar Disorder Revealed by Whole Genome Sequencing in a Genetic Isolate

    Science.gov (United States)

    Georgi, Benjamin; Craig, David; Kember, Rachel L.; Liu, Wencheng; Lindquist, Ingrid; Nasser, Sara; Brown, Christopher; Egeland, Janice A.; Paul, Steven M.; Bućan, Maja

    2014-01-01

    Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders. PMID:24625924

  15. Development and Validation of a Scalable Next-Generation Sequencing System for Assessing Relevant Somatic Variants in Solid Tumors12

    Science.gov (United States)

    Hovelson, Daniel H.; McDaniel, Andrew S.; Cani, Andi K.; Johnson, Bryan; Rhodes, Kate; Williams, Paul D.; Bandla, Santhoshi; Bien, Geoffrey; Choppa, Paul; Hyland, Fiona; Gottimukkala, Rajesh; Liu, Guoying; Manivannan, Manimozhi; Schageman, Jeoffrey; Ballesteros-Villagrana, Efren; Grasso, Catherine S.; Quist, Michael J.; Yadati, Venkata; Amin, Anmol; Siddiqui, Javed; Betz, Bryan L.; Knudsen, Karen E.; Cooney, Kathleen A.; Feng, Felix Y.; Roh, Michael H.; Nelson, Peter S.; Liu, Chia-Jen; Beer, David G.; Wyngaard, Peter; Chinnaiyan, Arul M.; Sadis, Seth; Rhodes, Daniel R.; Tomlins, Scott A.

    2015-01-01

    Next-generation sequencing (NGS) has enabled genome-wide personalized oncology efforts at centers and companies with the specialty expertise and infrastructure required to identify and prioritize actionable variants. Such approaches are not scalable, preventing widespread adoption. Likewise, most targeted NGS approaches fail to assess key relevant genomic alteration classes. To address these challenges, we predefined the catalog of relevant solid tumor somatic genome variants (gain-of-function or loss-of-function mutations, high-level copy number alterations, and gene fusions) through comprehensive bioinformatics analysis of >700,000 samples. To detect these variants, we developed the Oncomine Comprehensive Panel (OCP), an integrative NGS-based assay [compatible with 95% accuracy for KRAS, epidermal growth factor receptor, and BRAF mutation detection as well as for ALK and TMPRSS2:ERG gene fusions. Associating positive variants with potential targeted treatments demonstrated that 6% to 42% of profiled samples (depending on cancer type) harbored alterations beyond routine molecular testing that were associated with approved or guideline-referenced therapies. As a translational research tool, OCP identified adaptive CTNNB1 amplifications/mutations in treated prostate cancers. Through predefining somatic variants in solid tumors and compiling associated potential treatment strategies, OCP represents a simplified, broadly applicable targeted NGS system with the potential to advance precision oncology efforts. PMID:25925381

  16. Relationship between common lipoprotein lipase gene sequence variants, hyperinsulinemia, and risk of ischemic heart disease: A population-based study

    DEFF Research Database (Denmark)

    Jeppesen, Jørgen; Hansen, Tine Willum; Torp-Pedersen, Christian

    2010-01-01

    Hyperinsulinemia and lipoprotein lipase (LPL) are important determinants of fasting and postprandial plasma triglyceride levels. High insulin and high triglyceride levels are associated with an increased risk of ischemic heart disease (IHD). This study aimed to find out whether common LPL gene se...... sequence variants could change the relationship between insulin and IHD....

  17. Targeted Gene Sequencing and Whole-Exome Sequencing in Autopsied Fetuses with Prenatally Diagnosed Kidney Anomalies

    DEFF Research Database (Denmark)

    Rasmussen, M; Sunde, L; Nielsen, M L

    2018-01-01

    Identification of fetal kidney anomalies invites questions about underlying causes and recurrence risk in future pregnancies. We therefore investigated the diagnostic yield of next-generation sequencing in fetuses with bilateral kidney anomalies and the correlation between disrupted genes and fetal...... phenotypes. Fetuses with bilateral kidney anomalies were screened using an in-house-designed kidney-gene panel. In families where candidate variants were not identified, whole-exome sequencing was performed. Genes uncovered by this analysis were added to our kidney-panel. We identified likely deleterious...... of nephronophthisis. Exome sequencing identified ROBO1 variants in one family and a GREB1L variant in another family. GREB1L and ROBO1 were added to our kidney-gene panel and additional variants were identified. Next-generation sequencing substantially contributes to identifying causes of fetal kidney anomalies...

  18. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

    OpenAIRE

    Turcot, Valérie; Lu, Yingchang; Highland, Heather M; Schurmann, Claudia; Justice, Anne E; Fine, Rebecca S; Bradfield, Jonathan P; Esko, Tõnu; Giri, Ayush; Graff, Mariaelisa; Guo, Xiuqing; Hendricks, Audrey E; Karaderi, Tugce; Lempradl, Adelheid; Locke, Adam E

    2018-01-01

    Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, non-coding variants from which pinpointing causal genes remains challenging. Here, we combined data from 718,734 individuals to discover rare and low-frequency (MAF

  19. Management of High-Throughput DNA Sequencing Projects: Alpheus.

    Science.gov (United States)

    Miller, Neil A; Kingsmore, Stephen F; Farmer, Andrew; Langley, Raymond J; Mudge, Joann; Crow, John A; Gonzalez, Alvaro J; Schilkey, Faye D; Kim, Ryan J; van Velkinburgh, Jennifer; May, Gregory D; Black, C Forrest; Myers, M Kathy; Utsey, John P; Frost, Nicholas S; Sugarbaker, David J; Bueno, Raphael; Gullans, Stephen R; Baxter, Susan M; Day, Steve W; Retzel, Ernest F

    2008-12-26

    High-throughput DNA sequencing has enabled systems biology to begin to address areas in health, agricultural and basic biological research. Concomitant with the opportunities is an absolute necessity to manage significant volumes of high-dimensional and inter-related data and analysis. Alpheus is an analysis pipeline, database and visualization software for use with massively parallel DNA sequencing technologies that feature multi-gigabase throughput characterized by relatively short reads, such as Illumina-Solexa (sequencing-by-synthesis), Roche-454 (pyrosequencing) and Applied Biosystem's SOLiD (sequencing-by-ligation). Alpheus enables alignment to reference sequence(s), detection of variants and enumeration of sequence abundance, including expression levels in transcriptome sequence. Alpheus is able to detect several types of variants, including non-synonymous and synonymous single nucleotide polymorphisms (SNPs), insertions/deletions (indels), premature stop codons, and splice isoforms. Variant detection is aided by the ability to filter variant calls based on consistency, expected allele frequency, sequence quality, coverage, and variant type in order to minimize false positives while maximizing the identification of true positives. Alpheus also enables comparisons of genes with variants between cases and controls or bulk segregant pools. Sequence-based differential expression comparisons can be developed, with data export to SAS JMP Genomics for statistical analysis.

  20. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    Science.gov (United States)

    Olson, Nathan D.; Lund, Steven P.; Zook, Justin M.; Rojas-Cornejo, Fabiola; Beck, Brian; Foy, Carole; Huggett, Jim; Whale, Alexandra S.; Sui, Zhiwei; Baoutina, Anna; Dobeson, Michael; Partis, Lina; Morrow, Jayne B.

    2015-01-01

    This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA) sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1) identity of biologically conserved position, (2) ratio of 16S rRNA gene copies featuring identified variants, and (3) the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies. PMID:27077030

  1. International interlaboratory study comparing single organism 16S rRNA gene sequencing data: Beyond consensus sequence comparisons

    Directory of Open Access Journals (Sweden)

    Nathan D. Olson

    2015-03-01

    Full Text Available This study presents the results from an interlaboratory sequencing study for which we developed a novel high-resolution method for comparing data from different sequencing platforms for a multi-copy, paralogous gene. The combination of PCR amplification and 16S ribosomal RNA gene (16S rRNA sequencing has revolutionized bacteriology by enabling rapid identification, frequently without the need for culture. To assess variability between laboratories in sequencing 16S rRNA, six laboratories sequenced the gene encoding the 16S rRNA from Escherichia coli O157:H7 strain EDL933 and Listeria monocytogenes serovar 4b strain NCTC11994. Participants performed sequencing methods and protocols available in their laboratories: Sanger sequencing, Roche 454 pyrosequencing®, or Ion Torrent PGM®. The sequencing data were evaluated on three levels: (1 identity of biologically conserved position, (2 ratio of 16S rRNA gene copies featuring identified variants, and (3 the collection of variant combinations in a set of 16S rRNA gene copies. The same set of biologically conserved positions was identified for each sequencing method. Analytical methods using Bayesian and maximum likelihood statistics were developed to estimate variant copy ratios, which describe the ratio of nucleotides at each identified biologically variable position, as well as the likely set of variant combinations present in 16S rRNA gene copies. Our results indicate that estimated variant copy ratios at biologically variable positions were only reproducible for high throughput sequencing methods. Furthermore, the likely variant combination set was only reproducible with increased sequencing depth and longer read lengths. We also demonstrate novel methods for evaluating variable positions when comparing multi-copy gene sequence data from multiple laboratories generated using multiple sequencing technologies.

  2. Possession of ATM Sequence Variants as Predictor for Late Normal Tissue Responses in Breast Cancer Patients Treated With Radiotherapy

    International Nuclear Information System (INIS)

    Ho, Alice Y.; Fan, Grace; Atencio, David P.; Green, Sheryl; Formenti, Silvia C.; Haffty, Bruce G.; Iyengar, Preetha B.A.; Bernstein, Jonine L.; Stock, Richard G.; Cesaretti, Jamie A.; Rosenstein, Barry S.

    2007-01-01

    Purpose: The ATM gene product is a central component of cell cycle regulation and genomic surveillance. We hypothesized that DNA sequence alterations in ATM predict for adverse effects after external beam radiotherapy for early breast cancer. Methods and Materials: A total of 131 patients with a minimum of 2 years follow-up who had undergone breast-conserving surgery and adjuvant radiotherapy were screened for sequence alterations in ATM using DNA from blood lymphocytes. Genetic variants were identified using denaturing high performance liquid chromatography. The Radiation Therapy Oncology Group late morbidity scoring schemes for skin and subcutaneous tissues were applied to quantify the radiation-induced effects. Results: Of the 131 patients, 51 possessed ATM sequence alterations located within exons or in short intron regions flanking each exon that encompass putative splice site regions. Of these 51 patients, 21 (41%) exhibited a minimum of a Grade 2 late radiation response. In contrast, of the 80 patients without an ATM sequence variation, only 18 (23%) had radiation-induced adverse responses, for an odds ratio of 2.4 (95% confidence interval, 1.1-5.2). Fifteen patients were heterozygous for the G→A polymorphism at nucleotide 5557, which causes substitution of asparagine for aspartic acid at position 1853 of the ATM protein. Of these 15 patients, 8 (53%) exhibited a Grade 2-4 late response compared with 31 (27%) of the 116 patients without this alteration, for an odds ratio of 3.1 (95% confidence interval, 1.1-9.4). Conclusion: Sequence variants located in the ATM gene, in particular the 5557 G→A polymorphism, may predict for late adverse radiation responses in breast cancer patients

  3. Distribution and medical impact of loss-of-function variants in the Finnish founder population.

    Directory of Open Access Journals (Sweden)

    Elaine T Lim

    2014-07-01

    Full Text Available Exome sequencing studies in complex diseases are challenged by the allelic heterogeneity, large number and modest effect sizes of associated variants on disease risk and the presence of large numbers of neutral variants, even in phenotypically relevant genes. Isolated populations with recent bottlenecks offer advantages for studying rare variants in complex diseases as they have deleterious variants that are present at higher frequencies as well as a substantial reduction in rare neutral variation. To explore the potential of the Finnish founder population for studying low-frequency (0.5-5% variants in complex diseases, we compared exome sequence data on 3,000 Finns to the same number of non-Finnish Europeans and discovered that, despite having fewer variable sites overall, the average Finn has more low-frequency loss-of-function variants and complete gene knockouts. We then used several well-characterized Finnish population cohorts to study the phenotypic effects of 83 enriched loss-of-function variants across 60 phenotypes in 36,262 Finns. Using a deep set of quantitative traits collected on these cohorts, we show 5 associations (p<5×10⁻⁸ including splice variants in LPA that lowered plasma lipoprotein(a levels (P = 1.5×10⁻¹¹⁷. Through accessing the national medical records of these participants, we evaluate the LPA finding via Mendelian randomization and confirm that these splice variants confer protection from cardiovascular disease (OR = 0.84, P = 3×10⁻⁴, demonstrating for the first time the correlation between very low levels of LPA in humans with potential therapeutic implications for cardiovascular diseases. More generally, this study articulates substantial advantages for studying the role of rare variation in complex phenotypes in founder populations like the Finns and by combining a unique population genetic history with data from large population cohorts and centralized research access to National Health

  4. Identification of Novel Variants in LTBP2 and PXDN Using Whole-Exome Sequencing in Developmental and Congenital Glaucoma.

    Directory of Open Access Journals (Sweden)

    Shazia Micheal

    Full Text Available Primary congenital glaucoma (PCG is the most common form of glaucoma in children. PCG occurs due to the developmental defects in the trabecular meshwork and anterior chamber of the eye. The purpose of this study is to identify the causative genetic variants in three families with developmental and primary congenital glaucoma (PCG with a recessive inheritance pattern.DNA samples were obtained from consanguineous families of Pakistani ancestry. The CYP1B1 gene was sequenced in the affected probands by conventional Sanger DNA sequencing. Whole exome sequencing (WES was performed in DNA samples of four individuals belonging to three different CYP1B1-negative families. Variants identified by WES were validated by Sanger sequencing.WES identified potentially causative novel mutations in the latent transforming growth factor beta binding protein 2 (LTBP2 gene in two PCG families. In the first family a novel missense mutation (c.4934G>A; p.Arg1645Glu co-segregates with the disease phenotype, and in the second family a novel frameshift mutation (c.4031_4032insA; p.Asp1345Glyfs*6 was identified. In a third family with developmental glaucoma a novel mutation (c.3496G>A; p.Gly1166Arg was identified in the PXDN gene, which segregates with the disease.We identified three novel mutations in glaucoma families using WES; two in the LTBP2 gene and one in the PXDN gene. The results will not only enhance our current understanding of the genetic basis of glaucoma, but may also contribute to a better understanding of the diverse phenotypic consequences caused by mutations in these genes.

  5. Rapid Identification of Pathogenic Variants in Two Cases of Charcot-Marie-Tooth Disease by Gene-Panel Sequencing

    Directory of Open Access Journals (Sweden)

    Chi-Chun Ho

    2017-04-01

    Full Text Available Charcot-Marie-Tooth disease (CMT is a common inherited peripheral neuropathy affecting up to 1 in 1214 of the general population with more than 60 nuclear genes implicated in its pathogenesis. Traditional molecular diagnostic pathways based on relative prevalence and clinical phenotyping are limited by long turnaround time, population-specific prevalence of causative variants and inability to assess multiple co-existing variants. In this study, a CMT gene panel comprising 27 genes was used to uncover the pathogenic mutations in two index patients. The first patient is a 15-year-old boy, born of consanguineous parents, who has had frequent trips and falls since infancy, and was later found to have inverted champagne bottle appearance of bilateral legs and foot drop. His elder sister is similarly affected. The second patient is a 37-year-old woman referred for pre-pregnancy genetic diagnosis. During early adulthood, she developed progressive lower limb weakness, difficulties in tip-toe walking and thinning of calf muscles. Both patients are clinically compatible with CMT, have undergone multiple genetic testings and have not previously received a definitive genetic diagnosis. Patients 1 and 2 were found to have pathogenic homozygous HSPB1:NM_001540:c.250G>A (p.G84R variant and heterozygous GDAP1:NM_018972:c.358C>T (p.R120W variant, respectively. Advantages and limitations of the current approach are discussed.

  6. Variants of glycoside hydrolases

    Science.gov (United States)

    Teter, Sarah [Davis, CA; Ward, Connie [Hamilton, MT; Cherry, Joel [Davis, CA; Jones, Aubrey [Davis, CA; Harris, Paul [Carnation, WA; Yi, Jung [Sacramento, CA

    2011-04-26

    The present invention relates to variants of a parent glycoside hydrolase, comprising a substitution at one or more positions corresponding to positions 21, 94, 157, 205, 206, 247, 337, 350, 373, 383, 438, 455, 467, and 486 of amino acids 1 to 513 of SEQ ID NO: 2, and optionally further comprising a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2 a substitution at one or more positions corresponding to positions 8, 22, 41, 49, 57, 113, 193, 196, 226, 227, 246, 251, 255, 259, 301, 356, 371, 411, and 462 of amino acids 1 to 513 of SEQ ID NO: 2, wherein the variants have glycoside hydrolase activity. The present invention also relates to nucleotide sequences encoding the variant glycoside hydrolases and to nucleic acid constructs, vectors, and host cells comprising the nucleotide sequences.

  7. elPrep: High-Performance Preparation of Sequence Alignment/Map Files for Variant Calling.

    Directory of Open Access Journals (Sweden)

    Charlotte Herzeel

    Full Text Available elPrep is a high-performance tool for preparing sequence alignment/map files for variant calling in sequencing pipelines. It can be used as a replacement for SAMtools and Picard for preparation steps such as filtering, sorting, marking duplicates, reordering contigs, and so on, while producing identical results. What sets elPrep apart is its software architecture that allows executing preparation pipelines by making only a single pass through the data, no matter how many preparation steps are used in the pipeline. elPrep is designed as a multithreaded application that runs entirely in memory, avoids repeated file I/O, and merges the computation of several preparation steps to significantly speed up the execution time. For example, for a preparation pipeline of five steps on a whole-exome BAM file (NA12878, we reduce the execution time from about 1:40 hours, when using a combination of SAMtools and Picard, to about 15 minutes when using elPrep, while utilising the same server resources, here 48 threads and 23GB of RAM. For the same pipeline on whole-genome data (NA12878, elPrep reduces the runtime from 24 hours to less than 5 hours. As a typical clinical study may contain sequencing data for hundreds of patients, elPrep can remove several hundreds of hours of computing time, and thus substantially reduce analysis time and cost.

  8. Neurodevelopmental disease-associated de novo mutations and rare sequence variants affect TRIO GDP/GTP exchange factor activity.

    Science.gov (United States)

    Katrancha, Sara M; Wu, Yi; Zhu, Minsheng; Eipper, Betty A; Koleske, Anthony J; Mains, Richard E

    2017-12-01

    Bipolar disorder, schizophrenia, autism and intellectual disability are complex neurodevelopmental disorders, debilitating millions of people. Therapeutic progress is limited by poor understanding of underlying molecular pathways. Using a targeted search, we identified an enrichment of de novo mutations in the gene encoding the 330-kDa triple functional domain (TRIO) protein associated with neurodevelopmental disorders. By generating multiple TRIO antibodies, we show that the smaller TRIO9 isoform is the major brain protein product, and its levels decrease after birth. TRIO9 contains two guanine nucleotide exchange factor (GEF) domains with distinct specificities: GEF1 activates both Rac1 and RhoG; GEF2 activates RhoA. To understand the impact of disease-associated de novo mutations and other rare sequence variants on TRIO function, we utilized two FRET-based biosensors: a Rac1 biosensor to study mutations in TRIO (T)GEF1, and a RhoA biosensor to study mutations in TGEF2. We discovered that one autism-associated de novo mutation in TGEF1 (K1431M), at the TGEF1/Rac1 interface, markedly decreased its overall activity toward Rac1. A schizophrenia-associated rare sequence variant in TGEF1 (F1538Intron) was substantially less active, normalized to protein level and expressed poorly. Overall, mutations in TGEF1 decreased GEF1 activity toward Rac1. One bipolar disorder-associated rare variant (M2145T) in TGEF2 impaired inhibition by the TGEF2 pleckstrin-homology domain, resulting in dramatically increased TGEF2 activity. Overall, genetic damage to both TGEF domains altered TRIO catalytic activity, decreasing TGEF1 activity and increasing TGEF2 activity. Importantly, both GEF changes are expected to decrease neurite outgrowth, perhaps consistent with their association with neurodevelopmental disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    NARCIS (Netherlands)

    Y.J. Kim (Young Jin); J. Lee (Juyoung); B.-J. Kim (Bong-Jo); T. Park (Taesung); G.R. Abecasis (Gonçalo); M.A.A. De Almeida (Marcio); D. Altshuler (David); J.L. Asimit (Jennifer L.); G. Atzmon (Gil); M. Barber (Mathew); A. Barzilai (Ari); N.L. Beer (Nicola L.); G.I. Bell (Graeme I.); J. Below (Jennifer); T. Blackwell (Tom); J. Blangero (John); M. Boehnke (Michael); D.W. Bowden (Donald W.); N.P. Burtt (Noël); J.C. Chambers (John); H. Chen (Han); P. Chen (Ping); P.S. Chines (Peter); S. Choi (Sungkyoung); C. Churchhouse (Claire); P. Cingolani (Pablo); B.K. Cornes (Belinda); N.J. Cox (Nancy); A.G. Day-Williams (Aaron); A. Duggirala (Aparna); J. Dupuis (Josée); T. Dyer (Thomas); S. Feng (Shuang); J. Fernandez-Tajes (Juan); T. Ferreira (Teresa); T.E. Fingerlin (Tasha E.); J. Flannick (Jason); J.C. Florez (Jose); P. Fontanillas (Pierre); T.M. Frayling (Timothy); C. Fuchsberger (Christian); E. Gamazon (Eric); K. Gaulton (Kyle); S. Ghosh (Saurabh); B. Glaser (Benjamin); A.L. Gloyn (Anna); R.L. Grossman (Robert L.); J. Grundstad (Jason); C. Hanis (Craig); A. Heath (Allison); H. Highland (Heather); M. Horikoshi (Momoko); I.-S. Huh (Ik-Soo); J.R. Huyghe (Jeroen R.); M.K. Ikram (Kamran); K.A. Jablonski (Kathleen); Y. Jun (Yang); N. Kato (Norihiro); J. Kim (Jayoun); Y.J. Kim (Young Jin); B.-J. Kim (Bong-Jo); J. Lee (Juyoung); C.R. King (C. Ryan); J.S. Kooner (Jaspal S.); M.-S. Kwon (Min-Seok); H.K. Im (Hae Kyung); M. Laakso (Markku); K.K.-Y. Lam (Kevin Koi-Yau); J. Lee (Jaehoon); S. Lee (Selyeong); S. Lee (Sungyoung); D.M. Lehman (Donna M.); H. Li (Heng); C.M. Lindgren (Cecilia); X. Liu (Xuanyao); O.E. Livne (Oren E.); A.E. Locke (Adam E.); A. Mahajan (Anubha); J.B. Maller (Julian B.); A.K. Manning (Alisa K.); T.J. Maxwell (Taylor J.); A. Mazoure (Alexander); M.I. McCarthy (Mark); J.B. Meigs (James B.); B. Min (Byungju); K.L. Mohlke (Karen); A.P. Morris (Andrew); S. Musani (Solomon); Y. Nagai (Yoshihiko); M.C.Y. Ng (Maggie C.Y.); D. Nicolae (Dan); S. Oh (Sohee); N.D. Palmer (Nicholette); T. Park (Taesung); T.I. Pollin (Toni I.); I. Prokopenko (Inga); D. Reich (David); M.A. Rivas (Manuel); L.J. Scott (Laura); M. Seielstad (Mark); Y.S. Cho (Yoon Shin); X. Sim (Xueling); R. Sladek (Rob); P. Smith (Philip); I. Tachmazidou (Ioanna); E.S. Tai (Shyong); Y.Y. Teo (Yik Ying); T.M. Teslovich (Tanya M.); J. Torres (Jason); V. Trubetskoy (Vasily); S.M. Willems (Sara); A.L. Williams (Amy L.); J.G. Wilson (James); S. Wiltshire (Steven); S. Won (Sungho); A.R. Wood (Andrew); W. Xu (Wang); J. Yoon (Joon); M. Zawistowski (Matthew); E. Zeggini (Eleftheria); W. Zhang (Weihua); S. Zöllner (Sebastian)

    2015-01-01

    textabstractBackground: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the

  10. Population-based rare variant detection via pooled exome or custom hybridization capture with or without individual indexing.

    Science.gov (United States)

    Ramos, Enrique; Levinson, Benjamin T; Chasnoff, Sara; Hughes, Andrew; Young, Andrew L; Thornton, Katherine; Li, Allie; Vallania, Francesco L M; Province, Michael; Druley, Todd E

    2012-12-06

    Rare genetic variation in the human population is a major source of pathophysiological variability and has been implicated in a host of complex phenotypes and diseases. Finding disease-related genes harboring disparate functional rare variants requires sequencing of many individuals across many genomic regions and comparing against unaffected cohorts. However, despite persistent declines in sequencing costs, population-based rare variant detection across large genomic target regions remains cost prohibitive for most investigators. In addition, DNA samples are often precious and hybridization methods typically require large amounts of input DNA. Pooled sample DNA sequencing is a cost and time-efficient strategy for surveying populations of individuals for rare variants. We set out to 1) create a scalable, multiplexing method for custom capture with or without individual DNA indexing that was amenable to low amounts of input DNA and 2) expand the functionality of the SPLINTER algorithm for calling substitutions, insertions and deletions across either candidate genes or the entire exome by integrating the variant calling algorithm with the dynamic programming aligner, Novoalign. We report methodology for pooled hybridization capture with pre-enrichment, indexed multiplexing of up to 48 individuals or non-indexed pooled sequencing of up to 92 individuals with as little as 70 ng of DNA per person. Modified solid phase reversible immobilization bead purification strategies enable no sample transfers from sonication in 96-well plates through adapter ligation, resulting in 50% less library preparation reagent consumption. Custom Y-shaped adapters containing novel 7 base pair index sequences with a Hamming distance of ≥2 were directly ligated onto fragmented source DNA eliminating the need for PCR to incorporate indexes, and was followed by a custom blocking strategy using a single oligonucleotide regardless of index sequence. These results were obtained aligning raw

  11. Population-based rare variant detection via pooled exome or custom hybridization capture with or without individual indexing

    Directory of Open Access Journals (Sweden)

    Ramos Enrique

    2012-12-01

    Full Text Available Abstract Background Rare genetic variation in the human population is a major source of pathophysiological variability and has been implicated in a host of complex phenotypes and diseases. Finding disease-related genes harboring disparate functional rare variants requires sequencing of many individuals across many genomic regions and comparing against unaffected cohorts. However, despite persistent declines in sequencing costs, population-based rare variant detection across large genomic target regions remains cost prohibitive for most investigators. In addition, DNA samples are often precious and hybridization methods typically require large amounts of input DNA. Pooled sample DNA sequencing is a cost and time-efficient strategy for surveying populations of individuals for rare variants. We set out to 1 create a scalable, multiplexing method for custom capture with or without individual DNA indexing that was amenable to low amounts of input DNA and 2 expand the functionality of the SPLINTER algorithm for calling substitutions, insertions and deletions across either candidate genes or the entire exome by integrating the variant calling algorithm with the dynamic programming aligner, Novoalign. Results We report methodology for pooled hybridization capture with pre-enrichment, indexed multiplexing of up to 48 individuals or non-indexed pooled sequencing of up to 92 individuals with as little as 70 ng of DNA per person. Modified solid phase reversible immobilization bead purification strategies enable no sample transfers from sonication in 96-well plates through adapter ligation, resulting in 50% less library preparation reagent consumption. Custom Y-shaped adapters containing novel 7 base pair index sequences with a Hamming distance of ≥2 were directly ligated onto fragmented source DNA eliminating the need for PCR to incorporate indexes, and was followed by a custom blocking strategy using a single oligonucleotide regardless of index sequence

  12. Candidate Sequence Variants and Fetal Hemoglobin in Children with Sickle Cell Disease Treated with Hydroxyurea

    Science.gov (United States)

    Green, Nancy S.; Ender, Katherine L.; Pashankar, Farzana; Driscoll, Catherine; Giardina, Patricia J.; Mullen, Craig A.; Clark, Lorraine N.; Manwani, Deepa; Crotty, Jennifer; Kisselev, Sergey; Neville, Kathleen A.; Hoppe, Carolyn; Barral, Sandra

    2013-01-01

    Background Fetal hemoglobin level is a heritable complex trait that strongly correlates swith the clinical severity of sickle cell disease. Only few genetic loci have been identified as robustly associated with fetal hemoglobin in patients with sickle cell disease, primarily adults. The sole approved pharmacologic therapy for this disease is hydroxyurea, with effects largely attributable to induction of fetal hemoglobin. Methodology/Principal Findings In a multi-site observational analysis of children with sickle cell disease, candidate single nucleotide polymorphisms associated with baseline fetal hemoglobin levels in adult sickle cell disease were examined in children at baseline and induced by hydroxyurea therapy. For baseline levels, single marker analysis demonstrated significant association with BCL11A and the beta and epsilon globin loci (HBB and HBE, respectively), with an additive attributable variance from these loci of 23%. Among a subset of children on hydroxyurea, baseline fetal hemoglobin levels explained 33% of the variance in induced levels. The variant in HBE accounted for an additional 13% of the variance in induced levels, while variants in the HBB and BCL11A loci did not contribute beyond baseline levels. Conclusions/Significance These findings clarify the overlap between baseline and hydroxyurea-induced fetal hemoglobin levels in pediatric disease. Studies assessing influences of specific sequence variants in these and other genetic loci in larger populations and in unusual hydroxyurea responders are needed to further understand the maintenance and therapeutic induction of fetal hemoglobin in pediatric sickle cell disease. PMID:23409025

  13. Recurrent variants in OTOF are significant contributors to prelingual nonsydromic hearing loss in Saudi patients

    Science.gov (United States)

    Almontashiri, Naif A M; Alswaid, Abdulrahman; Oza, Andrea; Al-Mazrou, Khalid A; Elrehim, Omnia; Tayoun, Ahmad Abou; Rehm, Heidi L; Amr, Sami S

    2018-01-01

    Purpose Hearing loss is more prevalent in the Saudi Arabian population than in other populations; however, the full range of genetic etiologies in this population is unknown. We report the genetic findings from 33 Saudi hearing-loss probands of tribal ancestry, with predominantly prelingual severe to profound hearing loss. Methods Testing was performed over the course of 2012–2016, and involved initial GJB2 sequence and GJB6-D13S1830 deletion screening, with negative cases being reflexed to a next-generation sequencing panel with 70, 71, or 87 hearing-loss genes. Results A “positive” result was reached in 63% of probands, with two recurrent OTOF variants (p.Glu57* and p.Arg1792His) accountable for a third of all “positive” cases. The next most common cause was pathogenic variants in MYO7A and SLC26A4, each responsible for three “positive” cases. Interestingly, only one “positive” diagnosis had a DFNB1-related cause, due to a homozygous GJB6-D13S1830 deletion, and no sequence variants in GJB2 were detected. Conclusion Our findings implicate OTOF as a potential major contributor to hearing loss in the Saudi population, while highlighting the low contribution of GJB2, thus offering important considerations for clinical testing strategies for Saudi patients. Further screening of Saudi patients is needed to characterize the genetic spectrum in this population. PMID:29048421

  14. Rare variants in RTEL1 are associated with familial interstitial pneumonia.

    Science.gov (United States)

    Cogan, Joy D; Kropski, Jonathan A; Zhao, Min; Mitchell, Daphne B; Rives, Lynette; Markin, Cheryl; Garnett, Errine T; Montgomery, Keri H; Mason, Wendi R; McKean, David F; Powers, Julia; Murphy, Elissa; Olson, Lana M; Choi, Leena; Cheng, Dong-Sheng; Blue, Elizabeth Marchani; Young, Lisa R; Lancaster, Lisa H; Steele, Mark P; Brown, Kevin K; Schwarz, Marvin I; Fingerlin, Tasha E; Schwartz, David A; Lawson, William E; Loyd, James E; Zhao, Zhongming; Phillips, John A; Blackwell, Timothy S

    2015-03-15

    Up to 20% of cases of idiopathic interstitial pneumonia cluster in families, comprising the syndrome of familial interstitial pneumonia (FIP); however, the genetic basis of FIP remains uncertain in most families. To determine if new disease-causing rare genetic variants could be identified using whole-exome sequencing of affected members from FIP families, providing additional insights into disease pathogenesis. Affected subjects from 25 kindreds were selected from an ongoing FIP registry for whole-exome sequencing from genomic DNA. Candidate rare variants were confirmed by Sanger sequencing, and cosegregation analysis was performed in families, followed by additional sequencing of affected individuals from another 163 kindreds. We identified a potentially damaging rare variant in the gene encoding for regulator of telomere elongation helicase 1 (RTEL1) that segregated with disease and was associated with very short telomeres in peripheral blood mononuclear cells in 1 of 25 families in our original whole-exome sequencing cohort. Evaluation of affected individuals in 163 additional kindreds revealed another eight families (4.7%) with heterozygous rare variants in RTEL1 that segregated with clinical FIP. Probands and unaffected carriers of these rare variants had short telomeres (RTEL1 function. Rare loss-of-function variants in RTEL1 represent a newly defined genetic predisposition for FIP, supporting the importance of telomere-related pathways in pulmonary fibrosis.

  15. A method to prioritize quantitative traits and individuals for sequencing in family-based studies.

    Directory of Open Access Journals (Sweden)

    Kaanan P Shah

    Full Text Available Owing to recent advances in DNA sequencing, it is now technically feasible to evaluate the contribution of rare variation to complex traits and diseases. However, it is still cost prohibitive to sequence the whole genome (or exome of all individuals in each study. For quantitative traits, one strategy to reduce cost is to sequence individuals in the tails of the trait distribution. However, the next challenge becomes how to prioritize traits and individuals for sequencing since individuals are often characterized for dozens of medically relevant traits. In this article, we describe a new method, the Rare Variant Kinship Test (RVKT, which leverages relationship information in family-based studies to identify quantitative traits that are likely influenced by rare variants. Conditional on nuclear families and extended pedigrees, we evaluate the power of the RVKT via simulation. Not unexpectedly, the power of our method depends strongly on effect size, and to a lesser extent, on the frequency of the rare variant and the number and type of relationships in the sample. As an illustration, we also apply our method to data from two genetic studies in the Old Order Amish, a founder population with extensive genealogical records. Remarkably, we implicate the presence of a rare variant that lowers fasting triglyceride levels in the Heredity and Phenotype Intervention (HAPI Heart study (p = 0.044, consistent with the presence of a previously identified null mutation in the APOC3 gene that lowers fasting triglyceride levels in HAPI Heart study participants.

  16. Population structure analysis using rare and common functional variants

    Directory of Open Access Journals (Sweden)

    Ding Lili

    2011-11-01

    Full Text Available Abstract Next-generation sequencing technologies now make it possible to genotype and measure hundreds of thousands of rare genetic variations in individuals across the genome. Characterization of high-density genetic variation facilitates control of population genetic structure on a finer scale before large-scale genotyping in disease genetics studies. Population structure is a well-known, prevalent, and important factor in common variant genetic studies, but its relevance in rare variants is unclear. We perform an extensive population structure analysis using common and rare functional variants from the Genetic Analysis Workshop 17 mini-exome sequence. The analysis based on common functional variants required 388 principal components to account for 90% of the variation in population structure. However, an analysis based on rare variants required 532 significant principal components to account for similar levels of variation. Using rare variants, we detected fine-scale substructure beyond the population structure identified using common functional variants. Our results show that the level of population structure embedded in rare variant data is different from the level embedded in common variant data and that correcting for population structure is only as good as the level one wishes to correct.

  17. Mutation analysis and characterization of ATR sequence variants in breast cancer cases from high-risk French Canadian breast/ovarian cancer families

    Directory of Open Access Journals (Sweden)

    Pichette Roxane

    2006-09-01

    Full Text Available Abstract Background Ataxia telangiectasia-mutated and Rad3-related (ATR is a member of the PIK-related family which plays, along with ATM, a central role in cell-cycle regulation. ATR has been shown to phosphorylate several tumor suppressors like BRCA1, CHEK1 and TP53. ATR appears as a good candidate breast cancer susceptibility gene and the current study was designed to screen for ATR germline mutations potentially involved in breast cancer predisposition. Methods ATR direct sequencing was performed using a fluorescent method while widely available programs were used for linkage disequilibrium (LD, haplotype analyses, and tagging SNP (tSNP identification. Expression analyses were carried out using real-time PCR. Results The complete sequence of all exons and flanking intronic sequences were analyzed in DNA samples from 54 individuals affected with breast cancer from non-BRCA1/2 high-risk French Canadian breast/ovarian families. Although no germline mutation has been identified in the coding region, we identified 41 sequence variants, including 16 coding variants, 3 of which are not reported in public databases. SNP haplotypes were established and tSNPs were identified in 73 healthy unrelated French Canadians, providing a valuable tool for further association studies involving the ATR gene, using large cohorts. Our analyses led to the identification of two novel alternative splice transcripts. In contrast to the transcript generated by an alternative splicing site in the intron 41, the one resulting from a deletion of 121 nucleotides in exon 33 is widely expressed, at significant but relatively low levels, in both normal and tumoral cells including normal breast and ovarian tissue. Conclusion Although no deleterious mutations were identified in the ATR gene, the current study provides an haplotype analysis of the ATR gene polymorphisms, which allowed the identification of a set of SNPs that could be used as tSNPs for large-scale association

  18. Identifying noncoding risk variants using disease-relevant gene regulatory networks.

    Science.gov (United States)

    Gao, Long; Uzun, Yasin; Gao, Peng; He, Bing; Ma, Xiaoke; Wang, Jiahui; Han, Shizhong; Tan, Kai

    2018-02-16

    Identifying noncoding risk variants remains a challenging task. Because noncoding variants exert their effects in the context of a gene regulatory network (GRN), we hypothesize that explicit use of disease-relevant GRNs can significantly improve the inference accuracy of noncoding risk variants. We describe Annotation of Regulatory Variants using Integrated Networks (ARVIN), a general computational framework for predicting causal noncoding variants. It employs a set of novel regulatory network-based features, combined with sequence-based features to infer noncoding risk variants. Using known causal variants in gene promoters and enhancers in a number of diseases, we show ARVIN outperforms state-of-the-art methods that use sequence-based features alone. Additional experimental validation using reporter assay further demonstrates the accuracy of ARVIN. Application of ARVIN to seven autoimmune diseases provides a holistic view of the gene subnetwork perturbed by the combinatorial action of the entire set of risk noncoding mutations.

  19. A targeted sequencing panel identifies rare damaging variants in multiple genes in the cranial neural tube defect, anencephaly.

    Science.gov (United States)

    Ishida, M; Cullup, T; Boustred, C; James, C; Docker, J; English, C; Lench, N; Copp, A J; Moore, G E; Greene, N D E; Stanier, P

    2018-04-01

    Neural tube defects (NTDs) affecting the brain (anencephaly) are lethal before or at birth, whereas lower spinal defects (spina bifida) may lead to lifelong neurological handicap. Collectively, NTDs rank among the most common birth defects worldwide. This study focuses on anencephaly, which despite having a similar frequency to spina bifida and being the most common type of NTD observed in mouse models, has had more limited inclusion in genetic studies. A genetic influence is strongly implicated in determining risk of NTDs and a molecular diagnosis is of fundamental importance to families both in terms of understanding the origin of the condition and for managing future pregnancies. Here we used a custom panel of 191 NTD candidate genes to screen 90 patients with cranial NTDs (n = 85 anencephaly and n = 5 craniorachischisis) with a targeted exome sequencing platform. After filtering and comparing to our in-house control exome database (N = 509), we identified 397 rare variants (minor allele frequency, MAF < 1%), 21 of which were previously unreported and predicted damaging. This included 1 frameshift (PDGFRA), 2 stop-gained (MAT1A; NOS2) and 18 missense variations. Together with evidence for oligogenic inheritance, this study provides new information on the possible genetic causation of anencephaly. © 2017 The Authors. Clinical Genetics published by John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Method of generating ploynucleotides encoding enhanced folding variants

    Energy Technology Data Exchange (ETDEWEB)

    Bradbury, Andrew M.; Kiss, Csaba; Waldo, Geoffrey S.

    2017-05-02

    The invention provides directed evolution methods for improving the folding, solubility and stability (including thermostability) characteristics of polypeptides. In one aspect, the invention provides a method for generating folding and stability-enhanced variants of proteins, including but not limited to fluorescent proteins, chromophoric proteins and enzymes. In another aspect, the invention provides methods for generating thermostable variants of a target protein or polypeptide via an internal destabilization baiting strategy. Internally destabilization a protein of interest is achieved by inserting a heterologous, folding-destabilizing sequence (folding interference domain) within DNA encoding the protein of interest, evolving the protein sequences adjacent to the heterologous insertion to overcome the destabilization (using any number of mutagenesis methods), thereby creating a library of variants. The variants in the library are expressed, and those with enhanced folding characteristics selected.

  1. Detection of a new variant of Citrus tristeza virus in Greek citrus crops

    Directory of Open Access Journals (Sweden)

    Elisavet K. CHATZIVASSILIOU

    2014-05-01

    Full Text Available Citrus tristeza virus (CTV, the most destructive virus of citrus, is a quarantine pathogen in Greece. Since 2000, several accidental imports of infected propagation material have been detected in the country, and while eradication measures were applied, a few disease foci still remain. CTV isolates were collected from Chania (Crete and the “lemonwood” of Poros (Peloponnese, and their genetic variability was studied using single-strand conformation polymorphism (SSCP. One previously characterized isolate from Argolida grafted on a Mexican lime (GR3 and two Italian isolates from Calamondin were also included in the study. ELISA and RT-PCR tests confirmed CTV presence, and SSCP analysis of the virus amplified coat protein (CP gene was used to separate either distinct virus isolates for cloning the CP gene or variants (haplotypes for sequencing. Analyses showed that selected variants of four representative isolates clustered into three of the seven defined phylogenetic groups: groups 3b and 5 (severe isolates and group M (mild isolates. The prevalent haplotypes detected in the CTV from lemonwood of Poros (GR9 were in group 3b, confirming previous results. However, one sequence variant was identified as a recombinant between haplotypes from groups 3b and 5. Variants of these two groups were also detected in the Italian Calamondin isolate. In the grafted Mexican lime isolate (GR3 from Argolida, only one haplotype was found which belonged to group M, while in the field isolate from Chania (GR6 the only haplotype detected was in group 5. This is the first report of variants of group 5 in Greece, suggesting an unknown virus introduction. The prevalence of severe isolates in the area is of particular concern, and implications for the future of the CTV epidemics are discussed.

  2. Functionally significant, rare transcription factor variants in tetralogy of Fallot.

    Directory of Open Access Journals (Sweden)

    Ana Töpf

    Full Text Available Rare variants in certain transcription factors involved in cardiac development cause Mendelian forms of congenital heart disease. The purpose of this study was to systematically assess the frequency of rare transcription factor variants in sporadic patients with the cardiac outflow tract malformation tetralogy of Fallot (TOF.We sequenced the coding, 5'UTR, and 3'UTR regions of twelve transcription factor genes implicated in cardiac outflow tract development (NKX2.5, GATA4, ISL1, TBX20, MEF2C, BOP/SMYD1, HAND2, FOXC1, FOXC2, FOXH, FOXA2 and TBX1 in 93 non-syndromic, non-Mendelian TOF cases. We also analysed Illumina Human 660W-Quad SNP Array data for copy number variants in these genes; none were detected. Four of the rare variants detected have previously been shown to affect transactivation in in vitro reporter assays: FOXC1 p.P297S, FOXC2 p.Q444R, FOXH1 p.S113T and TBX1 p.P43_G61del PPPPRYDPCAAAAPGAPGP. Two further rare variants, HAND2 p.A25_A26insAA and FOXC1 p.G378_G380delGGG, A488_491delAAAA, affected transactivation in in vitro reporter assays. Each of these six functionally significant variants was present in a single patient in the heterozygous state; each of the four for which parental samples were available were maternally inherited. Thus in the 93 TOF cases we identified six functionally significant mutations in the secondary heart field transcriptional network.This study indicates that rare genetic variants in the secondary heart field transcriptional network with functional effects on protein function occur in 3-13% of patients with TOF. This is the first report of a functionally significant HAND2 mutation in a patient with congenital heart disease.

  3. Germline Variants of Prostate Cancer in Japanese Families.

    Directory of Open Access Journals (Sweden)

    Takahide Hayano

    Full Text Available Prostate cancer (PC is the second most common cancer in men. Family history is the major risk factor for PC. Only two susceptibility genes were identified in PC, BRCA2 and HOXB13. A comprehensive search of germline variants for patients with PC has not been reported in Japanese families. In this study, we conducted exome sequencing followed by Sanger sequencing to explore responsible germline variants in 140 Japanese patients with PC from 66 families. In addition to known susceptibility genes, BRCA2 and HOXB13, we identified TRRAP variants in a mutually exclusive manner in seven large PC families (three or four patients per family. We also found shared variants of BRCA2, HOXB13, and TRRAP from 59 additional small PC families (two patients per family. We identified two deleterious HOXB13 variants (F127C and G132E. Further exploration of the shared variants in rest of the families revealed deleterious variants of the so-called cancer genes (ATP1A1, BRIP1, FANCA, FGFR3, FLT3, HOXD11, MUTYH, PDGFRA, SMARCA4, and TCF3. The germline variant profile provides a new insight to clarify the genetic etiology and heterogeneity of PC among Japanese men.

  4. Suspected Lynch syndrome associated MSH6 variants: A functional assay to determine their pathogenicity.

    Directory of Open Access Journals (Sweden)

    Hellen Houlleberghs

    2017-05-01

    Full Text Available Lynch syndrome (LS is a hereditary cancer predisposition caused by inactivating mutations in DNA mismatch repair (MMR genes. Mutations in the MSH6 DNA MMR gene account for approximately 18% of LS cases. Many LS-associated sequence variants are nonsense and frameshift mutations that clearly abrogate MMR activity. However, missense mutations whose functional implications are unclear are also frequently seen in suspected-LS patients. To conclusively diagnose LS and enroll patients in appropriate surveillance programs to reduce morbidity as well as mortality, the functional consequences of these variants of uncertain clinical significance (VUS must be defined. We present an oligonucleotide-directed mutagenesis screen for the identification of pathogenic MSH6 VUS. In the screen, the MSH6 variant of interest is introduced into mouse embryonic stem cells by site-directed mutagenesis. Subsequent selection for MMR-deficient cells using the DNA damaging agent 6-thioguanine (6TG allows the identification of MMR abrogating VUS because solely MMR-deficient cells survive 6TG exposure. We demonstrate the efficacy of the genetic screen, investigate the phenotype of 26 MSH6 VUS and compare our screening results to clinical data from suspected-LS patients carrying these variant alleles.

  5. Identification of a Novel De Novo Variant in the PAX3 Gene in Waardenburg Syndrome by Diagnostic Exome Sequencing: The First Molecular Diagnosis in Korea.

    Science.gov (United States)

    Jang, Mi-Ae; Lee, Taeheon; Lee, Junnam; Cho, Eun-Hae; Ki, Chang-Seok

    2015-05-01

    Waardenburg syndrome (WS) is a clinically and genetically heterogeneous hereditary auditory pigmentary disorder characterized by congenital sensorineural hearing loss and iris discoloration. Many genes have been linked to WS, including PAX3, MITF, SNAI2, EDNRB, EDN3, and SOX10, and many additional genes have been associated with disorders with phenotypic overlap with WS. To screen all possible genes associated with WS and congenital deafness simultaneously, we performed diagnostic exome sequencing (DES) in a male patient with clinical features consistent with WS. Using DES, we identified a novel missense variant (c.220C>G; p.Arg74Gly) in exon 2 of the PAX3 gene in the patient. Further analysis by Sanger sequencing of the patient and his parents revealed a de novo occurrence of the variant. Our findings show that DES can be a useful tool for the identification of pathogenic gene variants in WS patients and for differentiation between WS and similar disorders. To the best of our knowledge, this is the first report of genetically confirmed WS in Korea.

  6. Quantitation of heteroplasmy of mtDNA sequence variants identified in a population of AD patients and controls by array-based resequencing.

    Science.gov (United States)

    Coon, Keith D; Valla, Jon; Szelinger, Szabolics; Schneider, Lonnie E; Niedzielko, Tracy L; Brown, Kevin M; Pearson, John V; Halperin, Rebecca; Dunckley, Travis; Papassotiropoulos, Andreas; Caselli, Richard J; Reiman, Eric M; Stephan, Dietrich A

    2006-08-01

    The role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease (AD) has been well documented. Though evidence for the role of mitochondria in AD seems incontrovertible, the impact of mitochondrial DNA (mtDNA) mutations in AD etiology remains controversial. Though mutations in mitochondrially encoded genes have repeatedly been implicated in the pathogenesis of AD, many of these studies have been plagued by lack of replication as well as potential contamination of nuclear-encoded mitochondrial pseudogenes. To assess the role of mtDNA mutations in the pathogenesis of AD, while avoiding the pitfalls of nuclear-encoded mitochondrial pseudogenes encountered in previous investigations and showcasing the benefits of a novel resequencing technology, we sequenced the entire coding region (15,452 bp) of mtDNA from 19 extremely well-characterized AD patients and 18 age-matched, unaffected controls utilizing a new, reliable, high-throughput array-based resequencing technique, the Human MitoChip. High-throughput, array-based DNA resequencing of the entire mtDNA coding region from platelets of 37 subjects revealed the presence of 208 loci displaying a total of 917 sequence variants. There were no statistically significant differences in overall mutational burden between cases and controls, however, 265 independent sites of statistically significant change between cases and controls were identified. Changed sites were found in genes associated with complexes I (30.2%), III (3.0%), IV (33.2%), and V (9.1%) as well as tRNA (10.6%) and rRNA (14.0%). Despite their statistical significance, the subtle nature of the observed changes makes it difficult to determine whether they represent true functional variants involved in AD etiology or merely naturally occurring dissimilarity. Regardless, this study demonstrates the tremendous value of this novel mtDNA resequencing platform, which avoids the pitfalls of erroneously amplifying nuclear-encoded mtDNA pseudogenes, and

  7. OVAS: an open-source variant analysis suite with inheritance modelling.

    Science.gov (United States)

    Mozere, Monika; Tekman, Mehmet; Kari, Jameela; Bockenhauer, Detlef; Kleta, Robert; Stanescu, Horia

    2018-02-08

    The advent of modern high-throughput genetics continually broadens the gap between the rising volume of sequencing data, and the tools required to process them. The need to pinpoint a small subset of functionally important variants has now shifted towards identifying the critical differences between normal variants and disease-causing ones. The ever-increasing reliance on cloud-based services for sequence analysis and the non-transparent methods they utilize has prompted the need for more in-situ services that can provide a safer and more accessible environment to process patient data, especially in circumstances where continuous internet usage is limited. To address these issues, we herein propose our standalone Open-source Variant Analysis Sequencing (OVAS) pipeline; consisting of three key stages of processing that pertain to the separate modes of annotation, filtering, and interpretation. Core annotation performs variant-mapping to gene-isoforms at the exon/intron level, append functional data pertaining the type of variant mutation, and determine hetero/homozygosity. An extensive inheritance-modelling module in conjunction with 11 other filtering components can be used in sequence ranging from single quality control to multi-file penetrance model specifics such as X-linked recessive or mosaicism. Depending on the type of interpretation required, additional annotation is performed to identify organ specificity through gene expression and protein domains. In the course of this paper we analysed an autosomal recessive case study. OVAS made effective use of the filtering modules to recapitulate the results of the study by identifying the prescribed compound-heterozygous disease pattern from exome-capture sequence input samples. OVAS is an offline open-source modular-driven analysis environment designed to annotate and extract useful variants from Variant Call Format (VCF) files, and process them under an inheritance context through a top-down filtering schema of

  8. Protective Low-Frequency Variants for Preeclampsia in the Fms Related Tyrosine Kinase 1 Gene in the Finnish Population.

    Science.gov (United States)

    Lokki, A Inkeri; Daly, Emma; Triebwasser, Michael; Kurki, Mitja I; Roberson, Elisha D O; Häppölä, Paavo; Auro, Kirsi; Perola, Markus; Heinonen, Seppo; Kajantie, Eero; Kere, Juha; Kivinen, Katja; Pouta, Anneli; Salmon, Jane E; Meri, Seppo; Daly, Mark; Atkinson, John P; Laivuori, Hannele

    2017-08-01

    Preeclampsia is a common pregnancy-specific vascular disorder characterized by new-onset hypertension and proteinuria during the second half of pregnancy. Predisposition to preeclampsia is in part heritable. It is associated with an increased risk of cardiovascular disease later in life. We have sequenced 124 candidate genes implicated in preeclampsia to pinpoint genetic variants contributing to predisposition to or protection from preeclampsia. First, targeted exomic sequencing was performed in 500 preeclamptic women and 190 controls from the FINNPEC cohort (Finnish Genetics of Preeclampsia Consortium). Then 122 women with a history of preeclampsia and 1905 parous women with no such history from the National FINRISK Study (a large Finnish population survey on risk factors of chronic, noncommunicable diseases) were included in the analyses. We tested 146 rare and low-frequency variants and found an excess (observed 13 versus expected 7.3) nominally associated with preeclampsia ( P preeclampsia. © 2017 American Heart Association, Inc.

  9. The Saccharomyces Genome Database Variant Viewer.

    Science.gov (United States)

    Sheppard, Travis K; Hitz, Benjamin C; Engel, Stacia R; Song, Giltae; Balakrishnan, Rama; Binkley, Gail; Costanzo, Maria C; Dalusag, Kyla S; Demeter, Janos; Hellerstedt, Sage T; Karra, Kalpana; Nash, Robert S; Paskov, Kelley M; Skrzypek, Marek S; Weng, Shuai; Wong, Edith D; Cherry, J Michael

    2016-01-04

    The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org) is the authoritative community resource for the Saccharomyces cerevisiae reference genome sequence and its annotation. In recent years, we have moved toward increased representation of sequence variation and allelic differences within S. cerevisiae. The publication of numerous additional genomes has motivated the creation of new tools for their annotation and analysis. Here we present the Variant Viewer: a dynamic open-source web application for the visualization of genomic and proteomic differences. Multiple sequence alignments have been constructed across high quality genome sequences from 11 different S. cerevisiae strains and stored in the SGD. The alignments and summaries are encoded in JSON and used to create a two-tiered dynamic view of the budding yeast pan-genome, available at http://www.yeastgenome.org/variant-viewer. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Joint linkage and association analysis with exome sequence data implicates SLC25A40 in hypertriglyceridemia.

    Science.gov (United States)

    Rosenthal, Elisabeth A; Ranchalis, Jane; Crosslin, David R; Burt, Amber; Brunzell, John D; Motulsky, Arno G; Nickerson, Deborah A; Wijsman, Ellen M; Jarvik, Gail P

    2013-12-05

    Hypertriglyceridemia (HTG) is a heritable risk factor for cardiovascular disease. Investigating the genetics of HTG may identify new drug targets. There are ~35 known single-nucleotide variants (SNVs) that explain only ~10% of variation in triglyceride (TG) level. Because of the genetic heterogeneity of HTG, a family study design is optimal for identification of rare genetic variants with large effect size because the same mutation can be observed in many relatives and cosegregation with TG can be tested. We considered HTG in a five-generation family of European American descent (n = 121), ascertained for familial combined hyperlipidemia. By using Bayesian Markov chain Monte Carlo joint oligogenic linkage and association analysis, we detected linkage to chromosomes 7 and 17. Whole-exome sequence data revealed shared, highly conserved, private missense SNVs in both SLC25A40 on chr7 and PLD2 on chr17. Jointly, these SNVs explained 49% of the genetic variance in TG; however, only the SLC25A40 SNV was significantly associated with TG (p = 0.0001). This SNV, c.374A>G, causes a highly disruptive p.Tyr125Cys substitution just outside the second helical transmembrane region of the SLC25A40 inner mitochondrial membrane transport protein. Whole-gene testing in subjects from the Exome Sequencing Project confirmed the association between TG and SLC25A40 rare, highly conserved, coding variants (p = 0.03). These results suggest a previously undescribed pathway for HTG and illustrate the power of large pedigrees in the search for rare, causal variants. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  11. Local exome sequences facilitate imputation of less common variants and increase power of genome wide association studies.

    Directory of Open Access Journals (Sweden)

    Peter K Joshi

    Full Text Available The analysis of less common variants in genome-wide association studies promises to elucidate complex trait genetics but is hampered by low power to reliably detect association. We show that addition of population-specific exome sequence data to global reference data allows more accurate imputation, particularly of less common SNPs (minor allele frequency 1-10% in two very different European populations. The imputation improvement corresponds to an increase in effective sample size of 28-38%, for SNPs with a minor allele frequency in the range 1-3%.

  12. Exome Sequencing Identifies a Missense Variant in EFEMP1 Co-Segregating in a Family with Autosomal Dominant Primary Open-Angle Glaucoma.

    Directory of Open Access Journals (Sweden)

    Donna S Mackay

    Full Text Available Primary open-angle glaucoma (POAG is a clinically important and genetically heterogeneous cause of progressive vision loss as a result of retinal ganglion cell death. Here we have utilized trio-based, whole-exome sequencing to identify the genetic defect underlying an autosomal dominant form of adult-onset POAG segregating in an African-American family. Exome sequencing identified a novel missense variant (c.418C>T, p.Arg140Trp in exon-5 of the gene coding for epidermal growth factor (EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1 that co-segregated with disease in the family. Linkage and haplotype analyses with microsatellite markers indicated that the disease interval overlapped a known POAG locus (GLC1H on chromosome 2p. The p.Arg140Trp substitution was predicted in silico to have damaging effects on protein function and transient expression studies in cultured cells revealed that the Trp140-mutant protein exhibited increased intracellular accumulation compared with wild-type EFEMP1. In situ hybridization of the mouse eye with oligonucleotide probes detected the highest levels of EFEMP1 transcripts in the ciliary body, cornea, inner nuclear layer of the retina, and the optic nerve head. The recent finding that a common variant near EFEMP1 was associated with optic nerve-head morphology supports the possibility that the EFEMP1 variant identified in this POAG family may be pathogenic.

  13. Identification of Rare Variants in TNNI3 with Atrial Fibrillation in a Chinese GeneID Population

    Science.gov (United States)

    Wang, Chuchu; Wu, Manman; Qian, Jin; Li, Bin; Tu, Xin; Xu, Chengqi; Li, Sisi; Chen, Shanshan; Zhao, Yuanyuan; Huang, Yufeng; Shi, Lisong; Cheng, Xiang; Liao, Yuhua; Chen, Qiuyun; Xia, Yunlong; Yao, Wei; Wu, Gang; Cheng, Mian; Wang, Qing K.

    2015-01-01

    Despite advances by genome-wide association studies (GWAS), much of heritability of common human diseases remains missing, a phenomenon referred to as ‘missing heritability’. One potential cause for ‘missing heritability’ is the rare susceptibility variants overlooked by GWAS. Atrial fibrillation (AF) is the most common arrhythmia seen at hospitals and increases risk of stroke by 5-fold and doubles risk of heart failure and sudden death. Here we studied one large Chinese family with AF and hypertrophic cardiomyopathy (HCM). Whole-exome sequencing analysis identified a mutation in TNNI3, R186Q, that co-segregated with the disease in the family, but did not exist in >1,583 controls, suggesting that R186Q causes AF and HCM. High-resolution melting curve analysis and direct DNA sequence analysis were then used to screen mutations in all exons and exon-intron boundaries of TNNI3 in a panel of 1,127 unrelated AF patients and 1,583 non-AF subjects. Four novel missense variants were identified in TNNI3, including E64G, M154L, E187G and D196G in four independent AF patients, but no variant was found in 1,583 non-AF subjects. All variants were not found in public databases, including the ExAC Browser database with 60,706 exomes. These data suggests that rare TNNI3 variants are associated with AF (P=0.03). TNNI3 encodes troponin I, a key regulator of the contraction-relaxation function of cardiac muscle and was not previously implicated in AF. Thus, this study may identify a new biological pathway for the pathogenesis of AF and provides evidence to support the rare variant hypothesis for missing heritability. PMID:26169204

  14. Sequence variants of KHDRBS1 as high penetrance susceptibility risks for primary ovarian insufficiency by mis-regulating mRNA alternative splicing.

    Science.gov (United States)

    Wang, Binbin; Li, Lin; Zhu, Ying; Zhang, Wei; Wang, Xi; Chen, Beili; Li, Tengyan; Pan, Hong; Wang, Jing; Kee, Kehkooi; Cao, Yunxia

    2017-10-01

    Does a novel heterozygous KHDRBS1 variant, identified using whole-exome sequencing (WES) in two patients with primary ovarian insufficiency (POI) in a pedigree, cause defects in mRNA alternative splicing? The heterozygous variant of KHDRBS1 was confirmed to cause defects in alternative splicing of many genes involved in DNA replication and repair. Studies in mice revealed that Khdrbs1 deficient females are subfertile, which manifests as delayed sexual maturity and significantly reduced numbers of secondary and pre-antral follicles. No mutation of KHDRBS1, however, has been reported in patients with POI. This genetic and functional study used WES to find putative mutations in a POI pedigree. Altogether, 215 idiopathic POI patients and 400 healthy controls were screened for KHDRBS1 mutations. Two POI patients were subjected to WES to identify sequence variants. Mutational analysis of the KHDRBS1 gene in 215 idiopathic POI patients and 400 healthy controls were performed. RNA-sequencing was carried out to find the mis-regulation of gene expression due to KHDRBS1 mutation. Bioinformatics was used to analyze the change in alternative splicing events. We identified a heterozygous mutation (c.460A > G, p.M154V) in KHDRBS1 in two patients. Further mutational analysis of 215 idiopathic POI patients with the KHDRBS1 gene found one heterozygous mutation (c.263C > T, p.P88L). We failed to find these two mutations in 400 healthy control women. Using RNA-sequencing, we found that the KGN cells expressing the M154V KHDRBS1 mutant had different expression of 66 genes compared with wild-type (WT) cells. Furthermore, 145 genes were alternatively spliced in M154V cells, and these genes were enriched for DNA replication and repair function, revealing a potential underlying mechanism of the pathology that leads to POI. Although the in vitro assays demonstrated the effect of the KHDRBS1 variant on alternative splicing, further studies are needed to validate the in vivo effects on germ

  15. Expanding the range of ZNF804A variants conferring risk of psychosis

    NARCIS (Netherlands)

    Steinberg, S.; Mors, O.; Borglum, A.D.; Gustafsson, O.; Werge, T.; Mortensen, P.B.; Andreassen, O.A.; Sigurdsson, E.; Thorgeirsson, T.E.; Bottcher, Y.; Olason, P.; Ophoff, R.A.; Cichon, S.; Gudjonsdottir, I.H.; Pietilainen, O.P.H.; Nyegaard, M.; Tuulio-Henriksson, A.; Ingason, A.; Hansen, T.; Athanasiu, L.; Suvisaari, J.; Lonnqvist, J.; Paunio, T.; Hartmann, A.; Jurgens, G.; Nordentoft, M.; Hougaard, D.; Norgaard-Pedersen, B.; Breuer, R.; Moller, H.J.; Giegling, I.; Glenthoj, B.; Rasmussen, H.B.; Mattheisen, M.; Bitter, I.; Rethelyi, J.M.; Sigmundsson, T.; Fossdal, R.; Thorsteinsdottir, U.; Ruggeri, M.; Tosato, S.; Strengman, E.; Kiemeney, L.A.L.M.; Melle, I.; Djurovic, S.; Abramova, L.; Kaleda, V.; Walshe, M.; Bramon, E.; Vassos, E.; Li, T.; Fraser, G.; Walker, N.; Toulopoulou, T.; Yoon, J.; Freimer, N.B.; Cantor, R.M.; Murray, R.; Kong, A.; Golimbet, V.; Jonsson, E.G.; Terenius, L.; Agartz, I.; Petursson, H.; Nothen, Markus; Rietschel, M.; Peltonen, L.; Rujescu, D.; Collier, D.A.; Stefansson, H.; St Clair, D.; Stefansson, K.

    2011-01-01

    A trio of genome-wide association studies recently reported sequence variants at three loci to be significantly associated with schizophrenia. No sequence polymorphism had been unequivocally (P<5 x 10(-8)) associated with schizophrenia earlier. However, one variant, rs1344706[T], had come very

  16. Expanding the range of ZNF804A variants conferring risk of psychosis

    NARCIS (Netherlands)

    Steinberg, S.; Mors, O.; Børglum, A. D.; Gustafsson, O.; Werge, T.; Mortensen, P. B.; Andreassen, O. A.; Sigurdsson, E.; Thorgeirsson, T. E.; Böttcher, Y.; Olason, P.; Ophoff, R. A.; Cichon, S.; Gudjonsdottir, I. H.; Pietiläinen, O. P. H.; Nyegaard, M.; Tuulio-Henriksson, A.; Ingason, A.; Hansen, T.; Athanasiu, L.; Suvisaari, J.; Lonnqvist, J.; Paunio, T.; Hartmann, A.; Jürgens, G.; Nordentoft, M.; Hougaard, D.; Norgaard-Pedersen, B.; Breuer, R.; Möller, H.-J.; Giegling, I.; Glenthøj, B.; Rasmussen, H. B.; Mattheisen, M.; Bitter, I.; Réthelyi, J. M.; Sigmundsson, T.; Fossdal, R.; Thorsteinsdottir, U.; Ruggeri, M.; Tosato, S.; Strengman, E.; Kiemeney, L. A.; Melle, I.; Djurovic, S.; Abramova, L.; Kaleda, V.; Walshe, M.; Linszen, Don H.; de Haan, Lieuwe

    2011-01-01

    A trio of genome-wide association studies recently reported sequence variants at three loci to be significantly associated with schizophrenia. No sequence polymorphism had been unequivocally (P <5 × 10(-8)) associated with schizophrenia earlier. However, one variant, rs1344706[T], had come very

  17. Identification of a variant form of tyrosine phosphatase LYP

    Directory of Open Access Journals (Sweden)

    Ho Wanting T

    2010-11-01

    Full Text Available Abstract Background Protein tyrosine phosphatases (PTPs are important cell signaling regulators with major pathological implications. LYP (also known as PTPN22 is an intracellular enzyme initially found to be predominately expressed in lymphocytes. Importantly, an allelic R620W variant of LYP is strongly associated with multiple autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, and autoimmune thyroid disease. Results In this study, we isolated a novel isoform of LYP designated LYP3. LYP3 differs from LYP1, the known isoform of LYP, in that it lacks a 28 amino acid segment right after the R620W site embedded in a proline-rich protein-protein interaction motif. Genomic sequence analysis revealed that LYP3 resulted from alternative splicing of the LYP gene located on chromosome 1p 13.3-13.1. Reverse transcription PCR analyses of 48 human tissues demonstrated that both LYP1 and LYP3 are predominantly expressed in primary and secondary lymphoid tissues but the relative expression levels of the two isoforms varies in different human tissues and individuals. Conclusions We thus identified a new variant form of LYP and conducted a comprehensive analysis of LYP tissue expressions. Considering the pathogenesis of LYP R620W, we believe that the expression of LYP3 may have an important role in regulating activity and function of LYP and may be implicated in autoimmune diseases.

  18. Whole-exome sequencing of a pedigree segregating asthma

    Directory of Open Access Journals (Sweden)

    DeWan Andrew T

    2012-10-01

    Full Text Available Abstract Background Despite the success of genome-wide association studies for asthma, few, if any, definitively causal variants have been identified and there is still a substantial portion of the heritability of the disease yet to be discovered. Some of this “missing heritability” may be accounted for by family-specific coding variants found to be segregating with asthma. Methods To identify family-specific variants segregating with asthma, we recruited one family from a previous study of asthma as reporting multiple asthmatic and non-asthmatic children. We performed whole-exome sequencing on all four children and both parents and identified coding variants segregating with asthma that were not found in other variant databases. Results Ten novel variants were identified that were found in the two affected offspring and affected mother, but absent in the unaffected father and two unaffected offspring. Of these ten, variants in three genes (PDE4DIP, CBLB, and KALRN were deemed of particular interest based on their functional prediction scores and previously reported function or asthma association. We did not identify any common risk variants segregating with asthma, however, we did observe an increase in the number of novel, nonsynonymous variants in asthma candidate genes in the asthmatic children compared to the non-asthmatic children. Conclusions This is the first report applying exome sequencing to identify asthma susceptibility variants. Despite having sequenced only one family segregating asthma, we have identified several potentially functional variants in interesting asthma candidate genes. This will provide the basis for future work in which more families will be sequenced to identify variants across families that cluster within genes.

  19. Highly accurate sequence imputation enables precise QTL mapping in Brown Swiss cattle.

    Science.gov (United States)

    Frischknecht, Mirjam; Pausch, Hubert; Bapst, Beat; Signer-Hasler, Heidi; Flury, Christine; Garrick, Dorian; Stricker, Christian; Fries, Ruedi; Gredler-Grandl, Birgit

    2017-12-29

    Within the last few years a large amount of genomic information has become available in cattle. Densities of genomic information vary from a few thousand variants up to whole genome sequence information. In order to combine genomic information from different sources and infer genotypes for a common set of variants, genotype imputation is required. In this study we evaluated the accuracy of imputation from high density chips to whole genome sequence data in Brown Swiss cattle. Using four popular imputation programs (Beagle, FImpute, Impute2, Minimac) and various compositions of reference panels, the accuracy of the imputed sequence variant genotypes was high and differences between the programs and scenarios were small. We imputed sequence variant genotypes for more than 1600 Brown Swiss bulls and performed genome-wide association studies for milk fat percentage at two stages of lactation. We found one and three quantitative trait loci for early and late lactation fat content, respectively. Known causal variants that were imputed from the sequenced reference panel were among the most significantly associated variants of the genome-wide association study. Our study demonstrates that whole-genome sequence information can be imputed at high accuracy in cattle populations. Using imputed sequence variant genotypes in genome-wide association studies may facilitate causal variant detection.

  20. Clinical Implications of Human Population Differences in Genome-wide Rates of Functional Genotypes

    Directory of Open Access Journals (Sweden)

    Ali eTorkamani

    2012-11-01

    Full Text Available There have been a number of recent successes in the use of whole genome sequencing and sophisticated bioinformatics techniques to identify pathogenic DNA sequence variants responsible for individual idiopathic congenital conditions. However, the success of this identification process is heavily influenced by the ancestry or genetic background of a patient with an idiopathic condition. This is so because potential pathogenic variants in a patient’s genome must be contrasted with variants in a reference set of genomes made up of other individuals’ genomes of the same ancestry as the patient. We explored the effect of ignoring the ancestries of both an individual patient and the individuals used to construct reference genomes. We pursued this exploration in two major steps. We first considered variation in the per-genome number and rates likely functional derived (i.e., non-ancestral, based on the chimp genome single nucleotide variants and small indels in 52 individual whole human genomes sampled from 10 different global populations. We took advantage of a suite of computational and bioinformatics techniques to predict the functional effect of over 24 million genomic variants, both coding and non-coding, across these genomes. We found that the typical human genome harbors ~5.5-6.1 million total derived variants, of which ~12,000 are likely to have a functional effect (~5000 coding and ~7000 non-coding. We also found that the rates of functional genotypes per the total number of genotypes in individual whole genomes differ dramatically between human populations. We then created tables showing how the use of comparator or reference genome panels comprised of genomes from individuals that do not have the same ancestral background as a patient can negatively impact pathogenic variant identification. Our results have important implications for clinical sequencing initiatives.

  1. Height-reducing variants and selection for short stature in Sardinia

    NARCIS (Netherlands)

    Zoledziewska, Magdalena; Sidore, Carlo; Chiang, Charleston W K; Sanna, Serena; Mulas, Antonella; Steri, Maristella; Busonero, Fabio; Marcus, Joseph H; Marongiu, Michele; Maschio, Andrea; Ortega Del Vecchyo, Diego; Floris, Matteo; Meloni, Antonella; Delitala, Alessandro; Concas, Maria Pina; Murgia, Federico; Biino, Ginevra; Vaccargiu, Simona; Nagaraja, Ramaiah; Lohmueller, Kirk E; Timpson, Nicholas J; Soranzo, Nicole; Tachmazidou, Ioanna; Dedoussis, George; Zeggini, Eleftheria; Uzzau, Sergio; Jones, Chris; Lyons, Robert; Angius, Andrea; Abecasis, Gonçalo R; Novembre, John; Schlessinger, David; Cucca, Francesco

    We report sequencing-based whole-genome association analyses to evaluate the impact of rare and founder variants on stature in 6,307 individuals on the island of Sardinia. We identify two variants with large effects. One variant, which introduces a stop codon in the GHR gene, is relatively frequent

  2. VIPER: a web application for rapid expert review of variant calls.

    Science.gov (United States)

    Wöste, Marius; Dugas, Martin

    2018-01-15

    With the rapid development in next-generation sequencing, cost and time requirements for genomic sequencing are decreasing, enabling applications in many areas such as cancer research. Many tools have been developed to analyze genomic variation ranging from single nucleotide variants to whole chromosomal aberrations. As sequencing throughput increases, the number of variants called by such tools also grows. Often employed manual inspection of such calls is thus becoming a time-consuming procedure. We developed the Variant InsPector and Expert Rating tool (VIPER) to speed up this process by integrating the Integrative Genomics Viewer into a web application. Analysts can then quickly iterate through variants, apply filters and make decisions based on the generated images and variant metadata. VIPER was successfully employed in analyses with manual inspection of more than 10,000 calls. VIPER is implemented in Java and Javascript and is freely available at https://github.com/MarWoes/viper. Marius.Woeste@uni-muenster.de. Supplementary data are available at Bioinformatics online. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  3. SDS, a structural disruption score for assessment of missense variant deleteriousness

    Directory of Open Access Journals (Sweden)

    Thanawadee ePreeprem

    2014-04-01

    Full Text Available We have developed a novel structure-based evaluation for missense variants that explicitly models protein structure and amino acid properties to predict the likelihood that a variant disrupts protein function. A structural disruption score (SDS is introduced as a measure to depict the likelihood that a case variant is functional. The score is constructed using characteristics that distinguish between causal and neutral variants within a group of proteins. The SDS score is correlated with standard sequence-based deleteriousness, but shows promise for improving discrimination between neutral and causal variants at less conserved sites.The prediction was performed on 3-dimentional structures of 57 gene products whose homozygous SNPs were identified as case-exclusive variants in an exome sequencing study of epilepsy disorders. We contrasted the candidate epilepsy variants with scores for likely benign variants found in the EVS database, and for positive control variants in the same genes that are suspected to promote a range of diseases. To derive a characteristic profile of damaging SNPs, we transformed continuous scores into categorical variables based on the score distribution of each measurement, collected from all possible SNPs in this protein set, where extreme measures were assumed to be deleterious. A second epilepsy dataset was used to replicate the findings. Causal variants tend to receive higher sequence-based deleterious scores, induce larger physico-chemical changes between amino acid pairs, locate in protein domains, buried sites or on conserved protein surface clusters, and cause protein destabilization, relative to negative controls. These measures were agglomerated for each variant. A list of nine high-priority putative functional variants for epilepsy was generated. Our newly developed SDS protocol facilitates SNP prioritization for experimental validation.

  4. Differentially Expressed Genes in Endometrium and Corpus Luteum of Holstein Cows Selected for High and Low Fertility Are Enriched for Sequence Variants Associated with Fertility.

    Science.gov (United States)

    Moore, Stephen G; Pryce, Jennie E; Hayes, Ben J; Chamberlain, Amanda J; Kemper, Kathryn E; Berry, Donagh P; McCabe, Matt; Cormican, Paul; Lonergan, Pat; Fair, Trudee; Butler, Stephen T

    2016-01-01

    Despite the importance of fertility in humans and livestock, there has been little success dissecting the genetic basis of fertility. Our hypothesis was that genes differentially expressed in the endometrium and corpus luteum on Day 13 of the estrous cycle between cows with either good or poor genetic merit for fertility would be enriched for genetic variants associated with fertility. We combined a unique genetic model of fertility (cattle that have been selected for high and low fertility and show substantial difference in fertility) with gene expression data from these cattle and genome-wide association study (GWAS) results in ∼20,000 cattle to identify quantitative trait loci (QTL) regions and sequence variants associated with genetic variation in fertility. Two hundred and forty-five QTL regions and 17 sequence variants associated primarily with prostaglandin F2alpha, steroidogenesis, mRNA processing, energy status, and immune-related processes were identified. Ninety-three of the QTL regions were validated by two independent GWAS, with signals for fertility detected primarily on chromosomes 18, 5, 7, 8, and 29. Plausible causative mutations were identified, including one missense variant significantly associated with fertility and predicted to affect the protein function of EIF4EBP3. The results of this study enhance our understanding of 1) the contribution of the endometrium and corpus luteum transcriptome to phenotypic fertility differences and 2) the genetic architecture of fertility in dairy cattle. Including these variants in predictions of genomic breeding values may improve the rate of genetic gain for this critical trait. © 2016 by the Society for the Study of Reproduction, Inc.

  5. Exome Sequencing in Suspected Monogenic Dyslipidemias

    Science.gov (United States)

    Stitziel, Nathan O.; Peloso, Gina M.; Abifadel, Marianne; Cefalu, Angelo B.; Fouchier, Sigrid; Motazacker, M. Mahdi; Tada, Hayato; Larach, Daniel B.; Awan, Zuhier; Haller, Jorge F.; Pullinger, Clive R.; Varret, Mathilde; Rabès, Jean-Pierre; Noto, Davide; Tarugi, Patrizia; Kawashiri, Masa-aki; Nohara, Atsushi; Yamagishi, Masakazu; Risman, Marjorie; Deo, Rahul; Ruel, Isabelle; Shendure, Jay; Nickerson, Deborah A.; Wilson, James G.; Rich, Stephen S.; Gupta, Namrata; Farlow, Deborah N.; Neale, Benjamin M.; Daly, Mark J.; Kane, John P.; Freeman, Mason W.; Genest, Jacques; Rader, Daniel J.; Mabuchi, Hiroshi; Kastelein, John J.P.; Hovingh, G. Kees; Averna, Maurizio R.; Gabriel, Stacey; Boileau, Catherine; Kathiresan, Sekar

    2015-01-01

    Background Exome sequencing is a promising tool for gene mapping in Mendelian disorders. We utilized this technique in an attempt to identify novel genes underlying monogenic dyslipidemias. Methods and Results We performed exome sequencing on 213 selected family members from 41 kindreds with suspected Mendelian inheritance of extreme levels of low-density lipoprotein (LDL) cholesterol (after candidate gene sequencing excluded known genetic causes for high LDL cholesterol families) or high-density lipoprotein (HDL) cholesterol. We used standard analytic approaches to identify candidate variants and also assigned a polygenic score to each individual in order to account for their burden of common genetic variants known to influence lipid levels. In nine families, we identified likely pathogenic variants in known lipid genes (ABCA1, APOB, APOE, LDLR, LIPA, and PCSK9); however, we were unable to identify obvious genetic etiologies in the remaining 32 families despite follow-up analyses. We identified three factors that limited novel gene discovery: (1) imperfect sequencing coverage across the exome hid potentially causal variants; (2) large numbers of shared rare alleles within families obfuscated causal variant identification; and (3) individuals from 15% of families carried a significant burden of common lipid-related alleles, suggesting complex inheritance can masquerade as monogenic disease. Conclusions We identified the genetic basis of disease in nine of 41 families; however, none of these represented novel gene discoveries. Our results highlight the promise and limitations of exome sequencing as a discovery technique in suspected monogenic dyslipidemias. Considering the confounders identified may inform the design of future exome sequencing studies. PMID:25632026

  6. Genetic diagnosis of Mendelian disorders via RNA sequencing.

    Science.gov (United States)

    Kremer, Laura S; Bader, Daniel M; Mertes, Christian; Kopajtich, Robert; Pichler, Garwin; Iuso, Arcangela; Haack, Tobias B; Graf, Elisabeth; Schwarzmayr, Thomas; Terrile, Caterina; Koňaříková, Eliška; Repp, Birgit; Kastenmüller, Gabi; Adamski, Jerzy; Lichtner, Peter; Leonhardt, Christoph; Funalot, Benoit; Donati, Alice; Tiranti, Valeria; Lombes, Anne; Jardel, Claude; Gläser, Dieter; Taylor, Robert W; Ghezzi, Daniele; Mayr, Johannes A; Rötig, Agnes; Freisinger, Peter; Distelmaier, Felix; Strom, Tim M; Meitinger, Thomas; Gagneur, Julien; Prokisch, Holger

    2017-06-12

    Across a variety of Mendelian disorders, ∼50-75% of patients do not receive a genetic diagnosis by exome sequencing indicating disease-causing variants in non-coding regions. Although genome sequencing in principle reveals all genetic variants, their sizeable number and poorer annotation make prioritization challenging. Here, we demonstrate the power of transcriptome sequencing to molecularly diagnose 10% (5 of 48) of mitochondriopathy patients and identify candidate genes for the remainder. We find a median of one aberrantly expressed gene, five aberrant splicing events and six mono-allelically expressed rare variants in patient-derived fibroblasts and establish disease-causing roles for each kind. Private exons often arise from cryptic splice sites providing an important clue for variant prioritization. One such event is found in the complex I assembly factor TIMMDC1 establishing a novel disease-associated gene. In conclusion, our study expands the diagnostic tools for detecting non-exonic variants and provides examples of intronic loss-of-function variants with pathological relevance.

  7. Rare and common regulatory variation in population-scale sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Stephen B Montgomery

    2011-07-01

    Full Text Available Population-scale genome sequencing allows the characterization of functional effects of a broad spectrum of genetic variants underlying human phenotypic variation. Here, we investigate the influence of rare and common genetic variants on gene expression patterns, using variants identified from sequencing data from the 1000 genomes project in an African and European population sample and gene expression data from lymphoblastoid cell lines. We detect comparable numbers of expression quantitative trait loci (eQTLs when compared to genotypes obtained from HapMap 3, but as many as 80% of the top expression quantitative trait variants (eQTVs discovered from 1000 genomes data are novel. The properties of the newly discovered variants suggest that mapping common causal regulatory variants is challenging even with full resequencing data; however, we observe significant enrichment of regulatory effects in splice-site and nonsense variants. Using RNA sequencing data, we show that 46.2% of nonsynonymous variants are differentially expressed in at least one individual in our sample, creating widespread potential for interactions between functional protein-coding and regulatory variants. We also use allele-specific expression to identify putative rare causal regulatory variants. Furthermore, we demonstrate that outlier expression values can be due to rare variant effects, and we approximate the number of such effects harboured in an individual by effect size. Our results demonstrate that integration of genomic and RNA sequencing analyses allows for the joint assessment of genome sequence and genome function.

  8. Two Novel Variants Affecting CDKL5 Transcript Associated with Epileptic Encephalopathy.

    Science.gov (United States)

    Neupauerová, Jana; Štěrbová, Katalin; Vlčková, Markéta; Sebroňová, Věra; Maříková, Tat'ána; Krůtová, Marcela; David, Staněk; Kršek, Pavel; Žaliová, Markéta; Seeman, Pavel; Laššuthová, Petra

    2017-10-01

    Variants in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been reported as being etiologically associated with early infantile epileptic encephalopathy type 2 (EIEE2). We report on two patients, a boy and a girl, with EIEE2 that present with early onset epilepsy, hypotonia, severe intellectual disability, and poor eye contact. Massively parallel sequencing (MPS) of a custom-designed gene panel for epilepsy and epileptic encephalopathy containing 112 epilepsy-related genes was performed. Sanger sequencing was used to confirm the novel variants. For confirmation of the functional consequence of an intronic CDKL5 variant in patient 2, an RNA study was done. DNA sequencing revealed de novo variants in CDKL5, a c.2578C>T (p. Gln860*) present in a hemizygous state in a 3-year-old boy, and a potential splice site variant c.463+5G>A in heterozygous state in a 5-year-old girl. Multiple in silico splicing algorithms predicted a highly reduced splice site score for c.463+5G>A. A subsequent mRNA study confirmed an aberrant shorter transcript lacking exon 7. Our data confirmed that variants in the CDKL5 are associated with EIEE2. There is credible evidence that the novel identified variants are pathogenic and, therefore, are likely the cause of the disease in the presented patients. In one of the patients a stop codon variant is predicted to produce a truncated protein, and in the other patient an intronic variant results in aberrant splicing.

  9. Genomic sequencing: assessing the health care system, policy, and big-data implications.

    Science.gov (United States)

    Phillips, Kathryn A; Trosman, Julia R; Kelley, Robin K; Pletcher, Mark J; Douglas, Michael P; Weldon, Christine B

    2014-07-01

    New genomic sequencing technologies enable the high-speed analysis of multiple genes simultaneously, including all of those in a person's genome. Sequencing is a prominent example of a "big data" technology because of the massive amount of information it produces and its complexity, diversity, and timeliness. Our objective in this article is to provide a policy primer on sequencing and illustrate how it can affect health care system and policy issues. Toward this end, we developed an easily applied classification of sequencing based on inputs, methods, and outputs. We used it to examine the implications of sequencing for three health care system and policy issues: making care more patient-centered, developing coverage and reimbursement policies, and assessing economic value. We conclude that sequencing has great promise but that policy challenges include how to optimize patient engagement as well as privacy, develop coverage policies that distinguish research from clinical uses and account for bioinformatics costs, and determine the economic value of sequencing through complex economic models that take into account multiple findings and downstream costs. Project HOPE—The People-to-People Health Foundation, Inc.

  10. wANNOVAR: annotating genetic variants for personal genomes via the web.

    Science.gov (United States)

    Chang, Xiao; Wang, Kai

    2012-07-01

    High-throughput DNA sequencing platforms have become widely available. As a result, personal genomes are increasingly being sequenced in research and clinical settings. However, the resulting massive amounts of variants data pose significant challenges to the average biologists and clinicians without bioinformatics skills. We developed a web server called wANNOVAR to address the critical needs for functional annotation of genetic variants from personal genomes. The server provides simple and intuitive interface to help users determine the functional significance of variants. These include annotating single nucleotide variants and insertions/deletions for their effects on genes, reporting their conservation levels (such as PhyloP and GERP++ scores), calculating their predicted functional importance scores (such as SIFT and PolyPhen scores), retrieving allele frequencies in public databases (such as the 1000 Genomes Project and NHLBI-ESP 5400 exomes), and implementing a 'variants reduction' protocol to identify a subset of potentially deleterious variants/genes. We illustrated how wANNOVAR can help draw biological insights from sequencing data, by analysing genetic variants generated on two Mendelian diseases. We conclude that wANNOVAR will help biologists and clinicians take advantage of the personal genome information to expedite scientific discoveries. The wANNOVAR server is available at http://wannovar.usc.edu, and will be continuously updated to reflect the latest annotation information.

  11. An Exome Sequencing Study to Assess the Role of Rare Genetic Variation in Pulmonary Fibrosis.

    Science.gov (United States)

    Petrovski, Slavé; Todd, Jamie L; Durheim, Michael T; Wang, Quanli; Chien, Jason W; Kelly, Fran L; Frankel, Courtney; Mebane, Caroline M; Ren, Zhong; Bridgers, Joshua; Urban, Thomas J; Malone, Colin D; Finlen Copeland, Ashley; Brinkley, Christie; Allen, Andrew S; O'Riordan, Thomas; McHutchison, John G; Palmer, Scott M; Goldstein, David B

    2017-07-01

    Idiopathic pulmonary fibrosis (IPF) is an increasingly recognized, often fatal lung disease of unknown etiology. The aim of this study was to use whole-exome sequencing to improve understanding of the genetic architecture of pulmonary fibrosis. We performed a case-control exome-wide collapsing analysis including 262 unrelated individuals with pulmonary fibrosis clinically classified as IPF according to American Thoracic Society/European Respiratory Society/Japanese Respiratory Society/Latin American Thoracic Association guidelines (81.3%), usual interstitial pneumonia secondary to autoimmune conditions (11.5%), or fibrosing nonspecific interstitial pneumonia (7.2%). The majority (87%) of case subjects reported no family history of pulmonary fibrosis. We searched 18,668 protein-coding genes for an excess of rare deleterious genetic variation using whole-exome sequence data from 262 case subjects with pulmonary fibrosis and 4,141 control subjects drawn from among a set of individuals of European ancestry. Comparing genetic variation across 18,668 protein-coding genes, we found a study-wide significant (P RTEL1, and PARN. A model qualifying ultrarare, deleterious, nonsynonymous variants implicated TERT and RTEL1, and a model specifically qualifying loss-of-function variants implicated RTEL1 and PARN. A subanalysis of 186 case subjects with sporadic IPF confirmed TERT, RTEL1, and PARN as study-wide significant contributors to sporadic IPF. Collectively, 11.3% of case subjects with sporadic IPF carried a qualifying variant in one of these three genes compared with the 0.3% carrier rate observed among control subjects (odds ratio, 47.7; 95% confidence interval, 21.5-111.6; P = 5.5 × 10 -22 ). We identified TERT, RTEL1, and PARN-three telomere-related genes previously implicated in familial pulmonary fibrosis-as significant contributors to sporadic IPF. These results support the idea that telomere dysfunction is involved in IPF pathogenesis.

  12. Identification of eight novel SDHB, SDHC, SDHD germline variants in Danish pheochromocytoma/paraganglioma patients

    DEFF Research Database (Denmark)

    Bennedbæk, Marc; Rossing, Maria; Rasmussen, Åse K

    2016-01-01

    patients. METHODS: Mutational screening was performed by Sanger sequencing or next-generation sequencing. The frequencies of variants of unknown clinical significance, e.g. intronic, missense, and synonymous variants, were determined using the Exome Aggregation Consortium database, while the significance...

  13. Reliable Detection of Herpes Simplex Virus Sequence Variation by High-Throughput Resequencing.

    Science.gov (United States)

    Morse, Alison M; Calabro, Kaitlyn R; Fear, Justin M; Bloom, David C; McIntyre, Lauren M

    2017-08-16

    High-throughput sequencing (HTS) has resulted in data for a number of herpes simplex virus (HSV) laboratory strains and clinical isolates. The knowledge of these sequences has been critical for investigating viral pathogenicity. However, the assembly of complete herpesviral genomes, including HSV, is complicated due to the existence of large repeat regions and arrays of smaller reiterated sequences that are commonly found in these genomes. In addition, the inherent genetic variation in populations of isolates for viruses and other microorganisms presents an additional challenge to many existing HTS sequence assembly pipelines. Here, we evaluate two approaches for the identification of genetic variants in HSV1 strains using Illumina short read sequencing data. The first, a reference-based approach, identifies variants from reads aligned to a reference sequence and the second, a de novo assembly approach, identifies variants from reads aligned to de novo assembled consensus sequences. Of critical importance for both approaches is the reduction in the number of low complexity regions through the construction of a non-redundant reference genome. We compared variants identified in the two methods. Our results indicate that approximately 85% of variants are identified regardless of the approach. The reference-based approach to variant discovery captures an additional 15% representing variants divergent from the HSV1 reference possibly due to viral passage. Reference-based approaches are significantly less labor-intensive and identify variants across the genome where de novo assembly-based approaches are limited to regions where contigs have been successfully assembled. In addition, regions of poor quality assembly can lead to false variant identification in de novo consensus sequences. For viruses with a well-assembled reference genome, a reference-based approach is recommended.

  14. ATM sequence variants and risk of radiation-induced subcutaneous fibrosis after postmastectomy radiotherapy

    DEFF Research Database (Denmark)

    Andreassen, Christian Nicolaj; Overgaard, Jens; Alsner, Jan

    2006-01-01

    PURPOSE: To examine the hypothesis that women who are carriers of genetic alterations in the ATM gene are more likely to develop subcutaneous fibrosis after radiotherapy for treatment of breast cancer compared with patients who do not possess DNA sequence variations in this gene. METHODS AND MATE......PURPOSE: To examine the hypothesis that women who are carriers of genetic alterations in the ATM gene are more likely to develop subcutaneous fibrosis after radiotherapy for treatment of breast cancer compared with patients who do not possess DNA sequence variations in this gene. METHODS...... AND MATERIALS: DNA samples isolated from fibroblast cell lines established from 41 women treated with postmastectomy radiotherapy for breast cancer were screened for genetic variants in ATM using denaturing high-performance liquid chromatography (DHPLC). A minimum follow-up of 2 years enabled analysis of late...... alteration. This resulted in an enhancement ratio (ratio of the ED50 values) of 1.13 (1.05-1.22), which was significantly greater than unity. CONCLUSION: The results of this study suggest an association between the ATM codon 1853 Asn/Asp and Asn/Asn genotypes with the development of Grade 3 fibrosis...

  15. Bayesian detection of causal rare variants under posterior consistency.

    KAUST Repository

    Liang, Faming

    2013-07-26

    Identification of causal rare variants that are associated with complex traits poses a central challenge on genome-wide association studies. However, most current research focuses only on testing the global association whether the rare variants in a given genomic region are collectively associated with the trait. Although some recent work, e.g., the Bayesian risk index method, have tried to address this problem, it is unclear whether the causal rare variants can be consistently identified by them in the small-n-large-P situation. We develop a new Bayesian method, the so-called Bayesian Rare Variant Detector (BRVD), to tackle this problem. The new method simultaneously addresses two issues: (i) (Global association test) Are there any of the variants associated with the disease, and (ii) (Causal variant detection) Which variants, if any, are driving the association. The BRVD ensures the causal rare variants to be consistently identified in the small-n-large-P situation by imposing some appropriate prior distributions on the model and model specific parameters. The numerical results indicate that the BRVD is more powerful for testing the global association than the existing methods, such as the combined multivariate and collapsing test, weighted sum statistic test, RARECOVER, sequence kernel association test, and Bayesian risk index, and also more powerful for identification of causal rare variants than the Bayesian risk index method. The BRVD has also been successfully applied to the Early-Onset Myocardial Infarction (EOMI) Exome Sequence Data. It identified a few causal rare variants that have been verified in the literature.

  16. Bayesian detection of causal rare variants under posterior consistency.

    Directory of Open Access Journals (Sweden)

    Faming Liang

    Full Text Available Identification of causal rare variants that are associated with complex traits poses a central challenge on genome-wide association studies. However, most current research focuses only on testing the global association whether the rare variants in a given genomic region are collectively associated with the trait. Although some recent work, e.g., the Bayesian risk index method, have tried to address this problem, it is unclear whether the causal rare variants can be consistently identified by them in the small-n-large-P situation. We develop a new Bayesian method, the so-called Bayesian Rare Variant Detector (BRVD, to tackle this problem. The new method simultaneously addresses two issues: (i (Global association test Are there any of the variants associated with the disease, and (ii (Causal variant detection Which variants, if any, are driving the association. The BRVD ensures the causal rare variants to be consistently identified in the small-n-large-P situation by imposing some appropriate prior distributions on the model and model specific parameters. The numerical results indicate that the BRVD is more powerful for testing the global association than the existing methods, such as the combined multivariate and collapsing test, weighted sum statistic test, RARECOVER, sequence kernel association test, and Bayesian risk index, and also more powerful for identification of causal rare variants than the Bayesian risk index method. The BRVD has also been successfully applied to the Early-Onset Myocardial Infarction (EOMI Exome Sequence Data. It identified a few causal rare variants that have been verified in the literature.

  17. Bayesian detection of causal rare variants under posterior consistency.

    KAUST Repository

    Liang, Faming; Xiong, Momiao

    2013-01-01

    Identification of causal rare variants that are associated with complex traits poses a central challenge on genome-wide association studies. However, most current research focuses only on testing the global association whether the rare variants in a given genomic region are collectively associated with the trait. Although some recent work, e.g., the Bayesian risk index method, have tried to address this problem, it is unclear whether the causal rare variants can be consistently identified by them in the small-n-large-P situation. We develop a new Bayesian method, the so-called Bayesian Rare Variant Detector (BRVD), to tackle this problem. The new method simultaneously addresses two issues: (i) (Global association test) Are there any of the variants associated with the disease, and (ii) (Causal variant detection) Which variants, if any, are driving the association. The BRVD ensures the causal rare variants to be consistently identified in the small-n-large-P situation by imposing some appropriate prior distributions on the model and model specific parameters. The numerical results indicate that the BRVD is more powerful for testing the global association than the existing methods, such as the combined multivariate and collapsing test, weighted sum statistic test, RARECOVER, sequence kernel association test, and Bayesian risk index, and also more powerful for identification of causal rare variants than the Bayesian risk index method. The BRVD has also been successfully applied to the Early-Onset Myocardial Infarction (EOMI) Exome Sequence Data. It identified a few causal rare variants that have been verified in the literature.

  18. Whole Exome Sequencing in Pediatric Neurology Patients: Clinical Implications and Estimated Cost Analysis.

    Science.gov (United States)

    Nolan, Danielle; Carlson, Martha

    2016-06-01

    Genetic heterogeneity in neurologic disorders has been an obstacle to phenotype-based diagnostic testing. The authors hypothesized that information compiled via whole exome sequencing will improve clinical diagnosis and management of pediatric neurology patients. The authors performed a retrospective chart review of patients evaluated in the University of Michigan Pediatric Neurology clinic between 6/2011 and 6/2015. The authors recorded previous diagnostic testing, indications for whole exome sequencing, and whole exome sequencing results. Whole exome sequencing was recommended for 135 patients and obtained in 53 patients. Insurance barriers often precluded whole exome sequencing. The most common indication for whole exome sequencing was neurodevelopmental disorders. Whole exome sequencing improved the presumptive diagnostic rate in the patient cohort from 25% to 48%. Clinical implications included family planning, medication selection, and systemic investigation. Compared to current second tier testing, whole exome sequencing can result in lower long-term charges and more timely diagnosis. Overcoming barriers related to whole exome sequencing insurance authorization could allow for more efficient and fruitful diagnostic neurological evaluations. © The Author(s) 2016.

  19. Clustered coding variants in the glutamate receptor complexes of individuals with schizophrenia and bipolar disorder.

    Directory of Open Access Journals (Sweden)

    René A W Frank

    2011-04-01

    Full Text Available Current models of schizophrenia and bipolar disorder implicate multiple genes, however their biological relationships remain elusive. To test the genetic role of glutamate receptors and their interacting scaffold proteins, the exons of ten glutamatergic 'hub' genes in 1304 individuals were re-sequenced in case and control samples. No significant difference in the overall number of non-synonymous single nucleotide polymorphisms (nsSNPs was observed between cases and controls. However, cluster analysis of nsSNPs identified two exons encoding the cysteine-rich domain and first transmembrane helix of GRM1 as a risk locus with five mutations highly enriched within these domains. A new splice variant lacking the transmembrane GPCR domain of GRM1 was discovered in the human brain and the GRM1 mutation cluster could perturb the regulation of this variant. The predicted effect on individuals harbouring multiple mutations distributed in their ten hub genes was also examined. Diseased individuals possessed an increased load of deleteriousness from multiple concurrent rare and common coding variants. Together, these data suggest a disease model in which the interplay of compound genetic coding variants, distributed among glutamate receptors and their interacting proteins, contribute to the pathogenesis of schizophrenia and bipolar disorders.

  20. The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency

    Directory of Open Access Journals (Sweden)

    Devilee Peter

    2005-11-01

    Full Text Available Abstract Background The SDHA, SDHB, SDHC and SDHD genes encode the subunits of succinate dehydrogenase (succinate: ubiquinone oxidoreductase, a component of both the Krebs cycle and the mitochondrial respiratory chain. SDHA, a flavoprotein and SDHB, an iron-sulfur protein together constitute the catalytic domain, while SDHC and SDHD encode membrane anchors that allow the complex to participate in the respiratory chain as complex II. Germline mutations of SDHD and SDHB are a major cause of the hereditary forms of the tumors paraganglioma and pheochromocytoma. The largest subunit, SDHA, is mutated in patients with Leigh syndrome and late-onset optic atrophy, but has not as yet been identified as a factor in hereditary cancer. Description The SDH mutation database is based on the recently described Leiden Open (source Variation Database (LOVD system. The variants currently described in the database were extracted from the published literature and in some cases annotated to conform to current mutation nomenclature. Researchers can also directly submit new sequence variants online. Since the identification of SDHD, SDHC, and SDHB as classic tumor suppressor genes in 2000 and 2001, studies from research groups around the world have identified a total of 120 variants. Here we introduce all reported paraganglioma and pheochromocytoma related sequence variations in these genes, in addition to all reported mutations of SDHA. The database is now accessible online. Conclusion The SDH mutation database offers a valuable tool and resource for clinicians involved in the treatment of patients with paraganglioma-pheochromocytoma, clinical geneticists needing an overview of current knowledge, and geneticists and other researchers needing a solid foundation for further exploration of both these tumor syndromes and SDHA-related phenotypes.

  1. Identification of point mutations in clinical Staphylococcus aureus strains that produce small-colony variants auxotrophic for menadione.

    Science.gov (United States)

    Dean, Melissa A; Olsen, Randall J; Long, S Wesley; Rosato, Adriana E; Musser, James M

    2014-04-01

    Staphylococcus aureus small-colony variants (SCVs) are implicated in chronic and relapsing infections that are difficult to diagnose and treat. Despite many years of study, the underlying molecular mechanisms and virulence effect of the small-colony phenotype remain incompletely understood. We sequenced the genomes of five S. aureus SCV strains recovered from human patients and discovered previously unidentified nonsynonymous point mutations in three genes encoding proteins in the menadione biosynthesis pathway. Analysis of genetic revertants and complementation with wild-type alleles confirmed that these mutations caused the SCV phenotype and decreased virulence for mice.

  2. Improving power for rare-variant tests by integrating external controls.

    Science.gov (United States)

    Lee, Seunggeun; Kim, Sehee; Fuchsberger, Christian

    2017-11-01

    Due to the drop in sequencing cost, the number of sequenced genomes is increasing rapidly. To improve power of rare-variant tests, these sequenced samples could be used as external control samples in addition to control samples from the study itself. However, when using external controls, possible batch effects due to the use of different sequencing platforms or genotype calling pipelines can dramatically increase type I error rates. To address this, we propose novel summary statistics based single and gene- or region-based rare-variant tests that allow the integration of external controls while controlling for type I error. Our approach is based on the insight that batch effects on a given variant can be assessed by comparing odds ratio estimates using internal controls only vs. using combined control samples of internal and external controls. From simulation experiments and the analysis of data from age-related macular degeneration and type 2 diabetes studies, we demonstrate that our method can substantially improve power while controlling for type I error rate. © 2017 WILEY PERIODICALS, INC.

  3. Rare ADAR and RNASEH2B variants and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis.

    Science.gov (United States)

    Beyer, Ulrike; Brand, Frank; Martens, Helge; Weder, Julia; Christians, Arne; Elyan, Natalie; Hentschel, Bettina; Westphal, Manfred; Schackert, Gabriele; Pietsch, Torsten; Hong, Bujung; Krauss, Joachim K; Samii, Amir; Raab, Peter; Das, Anibh; Dumitru, Claudia A; Sandalcioglu, I Erol; Hakenberg, Oliver W; Erbersdobler, Andreas; Lehmann, Ulrich; Reifenberger, Guido; Weller, Michael; Reijns, Martin A M; Preller, Matthias; Wiese, Bettina; Hartmann, Christian; Weber, Ruthild G

    2017-12-01

    In search of novel germline alterations predisposing to tumors, in particular to gliomas, we studied a family with two brothers affected by anaplastic gliomas, and their father and paternal great-uncle diagnosed with prostate carcinoma. In this family, whole-exome sequencing yielded rare, simultaneously heterozygous variants in the Aicardi-Goutières syndrome (AGS) genes ADAR and RNASEH2B co-segregating with the tumor phenotype. AGS is a genetically induced inflammatory disease particularly of the brain, which has not been associated with a consistently increased cancer risk to date. By targeted sequencing, we identified novel ADAR and RNASEH2B variants, and a 3- to 17-fold frequency increase of the AGS mutations ADAR,c.577C>G;p.(P193A) and RNASEH2B,c.529G>A;p.(A177T) in the germline of familial glioma patients as well as in test and validation cohorts of glioblastomas and prostate carcinomas versus ethnicity-matched controls, whereby rare RNASEH2B variants were significantly more frequent in familial glioma patients. Tumors with ADAR or RNASEH2B variants recapitulated features of AGS, such as calcification and increased type I interferon expression. Patients carrying ADAR or RNASEH2B variants showed upregulation of interferon-stimulated gene (ISG) transcripts in peripheral blood as seen in AGS. An increased ISG expression was also induced by ADAR and RNASEH2B variants in tumor cells and was blocked by the JAK inhibitor Ruxolitinib. Our data implicate rare variants in the AGS genes ADAR and RNASEH2B and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis, consistent with a genetic basis underlying inflammation-driven malignant transformation in glioma and prostate carcinoma development.

  4. A rare variant of the ulnar artery with important clinical implications: a case report

    Directory of Open Access Journals (Sweden)

    Casal Diogo

    2012-11-01

    Full Text Available Abstract Background Variations in the major arteries of the upper limb are estimated to be present in up to one fifth of people, and may have significant clinical implications. Case presentation During routine cadaveric dissection of a 69-year-old fresh female cadaver, a superficial brachioulnar artery with an aberrant path was found bilaterally. The superficial brachioulnar artery originated at midarm level from the brachial artery, pierced the brachial fascia immediately proximal to the elbow, crossed superficial to the muscles that originated from the medial epicondyle, and ran over the pronator teres muscle in a doubling of the antebrachial fascia. It then dipped into the forearm fascia, in the gap between the flexor carpi radialis and the palmaris longus. Subsequently, it ran deep to the palmaris longus muscle belly, and superficially to the flexor digitorum superficialis muscle, reaching the gap between the latter and the flexor carpi ulnaris muscle, where it assumed is usual position lateral to the ulnar nerve. Conclusion As far as the authors could determine, this variant of the superficial brachioulnar artery has only been described twice before in the literature. The existence of such a variant is of particular clinical significance, as these arteries are more susceptible to trauma, and can be easily confused with superficial veins during medical and surgical procedures, potentially leading to iatrogenic distal limb ischemia.

  5. DIXDC1 Phosphorylation and Control of Dendritic Morphology Are Impaired by Rare Genetic Variants

    Directory of Open Access Journals (Sweden)

    Vickie Kwan

    2016-11-01

    Full Text Available The development of neural connectivity is essential for brain function, and disruption of this process is associated with autism spectrum disorders (ASDs. DIX domain containing 1 (DIXDC1 has previously been implicated in neurodevelopmental disorders, but its role in postnatal brain function remains unknown. Using a knockout mouse model, we determined that DIXDC1 is a regulator of excitatory neuron dendrite development and synapse function in the cortex. We discovered that MARK1, previously linked to ASDs, phosphorylates DIXDC1 to regulate dendrite and spine development through modulation of the cytoskeletal network in an isoform-specific manner. Finally, rare missense variants in DIXDC1 were identified in ASD patient cohorts via genetic sequencing. Interestingly, the variants inhibit DIXDC1 isoform 1 phosphorylation, causing impairment to dendrite and spine growth. These data reveal that DIXDC1 is a regulator of cortical dendrite and synaptic development and provide mechanistic insight into morphological defects associated with neurodevelopmental disorders.

  6. A Challenging Form of Non-autoimmune Insulin-Dependent Diabetes in a Wolfram Syndrome Patient with a Novel Sequence Variant.

    Science.gov (United States)

    Paris, Liliana P; Usui, Yoshihiko; Serino, Josefina; Sá, Joaquim; Friedlander, Martin

    2015-06-01

    Wolfram syndrome type 1 is a rare, autosomal recessive, neurodegenerative disorder that is diagnosed when insulin-dependent diabetes of non-auto-immune origin and optic atrophy are concomitantly present. Wolfram syndrome is also designated by DIDMOAD that stands for its most frequent manifestations: diabetes insipidus, diabetes mellitus, optic atrophy and deafness. With disease progression, patients also commonly develop severe neurological and genito-urinary tract abnormalities. When compared to the general type 1 diabetic population, patients with Wolfram Syndrome have been reported to have a form of diabetes that is more easily controlled and with less microvascular complications, such as diabetic retinopathy. We report a case of Wolfram syndrome in a 16-year-old male patient who presented with progressive optic atrophy and severe diabetes with very challenging glycemic control despite intensive therapy since diagnosis at the age of 6. Despite inadequate metabolic control he did not develop any diabetic microvascular complications during the 10-year follow-up period. To further investigate potential causes for this metabolic idiosyncrasy, we performed genetic analyses that revealed a novel combination of homozygous sequence variants that are likely the cause of the syndrome in this family. The identified genotype included a novel sequence variant in the Wolfram syndrome type 1 gene along with a previously described one, which had initially been associated with isolated low frequency sensorineural hearing loss (LFSNHL). Interestingly, our patient did not show any abnormal findings with audiometry testing.

  7. A Challenging Form of Non-autoimmune Insulin-Dependent Diabetes in a Wolfram Syndrome Patient with a Novel Sequence Variant

    Science.gov (United States)

    Paris, Liliana P; Usui, Yoshihiko; Serino, Josefina; Sá, Joaquim; Friedlander, Martin

    2015-01-01

    Wolfram syndrome type 1 is a rare, autosomal recessive, neurodegenerative disorder that is diagnosed when insulin-dependent diabetes of non-auto-immune origin and optic atrophy are concomitantly present. Wolfram syndrome is also designated by DIDMOAD that stands for its most frequent manifestations: diabetes insipidus, diabetes mellitus, optic atrophy and deafness. With disease progression, patients also commonly develop severe neurological and genito-urinary tract abnormalities. When compared to the general type 1 diabetic population, patients with Wolfram Syndrome have been reported to have a form of diabetes that is more easily controlled and with less microvascular complications, such as diabetic retinopathy. We report a case of Wolfram syndrome in a 16-year-old male patient who presented with progressive optic atrophy and severe diabetes with very challenging glycemic control despite intensive therapy since diagnosis at the age of 6. Despite inadequate metabolic control he did not develop any diabetic microvascular complications during the 10-year follow-up period. To further investigate potential causes for this metabolic idiosyncrasy, we performed genetic analyses that revealed a novel combination of homozygous sequence variants that are likely the cause of the syndrome in this family. The identified genotype included a novel sequence variant in the Wolfram syndrome type 1 gene along with a previously described one, which had initially been associated with isolated low frequency sensorineural hearing loss (LFSNHL). Interestingly, our patient did not show any abnormal findings with audiometry testing. PMID:26819810

  8. Targeted deep resequencing identifies coding variants in the PEAR1 gene that play a role in platelet aggregation.

    Directory of Open Access Journals (Sweden)

    Yoonhee Kim

    Full Text Available Platelet aggregation is heritable, and genome-wide association studies have detected strong associations with a common intronic variant of the platelet endothelial aggregation receptor1 (PEAR1 gene both in African American and European American individuals. In this study, we used a sequencing approach to identify additional exonic variants in PEAR1 that may also determine variability in platelet aggregation in the GeneSTAR Study. A 0.3 Mb targeted region on chromosome 1q23.1 including the entire PEAR1 gene was Sanger sequenced in 104 subjects (45% male, 49% African American, age = 52±13 selected on the basis of hyper- and hypo- aggregation across three different agonists (collagen, epinephrine, and adenosine diphosphate. Single-variant and multi-variant burden tests for association were performed. Of the 235 variants identified through sequencing, 61 were novel, and three of these were missense variants. More rare variants (MAF<5% were noted in African Americans compared to European Americans (108 vs. 45. The common intronic GWAS-identified variant (rs12041331 demonstrated the most significant association signal in African Americans (p = 4.020×10(-4; no association was seen for additional exonic variants in this group. In contrast, multi-variant burden tests indicated that exonic variants play a more significant role in European Americans (p = 0.0099 for the collective coding variants compared to p = 0.0565 for intronic variant rs12041331. Imputation of the individual exonic variants in the rest of the GeneSTAR European American cohort (N = 1,965 supports the results noted in the sequenced discovery sample: p = 3.56×10(-4, 2.27×10(-7, 5.20×10(-5 for coding synonymous variant rs56260937 and collagen, epinephrine and adenosine diphosphate induced platelet aggregation, respectively. Sequencing approaches confirm that a common intronic variant has the strongest association with platelet aggregation in African Americans

  9. The characterization of twenty sequenced human genomes.

    Directory of Open Access Journals (Sweden)

    Kimberly Pelak

    2010-09-01

    Full Text Available We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten "case" genomes from individuals with severe hemophilia A and ten "control" genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways.

  10. A NOS1 variant implicated in cognitive performance influences evoked neural responses during a high density EEG study of early visual perception.

    Science.gov (United States)

    O'Donoghue, Therese; Morris, Derek W; Fahey, Ciara; Da Costa, Andreia; Foxe, John J; Hoerold, Doreen; Tropea, Daniela; Gill, Michael; Corvin, Aiden; Donohoe, Gary

    2012-05-01

    The nitric oxide synthasase-1 gene (NOS1) has been implicated in mental disorders including schizophrenia and variation in cognition. The NOS1 variant rs6490121 identified in a genome wide association study of schizophrenia has recently been associated with variation in general intelligence and working memory in both patients and healthy participants. Whether this variant is also associated with variation in early sensory processing remains unclear. We investigated differences in the P1 visual evoked potential in a high density EEG study of 54 healthy participants. Given both NOS1's association with cognition and recent evidence that cognitive performance and P1 response are correlated, we investigated whether NOS1's effect on P1 response was independent of its effects on cognition using CANTAB's spatial working memory (SWM) task. We found that carriers of the previously identified risk "G" allele showed significantly lower P1 responses than non-carriers. We also found that while P1 response and SWM performance were correlated, NOS1 continued to explain a significant proportion of variation in P1 response even when its effects on cognition were accounted for. The schizophrenia implicated NOS1 variants rs6490121 influences visual sensory processing as measured by the P1 response, either as part of the gene's pleiotropic effects on multiple aspects of brain function, or because of a primary influence on sensory processing that mediates the effects already seen in higher cognitive processes. Copyright © 2011 Wiley-Liss, Inc.

  11. Sequence data and association statistics from 12,940 type 2 diabetes cases and controls

    DEFF Research Database (Denmark)

    Jason, Flannick; Fuchsberger, Christian; Mahajan, Anubha

    2017-01-01

    variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced...... individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics...... from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D....

  12. Comparison of 454 Ultra-Deep Sequencing and Allele-Specific Real-Time PCR with Regard to the Detection of Emerging Drug-Resistant Minor HIV-1 Variants after Antiretroviral Prophylaxis for Vertical Transmission.

    Directory of Open Access Journals (Sweden)

    Andrea Hauser

    Full Text Available Pregnant HIV-infected women were screened for the development of HIV-1 drug resistance after implementation of a triple-antiretroviral transmission prophylaxis as recommended by the WHO in 2006. The study offered the opportunity to compare amplicon-based 454 ultra-deep sequencing (UDS and allele-specific real-time PCR (ASPCR for the detection of drug-resistant minor variants in the HIV-1 reverse transcriptase (RT.Plasma samples from 34 Tanzanian women were previously analysed by ASPCR for key resistance mutations in the viral RT selected by AZT, 3TC, and NVP (K70R, K103N, Y181C, M184V, T215Y/F. In this study, the RT region of the same samples was investigated by amplicon-based UDS for resistance mutations using the 454 GS FLX System.Drug-resistant HIV-variants were identified in 69% (20/29 of women by UDS and in 45% (13/29 by ASPCR. The absolute number of resistance mutations identified by UDS was twice that identified by ASPCR (45 vs 24. By UDS 14 of 24 ASPCR-detected resistance mutations were identified at the same position. The overall concordance between UDS and ASPCR was 61.0% (25/41. The proportions of variants quantified by UDS were approximately 2-3 times lower than by ASPCR. Amplicon generation from samples with viral loads below 20,000 copies/ml failed more frequently by UDS compared to ASPCR (limit of detection = 650 copies/ml, resulting in missing or insufficient sequence coverage.Both methods can provide useful information about drug-resistant minor HIV-1 variants. ASPCR has a higher sensitivity than UDS, but is restricted to single resistance mutations. In contrast, UDS is limited by its requirement for high viral loads to achieve sufficient sequence coverage, but the sequence information reveals the complete resistance patterns within the genomic region analysed. Improvements to the UDS limit of detection are in progress, and UDS could then facilitate monitoring of drug-resistant minor variants in the HIV-1 quasispecies.

  13. Deep whole-genome sequencing of 90 Han Chinese genomes.

    Science.gov (United States)

    Lan, Tianming; Lin, Haoxiang; Zhu, Wenjuan; Laurent, Tellier Christian Asker Melchior; Yang, Mengcheng; Liu, Xin; Wang, Jun; Wang, Jian; Yang, Huanming; Xu, Xun; Guo, Xiaosen

    2017-09-01

    Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the characterization of a large number of low-frequency, novel variants. This will be a valuable resource for promoting Chinese genetics research and medical development. Additionally, it will provide a valuable supplement to the 1000

  14. Reducing false-positive incidental findings with ensemble genotyping and logistic regression based variant filtering methods.

    Science.gov (United States)

    Hwang, Kyu-Baek; Lee, In-Hee; Park, Jin-Ho; Hambuch, Tina; Choe, Yongjoon; Kim, MinHyeok; Lee, Kyungjoon; Song, Taemin; Neu, Matthew B; Gupta, Neha; Kohane, Isaac S; Green, Robert C; Kong, Sek Won

    2014-08-01

    As whole genome sequencing (WGS) uncovers variants associated with rare and common diseases, an immediate challenge is to minimize false-positive findings due to sequencing and variant calling errors. False positives can be reduced by combining results from orthogonal sequencing methods, but costly. Here, we present variant filtering approaches using logistic regression (LR) and ensemble genotyping to minimize false positives without sacrificing sensitivity. We evaluated the methods using paired WGS datasets of an extended family prepared using two sequencing platforms and a validated set of variants in NA12878. Using LR or ensemble genotyping based filtering, false-negative rates were significantly reduced by 1.1- to 17.8-fold at the same levels of false discovery rates (5.4% for heterozygous and 4.5% for homozygous single nucleotide variants (SNVs); 30.0% for heterozygous and 18.7% for homozygous insertions; 25.2% for heterozygous and 16.6% for homozygous deletions) compared to the filtering based on genotype quality scores. Moreover, ensemble genotyping excluded > 98% (105,080 of 107,167) of false positives while retaining > 95% (897 of 937) of true positives in de novo mutation (DNM) discovery in NA12878, and performed better than a consensus method using two sequencing platforms. Our proposed methods were effective in prioritizing phenotype-associated variants, and an ensemble genotyping would be essential to minimize false-positive DNM candidates. © 2014 WILEY PERIODICALS, INC.

  15. Avian endogenous provirus (ev-3) env gene sequencing: implication for pathogenic retrovirus origination.

    Science.gov (United States)

    Tikhonenko, A T; Lomovskaya, O L

    1990-02-01

    The avian endogenous env gene product blocks the surface receptor and, as a result, cells become immune to related exogenous retroviruses. On the other hand, the same sequence can be included in the pathogenic retrovirus genome, as shown by oligonucleotide mapping. However, since the complete env gene sequence was not known, the comparison of genomic nucleotide sequences was not possible. Therefore an avian endogenous provirus with an intact env gene was cloned from a chicken gene bank and the regions coding for the C terminus of the gp85 and gp37 proteins were sequenced. Comparison of this sequence with those of other retroviruses proved that one of the pathogenic viruses associated with osteopetrosis is a cross between avian endogenous virus and Rous sarcoma virus. Retroviruses and, especially, endogenous retroviruses are traditionally of the most developed models of viral carcinogenesis. Many endogenous retroviruses are implicated in neoplastic transformation of the cell. For instance, endogenous mouse mammary tumor virus of some inbred lines appears to be the only causative agent in these mammary cancers. Other even nonpathogenic murine endogenous retroviruses are involved in the origination of MCF-type recombinant acute leukosis viruses. Some endogenous retroviruses are implicated in the transduction or activation of cellular protooncogenes. Our interest in endogenous viruses is based on their ability to make cells resistant to exogenous retroviruses. Expression of their major envelope glycoprotein leads to cellular surface receptor blockage and imparts immunity to infection by the related leukemia retroviruses. This problem is quite elaborated for chicken endogenous virus RAV-O (7-9).(ABSTRACT TRUNCATED AT 250 WORDS)

  16. POU4F3 mutation screening in Japanese hearing loss patients: Massively parallel DNA sequencing-based analysis identified novel variants associated with autosomal dominant hearing loss.

    Directory of Open Access Journals (Sweden)

    Tomohiro Kitano

    Full Text Available A variant in a transcription factor gene, POU4F3, is responsible for autosomal dominant nonsyndromic hereditary hearing loss, DFNA15. To date, 14 variants, including a whole deletion of POU4F3, have been reported to cause HL in various ethnic groups. In the present study, genetic screening for POU4F3 variants was carried out for a large series of Japanese hearing loss (HL patients to clarify the prevalence and clinical characteristics of DFNA15 in the Japanese population. Massively parallel DNA sequencing of 68 target candidate genes was utilized in 2,549 unrelated Japanese HL patients (probands to identify genomic variations responsible for HL. The detailed clinical features in patients with POU4F3 variants were collected from medical charts and analyzed. Novel 12 POU4F3 likely pathogenic variants (six missense variants, three frameshift variants, and three nonsense variants were successfully identified in 15 probands (2.5% among 602 families exhibiting autosomal dominant HL, whereas no variants were detected in the other 1,947 probands with autosomal recessive or inheritance pattern unknown HL. To obtain the audiovestibular configuration of the patients harboring POU4F3 variants, we collected audiograms and vestibular symptoms of the probands and their affected family members. Audiovestibular phenotypes in a total of 24 individuals from the 15 families possessing variants were characterized by progressive HL, with a large variation in the onset age and severity with or without vestibular symptoms observed. Pure-tone audiograms indicated the most prevalent configuration as mid-frequency HL type followed by high-frequency HL type, with asymmetry observed in approximately 20% of affected individuals. Analysis of the relationship between age and pure-tone average suggested that individuals with truncating variants showed earlier onset and slower progression of HL than did those with non-truncating variants. The present study showed that variants

  17. Human papillomavirus variants among Inuit women in northern Quebec, Canada.

    Science.gov (United States)

    Gauthier, Barbara; Coutlée, Francois; Franco, Eduardo L; Brassard, Paul

    2015-01-01

    Inuit communities in northern Quebec have high rates of human papillomavirus (HPV) infection, cervical cancer and cervical cancer-related mortality as compared to the Canadian population. HPV types can be further classified as intratypic variants based on the extent of homology in their nucleotide sequences. There is limited information on the distribution of intratypic variants in circumpolar areas. Our goal was to describe the HPV intratypic variants and associated baseline characteristics. We collected cervical cell samples in 2002-2006 from 676 Inuit women between the ages of 15 and 69 years in Nunavik. DNA isolates from high-risk HPVs were sequenced to determine the intratypic variant. There were 149 women that were positive for HPVs 16, 18, 31, 33, 35, 45, 52, 56 or 58 during follow-up. There were 5 different HPV16 variants, all of European lineage, among the 57 women positive for this type. There were 8 different variants of HPV18 present and all were of European lineage (n=21). The majority of samples of HPV31 (n=52) were of lineage B. The number of isolates and diversity of the other HPV types was low. Age was the only covariate associated with HPV16 variant category. These frequencies are similar to what was seen in another circumpolar region of Canada, although there appears to be less diversity as only European variants were detected. This study shows that most variants were clustered in one lineage for each HPV type.

  18. Variant Review with the Integrative Genomics Viewer.

    Science.gov (United States)

    Robinson, James T; Thorvaldsdóttir, Helga; Wenger, Aaron M; Zehir, Ahmet; Mesirov, Jill P

    2017-11-01

    Manual review of aligned reads for confirmation and interpretation of variant calls is an important step in many variant calling pipelines for next-generation sequencing (NGS) data. Visual inspection can greatly increase the confidence in calls, reduce the risk of false positives, and help characterize complex events. The Integrative Genomics Viewer (IGV) was one of the first tools to provide NGS data visualization, and it currently provides a rich set of tools for inspection, validation, and interpretation of NGS datasets, as well as other types of genomic data. Here, we present a short overview of IGV's variant review features for both single-nucleotide variants and structural variants, with examples from both cancer and germline datasets. IGV is freely available at https://www.igv.org Cancer Res; 77(21); e31-34. ©2017 AACR . ©2017 American Association for Cancer Research.

  19. Three-dimensional spatial analysis of missense variants in RTEL1 identifies pathogenic variants in patients with Familial Interstitial Pneumonia.

    Science.gov (United States)

    Sivley, R Michael; Sheehan, Jonathan H; Kropski, Jonathan A; Cogan, Joy; Blackwell, Timothy S; Phillips, John A; Bush, William S; Meiler, Jens; Capra, John A

    2018-01-23

    Next-generation sequencing of individuals with genetic diseases often detects candidate rare variants in numerous genes, but determining which are causal remains challenging. We hypothesized that the spatial distribution of missense variants in protein structures contains information about function and pathogenicity that can help prioritize variants of unknown significance (VUS) and elucidate the structural mechanisms leading to disease. To illustrate this approach in a clinical application, we analyzed 13 candidate missense variants in regulator of telomere elongation helicase 1 (RTEL1) identified in patients with Familial Interstitial Pneumonia (FIP). We curated pathogenic and neutral RTEL1 variants from the literature and public databases. We then used homology modeling to construct a 3D structural model of RTEL1 and mapped known variants into this structure. We next developed a pathogenicity prediction algorithm based on proximity to known disease causing and neutral variants and evaluated its performance with leave-one-out cross-validation. We further validated our predictions with segregation analyses, telomere lengths, and mutagenesis data from the homologous XPD protein. Our algorithm for classifying RTEL1 VUS based on spatial proximity to pathogenic and neutral variation accurately distinguished 7 known pathogenic from 29 neutral variants (ROC AUC = 0.85) in the N-terminal domains of RTEL1. Pathogenic proximity scores were also significantly correlated with effects on ATPase activity (Pearson r = -0.65, p = 0.0004) in XPD, a related helicase. Applying the algorithm to 13 VUS identified from sequencing of RTEL1 from patients predicted five out of six disease-segregating VUS to be pathogenic. We provide structural hypotheses regarding how these mutations may disrupt RTEL1 ATPase and helicase function. Spatial analysis of missense variation accurately classified candidate VUS in RTEL1 and suggests how such variants cause disease. Incorporating

  20. Ultrasonographic imaging of papillary thyroid carcinoma variants

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jung Hee [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2017-04-15

    Ultrasonography (US) is routinely used to evaluate thyroid nodules. The US features of papillary thyroid carcinoma (PTC), the most common thyroid malignancy, include hypoechogenicity, spiculated/microlobulated margins, microcalcifications, and a nonparallel orientation. However, many PTC variants have been identified, some of which differ from the classic type of PTC in terms of biological behavior and clinical outcomes. This review describes the US features and clinical implications of the variants of PTC. With the introduction of active surveillance replacing immediate biopsy or surgical treatment of indolent, small PTCs, an understanding of the US characteristics of PTC variants will facilitate the individualized management of patients with PTC.

  1. Sequence data and association statistics from 12,940 type 2 diabetes cases and controls.

    Science.gov (United States)

    Flannick, Jason; Fuchsberger, Christian; Mahajan, Anubha; Teslovich, Tanya M; Agarwala, Vineeta; Gaulton, Kyle J; Caulkins, Lizz; Koesterer, Ryan; Ma, Clement; Moutsianas, Loukas; McCarthy, Davis J; Rivas, Manuel A; Perry, John R B; Sim, Xueling; Blackwell, Thomas W; Robertson, Neil R; Rayner, N William; Cingolani, Pablo; Locke, Adam E; Tajes, Juan Fernandez; Highland, Heather M; Dupuis, Josee; Chines, Peter S; Lindgren, Cecilia M; Hartl, Christopher; Jackson, Anne U; Chen, Han; Huyghe, Jeroen R; van de Bunt, Martijn; Pearson, Richard D; Kumar, Ashish; Müller-Nurasyid, Martina; Grarup, Niels; Stringham, Heather M; Gamazon, Eric R; Lee, Jaehoon; Chen, Yuhui; Scott, Robert A; Below, Jennifer E; Chen, Peng; Huang, Jinyan; Go, Min Jin; Stitzel, Michael L; Pasko, Dorota; Parker, Stephen C J; Varga, Tibor V; Green, Todd; Beer, Nicola L; Day-Williams, Aaron G; Ferreira, Teresa; Fingerlin, Tasha; Horikoshi, Momoko; Hu, Cheng; Huh, Iksoo; Ikram, Mohammad Kamran; Kim, Bong-Jo; Kim, Yongkang; Kim, Young Jin; Kwon, Min-Seok; Lee, Juyoung; Lee, Selyeong; Lin, Keng-Han; Maxwell, Taylor J; Nagai, Yoshihiko; Wang, Xu; Welch, Ryan P; Yoon, Joon; Zhang, Weihua; Barzilai, Nir; Voight, Benjamin F; Han, Bok-Ghee; Jenkinson, Christopher P; Kuulasmaa, Teemu; Kuusisto, Johanna; Manning, Alisa; Ng, Maggie C Y; Palmer, Nicholette D; Balkau, Beverley; Stančáková, Alena; Abboud, Hanna E; Boeing, Heiner; Giedraitis, Vilmantas; Prabhakaran, Dorairaj; Gottesman, Omri; Scott, James; Carey, Jason; Kwan, Phoenix; Grant, George; Smith, Joshua D; Neale, Benjamin M; Purcell, Shaun; Butterworth, Adam S; Howson, Joanna M M; Lee, Heung Man; Lu, Yingchang; Kwak, Soo-Heon; Zhao, Wei; Danesh, John; Lam, Vincent K L; Park, Kyong Soo; Saleheen, Danish; So, Wing Yee; Tam, Claudia H T; Afzal, Uzma; Aguilar, David; Arya, Rector; Aung, Tin; Chan, Edmund; Navarro, Carmen; Cheng, Ching-Yu; Palli, Domenico; Correa, Adolfo; Curran, Joanne E; Rybin, Dennis; Farook, Vidya S; Fowler, Sharon P; Freedman, Barry I; Griswold, Michael; Hale, Daniel Esten; Hicks, Pamela J; Khor, Chiea-Chuen; Kumar, Satish; Lehne, Benjamin; Thuillier, Dorothée; Lim, Wei Yen; Liu, Jianjun; Loh, Marie; Musani, Solomon K; Puppala, Sobha; Scott, William R; Yengo, Loïc; Tan, Sian-Tsung; Taylor, Herman A; Thameem, Farook; Wilson, Gregory; Wong, Tien Yin; Njølstad, Pål Rasmus; Levy, Jonathan C; Mangino, Massimo; Bonnycastle, Lori L; Schwarzmayr, Thomas; Fadista, João; Surdulescu, Gabriela L; Herder, Christian; Groves, Christopher J; Wieland, Thomas; Bork-Jensen, Jette; Brandslund, Ivan; Christensen, Cramer; Koistinen, Heikki A; Doney, Alex S F; Kinnunen, Leena; Esko, Tõnu; Farmer, Andrew J; Hakaste, Liisa; Hodgkiss, Dylan; Kravic, Jasmina; Lyssenko, Valeri; Hollensted, Mette; Jørgensen, Marit E; Jørgensen, Torben; Ladenvall, Claes; Justesen, Johanne Marie; Käräjämäki, Annemari; Kriebel, Jennifer; Rathmann, Wolfgang; Lannfelt, Lars; Lauritzen, Torsten; Narisu, Narisu; Linneberg, Allan; Melander, Olle; Milani, Lili; Neville, Matt; Orho-Melander, Marju; Qi, Lu; Qi, Qibin; Roden, Michael; Rolandsson, Olov; Swift, Amy; Rosengren, Anders H; Stirrups, Kathleen; Wood, Andrew R; Mihailov, Evelin; Blancher, Christine; Carneiro, Mauricio O; Maguire, Jared; Poplin, Ryan; Shakir, Khalid; Fennell, Timothy; DePristo, Mark; de Angelis, Martin Hrabé; Deloukas, Panos; Gjesing, Anette P; Jun, Goo; Nilsson, Peter; Murphy, Jacquelyn; Onofrio, Robert; Thorand, Barbara; Hansen, Torben; Meisinger, Christa; Hu, Frank B; Isomaa, Bo; Karpe, Fredrik; Liang, Liming; Peters, Annette; Huth, Cornelia; O'Rahilly, Stephen P; Palmer, Colin N A; Pedersen, Oluf; Rauramaa, Rainer; Tuomilehto, Jaakko; Salomaa, Veikko; Watanabe, Richard M; Syvänen, Ann-Christine; Bergman, Richard N; Bharadwaj, Dwaipayan; Bottinger, Erwin P; Cho, Yoon Shin; Chandak, Giriraj R; Chan, Juliana Cn; Chia, Kee Seng; Daly, Mark J; Ebrahim, Shah B; Langenberg, Claudia; Elliott, Paul; Jablonski, Kathleen A; Lehman, Donna M; Jia, Weiping; Ma, Ronald C W; Pollin, Toni I; Sandhu, Manjinder; Tandon, Nikhil; Froguel, Philippe; Barroso, Inês; Teo, Yik Ying; Zeggini, Eleftheria; Loos, Ruth J F; Small, Kerrin S; Ried, Janina S; DeFronzo, Ralph A; Grallert, Harald; Glaser, Benjamin; Metspalu, Andres; Wareham, Nicholas J; Walker, Mark; Banks, Eric; Gieger, Christian; Ingelsson, Erik; Im, Hae Kyung; Illig, Thomas; Franks, Paul W; Buck, Gemma; Trakalo, Joseph; Buck, David; Prokopenko, Inga; Mägi, Reedik; Lind, Lars; Farjoun, Yossi; Owen, Katharine R; Gloyn, Anna L; Strauch, Konstantin; Tuomi, Tiinamaija; Kooner, Jaspal Singh; Lee, Jong-Young; Park, Taesung; Donnelly, Peter; Morris, Andrew D; Hattersley, Andrew T; Bowden, Donald W; Collins, Francis S; Atzmon, Gil; Chambers, John C; Spector, Timothy D; Laakso, Markku; Strom, Tim M; Bell, Graeme I; Blangero, John; Duggirala, Ravindranath; Tai, E Shyong; McVean, Gilean; Hanis, Craig L; Wilson, James G; Seielstad, Mark; Frayling, Timothy M; Meigs, James B; Cox, Nancy J; Sladek, Rob; Lander, Eric S; Gabriel, Stacey; Mohlke, Karen L; Meitinger, Thomas; Groop, Leif; Abecasis, Goncalo; Scott, Laura J; Morris, Andrew P; Kang, Hyun Min; Altshuler, David; Burtt, Noël P; Florez, Jose C; Boehnke, Michael; McCarthy, Mark I

    2017-12-19

    To investigate the genetic basis of type 2 diabetes (T2D) to high resolution, the GoT2D and T2D-GENES consortia catalogued variation from whole-genome sequencing of 2,657 European individuals and exome sequencing of 12,940 individuals of multiple ancestries. Over 27M SNPs, indels, and structural variants were identified, including 99% of low-frequency (minor allele frequency [MAF] 0.1-5%) non-coding variants in the whole-genome sequenced individuals and 99.7% of low-frequency coding variants in the whole-exome sequenced individuals. Each variant was tested for association with T2D in the sequenced individuals, and, to increase power, most were tested in larger numbers of individuals (>80% of low-frequency coding variants in ~82 K Europeans via the exome chip, and ~90% of low-frequency non-coding variants in ~44 K Europeans via genotype imputation). The variants, genotypes, and association statistics from these analyses provide the largest reference to date of human genetic information relevant to T2D, for use in activities such as T2D-focused genotype imputation, functional characterization of variants or genes, and other novel analyses to detect associations between sequence variation and T2D.

  2. Cystinuria Associated with Different SLC7A9 Gene Variants in the Cat.

    Directory of Open Access Journals (Sweden)

    Keijiro Mizukami

    Full Text Available Cystinuria is a classical inborn error of metabolism characterized by a selective proximal renal tubular defect affecting cystine, ornithine, lysine, and arginine (COLA reabsorption, which can lead to uroliths and urinary obstruction. In humans, dogs and mice, cystinuria is caused by variants in one of two genes, SLC3A1 and SLC7A9, which encode the rBAT and bo,+AT subunits of the bo,+ basic amino acid transporter system, respectively. In this study, exons and flanking regions of the SLC3A1 and SLC7A9 genes were sequenced from genomic DNA of cats (Felis catus with COLAuria and cystine calculi. Relative to the Felis catus-6.2 reference genome sequence, DNA sequences from these affected cats revealed 3 unique homozygous SLC7A9 missense variants: one in exon 5 (p.Asp236Asn from a non-purpose-bred medium-haired cat, one in exon 7 (p.Val294Glu in a Maine Coon and a Sphinx cat, and one in exon 10 (p.Thr392Met from a non-purpose-bred long-haired cat. A genotyping assay subsequently identified another cystinuric domestic medium-haired cat that was homozygous for the variant originally identified in the purebred cats. These missense variants result in deleterious amino acid substitutions of highly conserved residues in the bo,+AT protein. A limited population survey supported that the variants found were likely causative. The remaining 2 sequenced domestic short-haired cats had a heterozygous variant at a splice donor site in intron 10 and a homozygous single nucleotide variant at a branchpoint in intron 11 of SLC7A9, respectively. This study identifies the first SLC7A9 variants causing feline cystinuria and reveals that, as in humans and dogs, this disease is genetically heterogeneous in cats.

  3. Rapid-Onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD): exome sequencing of trios, monozygotic twins and tumours.

    Science.gov (United States)

    Barclay, Sarah F; Rand, Casey M; Borch, Lauren A; Nguyen, Lisa; Gray, Paul A; Gibson, William T; Wilson, Richard J A; Gordon, Paul M K; Aung, Zaw; Berry-Kravis, Elizabeth M; Ize-Ludlow, Diego; Weese-Mayer, Debra E; Bech-Hansen, N Torben

    2015-08-25

    Rapid-onset Obesity with Hypothalamic Dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) is thought to be a genetic disease caused by de novo mutations, though causative mutations have yet to be identified. We searched for de novo coding mutations among a carefully-diagnosed and clinically homogeneous cohort of 35 ROHHAD patients. We sequenced the exomes of seven ROHHAD trios, plus tumours from four of these patients and the unaffected monozygotic (MZ) twin of one (discovery cohort), to identify constitutional and somatic de novo sequence variants. We further analyzed this exome data to search for candidate genes under autosomal dominant and recessive models, and to identify structural variations. Candidate genes were tested by exome or Sanger sequencing in a replication cohort of 28 ROHHAD singletons. The analysis of the trio-based exomes found 13 de novo variants. However, no two patients had de novo variants in the same gene, and additional patient exomes and mutation analysis in the replication cohort did not provide strong genetic evidence to implicate any of these sequence variants in ROHHAD. Somatic comparisons revealed no coding differences between any blood and tumour samples, or between the two discordant MZ twins. Neither autosomal dominant nor recessive analysis yielded candidate genes for ROHHAD, and we did not identify any potentially causative structural variations. Clinical exome sequencing is highly unlikely to be a useful diagnostic test in patients with true ROHHAD. As ROHHAD has a high risk for fatality if not properly managed, it remains imperative to expand the search for non-exomic genetic risk factors, as well as to investigate other possible mechanisms of disease. In so doing, we will be able to confirm objectively the ROHHAD diagnosis and to contribute to our understanding of obesity, respiratory control, hypothalamic function, and autonomic regulation.

  4. A novel homozygous truncating GNAT1 mutation implicated in retinal degeneration.

    Science.gov (United States)

    Carrigan, Matthew; Duignan, Emma; Humphries, Pete; Palfi, Arpad; Kenna, Paul F; Farrar, G Jane

    2016-04-01

    The GNAT1 gene encodes the α subunit of the rod transducin protein, a key element in the rod phototransduction cascade. Variants in GNAT1 have been implicated in stationary night-blindness in the past, but unlike other proteins in the same pathway, it has not previously been implicated in retinitis pigmentosa. A panel of 182 retinopathy-associated genes was sequenced to locate disease-causing mutations in patients with inherited retinopathies. Sequencing revealed a novel homozygous truncating mutation in the GNAT1 gene in a patient with significant pigmentary disturbance and constriction of visual fields, a presentation consistent with retinitis pigmentosa. This is the first report of a patient homozygous for a complete loss-of-function GNAT1 mutation. The clinical data from this patient provide definitive evidence of retinitis pigmentosa with late onset in addition to the lifelong night-blindness that would be expected from a lack of transducin function. These data suggest that some truncating GNAT1 variants can indeed cause a recessive, mild, late-onset retinal degeneration in human beings rather than just stationary night-blindness as reported previously, with notable similarities to the phenotype of the Gnat1 knockout mouse. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Transcriptome Sequencing Revealed Significant Alteration of Cortical Promoter Usage and Splicing in Schizophrenia

    Science.gov (United States)

    Wu, Jing Qin; Wang, Xi; Beveridge, Natalie J.; Tooney, Paul A.; Scott, Rodney J.; Carr, Vaughan J.; Cairns, Murray J.

    2012-01-01

    Background While hybridization based analysis of the cortical transcriptome has provided important insight into the neuropathology of schizophrenia, it represents a restricted view of disease-associated gene activity based on predetermined probes. By contrast, sequencing technology can provide un-biased analysis of transcription at nucleotide resolution. Here we use this approach to investigate schizophrenia-associated cortical gene expression. Methodology/Principal Findings The data was generated from 76 bp reads of RNA-Seq, aligned to the reference genome and assembled into transcripts for quantification of exons, splice variants and alternative promoters in postmortem superior temporal gyrus (STG/BA22) from 9 male subjects with schizophrenia and 9 matched non-psychiatric controls. Differentially expressed genes were then subjected to further sequence and functional group analysis. The output, amounting to more than 38 Gb of sequence, revealed significant alteration of gene expression including many previously shown to be associated with schizophrenia. Gene ontology enrichment analysis followed by functional map construction identified three functional clusters highly relevant to schizophrenia including neurotransmission related functions, synaptic vesicle trafficking, and neural development. Significantly, more than 2000 genes displayed schizophrenia-associated alternative promoter usage and more than 1000 genes showed differential splicing (FDRschizophrenia-associated transcriptional diversity within the STG, and revealed variants with important implications for the complex pathophysiology of schizophrenia. PMID:22558445

  6. Identification of Functional Variants for Cleft Lip with or without Cleft Palate in or near PAX7, FGFR2, and NOG by Targeted Sequencing of GWAS Loci

    DEFF Research Database (Denmark)

    Leslie, Elizabeth J; Taub, Margaret A; Liu, Huan

    2015-01-01

    Although genome-wide association studies (GWASs) for nonsyndromic orofacial clefts have identified multiple strongly associated regions, the causal variants are unknown. To address this, we selected 13 regions from GWASs and other studies, performed targeted sequencing in 1,409 Asian and European...

  7. Comparison of Ion Personal Genome Machine Platforms for the Detection of Variants in BRCA1 and BRCA2.

    Science.gov (United States)

    Hwang, Sang Mee; Lee, Ki Chan; Lee, Min Seob; Park, Kyoung Un

    2018-01-01

    Transition to next generation sequencing (NGS) for BRCA1 / BRCA2 analysis in clinical laboratories is ongoing but different platforms and/or data analysis pipelines give different results resulting in difficulties in implementation. We have evaluated the Ion Personal Genome Machine (PGM) Platforms (Ion PGM, Ion PGM Dx, Thermo Fisher Scientific) for the analysis of BRCA1 /2. The results of Ion PGM with OTG-snpcaller, a pipeline based on Torrent mapping alignment program and Genome Analysis Toolkit, from 75 clinical samples and 14 reference DNA samples were compared with Sanger sequencing for BRCA1 / BRCA2 . Ten clinical samples and 14 reference DNA samples were additionally sequenced by Ion PGM Dx with Torrent Suite. Fifty types of variants including 18 pathogenic or variants of unknown significance were identified from 75 clinical samples and known variants of the reference samples were confirmed by Sanger sequencing and/or NGS. One false-negative results were present for Ion PGM/OTG-snpcaller for an indel variant misidentified as a single nucleotide variant. However, eight discordant results were present for Ion PGM Dx/Torrent Suite with both false-positive and -negative results. A 40-bp deletion, a 4-bp deletion and a 1-bp deletion variant was not called and a false-positive deletion was identified. Four other variants were misidentified as another variant. Ion PGM/OTG-snpcaller showed acceptable performance with good concordance with Sanger sequencing. However, Ion PGM Dx/Torrent Suite showed many discrepant results not suitable for use in a clinical laboratory, requiring further optimization of the data analysis for calling variants.

  8. A variational Bayes discrete mixture test for rare variant association.

    Science.gov (United States)

    Logsdon, Benjamin A; Dai, James Y; Auer, Paul L; Johnsen, Jill M; Ganesh, Santhi K; Smith, Nicholas L; Wilson, James G; Tracy, Russell P; Lange, Leslie A; Jiao, Shuo; Rich, Stephen S; Lettre, Guillaume; Carlson, Christopher S; Jackson, Rebecca D; O'Donnell, Christopher J; Wurfel, Mark M; Nickerson, Deborah A; Tang, Hua; Reiner, Alexander P; Kooperberg, Charles

    2014-01-01

    Recently, many statistical methods have been proposed to test for associations between rare genetic variants and complex traits. Most of these methods test for association by aggregating genetic variations within a predefined region, such as a gene. Although there is evidence that "aggregate" tests are more powerful than the single marker test, these tests generally ignore neutral variants and therefore are unable to identify specific variants driving the association with phenotype. We propose a novel aggregate rare-variant test that explicitly models a fraction of variants as neutral, tests associations at the gene-level, and infers the rare-variants driving the association. Simulations show that in the practical scenario where there are many variants within a given region of the genome with only a fraction causal our approach has greater power compared to other popular tests such as the Sequence Kernel Association Test (SKAT), the Weighted Sum Statistic (WSS), and the collapsing method of Morris and Zeggini (MZ). Our algorithm leverages a fast variational Bayes approximate inference methodology to scale to exome-wide analyses, a significant computational advantage over exact inference model selection methodologies. To demonstrate the efficacy of our methodology we test for associations between von Willebrand Factor (VWF) levels and VWF missense rare-variants imputed from the National Heart, Lung, and Blood Institute's Exome Sequencing project into 2,487 African Americans within the VWF gene. Our method suggests that a relatively small fraction (~10%) of the imputed rare missense variants within VWF are strongly associated with lower VWF levels in African Americans.

  9. DaMold: A data-mining platform for variant annotation and visualization in molecular diagnostics research.

    Science.gov (United States)

    Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas

    2017-07-01

    Next-generation sequencing (NGS) has become a powerful and efficient tool for routine mutation screening in clinical research. As each NGS test yields hundreds of variants, the current challenge is to meaningfully interpret the data and select potential candidates. Analyzing each variant while manually investigating several relevant databases to collect specific information is a cumbersome and time-consuming process, and it requires expertise and familiarity with these databases. Thus, a tool that can seamlessly annotate variants with clinically relevant databases under one common interface would be of great help for variant annotation, cross-referencing, and visualization. This tool would allow variants to be processed in an automated and high-throughput manner and facilitate the investigation of variants in several genome browsers. Several analysis tools are available for raw sequencing-read processing and variant identification, but an automated variant filtering, annotation, cross-referencing, and visualization tool is still lacking. To fulfill these requirements, we developed DaMold, a Web-based, user-friendly tool that can filter and annotate variants and can access and compile information from 37 resources. It is easy to use, provides flexible input options, and accepts variants from NGS and Sanger sequencing as well as hotspots in VCF and BED formats. DaMold is available as an online application at http://damold.platomics.com/index.html, and as a Docker container and virtual machine at https://sourceforge.net/projects/damold/. © 2017 Wiley Periodicals, Inc.

  10. A Recurrent De Novo Variant in NACC1 Causes a Syndrome Characterized by Infantile Epilepsy, Cataracts, and Profound Developmental Delay.

    Science.gov (United States)

    Schoch, Kelly; Meng, Linyan; Szelinger, Szabolcs; Bearden, David R; Stray-Pedersen, Asbjorg; Busk, Oyvind L; Stong, Nicholas; Liston, Eriskay; Cohn, Ronald D; Scaglia, Fernando; Rosenfeld, Jill A; Tarpinian, Jennifer; Skraban, Cara M; Deardorff, Matthew A; Friedman, Jeremy N; Akdemir, Zeynep Coban; Walley, Nicole; Mikati, Mohamad A; Kranz, Peter G; Jasien, Joan; McConkie-Rosell, Allyn; McDonald, Marie; Wechsler, Stephanie Burns; Freemark, Michael; Kansagra, Sujay; Freedman, Sharon; Bali, Deeksha; Millan, Francisca; Bale, Sherri; Nelson, Stanley F; Lee, Hane; Dorrani, Naghmeh; Goldstein, David B; Xiao, Rui; Yang, Yaping; Posey, Jennifer E; Martinez-Agosto, Julian A; Lupski, James R; Wangler, Michael F; Shashi, Vandana

    2017-02-02

    Whole-exome sequencing (WES) has increasingly enabled new pathogenic gene variant identification for undiagnosed neurodevelopmental disorders and provided insights into both gene function and disease biology. Here, we describe seven children with a neurodevelopmental disorder characterized by microcephaly, profound developmental delays and/or intellectual disability, cataracts, severe epilepsy including infantile spasms, irritability, failure to thrive, and stereotypic hand movements. Brain imaging in these individuals reveals delay in myelination and cerebral atrophy. We observe an identical recurrent de novo heterozygous c.892C>T (p.Arg298Trp) variant in the nucleus accumbens associated 1 (NACC1) gene in seven affected individuals. One of the seven individuals is mosaic for this variant. NACC1 encodes a transcriptional repressor implicated in gene expression and has not previously been associated with germline disorders. The probability of finding the same missense NACC1 variant by chance in 7 out of 17,228 individuals who underwent WES for diagnoses of neurodevelopmental phenotypes is extremely small and achieves genome-wide significance (p = 1.25 × 10 -14 ). Selective constraint against missense variants in NACC1 makes this excess of an identical missense variant in all seven individuals more remarkable. Our findings are consistent with a germline recurrent mutational hotspot associated with an allele-specific neurodevelopmental phenotype in NACC1. Copyright © 2017 American Society of Human Genetics. All rights reserved.

  11. Joint associations between genetic variants and reproductive factors in glioma risk among women.

    Science.gov (United States)

    Wang, Sophia S; Hartge, Patricia; Yeager, Meredith; Carreón, Tania; Ruder, Avima M; Linet, Martha; Inskip, Peter D; Black, Amanda; Hsing, Ann W; Alavanja, Michael; Beane-Freeman, Laura; Safaiean, Mahboobeh; Chanock, Stephen J; Rajaraman, Preetha

    2011-10-15

    In a pooled analysis of 4 US epidemiologic studies (1993-2001), the authors evaluated the role of 5 female reproductive factors in 357 women with glioma and 822 controls. The authors further evaluated the independent association between 5 implicated gene variants and glioma risk among the study population, as well as the joint associations of female reproductive factors (ages at menarche and menopause, menopausal status, use of oral contraceptives, and menopausal hormone therapy) and these gene variants on glioma risk. Risk estimates were calculated as odds ratios and 95% confidence intervals that were adjusted for age, race, and study. Three of the gene variants (rs4295627, a variant of CCDC26; rs4977756, a variant of CDKN2A and CDKN2B; and rs6010620, a variant of RTEL1) were statistically significantly associated with glioma risk in the present population. Compared with women who had an early age at menarche (<12 years of age), those who reported menarche at 12-13 years of age or at 14 years of age or older had a 1.7-fold higher risk and a 1.9-fold higher risk of glioma, respectively (P for trend = 0.009). Postmenopausal women and women who reported ever having used oral contraceptives had a decreased risk of glioma. The authors did not observe joint associations between these reproductive characteristics and the implicated glioma gene variants. These results require replication, but if confirmed, they would suggest that the gene variants that have previously been implicated in the development of glioma are unlikely to act through the same hormonal mechanisms in women.

  12. Diversity in non-repetitive human sequences not found in the reference genome.

    Science.gov (United States)

    Kehr, Birte; Helgadottir, Anna; Melsted, Pall; Jonsson, Hakon; Helgason, Hannes; Jonasdottir, Adalbjörg; Jonasdottir, Aslaug; Sigurdsson, Asgeir; Gylfason, Arnaldur; Halldorsson, Gisli H; Kristmundsdottir, Snaedis; Thorgeirsson, Gudmundur; Olafsson, Isleifur; Holm, Hilma; Thorsteinsdottir, Unnur; Sulem, Patrick; Helgason, Agnar; Gudbjartsson, Daniel F; Halldorsson, Bjarni V; Stefansson, Kari

    2017-04-01

    Genomes usually contain some non-repetitive sequences that are missing from the reference genome and occur only in a population subset. Such non-repetitive, non-reference (NRNR) sequences have remained largely unexplored in terms of their characterization and downstream analyses. Here we describe 3,791 breakpoint-resolved NRNR sequence variants called using PopIns from whole-genome sequence data of 15,219 Icelanders. We found that over 95% of the 244 NRNR sequences that are 200 bp or longer are present in chimpanzees, indicating that they are ancestral. Furthermore, 149 variant loci are in linkage disequilibrium (r 2 > 0.8) with a genome-wide association study (GWAS) catalog marker, suggesting disease relevance. Additionally, we report an association (P = 3.8 × 10 -8 , odds ratio (OR) = 0.92) with myocardial infarction (23,360 cases, 300,771 controls) for a 766-bp NRNR sequence variant. Our results underline the importance of including variation of all complexity levels when searching for variants that associate with disease.

  13. High depth, whole-genome sequencing of cholera isolates from Haiti and the Dominican Republic.

    Science.gov (United States)

    Sealfon, Rachel; Gire, Stephen; Ellis, Crystal; Calderwood, Stephen; Qadri, Firdausi; Hensley, Lisa; Kellis, Manolis; Ryan, Edward T; LaRocque, Regina C; Harris, Jason B; Sabeti, Pardis C

    2012-09-11

    Whole-genome sequencing is an important tool for understanding microbial evolution and identifying the emergence of functionally important variants over the course of epidemics. In October 2010, a severe cholera epidemic began in Haiti, with additional cases identified in the neighboring Dominican Republic. We used whole-genome approaches to sequence four Vibrio cholerae isolates from Haiti and the Dominican Republic and three additional V. cholerae isolates to a high depth of coverage (>2000x); four of the seven isolates were previously sequenced. Using these sequence data, we examined the effect of depth of coverage and sequencing platform on genome assembly and identification of sequence variants. We found that 50x coverage is sufficient to construct a whole-genome assembly and to accurately call most variants from 100 base pair paired-end sequencing reads. Phylogenetic analysis between the newly sequenced and thirty-three previously sequenced V. cholerae isolates indicates that the Haitian and Dominican Republic isolates are closest to strains from South Asia. The Haitian and Dominican Republic isolates form a tight cluster, with only four variants unique to individual isolates. These variants are located in the CTX region, the SXT region, and the core genome. Of the 126 mutations identified that separate the Haiti-Dominican Republic cluster from the V. cholerae reference strain (N16961), 73 are non-synonymous changes, and a number of these changes cluster in specific genes and pathways. Sequence variant analyses of V. cholerae isolates, including multiple isolates from the Haitian outbreak, identify coverage-specific and technology-specific effects on variant detection, and provide insight into genomic change and functional evolution during an epidemic.

  14. High depth, whole-genome sequencing of cholera isolates from Haiti and the Dominican Republic

    Directory of Open Access Journals (Sweden)

    Sealfon Rachel

    2012-09-01

    Full Text Available Abstract Background Whole-genome sequencing is an important tool for understanding microbial evolution and identifying the emergence of functionally important variants over the course of epidemics. In October 2010, a severe cholera epidemic began in Haiti, with additional cases identified in the neighboring Dominican Republic. We used whole-genome approaches to sequence four Vibrio cholerae isolates from Haiti and the Dominican Republic and three additional V. cholerae isolates to a high depth of coverage (>2000x; four of the seven isolates were previously sequenced. Results Using these sequence data, we examined the effect of depth of coverage and sequencing platform on genome assembly and identification of sequence variants. We found that 50x coverage is sufficient to construct a whole-genome assembly and to accurately call most variants from 100 base pair paired-end sequencing reads. Phylogenetic analysis between the newly sequenced and thirty-three previously sequenced V. cholerae isolates indicates that the Haitian and Dominican Republic isolates are closest to strains from South Asia. The Haitian and Dominican Republic isolates form a tight cluster, with only four variants unique to individual isolates. These variants are located in the CTX region, the SXT region, and the core genome. Of the 126 mutations identified that separate the Haiti-Dominican Republic cluster from the V. cholerae reference strain (N16961, 73 are non-synonymous changes, and a number of these changes cluster in specific genes and pathways. Conclusions Sequence variant analyses of V. cholerae isolates, including multiple isolates from the Haitian outbreak, identify coverage-specific and technology-specific effects on variant detection, and provide insight into genomic change and functional evolution during an epidemic.

  15. SeqAnt: A web service to rapidly identify and annotate DNA sequence variations

    Directory of Open Access Journals (Sweden)

    Patel Viren

    2010-09-01

    Full Text Available Abstract Background The enormous throughput and low cost of second-generation sequencing platforms now allow research and clinical geneticists to routinely perform single experiments that identify tens of thousands to millions of variant sites. Existing methods to annotate variant sites using information from publicly available databases via web browsers are too slow to be useful for the large sequencing datasets being routinely generated by geneticists. Because sequence annotation of variant sites is required before functional characterization can proceed, the lack of a high-throughput pipeline to efficiently annotate variant sites can act as a significant bottleneck in genetics research. Results SeqAnt (Sequence Annotator is an open source web service and software package that rapidly annotates DNA sequence variants and identifies recessive or compound heterozygous loci in human, mouse, fly, and worm genome sequencing experiments. Variants are characterized with respect to their functional type, frequency, and evolutionary conservation. Annotated variants can be viewed on a web browser, downloaded in a tab-delimited text file, or directly uploaded in a BED format to the UCSC genome browser. To demonstrate the speed of SeqAnt, we annotated a series of publicly available datasets that ranged in size from 37 to 3,439,107 variant sites. The total time to completely annotate these data completely ranged from 0.17 seconds to 28 minutes 49.8 seconds. Conclusion SeqAnt is an open source web service and software package that overcomes a critical bottleneck facing research and clinical geneticists using second-generation sequencing platforms. SeqAnt will prove especially useful for those investigators who lack dedicated bioinformatics personnel or infrastructure in their laboratories.

  16. Statistical method to compare massive parallel sequencing pipelines.

    Science.gov (United States)

    Elsensohn, M H; Leblay, N; Dimassi, S; Campan-Fournier, A; Labalme, A; Roucher-Boulez, F; Sanlaville, D; Lesca, G; Bardel, C; Roy, P

    2017-03-01

    Today, sequencing is frequently carried out by Massive Parallel Sequencing (MPS) that cuts drastically sequencing time and expenses. Nevertheless, Sanger sequencing remains the main validation method to confirm the presence of variants. The analysis of MPS data involves the development of several bioinformatic tools, academic or commercial. We present here a statistical method to compare MPS pipelines and test it in a comparison between an academic (BWA-GATK) and a commercial pipeline (TMAP-NextGENe®), with and without reference to a gold standard (here, Sanger sequencing), on a panel of 41 genes in 43 epileptic patients. This method used the number of variants to fit log-linear models for pairwise agreements between pipelines. To assess the heterogeneity of the margins and the odds ratios of agreement, four log-linear models were used: a full model, a homogeneous-margin model, a model with single odds ratio for all patients, and a model with single intercept. Then a log-linear mixed model was fitted considering the biological variability as a random effect. Among the 390,339 base-pairs sequenced, TMAP-NextGENe® and BWA-GATK found, on average, 2253.49 and 1857.14 variants (single nucleotide variants and indels), respectively. Against the gold standard, the pipelines had similar sensitivities (63.47% vs. 63.42%) and close but significantly different specificities (99.57% vs. 99.65%; p < 0.001). Same-trend results were obtained when only single nucleotide variants were considered (99.98% specificity and 76.81% sensitivity for both pipelines). The method allows thus pipeline comparison and selection. It is generalizable to all types of MPS data and all pipelines.

  17. Malan syndrome: Sotos-like overgrowth with de novo NFIX sequence variants and deletions in six new patients and a review of the literature.

    Science.gov (United States)

    Klaassens, Merel; Morrogh, Deborah; Rosser, Elisabeth M; Jaffer, Fatima; Vreeburg, Maaike; Bok, Levinus A; Segboer, Tim; van Belzen, Martine; Quinlivan, Ros M; Kumar, Ajith; Hurst, Jane A; Scott, Richard H

    2015-05-01

    De novo monoallelic variants in NFIX cause two distinct syndromes. Whole gene deletions, nonsense variants and missense variants affecting the DNA-binding domain have been seen in association with a Sotos-like phenotype that we propose is referred to as Malan syndrome. Frameshift and splice-site variants thought to avoid nonsense-mediated RNA decay have been seen in Marshall-Smith syndrome. We report six additional patients with Malan syndrome and de novo NFIX deletions or sequence variants and review the 20 patients now reported. The phenotype is characterised by moderate postnatal overgrowth and macrocephaly. Median height and head circumference in childhood are 2.0 and 2.3 standard deviations (SD) above the mean, respectively. There is overlap of the facial phenotype with NSD1-positive Sotos syndrome in some cases including a prominent forehead, high anterior hairline, downslanting palpebral fissures and prominent chin. Neonatal feeding difficulties and/or hypotonia have been reported in 30% of patients. Developmental delay/learning disability have been reported in all cases and are typically moderate. Ocular phenotypes are common, including strabismus (65%), nystagmus (25% ) and optic disc pallor/hypoplasia (25%). Other recurrent features include pectus excavatum (40%) and scoliosis (25%). Eight reported patients have a deletion also encompassing CACNA1A, haploinsufficiency of which causes episodic ataxia type 2 or familial hemiplegic migraine. One previous case had episodic ataxia and one case we report has had cyclical vomiting responsive to pizotifen. In individuals with this contiguous gene deletion syndrome, awareness of possible later neurological manifestations is important, although their penetrance is not yet clear.

  18. A protein-truncating R179X variant in RNF186 confers protection against ulcerative colitis

    NARCIS (Netherlands)

    Rivas, Manuel A.; Graham, Daniel; Sulem, Patrick; Stevens, Christine; Desch, A. Nicole; Goyette, Philippe; Gudbjartsson, Daniel; Jonsdottir, Ingileif; Thorsteinsdottir, Unnur; Degenhardt, Frauke; Mucha, Soeren; Kurki, Mitja I.; Li, Dalin; D'Amato, Mauro; Annese, Vito; Vermeire, Severine; Weersma, Rinse K.; Halfvarson, Jonas; Paavola-Sakki, Paulina; Lappalainen, Maarit; Lek, Monkol; Cummings, Beryl; Tukiainen, Taru; Haritunians, Talin; Halme, Leena; Koskinen, Lotta L. E.; Ananthakrishnan, Ashwin N.; Luo, Yang; Heap, Graham A.; Visschedijk, Marijn C.; MacArthur, Daniel G.; Neale, Benjamin M.; Ahmad, Tariq; Anderson, Carl A.; Brant, Steven R.; Duerr, Richard H.; Silverberg, Mark S.; Cho, Judy H.; Palotie, Aarno; Saavalainen, Paivi; Kontula, Kimmo; Farkkila, Martti; McGovern, Dermot P. B.; Franke, Andre; Stefansson, Kari; Rioux, John D.; Xavier, Ramnik J.; Daly, Mark J.

    Protein-truncating variants protective against human disease provide in vivo validation of therapeutic targets. Here we used targeted sequencing to conduct a search for protein-truncating variants conferring protection against inflammatory bowel disease exploiting knowledge of common variants

  19. Characterisation of the legume SERK-NIK gene superfamily including splice variants: Implications for development and defence

    Directory of Open Access Journals (Sweden)

    Rose Ray J

    2011-03-01

    Full Text Available Abstract Background SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK genes are part of the regulation of diverse signalling events in plants. Current evidence shows SERK proteins function both in developmental and defence signalling pathways, which occur in response to both peptide and steroid ligands. SERKs are generally present as small gene families in plants, with five SERK genes in Arabidopsis. Knowledge gained primarily through work on Arabidopsis SERKs indicates that these proteins probably interact with a wide range of other receptor kinases and form a fundamental part of many essential signalling pathways. The SERK1 gene of the model legume, Medicago truncatula functions in somatic and zygotic embryogenesis, and during many phases of plant development, including nodule and lateral root formation. However, other SERK genes in M. truncatula and other legumes are largely unidentified and their functions unknown. Results To aid the understanding of signalling pathways in M. truncatula, we have identified and annotated the SERK genes in this species. Using degenerate PCR and database mining, eight more SERK-like genes have been identified and these have been shown to be expressed. The amplification and sequencing of several different PCR products from one of these genes is consistent with the presence of splice variants. Four of the eight additional genes identified are upregulated in cultured leaf tissue grown on embryogenic medium. The sequence information obtained from M. truncatula was used to identify SERK family genes in the recently sequenced soybean (Glycine max genome. Conclusions A total of nine SERK or SERK-like genes have been identified in M. truncatula and potentially 17 in soybean. Five M. truncatula SERK genes arose from duplication events not evident in soybean and Lotus. The presence of splice variants has not been previously reported in a SERK gene. Upregulation of four newly identified SERK genes (in addition to the

  20. Human papillomavirus type 16 variants in cervical intraepithelial neoplasia and invasive carcinoma in San Luis Potosí City, Mexico

    Science.gov (United States)

    López-Revilla, Rubén; Pineda, Marco A; Ortiz-Valdez, Julio; Sánchez-Garza, Mireya; Riego, Lina

    2009-01-01

    Background In San Luis Potosí City cervical infection by human papillomavirus type 16 (HPV16) associated to dysplastic lesions is more prevalent in younger women. In this work HPV16 subtypes and variants associated to low-grade intraepithelial lesions (LSIL), high-grade intraepithelial lesions (HSIL) and invasive cervical cancer (ICC) of 38 women residing in San Luis Potosí City were identified by comparing their E6 open reading frame sequences. Results Three European (E) variants (E-P, n = 27; E-T350G, n = 7; E-C188G, n = 2) and one AA-a variant (n = 2) were identified among the 38 HPV16 sequences analyzed. E-P variant sequences contained 23 single nucleotide changes, two of which (A334G, A404T) had not been described before and allowed the phylogenetic separation from the other variants. E-P A334G sequences were the most prevalent (22 cases, 57.9%), followed by the E-P Ref prototype (8 cases, 21.1%) and E-P A404T (1 case, 2.6%) sequences. The HSIL + ICC fraction was 0.21 for the E-P A334G variants and 0.00 for the E-P Ref variants. Conclusion We conclude that in the women included in this study the HPV16 E subtype is 19 times more frequent than the AA subtype; that the circulating E variants are E-P (71.1%) > E-T350G (18.4%) > E-C188G (5.3%); that 71.0% of the E-P sequences carry the A334G single nucleotide change and appear to correspond to a HPV16 variant characteristic of San Luis Potosi City more oncogenic than the E-P Ref prototype. PMID:19216802

  1. No evidence that protein truncating variants in BRIP1 are associated with breast cancer risk: implications for gene panel testing

    OpenAIRE

    Easton, Douglas Frederick; Lesueur, Fabienne; Decker, Brennan; Michailidou, Kyriaki; Li, Jun; Allen, Jamie; Luccarini, Craig; Pooley, Karen Anne; Shah, Mitulkumar Nandlal; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Ahmad, Jamil; Thompson, Ella R; Damiola, Francesca

    2016-01-01

    Background BRCA1 interacting protein C-terminal helicase 1 (BRIP1) is one of the Fanconi Anaemia Complementation (FANC) group family of DNA repair proteins. Biallelic mutations in BRIP1 are responsible for FANC group J, and previous studies have also suggested that rare protein truncating variants in BRIP1 are associated with an increased risk of breast cancer. These studies have led to inclusion of BRIP1 on targeted sequencing panels for breast cancer risk prediction. Metho...

  2. T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology.

    Science.gov (United States)

    Baliram, R; Latif, R; Morshed, S A; Zaidi, M; Davies, T F

    2016-09-01

    TSH and thyroid hormones (T3 and T4) are intimately involved in bone biology. We have previously reported the presence of a murine TSH-β splice variant (TSH-βv) expressed specifically in bone marrow-derived macrophages and that exerted an osteoprotective effect by inducing osteoblastogenesis. To extend this observation and its relevance to human bone biology, we set out to identify and characterize a TSH-β variant in human macrophages. Real-time PCR analyses using human TSH-β-specific primers identified a 364-bp product in macrophages, bone marrow, and peripheral blood mononuclear cells that was sequence verified and was homologous to a human TSH-βv previously reported. We then examined TSH-βv regulation using the THP-1 human monocyte cell line matured into macrophages. After 4 days, 46.1% of the THP-1 cells expressed the macrophage markers CD-14 and macrophage colony-stimulating factor and exhibited typical morphological characteristics of macrophages. Real-time PCR analyses of these cells treated in a dose-dependent manner with T3 showed a 14-fold induction of human TSH-βv mRNA and variant protein. Furthermore, these human TSH-βv-positive cells, induced by T3 exposure, had categorized into both M1 and M2 macrophage phenotypes as evidenced by the expression of macrophage colony-stimulating factor for M1 and CCL-22 for M2. These data indicate that in hyperthyroidism, bone marrow resident macrophages have the potential to exert enhanced osteoprotective effects by oversecreting human TSH-βv, which may exert its local osteoprotective role via osteoblast and osteoclast TSH receptors.

  3. Factors influencing success of clinical genome sequencing across a broad spectrum of disorders

    OpenAIRE

    Taylor, Jenny C; Martin, Hilary C; Lise, Stefano; Broxholme, John; Cazier, Jean-Baptiste; Rimmer, Andy; Kanapin, Alexander; Lunter, Gerton; Fiddy, Simon; Allan, Chris; Aricescu, A. Radu; Attar, Moustafa; Babbs, Christian; Becq, Jennifer; Beeson, David

    2015-01-01

    To assess factors influencing the success of whole genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases across a broad spectrum of disorders in whom prior screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritisation. We found that jointly calling variants across samples, filtering against both local and e...

  4. A geometric framework for evaluating rare variant tests of association.

    Science.gov (United States)

    Liu, Keli; Fast, Shannon; Zawistowski, Matthew; Tintle, Nathan L

    2013-05-01

    The wave of next-generation sequencing data has arrived. However, many questions still remain about how to best analyze sequence data, particularly the contribution of rare genetic variants to human disease. Numerous statistical methods have been proposed to aggregate association signals across multiple rare variant sites in an effort to increase statistical power; however, the precise relation between the tests is often not well understood. We present a geometric representation for rare variant data in which rare allele counts in case and control samples are treated as vectors in Euclidean space. The geometric framework facilitates a rigorous classification of existing rare variant tests into two broad categories: tests for a difference in the lengths of the case and control vectors, and joint tests for a difference in either the lengths or angles of the two vectors. We demonstrate that genetic architecture of a trait, including the number and frequency of risk alleles, directly relates to the behavior of the length and joint tests. Hence, the geometric framework allows prediction of which tests will perform best under different disease models. Furthermore, the structure of the geometric framework immediately suggests additional classes and types of rare variant tests. We consider two general classes of tests which show robustness to noncausal and protective variants. The geometric framework introduces a novel and unique method to assess current rare variant methodology and provides guidelines for both applied and theoretical researchers. © 2013 Wiley Periodicals, Inc.

  5. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers

    Directory of Open Access Journals (Sweden)

    Quail Michael A

    2012-07-01

    Full Text Available Abstract Background Next generation sequencing (NGS technology has revolutionized genomic and genetic research. The pace of change in this area is rapid with three major new sequencing platforms having been released in 2011: Ion Torrent’s PGM, Pacific Biosciences’ RS and the Illumina MiSeq. Here we compare the results obtained with those platforms to the performance of the Illumina HiSeq, the current market leader. In order to compare these platforms, and get sufficient coverage depth to allow meaningful analysis, we have sequenced a set of 4 microbial genomes with mean GC content ranging from 19.3 to 67.7%. Together, these represent a comprehensive range of genome content. Here we report our analysis of that sequence data in terms of coverage distribution, bias, GC distribution, variant detection and accuracy. Results Sequence generated by Ion Torrent, MiSeq and Pacific Biosciences technologies displays near perfect coverage behaviour on GC-rich, neutral and moderately AT-rich genomes, but a profound bias was observed upon sequencing the extremely AT-rich genome of Plasmodium falciparum on the PGM, resulting in no coverage for approximately 30% of the genome. We analysed the ability to call variants from each platform and found that we could call slightly more variants from Ion Torrent data compared to MiSeq data, but at the expense of a higher false positive rate. Variant calling from Pacific Biosciences data was possible but higher coverage depth was required. Context specific errors were observed in both PGM and MiSeq data, but not in that from the Pacific Biosciences platform. Conclusions All three fast turnaround sequencers evaluated here were able to generate usable sequence. However there are key differences between the quality of that data and the applications it will support.

  6. Efficient utilization of rare variants for detection of disease-related genomic regions.

    Directory of Open Access Journals (Sweden)

    Lei Zhang

    2010-12-01

    Full Text Available When testing association between rare variants and diseases, an efficient analytical approach involves considering a set of variants in a genomic region as the unit of analysis. One factor complicating this approach is that the vast majority of rare variants in practical applications are believed to represent background neutral variation. As a result, analyzing a single set with all variants may not represent a powerful approach. Here, we propose two alternative strategies. In the first, we analyze the subsets of rare variants exhaustively. In the second, we categorize variants selectively into two subsets: one in which variants are overrepresented in cases, and the other in which variants are overrepresented in controls. When the proportion of neutral variants is moderate to large we show, by simulations, that the both proposed strategies improve the statistical power over methods analyzing a single set with total variants. When applied to a real sequencing association study, the proposed methods consistently produce smaller p-values than their competitors. When applied to another real sequencing dataset to study the difference of rare allele distributions between ethnic populations, the proposed methods detect the overrepresentation of variants between the CHB (Chinese Han in Beijing and YRI (Yoruba people of Ibadan populations with small p-values. Additional analyses suggest that there is no difference between the CHB and CHD (Chinese Han in Denver datasets, as expected. Finally, when applied to the CHB and JPT (Japanese people in Tokyo populations, existing methods fail to detect any difference, while it is detected by the proposed methods in several regions.

  7. Expansion of the CRF19_cpx Variant in Spain.

    Science.gov (United States)

    Patiño Galindo, Juan Angel; Torres-Puente, Manoli; Gimeno, Concepción; Ortega, Enrique; Navarro, David; Galindo, María José; Navarro, Laura; Navarro, Vicente; Juan, Amparo; Belda, Josefina; Bracho, María Alma; González-Candelas, Fernando

    2015-08-01

    HIV-1 CRF19_cpx, is a recombinant variant found almost exclusively in Cuba and recently associated to a faster AIDS onset. Infection with this variant leads to higher viral loads and levels of RANTES and CXCR4 co-receptor use. The goal of this study was to assess the presence of CRF19_cpx in the Spanish province of Valencia, given its high pathogenicity. 1294 HIV-1 protease-reverse transcriptase (PR/RT) sequences were obtained in Valencia (Spain), between 2005 and 2014. After subtyping, the detected CRF19_cpx sequences were aligned with 201 CRF19_cpx and 66 subtype D sequences retrieved from LANL, and subjected to maximum-likelihood phylogenetic analyses and Bayesian coalescent reconstructions. The presence of resistance mutations in the PR/RT region of these sequences was also analyzed. Among the 9 CRF19_cpx sequences from different patients found (prevalence <0.1%), 7 grouped in two well-supported clades (groups A, n=4, and B, n=3), suggesting the existence of at least two independent introductions which subsequently started to expand in the studied Spanish region. Unprotected sex between men was the only known transmission route. Coalescent analyses suggested that the introductions in Valencia occurred between 2008 and 2010. Resistance mutations in the RT region were found in all sequences from group A (V139D) and in two sequences from group B (E138A). This study reports for the first time the recent expansion of CRF19_cpx outside Cuba. Our results suggest that CRF19_cpx might become an emerging HIV variant in Spain, affecting Spanish native MSM and not only Cuban migrants. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Diagnostics of Primary Immunodeficiencies through Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Vera Gallo

    2016-11-01

    Full Text Available Background: Recently, a growing number of novel genetic defects underlying primary immunodeficiencies (PID have been identified, increasing the number of PID up to more than 250 well-defined forms. Next-generation sequencing (NGS technologies and proper filtering strategies greatly contributed to this rapid evolution, providing the possibility to rapidly and simultaneously analyze large numbers of genes or the whole exome. Objective: To evaluate the role of targeted next-generation sequencing and whole exome sequencing in the diagnosis of a case series, characterized by complex or atypical clinical features suggesting a PID, difficult to diagnose using the current diagnostic procedures.Methods: We retrospectively analyzed genetic variants identified through targeted next-generation sequencing or whole exome sequencing in 45 patients with complex PID of unknown etiology. Results: 40 variants were identified using targeted next-generation sequencing, while 5 were identified using whole exome sequencing. Newly identified genetic variants were classified into 4 groups: I variations associated with a well-defined PID; II variations associated with atypical features of a well-defined PID; III functionally relevant variations potentially involved in the immunological features; IV non-diagnostic genotype, in whom the link with phenotype is missing. We reached a conclusive genetic diagnosis in 7/45 patients (~16%. Among them, 4 patients presented with a typical well-defined PID. In the remaining 3 cases, mutations were associated with unexpected clinical features, expanding the phenotypic spectrum of typical PIDs. In addition, we identified 31 variants in 10 patients with complex phenotype, individually not causative per se of the disorder.Conclusion: NGS technologies represent a cost-effective and rapid first-line genetic approaches for the evaluation of complex PIDs. Whole exome sequencing, despite a moderate higher cost compared to targeted, is

  9. Deep sequencing shows low-level oncogenic hepatitis B virus variants persists post-liver transplant despite potent anti-HBV prophylaxis.

    Science.gov (United States)

    Lau, K C K; Osiowy, C; Giles, E; Lusina, B; van Marle, G; Burak, K W; Coffin, C S

    2018-01-06

    Recent studies suggest that withdrawal of hepatitis B immune globulin (HBIG) and nucleos(t)ide analogues (NA) prophylaxis may be considered in HBV surface antigen (HBsAg)-negative liver transplant (LT) recipients with a low risk of disease recurrence. However, the frequency of occult HBV infection (OBI) and HBV variants after LT in the current era of potent NA therapy is unknown. Twelve LT recipients on prophylaxis were tested in matched plasma and peripheral blood mononuclear cells (PBMCs) for HBV quasispecies by in-house nested PCR and next-generation sequencing of amplicons. HBV covalently closed circular DNA (cccDNA) was detected in Hirt DNA isolated from PBMCs with cccDNA-specific primers and confirmed by nucleic acid hybridization and Sanger sequencing. HBV mRNA in PBMC was detected with reverse-transcriptase nested PCR. In LT recipients on immunosuppressive therapy (10/12 male; median age 57.5 [IQR: 39.8-66.5]; median follow-up post-LT 60 months; 6 pre-LT hepatocellular carcinoma [HCC]), 9 were HBsAg-. HBV DNA was detected in all plasma and PBMC tested; cccDNA and/or mRNA was detected in the PBMC of 10/12 patients. Significant HBV quasispecies diversity (ie 143-2212 nonredundant HBV species) was noted in both sites, and single nucleotide polymorphisms associated with cirrhosis and HCC were detected at varying frequencies. In conclusion, OBI and HBV variants associated with severe liver disease persist in LT recipients on prophylaxis. Although HBV control and cccDNA transcriptional silencing may occur despite immunosuppression, complete virological eradication does not occur in LT recipients with a history of HBV-related end-stage liver disease. © 2018 John Wiley & Sons Ltd.

  10. Hemoglobin Variants: Biochemical Properties and Clinical Correlates

    Science.gov (United States)

    Thom, Christopher S.; Dickson, Claire F.; Gell, David A.; Weiss, Mitchell J.

    2013-01-01

    Diseases affecting hemoglobin synthesis and function are extremely common worldwide. More than 1000 naturally occurring human hemoglobin variants with single amino acid substitutions throughout the molecule have been discovered, mainly through their clinical and/or laboratory manifestations. These variants alter hemoglobin structure and biochemical properties with physiological effects ranging from insignificant to severe. Studies of these mutations in patients and in the laboratory have produced a wealth of information on hemoglobin biochemistry and biology with significant implications for hematology practice. More generally, landmark studies of hemoglobin performed over the past 60 years have established important paradigms for the disciplines of structural biology, genetics, biochemistry, and medicine. Here we review the major classes of hemoglobin variants, emphasizing general concepts and illustrative examples. PMID:23388674

  11. Rapid screening for targeted genetic variants via high-resolution melting curve analysis.

    Science.gov (United States)

    Chambliss, Allison B; Resnick, Molly; Petrides, Athena K; Clarke, William A; Marzinke, Mark A

    2017-03-01

    Current methods for the detection of single nucleotide polymorphisms (SNPs) associated with aberrant drug-metabolizing enzyme function are hindered by long turnaround times and specialized techniques and instrumentation. In this study, we describe the development and validation of a high-resolution melting (HRM) curve assay for the rapid screening of variant genotypes for targeted genetic polymorphisms in the cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP3A5. Sequence-specific primers were custom-designed to flank nine SNPs within the genetic regions of aforementioned drug metabolizing enzymes. PCR amplification was performed followed by amplicon denaturation by precise temperature ramping in order to distinguish genotypes by melting temperature (Tm). A standardized software algorithm was used to assign amplicons as 'reference' or 'variant' as compared to duplicate reference sequence DNA controls for each SNP. Intra-assay (n=5) precision of Tms for all SNPs was ≤0.19%, while inter-assay (n=20) precision ranged from 0.04% to 0.21%. When compared to a reference method of Sanger sequencing, the HRM assay produced no false negative results, and overcall frequency ranged from 0% to 26%, depending on the SNP. Furthermore, HRM genotyping displayed accuracy over input DNA concentrations ranging from 10 to 200 ng/μL. The presented assay provides a rapid method for the screening for genetic variants in targeted CYP450 regions with a result of 'reference' or 'variant' available within 2 h from receipt of extracted DNA. The method can serve as a screening approach to rapidly identify individuals with variant sequences who should be further investigated by reflexed confirmatory testing for aberrant cytochrome P450 enzymatic activity. Rapid knowledge of variant status may aid in the avoidance of adverse clinical events by allowing for dosing of normal metabolizer patients immediately while identifying the need to wait for confirmatory testing in those patients who are

  12. Probabilistic Methods for Processing High-Throughput Sequencing Signals

    DEFF Research Database (Denmark)

    Sørensen, Lasse Maretty

    High-throughput sequencing has the potential to answer many of the big questions in biology and medicine. It can be used to determine the ancestry of species, to chart complex ecosystems and to understand and diagnose disease. However, going from raw sequencing data to biological or medical insig....... By estimating the genotypes on a set of candidate variants obtained from both a standard mapping-based approach as well as de novo assemblies, we are able to find considerably more structural variation than previous studies...... for reconstructing transcript sequences from RNA sequencing data. The method is based on a novel sparse prior distribution over transcript abundances and is markedly more accurate than existing approaches. The second chapter describes a new method for calling genotypes from a fixed set of candidate variants....... The method queries the reads using a graph representation of the variants and hereby mitigates the reference-bias that characterise standard genotyping methods. In the last chapter, we apply this method to call the genotypes of 50 deeply sequencing parent-offspring trios from the GenomeDenmark project...

  13. Investigation of Exomic Variants Associated with Overall Survival in Ovarian Cancer

    DEFF Research Database (Denmark)

    Winham, Stacey J; Pirie, Ailith; Chen, Yian Ann

    2016-01-01

    ). Results: No individual variant reached genome-wide statistical significance. A SNP previously implicated to be associated with EOC risk and, to a lesser extent, survival, rs8170, showed the strongest evidence of association with survival and similar effect size estimates across sets (Pmeta=1.1E-6,HRSet1......=1.17,HRSet2= 1.14). Rare variants in ATG2B, an autophagy gene important for apoptosis, were significantly associated with survival after multiple testing correction (Pmeta = 1.1E-6; Pcorrected = 0.01). Conclusions: Common variant rs8170 and rare variants in ATG2B may be associated with EOC overall survival...

  14. ABC Assay: Method Development and Application to Quantify the Role of Three DWV Master Variants in Overwinter Colony Losses of European Honey Bees

    Directory of Open Access Journals (Sweden)

    Jessica L. Kevill

    2017-10-01

    Full Text Available Deformed wing virus (DWV is one of the most prevalent honey bee viral pathogens in the world. Typical of many RNA viruses, DWV is a quasi-species, which is comprised of a large number of different variants, currently consisting of three master variants: Type A, B, and C. Little is known about the impact of each variant or combinations of variants upon the biology of individual hosts. Therefore, we have developed a new set of master variant-specific DWV primers and a set of standards that allow for the quantification of each of the master variants. Competitive reverse transcriptase polymerase chain reaction (RT-PCR experimental design confirms that each new DWV primer set is specific to the retrospective master variant. The sensitivity of the ABC assay is dependent on whether DNA or RNA is used as the template and whether other master variants are present in the sample. Comparison of the overall proportions of each master variant within a sample of known diversity, as confirmed by next-generation sequence (NGS data, validates the efficiency of the ABC assay. The ABC assay was used on archived material from a Devon overwintering colony loss (OCL 2006–2007 study; further implicating DWV type A and, for the first time, possibly C in the untimely collapse of honey bee colonies. Moreover, in this study DWV type B was not associated with OCL. The use of the ABC assay will allow researchers to quickly and cost effectively pre-screen for the presence of DWV master variants in honey bees.

  15. Structure of chymotrypsin variant B from Atlantic cod, Gadus morhua

    DEFF Research Database (Denmark)

    Leth-Larsen, Rikke; Asgeirsson, B; Thórólfsson, M

    1996-01-01

    The amino-acid sequence of chymotrypsin variant B isolated from the pyloric caeca of Atlantic cod has been elucidated. The characterization of the primary structure is based on N-terminal Edman degradation and mass spectrometry of the native protein and enzymatically derived peptides. Chymotrypsi...... autolysis sites, cod variant B only contains a single autolysis site. The three-dimensional structures of the A- and B-variants of cod has been modelled on the known crystal structure of bovine alpha-chymotrypsin showing almost superimposable structures....

  16. Whole-Exome Sequencing of 2,000 Danish Individuals and the Role of Rare Coding Variants in Type 2 Diabetes

    DEFF Research Database (Denmark)

    Lohmueller, Kirk E.; Sparsø, Thomas; Li, Qibin

    2013-01-01

    number of genes. We applied a series of gene-based tests to detect such susceptibility genes. However, no gene showed a significant association with disease risk after we corrected for the number of genes analyzed. Thus, we could reject a model for the genetic architecture of type 2 diabetes where rare......It has been hypothesized that, in aggregate, rare variants in coding regions of genes explain a substantial fraction of the heritability of common diseases. We sequenced the exomes of 1,000 Danish cases with common forms of type 2 diabetes (including body mass index > 27.5 kg/m2 and hypertension...

  17. Functional Analyses of a Novel Splice Variant in the CHD7 Gene, Found by Next Generation Sequencing, Confirm Its Pathogenicity in a Spanish Patient and Diagnose Him with CHARGE Syndrome

    Directory of Open Access Journals (Sweden)

    Olatz Villate

    2018-01-01

    Full Text Available Mutations in CHD7 have been shown to be a major cause of CHARGE syndrome, which presents many symptoms and features common to other syndromes making its diagnosis difficult. Next generation sequencing (NGS of a panel of intellectual disability related genes was performed in an adult patient without molecular diagnosis. A splice donor variant in CHD7 (c.5665 + 1G > T was identified. To study its potential pathogenicity, exons and flanking intronic sequences were amplified from patient DNA and cloned into the pSAD® splicing vector. HeLa cells were transfected with this construct and a wild-type minigene and functional analysis were performed. The construct with the c.5665 + 1G > T variant produced an aberrant transcript with an insert of 63 nucleotides of intron 28 creating a premature termination codon (TAG 25 nucleotides downstream. This would lead to the insertion of 8 new amino acids and therefore a truncated 1896 amino acid protein. As a result of this, the patient was diagnosed with CHARGE syndrome. Functional analyses underline their usefulness for studying the pathogenicity of variants found by NGS and therefore its application to accurately diagnose patients.

  18. Functional Analyses of a Novel Splice Variant in the CHD7 Gene, Found by Next Generation Sequencing, Confirm Its Pathogenicity in a Spanish Patient and Diagnose Him with CHARGE Syndrome.

    Science.gov (United States)

    Villate, Olatz; Ibarluzea, Nekane; Fraile-Bethencourt, Eugenia; Valenzuela, Alberto; Velasco, Eladio A; Grozeva, Detelina; Raymond, F L; Botella, María P; Tejada, María-Isabel

    2018-01-01

    Mutations in CHD7 have been shown to be a major cause of CHARGE syndrome, which presents many symptoms and features common to other syndromes making its diagnosis difficult. Next generation sequencing (NGS) of a panel of intellectual disability related genes was performed in an adult patient without molecular diagnosis. A splice donor variant in CHD7 (c.5665 + 1G > T) was identified. To study its potential pathogenicity, exons and flanking intronic sequences were amplified from patient DNA and cloned into the pSAD ® splicing vector. HeLa cells were transfected with this construct and a wild-type minigene and functional analysis were performed. The construct with the c.5665 + 1G > T variant produced an aberrant transcript with an insert of 63 nucleotides of intron 28 creating a premature termination codon (TAG) 25 nucleotides downstream. This would lead to the insertion of 8 new amino acids and therefore a truncated 1896 amino acid protein. As a result of this, the patient was diagnosed with CHARGE syndrome. Functional analyses underline their usefulness for studying the pathogenicity of variants found by NGS and therefore its application to accurately diagnose patients.

  19. Next-generation sequencing for genetic testing of familial colorectal cancer syndromes.

    Science.gov (United States)

    Simbolo, Michele; Mafficini, Andrea; Agostini, Marco; Pedrazzani, Corrado; Bedin, Chiara; Urso, Emanuele D; Nitti, Donato; Turri, Giona; Scardoni, Maria; Fassan, Matteo; Scarpa, Aldo

    2015-01-01

    Genetic screening in families with high risk to develop colorectal cancer (CRC) prevents incurable disease and permits personalized therapeutic and follow-up strategies. The advancement of next-generation sequencing (NGS) technologies has revolutionized the throughput of DNA sequencing. A series of 16 probands for either familial adenomatous polyposis (FAP; 8 cases) or hereditary nonpolyposis colorectal cancer (HNPCC; 8 cases) were investigated for intragenic mutations in five CRC familial syndromes-associated genes (APC, MUTYH, MLH1, MSH2, MSH6) applying both a custom multigene Ion AmpliSeq NGS panel and conventional Sanger sequencing. Fourteen pathogenic variants were detected in 13/16 FAP/HNPCC probands (81.3 %); one FAP proband presented two co-existing pathogenic variants, one in APC and one in MUTYH. Thirteen of these 14 pathogenic variants were detected by both NGS and Sanger, while one MSH2 mutation (L280FfsX3) was identified only by Sanger sequencing. This is due to a limitation of the NGS approach in resolving sequences close or within homopolymeric stretches of DNA. To evaluate the performance of our NGS custom panel we assessed its capability to resolve the DNA sequences corresponding to 2225 pathogenic variants reported in the COSMIC database for APC, MUTYH, MLH1, MSH2, MSH6. Our NGS custom panel resolves the sequences where 2108 (94.7 %) of these variants occur. The remaining 117 mutations reside inside or in close proximity to homopolymer stretches; of these 27 (1.2 %) are imprecisely identified by the software but can be resolved by visual inspection of the region, while the remaining 90 variants (4.0 %) are blind spots. In summary, our custom panel would miss 4 % (90/2225) of pathogenic variants that would need a small set of Sanger sequencing reactions to be solved. The multiplex NGS approach has the advantage of analyzing multiple genes in multiple samples simultaneously, requiring only a reduced number of Sanger sequences to resolve

  20. Human T-cell recognition of synthetic peptides representing conserved and variant sequences from the merozoite surface protein 2 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Theander, T G; Hviid, L; Dodoo, D

    1997-01-01

    Merozoite surface protein 2 (MSP2) is a malaria vaccine candidate currently undergoing clinical trials. We analyzed the peripheral blood mononuclear cell (PBMC) response to synthetic peptides corresponding to conserved and variant regions of the FCQ-27 allelic form of MSP2 in Ghanaian individuals....... The findings are encouraging for the development of a vaccine based on these T-epitope containing regions of MSP2, as the peptides were broadly recognized suggesting that they can bind to diverse HLA alleles and also because they include conserved MSP2 sequences. Immunisation with a vaccine construct...

  1. Intragenic FMR1 disease-causing variants: a significant mutational mechanism leading to Fragile-X syndrome

    Science.gov (United States)

    Quartier, Angélique; Poquet, Hélène; Gilbert-Dussardier, Brigitte; Rossi, Massimiliano; Casteleyn, Anne-Sophie; Portes, Vincent des; Feger, Claire; Nourisson, Elsa; Kuentz, Paul; Redin, Claire; Thevenon, Julien; Mosca-Boidron, Anne-Laure; Callier, Patrick; Muller, Jean; Lesca, Gaetan; Huet, Frédéric; Geoffroy, Véronique; El Chehadeh, Salima; Jung, Matthieu; Trojak, Benoit; Le Gras, Stéphanie; Lehalle, Daphné; Jost, Bernard; Maury, Stéphanie; Masurel, Alice; Edery, Patrick; Thauvin-Robinet, Christel; Gérard, Bénédicte; Mandel, Jean-Louis; Faivre, Laurence; Piton, Amélie

    2017-01-01

    Fragile-X syndrome (FXS) is a frequent genetic form of intellectual disability (ID). The main recurrent mutagenic mechanism causing FXS is the expansion of a CGG repeat sequence in the 5′-UTR of the FMR1 gene, therefore, routinely tested in ID patients. We report here three FMR1 intragenic pathogenic variants not affecting this sequence, identified using high-throughput sequencing (HTS): a previously reported hemizygous deletion encompassing the last exon of FMR1, too small to be detected by array-CGH and inducing decreased expression of a truncated form of FMRP protein, in three brothers with ID (family 1) and two splice variants in boys with sporadic ID: a de novo variant c.990+1G>A (family 2) and a maternally inherited c.420-8A>G variant (family 3). After clinical reevaluation, the five patients presented features consistent with FXS (mean Hagerman's scores=15). We conducted a systematic review of all rare non-synonymous variants previously reported in FMR1 in ID patients and showed that six of them are convincing pathogenic variants. This study suggests that intragenic FMR1 variants, although much less frequent than CGG expansions, are a significant mutational mechanism leading to FXS and demonstrates the interest of HTS approaches to detect them in ID patients with a negative standard work-up. PMID:28176767

  2. Presynaptic congenital myasthenic syndrome with a homozygous sequence variant in LAMA5 combines myopia, facial tics, and failure of neuromuscular transmission.

    Science.gov (United States)

    Maselli, Ricardo A; Arredondo, Juan; Vázquez, Jessica; Chong, Jessica X; Bamshad, Michael J; Nickerson, Deborah A; Lara, Marian; Ng, Fiona; Lo, Victoria L; Pytel, Peter; McDonald, Craig M

    2017-08-01

    Defects in genes encoding the isoforms of the laminin alpha subunit have been linked to various phenotypic manifestations, including brain malformations, muscular dystrophy, ocular defects, cardiomyopathy, and skin abnormalities. We report here a severe defect of neuromuscular transmission in a consanguineous patient with a homozygous variant in the laminin alpha-5 subunit gene (LAMA5). The variant c.8046C>T (p.Arg2659Trp) is rare and has a predicted deleterious effect. The affected individual, who also carries a rare homozygous sequence variant in LAMA1, had muscle weakness, myopia, and facial tics. Magnetic resonance imaging of brain showed mild volume loss and periventricular T2 prolongation. Repetitive nerve stimulation revealed 50% decrement of compound muscle action potential amplitudes and 250% facilitation immediately after exercise, Endplate studies identified a profound reduction of the endplate potential quantal content and endplates with normal postsynaptic folding that were denuded or partially occupied by small nerve terminals. Expression studies revealed that p.Arg2659Trp caused decreased binding of laminin alpha-5 to SV2A and impaired laminin-521 cell-adhesion and cell projection support in primary neuronal cultures. In summary, this report describing severe neuromuscular transmission failure in a patient with a LAMA5 mutation expands the list of phenotypes associated with defects in genes encoding alpha-laminins. © 2017 Wiley Periodicals, Inc.

  3. Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: a whole-exome sequencing study.

    Science.gov (United States)

    Fewings, Eleanor; Larionov, Alexey; Redman, James; Goldgraben, Mae A; Scarth, James; Richardson, Susan; Brewer, Carole; Davidson, Rosemarie; Ellis, Ian; Evans, D Gareth; Halliday, Dorothy; Izatt, Louise; Marks, Peter; McConnell, Vivienne; Verbist, Louis; Mayes, Rebecca; Clark, Graeme R; Hadfield, James; Chin, Suet-Feung; Teixeira, Manuel R; Giger, Olivier T; Hardwick, Richard; di Pietro, Massimiliano; O'Donovan, Maria; Pharoah, Paul; Caldas, Carlos; Fitzgerald, Rebecca C; Tischkowitz, Marc

    2018-04-26

    Germline pathogenic variants in the E-cadherin gene (CDH1) are strongly associated with the development of hereditary diffuse gastric cancer. There is a paucity of data to guide risk assessment and management of families with hereditary diffuse gastric cancer that do not carry a CDH1 pathogenic variant, making it difficult to make informed decisions about surveillance and risk-reducing surgery. We aimed to identify new candidate genes associated with predisposition to hereditary diffuse gastric cancer in affected families without pathogenic CDH1 variants. We did whole-exome sequencing on DNA extracted from the blood of 39 individuals (28 individuals diagnosed with hereditary diffuse gastric cancer and 11 unaffected first-degree relatives) in 22 families without pathogenic CDH1 variants. Genes with loss-of-function variants were prioritised using gene-interaction analysis to identify clusters of genes that could be involved in predisposition to hereditary diffuse gastric cancer. Protein-affecting germline variants were identified in probands from six families with hereditary diffuse gastric cancer; variants were found in genes known to predispose to cancer and in lesser-studied DNA repair genes. A frameshift deletion in PALB2 was found in one member of a family with a history of gastric and breast cancer. Two different MSH2 variants were identified in two unrelated affected individuals, including one frameshift insertion and one previously described start-codon loss. One family had a unique combination of variants in the DNA repair genes ATR and NBN. Two variants in the DNA repair gene RECQL5 were identified in two unrelated families: one missense variant and a splice-acceptor variant. The results of this study suggest a role for the known cancer predisposition gene PALB2 in families with hereditary diffuse gastric cancer and no detected pathogenic CDH1 variants. We also identified new candidate genes associated with disease risk in these families. UK Medical

  4. Factors influencing success of clinical genome sequencing across a broad spectrum of disorders

    Science.gov (United States)

    Lise, Stefano; Broxholme, John; Cazier, Jean-Baptiste; Rimmer, Andy; Kanapin, Alexander; Lunter, Gerton; Fiddy, Simon; Allan, Chris; Aricescu, A. Radu; Attar, Moustafa; Babbs, Christian; Becq, Jennifer; Beeson, David; Bento, Celeste; Bignell, Patricia; Blair, Edward; Buckle, Veronica J; Bull, Katherine; Cais, Ondrej; Cario, Holger; Chapel, Helen; Copley, Richard R; Cornall, Richard; Craft, Jude; Dahan, Karin; Davenport, Emma E; Dendrou, Calliope; Devuyst, Olivier; Fenwick, Aimée L; Flint, Jonathan; Fugger, Lars; Gilbert, Rodney D; Goriely, Anne; Green, Angie; Greger, Ingo H.; Grocock, Russell; Gruszczyk, Anja V; Hastings, Robert; Hatton, Edouard; Higgs, Doug; Hill, Adrian; Holmes, Chris; Howard, Malcolm; Hughes, Linda; Humburg, Peter; Johnson, David; Karpe, Fredrik; Kingsbury, Zoya; Kini, Usha; Knight, Julian C; Krohn, Jonathan; Lamble, Sarah; Langman, Craig; Lonie, Lorne; Luck, Joshua; McCarthy, Davis; McGowan, Simon J; McMullin, Mary Frances; Miller, Kerry A; Murray, Lisa; Németh, Andrea H; Nesbit, M Andrew; Nutt, David; Ormondroyd, Elizabeth; Oturai, Annette Bang; Pagnamenta, Alistair; Patel, Smita Y; Percy, Melanie; Petousi, Nayia; Piazza, Paolo; Piret, Sian E; Polanco-Echeverry, Guadalupe; Popitsch, Niko; Powrie, Fiona; Pugh, Chris; Quek, Lynn; Robbins, Peter A; Robson, Kathryn; Russo, Alexandra; Sahgal, Natasha; van Schouwenburg, Pauline A; Schuh, Anna; Silverman, Earl; Simmons, Alison; Sørensen, Per Soelberg; Sweeney, Elizabeth; Taylor, John; Thakker, Rajesh V; Tomlinson, Ian; Trebes, Amy; Twigg, Stephen RF; Uhlig, Holm H; Vyas, Paresh; Vyse, Tim; Wall, Steven A; Watkins, Hugh; Whyte, Michael P; Witty, Lorna; Wright, Ben; Yau, Chris; Buck, David; Humphray, Sean; Ratcliffe, Peter J; Bell, John I; Wilkie, Andrew OM; Bentley, David; Donnelly, Peter; McVean, Gilean

    2015-01-01

    To assess factors influencing the success of whole genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases across a broad spectrum of disorders in whom prior screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritisation. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease causing variants in 21% of cases, rising to 34% (23/68) for Mendelian disorders and 57% (8/14) in trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, though only four were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis, but also highlight many outstanding challenges. PMID:25985138

  5. The UK10K project identifies rare variants in health and disease

    DEFF Research Database (Denmark)

    Walter, Klaudia; Min, Josine L.; Huang, Jie

    2015-01-01

    -marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive...

  6. HABP2 G534E Variant in Papillary Thyroid Carcinoma.

    Directory of Open Access Journals (Sweden)

    Jerneja Tomsic

    Full Text Available The main nonmedullary form of thyroid cancer is papillary thyroid carcinoma (PTC that accounts for 80-90% of all thyroid malignancies. Only 3-10% of PTC patients have a positive family history of PTC yet the familiality is one of the highest of all cancers as measured by case control studies. A handful of genes have been implicated accounting for a small fraction of this genetic predisposition. It was therefore of considerable interest that a mutation in the HABP2 gene was recently implicated in familial PTC. The present work was undertaken to examine the extent of HABP2 variant involvement in PTC. The HABP2 G534E variant (rs7080536 was genotyped in blood DNA from 179 PTC families (one affected individual per family, 1160 sporadic PTC cases and 1395 controls. RNA expression of HABP2 was tested by qPCR in RNA extracted from tumor and normal thyroid tissue from individuals that are homozygous wild-type or heterozygous for the variant. The variant was found to be present in 6.1% familial cases, 8.0% sporadic cases (2 individuals were homozygous for the variant and 8.7% controls. The variant did not segregate with PTC in one large and 6 smaller families in which it occurred. In keeping with data from the literature and databases the expression of HABP2 was highest in the liver, much lower in 3 other tested tissues (breast, kidney, brain but not found in thyroid. Given these results showing lack of any involvement we suggest that the putative role of variant HABP2 in PTC should be carefully scrutinized.

  7. XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing.

    Science.gov (United States)

    Piton, Amélie; Redin, Claire; Mandel, Jean-Louis

    2013-08-08

    Because of the unbalanced sex ratio (1.3-1.4 to 1) observed in intellectual disability (ID) and the identification of large ID-affected families showing X-linked segregation, much attention has been focused on the genetics of X-linked ID (XLID). Mutations causing monogenic XLID have now been reported in over 100 genes, most of which are commonly included in XLID diagnostic gene panels. Nonetheless, the boundary between true mutations and rare non-disease-causing variants often remains elusive. The sequencing of a large number of control X chromosomes, required for avoiding false-positive results, was not systematically possible in the past. Such information is now available thanks to large-scale sequencing projects such as the National Heart, Lung, and Blood (NHLBI) Exome Sequencing Project, which provides variation information on 10,563 X chromosomes from the general population. We used this NHLBI cohort to systematically reassess the implication of 106 genes proposed to be involved in monogenic forms of XLID. We particularly question the implication in XLID of ten of them (AGTR2, MAGT1, ZNF674, SRPX2, ATP6AP2, ARHGEF6, NXF5, ZCCHC12, ZNF41, and ZNF81), in which truncating variants or previously published mutations are observed at a relatively high frequency within this cohort. We also highlight 15 other genes (CCDC22, CLIC2, CNKSR2, FRMPD4, HCFC1, IGBP1, KIAA2022, KLF8, MAOA, NAA10, NLGN3, RPL10, SHROOM4, ZDHHC15, and ZNF261) for which replication studies are warranted. We propose that similar reassessment of reported mutations (and genes) with the use of data from large-scale human exome sequencing would be relevant for a wide range of other genetic diseases. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  8. Analysis of selected genes associated with cardiomyopathy by next-generation sequencing.

    Science.gov (United States)

    Szabadosova, Viktoria; Boronova, Iveta; Ferenc, Peter; Tothova, Iveta; Bernasovska, Jarmila; Zigova, Michaela; Kmec, Jan; Bernasovsky, Ivan

    2018-02-01

    As the leading cause of congestive heart failure, cardiomyopathy represents a heterogenous group of heart muscle disorders. Despite considerable progress being made in the genetic diagnosis of cardiomyopathy by detection of the mutations in the most prevalent cardiomyopathy genes, the cause remains unsolved in many patients. High-throughput mutation screening in the disease genes for cardiomyopathy is now possible because of using target enrichment followed by next-generation sequencing. The aim of the study was to analyze a panel of genes associated with dilated or hypertrophic cardiomyopathy based on previously published results in order to identify the subjects at risk. The method of next-generation sequencing by IlluminaHiSeq 2500 platform was used to detect sequence variants in 16 individuals diagnosed with dilated or hypertrophic cardiomyopathy. Detected variants were filtered and the functional impact of amino acid changes was predicted by computational programs. DNA samples of the 16 patients were analyzed by whole exome sequencing. We identified six nonsynonymous variants that were shown to be pathogenic in all used prediction softwares: rs3744998 (EPG5), rs11551768 (MGME1), rs148374985 (MURC), rs78461695 (PLEC), rs17158558 (RET) and rs2295190 (SYNE1). Two of the analyzed sequence variants had minor allele frequency (MAF)MURC), rs34580776 (MYBPC3). Our data support the potential role of the detected variants in pathogenesis of dilated or hypertrophic cardiomyopathy; however, the possibility that these variants might not be true disease-causing variants but are susceptibility alleles that require additional mutations or injury to cause the clinical phenotype of disease must be considered. © 2017 Wiley Periodicals, Inc.

  9. Prioritizing single-nucleotide polymorphisms and variants associated with clinical mastitis

    Directory of Open Access Journals (Sweden)

    Suravajhala P

    2017-06-01

    Full Text Available Prashanth Suravajhala,1 Alfredo Benso2 1Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark; 2Department of Control and Computer Engineering, Politecnico di Torino, Torino, Italy Abstract: Next-generation sequencing technology has provided resources to easily explore and identify candidate single-nucleotide polymorphisms (SNPs and variants. However, there remains a challenge in identifying and inferring the causal SNPs from sequence data. A problem with different methods that predict the effect of mutations is that they produce false positives. In this hypothesis, we provide an overview of methods known for identifying causal variants and discuss the challenges, fallacies, and prospects in discerning candidate SNPs. We then propose a three-point classification strategy, which could be an additional annotation method in identifying causalities. Keywords: clinical mastitis, single-nucleotide polymorphisms, variants, associations, diseases, linkage disequilibrium, GWAS

  10. ToTem: a tool for variant calling pipeline optimization.

    Science.gov (United States)

    Tom, Nikola; Tom, Ondrej; Malcikova, Jitka; Pavlova, Sarka; Kubesova, Blanka; Rausch, Tobias; Kolarik, Miroslav; Benes, Vladimir; Bystry, Vojtech; Pospisilova, Sarka

    2018-06-26

    High-throughput bioinformatics analyses of next generation sequencing (NGS) data often require challenging pipeline optimization. The key problem is choosing appropriate tools and selecting the best parameters for optimal precision and recall. Here we introduce ToTem, a tool for automated pipeline optimization. ToTem is a stand-alone web application with a comprehensive graphical user interface (GUI). ToTem is written in Java and PHP with an underlying connection to a MySQL database. Its primary role is to automatically generate, execute and benchmark different variant calling pipeline settings. Our tool allows an analysis to be started from any level of the process and with the possibility of plugging almost any tool or code. To prevent an over-fitting of pipeline parameters, ToTem ensures the reproducibility of these by using cross validation techniques that penalize the final precision, recall and F-measure. The results are interpreted as interactive graphs and tables allowing an optimal pipeline to be selected, based on the user's priorities. Using ToTem, we were able to optimize somatic variant calling from ultra-deep targeted gene sequencing (TGS) data and germline variant detection in whole genome sequencing (WGS) data. ToTem is a tool for automated pipeline optimization which is freely available as a web application at  https://totem.software .

  11. IL10 low-frequency variants in Behçet's disease patients.

    Science.gov (United States)

    Matos, Mafalda; Xavier, Joana M; Abrantes, Patrícia; Sousa, Inês; Rei, Nádia; Davatchi, Fereydoun; Shahram, Farhad; Jesus, Gorete; Barcelos, Filipe; Vedes, Joana; Salgado, Manuel; Abdollahi, Bahar Sadeghi; Nadji, Abdolhadi; Moraes-Fontes, Maria Francisca; Shafiee, Niloofar Mojarad; Ghaderibarmi, Fahmida; Vaz Patto, José; Crespo, Jorge; Oliveira, Sofia A

    2017-05-01

    To explain the missing heritability after the genome-wide association studies era, sequencing studies allow the identification of low-frequency variants with a stronger effect on disease risk. Common variants in the interleukin 10 gene (IL10) have been consistently associated with Behçet's disease (BD) and the goal of this study is to investigate the role of low-frequency IL10 variants in BD susceptibility. To identify IL10 low-frequency variants, a discovery group of 50 Portuguese BD patients were Sanger-sequenced in a 7.7 kb genomic region encompassing the complete IL10 gene, 0.9 kb upstream and 2 kb downstream, and two conserved regions in the putative promoter. To assess if the novel variants are BD- and/or Portuguese-specific, they were assayed in an additional group of BD patients (26 Portuguese and 964 Iranian) and controls (104 Portuguese and 823 Iranian). Rare IL10 coding variants were not detected in BD patients, but we identified 28 known single nucleotide polymorphisms with minor allele frequencies ranging from 0.010 to 0.390, and five novel non-coding variants in five heterozygous cases. ss836185595, located in the IL10 3' untranslated region, was also detected in one Iranian control individual and therefore is not specific to BD. The remaining novel IL10 variants (ss836185596 and ss836185602 in intron 3, ss836185598 and ss836185604 in the putative promoter region) were not found in the replication dataset. This study highlights the importance of screening the whole gene and regulatory regions when searching for novel variants associated with complex diseases, and the need to develop bioinformatics tools to predict the functional impact of non-coding variants and statistical tests which incorporate these predictions. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  12. Functional variants in the LRRK2 gene confer shared effects on risk for Crohn's disease and Parkinson's disease.

    Science.gov (United States)

    Hui, Ken Y; Fernandez-Hernandez, Heriberto; Hu, Jianzhong; Schaffner, Adam; Pankratz, Nathan; Hsu, Nai-Yun; Chuang, Ling-Shiang; Carmi, Shai; Villaverde, Nicole; Li, Xianting; Rivas, Manual; Levine, Adam P; Bao, Xiuliang; Labrias, Philippe R; Haritunians, Talin; Ruane, Darren; Gettler, Kyle; Chen, Ernie; Li, Dalin; Schiff, Elena R; Pontikos, Nikolas; Barzilai, Nir; Brant, Steven R; Bressman, Susan; Cheifetz, Adam S; Clark, Lorraine N; Daly, Mark J; Desnick, Robert J; Duerr, Richard H; Katz, Seymour; Lencz, Todd; Myers, Richard H; Ostrer, Harry; Ozelius, Laurie; Payami, Haydeh; Peter, Yakov; Rioux, John D; Segal, Anthony W; Scott, William K; Silverberg, Mark S; Vance, Jeffery M; Ubarretxena-Belandia, Iban; Foroud, Tatiana; Atzmon, Gil; Pe'er, Itsik; Ioannou, Yiannis; McGovern, Dermot P B; Yue, Zhenyu; Schadt, Eric E; Cho, Judy H; Peter, Inga

    2018-01-10

    Crohn's disease (CD), a form of inflammatory bowel disease, has a higher prevalence in Ashkenazi Jewish than in non-Jewish European populations. To define the role of nonsynonymous mutations, we performed exome sequencing of Ashkenazi Jewish patients with CD, followed by array-based genotyping and association analysis in 2066 CD cases and 3633 healthy controls. We detected association signals in the LRRK2 gene that conferred risk for CD (N2081D variant, P = 9.5 × 10 -10 ) or protection from CD (N551K variant, tagging R1398H-associated haplotype, P = 3.3 × 10 -8 ). These variants affected CD age of onset, disease location, LRRK2 activity, and autophagy. Bayesian network analysis of CD patient intestinal tissue further implicated LRRK2 in CD pathogenesis. Analysis of the extended LRRK2 locus in 24,570 CD cases, patients with Parkinson's disease (PD), and healthy controls revealed extensive pleiotropy, with shared genetic effects between CD and PD in both Ashkenazi Jewish and non-Jewish cohorts. The LRRK2 N2081D CD risk allele is located in the same kinase domain as G2019S, a mutation that is the major genetic cause of familial and sporadic PD. Like the G2019S mutation, the N2081D variant was associated with increased kinase activity, whereas neither N551K nor R1398H variants on the protective haplotype altered kinase activity. We also confirmed that R1398H, but not N551K, increased guanosine triphosphate binding and hydrolyzing enzyme (GTPase) activity, thereby deactivating LRRK2. The presence of shared LRRK2 alleles in CD and PD provides refined insight into disease mechanisms and may have major implications for the treatment of these two seemingly unrelated diseases. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. ClinGen Pathogenicity Calculator: a configurable system for assessing pathogenicity of genetic variants.

    Science.gov (United States)

    Patel, Ronak Y; Shah, Neethu; Jackson, Andrew R; Ghosh, Rajarshi; Pawliczek, Piotr; Paithankar, Sameer; Baker, Aaron; Riehle, Kevin; Chen, Hailin; Milosavljevic, Sofia; Bizon, Chris; Rynearson, Shawn; Nelson, Tristan; Jarvik, Gail P; Rehm, Heidi L; Harrison, Steven M; Azzariti, Danielle; Powell, Bradford; Babb, Larry; Plon, Sharon E; Milosavljevic, Aleksandar

    2017-01-12

    The success of the clinical use of sequencing based tests (from single gene to genomes) depends on the accuracy and consistency of variant interpretation. Aiming to improve the interpretation process through practice guidelines, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) have published standards and guidelines for the interpretation of sequence variants. However, manual application of the guidelines is tedious and prone to human error. Web-based tools and software systems may not only address this problem but also document reasoning and supporting evidence, thus enabling transparency of evidence-based reasoning and resolution of discordant interpretations. In this report, we describe the design, implementation, and initial testing of the Clinical Genome Resource (ClinGen) Pathogenicity Calculator, a configurable system and web service for the assessment of pathogenicity of Mendelian germline sequence variants. The system allows users to enter the applicable ACMG/AMP-style evidence tags for a specific allele with links to supporting data for each tag and generate guideline-based pathogenicity assessment for the allele. Through automation and comprehensive documentation of evidence codes, the system facilitates more accurate application of the ACMG/AMP guidelines, improves standardization in variant classification, and facilitates collaborative resolution of discordances. The rules of reasoning are configurable with gene-specific or disease-specific guideline variations (e.g. cardiomyopathy-specific frequency thresholds and functional assays). The software is modular, equipped with robust application program interfaces (APIs), and available under a free open source license and as a cloud-hosted web service, thus facilitating both stand-alone use and integration with existing variant curation and interpretation systems. The Pathogenicity Calculator is accessible at http

  14. A random forest classifier for detecting rare variants in NGS data from viral populations

    Directory of Open Access Journals (Sweden)

    Raunaq Malhotra

    Full Text Available We propose a random forest classifier for detecting rare variants from sequencing errors in Next Generation Sequencing (NGS data from viral populations. The method utilizes counts of varying length of k-mers from the reads of a viral population to train a Random forest classifier, called MultiRes, that classifies k-mers as erroneous or rare variants. Our algorithm is rooted in concepts from signal processing and uses a frame-based representation of k-mers. Frames are sets of non-orthogonal basis functions that were traditionally used in signal processing for noise removal. We define discrete spatial signals for genomes and sequenced reads, and show that k-mers of a given size constitute a frame.We evaluate MultiRes on simulated and real viral population datasets, which consist of many low frequency variants, and compare it to the error detection methods used in correction tools known in the literature. MultiRes has 4 to 500 times less false positives k-mer predictions compared to other methods, essential for accurate estimation of viral population diversity and their de-novo assembly. It has high recall of the true k-mers, comparable to other error correction methods. MultiRes also has greater than 95% recall for detecting single nucleotide polymorphisms (SNPs and fewer false positive SNPs, while detecting higher number of rare variants compared to other variant calling methods for viral populations. The software is available freely from the GitHub link https://github.com/raunaq-m/MultiRes. Keywords: Sequencing error detection, Reference free methods, Next-generation sequencing, Viral populations, Multi-resolution frames, Random forest classifier

  15. Genotyping Fanconi anemia patients from Serbia reveals three novel FANCD2 variants

    Directory of Open Access Journals (Sweden)

    Filipović-Tričković Jelena

    2017-01-01

    Full Text Available Fanconi anemia is rare inherited disease characterized by wide spectrum of congenital anomalies, progressive pancytopenia, and predisposition to hematological malignancies and solid tumors. Molecular genetic analysis of mutations in FANC genes is of a great importance for diagnosis confirmation, prenatal and carrier testing, as well as for prediction of chemotherapy outcome and disease complications. In this study we performed screening of frequently affected regions of FANCD2 gene for sequence variants in six unrelated FA-D2 patients in Serbia. This is the first molecular analysis of FANCD2 gene in Serbian FA-D2 patients. A total of 10 sequence variants were detected, one in homozygous, and nine in heterozygous state. Two variants were found within exons, and eight within introns, in deep intronic regions. In-silico analysis showed that among all detected variants one exon variant and three intron variants might have impact on splicing mechanism. Heterozygous variants found in intron 3, c.206-246delG; exon 26, c.2396 C>A and intron 28, c.2715+573 C>T were not previously reported. In-silico analysis revealed that among them, two (intron 3, c.206-246 delG and exon 26, c.2396 C>A could be novel disease-causing mutations. Many variants were found in more than one patient, including those unreported, indicating their possible ethnic association. Great number of variants in some patients suggests their non-random emergence in Fanconi anemia pathway. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 173046

  16. Comprehensive genotyping in dyslipidemia: mendelian dyslipidemias caused by rare variants and Mendelian randomization studies using common variants.

    Science.gov (United States)

    Tada, Hayato; Kawashiri, Masa-Aki; Yamagishi, Masakazu

    2017-04-01

    Dyslipidemias, especially hyper-low-density lipoprotein cholesterolemia and hypertriglyceridemia, are important causal risk factors for coronary artery disease. Comprehensive genotyping using the 'next-generation sequencing' technique has facilitated the investigation of Mendelian dyslipidemias, in addition to Mendelian randomization studies using common genetic variants associated with plasma lipids and coronary artery disease. The beneficial effects of low-density lipoprotein cholesterol-lowering therapies on coronary artery disease have been verified by many randomized controlled trials over the years, and subsequent genetic studies have supported these findings. More recently, Mendelian randomization studies have preceded randomized controlled trials. When the on-target/off-target effects of rare variants and common variants exhibit the same direction, novel drugs targeting molecules identified by investigations of rare Mendelian lipid disorders could be promising. Such a strategy could aid in the search for drug discovery seeds other than those for dyslipidemias.

  17. Evaluation of full S1 gene sequencing of classical and variant infectious bronchitis viruses extracted from allantoic fluid and FTA cards.

    Science.gov (United States)

    Manswr, Basim; Ball, Christopher; Forrester, Anne; Chantrey, Julian; Ganapathy, Kannan

    2018-05-01

    Sequence variability in the S1 gene determines the genotype of infectious bronchitis virus (IBV) strains. A single RT-PCR assay was developed to amplify and sequence the full S1 gene for six classical and variant IBVs (M41, D274, 793B, IS/885/00, IS/1494/06 and Q1) enriched in allantoic fluid (AF) or the same AF but inoculated onto Flinders Technology Association (FTA) cards. Representative strains from each genotype were grown in SPF eggs and RNA was extracted from AF. Full S1 gene amplification was achieved using primer A and primer 22.51. Products were sequenced using primer A, 1050+, 1380+ and SX3+ to obtain short sequences covering the full gene. Following serial dilutions of AF, detection limits of the partial assay were higher than those of the full S1 gene. Partial S1 sequences exhibited higher than average nucleotide similarity percentages (79%; 352bp) compared to full S1 sequences (77%; 1,756bp), suggesting that full S1 analysis allows greater strain differentiation. For IBV detection from AF inoculated FTA cards, four serotypes were incubated for up to 21 days at three temperatures; 4 o C, 24 o C and 40 o C. RNA was extracted and tested with partial and full S1 protocols. Through partial sequencing, all IBVs were successfully detected at all sampling points and storage temperatures. In contrast, using full S1 sequencing was not possible to amplify the gene beyond 14 days or when stored at 40°C. Data presented shows that for full S1 sequencing, a substantial amount of RNA is needed. Field samples collected onto FTA cards are unlikely to yield such quantity or quality.

  18. Detection of Emerging Vaccine-Related Polioviruses by Deep Sequencing.

    Science.gov (United States)

    Sahoo, Malaya K; Holubar, Marisa; Huang, ChunHong; Mohamed-Hadley, Alisha; Liu, Yuanyuan; Waggoner, Jesse J; Troy, Stephanie B; Garcia-Garcia, Lourdes; Ferreyra-Reyes, Leticia; Maldonado, Yvonne; Pinsky, Benjamin A

    2017-07-01

    Oral poliovirus vaccine can mutate to regain neurovirulence. To date, evaluation of these mutations has been performed primarily on culture-enriched isolates by using conventional Sanger sequencing. We therefore developed a culture-independent, deep-sequencing method targeting the 5' untranslated region (UTR) and P1 genomic region to characterize vaccine-related poliovirus variants. Error analysis of the deep-sequencing method demonstrated reliable detection of poliovirus mutations at levels of vaccinated, asymptomatic children and their close contacts collected during a prospective cohort study in Veracruz, Mexico, revealed no vaccine-derived polioviruses. This was expected given that the longest duration between sequenced sample collection and the end of the most recent national immunization week was 66 days. However, we identified many low-level variants (Sabin serotypes, as well as vaccine-related viruses with multiple canonical mutations associated with phenotypic reversion present at high levels (>90%). These results suggest that monitoring emerging vaccine-related poliovirus variants by deep sequencing may aid in the poliovirus endgame and efforts to ensure global polio eradication. Copyright © 2017 Sahoo et al.

  19. [Genetic variants in miRNAs and its association with breast cancer].

    Science.gov (United States)

    Méndez-Gómez, Susana; Ruiz Esparza-Garrido, Ruth; Velázquez-Flores, Miguel; Dolores-Vergara, Maria; Salamanca-Gómez, Fabio; Arenas-Aranda, Diego Julio

    2014-01-01

    In Mexico, breast cancer represents the first cause of cancer death in females. At the molecular level, non-coding RNAs and especially microRNAs have played an important role in the origin and development of this neoplasm In the Anglo-Saxon population, diverse genetic variants in microRNA genes and in their targets are associated with the development of this disease. In the Mexican population it is not known if these or other variants exist. Identification of these or new variants in our population is fundamental in order to have a better understanding of cancer development and to help establish a better diagnostic strategy. DNA was isolated from mammary tumors, adjacent tissue and peripheral blood of Mexican females with or without cancer. From DNA, five microRNA genes and three of their targets were amplified and sequenced. Genetic variants associated with breast cancer in an Anglo- Saxon population have been previously identified in these sequences. In the samples studied we identified seven single nucleotide polymorphisms (SNPs). Two had not been previously described and were identified only in women with cancer. The new variants may be genetic predisposition factors for the development of breast cancer in our population. Further experiments are needed to determine the involvement of these variants in the development, establishment and progression of breast cancer.

  20. Association between Rare Variants in AP4E1, a Component of Intracellular Trafficking, and Persistent Stuttering.

    Science.gov (United States)

    Raza, M Hashim; Mattera, Rafael; Morell, Robert; Sainz, Eduardo; Rahn, Rachel; Gutierrez, Joanne; Paris, Emily; Root, Jessica; Solomon, Beth; Brewer, Carmen; Basra, M Asim Raza; Khan, Shaheen; Riazuddin, Sheikh; Braun, Allen; Bonifacino, Juan S; Drayna, Dennis

    2015-11-05

    Stuttering is a common, highly heritable neurodevelopmental disorder characterized by deficits in the volitional control of speech. Whole-exome sequencing identified two heterozygous AP4E1 coding variants, c.1549G>A (p.Val517Ile) and c.2401G>A (p.Glu801Lys), that co-segregate with persistent developmental stuttering in a large Cameroonian family, and we observed the same two variants in unrelated Cameroonians with persistent stuttering. We found 23 other rare variants, including predicted loss-of-function variants, in AP4E1 in unrelated stuttering individuals in Cameroon, Pakistan, and North America. The rate of rare variants in AP4E1 was significantly higher in unrelated Pakistani and Cameroonian stuttering individuals than in population-matched control individuals, and coding variants in this gene are exceptionally rare in the general sub-Saharan West African, South Asian, and North American populations. Clinical examination of the Cameroonian family members failed to identify any symptoms previously reported in rare individuals carrying homozygous loss-of-function mutations in this gene. AP4E1 encodes the ε subunit of the heterotetrameric (ε-β4-μ4-σ4) AP-4 complex, involved in protein sorting at the trans-Golgi network. We found that the μ4 subunit of AP-4 interacts with NAGPA, an enzyme involved in the synthesis of the mannose 6-phosphate signal that targets acid hydrolases to the lysosome and the product of a gene previously associated with stuttering. These findings implicate deficits in intracellular trafficking in persistent stuttering. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. Low frequency variants in the exons only encoding isoform A of HNF1A do not contribute to susceptibility to type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Bahram Jafar-Mohammadi

    2009-08-01

    Full Text Available There is considerable interest in the hypothesis that low frequency, intermediate penetrance variants contribute to the proportion of Type 2 Diabetes (T2D susceptibility not attributable to the common variants uncovered through genome-wide association approaches. Genes previously implicated in monogenic and multifactorial forms of diabetes are obvious candidates in this respect. In this study, we focussed on exons 8-10 of the HNF1A gene since rare, penetrant mutations in these exons (which are only transcribed in selected HNF1A isoforms are associated with a later age of diagnosis of Maturity onset diabetes of the young (MODY than mutations in exons 1-7. The age of diagnosis in the subgroup of HNF1A-MODY individuals with exon 8-10 mutations overlaps with that of early multifactorial T2D, and we set out to test the hypothesis that these exons might also harbour low-frequency coding variants of intermediate penetrance that contribute to risk of multifactorial T2D.We performed targeted capillary resequencing of HNF1A exons 8-10 in 591 European T2D subjects enriched for genetic aetiology on the basis of an early age of diagnosis ( or =1 affected sibling. PCR products were sequenced and compared to the published HNF1A sequence. We identified several variants (rs735396 [IVS9-24T>C], rs1169304 [IVS8+29T>C], c.1768+44C>T [IVS9+44C>T] and rs61953349 [c.1545G>A, p.T515T] but no novel non-synonymous coding variants were detected.We conclude that low frequency, nonsynonymous coding variants in the terminal exons of HNF1A are unlikely to contribute to T2D-susceptibility in European samples. Nevertheless, the rationale for seeking low-frequency causal variants in genes known to contain rare, penetrant mutations remains strong and should motivate efforts to screen other genes in a similar fashion.

  2. Hundreds of variants clustered in genomic loci and biological pathways affect human height

    DEFF Research Database (Denmark)

    Lango Allen, Hana; Estrada, Karol; Lettre, Guillaume

    2010-01-01

    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions...

  3. Myopathy With SQSTM1 and TIA1 Variants: Clinical and Pathological Features

    Directory of Open Access Journals (Sweden)

    Zhiyv Niu

    2018-03-01

    Full Text Available ObjectiveThe aim of this study is to identify the molecular defect of three unrelated individuals with late-onset predominant distal myopathy; to describe the spectrum of phenotype resulting from the contributing role of two variants in genes located on two different chromosomes; and to highlight the underappreciated complex forms of genetic myopathies.Patients and methodsClinical and laboratory data of three unrelated probands with predominantly distal weakness manifesting in the sixth-seventh decade of life, and available affected and unaffected family members were reviewed. Next-generation sequencing panel, whole exome sequencing, and targeted analyses of family members were performed to elucidate the genetic etiology of the myopathy.ResultsGenetic analyses detected two contributing variants located on different chromosomes in three unrelated probands: a heterozygous pathogenic mutation in SQSTM1 (c.1175C>T, p.Pro392Leu and a heterozygous variant in TIA1 (c.1070A>G, p.Asn357Ser. The affected fraternal twin of one proband also carries both variants, while the unaffected family members harbor one or none. Two unrelated probands (family 1, II.3, and family 3, II.1 have a distal myopathy with rimmed vacuoles that manifested with index extensor weakness; the other proband (family 2, I.1 has myofibrillar myopathy manifesting with hypercapnic respiratory insufficiency and distal weakness.ConclusionThe findings indicate that all the affected individuals have a myopathy associated with both variants in SQSTM1 and TIA1, respectively, suggesting that the two variants determine the phenotype and likely functionally interact. We speculate that the TIA1 variant is a modifier of the SQSTM1 mutation. We identify the combination of SQSTM1 and TIA1 variants as a novel genetic defect associated with myofibrillar myopathy and suggest to consider sequencing both genes in the molecular investigation of myopathy with rimmed vacuoles and myofibrillar myopathy

  4. Myopathy With SQSTM1 and TIA1 Variants: Clinical and Pathological Features.

    Science.gov (United States)

    Niu, Zhiyv; Pontifex, Carly Sabine; Berini, Sarah; Hamilton, Leslie E; Naddaf, Elie; Wieben, Eric; Aleff, Ross A; Martens, Kristina; Gruber, Angela; Engel, Andrew G; Pfeffer, Gerald; Milone, Margherita

    2018-01-01

    The aim of this study is to identify the molecular defect of three unrelated individuals with late-onset predominant distal myopathy; to describe the spectrum of phenotype resulting from the contributing role of two variants in genes located on two different chromosomes; and to highlight the underappreciated complex forms of genetic myopathies. Clinical and laboratory data of three unrelated probands with predominantly distal weakness manifesting in the sixth-seventh decade of life, and available affected and unaffected family members were reviewed. Next-generation sequencing panel, whole exome sequencing, and targeted analyses of family members were performed to elucidate the genetic etiology of the myopathy. Genetic analyses detected two contributing variants located on different chromosomes in three unrelated probands: a heterozygous pathogenic mutation in SQSTM1 (c.1175C>T, p.Pro392Leu) and a heterozygous variant in TIA1 (c.1070A>G, p.Asn357Ser). The affected fraternal twin of one proband also carries both variants, while the unaffected family members harbor one or none. Two unrelated probands (family 1, II.3, and family 3, II.1) have a distal myopathy with rimmed vacuoles that manifested with index extensor weakness; the other proband (family 2, I.1) has myofibrillar myopathy manifesting with hypercapnic respiratory insufficiency and distal weakness. The findings indicate that all the affected individuals have a myopathy associated with both variants in SQSTM1 and TIA1 , respectively, suggesting that the two variants determine the phenotype and likely functionally interact. We speculate that the TIA1 variant is a modifier of the SQSTM1 mutation. We identify the combination of SQSTM1 and TIA1 variants as a novel genetic defect associated with myofibrillar myopathy and suggest to consider sequencing both genes in the molecular investigation of myopathy with rimmed vacuoles and myofibrillar myopathy although additional studies are needed to investigate the

  5. Low-abundance HIV drug-resistant viral variants in treatment-experienced persons correlate with historical antiretroviral use.

    Science.gov (United States)

    Le, Thuy; Chiarella, Jennifer; Simen, Birgitte B; Hanczaruk, Bozena; Egholm, Michael; Landry, Marie L; Dieckhaus, Kevin; Rosen, Marc I; Kozal, Michael J

    2009-06-29

    It is largely unknown how frequently low-abundance HIV drug-resistant variants at levels under limit of detection of conventional genotyping (<20% of quasi-species) are present in antiretroviral-experienced persons experiencing virologic failure. Further, the clinical implications of low-abundance drug-resistant variants at time of virologic failure are unknown. Plasma samples from 22 antiretroviral-experienced subjects collected at time of virologic failure (viral load 1380 to 304,000 copies/mL) were obtained from a specimen bank (from 2004-2007). The prevalence and profile of drug-resistant mutations were determined using Sanger sequencing and ultra-deep pyrosequencing. Genotypes were interpreted using Stanford HIV database algorithm. Antiretroviral treatment histories were obtained by chart review and correlated with drug-resistant mutations. Low-abundance drug-resistant mutations were detected in all 22 subjects by deep sequencing and only in 3 subjects by Sanger sequencing. In total they accounted for 90 of 247 mutations (36%) detected by deep sequencing; the majority of these (95%) were not detected by standard genotyping. A mean of 4 additional mutations per subject were detected by deep sequencing (p<0.0001, 95%CI: 2.85-5.53). The additional low-abundance drug-resistant mutations increased a subject's genotypic resistance to one or more antiretrovirals in 17 of 22 subjects (77%). When correlated with subjects' antiretroviral treatment histories, the additional low-abundance drug-resistant mutations correlated with the failing antiretroviral drugs in 21% subjects and correlated with historical antiretroviral use in 79% subjects (OR, 13.73; 95% CI, 2.5-74.3, p = 0.0016). Low-abundance HIV drug-resistant mutations in antiretroviral-experienced subjects at time of virologic failure can increase a subject's overall burden of resistance, yet commonly go unrecognized by conventional genotyping. The majority of unrecognized resistant mutations correlate with

  6. Low-abundance HIV drug-resistant viral variants in treatment-experienced persons correlate with historical antiretroviral use.

    Directory of Open Access Journals (Sweden)

    Thuy Le

    Full Text Available BACKGROUND: It is largely unknown how frequently low-abundance HIV drug-resistant variants at levels under limit of detection of conventional genotyping (<20% of quasi-species are present in antiretroviral-experienced persons experiencing virologic failure. Further, the clinical implications of low-abundance drug-resistant variants at time of virologic failure are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Plasma samples from 22 antiretroviral-experienced subjects collected at time of virologic failure (viral load 1380 to 304,000 copies/mL were obtained from a specimen bank (from 2004-2007. The prevalence and profile of drug-resistant mutations were determined using Sanger sequencing and ultra-deep pyrosequencing. Genotypes were interpreted using Stanford HIV database algorithm. Antiretroviral treatment histories were obtained by chart review and correlated with drug-resistant mutations. Low-abundance drug-resistant mutations were detected in all 22 subjects by deep sequencing and only in 3 subjects by Sanger sequencing. In total they accounted for 90 of 247 mutations (36% detected by deep sequencing; the majority of these (95% were not detected by standard genotyping. A mean of 4 additional mutations per subject were detected by deep sequencing (p<0.0001, 95%CI: 2.85-5.53. The additional low-abundance drug-resistant mutations increased a subject's genotypic resistance to one or more antiretrovirals in 17 of 22 subjects (77%. When correlated with subjects' antiretroviral treatment histories, the additional low-abundance drug-resistant mutations correlated with the failing antiretroviral drugs in 21% subjects and correlated with historical antiretroviral use in 79% subjects (OR, 13.73; 95% CI, 2.5-74.3, p = 0.0016. CONCLUSIONS/SIGNIFICANCE: Low-abundance HIV drug-resistant mutations in antiretroviral-experienced subjects at time of virologic failure can increase a subject's overall burden of resistance, yet commonly go unrecognized by conventional

  7. Exome sequences of multiplex, multigenerational families reveal schizophrenia risk loci with potential implications for neurocognitive performance.

    Science.gov (United States)

    Kos, Mark Z; Carless, Melanie A; Peralta, Juan; Curran, Joanne E; Quillen, Ellen E; Almeida, Marcio; Blackburn, August; Blondell, Lucy; Roalf, David R; Pogue-Geile, Michael F; Gur, Ruben C; Göring, Harald H H; Nimgaonkar, Vishwajit L; Gur, Raquel E; Almasy, Laura

    2017-12-01

    Schizophrenia is a serious mental illness, involving disruptions in thought and behavior, with a worldwide prevalence of about one percent. Although highly heritable, much of the genetic liability of schizophrenia is yet to be explained. We searched for susceptibility loci in multiplex, multigenerational families affected by schizophrenia, targeting protein-altering variation with in silico predicted functional effects. Exome sequencing was performed on 136 samples from eight European-American families, including 23 individuals diagnosed with schizophrenia or schizoaffective disorder. In total, 11,878 non-synonymous variants from 6,396 genes were tested for their association with schizophrenia spectrum disorders. Pathway enrichment analyses were conducted on gene-based test results, protein-protein interaction (PPI) networks, and epistatic effects. Using a significance threshold of FDR < 0.1, association was detected for rs10941112 (p = 2.1 × 10 -5 ; q-value = 0.073) in AMACR, a gene involved in fatty acid metabolism and previously implicated in schizophrenia, with significant cis effects on gene expression (p = 5.5 × 10 -4 ), including brain tissue data from the Genotype-Tissue Expression project (minimum p = 6.0 × 10 -5 ). A second SNP, rs10378 located in TMEM176A, also shows risk effects in the exome data (p = 2.8 × 10 -5 ; q-value = 0.073). PPIs among our top gene-based association results (p < 0.05; n = 359 genes) reveal significant enrichment of genes involved in NCAM-mediated neurite outgrowth (p = 3.0 × 10 -5 ), while exome-wide SNP-SNP interaction effects for rs10941112 and rs10378 indicate a potential role for kinase-mediated signaling involved in memory and learning. In conclusion, these association results implicate AMACR and TMEM176A in schizophrenia risk, whose effects may be modulated by genes involved in synaptic plasticity and neurocognitive performance. © 2017 Wiley Periodicals, Inc.

  8. The pathogenicity of genetic variants previously associated with left ventricular non-compaction

    DEFF Research Database (Denmark)

    Abbasi, Yeganeh; Jabbari, Javad; Jabbari, Reza

    2016-01-01

    BACKGROUND: Left ventricular non-compaction (LVNC) is a rare cardiomyopathy. Many genetic variants have been associated with LVNC. However, the number of the previous LVNC-associated variants that are common in the background population remains unknown. The aim of this study was to provide...... an updated list of previously reported LVNC-associated variants with biologic description and investigate the prevalence of LVNC variants in healthy general population to find false-positive LVNC-associated variants. METHODS AND RESULTS: The Human Gene Mutation Database and PubMed were systematically...... searched to identify all previously reported LVNC-associated variants. Thereafter, the Exome Sequencing Project (ESP) and the Exome Aggregation Consortium (ExAC), that both represent the background population, was searched for all variants. Four in silico prediction tools were assessed to determine...

  9. A novel homozygous variant in the SMOC1 gene underlying Waardenburg anophthalmia syndrome.

    Science.gov (United States)

    Ullah, Asmat; Umair, Muhammad; Ahmad, Farooq; Muhammad, Dost; Basit, Sulman; Ahmad, Wasim

    2017-01-01

    Waardenburg anophthalmia syndrome (WAS), also known as ophthalmo-acromelic syndrome or anophthalmia-syndactyly, is a rare congenital disorder that segregates in an autosomal recessive pattern. Clinical features of the syndrome include malformation of the eyes and the skeleton. Mostly, WAS is caused by mutations in the SMOC-1 gene. The present report describes a large consanguineous family of Pakistani origin segregating Waardenburg anophthalmia syndrome in an autosomal recessive pattern. Genotyping followed by Sanger sequencing was performed to search for a candidate gene. SNP genotyping using AffymetrixGeneChip Human Mapping 250K Nsp array established a single homozygous region among affected members on chromosome 14q23.1-q24.3 harboring the SMOC1 gene. Sequencing of the gene revealed a novel homozygous missense mutation (c.812G>A; p.Cys271Tyr) in the family. This is the first report of Waardenburg anophthalmia syndrome caused by a SMOC1 variant in a Pakistani population. The mutation identified in the present investigation extends the body of evidence implicating the gene SMOC-1 in causing WAS.

  10. Validation of a next-generation sequencing assay for clinical molecular oncology.

    Science.gov (United States)

    Cottrell, Catherine E; Al-Kateb, Hussam; Bredemeyer, Andrew J; Duncavage, Eric J; Spencer, David H; Abel, Haley J; Lockwood, Christina M; Hagemann, Ian S; O'Guin, Stephanie M; Burcea, Lauren C; Sawyer, Christopher S; Oschwald, Dayna M; Stratman, Jennifer L; Sher, Dorie A; Johnson, Mark R; Brown, Justin T; Cliften, Paul F; George, Bijoy; McIntosh, Leslie D; Shrivastava, Savita; Nguyen, Tudung T; Payton, Jacqueline E; Watson, Mark A; Crosby, Seth D; Head, Richard D; Mitra, Robi D; Nagarajan, Rakesh; Kulkarni, Shashikant; Seibert, Karen; Virgin, Herbert W; Milbrandt, Jeffrey; Pfeifer, John D

    2014-01-01

    Currently, oncology testing includes molecular studies and cytogenetic analysis to detect genetic aberrations of clinical significance. Next-generation sequencing (NGS) allows rapid analysis of multiple genes for clinically actionable somatic variants. The WUCaMP assay uses targeted capture for NGS analysis of 25 cancer-associated genes to detect mutations at actionable loci. We present clinical validation of the assay and a detailed framework for design and validation of similar clinical assays. Deep sequencing of 78 tumor specimens (≥ 1000× average unique coverage across the capture region) achieved high sensitivity for detecting somatic variants at low allele fraction (AF). Validation revealed sensitivities and specificities of 100% for detection of single-nucleotide variants (SNVs) within coding regions, compared with SNP array sequence data (95% CI = 83.4-100.0 for sensitivity and 94.2-100.0 for specificity) or whole-genome sequencing (95% CI = 89.1-100.0 for sensitivity and 99.9-100.0 for specificity) of HapMap samples. Sensitivity for detecting variants at an observed 10% AF was 100% (95% CI = 93.2-100.0) in HapMap mixes. Analysis of 15 masked specimens harboring clinically reported variants yielded concordant calls for 13/13 variants at AF of ≥ 15%. The WUCaMP assay is a robust and sensitive method to detect somatic variants of clinical significance in molecular oncology laboratories, with reduced time and cost of genetic analysis allowing for strategic patient management. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  11. Pan-cancer analysis reveals technical artifacts in TCGA germline variant calls.

    Science.gov (United States)

    Buckley, Alexandra R; Standish, Kristopher A; Bhutani, Kunal; Ideker, Trey; Lasken, Roger S; Carter, Hannah; Harismendy, Olivier; Schork, Nicholas J

    2017-06-12

    Cancer research to date has largely focused on somatically acquired genetic aberrations. In contrast, the degree to which germline, or inherited, variation contributes to tumorigenesis remains unclear, possibly due to a lack of accessible germline variant data. Here we called germline variants on 9618 cases from The Cancer Genome Atlas (TCGA) database representing 31 cancer types. We identified batch effects affecting loss of function (LOF) variant calls that can be traced back to differences in the way the sequence data were generated both within and across cancer types. Overall, LOF indel calls were more sensitive to technical artifacts than LOF Single Nucleotide Variant (SNV) calls. In particular, whole genome amplification of DNA prior to sequencing led to an artificially increased burden of LOF indel calls, which confounded association analyses relating germline variants to tumor type despite stringent indel filtering strategies. The samples affected by these technical artifacts include all acute myeloid leukemia and practically all ovarian cancer samples. We demonstrate how technical artifacts induced by whole genome amplification of DNA can lead to false positive germline-tumor type associations and suggest TCGA whole genome amplified samples be used with caution. This study draws attention to the need to be sensitive to problems associated with a lack of uniformity in data generation in TCGA data.

  12. Hundreds of variants clustered in genomic loci and biological pathways affect human height

    NARCIS (Netherlands)

    H.L. Allen; K. Estrada Gil (Karol); G. Lettre (Guillaume); S.I. Berndt (Sonja); F. Rivadeneira Ramirez (Fernando); C.J. Willer (Cristen); A.U. Jackson (Anne); S. Vedantam (Sailaja); S. Raychaudhuri (Soumya); T. Ferreira (Teresa); A.R. Wood (Andrew); R.J. Weyant (Robert); A.V. Segrè (Ayellet); E.K. Speliotes (Elizabeth); E. Wheeler (Eleanor); N. Soranzo (Nicole); J.H. Park; J. Yang (Joanna); D.F. Gudbjartsson (Daniel); N.L. Heard-Costa (Nancy); J.C. Randall (Joshua); L. Qi (Lu); A.V. Smith (Albert Vernon); R. Mägi (Reedik); T. Pastinen (Tomi); L. Liang (Liming); I.M. Heid (Iris); J. Luan; G. Thorleifsson (Gudmar); T.W. Winkler (Thomas); M.E. Goddard (Michael); K.S. Lo; C. Palmer (Cameron); T. Workalemahu (Tsegaselassie); Y.S. Aulchenko (Yurii); A. Johansson (Åsa); M.C. Zillikens (Carola); M.F. Feitosa (Mary Furlan); T. Esko (Tõnu); T. Johnson (Toby); S. Ketkar (Shamika); P. Kraft (Peter); M. Mangino (Massimo); I. Prokopenko (Inga); D. Absher (Devin); E. Albrecht (Eva); F.D.J. Ernst (Florian); N.L. Glazer (Nicole); C. Hayward (Caroline); J.J. Hottenga (Jouke Jan); K.B. Jacobs (Kevin); J.W. Knowles (Joshua); Z. Kutalik (Zoltán); K.L. Monda (Keri); O. Polasek (Ozren); M. Preuss (Michael); N.W. Rayner (Nigel William); N.R. Robertson (Neil); V. Steinthorsdottir (Valgerdur); J.P. Tyrer (Jonathan); B.F. Voight (Benjamin); F. Wiklund (Fredrik); J. Xu (Jianfeng); J.H. Zhao (Jing Hua); D.R. Nyholt (Dale); N. Pellikka (Niina); M. Perola (Markus); J.R.B. Perry (John); I. Surakka (Ida); M.L. Tammesoo; E.L. Altmaier (Elizabeth); N. Amin (Najaf); T. Aspelund (Thor); T. Bhangale (Tushar); G. Boucher (Gabrielle); D.I. Chasman (Daniel); C. Chen (Constance); L. Coin (Lachlan); M.N. Cooper (Matthew); A.L. Dixon (Anna); Q. Gibson (Quince); E. Grundberg (Elin); K. Hao (Ke); M.J. Junttila (Juhani); R.C. Kaplan (Robert); J. Kettunen (Johannes); I.R. König (Inke); T. Kwan (Tony); R.W. Lawrence (Robert); D.F. Levinson (Douglas); M. Lorentzon (Mattias); B. McKnight (Barbara); A.D. Morris (Andrew); M. Müller (Martina); J.S. Ngwa; S. Purcell (Shaun); S. Rafelt (Suzanne); R.M. Salem (Rany); E. Salvi (Erika); S. Sanna (Serena); J. Shi (Jianxin); U. Sovio (Ulla); J.R. Thompson (John); M.C. Turchin (Michael); L. Vandenput (Liesbeth); D.J. Verlaan (Dominique); V. Vitart (Veronique); C.C. White (Charles); A. Ziegler (Andreas); P. Almgren (Peter); A.J. Balmforth (Anthony); H. Campbell (Harry); L. Citterio (Lorena); A. de Grandi (Alessandro); A. Dominiczak (Anna); J. Duan (Jubao); P. Elliott (Paul); R. Elosua (Roberto); J.G. Eriksson (Johan); N.B. Freimer (Nelson); E.J.C. de Geus (Eco); N. Glorioso (Nicola); S. Haiqing (Shen); A.L. Hartikainen; A.S. Havulinna (Aki); A.A. Hicks (Andrew); J. Hui (Jennie); W. Igl (Wilmar); T. Illig (Thomas); A. Jula (Antti); E. Kajantie (Eero); T.O. Kilpeläinen (Tuomas); M. Koiranen (Markku); I. Kolcic (Ivana); S. Koskinen (Seppo); P. Kovacs (Peter); J. Laitinen (Jaana); J. Liu (Jianjun); M.L. Lokki; A. Marusic (Ana); A. Maschio; T. Meitinger (Thomas); A. Mulas (Antonella); G. Paré (Guillaume); A.N. Parker (Alex); J. Peden (John); A. Petersmann (Astrid); I. Pichler (Irene); K.H. Pietilainen (Kirsi Hannele); A. Pouta (Anneli); M. Ridderstråle (Martin); J.I. Rotter (Jerome); J.G. Sambrook (Jennifer); A.R. Sanders (Alan); C.O. Schmidt (Carsten Oliver); J. Sinisalo (Juha); J.H. Smit (Jan); H.M. Stringham (Heather); G.B. Walters (Bragi); E. Widen (Elisabeth); S.H. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); L. Zagato (Laura); L. Zgaga (Lina); P. Zitting (Paavo); H. Alavere (Helene); M. Farrall (Martin); W.L. McArdle (Wendy); M. Nelis (Mari); M.J. Peters (Marjolein); S. Ripatti (Samuli); J.B.J. van Meurs (Joyce); K.K.H. Aben (Katja); J.S. Beckmann (Jacques); J.P. Beilby (John); R.N. Bergman (Richard); S.M. Bergmann (Sven); F.S. Collins (Francis); D. Cusi (Daniele); M. den Heijer (Martin); G. Eiriksdottir (Gudny); P.V. Gejman (Pablo); A.S. Hall (Alistair); A. Hamsten (Anders); H.V. Huikuri (Heikki); C. Iribarren (Carlos); M. Kähönen (Mika); J. Kaprio (Jaakko); S. Kathiresan (Sekar); L.A.L.M. Kiemeney (Bart); T. Kocher (Thomas); L.J. Launer (Lenore); T. Lehtimäki (Terho); O. Melander (Olle); T.H. Mosley (Thomas); A.W. Musk (Arthur); M.S. Nieminen (Markku); C.J. O'Donnell (Christopher); C. Ohlsson (Claes); B.A. Oostra (Ben); O. Raitakari (Olli); P.M. Ridker (Paul); J.D. Rioux (John); A. Rissanen (Aila); C. Rivolta (Carlo); H. Schunkert (Heribert); A.R. Shuldiner (Alan); D.S. Siscovick (David); M. Stumvoll (Michael); A. Tönjes (Anke); J. Tuomilehto (Jaakko); G.J. van Ommen (Gert); J. Viikari (Jorma); A.C. Heath (Andrew); N.G. Martin (Nicholas); G.W. Montgomery (Grant); M.A. Province (Mike); M.H. Kayser (Manfred); A.M. Arnold (Alice); L.D. Atwood (Larry); E.A. Boerwinkle (Eric); S.J. Chanock (Stephen); P. Deloukas (Panagiotis); C. Gieger (Christian); H. Grönberg (Henrik); A.T. Hattersley (Andrew); C. Hengstenberg (Christian); W. Hoffman (Wolfgang); G.M. Lathrop (Mark); V. Salomaa (Veikko); S. Schreiber (Stefan); M. Uda (Manuela); D. Waterworth (Dawn); A.F. Wright (Alan); T.L. Assimes (Themistocles); I.E. Barroso (Inês); A. Hofman (Albert); K.L. Mohlke (Karen); D.I. Boomsma (Dorret); M. Caulfield (Mark); L.A. Cupples (Adrienne); C.S. Fox (Caroline); V. Gudnason (Vilmundur); U. Gyllensten (Ulf); T.B. Harris (Tamara); R.B. Hayes (Richard); M.R. Järvelin; V. Mooser (Vincent); P. Munroe (Patricia); W.H. Ouwehand (Willem); B.W.J.H. Penninx (Brenda); P.P. Pramstaller (Peter Paul); T. Quertermous (Thomas); I. Rudan (Igor); N.J. Samani (Nilesh); T.D. Spector (Timothy); H. Völzke (Henry); H. Watkins (Hugh); J.F. Wilson (James); L. Groop (Leif); T. Haritunians (Talin); F.B. Hu (Frank); A. Metspalu (Andres); K.E. North (Kari); D. Schlessinger; N.J. Wareham (Nick); D.J. Hunter (David); J.R. O´Connell; D.P. Strachan (David); H.E. Wichmann (Heinz Erich); I.B. Borecki (Ingrid); C.M. van Duijn (Cornelia); E.E. Schadt (Eric); U. Thorsteinsdottir (Unnur); L. Peltonen (Leena Johanna); A.G. Uitterlinden (André); P.M. Visscher (Peter); N. Chatterjee (Nilanjan); J. Erdmann (Jeanette); R.J.F. Loos (Ruth); M. Boehnke (Michael); M.I. McCarthy (Mark); E. Ingelsson (Erik); C.M. Lindgren (Cecilia); G.R. Abecasis (Gonçalo); K. Stefansson (Kari); T.M. Frayling (Timothy); J.N. Hirschhorn (Joel); K.G. Ardlie (Kristin); M.N. Weedon (Michael)

    2010-01-01

    textabstractMost common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits1, but these typically explain small

  13. Hundreds of variants clustered in genomic loci and biological pathways affect human height

    NARCIS (Netherlands)

    Allen, Hana Lango; Estrada, Karol; Lettre, Guillaume; Berndt, Sonja I.; Weedon, Michael N.; Rivadeneira, Fernando; Willer, Cristen J.; Jackson, Anne U.; Vedantam, Sailaja; Raychaudhuri, Soumya; Ferreira, Teresa; Wood, Andrew R.; Weyant, Robert J.; Segre, Ayellet V.; Speliotes, Elizabeth K.; Wheeler, Eleanor; Soranzo, Nicole; Park, Ju-Hyun; Yang, Jian; Gudbjartsson, Daniel; Heard-Costa, Nancy L.; Randall, Joshua C.; Qi, Lu; Smith, Albert Vernon; Maegi, Reedik; Pastinen, Tomi; Liang, Liming; Heid, Iris M.; Luan, Jian'an; Thorleifsson, Gudmar; Winkler, Thomas W.; Goddard, Michael E.; Lo, Ken Sin; Palmer, Cameron; Workalemahu, Tsegaselassie; Aulchenko, Yurii S.; Johansson, Asa; Zillikens, M. Carola; Feitosa, Mary F.; Esko, Tonu; Johnson, Toby; Ketkar, Shamika; Kraft, Peter; Mangino, Massimo; Prokopenko, Inga; Absher, Devin; Albrecht, Eva; Ernst, Florian; Zhao, Jing Hua; Chen, Constance

    2010-01-01

    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits(1), but these typically explain small fractions

  14. Fast Ordered Sampling of DNA Sequence Variants

    Directory of Open Access Journals (Sweden)

    Anthony J. Greenberg

    2018-05-01

    Full Text Available Explosive growth in the amount of genomic data is matched by increasing power of consumer-grade computers. Even applications that require powerful servers can be quickly tested on desktop or laptop machines if we can generate representative samples from large data sets. I describe a fast and memory-efficient implementation of an on-line sampling method developed for tape drives 30 years ago. Focusing on genotype files, I test the performance of this technique on modern solid-state and spinning hard drives, and show that it performs well compared to a simple sampling scheme. I illustrate its utility by developing a method to quickly estimate genome-wide patterns of linkage disequilibrium (LD decay with distance. I provide open-source software that samples loci from several variant format files, a separate program that performs LD decay estimates, and a C++ library that lets developers incorporate these methods into their own projects.

  15. Fast Ordered Sampling of DNA Sequence Variants.

    Science.gov (United States)

    Greenberg, Anthony J

    2018-05-04

    Explosive growth in the amount of genomic data is matched by increasing power of consumer-grade computers. Even applications that require powerful servers can be quickly tested on desktop or laptop machines if we can generate representative samples from large data sets. I describe a fast and memory-efficient implementation of an on-line sampling method developed for tape drives 30 years ago. Focusing on genotype files, I test the performance of this technique on modern solid-state and spinning hard drives, and show that it performs well compared to a simple sampling scheme. I illustrate its utility by developing a method to quickly estimate genome-wide patterns of linkage disequilibrium (LD) decay with distance. I provide open-source software that samples loci from several variant format files, a separate program that performs LD decay estimates, and a C++ library that lets developers incorporate these methods into their own projects. Copyright © 2018 Greenberg.

  16. Efficient population-scale variant analysis and prioritization with VAPr.

    Science.gov (United States)

    Birmingham, Amanda; Mark, Adam M; Mazzaferro, Carlo; Xu, Guorong; Fisch, Kathleen M

    2018-04-06

    With the growing availability of population-scale whole-exome and whole-genome sequencing, demand for reproducible, scalable variant analysis has spread within genomic research communities. To address this need, we introduce the Python package VAPr (Variant Analysis and Prioritization). VAPr leverages existing annotation tools ANNOVAR and MyVariant.info with MongoDB-based flexible storage and filtering functionality. It offers biologists and bioinformatics generalists easy-to-use and scalable analysis and prioritization of genomic variants from large cohort studies. VAPr is developed in Python and is available for free use and extension under the MIT License. An install package is available on PyPi at https://pypi.python.org/pypi/VAPr, while source code and extensive documentation are on GitHub at https://github.com/ucsd-ccbb/VAPr. kfisch@ucsd.edu.

  17. Isolation of Shiga toxin-producing Escherichia coli harboring variant Shiga toxin genes from seafood

    Directory of Open Access Journals (Sweden)

    Sreepriya Prakasan

    2018-03-01

    Full Text Available Background and Aim: Shiga toxin-producing Escherichia coli (STEC are important pathogens of global significance. STEC are responsible for numerous food-borne outbreaks worldwide and their presence in food is a potential health hazard. The objective of the present study was to determine the incidence of STEC in fresh seafood in Mumbai, India, and to characterize STEC with respect to their virulence determinants. Materials and Methods: A total of 368 E. coli were isolated from 39 fresh seafood samples (18 finfish and 21 shellfish using culture-based methods. The isolates were screened by polymerase chain reaction (PCR for the genes commonly associated with STEC. The variant Shiga toxin genes were confirmed by Southern blotting and hybridization followed by DNA sequencing. Results: One or more Shiga toxins genes were detected in 61 isolates. Of 39 samples analyzed, 10 (25.64% samples harbored STEC. Other virulence genes, namely, eaeA (coding for an intimin and hlyA (hemolysin A were detected in 43 and 15 seafood isolates, respectively. The variant stx1 genes from 6 isolates were sequenced, five of which were found to be stx1d variants, while one sequence varied considerably from known stx1 sequences. Southern hybridization and DNA sequence analysis suggested putative Shiga toxin variant genes (stx2 in at least 3 other isolates. Conclusion: The results of this study showed the occurrence of STEC in seafood harboring one or more Shiga toxin genes. The detection of STEC by PCR may be hampered due to the presence of variant genes such as the stx1d in STEC. This is the first report of stx1d gene in STEC isolated from Indian seafood.

  18. Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9.

    Science.gov (United States)

    Anders, Carolin; Bargsten, Katja; Jinek, Martin

    2016-03-17

    The RNA-guided endonuclease Cas9 from Streptococcus pyogenes (SpCas9) forms the core of a powerful genome editing technology. DNA cleavage by SpCas9 is dependent on the presence of a 5'-NGG-3' protospacer adjacent motif (PAM) in the target DNA, restricting the choice of targetable sequences. To address this limitation, artificial SpCas9 variants with altered PAM specificities have recently been developed. Here we report crystal structures of the VQR, EQR, and VRER SpCas9 variants bound to target DNAs containing their preferred PAM sequences. The structures reveal that the non-canonical PAMs are recognized by an induced fit mechanism. Besides mediating sequence-specific base recognition, the amino acid substitutions introduced in the SpCas9 variants facilitate conformational remodeling of the PAM region of the bound DNA. Guided by the structural data, we engineered a SpCas9 variant that specifically recognizes NAAG PAMs. Taken together, these studies inform further development of Cas9-based genome editing tools. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Rare copy number variants implicated in posterior urethral valves.

    Science.gov (United States)

    Boghossian, Nansi S; Sicko, Robert J; Kay, Denise M; Rigler, Shannon L; Caggana, Michele; Tsai, Michael Y; Yeung, Edwina H; Pankratz, Nathan; Cole, Benjamin R; Druschel, Charlotte M; Romitti, Paul A; Browne, Marilyn L; Fan, Ruzong; Liu, Aiyi; Brody, Lawrence C; Mills, James L

    2016-03-01

    The cause of posterior urethral valves (PUV) is unknown, but genetic factors are suspected given their familial occurrence. We examined cases of isolated PUV to identify novel copy number variants (CNVs). We identified 56 cases of isolated PUV from all live-births in New York State (1998-2005). Samples were genotyped using Illumina HumanOmni2.5 microarrays. Autosomal and sex-linked CNVs were identified using PennCNV and cnvPartition software. CNVs were prioritized for follow-up if they were absent from in-house controls, contained ≥ 10 consecutive probes, were ≥ 20 Kb in size, had ≤ 20% overlap with variants detected in other birth defect phenotypes screened in our lab, and were rare in population reference controls. We identified 47 rare candidate PUV-associated CNVs in 32 cases; one case had a 3.9 Mb deletion encompassing BMP7. Mutations in BMP7 have been associated with severe anomalies in the mouse urethra. Other interesting CNVs, each detected in a single PUV case included: a deletion of PIK3R3 and TSPAN1, duplication/triplication in FGF12, duplication of FAT1--a gene essential for normal growth and development, a large deletion (>2 Mb) on chromosome 17q that involves TBX2 and TBX4, and large duplications (>1 Mb) on chromosomes 3q and 6q. Our finding of previously unreported novel CNVs in PUV suggests that genetic factors may play a larger role than previously understood. Our data show a potential role of CNVs in up to 57% of cases examined. Investigation of genes in these CNVs may provide further insights into genetic variants that contribute to PUV. © 2015 Wiley Periodicals, Inc.

  20. Variants of PLCXD3 are not associated with variant or sporadic Creutzfeldt-Jakob disease in a large international study.

    Science.gov (United States)

    Balendra, Rubika; Uphill, James; Collinson, Claire; Druyeh, Ronald; Adamson, Gary; Hummerich, Holger; Zerr, Inga; Gambetti, Pierluigi; Collinge, John; Mead, Simon

    2016-04-07

    Human prion diseases are relentlessly progressive neurodegenerative disorders which include sporadic Creutzfeldt-Jakob disease (sCJD) and variant CJD (vCJD). Aside from variants of the prion protein gene (PRNP) replicated association at genome-wide levels of significance has proven elusive. A recent association study identified variants in or near to the PLCXD3 gene locus as strong disease risk factors in multiple human prion diseases. This study claimed the first non-PRNP locus to be highly significantly associated with prion disease in genomic studies. A sub-study of a genome-wide association study with imputation aiming to replicate the finding at PLCXD3 including 129 vCJD and 2500 sCJD samples. Whole exome sequencing to identify rare coding variants of PLCXD3. Imputation of relevant polymorphisms was accurate based on wet genotyping of a sample. We found no supportive evidence that PLCXD3 variants are associated with disease. The marked discordance in vCJD genotype frequencies between studies, despite extensive overlap in vCJD cases, and the finding of Hardy-Weinberg disequilibrium in the original study, suggests possible reasons for the discrepancies between studies.

  1. Molecular diagnosis of populational variants of Anthonomus grandis (Coleoptera: Curculionidae) in North America.

    Science.gov (United States)

    Barr, Norman; Ruiz-Arce, Raul; Obregón, Oscar; De Leon, Rosita; Foster, Nelson; Reuter, Chris; Boratynski, Theodore; Vacek, Don

    2013-02-01

    The utility of the cytochrome oxidase I (COI) DNA sequence used for DNA barcoding and a Sequence Characterized Amplified Region for diagnosing boll weevil, Anthonomus grandis Boheman, variants was evaluated. Maximum likelihood analysis of COI DNA sequences from 154 weevils collected from the United States and Mexico supports previous evidence for limited gene flow between weevil populations on wild cotton and commercial cotton in northern Mexico and southern United States. The wild cotton populations represent a variant of the species called the thurberia weevil, which is not regarded as a significant pest. The 31 boll weevil COI haplotypes observed in the study form two distinct haplogroups (A and B) that are supported by five fixed nucleotide differences and a phylogenetic analysis. Although wild and commercial cotton populations are closely associated with specific haplogroups, there is not a fixed difference between the thurberia weevil variant and other populations. The Sequence Characterized Amplified Region marker generated a larger number of inconclusive results than the COI gene but also supported evidence of shared genotypes between wild and commercial cotton weevil populations. These methods provide additional markers that can assist in the identification of pest weevil populations but not definitively diagnose samples.

  2. Introducing COCOS: codon consequence scanner for annotating reading frame changes induced by stop-lost and frame shift variants.

    Science.gov (United States)

    Butkiewicz, Mariusz; Haines, Jonathan L; Bush, William S

    2017-05-15

    Reading frame altering genomic variants can impact gene expression levels and the structure of protein products, thus potentially inducing disease phenotypes. Current annotation approaches report the impact of such variants in the context of altered DNA sequence only; attributes of the resulting transcript, reading frame and translated protein product are not reported. To remedy this shortcoming, we present a new genetic annotation approach termed Codon Consequence Scanner (COCOS). Implemented as an Ensembl variant effect predictor (VEP) plugin, COCOS captures amino acid sequence alterations stemming from variants that produce an altered reading frame, such as stop-lost variants and small insertions and deletions (InDels). To highlight its significance, COCOS was applied to data from the 1000 Genomes Project. Transcripts affected by stop-lost variants introduce a median of 15 amino acids, while InDels have a more extensive impact with a median of 66 amino acids being incorporated. Captured sequence alterations are written out in FASTA format and can be further analyzed for impact on the underlying protein structure. COCOS is available to all users on github: https://github.com/butkiem/COCOS. mariusz.butkiewicz@case.edu. © The Author 2017. Published by Oxford University Press.

  3. Clinical polyomavirus BK variants with agnogene deletion are non-functional but rescued by trans-complementation

    International Nuclear Information System (INIS)

    Myhre, Marit Renee; Olsen, Gunn-Hege; Gosert, Rainer; Hirsch, Hans H.; Rinaldo, Christine Hanssen

    2010-01-01

    High-level replication of polyomavirus BK (BKV) in kidney transplant recipients is associated with the emergence of BKV variants with rearranged (rr) non-coding control region (NCCR) increasing viral early gene expression and cytopathology. Cloning and sequencing revealed the presence of a BKV quasispecies which included non-functional variants when assayed in a recombinant virus assay. Here we report that the rr-NCCR of BKV variants RH-3 and RH-12, both bearing a NCCR deletion including the 5' end of the agnoprotein coding sequence, mediated early and late viral reporter gene expression in kidney cells. However, in a recombinant virus they failed to produce infectious progeny despite large T-antigen and VP1 expression and the formation of nuclear virus-like particles. Infectious progeny was generated when the agnogene was reconstructed in cis or agnoprotein provided in trans from a co-existing BKV rr-NCCR variant. We conclude that complementation can rescue non-functional BKV variants in vitro and possibly in vivo.

  4. Lynch syndrome associated with two MLH1 promoter variants and allelic imbalance of MLH1 expression.

    Science.gov (United States)

    Hesson, Luke B; Packham, Deborah; Kwok, Chau-To; Nunez, Andrea C; Ng, Benedict; Schmidt, Christa; Fields, Michael; Wong, Jason W H; Sloane, Mathew A; Ward, Robyn L

    2015-06-01

    Lynch syndrome is a hereditary cancer syndrome caused by a constitutional mutation in one of the mismatch repair genes. The implementation of predictive testing and targeted preventative surveillance is hindered by the frequent finding of sequence variants of uncertain significance in these genes. We aimed to determine the pathogenicity of previously reported variants (c.-28A>G and c.-7C>T) within the MLH1 5'untranslated region (UTR) in two individuals from unrelated suspected Lynch syndrome families. We investigated whether these variants were associated with other pathogenic alterations using targeted high-throughput sequencing of the MLH1 locus. We also determined their relationship to gene expression and epigenetic alterations at the promoter. Sequencing revealed that the c.-28A>G and c.-7C>T variants were the only potentially pathogenic alterations within the MLH1 gene. In both individuals, the levels of transcription from the variant allele were reduced to 50% compared with the wild-type allele. Partial loss of expression occurred in the absence of constitutional epigenetic alterations within the MLH1 promoter. We propose that these variants may be pathogenic due to constitutional partial loss of MLH1 expression, and that this may be associated with intermediate penetrance of a Lynch syndrome phenotype. Our findings provide further evidence of the potential importance of noncoding variants in the MLH1 5'UTR in the pathogenesis of Lynch syndrome. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  5. Transcriptome sequencing revealed significant alteration of cortical promoter usage and splicing in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Jing Qin Wu

    Full Text Available While hybridization based analysis of the cortical transcriptome has provided important insight into the neuropathology of schizophrenia, it represents a restricted view of disease-associated gene activity based on predetermined probes. By contrast, sequencing technology can provide un-biased analysis of transcription at nucleotide resolution. Here we use this approach to investigate schizophrenia-associated cortical gene expression.The data was generated from 76 bp reads of RNA-Seq, aligned to the reference genome and assembled into transcripts for quantification of exons, splice variants and alternative promoters in postmortem superior temporal gyrus (STG/BA22 from 9 male subjects with schizophrenia and 9 matched non-psychiatric controls. Differentially expressed genes were then subjected to further sequence and functional group analysis. The output, amounting to more than 38 Gb of sequence, revealed significant alteration of gene expression including many previously shown to be associated with schizophrenia. Gene ontology enrichment analysis followed by functional map construction identified three functional clusters highly relevant to schizophrenia including neurotransmission related functions, synaptic vesicle trafficking, and neural development. Significantly, more than 2000 genes displayed schizophrenia-associated alternative promoter usage and more than 1000 genes showed differential splicing (FDR<0.05. Both types of transcriptional isoforms were exemplified by reads aligned to the neurodevelopmentally significant doublecortin-like kinase 1 (DCLK1 gene.This study provided the first deep and un-biased analysis of schizophrenia-associated transcriptional diversity within the STG, and revealed variants with important implications for the complex pathophysiology of schizophrenia.

  6. Association analysis identifies ZNF750 regulatory variants in psoriasis

    Directory of Open Access Journals (Sweden)

    Birnbaum Ramon Y

    2011-12-01

    Full Text Available Abstract Background Mutations in the ZNF750 promoter and coding regions have been previously associated with Mendelian forms of psoriasis and psoriasiform dermatitis. ZNF750 encodes a putative zinc finger transcription factor that is highly expressed in keratinocytes and represents a candidate psoriasis gene. Methods We examined whether ZNF750 variants were associated with psoriasis in a large case-control population. We sequenced the promoter and exon regions of ZNF750 in 716 Caucasian psoriasis cases and 397 Caucasian controls. Results We identified a total of 47 variants, including 38 rare variants of which 35 were novel. Association testing identified two ZNF750 haplotypes associated with psoriasis (p ZNF750 promoter and 5' UTR variants displayed a 35-55% reduction of ZNF750 promoter activity, consistent with the promoter activity reduction seen in a Mendelian psoriasis family with a ZNF750 promoter variant. However, the rare promoter and 5' UTR variants identified in this study did not strictly segregate with the psoriasis phenotype within families. Conclusions Two haplotypes of ZNF750 and rare 5' regulatory variants of ZNF750 were found to be associated with psoriasis. These rare 5' regulatory variants, though not causal, might serve as a genetic modifier of psoriasis.

  7. Incidental and clinically actionable genetic variants in 1005 whole exomes and genomes from Qatar

    Directory of Open Access Journals (Sweden)

    Abhinav Jain

    2017-10-01

    Full Text Available Next generation sequencing (NGS technologies such as whole genome and whole exome sequencing has enabled accurate diagnosis of genetic diseases through identification of variations at the genome wide level. While many large populations have been adequately covered in global sequencing efforts little is known on the genomic architecture of populations from Middle East, and South Asia and Africa. Incidental findings and their prevalence in populations have been extensively studied in populations of Caucasian descent. The recent emphasis on genomics and availability of genome-scale datasets in public domain for ethnic population in the Middle East prompted us to estimate the prevalence of incidental findings for this population. In this study, we used whole genome and exome data for a total 1005 non-related healthy individuals from Qatar population dataset which contained 20,930,177 variants. Systematic analysis of the variants in 59 genes recommended by the American College of Medical Genetics and Genomics for reporting of incidental findings revealed a total of 2 pathogenic and 2 likely pathogenic variants. Our analysis suggests the prevalence of incidental variants in population-scale datasets is approx. 0.6%, much lower than those reported for global populations. Our study underlines the essentiality to study population-scale genomes from ethnic groups to understand systematic differences in genetic variants associated with disease predisposition.

  8. TREM2 Variants in Alzheimer's Disease

    Science.gov (United States)

    Guerreiro, Rita; Wojtas, Aleksandra; Bras, Jose; Carrasquillo, Minerva; Rogaeva, Ekaterina; Majounie, Elisa; Cruchaga, Carlos; Sassi, Celeste; Kauwe, John S.K.; Younkin, Steven; Hazrati, Lilinaz; Collinge, John; Pocock, Jennifer; Lashley, Tammaryn; Williams, Julie; Lambert, Jean-Charles; Amouyel, Philippe; Goate, Alison; Rademakers, Rosa; Morgan, Kevin; Powell, John; St. George-Hyslop, Peter; Singleton, Andrew; Hardy, John

    2013-01-01

    BACKGROUND Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia. METHODS We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimer's disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimer's disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimer's disease and in control mice. RESULTS We found significantly more variants in exon 2 of TREM2 in patients with Alzheimer's disease than in controls in the discovery set (P = 0.02). There were 22 variant alleles in 1092 patients with Alzheimer's disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimer's disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P = 0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimer's disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimer's disease. CONCLUSIONS Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimer's disease. (Funded by Alzheimer's Research UK and others.) PMID:23150934

  9. Rare variants in ischemic stroke: an exome pilot study.

    Directory of Open Access Journals (Sweden)

    John W Cole

    Full Text Available The genetic architecture of ischemic stroke is complex and is likely to include rare or low frequency variants with high penetrance and large effect sizes. Such variants are likely to provide important insights into disease pathogenesis compared to common variants with small effect sizes. Because a significant portion of human functional variation may derive from the protein-coding portion of genes we undertook a pilot study to identify variation across the human exome (i.e., the coding exons across the entire human genome in 10 ischemic stroke cases. Our efforts focused on evaluating the feasibility and identifying the difficulties in this type of research as it applies to ischemic stroke. The cases included 8 African-Americans and 2 Caucasians selected on the basis of similar stroke subtypes and by implementing a case selection algorithm that emphasized the genetic contribution of stroke risk. Following construction of paired-end sequencing libraries, all predicted human exons in each sample were captured and sequenced. Sequencing generated an average of 25.5 million read pairs (75 bp×2 and 3.8 Gbp per sample. After passing quality filters, screening the exomes against dbSNP demonstrated an average of 2839 novel SNPs among African-Americans and 1105 among Caucasians. In an aggregate analysis, 48 genes were identified to have at least one rare variant across all stroke cases. One gene, CSN3, identified by screening our prior GWAS results in conjunction with our exome results, was found to contain an interesting coding polymorphism as well as containing excess rare variation as compared with the other genes evaluated. In conclusion, while rare coding variants may predispose to the risk of ischemic stroke, this fact has yet to be definitively proven. Our study demonstrates the complexities of such research and highlights that while exome data can be obtained, the optimal analytical methods have yet to be determined.

  10. Distribution and medical impact of loss-of-function variants in the Finnish founder population

    NARCIS (Netherlands)

    Lim, Elaine T.; Würtz, Peter; Havulinna, Aki S.; Palta, Priit; Tukiainen, Taru; Rehnström, Karola; Esko, Tõnu; Mägi, Reedik; Inouye, Michael; Lappalainen, Tuuli; Chan, Yingleong; Salem, Rany M.; Lek, Monkol; Flannick, Jason; Sim, Xueling; Manning, Alisa; Ladenvall, Claes; Bumpstead, Suzannah; Hämäläinen, Eija; Aalto, Kristiina; Maksimow, Mikael; Salmi, Marko; Blankenberg, Stefan; Ardissino, Diego; Shah, Svati; Horne, Benjamin; McPherson, Ruth; Hovingh, Gerald K.; Reilly, Muredach P.; Watkins, Hugh; Goel, Anuj; Farrall, Martin; Girelli, Domenico; Reiner, Alex P.; Stitziel, Nathan O.; Kathiresan, Sekar; Gabriel, Stacey; Barrett, Jeffrey C.; Lehtimäki, Terho; Laakso, Markku; Groop, Leif; Kaprio, Jaakko; Perola, Markus; McCarthy, Mark I.; Boehnke, Michael; Altshuler, David M.; Lindgren, Cecilia M.; Hirschhorn, Joel N.; Metspalu, Andres; Freimer, Nelson B.; Zeller, Tanja; Jalkanen, Sirpa; Koskinen, Seppo; Raitakari, Olli; Durbin, Richard; MacArthur, Daniel G.; Salomaa, Veikko; Ripatti, Samuli; Daly, Mark J.; Palotie, Aarno

    2014-01-01

    Exome sequencing studies in complex diseases are challenged by the allelic heterogeneity, large number and modest effect sizes of associated variants on disease risk and the presence of large numbers of neutral variants, even in phenotypically relevant genes. Isolated populations with recent

  11. Identification of rare and frequent variants of the CASR gene by high-resolution melting

    DEFF Research Database (Denmark)

    Nissen, Peter H; Christensen, Signe E; Ladefoged, Søren A

    2012-01-01

    of seven new CASR variants and nine recurrent. HRM variant scanning, in combination with small amplicon genotyping, provides a simple workflow with reduced sequencing burden. Bioinformatics analyses using two freely available prediction tools (PolyPhen2 and SIFT) for evaluating amino acid substitutions...

  12. Magnetic resonance angiography: infrequent anatomic variants

    International Nuclear Information System (INIS)

    Trejo, Mariano; Meli, Francisco; Lambre, Hector; Blessing, Ricardo; Gigy Traynor, Ignacio; Miguez, Victor

    2002-01-01

    We studied through RM angiography (3D TOF) with high magnetic field equipment (1.5 T) different infrequent intracerebral vascular anatomic variants. For their detection we emphasise the value of post-processed images obtained after conventional angiographic sequences. These post-processed images should be included in routine protocols for evaluation of the intracerebral vascular structures. (author)

  13. Increased burden of deleterious variants in essential genes in autism spectrum disorder.

    Science.gov (United States)

    Ji, Xiao; Kember, Rachel L; Brown, Christopher D; Bućan, Maja

    2016-12-27

    Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication, and repetitive behavior. It is estimated that hundreds of genes contribute to ASD. We asked if genes with a strong effect on survival and fitness contribute to ASD risk. Human orthologs of genes with an essential role in pre- and postnatal development in the mouse [essential genes (EGs)] are enriched for disease genes and under strong purifying selection relative to human orthologs of mouse genes with a known nonlethal phenotype [nonessential genes (NEGs)]. This intolerance to deleterious mutations, commonly observed haploinsufficiency, and the importance of EGs in development suggest a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. With a comprehensive catalog of 3,915 mammalian EGs, we provide compelling evidence for a stronger contribution of EGs to ASD risk compared with NEGs. By examining the exonic de novo and inherited variants from 1,781 ASD quartet families, we show a significantly higher burden of damaging mutations in EGs in ASD probands compared with their non-ASD siblings. The analysis of EGs in the developing brain identified clusters of coexpressed EGs implicated in ASD. Finally, we suggest a high-priority list of 29 EGs with potential ASD risk as targets for future functional and behavioral studies. Overall, we show that large-scale studies of gene function in model organisms provide a powerful approach for prioritization of genes and pathogenic variants identified by sequencing studies of human disease.

  14. A Low Density Microarray Method for the Identification of Human Papillomavirus Type 18 Variants

    Science.gov (United States)

    Meza-Menchaca, Thuluz; Williams, John; Rodríguez-Estrada, Rocío B.; García-Bravo, Aracely; Ramos-Ligonio, Ángel; López-Monteon, Aracely; Zepeda, Rossana C.

    2013-01-01

    We describe a novel microarray based-method for the screening of oncogenic human papillomavirus 18 (HPV-18) molecular variants. Due to the fact that sequencing methodology may underestimate samples containing more than one variant we designed a specific and sensitive stacking DNA hybridization assay. This technology can be used to discriminate between three possible phylogenetic branches of HPV-18. Probes were attached covalently on glass slides and hybridized with single-stranded DNA targets. Prior to hybridization with the probes, the target strands were pre-annealed with the three auxiliary contiguous oligonucleotides flanking the target sequences. Screening HPV-18 positive cell lines and cervical samples were used to evaluate the performance of this HPV DNA microarray. Our results demonstrate that the HPV-18's variants hybridized specifically to probes, with no detection of unspecific signals. Specific probes successfully reveal detectable point mutations in these variants. The present DNA oligoarray system can be used as a reliable, sensitive and specific method for HPV-18 variant screening. Furthermore, this simple assay allows the use of inexpensive equipment, making it accessible in resource-poor settings. PMID:24077317

  15. Pooled Resequencing of 122 Ulcerative Colitis Genes in a Large Dutch Cohort Suggests Population-Specific Associations of Rare Variants in MUC2.

    Science.gov (United States)

    Visschedijk, Marijn C; Alberts, Rudi; Mucha, Soren; Deelen, Patrick; de Jong, Dirk J; Pierik, Marieke; Spekhorst, Lieke M; Imhann, Floris; van der Meulen-de Jong, Andrea E; van der Woude, C Janneke; van Bodegraven, Adriaan A; Oldenburg, Bas; Löwenberg, Mark; Dijkstra, Gerard; Ellinghaus, David; Schreiber, Stefan; Wijmenga, Cisca; Rivas, Manuel A; Franke, Andre; van Diemen, Cleo C; Weersma, Rinse K

    2016-01-01

    Genome-wide association studies have revealed several common genetic risk variants for ulcerative colitis (UC). However, little is known about the contribution of rare, large effect genetic variants to UC susceptibility. In this study, we performed a deep targeted re-sequencing of 122 genes in Dutch UC patients in order to investigate the contribution of rare variants to the genetic susceptibility to UC. The selection of genes consists of 111 established human UC susceptibility genes and 11 genes that lead to spontaneous colitis when knocked-out in mice. In addition, we sequenced the promoter regions of 45 genes where known variants exert cis-eQTL-effects. Targeted pooled re-sequencing was performed on DNA of 790 Dutch UC cases. The Genome of the Netherlands project provided sequence data of 500 healthy controls. After quality control and prioritization based on allele frequency and pathogenicity probability, follow-up genotyping of 171 rare variants was performed on 1021 Dutch UC cases and 1166 Dutch controls. Single-variant association and gene-based analyses identified an association of rare variants in the MUC2 gene with UC. The associated variants in the Dutch population could not be replicated in a German replication cohort (1026 UC cases, 3532 controls). In conclusion, this study has identified a putative role for MUC2 on UC susceptibility in the Dutch population and suggests a population-specific contribution of rare variants to UC.

  16. Network perturbation by recurrent regulatory variants in cancer.

    Directory of Open Access Journals (Sweden)

    Kiwon Jang

    2017-03-01

    Full Text Available Cancer driving genes have been identified as recurrently affected by variants that alter protein-coding sequences. However, a majority of cancer variants arise in noncoding regions, and some of them are thought to play a critical role through transcriptional perturbation. Here we identified putative transcriptional driver genes based on combinatorial variant recurrence in cis-regulatory regions. The identified genes showed high connectivity in the cancer type-specific transcription regulatory network, with high outdegree and many downstream genes, highlighting their causative role during tumorigenesis. In the protein interactome, the identified transcriptional drivers were not as highly connected as coding driver genes but appeared to form a network module centered on the coding drivers. The coding and regulatory variants associated via these interactions between the coding and transcriptional drivers showed exclusive and complementary occurrence patterns across tumor samples. Transcriptional cancer drivers may act through an extensive perturbation of the regulatory network and by altering protein network modules through interactions with coding driver genes.

  17. Genetic Variants Associated with Gestational Hypertriglyceridemia and Pancreatitis.

    Directory of Open Access Journals (Sweden)

    Sai-Li Xie

    Full Text Available Severe hypertriglyceridemia is a well-known cause of pancreatitis. Usually, there is a moderate increase in plasma triglyceride level during pregnancy. Additionally, certain pre-existing genetic traits may render a pregnant woman susceptible to development of severe hypertriglyceridemia and pancreatitis, especially in the third trimester. To elucidate the underlying mechanism of gestational hypertriglyceridemic pancreatitis, we undertook DNA mutation analysis of the lipoprotein lipase (LPL, apolipoprotein C2 (APOC2, apolipoprotein A5 (APOA5, lipase maturation factor 1 (LMF1, and glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1 genes in five unrelated pregnant Chinese women with severe hypertriglyceridemia and pancreatitis. DNA sequencing showed that three out of five patients had the same homozygous variation, p.G185C, in APOA5 gene. One patient had a compound heterozygous mutation, p.A98T and p.L279V, in LPL gene. Another patient had a compound heterozygous mutation, p.A98T & p.C14F in LPL and GPIHBP1 gene, respectively. No mutations were seen in APOC2 or LMF1 genes. All patients were diagnosed with partial LPL deficiency in non-pregnant state. As revealed in our study, genetic variants appear to play an important role in the development of severe gestational hypertriglyceridemia, and, p.G185C mutation in APOA5 gene appears to be the most common variant implicated in the Chinese population. Antenatal screening for mutations in susceptible women, combined with subsequent interventions may be invaluable in the prevention of potentially life threatening gestational hypertriglyceridemia-induced pancreatitis.

  18. Genetic Variants Associated with Gestational Hypertriglyceridemia and Pancreatitis

    Science.gov (United States)

    Huang, Xie-Lin; Chen, Chao; Jin, Rong; Huang, Zhi-Ming; Zhou, Meng-Tao

    2015-01-01

    Severe hypertriglyceridemia is a well-known cause of pancreatitis. Usually, there is a moderate increase in plasma triglyceride level during pregnancy. Additionally, certain pre-existing genetic traits may render a pregnant woman susceptible to development of severe hypertriglyceridemia and pancreatitis, especially in the third trimester. To elucidate the underlying mechanism of gestational hypertriglyceridemic pancreatitis, we undertook DNA mutation analysis of the lipoprotein lipase (LPL), apolipoprotein C2 (APOC2), apolipoprotein A5 (APOA5), lipase maturation factor 1 (LMF1), and glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) genes in five unrelated pregnant Chinese women with severe hypertriglyceridemia and pancreatitis. DNA sequencing showed that three out of five patients had the same homozygous variation, p.G185C, in APOA5 gene. One patient had a compound heterozygous mutation, p.A98T and p.L279V, in LPL gene. Another patient had a compound heterozygous mutation, p.A98T & p.C14F in LPL and GPIHBP1 gene, respectively. No mutations were seen in APOC2 or LMF1 genes. All patients were diagnosed with partial LPL deficiency in non-pregnant state. As revealed in our study, genetic variants appear to play an important role in the development of severe gestational hypertriglyceridemia, and, p.G185C mutation in APOA5 gene appears to be the most common variant implicated in the Chinese population. Antenatal screening for mutations in susceptible women, combined with subsequent interventions may be invaluable in the prevention of potentially life threatening gestational hypertriglyceridemia-induced pancreatitis. PMID:26079787

  19. Partial VP2 sequencing of canine parvovirus (CPV strains circulating in the state of Rio de Janeiro, Brazil: detection of the new variant CPV-2c

    Directory of Open Access Journals (Sweden)

    T.X. Castro

    2010-12-01

    Full Text Available Canine parvovirus (CPV is the most important enteric virus for dogs and it seems to be undergoing continuous evolution, generating new genetic and antigenic variants throughout the world. The aim of this study was to analyze the distribution of CPV variants from 1995 to 2009 and to investigate the circulation of the new variant CPV-2c in Rio de Janeiro, Brazil. In addition, the clinical features of CPV infection were also reported. After CPV laboratorial confirmation by HA/HI and PCR, thirty-two fecal samples were analyzed by sequencing a 583-bp fragment of the VP2 gene. One sample, collected in 2008 was typed as the new type CPV-2c. All samples from 1995 to 2003 were identified as "new CPV-2a". From 2004 to 2006, both "new CPV-2a" and CPV-2b were observed. From 2006 to 2009, most of the samples were characterized as CPV-2b. The classical signs of CPV enteritis were observed in 16/18 CPV-2a and 5/13 CPV-2b infected puppies. These results show that continuous epidemiological surveillance of CPV strain distribution is essential for studying the patterns of CPV-2a and 2b spread and for determining whether the new variant CPV-2c has become permanently established in Brazilian canine population.

  20. Telomerase variant A279T induces telomere dysfunction and inhibits non-canonical telomerase activity in esophageal carcinomas.

    Directory of Open Access Journals (Sweden)

    Yuwei Zhang

    Full Text Available Although implicated in the pathogenesis of several chronic inflammatory disorders and hematologic malignancies, telomerase mutations have not been thoroughly characterized in human cancers. The present study was performed to examine the frequency and potential clinical relevance of telomerase mutations in esophageal carcinomas.Sequencing techniques were used to evaluate mutational status of telomerase reverse transcriptase (TERT and telomerase RNA component (TERC in neoplastic and adjacent normal mucosa from 143 esophageal cancer (EsC patients. MTS, flow cytometry, time lapse microscopy, and murine xenograft techniques were used to assess proliferation, apoptosis, chemotaxis, and tumorigenicity of EsC cells expressing either wtTERT or TERT variants. Immunoprecipitation, immunoblot, immunofluorescence, promoter-reporter and qRT-PCR techniques were used to evaluate interactions of TERT and several TERT variants with BRG-1 and β-catenin, and to assess expression of cytoskeletal proteins, and cell signaling. Fluorescence in-situ hybridization and spectral karyotyping techniques were used to examine telomere length and chromosomal stability.Sequencing analysis revealed one deletion involving TERC (TERC del 341-360, and two non-synonymous TERT variants [A279T (2 homozygous, 9 heterozygous; A1062T (4 heterozygous]. The minor allele frequency of the A279T variant was five-fold higher in EsC patients compared to healthy blood donors (p<0.01. Relative to wtTERT, A279T decreased telomere length, destabilized TERT-BRG-1-β-catenin complex, markedly depleted β-catenin, and down-regulated canonical Wnt signaling in cancer cells; these phenomena coincided with decreased proliferation, depletion of additional cytoskeletal proteins, impaired chemotaxis, increased chemosensitivity, and significantly decreased tumorigenicity of EsC cells. A279T expression significantly increased chromosomal aberrations in mouse embryonic fibroblasts (MEFs following Zeocin

  1. Brute-Force Approach for Mass Spectrometry-Based Variant Peptide Identification in Proteogenomics without Personalized Genomic Data

    Science.gov (United States)

    Ivanov, Mark V.; Lobas, Anna A.; Levitsky, Lev I.; Moshkovskii, Sergei A.; Gorshkov, Mikhail V.

    2018-02-01

    In a proteogenomic approach based on tandem mass spectrometry analysis of proteolytic peptide mixtures, customized exome or RNA-seq databases are employed for identifying protein sequence variants. However, the problem of variant peptide identification without personalized genomic data is important for a variety of applications. Following the recent proposal by Chick et al. (Nat. Biotechnol. 33, 743-749, 2015) on the feasibility of such variant peptide search, we evaluated two available approaches based on the previously suggested "open" search and the "brute-force" strategy. To improve the efficiency of these approaches, we propose an algorithm for exclusion of false variant identifications from the search results involving analysis of modifications mimicking single amino acid substitutions. Also, we propose a de novo based scoring scheme for assessment of identified point mutations. In the scheme, the search engine analyzes y-type fragment ions in MS/MS spectra to confirm the location of the mutation in the variant peptide sequence.

  2. Genetic variants in post myocardial infarction patients presenting with electrical storm of unstable ventricular tachycardia.

    Science.gov (United States)

    Rangaraju, Advithi; Krishnan, Shuba; Aparna, G; Sankaran, Satish; Mannan, Ashraf U; Rao, B Hygriv

    2018-01-30

    Electrical storm (ES) is a life threatening clinical situation. Though a few clinical pointers exist, the occurrence of ES in a patient with remote myocardial infarction (MI) is generally unpredictable. Genetic markers for this entity have not been studied. In the present study, we carried out genetic screening in patients with remote myocardial infarction presenting with ES by next generation sequencing and identified 25 rare variants in 19 genes predominantly in RYR2, SCN5A, KCNJ11, KCNE1 and KCNH2, CACNA1B, CACNA1C, CACNA1D and desmosomal genes - DSP and DSG2 that could potentially be implicated in electrical storm. These genes have been previously reported to be associated with inherited syndromes of Sudden Cardiac Death. The present study suggests that the genetic architecture in patients with remote MI and ES of unstable ventricular tachycardia may be similar to that of Ion channelopathies. Identification of these variants may identify post MI patients who are predisposed to develop electrical storm and help in risk stratification. Copyright © 2018 Indian Heart Rhythm Society. Production and hosting by Elsevier B.V. All rights reserved.

  3. Postnatal Expression of V2 Vasopressin Receptor Splice Variants in the Rat Cerebellum

    Science.gov (United States)

    Vargas, Karina J.; Sarmiento, José M.; Ehrenfeld, Pamela; Añazco, Carolina C.; Villanueva, Carolina I.; Carmona, Pamela L.; Brenet, Marianne; Navarro, Javier; Müller-Esterl, Werner; Figueroa, Carlos D.; González, Carlos B.

    2010-01-01

    The V2 vasopressin receptor gene contains an alternative splice site in exon-3, which leads to the generation of two splice variants (V2a and V2b) first identified in the kidney. The open reading frame of the alternatively spliced V2b transcripten codes a truncated receptor, showing the same amino acid sequence as the canonical V2a receptor up to the 6th transmembrane segment, but displaying a distinct sequence to the corresponding 7th transmembrane segment and C-terminal domain relative to the V2a receptor. Here, we demonstrate the postnatal expression of V2a and V2b variants in the rat cerebellum. Most importantly, we showed by in situ hybridization and immunocytochemistry that both V2 splice variants were preferentially expressed in Purkinje cells, from early to late postnatal development. In addition, both variants were transiently expressed in the neuroblastic external granule cells and Bergmann fibers. These results indicate that the cellular distributions of both splice variants are developmentally regulated, and suggest that the transient expression of the V2 receptor is involved in the mechanisms of cerebellar cytodifferentiation by AVP. Finally, transfected CHO-K1 .expressing similar amounts of both V2 splice variants, as that found in the cerebellum, showed a significant reduction in the surface expression of V2a receptors, suggesting that the differential expression of the V2 splice variants regulate the vasopressin signaling in the cerebellum. PMID:19281786

  4. Next-generation sequencing using a pre-designed gene panel for the molecular diagnosis of congenital disorders in pediatric patients.

    Science.gov (United States)

    Lim, Eileen C P; Brett, Maggie; Lai, Angeline H M; Lee, Siew-Peng; Tan, Ee-Shien; Jamuar, Saumya S; Ng, Ivy S L; Tan, Ene-Choo

    2015-12-14

    Next-generation sequencing (NGS) has revolutionized genetic research and offers enormous potential for clinical application. Sequencing the exome has the advantage of casting the net wide for all known coding regions while targeted gene panel sequencing provides enhanced sequencing depths and can be designed to avoid incidental findings in adult-onset conditions. A HaloPlex panel consisting of 180 genes within commonly altered chromosomal regions is available for use on both the Ion Personal Genome Machine (PGM) and MiSeq platforms to screen for causative mutations in these genes. We used this Haloplex ICCG panel for targeted sequencing of 15 patients with clinical presentations indicative of an abnormality in one of the 180 genes. Sequencing runs were done using the Ion 318 Chips on the Ion Torrent PGM. Variants were filtered for known polymorphisms and analysis was done to identify possible disease-causing variants before validation by Sanger sequencing. When possible, segregation of variants with phenotype in family members was performed to ascertain the pathogenicity of the variant. More than 97% of the target bases were covered at >20×. There was an average of 9.6 novel variants per patient. Pathogenic mutations were identified in five genes for six patients, with two novel variants. There were another five likely pathogenic variants, some of which were unreported novel variants. In a cohort of 15 patients, we were able to identify a likely genetic etiology in six patients (40%). Another five patients had candidate variants for which further evaluation and segregation analysis are ongoing. Our results indicate that the HaloPlex ICCG panel is useful as a rapid, high-throughput and cost-effective screening tool for 170 of the 180 genes. There is low coverage for some regions in several genes which might have to be supplemented by Sanger sequencing. However, comparing the cost, ease of analysis, and shorter turnaround time, it is a good alternative to exome

  5. Genotype–phenotype correlations in individuals with pathogenic RERE variants

    Science.gov (United States)

    Jordan, Valerie K.; Fregeau, Brieana; Ge, Xiaoyan; Giordano, Jessica; Wapner, Ronald J.; Balci, Tugce B.; Carter, Melissa T.; Bernat, John A.; Moccia, Amanda N.; Srivastava, Anshika; Martin, Donna M.; Bielas, Stephanie L.; Pappas, John; Svoboda, Melissa D.; Rio, Marlène; Boddaert, Nathalie; Cantagrel, Vincent; Lewis, Andrea M.; Scaglia, Fernando; Kohler, Jennefer N.; Bernstein, Jonathan A.; Dries, Annika M.; Rosenfeld, Jill A.; DeFilippo, Colette; Thorson, Willa; Yang, Yaping; Sherr, Elliott H.; Bi, Weimin; Scott, Daryl A.

    2018-01-01

    Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype–phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7. PMID:29330883

  6. A Founder Large Deletion Mutation in Xeroderma Pigmentosum-Variant Form in Tunisia: Implication for Molecular Diagnosis and Therapy

    Directory of Open Access Journals (Sweden)

    Mariem Ben Rekaya

    2014-01-01

    Full Text Available Xeroderma pigmentosum Variant (XP-V form is characterized by a late onset of skin symptoms. Our aim is the clinical and genetic investigations of XP-V Tunisian patients in order to develop a simple tool for early diagnosis. We investigated 16 suspected XP patients belonging to ten consanguineous families. Analysis of the POLH gene was performed by linkage analysis, long range PCR, and sequencing. Genetic analysis showed linkage to the POLH gene with a founder haplotype in all affected patients. Long range PCR of exon 9 to exon 11 showed a 3926 bp deletion compared to control individuals. Sequence analysis demonstrates that this deletion has occurred between two Alu-Sq2 repetitive sequences in the same orientation, respectively, in introns 9 and 10. We suggest that this mutation POLH NG_009252.1: g.36847_40771del3925 is caused by an equal crossover event that occurred between two homologous chromosomes at meiosis. These results allowed us to develop a simple test based on a simple PCR in order to screen suspected XP-V patients. In Tunisia, the prevalence of XP-V group seems to be underestimated and clinical diagnosis is usually later. Cascade screening of this founder mutation by PCR in regions with high frequency of XP provides a rapid and cost-effective tool for early diagnosis of XP-V in Tunisia and North Africa.

  7. A founder large deletion mutation in Xeroderma pigmentosum-Variant form in Tunisia: implication for molecular diagnosis and therapy.

    Science.gov (United States)

    Ben Rekaya, Mariem; Laroussi, Nadia; Messaoud, Olfa; Jones, Mariem; Jerbi, Manel; Naouali, Chokri; Bouyacoub, Yosra; Chargui, Mariem; Kefi, Rym; Fazaa, Becima; Boubaker, Mohamed Samir; Boussen, Hamouda; Mokni, Mourad; Abdelhak, Sonia; Zghal, Mohamed; Khaled, Aida; Yacoub-Youssef, Houda

    2014-01-01

    Xeroderma pigmentosum Variant (XP-V) form is characterized by a late onset of skin symptoms. Our aim is the clinical and genetic investigations of XP-V Tunisian patients in order to develop a simple tool for early diagnosis. We investigated 16 suspected XP patients belonging to ten consanguineous families. Analysis of the POLH gene was performed by linkage analysis, long range PCR, and sequencing. Genetic analysis showed linkage to the POLH gene with a founder haplotype in all affected patients. Long range PCR of exon 9 to exon 11 showed a 3926 bp deletion compared to control individuals. Sequence analysis demonstrates that this deletion has occurred between two Alu-Sq2 repetitive sequences in the same orientation, respectively, in introns 9 and 10. We suggest that this mutation POLH NG_009252.1: g.36847_40771del3925 is caused by an equal crossover event that occurred between two homologous chromosomes at meiosis. These results allowed us to develop a simple test based on a simple PCR in order to screen suspected XP-V patients. In Tunisia, the prevalence of XP-V group seems to be underestimated and clinical diagnosis is usually later. Cascade screening of this founder mutation by PCR in regions with high frequency of XP provides a rapid and cost-effective tool for early diagnosis of XP-V in Tunisia and North Africa.

  8. OCA2 splice site variant in German Spitz dogs with oculocutaneous albinism.

    Science.gov (United States)

    Caduff, Madleina; Bauer, Anina; Jagannathan, Vidhya; Leeb, Tosso

    2017-01-01

    We investigated a German Spitz family where the mating of a black male to a white female had yielded three puppies with an unexpected light brown coat color, lightly pigmented lips and noses, and blue eyes. Combined linkage and homozygosity analysis based on a fully penetrant monogenic autosomal recessive mode of inheritance identified a critical interval of 15 Mb on chromosome 3. We obtained whole genome sequence data from one affected dog, three wolves, and 188 control dogs. Filtering for private variants revealed a single variant with predicted high impact in the critical interval in LOC100855460 (XM_005618224.1:c.377+2T>G LT844587.1:c.-45+2T>G). The variant perfectly co-segregated with the phenotype in the family. We genotyped 181 control dogs with normal pigmentation from diverse breeds including 22 unrelated German Spitz dogs, which were all homozygous wildtype. Comparative sequence analyses revealed that LOC100855460 actually represents the 5'-end of the canine OCA2 gene. The CanFam 3.1 reference genome assembly is incorrect and separates the first two exons from the remaining exons of the OCA2 gene. We amplified a canine OCA2 cDNA fragment by RT-PCR and determined the correct full-length mRNA sequence (LT844587.1). Variants in the OCA2 gene cause oculocutaneous albinism type 2 (OCA2) in humans, pink-eyed dilution in mice, and similar phenotypes in corn snakes, medaka and Mexican cave tetra fish. We therefore conclude that the observed oculocutaneous albinism in German Spitz is most likely caused by the identified variant in the 5'-splice site of the first intron of the canine OCA2 gene.

  9. DeepPVP: phenotype-based prioritization of causative variants using deep learning

    KAUST Repository

    Boudellioua, Imene

    2018-05-02

    Background: Prioritization of variants in personal genomic data is a major challenge. Recently, computational methods that rely on comparing phenotype similarity have shown to be useful to identify causative variants. In these methods, pathogenicity prediction is combined with a semantic similarity measure to prioritize not only variants that are likely to be dysfunctional but those that are likely involved in the pathogenesis of a patient\\'s phenotype. Results: We have developed DeepPVP, a variant prioritization method that combined automated inference with deep neural networks to identify the likely causative variants in whole exome or whole genome sequence data. We demonstrate that DeepPVP performs significantly better than existing methods, including phenotype-based methods that use similar features. DeepPVP is freely available at https://github.com/bio-ontology-research-group/phenomenet-vp Conclusions: DeepPVP further improves on existing variant prioritization methods both in terms of speed as well as accuracy.

  10. Complexity on Acute Myeloid Leukemia mRNA Transcript Variant

    Directory of Open Access Journals (Sweden)

    Carlo Cattani

    2011-01-01

    Full Text Available This paper deals with the sequence analysis of acute myeloid leukemia mRNA. Six transcript variants of mlf1 mRNA, with more than 2000 bps, are analyzed by focusing on the autocorrelation of each distribution. Through the correlation matrix, some patches and similarities are singled out and commented, with respect to similar distributions. The comparison of Kolmogorov fractal dimension will be also given in order to classify the six variants. The existence of a fractal shape, patterns, and symmetries are discussed as well.

  11. Phylogenetic and genome-wide deep-sequencing analyses of canine parvovirus reveal co-infection with field variants and emergence of a recent recombinant strain.

    Directory of Open Access Journals (Sweden)

    Ruben Pérez

    Full Text Available Canine parvovirus (CPV, a fast-evolving single-stranded DNA virus, comprises three antigenic variants (2a, 2b, and 2c with different frequencies and genetic variability among countries. The contribution of co-infection and recombination to the genetic variability of CPV is far from being fully elucidated. Here we took advantage of a natural CPV population, recently formed by the convergence of divergent CPV-2c and CPV-2a strains, to study co-infection and recombination. Complete sequences of the viral coding region of CPV-2a and CPV-2c strains from 40 samples were generated and analyzed using phylogenetic tools. Two samples showed co-infection and were further analyzed by deep sequencing. The sequence profile of one of the samples revealed the presence of CPV-2c and CPV-2a strains that differed at 29 nucleotides. The other sample included a minor CPV-2a strain (13.3% of the viral population and a major recombinant strain (86.7%. The recombinant strain arose from inter-genotypic recombination between CPV-2c and CPV-2a strains within the VP1/VP2 gene boundary. Our findings highlight the importance of deep-sequencing analysis to provide a better understanding of CPV molecular diversity.

  12. Phylogenetic and Genome-Wide Deep-Sequencing Analyses of Canine Parvovirus Reveal Co-Infection with Field Variants and Emergence of a Recent Recombinant Strain

    Science.gov (United States)

    Pérez, Ruben; Calleros, Lucía; Marandino, Ana; Sarute, Nicolás; Iraola, Gregorio; Grecco, Sofia; Blanc, Hervé; Vignuzzi, Marco; Isakov, Ofer; Shomron, Noam; Carrau, Lucía; Hernández, Martín; Francia, Lourdes; Sosa, Katia; Tomás, Gonzalo; Panzera, Yanina

    2014-01-01

    Canine parvovirus (CPV), a fast-evolving single-stranded DNA virus, comprises three antigenic variants (2a, 2b, and 2c) with different frequencies and genetic variability among countries. The contribution of co-infection and recombination to the genetic variability of CPV is far from being fully elucidated. Here we took advantage of a natural CPV population, recently formed by the convergence of divergent CPV-2c and CPV-2a strains, to study co-infection and recombination. Complete sequences of the viral coding region of CPV-2a and CPV-2c strains from 40 samples were generated and analyzed using phylogenetic tools. Two samples showed co-infection and were further analyzed by deep sequencing. The sequence profile of one of the samples revealed the presence of CPV-2c and CPV-2a strains that differed at 29 nucleotides. The other sample included a minor CPV-2a strain (13.3% of the viral population) and a major recombinant strain (86.7%). The recombinant strain arose from inter-genotypic recombination between CPV-2c and CPV-2a strains within the VP1/VP2 gene boundary. Our findings highlight the importance of deep-sequencing analysis to provide a better understanding of CPV molecular diversity. PMID:25365348

  13. Structural comparisons of two allelic variants of human placental alkaline phosphatase.

    Science.gov (United States)

    Millán, J L; Stigbrand, T; Jörnvall, H

    1985-01-01

    A simple immunosorbent purification scheme based on monoclonal antibodies has been devised for human placental alkaline phosphatase. The two most common allelic variants, S and F, have similar amino acid compositions with identical N-terminal amino acid sequences through the first 13 residues. Both variants have identical lectin binding properties towards concanavalin A, lentil-lectin, wheat germ agglutinin, phytohemagglutinin and soybean agglutinin, and identical carbohydrate contents as revealed by methylation analysis. CNBr fragments of the variants demonstrate identical high performance liquid chromatography patterns. The carbohydrate containing fragment is different from the 32P-labeled active site fragment and the N-terminal fragment.

  14. Impact of Pathogen Population Heterogeneity and Stress-Resistant Variants on Food Safety.

    Science.gov (United States)

    Abee, T; Koomen, J; Metselaar, K I; Zwietering, M H; den Besten, H M W

    2016-01-01

    This review elucidates the state-of-the-art knowledge about pathogen population heterogeneity and describes the genotypic and phenotypic analyses of persister subpopulations and stress-resistant variants. The molecular mechanisms underlying the generation of persister phenotypes and genetic variants are identified. Zooming in on Listeria monocytogenes, a comparative whole-genome sequence analysis of wild types and variants that enabled the identification of mutations in variants obtained after a single exposure to lethal food-relevant stresses is described. Genotypic and phenotypic features are compared to those for persistent strains isolated from food processing environments. Inactivation kinetics, models used for fitting, and the concept of kinetic modeling-based schemes for detection of variants are presented. Furthermore, robustness and fitness parameters of L. monocytogenes wild type and variants are used to model their performance in food chains. Finally, the impact of stress-resistant variants and persistence in food processing environments on food safety is discussed.

  15. Genetic variants in CETP increase risk of intracerebral hemorrhage

    NARCIS (Netherlands)

    Anderson, C.D.; Falcone, G.J.; Phuah, C.L.; Radmanesh, F.; Brouwers, H.B.; Battey, T.W.; Biffi, A.; Peloso, G.M.; Liu, D.J.; Ayres, A.M.; Goldstein, J.N.; Viswanathan, A.; Greenberg, S.M.; Selim, M.; Meschia, J.F.; Brown, D.L.; Worrall, B.B.; Silliman, S.L.; Tirschwell, D.L.; Flaherty, M.L.; Kraft, P.; Jagiella, J.M.; Schmidt, H.; Hansen, B.M.; Jimenez-Conde, J.; Giralt-Steinhauer, E.; Elosua, R.; Cuadrado-Godia, E.; Soriano, C.; Nieuwenhuizen, K.M. van; Klijn, C.J.M.; Rannikmae, K.; Samarasekera, N.; Salman, R.A.; Sudlow, C.L.; Deary, I.J.; Morotti, A.; Pezzini, A.; Pera, J.; Urbanik, A.; Pichler, A.; Enzinger, C.; Norrving, B.; Montaner, J.; Fernandez-Cadenas, I.; Delgado, P.; Roquer, J.; Lindgren, A.; Slowik, A.; Schmidt, R.; Kidwell, C.S.; Kittner, S.J.; Waddy, S.P.; Langefeld, C.D.; Abecasis, G.; Willer, C.J.; Kathiresan, S.; Woo, D.; Rosand, J.

    2016-01-01

    OBJECTIVE: In observational epidemiologic studies, higher plasma high-density lipoprotein cholesterol (HDL-C) has been associated with increased risk of intracerebral hemorrhage (ICH). DNA sequence variants that decrease cholesteryl ester transfer protein (CETP) gene activity increase plasma HDL-C;

  16. Genetic variants in CETP increase risk of intracerebral hemorrhage

    NARCIS (Netherlands)

    Anderson, Christopher D.; Falcone, Guido J.; Phuah, Chia Ling; Radmanesh, Farid; Brouwers, H. Bart; Battey, Thomas W K; Biffi, Alessandro; Peloso, Gina M.; Liu, Dajiang J.; Ayres, Alison M.; Goldstein, Joshua N.; Viswanathan, Anand; Greenberg, Steven M.; Selim, Magdy; Meschia, James F.; Brown, Devin L.; Worrall, Bradford B.; Silliman, Scott L.; Tirschwell, David L.; Flaherty, Matthew L.; Kraft, Peter; Jagiella, Jeremiasz M.; Schmidt, Helena; Hansen, Björn M.; Jimenez-Conde, Jordi; Giralt-Steinhauer, Eva; Elosua, Roberto; Cuadrado-Godia, Elisa; Soriano, Carolina; van Nieuwenhuizen, Koen M.; Klijn, Catharina J M; Rannikmae, Kristiina; Samarasekera, Neshika; Salman, Rustam Al Shahi; Sudlow, Catherine L.; Deary, Ian J.; Morotti, Andrea; Pezzini, Alessandro; Pera, Joanna; Urbanik, Andrzej; Pichler, Alexander; Enzinger, Christian; Norrving, Bo; Montaner, Joan; Fernandez-Cadenas, Israel; Delgado, Pilar; Roquer, Jaume; Lindgren, Arne; Slowik, Agnieszka; Schmidt, Reinhold; Kidwell, Chelsea S.; Kittner, Steven J.; Waddy, Salina P.; Langefeld, Carl D.; Abecasis, Goncalo; Willer, Cristen J.; Kathiresan, Sekar; Woo, Daniel; Rosand, Jonathan

    2016-01-01

    Objective: In observational epidemiologic studies, higher plasma high-density lipoprotein cholesterol (HDL-C) has been associated with increased risk of intracerebral hemorrhage (ICH). DNA sequence variants that decrease cholesteryl ester transfer protein (CETP) gene activity increase plasma HDL-C;

  17. Fatty-acid binding protein 4 gene variants and childhood obesity: potential implications for insulin sensitivity and CRP levels

    Directory of Open Access Journals (Sweden)

    Bhattacharjee Rakesh

    2010-02-01

    Full Text Available Abstract Introduction Obesity increases the risk for insulin resistance and metabolic syndrome in both adults and children. FABP4 is a member of the intracellular lipid-binding protein family that is predominantly expressed in adipose tissue, and plays an important role in maintaining glucose and lipid homeostasis. The purpose of this study was to measure FABP4 plasma levels, assess FABP4 allelic variants, and explore potential associations with fasting glucose and insulin levels in young school-age children with and without obesity. Methods A total of 309 consecutive children ages 5-7 years were recruited. Children were divided based on BMI z score into Obese (OB; BMI z score >1.65 and non-obese (NOB. Fasting plasma glucose, lipids, insulin, hsCRP, and FABP4 levels were measured. HOMA was used as correlate of insulin sensitivity. Four SNPs of the human FABP4 gene (rs1051231, rs2303519, rs16909233 and rs1054135, corresponding to several critical regions of the encoding FABP4 gene sequence were genotyped. Results Compared to NOB, circulating FABP4 levels were increased in OB, as were LDL, hsCRP and HOMA. FABP4 levels correlated with BMI, and also contributed to the variance of HOMA and hsCRP, but not serum lipids. The frequency of rs1054135 allelic variant was increased in OB, and was associated with increased FABP4 levels, while the presence of rs16909233 variant allele, although similar in OB and NOB, was associated with increased HOMA values. Conclusions Childhood obesity is associated with higher FABP4 levels that may promote cardiometabolic risk. The presence of selective SNPs in the FABP4 gene may account for increased risk for insulin resistance or systemic inflammation in the context of obesity.

  18. Whole exome re-sequencing implicates CCDC38 and cilia structure and function in resistance to smoking related airflow obstruction.

    Directory of Open Access Journals (Sweden)

    Louise V Wain

    2014-05-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a leading cause of global morbidity and mortality and, whilst smoking remains the single most important risk factor, COPD risk is heritable. Of 26 independent genomic regions showing association with lung function in genome-wide association studies, eleven have been reported to show association with airflow obstruction. Although the main risk factor for COPD is smoking, some individuals are observed to have a high forced expired volume in 1 second (FEV1 despite many years of heavy smoking. We hypothesised that these "resistant smokers" may harbour variants which protect against lung function decline caused by smoking and provide insight into the genetic determinants of lung health. We undertook whole exome re-sequencing of 100 heavy smokers who had healthy lung function given their age, sex, height and smoking history and applied three complementary approaches to explore the genetic architecture of smoking resistance. Firstly, we identified novel functional variants in the "resistant smokers" and looked for enrichment of these novel variants within biological pathways. Secondly, we undertook association testing of all exonic variants individually with two independent control sets. Thirdly, we undertook gene-based association testing of all exonic variants. Our strongest signal of association with smoking resistance for a non-synonymous SNP was for rs10859974 (P = 2.34 × 10(-4 in CCDC38, a gene which has previously been reported to show association with FEV1/FVC, and we demonstrate moderate expression of CCDC38 in bronchial epithelial cells. We identified an enrichment of novel putatively functional variants in genes related to cilia structure and function in resistant smokers. Ciliary function abnormalities are known to be associated with both smoking and reduced mucociliary clearance in patients with COPD. We suggest that genetic influences on the development or function of cilia in the bronchial

  19. OligoPVP: Phenotype-driven analysis of individual genomic information to prioritize oligogenic disease variants

    KAUST Repository

    Boudellioua, Imene

    2018-05-02

    Purpose: An increasing number of Mendelian disorders have been identified for which two or more variants in one or more genes are required to cause the disease, or significantly modify its severity or phenotype. It is difficult to discover such interactions using existing approaches. The purpose of our work is to develop and evaluate a system that can identify combinations of variants underlying oligogenic diseases in individual whole exome or whole genome sequences. Methods: Information that links patient phenotypes to databases of gene-phenotype associations observed in clinical research can provide useful information and improve variant prioritization for Mendelian diseases. Additionally, background knowledge about interactions between genes can be utilized to guide and restrict the selection of candidate disease modules. Results: We developed OligoPVP, an algorithm that can be used to identify variants in oligogenic diseases and their interactions, using whole exome or whole genome sequences together with patient phenotypes as input. We demonstrate that OligoPVP has significantly improved performance when compared to state of the art pathogenicity detection methods. Conclusions: Our results show that OligoPVP can efficiently detect oligogenic interactions using a phenotype-driven approach and identify etiologically important variants in whole genomes.

  20. Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses.

    Science.gov (United States)

    Cubillos, Francisco A; Brice, Claire; Molinet, Jennifer; Tisné, Sebastién; Abarca, Valentina; Tapia, Sebastián M; Oporto, Christian; García, Verónica; Liti, Gianni; Martínez, Claudio

    2017-06-07

    Saccharomyces cerevisiae is responsible for wine must fermentation. In this process, nitrogen represents a limiting nutrient and its scarcity results in important economic losses for the wine industry. Yeast isolates use different strategies to grow in poor nitrogen environments and their genomic plasticity enables adaptation to multiple habitats through improvements in nitrogen consumption. Here, we used a highly recombinant S. cerevisiae multi-parent population (SGRP-4X) derived from the intercross of four parental strains of different origins to identify new genetic variants responsible for nitrogen consumption differences during wine fermentation. Analysis of 165 fully sequenced F12 segregants allowed us to map 26 QTL in narrow intervals for 14 amino acid sources and ammonium, the majority of which represent genomic regions previously unmapped for these traits. To complement this strategy, we performed Bulk segregant RNA-seq (BSR-seq) analysis in segregants exhibiting extremely high and low ammonium consumption levels. This identified several QTL overlapping differentially expressed genes and refined the gene candidate search. Based on these approaches, we were able to validate ARO1 , PDC1 , CPS1 , ASI2 , LYP1 , and ALP1 allelic variants underlying nitrogen consumption differences between strains, providing evidence of many genes with small phenotypic effects. Altogether, these variants significantly shape yeast nitrogen consumption with important implications for evolution, ecological, and quantitative genomics. Copyright © 2017 Cubillos et al.

  1. Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses

    Directory of Open Access Journals (Sweden)

    Francisco A. Cubillos

    2017-06-01

    Full Text Available Saccharomyces cerevisiae is responsible for wine must fermentation. In this process, nitrogen represents a limiting nutrient and its scarcity results in important economic losses for the wine industry. Yeast isolates use different strategies to grow in poor nitrogen environments and their genomic plasticity enables adaptation to multiple habitats through improvements in nitrogen consumption. Here, we used a highly recombinant S. cerevisiae multi-parent population (SGRP-4X derived from the intercross of four parental strains of different origins to identify new genetic variants responsible for nitrogen consumption differences during wine fermentation. Analysis of 165 fully sequenced F12 segregants allowed us to map 26 QTL in narrow intervals for 14 amino acid sources and ammonium, the majority of which represent genomic regions previously unmapped for these traits. To complement this strategy, we performed Bulk segregant RNA-seq (BSR-seq analysis in segregants exhibiting extremely high and low ammonium consumption levels. This identified several QTL overlapping differentially expressed genes and refined the gene candidate search. Based on these approaches, we were able to validate ARO1, PDC1, CPS1, ASI2, LYP1, and ALP1 allelic variants underlying nitrogen consumption differences between strains, providing evidence of many genes with small phenotypic effects. Altogether, these variants significantly shape yeast nitrogen consumption with important implications for evolution, ecological, and quantitative genomics.

  2. Significance of functional disease-causal/susceptible variants identified by whole-genome analyses for the understanding of human diseases.

    Science.gov (United States)

    Hitomi, Yuki; Tokunaga, Katsushi

    2017-01-01

    Human genome variation may cause differences in traits and disease risks. Disease-causal/susceptible genes and variants for both common and rare diseases can be detected by comprehensive whole-genome analyses, such as whole-genome sequencing (WGS), using next-generation sequencing (NGS) technology and genome-wide association studies (GWAS). Here, in addition to the application of an NGS as a whole-genome analysis method, we summarize approaches for the identification of functional disease-causal/susceptible variants from abundant genetic variants in the human genome and methods for evaluating their functional effects in human diseases, using an NGS and in silico and in vitro functional analyses. We also discuss the clinical applications of the functional disease causal/susceptible variants to personalized medicine.

  3. Shift-Variant Multidimensional Systems.

    Science.gov (United States)

    1985-05-29

    x,y;u,v) is the system response at (x,y) to an unit impulse applied at (u,v). The presence of additive noise in the preceding input-output model of a...space model developed works very effi- ciently to deblur images affected by 2-D linear shift- varying blurs, its use, in presence of noise needs to be...causal linear shift-variant (LSV) system, whose impulse res- ponse is a K-th order degenerate sequence, a K-th order state-space model was obtained

  4. Autosomal recessive Noonan syndrome associated with biallelic LZTR1 variants.

    Science.gov (United States)

    Johnston, Jennifer J; van der Smagt, Jasper J; Rosenfeld, Jill A; Pagnamenta, Alistair T; Alswaid, Abdulrahman; Baker, Eva H; Blair, Edward; Borck, Guntram; Brinkmann, Julia; Craigen, William; Dung, Vu Chi; Emrick, Lisa; Everman, David B; van Gassen, Koen L; Gulsuner, Suleyman; Harr, Margaret H; Jain, Mahim; Kuechler, Alma; Leppig, Kathleen A; McDonald-McGinn, Donna M; Can, Ngoc Thi Bich; Peleg, Amir; Roeder, Elizabeth R; Rogers, R Curtis; Sagi-Dain, Lena; Sapp, Julie C; Schäffer, Alejandro A; Schanze, Denny; Stewart, Helen; Taylor, Jenny C; Verbeek, Nienke E; Walkiewicz, Magdalena A; Zackai, Elaine H; Zweier, Christiane; Zenker, Martin; Lee, Brendan; Biesecker, Leslie G

    2018-02-22

    PurposeTo characterize the molecular genetics of autosomal recessive Noonan syndrome.MethodsFamilies underwent phenotyping for features of Noonan syndrome in children and their parents. Two multiplex families underwent linkage analysis. Exome, genome, or multigene panel sequencing was used to identify variants. The molecular consequences of observed splice variants were evaluated by reverse-transcription polymerase chain reaction.ResultsTwelve families with a total of 23 affected children with features of Noonan syndrome were evaluated. The phenotypic range included mildly affected patients, but it was lethal in some, with cardiac disease and leukemia. All of the parents were unaffected. Linkage analysis using a recessive model supported a candidate region in chromosome 22q11, which includes LZTR1, previously shown to harbor mutations in patients with Noonan syndrome inherited in a dominant pattern. Sequencing analyses of 21 live-born patients and a stillbirth identified biallelic pathogenic variants in LZTR1, including putative loss-of-function, missense, and canonical and noncanonical splicing variants in the affected children, with heterozygous, clinically unaffected parents and heterozygous or normal genotypes in unaffected siblings.ConclusionThese clinical and genetic data confirm the existence of a form of Noonan syndrome that is inherited in an autosomal recessive pattern and identify biallelic mutations in LZTR1.Genet Med advance online publication, 22 February 2018; doi:10.1038/gim.2017.249.

  5. VaRank: a simple and powerful tool for ranking genetic variants

    Directory of Open Access Journals (Sweden)

    Véronique Geoffroy

    2015-03-01

    Full Text Available Background. Most genetic disorders are caused by single nucleotide variations (SNVs or small insertion/deletions (indels. High throughput sequencing has broadened the catalogue of human variation, including common polymorphisms, rare variations or disease causing mutations. However, identifying one variation among hundreds or thousands of others is still a complex task for biologists, geneticists and clinicians.Results. We have developed VaRank, a command-line tool for the ranking of genetic variants detected by high-throughput sequencing. VaRank scores and prioritizes variants annotated either by Alamut Batch or SnpEff. A barcode allows users to quickly view the presence/absence of variants (with homozygote/heterozygote status in analyzed samples. VaRank supports the commonly used VCF input format for variants analysis thus allowing it to be easily integrated into NGS bioinformatics analysis pipelines. VaRank has been successfully applied to disease-gene identification as well as to molecular diagnostics setup for several hundred patients.Conclusions. VaRank is implemented in Tcl/Tk, a scripting language which is platform-independent but has been tested only on Unix environment. The source code is available under the GNU GPL, and together with sample data and detailed documentation can be downloaded from http://www.lbgi.fr/VaRank/.

  6. Truncating variants in the majority of the cytoplasmic domain of PCDH15 are unlikely to cause Usher syndrome 1F.

    Science.gov (United States)

    Perreault-Micale, Cynthia; Frieden, Alexander; Kennedy, Caleb J; Neitzel, Dana; Sullivan, Jessica; Faulkner, Nicole; Hallam, Stephanie; Greger, Valerie

    2014-11-01

    Loss of function variants in the PCDH15 gene can cause Usher syndrome type 1F, an autosomal recessive disease associated with profound congenital hearing loss, vestibular dysfunction, and retinitis pigmentosa. The Ashkenazi Jewish population has an increased incidence of Usher syndrome type 1F (founder variant p.Arg245X accounts for 75% of alleles), yet the variant spectrum in a panethnic population remains undetermined. We sequenced the coding region and intron-exon borders of PCDH15 using next-generation DNA sequencing technology in approximately 14,000 patients from fertility clinics. More than 600 unique PCDH15 variants (single nucleotide changes and small indels) were identified, including previously described pathogenic variants p.Arg3X, p.Arg245X (five patients), p.Arg643X, p.Arg929X, and p.Arg1106X. Novel truncating variants were also found, including one in the N-terminal extracellular domain (p.Leu877X), but all other novel truncating variants clustered in the exon 33 encoded C-terminal cytoplasmic domain (52 patients, 14 variants). One variant was observed predominantly in African Americans (carrier frequency of 2.3%). The high incidence of truncating exon 33 variants indicates that they are unlikely to cause Usher syndrome type 1F even though many remove a large portion of the gene. They may be tolerated because PCDH15 has several alternate cytoplasmic domain exons and differentially spliced isoforms may function redundantly. Effects of some PCDH15 truncating variants were addressed by deep sequencing of a panethnic population. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  7. Comparison of two Next Generation sequencing platforms for full genome sequencing of Classical Swine Fever Virus

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Pedersen, Anders Gorm; Höper, Dirk

    2013-01-01

    to the consensus sequence. Additionally, we got an average sequence depth for the genome of 4000 for the Iontorrent PGM and 400 for the FLX platform making the mapping suitable for single nucleotide variant (SNV) detection. The analysis revealed a single non-silent SNV A10665G leading to the amino acid change D......Next Generation Sequencing (NGS) is becoming more adopted into viral research and will be the preferred technology in the years to come. We have recently sequenced several strains of Classical Swine Fever Virus (CSFV) by NGS on both Genome Sequencer FLX (GS FLX) and Iontorrent PGM platforms...

  8. Characterisation of myosin heavy chain gene variants in the fast and slow muscle fibres of gammarid amphipods.

    Science.gov (United States)

    Whiteley, N M; Magnay, J L; McCleary, S J; Nia, S Khazraee; El Haj, A J; Rock, J

    2010-10-01

    Recent molecular work has revealed a large diversity of myosin heavy chain (MyHC) gene variants in the abdominal musculature of gammarid amphipods. An unusual truncated MyHC transcript from the loop 1 region (Variant A(3)) was consistently observed in multiple species and populations. The current study aimed to determine whether this MyHC variant is specific to a particular muscle fibre type, as a change in net charge to the loop 1 region of Variant A(3) could be functionally significant. The localisation of different fibre types within the abdominal musculature of several gammarid species revealed that the deep flexor and extensor muscles are fast-twitch muscle fibres. The dorsal superficial muscles were identified as slow fibres and the muscles extrinsic to the pleopods were identified as intermediate fibres. Amplification of loop 1 region mRNA from isolated superficial extensor and deep flexor muscles, and subsequent liquid chromatography and sequence analysis revealed that Variant A(3) was the primary MyHC variant in slow muscles, and the conserved A(1) sequence was the primary variant in fast muscles. The specific role of Variant A(3) in the slow muscles remains to be investigated. 2010 Elsevier Inc. All rights reserved.

  9. Variants of sequence family B Thermococcus kodakaraensis DNA polymerase with increased mismatch extension selectivity.

    Directory of Open Access Journals (Sweden)

    Claudia Huber

    Full Text Available Fidelity and selectivity of DNA polymerases are critical determinants for the biology of life, as well as important tools for biotechnological applications. DNA polymerases catalyze the formation of DNA strands by adding deoxynucleotides to a primer, which is complementarily bound to a template. To ensure the integrity of the genome, DNA polymerases select the correct nucleotide and further extend the nascent DNA strand. Thus, DNA polymerase fidelity is pivotal for ensuring that cells can replicate their genome with minimal error. DNA polymerases are, however, further optimized for more specific biotechnological or diagnostic applications. Here we report on the semi-rational design of mutant libraries derived by saturation mutagenesis at single sites of a 3'-5'-exonuclease deficient variant of Thermococcus kodakaraensis DNA polymerase (KOD pol and the discovery for variants with enhanced mismatch extension selectivity by screening. Sites of potential interest for saturation mutagenesis were selected by their proximity to primer or template strands. The resulting libraries were screened via quantitative real-time PCR. We identified three variants with single amino acid exchanges-R501C, R606Q, and R606W-which exhibited increased mismatch extension selectivity. These variants were further characterized towards their potential in mismatch discrimination. Additionally, the identified enzymes were also able to differentiate between cytosine and 5-methylcytosine. Our results demonstrate the potential in characterizing and developing DNA polymerases for specific PCR based applications in DNA biotechnology and diagnostics.

  10. Characterization of promoter sequence of toll-like receptor genes in Vechur cattle

    Directory of Open Access Journals (Sweden)

    R. Lakshmi

    2016-06-01

    Full Text Available Aim: To analyze the promoter sequence of toll-like receptor (TLR genes in Vechur cattle, an indigenous breed of Kerala with the sequence of Bos taurus and access the differences that could be attributed to innate immune responses against bovine mastitis. Materials and Methods: Blood samples were collected from Jugular vein of Vechur cattle, maintained at Vechur cattle conservation center of Kerala Veterinary and Animal Sciences University, using an acid-citrate-dextrose anticoagulant. The genomic DNA was extracted, and polymerase chain reaction was carried out to amplify the promoter region of TLRs. The amplified product of TLR2, 4, and 9 promoter regions was sequenced by Sanger enzymatic DNA sequencing technique. Results: The sequence of promoter region of TLR2 of Vechur cattle with the B. taurus sequence present in GenBank showed 98% similarity and revealed variants for four sequence motifs. The sequence of the promoter region of TLR4 of Vechur cattle revealed 99% similarity with that of B. taurus sequence but not reveals significant variant in motifregions. However, two heterozygous loci were observed from the chromatogram. Promoter sequence of TLR9 gene also showed 99% similarity to B. taurus sequence and revealed variants for four sequence motifs. Conclusion: The results of this study indicate that significant variation in the promoter of TLR2 and 9 genes in Vechur cattle breed and may potentially link the influence the innate immunity response against mastitis diseases.

  11. A comprehensive approach to identification of pathogenic FANCA variants in Fanconi anemia patients and their families.

    Science.gov (United States)

    Kimble, Danielle C; Lach, Francis P; Gregg, Siobhan Q; Donovan, Frank X; Flynn, Elizabeth K; Kamat, Aparna; Young, Alice; Vemulapalli, Meghana; Thomas, James W; Mullikin, James C; Auerbach, Arleen D; Smogorzewska, Agata; Chandrasekharappa, Settara C

    2018-02-01

    Fanconi anemia (FA) is a rare recessive DNA repair deficiency resulting from mutations in one of at least 22 genes. Two-thirds of FA families harbor mutations in FANCA. To genotype patients in the International Fanconi Anemia Registry (IFAR) we employed multiple methodologies, screening 216 families for FANCA mutations. We describe identification of 57 large deletions and 261 sequence variants, in 159 families. All but seven families harbored distinct combinations of two mutations demonstrating high heterogeneity. Pathogenicity of the 18 novel missense variants was analyzed functionally by determining the ability of the mutant cDNA to improve the survival of a FANCA-null cell line when treated with MMC. Overexpressed pathogenic missense variants were found to reside in the cytoplasm, and nonpathogenic in the nucleus. RNA analysis demonstrated that two variants (c.522G > C and c.1565A > G), predicted to encode missense variants, which were determined to be nonpathogenic by a functional assay, caused skipping of exons 5 and 16, respectively, and are most likely pathogenic. We report 48 novel FANCA sequence variants. Defining both variants in a large patient cohort is a major step toward cataloging all FANCA variants, and permitting studies of genotype-phenotype correlations. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  12. Identification of low-frequency variants associated with gout and serum uric acid levels

    DEFF Research Database (Denmark)

    Sulem, Patrick; Gudbjartsson, Daniel F; Walters, G Bragi

    2011-01-01

    ,506 individuals for whom serum uric acid measurements were available. We identified a low-frequency missense variant (c.1580C>G) in ALDH16A1 associated with gout (OR = 3.12, P = 1.5 × 10(-16), at-risk allele frequency = 0.019) and serum uric acid levels (effect = 0.36 s.d., P = 4.5 × 10(-21)). We confirmed.......48 s.d., P = 4.5 × 10(-16)). This variant is close to a common variant previously associated with serum uric acid levels. This work illustrates how whole-genome sequencing data allow the detection of associations between low-frequency variants and complex traits....

  13. Characterization of Canine parvovirus 2 variants circulating in Greece.

    Science.gov (United States)

    Ntafis, Vasileios; Xylouri, Eftychia; Kalli, Iris; Desario, Costantina; Mari, Viviana; Decaro, Nicola; Buonavoglia, Canio

    2010-09-01

    The aim of the present study was to characterize Canine parvovirus 2 (CPV-2) variants currently circulating in Greece. Between March 2008 and March 2009, 167 fecal samples were collected from diarrheic dogs from different regions of Greece. Canine parvovirus 2 was detected by standard polymerase chain reaction, whereas minor groove binder probe assays were used to distinguish genetic variants and discriminate between vaccine and field strains. Of 84 CPV-2-positive samples, 81 CPV-2a, 1 CPV-2b, and 2 CPV-2c were detected. Vaccine strains were not detected in any sample. Sequence analysis of the VP2 gene of the 2 CPV-2c viruses revealed up to 100% amino acid identity with the CPV-2c strains previously detected in Europe. The results indicated that, unlike other European countries, CPV-2a remains the most common variant in Greece, and that the CPV-2c variant found in Europe is also present in Greece.

  14. Molecular characterization of canine parvovirus strains in Argentina: Detection of the pathogenic variant CPV2c in vaccinated dogs.

    Science.gov (United States)

    Calderon, Marina Gallo; Mattion, Nora; Bucafusco, Danilo; Fogel, Fernando; Remorini, Patricia; La Torre, Jose

    2009-08-01

    PCR amplification with sequence-specific primers was used to detect canine parvovirus (CPV) DNA in 38 rectal swabs from Argentine domestic dogs with symptoms compatible with parvovirus disease. Twenty-seven out of 38 samples analyzed were CPV positive. The classical CPV2 strain was not detected in any of the samples, but nine samples were identified as CPV2a variant and 18 samples as CPV2b variant. Further sequence analysis revealed a mutation at amino acid 426 of the VP2 gene (Asp426Glu), characteristic of the CPV2c variant, in 14 out of 18 of the samples identified initially by PCR as CPV2b. The appearance of CPV2c variant in Argentina might be dated at least to the year 2003. Three different pathogenic CPV variants circulating currently in the Argentine domestic dog population were identified, with CPV2c being the only variant affecting vaccinated and unvaccinated dogs during the year 2008.

  15. CoVaCS: a consensus variant calling system.

    Science.gov (United States)

    Chiara, Matteo; Gioiosa, Silvia; Chillemi, Giovanni; D'Antonio, Mattia; Flati, Tiziano; Picardi, Ernesto; Zambelli, Federico; Horner, David Stephen; Pesole, Graziano; Castrignanò, Tiziana

    2018-02-05

    The advent and ongoing development of next generation sequencing technologies (NGS) has led to a rapid increase in the rate of human genome re-sequencing data, paving the way for personalized genomics and precision medicine. The body of genome resequencing data is progressively increasing underlining the need for accurate and time-effective bioinformatics systems for genotyping - a crucial prerequisite for identification of candidate causal mutations in diagnostic screens. Here we present CoVaCS, a fully automated, highly accurate system with a web based graphical interface for genotyping and variant annotation. Extensive tests on a gold standard benchmark data-set -the NA12878 Illumina platinum genome- confirm that call-sets based on our consensus strategy are completely in line with those attained by similar command line based approaches, and far more accurate than call-sets from any individual tool. Importantly our system exhibits better sensitivity and higher specificity than equivalent commercial software. CoVaCS offers optimized pipelines integrating state of the art tools for variant calling and annotation for whole genome sequencing (WGS), whole-exome sequencing (WES) and target-gene sequencing (TGS) data. The system is currently hosted at Cineca, and offers the speed of a HPC computing facility, a crucial consideration when large numbers of samples must be analysed. Importantly, all the analyses are performed automatically allowing high reproducibility of the results. As such, we believe that CoVaCS can be a valuable tool for the analysis of human genome resequencing studies. CoVaCS is available at: https://bioinformatics.cineca.it/covacs .

  16. OCA2 splice site variant in German Spitz dogs with oculocutaneous albinism.

    Directory of Open Access Journals (Sweden)

    Madleina Caduff

    Full Text Available We investigated a German Spitz family where the mating of a black male to a white female had yielded three puppies with an unexpected light brown coat color, lightly pigmented lips and noses, and blue eyes. Combined linkage and homozygosity analysis based on a fully penetrant monogenic autosomal recessive mode of inheritance identified a critical interval of 15 Mb on chromosome 3. We obtained whole genome sequence data from one affected dog, three wolves, and 188 control dogs. Filtering for private variants revealed a single variant with predicted high impact in the critical interval in LOC100855460 (XM_005618224.1:c.377+2T>G LT844587.1:c.-45+2T>G. The variant perfectly co-segregated with the phenotype in the family. We genotyped 181 control dogs with normal pigmentation from diverse breeds including 22 unrelated German Spitz dogs, which were all homozygous wildtype. Comparative sequence analyses revealed that LOC100855460 actually represents the 5'-end of the canine OCA2 gene. The CanFam 3.1 reference genome assembly is incorrect and separates the first two exons from the remaining exons of the OCA2 gene. We amplified a canine OCA2 cDNA fragment by RT-PCR and determined the correct full-length mRNA sequence (LT844587.1. Variants in the OCA2 gene cause oculocutaneous albinism type 2 (OCA2 in humans, pink-eyed dilution in mice, and similar phenotypes in corn snakes, medaka and Mexican cave tetra fish. We therefore conclude that the observed oculocutaneous albinism in German Spitz is most likely caused by the identified variant in the 5'-splice site of the first intron of the canine OCA2 gene.

  17. A massive parallel sequencing workflow for diagnostic genetic testing of mismatch repair genes

    Science.gov (United States)

    Hansen, Maren F; Neckmann, Ulrike; Lavik, Liss A S; Vold, Trine; Gilde, Bodil; Toft, Ragnhild K; Sjursen, Wenche

    2014-01-01

    The purpose of this study was to develop a massive parallel sequencing (MPS) workflow for diagnostic analysis of mismatch repair (MMR) genes using the GS Junior system (Roche). A pathogenic variant in one of four MMR genes, (MLH1, PMS2, MSH6, and MSH2), is the cause of Lynch Syndrome (LS), which mainly predispose to colorectal cancer. We used an amplicon-based sequencing method allowing specific and preferential amplification of the MMR genes including PMS2, of which several pseudogenes exist. The amplicons were pooled at different ratios to obtain coverage uniformity and maximize the throughput of a single-GS Junior run. In total, 60 previously identified and distinct variants (substitutions and indels), were sequenced by MPS and successfully detected. The heterozygote detection range was from 19% to 63% and dependent on sequence context and coverage. We were able to distinguish between false-positive and true-positive calls in homopolymeric regions by cross-sample comparison and evaluation of flow signal distributions. In addition, we filtered variants according to a predefined status, which facilitated variant annotation. Our study shows that implementation of MPS in routine diagnostics of LS can accelerate sample throughput and reduce costs without compromising sensitivity, compared to Sanger sequencing. PMID:24689082

  18. Whole-genome sequencing of monozygotic twins discordant for schizophrenia indicates multiple genetic risk factors for schizophrenia

    Institute of Scientific and Technical Information of China (English)

    Jinsong Tang; Fan He; Fengyu Zhang; Yin Yao Shugart; Chunyu Liu; Yanqing Tang; Raymond C.K.Chan; Chuan-Yue Wang; Yong-Gang Yao; Xiaogang Chen; Yu Fan; Hong Li; Qun Xiang; Deng-Feng Zhang; Zongchang Li; Ying He; Yanhui Liao; Ya Wang

    2017-01-01

    Schizophrenia is a common disorder with a high heritability,but its genetic architecture is still elusive.We implemented whole-genome sequencing (WGS) analysis of 8 families with monozygotic (MZ) twin pairs discordant for schizophrenia to assess potential association of de novo mutations (DNMs) or inherited variants with susceptibility to schizophrenia.Eight non-synonymous DNMs (including one splicing site) were identified and shared by twins,which were either located in previously reported schizophrenia risk genes (p.V24689I mutation in TTN,p.S2506T mutation in GCN1L1,IVS3+1G > T in DOCK1) or had a benign to damaging effect according to in silico prediction analysis.By searching the inherited rare damaging or loss-of-function (LOF) variants and common susceptible alleles from three classes of schizophrenia candidate genes,we were able to distill genetic alterations in several schizophrenia risk genes,including GAD1,PLXNA2,RELN and FEZ1.Four inherited copy number variations (CNVs;including a large deletion at 16p13.11) implicated for schizophrenia were identified in four families,respectively.Most of families carried both missense DNMs and inherited risk variants,which might suggest that DNMs,inherited rare damaging variants and common risk alleles together conferred to schizophrenia susceptibility.Our results support that schizophrenia is caused by a combination of multiple genetic factors,with each DNM/variant showing a relatively small effect size.

  19. Rare Variant Analysis of Human and Rodent Obesity Genes in Individuals with Severe Childhood Obesity

    NARCIS (Netherlands)

    Hendricks, Audrey E.; Bochukova, Elena G.; Marenne, Gaëlle; Keogh, Julia M.; Atanassova, Neli; Bounds, Rebecca; Wheeler, Eleanor; Mistry, Vanisha; Henning, Elana; Körner, Antje; Muddyman, Dawn; McCarthy, Shane; Hinney, Anke; Hebebrand, Johannes; Scott, Robert A.; Langenberg, Claudia; Wareham, Nick J.; Surendran, Praveen; Howson, Joanna M M; Butterworth, Adam S.; Danesh, John; Nordestgaard, Børge G.; Nielsen, Sune F.; Afzal, Shoaib; Papadia, Sofia; Ashford, Sofie; Garg, Sumedha; Millhauser, Glenn L.; Palomino, Rafael I.; Kwasniewska, Alexandra; Tachmazidou, Ioanna; O'Rahilly, Stephen; Zeggini, Eleftheria; Barroso, Inês; Farooqi, I. Sadaf; Benzeval, Michaela; Burton, Jonathan; Buck, Nicholas; Jäckle, Annette; Kumari, Meena; Laurie, Heather; Lynn, Peter; Pudney, Stephen; Rabe, Birgitta; Wolke, Dieter; Overvad, Kim; Tjønneland, Anne; Clavel-Chapelon, Francoise; Kaaks, Rudolf; Boeing, Heiner; Trichopoulou, Antonia; Ferrari, Pietro; Palli, Domenico; Krogha, Vittorio; Panico, Salvatore; Tuminoa, Rosario; Matullo, Giuseppe; Boer, Jolanda Ma; Van Der Schouw, Yvonne; Weiderpass, Elisabete; Quiros, J. Ramon; Sánchez, María José; Navarro, Carmen; Moreno-Iribas, Conchi; Arriola, Larraitz; Melander, Olle; Wennberg, Patrik; Key, Timothy J.; Riboli, Elio; Al-Turki, Saeed; Anderson, Carl A; Anney, Richard; Antony, Dinu; Soler Artigas, María; Ayub, Muhammad; Bala, Senduran; Barrett, Jeffrey C; Beales, Phil; Bentham, Jamie; Bhattacharyaa, Shoumo; Birney, Ewan; Blackwooda, Douglas; Bobrow, Martin; Bolton, Patrick F.; Boustred, Chris; Breen, Gerome; Calissanoa, Mattia; Carss, Keren; Charlton, Ruth; Chatterjee, Krishna; Chen, Lu; Ciampia, Antonio; Cirak, Sebahattin; Clapham, Peter; Clement, Gail; Coates, Guy; Coccaa, Massimiliano; Collier, David A; Cosgrove, Catherine; Coxa, Tony; Craddock, Nick; Crooks, Lucy; Curran, Sarah; Curtis, David; Daly, Allan; Danecek, Petr; Day, Ian N M; Day-Williams, Aaron G; Dominiczak, Anna; Down, Thomas; Du, Yuanping; Dunham, Ian; Durbin, Richard; Edkins, Sarah; Ekong, Rosemary; Ellis, Peter; Evansa, David M.; FitzPatrick, David R.; Flicek, Paul; Floyd, James S.; Foley, A. Reghan; Franklin, Christopher S.; Futema, Marta; Gallagher, Louise; Gaunt, Tom R.; Geihs, Matthias; Geschwind, Daniel H.; Greenwood, Celia M.T.; Griffin, Heather; Grozeva, Detelina; Guo, Xiaosen; Guo, Xueqin; Gurling, Hugh; Hart, Deborah J.; Holmans, Peter A; Howie, Bryan; Huang, Jie; Huang, Liren; Hubbard, Tim; Humphries, Steve E.; Hurles, Matthew E.; Hysi, Pirro G.; Iotchkova, Valentina; Jackson, David K.; Jamshidi, Yalda; Joyce, Chris; Karczewski, Konrad J.; Kaye, Jane; Keane, Thomas; Kemp, John P.; Kennedy, Karen; Kent, Alastair; Khawaja, Farrah; Van Kogelenberg, Margriet; Kolb-Kokocinski, Anja; Lachance, Genevieve; Langford, Cordelia; Lawson, Daniel; Lee, Irene; Lek, Monkol; Li, Rui; Li, Yingrui; Liang, Jieqin; Lin, Hong; Liu, Ryan; Lönnqvist, Jouko; Lopes, Luis R.; Lopes, Margarida; MacArthur, Daniel G.; Mangino, Massimo; Marchini, Jonathan; Maslen, John; Mathieson, Iain; McGuffin, Peter; McIntosh, Andrew M.; McKechanie, Andrew G.; McQuillin, Andrew; Memari, Yasin; Metrustry, Sarah; Migone, Nicola; Min, Josine L.; Mitchison, Hannah M; Moayyeri, Alireza; Morris, Andrew D.; Morris, James; Muntoni, Francesco; Northstone, Kate; O'Donovan, Michael C.; Onoufriadis, Alexandros; Oualkacha, Karim; Owen, Michael J; Palotie, Aarno; Panoutsopoulou, Kalliope; Parker, Victoria; Parr, Jeremy R.; Paternoster, Lavinia; Paunio, Tiina; Payne, Felicity; Payne, Stewart J.; Perry, John R. B.; Pietilainen, Olli; Plagnol, Vincent; Pollitt, Rebecca C.; Porteous, David J.; Povey, Sue; Quail, Michael A.; Quaye, Lydia; Raymond, F. Lucy; Rehnström, Karola; Richards, J Brent; Ridout, Cheryl K.; Ring, Susan M.; Ritchie, Graham R.S.; Roberts, Nicola; Robinson, Rachel L.; Savage, David B.; Scambler, Peter; Schiffels, Stephan; Schmidts, Miriam; Schoenmakers, Nadia; Scott, Richard H.; Semple, Robert K.; Serra, Eva; Sharp, Sally I.; Shaw, Adam; Shihab, Hashem A.; Shin, So Youn; Skuse, David; Small, Kerrin S; Smee, Carol; Smith, Blair H.; Davey Smith, George; Soranzo, Nicole; Southam, Lorraine; Spasic-Boskovic, Olivera; Spector, Timothy D; St Clair, David; St Pourcain, Beate; Stalker, Jim; Stevens, Elizabeth; Sun, Jianping; Surdulescu, Gabriela L; Suvisaari, Jaana; Syrris, Petros; Taylor, Rohan; Tian, Jing; Timpson, Nicholas J.; Tobin, Martin D; Valdes, Ana M.; Vandersteen, Anthony M.; Vijayarangakannan, Parthiban; Visscher, Peter M.; Wain, Louise V.; Walter, Klaudia; Walters, James T.R.; Wang, Guangbiao; Wang, Jun; Wang, Nai-Yu; Ward, Kirsten; Whyte, Tamieka; Williams, Hywel J.; Williamson, Kathleen A.; Wilson, Crispian; Wilson, Scott G.; Wong, Kim; Xu, Changjiang; Yang, Jian; Zhang, Feng; Zhang, Pingbo; Zheng, Hou Feng

    2017-01-01

    Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GNAS,

  20. Rare variant analysis of human and rodent obesity genes in individuals with severe childhood obesity

    DEFF Research Database (Denmark)

    Hendricks, Audrey E.; Bochukova, Elena G.; Marenne, Gaëlle

    2017-01-01

    Obesity is a genetically heterogeneous disorder. Using targeted and whole-exome sequencing, we studied 32 human and 87 rodent obesity genes in 2,548 severely obese children and 1,117 controls. We identified 52 variants contributing to obesity in 2% of cases including multiple novel variants in GN...

  1. Gene-wise association of variants in four lysosomal storage disorder genes in neuropathologically confirmed Lewy body disease.

    Science.gov (United States)

    Clark, Lorraine N; Chan, Robin; Cheng, Rong; Liu, Xinmin; Park, Naeun; Parmalee, Nancy; Kisselev, Sergey; Cortes, Etty; Torres, Paola A; Pastores, Gregory M; Vonsattel, Jean P; Alcalay, Roy; Marder, Karen; Honig, Lawrence L; Fahn, Stanley; Mayeux, Richard; Shelanski, Michael; Di Paolo, Gilbert; Lee, Joseph H

    2015-01-01

    Variants in GBA are associated with Lewy Body (LB) pathology. We investigated whether variants in other lysosomal storage disorder (LSD) genes also contribute to disease pathogenesis. We performed a genetic analysis of four LSD genes including GBA, HEXA, SMPD1, and MCOLN1 in 231 brain autopsies. Brain autopsies included neuropathologically defined LBD without Alzheimer Disease (AD) changes (n = 59), AD without significant LB pathology (n = 71), Alzheimer disease and lewy body variant (ADLBV) (n = 68), and control brains without LB or AD neuropathology (n = 33). Sequencing of HEXA, SMPD1, MCOLN1 and GBA followed by 'gene wise' genetic association analysis was performed. To determine the functional effect, a biochemical analysis of GBA in a subset of brains was also performed. GCase activity was measured in a subset of brain samples (n = 64) that included LBD brains, with or without GBA mutations, and control brains. A lipidomic analysis was also performed in brain autopsies (n = 67) which included LBD (n = 34), ADLBV (n = 3), AD (n = 4), PD (n = 9) and control brains (n = 17), comparing GBA mutation carriers to non-carriers. In a 'gene-wise' analysis, variants in GBA, SMPD1 and MCOLN1 were significantly associated with LB pathology (p range: 0.03-4.14 x10(-5)). Overall, the mean levels of GCase activity were significantly lower in GBA mutation carriers compared to non-carriers (plipid classes, ceramides and sphingolipids, was observed in LBD brains carrying GBA mutations compared to controls (p range: p<0.05-p<0.01). Our study indicates that variants in GBA, SMPD1 and MCOLN1 are associated with LB pathology. Biochemical data comparing GBA mutation carrier to non-carriers support these findings, which have important implications for biomarker development and therapeutic strategies.

  2. Gene-wise association of variants in four lysosomal storage disorder genes in neuropathologically confirmed Lewy body disease.

    Directory of Open Access Journals (Sweden)

    Lorraine N Clark

    Full Text Available Variants in GBA are associated with Lewy Body (LB pathology. We investigated whether variants in other lysosomal storage disorder (LSD genes also contribute to disease pathogenesis.We performed a genetic analysis of four LSD genes including GBA, HEXA, SMPD1, and MCOLN1 in 231 brain autopsies. Brain autopsies included neuropathologically defined LBD without Alzheimer Disease (AD changes (n = 59, AD without significant LB pathology (n = 71, Alzheimer disease and lewy body variant (ADLBV (n = 68, and control brains without LB or AD neuropathology (n = 33. Sequencing of HEXA, SMPD1, MCOLN1 and GBA followed by 'gene wise' genetic association analysis was performed. To determine the functional effect, a biochemical analysis of GBA in a subset of brains was also performed. GCase activity was measured in a subset of brain samples (n = 64 that included LBD brains, with or without GBA mutations, and control brains. A lipidomic analysis was also performed in brain autopsies (n = 67 which included LBD (n = 34, ADLBV (n = 3, AD (n = 4, PD (n = 9 and control brains (n = 17, comparing GBA mutation carriers to non-carriers.In a 'gene-wise' analysis, variants in GBA, SMPD1 and MCOLN1 were significantly associated with LB pathology (p range: 0.03-4.14 x10(-5. Overall, the mean levels of GCase activity were significantly lower in GBA mutation carriers compared to non-carriers (p<0.001. A significant increase and accumulation of several species for the lipid classes, ceramides and sphingolipids, was observed in LBD brains carrying GBA mutations compared to controls (p range: p<0.05-p<0.01.Our study indicates that variants in GBA, SMPD1 and MCOLN1 are associated with LB pathology. Biochemical data comparing GBA mutation carrier to non-carriers support these findings, which have important implications for biomarker development and therapeutic strategies.

  3. High-accuracy biodistribution analysis of adeno-associated virus variants by double barcode sequencing.

    Science.gov (United States)

    Marsic, Damien; Méndez-Gómez, Héctor R; Zolotukhin, Sergei

    2015-01-01

    Biodistribution analysis is a key step in the evaluation of adeno-associated virus (AAV) capsid variants, whether natural isolates or produced by rational design or directed evolution. Indeed, when screening candidate vectors, accurate knowledge about which tissues are infected and how efficiently is essential. We describe the design, validation, and application of a new vector, pTR-UF50-BC, encoding a bioluminescent protein, a fluorescent protein and a DNA barcode, which can be used to visualize localization of transduction at the organism, organ, tissue, or cellular levels. In addition, by linking capsid variants to different barcoded versions of the vector and amplifying the barcode region from various tissue samples using barcoded primers, biodistribution of viral genomes can be analyzed with high accuracy and efficiency.

  4. Application of rare variant transmission disequilibrium tests to epileptic encephalopathy trio sequence data

    DEFF Research Database (Denmark)

    2017-01-01

    The classic epileptic encephalopathies, including infantile spasms (IS) and Lennox-Gastaut syndrome (LGS), are severe seizure disorders that usually arise sporadically. De novo variants in genes mainly encoding ion channel and synaptic proteins have been found to account for over 15% of patients...... with IS or LGS. The contribution of autosomal recessive genetic variation, however, is less well understood. We implemented a rare variant transmission disequilibrium test (TDT) to search for autosomal recessive epileptic encephalopathy genes in a cohort of 320 outbred patient-parent trios that were generally...... not find evidence of a role for individual autosomal recessive genes, our current sample is insufficiently powered to assess the overall role of autosomal recessive genotypes in an outbred epileptic encephalopathy population....

  5. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity.

    Science.gov (United States)

    Sata, F; Sapone, A; Elizondo, G; Stocker, P; Miller, V P; Zheng, W; Raunio, H; Crespi, C L; Gonzalez, F J

    2000-01-01

    To determine the existence of mutant and variant CgammaP3A4 alleles in three racial groups and to assess functions of the variant alleles by complementary deoxyribonucleic acid (cDNA) expression. A bacterial artificial chromosome that contains the complete CgammaP3A4 gene was isolated and the exons and surrounding introns were directly sequenced to develop primers to polymerase chain reaction (PCR) amplify and sequence the gene from lymphocyte DNA. DNA samples from Chinese, black, and white subjects were screened. Mutating the affected amino acid in the wild-type cDNA and expressing the variant enzyme with use of the baculovirus system was used to functionally evaluate the variant allele having a missense mutation. To investigate the existence of mutant and variant CgammaP3A4 alleles in humans, all 13 exons and the 5'-flanking region of the human CgammaP3A4 gene in three racial groups were sequenced and four alleles were identified. An A-->G point mutation in the 5'-flanking region of the human CgammaP3A4 gene, designated CgammaP3A4*1B, was found in the three different racial groups. The frequency of this allele in a white population was 4.2%, whereas it was 66.7% in black subjects. The CgammaP3A4*1B allele was not found in Chinese subjects. A second variant allele, designated CgammaP3A4*2, having a Ser222Pro change, was found at a frequency of 2.7% in the white population and was absent in the black subjects and Chinese subjects analyzed. Baculovirus-directed cDNA expression revealed that the CYP3A4*2 P450 had a lower intrinsic clearance for the CYP3A4 substrate nifedipine compared with the wild-type enzyme but was not significantly different from the wild-type enzyme for testosterone 6beta-hydroxylation. Another rare allele, designated CgammaP3A4*3, was found in a single Chinese subject who had a Met445Thr change in the conserved heme-binding region of the P450. These are the first examples of potential function polymorphisms resulting from missense mutations in

  6. Distribution of Bartonella henselae Variants in Patients, Reservoir Hosts and Vectors in Spain

    Science.gov (United States)

    Gil, Horacio; Escudero, Raquel; Pons, Inmaculada; Rodríguez-Vargas, Manuela; García-Esteban, Coral; Rodríguez-Moreno, Isabel; García-Amil, Cristina; Lobo, Bruno; Valcárcel, Félix; Pérez, Azucena; Jiménez, Santos; Jado, Isabel; Juste, Ramón; Segura, Ferrán; Anda, Pedro

    2013-01-01

    We have studied the diversity of B. henselae circulating in patients, reservoir hosts and vectors in Spain. In total, we have fully characterized 53 clinical samples from 46 patients, as well as 78 B. henselae isolates obtained from 35 cats from La Rioja and Catalonia (northeastern Spain), four positive cat blood samples from which no isolates were obtained, and three positive fleas by Multiple Locus Sequence Typing and Multiple Locus Variable Number Tandem Repeats Analysis. This study represents the largest series of human cases characterized with these methods, with 10 different sequence types and 41 MLVA profiles. Two of the sequence types and 35 of the profiles were not described previously. Most of the B. henselae variants belonged to ST5. Also, we have identified a common profile (72) which is well distributed in Spain and was found to persist over time. Indeed, this profile seems to be the origin from which most of the variants identified in this study have been generated. In addition, ST5, ST6 and ST9 were found associated with felines, whereas ST1, ST5 and ST8 were the most frequent sequence types found infecting humans. Interestingly, some of the feline associated variants never found on patients were located in a separate clade, which could represent a group of strains less pathogenic for humans. PMID:23874563

  7. An evaluation of different target enrichment methods in pooled sequencing designs for complex disease association studies.

    Directory of Open Access Journals (Sweden)

    Aaron G Day-Williams

    Full Text Available Pooled sequencing can be a cost-effective approach to disease variant discovery, but its applicability in association studies remains unclear. We compare sequence enrichment methods coupled to next-generation sequencing in non-indexed pools of 1, 2, 10, 20 and 50 individuals and assess their ability to discover variants and to estimate their allele frequencies. We find that pooled resequencing is most usefully applied as a variant discovery tool due to limitations in estimating allele frequency with high enough accuracy for association studies, and that in-solution hybrid-capture performs best among the enrichment methods examined regardless of pool size.

  8. A new HCV genotype 6 subtype designated 6v was confirmed with three complete genome sequences.

    Science.gov (United States)

    Wang, Yizhong; Xia, Xueshan; Li, Chunhua; Maneekarn, Niwat; Xia, Wenjie; Zhao, Wenhua; Feng, Yue; Kung, Hsiang Fu; Fu, Yongshui; Lu, Ling

    2009-03-01

    Although hepatitis C virus (HCV) genotype 6 is classified into 21 subtypes, 6a-6u, new variants continue to be identified. To characterize the full-length genomes of three novel HCV genotype 6 variants: KMN02, KM046 and KM181. From sera of patients with HCV infection, the entire HCV genome was amplified by RT-PCR followed by direct DNA sequencing and phylogenetic analysis. The sera contained HCV genomes of 9461, 9429, and 9461nt in length, and each harboured a single ORF of 9051nt. The genomes showed 95.3-98.1% nucleotide similarity to each other and 72.2-75.4% similarity to 23 genotype 6 reference sequences, which represent subtypes 6a-6u and unassigned variants km41 and gz52557. Phylogenetic analyses demonstrated that they were genotype 6, but were subtypically distinct. Based on the current criteria of HCV classification, they were designed to represent a new subtype, 6v. Analysis of E1 and NS5B region partial sequences revealed two additional related variants, CMBD-14 and CMBD-86 that had been previously reported in northern Thailand and sequences dropped into Genbank. Three novel HCV genotype 6 variants were entirely sequenced and designated subtype 6v.

  9. An accurate clone-based haplotyping method by overlapping pool sequencing.

    Science.gov (United States)

    Li, Cheng; Cao, Changchang; Tu, Jing; Sun, Xiao

    2016-07-08

    Chromosome-long haplotyping of human genomes is important to identify genetic variants with differing gene expression, in human evolution studies, clinical diagnosis, and other biological and medical fields. Although several methods have realized haplotyping based on sequencing technologies or population statistics, accuracy and cost are factors that prohibit their wide use. Borrowing ideas from group testing theories, we proposed a clone-based haplotyping method by overlapping pool sequencing. The clones from a single individual were pooled combinatorially and then sequenced. According to the distinct pooling pattern for each clone in the overlapping pool sequencing, alleles for the recovered variants could be assigned to their original clones precisely. Subsequently, the clone sequences could be reconstructed by linking these alleles accordingly and assembling them into haplotypes with high accuracy. To verify the utility of our method, we constructed 130 110 clones in silico for the individual NA12878 and simulated the pooling and sequencing process. Ultimately, 99.9% of variants on chromosome 1 that were covered by clones from both parental chromosomes were recovered correctly, and 112 haplotype contigs were assembled with an N50 length of 3.4 Mb and no switch errors. A comparison with current clone-based haplotyping methods indicated our method was more accurate. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype

    Directory of Open Access Journals (Sweden)

    Johnathan Cooper-Knock

    2017-11-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is underpinned by an oligogenic rare variant architecture. Identified genetic variants of ALS include RNA-binding proteins containing prion-like domains (PrLDs. We hypothesized that screening genes encoding additional similar proteins will yield novel genetic causes of ALS. The most common genetic variant of ALS patients is a G4C2-repeat expansion within C9ORF72. We have shown that G4C2-repeat RNA sequesters RNA-binding proteins. A logical consequence of this is that loss-of-function mutations in G4C2-binding partners might contribute to ALS pathogenesis independently of and/or synergistically with C9ORF72 expansions. Targeted sequencing of genomic DNA encoding either RNA-binding proteins or known ALS genes (n = 274 genes was performed in ALS patients to identify rare deleterious genetic variants and explore genotype-phenotype relationships. Genomic DNA was extracted from 103 ALS patients including 42 familial ALS patients and 61 young-onset (average age of onset 41 years sporadic ALS patients; patients were chosen to maximize the probability of identifying genetic causes of ALS. Thirteen patients carried a G4C2-repeat expansion of C9ORF72. We identified 42 patients with rare deleterious variants; 6 patients carried more than one variant. Twelve mutations were discovered in known ALS genes which served as a validation of our strategy. Rare deleterious variants in RNA-binding proteins were significantly enriched in ALS patients compared to control frequencies (p = 5.31E-18. Nineteen patients featured at least one variant in a RNA-binding protein containing a PrLD. The number of variants per patient correlated with rate of disease progression (t-test, p = 0.033. We identified eighteen patients with a single variant in a G4C2-repeat binding protein. Patients with a G4C2-binding protein variant in combination with a C9ORF72 expansion had a significantly faster disease course (t-test, p = 0.025. Our data are

  11. Evolution of R5 and X4 human immunodeficiency virus type 1 gag sequences in vivo: evidence for recombination

    International Nuclear Information System (INIS)

    Rij, Ronald P. van; Worobey, Michael; Visser, Janny A.; Schuitemaker, Hanneke

    2003-01-01

    Human immunodeficiency virus type 1 (HIV-1) infection is in general established by CCR5-utilizing (R5) virus variants, which persist throughout the course of infection. R5 HIV-1 variants evolve into CXCR4-utilizing (X4) HIV-1 variants in approximately half of the infected individuals. We have previously observed an ongoing genetic evolution with a continuous divergence of envelope gp120 sequences of coexisting R5 and X4 virus variants over time. Here, we studied evolution of gag p17 sequences in two patients who developed X4 variants in the course of infection. In contrast to the envelope gp120 sequences, gag p17 sequences of R5 and X4 virus populations intermingled in phylogenetic trees and did not diverge from each other over time. Statistical evaluation using the Shimodaira-Hasegawa test indicated that the different genomic regions evolved along different topologies, supporting the hypothesis of recombination. Therefore, our data imply that recombination between R5 and X4 HIV-1 variants occurs in vivo

  12. Analysis of intra-host genetic diversity of Prunus necrotic ringspot virus (PNRSV) using amplicon next generation sequencing.

    Science.gov (United States)

    Kinoti, Wycliff M; Constable, Fiona E; Nancarrow, Narelle; Plummer, Kim M; Rodoni, Brendan

    2017-01-01

    PCR amplicon next generation sequencing (NGS) analysis offers a broadly applicable and targeted approach to detect populations of both high- or low-frequency virus variants in one or more plant samples. In this study, amplicon NGS was used to explore the diversity of the tripartite genome virus, Prunus necrotic ringspot virus (PNRSV) from 53 PNRSV-infected trees using amplicons from conserved gene regions of each of PNRSV RNA1, RNA2 and RNA3. Sequencing of the amplicons from 53 PNRSV-infected trees revealed differing levels of polymorphism across the three different components of the PNRSV genome with a total number of 5040, 2083 and 5486 sequence variants observed for RNA1, RNA2 and RNA3 respectively. The RNA2 had the lowest diversity of sequences compared to RNA1 and RNA3, reflecting the lack of flexibility tolerated by the replicase gene that is encoded by this RNA component. Distinct PNRSV phylo-groups, consisting of closely related clusters of sequence variants, were observed in each of PNRSV RNA1, RNA2 and RNA3. Most plant samples had a single phylo-group for each RNA component. Haplotype network analysis showed that smaller clusters of PNRSV sequence variants were genetically connected to the largest sequence variant cluster within a phylo-group of each RNA component. Some plant samples had sequence variants occurring in multiple PNRSV phylo-groups in at least one of each RNA and these phylo-groups formed distinct clades that represent PNRSV genetic strains. Variants within the same phylo-group of each Prunus plant sample had ≥97% similarity and phylo-groups within a Prunus plant sample and between samples had less ≤97% similarity. Based on the analysis of diversity, a definition of a PNRSV genetic strain was proposed. The proposed definition was applied to determine the number of PNRSV genetic strains in each of the plant samples and the complexity in defining genetic strains in multipartite genome viruses was explored.

  13. Analysis of intra-host genetic diversity of Prunus necrotic ringspot virus (PNRSV using amplicon next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Wycliff M Kinoti

    Full Text Available PCR amplicon next generation sequencing (NGS analysis offers a broadly applicable and targeted approach to detect populations of both high- or low-frequency virus variants in one or more plant samples. In this study, amplicon NGS was used to explore the diversity of the tripartite genome virus, Prunus necrotic ringspot virus (PNRSV from 53 PNRSV-infected trees using amplicons from conserved gene regions of each of PNRSV RNA1, RNA2 and RNA3. Sequencing of the amplicons from 53 PNRSV-infected trees revealed differing levels of polymorphism across the three different components of the PNRSV genome with a total number of 5040, 2083 and 5486 sequence variants observed for RNA1, RNA2 and RNA3 respectively. The RNA2 had the lowest diversity of sequences compared to RNA1 and RNA3, reflecting the lack of flexibility tolerated by the replicase gene that is encoded by this RNA component. Distinct PNRSV phylo-groups, consisting of closely related clusters of sequence variants, were observed in each of PNRSV RNA1, RNA2 and RNA3. Most plant samples had a single phylo-group for each RNA component. Haplotype network analysis showed that smaller clusters of PNRSV sequence variants were genetically connected to the largest sequence variant cluster within a phylo-group of each RNA component. Some plant samples had sequence variants occurring in multiple PNRSV phylo-groups in at least one of each RNA and these phylo-groups formed distinct clades that represent PNRSV genetic strains. Variants within the same phylo-group of each Prunus plant sample had ≥97% similarity and phylo-groups within a Prunus plant sample and between samples had less ≤97% similarity. Based on the analysis of diversity, a definition of a PNRSV genetic strain was proposed. The proposed definition was applied to determine the number of PNRSV genetic strains in each of the plant samples and the complexity in defining genetic strains in multipartite genome viruses was explored.

  14. Germ-line variants identified by next generation sequencing in a panel of estrogen and cancer associated genes correlate with poor clinical outcome in Lynch syndrome patients.

    Science.gov (United States)

    Jóri, Balazs; Kamps, Rick; Xanthoulea, Sofia; Delvoux, Bert; Blok, Marinus J; Van de Vijver, Koen K; de Koning, Bart; Oei, Felicia Trups; Tops, Carli M; Speel, Ernst Jm; Kruitwagen, Roy F; Gomez-Garcia, Encarna B; Romano, Andrea

    2015-12-01

    The risk to develop colorectal and endometrial cancers among subjects testing positive for a pathogenic Lynch syndrome mutation varies, making the risk prediction difficult. Genetic risk modifiers alter the risk conferred by inherited Lynch syndrome mutations, and their identification can improve genetic counseling. We aimed at identifying rare genetic modifiers of the risk of Lynch syndrome endometrial cancer. A family based approach was used to assess the presence of genetic risk modifiers among 35 Lynch syndrome mutation carriers having either a poor clinical phenotype (early age of endometrial cancer diagnosis or multiple cancers) or a neutral clinical phenotype. Putative genetic risk modifiers were identified by Next Generation Sequencing among a panel of 154 genes involved in endometrial physiology and carcinogenesis. A simple pipeline, based on an allele frequency lower than 0.001 and on predicted non-conservative amino-acid substitutions returned 54 variants that were considered putative risk modifiers. The presence of two or more risk modifying variants in women carrying a pathogenic Lynch syndrome mutation was associated with a poor clinical phenotype. A gene-panel is proposed that comprehends genes that can carry variants with putative modifying effects on the risk of Lynch syndrome endometrial cancer. Validation in further studies is warranted before considering the possible use of this tool in genetic counseling.

  15. A programmable method for massively parallel targeted sequencing

    Science.gov (United States)

    Hopmans, Erik S.; Natsoulis, Georges; Bell, John M.; Grimes, Susan M.; Sieh, Weiva; Ji, Hanlee P.

    2014-01-01

    We have developed a targeted resequencing approach referred to as Oligonucleotide-Selective Sequencing. In this study, we report a series of significant improvements and novel applications of this method whereby the surface of a sequencing flow cell is modified in situ to capture specific genomic regions of interest from a sample and then sequenced. These improvements include a fully automated targeted sequencing platform through the use of a standard Illumina cBot fluidics station. Targeting optimization increased the yield of total on-target sequencing data 2-fold compared to the previous iteration, while simultaneously increasing the percentage of reads that could be mapped to the human genome. The described assays cover up to 1421 genes with a total coverage of 5.5 Megabases (Mb). We demonstrate a 10-fold abundance uniformity of greater than 90% in 1 log distance from the median and a targeting rate of up to 95%. We also sequenced continuous genomic loci up to 1.5 Mb while simultaneously genotyping SNPs and genes. Variants with low minor allele fraction were sensitively detected at levels of 5%. Finally, we determined the exact breakpoint sequence of cancer rearrangements. Overall, this approach has high performance for selective sequencing of genome targets, configuration flexibility and variant calling accuracy. PMID:24782526

  16. MetaSeq: privacy preserving meta-analysis of sequencing-based association studies.

    Science.gov (United States)

    Singh, Angad Pal; Zafer, Samreen; Pe'er, Itsik

    2013-01-01

    Human genetics recently transitioned from GWAS to studies based on NGS data. For GWAS, small effects dictated large sample sizes, typically made possible through meta-analysis by exchanging summary statistics across consortia. NGS studies groupwise-test for association of multiple potentially-causal alleles along each gene. They are subject to similar power constraints and therefore likely to resort to meta-analysis as well. The problem arises when considering privacy of the genetic information during the data-exchange process. Many scoring schemes for NGS association rely on the frequency of each variant thus requiring the exchange of identity of the sequenced variant. As such variants are often rare, potentially revealing the identity of their carriers and jeopardizing privacy. We have thus developed MetaSeq, a protocol for meta-analysis of genome-wide sequencing data by multiple collaborating parties, scoring association for rare variants pooled per gene across all parties. We tackle the challenge of tallying frequency counts of rare, sequenced alleles, for metaanalysis of sequencing data without disclosing the allele identity and counts, thereby protecting sample identity. This apparent paradoxical exchange of information is achieved through cryptographic means. The key idea is that parties encrypt identity of genes and variants. When they transfer information about frequency counts in cases and controls, the exchanged data does not convey the identity of a mutation and therefore does not expose carrier identity. The exchange relies on a 3rd party, trusted to follow the protocol although not trusted to learn about the raw data. We show applicability of this method to publicly available exome-sequencing data from multiple studies, simulating phenotypic information for powerful meta-analysis. The MetaSeq software is publicly available as open source.

  17. The diploid genome sequence of an individual human.

    Directory of Open Access Journals (Sweden)

    Samuel Levy

    2007-09-01

    Full Text Available Presented here is a genome sequence of an individual human. It was produced from approximately 32 million random DNA fragments, sequenced by Sanger dideoxy technology and assembled into 4,528 scaffolds, comprising 2,810 million bases (Mb of contiguous sequence with approximately 7.5-fold coverage for any given region. We developed a modified version of the Celera assembler to facilitate the identification and comparison of alternate alleles within this individual diploid genome. Comparison of this genome and the National Center for Biotechnology Information human reference assembly revealed more than 4.1 million DNA variants, encompassing 12.3 Mb. These variants (of which 1,288,319 were novel included 3,213,401 single nucleotide polymorphisms (SNPs, 53,823 block substitutions (2-206 bp, 292,102 heterozygous insertion/deletion events (indels(1-571 bp, 559,473 homozygous indels (1-82,711 bp, 90 inversions, as well as numerous segmental duplications and copy number variation regions. Non-SNP DNA variation accounts for 22% of all events identified in the donor, however they involve 74% of all variant bases. This suggests an important role for non-SNP genetic alterations in defining the diploid genome structure. Moreover, 44% of genes were heterozygous for one or more variants. Using a novel haplotype assembly strategy, we were able to span 1.5 Gb of genome sequence in segments >200 kb, providing further precision to the diploid nature of the genome. These data depict a definitive molecular portrait of a diploid human genome that provides a starting point for future genome comparisons and enables an era of individualized genomic information.

  18. Validation and optimization of the Ion Torrent S5 XL sequencer and Oncomine workflow for BRCA1 and BRCA2 genetic testing.

    Science.gov (United States)

    Shin, Saeam; Kim, Yoonjung; Chul Oh, Seoung; Yu, Nae; Lee, Seung-Tae; Rak Choi, Jong; Lee, Kyung-A

    2017-05-23

    In this study, we validated the analytical performance of BRCA1/2 sequencing using Ion Torrent's new bench-top sequencer with amplicon panel with optimized bioinformatics pipelines. Using 43 samples that were previously validated by Illumina's MiSeq platform and/or by Sanger sequencing/multiplex ligation-dependent probe amplification, we amplified the target with the Oncomine™ BRCA Research Assay and sequenced on Ion Torrent S5 XL (Thermo Fisher Scientific, Waltham, MA, USA). We compared two bioinformatics pipelines for optimal processing of S5 XL sequence data: the Torrent Suite with a plug-in Torrent Variant Caller (Thermo Fisher Scientific), and commercial NextGENe software (Softgenetics, State College, PA, USA). All expected 681 single nucleotide variants, 15 small indels, and three copy number variants were correctly called, except one common variant adjacent to a rare variant on the primer-binding site. The sensitivity, specificity, false positive rate, and accuracy for detection of single nucleotide variant and small indels of S5 XL sequencing were 99.85%, 100%, 0%, and 99.99% for the Torrent Variant Caller and 99.85%, 99.99%, 0.14%, and 99.99% for NextGENe, respectively. The reproducibility of variant calling was 100%, and the precision of variant frequency also showed good performance with coefficients of variation between 0.32 and 5.29%. We obtained highly accurate data through uniform and sufficient coverage depth over all target regions and through optimization of the bioinformatics pipeline. We confirmed that our platform is accurate and practical for diagnostic BRCA1/2 testing in a clinical laboratory.

  19. Low-frequency coding variants in CETP and CFB are associated with susceptibility of exudative age-related macular degeneration in the Japanese population.

    Science.gov (United States)

    Momozawa, Yukihide; Akiyama, Masato; Kamatani, Yoichiro; Arakawa, Satoshi; Yasuda, Miho; Yoshida, Shigeo; Oshima, Yuji; Mori, Ryusaburo; Tanaka, Koji; Mori, Keisuke; Inoue, Satoshi; Terasaki, Hiroko; Yasuma, Tetsuhiro; Honda, Shigeru; Miki, Akiko; Inoue, Maiko; Fujisawa, Kimihiko; Takahashi, Kanji; Yasukawa, Tsutomu; Yanagi, Yasuo; Kadonosono, Kazuaki; Sonoda, Koh-Hei; Ishibashi, Tatsuro; Takahashi, Atsushi; Kubo, Michiaki

    2016-11-15

    Age-related macular degeneration (AMD) is a major cause of blindness in the elderly. Previous sequencing studies of AMD susceptibility genes have revealed the association of rare coding variants in CFH, CFI, C3 and C9 in European population; however, the impact of rare or low-frequency coding variants on AMD susceptibility in other populations is largely unknown. To identify the role of low-frequency coding variants on exudative AMD susceptibility in a Japanese population, we analysed the association of coding variants of 34 AMD candidate genes in the two-stage design by a multiplex PCR-based target sequencing method. We used a total of 2,886 (1st: 827, 2nd: 2,059) exudative AMD cases including typical AMD, polypoidal choroidal vasculopathy, and retinal angiomatous proliferation and 9,337 (1st: 3,247 2nd: 6,090) controls. Gene-based analysis found a significant association of low-frequency variants (minor allele frequency (MAF) low-frequency variant (R74H) in CFB would be individually associated with AMD susceptibility independent of the GWAS associated SNP. These findings highlight the importance of target sequencing to reveal the impact of rare or low-frequency coding variants on disease susceptibility in different ethnic populations.

  20. Targeted next-generation sequencing makes new molecular diagnoses and expands genotype-phenotype relationship in Ehlers-Danlos syndrome.

    Science.gov (United States)

    Weerakkody, Ruwan A; Vandrovcova, Jana; Kanonidou, Christina; Mueller, Michael; Gampawar, Piyush; Ibrahim, Yousef; Norsworthy, Penny; Biggs, Jennifer; Abdullah, Abdulshakur; Ross, David; Black, Holly A; Ferguson, David; Cheshire, Nicholas J; Kazkaz, Hanadi; Grahame, Rodney; Ghali, Neeti; Vandersteen, Anthony; Pope, F Michael; Aitman, Timothy J

    2016-11-01

    Ehlers-Danlos syndrome (EDS) comprises a group of overlapping hereditary disorders of connective tissue with significant morbidity and mortality, including major vascular complications. We sought to identify the diagnostic utility of a next-generation sequencing (NGS) panel in a mixed EDS cohort. We developed and applied PCR-based NGS assays for targeted, unbiased sequencing of 12 collagen and aortopathy genes to a cohort of 177 unrelated EDS patients. Variants were scored blind to previous genetic testing and then compared with results of previous Sanger sequencing. Twenty-eight pathogenic variants in COL5A1/2, COL3A1, FBN1, and COL1A1 and four likely pathogenic variants in COL1A1, TGFBR1/2, and SMAD3 were identified by the NGS assays. These included all previously detected single-nucleotide and other short pathogenic variants in these genes, and seven newly detected pathogenic or likely pathogenic variants leading to clinically significant diagnostic revisions. Twenty-two variants of uncertain significance were identified, seven of which were in aortopathy genes and required clinical follow-up. Unbiased NGS-based sequencing made new molecular diagnoses outside the expected EDS genotype-phenotype relationship and identified previously undetected clinically actionable variants in aortopathy susceptibility genes. These data may be of value in guiding future clinical pathways for genetic diagnosis in EDS.Genet Med 18 11, 1119-1127.

  1. KinMutRF: a random forest classifier of sequence variants in the human protein kinase superfamily

    DEFF Research Database (Denmark)

    Pons, Tirso; Vazquez, Miguel; Matey-Hernandez, María Luisa

    2016-01-01

    annotations from UniProt, Phospho.ELM and FireDB. KinMutRF identifies disease-associated variants satisfactorily (Acc: 0.88, Prec:0.82, Rec:0.75, F-score:0.78, MCC:0.68) when trained and cross-validated with the 3689 human kinase variants from UniProt that have been annotated as neutral or pathogenic. All...

  2. Analysis of 60 706 Exomes Questions the Role of De Novo Variants Previously Implicated in Cardiac Disease

    DEFF Research Database (Denmark)

    Paludan-Müller, Christian; Ahlberg, Gustav; Ghouse, Jonas

    2017-01-01

    BACKGROUND: De novo variants in the exome occur at a rate of 1 per individual per generation, and because of the low reproductive fitness for de novo variants causing severe disease, the likelihood of finding these as standing variations in the general population is low. Therefore, this study...... sought to evaluate the pathogenicity of de novo variants previously associated with cardiac disease based on a large population-representative exome database. METHODS AND RESULTS: We performed a literature search for previous publications on de novo variants associated with severe arrhythmias...... trio studies (>1000 subjects). Of the monogenic variants, 11% (23/211) were present in ExAC, whereas 26% (802/3050) variants believed to increase susceptibility of disease were identified in ExAC. Monogenic de novo variants in ExAC had a total allele count of 109 and with ≈844 expected cases in Ex...

  3. Hemoglobin analyses in the Netherlands reveal more than 80 different variants including six novel ones.

    Science.gov (United States)

    van Zwieten, Rob; Veldthuis, Martijn; Delzenne, Barend; Berghuis, Jeffrey; Groen, Joke; Ait Ichou, Fatima; Clifford, Els; Harteveld, Cornelis L; Stroobants, An K

    2014-01-01

    More than 20,000 blood samples of individuals living in The Netherlands and suspected of hemolytic anemia or diabetes were analyzed by high resolution cation exchange high performance liquid chromatography (HPLC). Besides common disease-related hemoglobins (Hbs), rare variants were also detected. The variant Hbs were retrospectively analyzed by capillary zone electrophoresis (CZE) and by isoelectric focusing (IEF). For unambiguous identification, the globin genes were sequenced. Most of the 80 Hb variants detected by initial screening on HPLC were also separated by capillary electrophoresis (CE), but a few variants were only detectable with one of these methods. Some variants were unstable, had thalassemic properties or increased oxygen affinity, and some interfered with Hb A2 measurement, detection of sickle cell Hb or Hb A1c quantification. Two of the six novel variants, Hb Enschede (HBA2: c.308G  > A, p.Ser103Asn) and Hb Weesp (HBA1: c.301C > T, p.Leu101Phe), had no clinical consequences. In contrast, two others appeared clinically significant: Hb Ede (HBB: c.53A > T, p.Lys18Met) caused thalassemia and Hb Waterland (HBB: c.428C > T, pAla143Val) was related to mild polycytemia. Hb A2-Venlo (HBD: c.193G > A, p.Gly65Ser) and Hb A2-Rotterdam (HBD: c.38A > C, p.Asn13Thr) interfered with Hb A2 quantification. This survey shows that HPLC analysis followed by globin gene sequencing of rare variants is an effective method to reveal Hb variants.

  4. Exome Sequencing Fails to Identify the Genetic Cause of Aicardi Syndrome.

    Science.gov (United States)

    Lund, Caroline; Striano, Pasquale; Sorte, Hanne Sørmo; Parisi, Pasquale; Iacomino, Michele; Sheng, Ying; Vigeland, Magnus D; Øye, Anne-Marte; Møller, Rikke Steensbjerre; Selmer, Kaja K; Zara, Federico

    2016-09-01

    Aicardi syndrome (AS) is a well-characterized neurodevelopmental disorder with an unknown etiology. In this study, we performed whole-exome sequencing in 11 female patients with the diagnosis of AS, in order to identify the disease-causing gene. In particular, we focused on detecting variants in the X chromosome, including the analysis of variants with a low number of sequencing reads, in case of somatic mosaicism. For 2 of the patients, we also sequenced the exome of the parents to search for de novo mutations. We did not identify any genetic variants likely to be damaging. Only one single missense variant was identified by the de novo analyses of the 2 trios, and this was considered benign. The failure to identify a disease gene in this study may be due to technical limitations of our study design, including the possibility that the genetic aberration leading to AS is situated in a non-exonic region or that the mutation is somatic and not detectable by our approach. Alternatively, it is possible that AS is genetically heterogeneous and that 11 patients are not sufficient to reveal the causative genes. Future studies of AS should consider designs where also non-exonic regions are explored and apply a sequencing depth so that also low-grade somatic mosaicism can be detected.

  5. Association Between Variants of PRDM1 and NDP52 and Crohn's Disease, Based on Exome Sequencing and Functional Studies

    NARCIS (Netherlands)

    Ellinghaus, David; Zhang, Hu; Zeissig, Sebastian; Lipinski, Simone; Till, Andreas; Jiang, Tao; Stade, Björn; Bromberg, Yana; Ellinghaus, Eva; Keller, Andreas; Rivas, Manuel A.; Skieceviciene, Jurgita; Doncheva, Nadezhda T.; Liu, Xiao; Liu, Qing; Jiang, Fuman; Forster, Michael; Mayr, Gabriele; Albrecht, Mario; Häsler, Robert; Boehm, Bernhard O.; Goodall, Jane; Berzuini, Carlo R.; Lee, James; Andersen, Vibeke; Vogel, Ulla; Kupcinskas, Limas; Kayser, Manfred; Krawczak, Michael; Nikolaus, Susanna; Weersma, Rinse K.; Ponsioen, Cyriel Y.; Sans, Miquel; Wijmenga, Cisca; Strachan, David P.; McArdle, Wendy L.; Vermeire, Séverine; Rutgeerts, Paul; Sanderson, Jeremy D.; Mathew, Christopher G.; Vatn, Morten H.; Wang, Jun; Nöthen, Markus M.; Duerr, Richard H.; Büning, Carsten; Brand, Stephan; Glas, Jürgen; Winkelmann, Juliane; Illig, Thomas; Latiano, Anna; Annese, Vito; Halfvarson, Jonas; D'Amato, Mauro; Daly, Mark J.; Nothnagel, Michael; Karlsen, Tom H.; Subramani, Suresh; Rosenstiel, Philip; Schreiber, Stefan; Parkes, Miles; Franke, Andre

    2013-01-01

    Genome-wide association studies (GWAS) have identified 140 Crohn's disease (CD) susceptibility loci. For most loci, the variants that cause disease are not known and the genes affected by these variants have not been identified. We aimed to identify variants that cause CD through detailed

  6. Mouse ribosomal RNA genes contain multiple differentially regulated variants.

    Directory of Open Access Journals (Sweden)

    Hung Tseng

    2008-03-01

    Full Text Available Previous cytogenetic studies suggest that various rDNA chromosomal loci are not equally active in different cell types. Consistent with this variability, rDNA polymorphism is well documented in human and mouse. However, attempts to identify molecularly rDNA variant types, which are regulated individually (i.e., independent of other rDNA variants and tissue-specifically, have not been successful. We report here the molecular cloning and characterization of seven mouse rDNA variants (v-rDNA. The identification of these v-rDNAs was based on restriction fragment length polymorphisms (RFLPs, which are conserved among individuals and mouse strains. The total copy number of the identified variants is less than 100 and the copy number of each individual variant ranges from 4 to 15. Sequence analysis of the cloned v-rDNA identified variant-specific single nucleotide polymorphisms (SNPs in the transcribed region. These SNPs were used to develop a set of variant-specific PCR assays, which permitted analysis of the v-rDNAs' expression profiles in various tissues. These profiles show that three v-rDNAs are expressed in all tissues (constitutively active, two are expressed in some tissues (selectively active, and two are not expressed (silent. These expression profiles were observed in six individuals from three mouse strains, suggesting the pattern is not randomly determined. Thus, the mouse rDNA array likely consists of genetically distinct variants, and some are regulated tissue-specifically. Our results provide the first molecular evidence for cell-type-specific regulation of a subset of rDNA.

  7. Variants in KCNJ11 and BAD do not predict response to ketogenic dietary therapies for epilepsy.

    Science.gov (United States)

    Schoeler, Natasha E; Leu, Costin; White, Jon; Plagnol, Vincent; Ellard, Sian; Matarin, Mar; Yellen, Gary; Thiele, Elizabeth A; Mackay, Mark; McMahon, Jacinta M; Scheffer, Ingrid E; Sander, Josemir W; Cross, J Helen; Sisodiya, Sanjay M

    2015-12-01

    In the absence of specific metabolic disorders, predictors of response to ketogenic dietary therapies (KDT) are unknown. We aimed to determine whether variants in established candidate genes KCNJ11 and BAD influence response to KDT. We sequenced KCNJ11 and BAD in individuals without previously-known glucose transporter type 1 deficiency syndrome or other metabolic disorders, who received KDT for epilepsy. Hospital records were used to obtain demographic and clinical data. Two response phenotypes were used: ≥ 50% seizure reduction and seizure-freedom at 3-month follow-up. Case/control association tests were conducted with KCNJ11 and BAD variants with minor allele frequency (MAF)>0.01, using PLINK. Response to KDT in individuals with variants with MAFBAD sequencing data and diet response data. Six SNPs in KCNJ11 and two in BAD had MAF>0.01. Eight variants in KCNJ11 and seven in BAD (of which three were previously-unreported) had MAFBAD do not predict response to KDT for epilepsy. We can exclude, with 80% power, association from variants with a MAF of >0.05 and effect size >3. A larger sample size is needed to detect associations from rare variants or those with smaller effect sizes. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The power of gene-based rare variant methods to detect disease-associated variation and test hypotheses about complex disease.

    Directory of Open Access Journals (Sweden)

    Loukas Moutsianas

    2015-04-01

    Full Text Available Genome and exome sequencing in large cohorts enables characterization of the role of rare variation in complex diseases. Success in this endeavor, however, requires investigators to test a diverse array of genetic hypotheses which differ in the number, frequency and effect sizes of underlying causal variants. In this study, we evaluated the power of gene-based association methods to interrogate such hypotheses, and examined the implications for study design. We developed a flexible simulation approach, using 1000 Genomes data, to (a generate sequence variation at human genes in up to 10K case-control samples, and (b quantify the statistical power of a panel of widely used gene-based association tests under a variety of allelic architectures, locus effect sizes, and significance thresholds. For loci explaining ~1% of phenotypic variance underlying a common dichotomous trait, we find that all methods have low absolute power to achieve exome-wide significance (~5-20% power at α = 2.5 × 10(-6 in 3K individuals; even in 10K samples, power is modest (~60%. The combined application of multiple methods increases sensitivity, but does so at the expense of a higher false positive rate. MiST, SKAT-O, and KBAC have the highest individual mean power across simulated datasets, but we observe wide architecture-dependent variability in the individual loci detected by each test, suggesting that inferences about disease architecture from analysis of sequencing studies can differ depending on which methods are used. Our results imply that tens of thousands of individuals, extensive functional annotation, or highly targeted hypothesis testing will be required to confidently detect or exclude rare variant signals at complex disease loci.

  9. Association Between Variants of PRDM1 and NDP52 and Crohn's Disease, Based on Exome Sequencing and Functional Studies

    NARCIS (Netherlands)

    Ellinghaus, David; Zhang, Hu; Zeissig, Sebastian; Lipinski, Simone; Till, Andreas; Jiang, Tao; Stade, Bjoern; Bromberg, Yana; Ellinghaus, Eva; Keller, Andreas; Rivas, Manuel A.; Skieceviciene, Jurgita; Doncheva, Nadezhda T.; Liu, Xiao; Liu, Qing; Jiang, Fuman; Forster, Michael; Mayr, Gabriele; Albrecht, Mario; Haesler, Robert; Boehm, Bernhard O.; Goodall, Jane; Berzuini, Carlo R.; Lee, James; Andersen, Vibeke; Vogel, Ulla; Kupcinskas, Limas; Kayser, Manfred; Krawczak, Michael; Nikolaus, Susanna; Weersma, Rinse K.; Ponsioen, Cyriel Y.; Sans, Miquel; Wijmenga, Cisca; Strachan, David P.; McAardle, Wendy L.; Vermeire, Severine; Rutgeerts, Paul; Sanderson, Jeremy D.; Mathew, Christopher G.; Vatn, Morten H.; Wang, Jun; Noethen, Markus M.; Duerr, Richard H.; Buening, Carsten; Brand, Stephan; Glas, Juergen; Winkelmann, Juliane; Illig, Thomas; Latiano, Anna; Annese, Vito; Halfvarson, Jonas; D'Amato, Mauro; Daly, Mark J.; Nothnagel, Michael; Karlsen, Tom H.; Subramani, Suresh; Rosenstiel, Philip; Schreiber, Stefan; Parkes, Miles; Franke, Andre

    BACKGROUND & AIMS: Genome-wide association studies (GWAS) have identified 140 Crohn's disease (CD) susceptibility loci. For most loci, the variants that cause disease are not known and the genes affected by these variants have not been identified. We aimed to identify variants that cause CD through

  10. Exome Sequence Analysis of 14 Families With High Myopia

    DEFF Research Database (Denmark)

    Kloss, Bethany A.; Tompson, Stuart W.; Whisenhunt, Kristina N.

    2017-01-01

    Purpose: To identify causal gene mutations in 14 families with autosomal dominant (AD) high myopia using exome sequencing. Methods: Select individuals from 14 large Caucasian families with high myopia were exome sequenced. Gene variants were filtered to identify potential pathogenic changes. Sang...

  11. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers

    Science.gov (United States)

    Zoledziewska, Magdalena; Mulas, Antonella; Pistis, Giorgio; Steri, Maristella; Danjou, Fabrice; Kwong, Alan; Ortega del Vecchyo, Vicente Diego; Chiang, Charleston W. K.; Bragg-Gresham, Jennifer; Pitzalis, Maristella; Nagaraja, Ramaiah; Tarrier, Brendan; Brennan, Christine; Uzzau, Sergio; Fuchsberger, Christian; Atzeni, Rossano; Reinier, Frederic; Berutti, Riccardo; Huang, Jie; Timpson, Nicholas J; Toniolo, Daniela; Gasparini, Paolo; Malerba, Giovanni; Dedoussis, George; Zeggini, Eleftheria; Soranzo, Nicole; Jones, Chris; Lyons, Robert; Angius, Andrea; Kang, Hyun M.; Novembre, John; Sanna, Serena; Schlessinger, David; Cucca, Francesco; Abecasis, Gonçalo R

    2015-01-01

    We report ~17.6M genetic variants from whole-genome sequencing of 2,120 Sardinians; 22% are absent from prior sequencing-based compilations and enriched for predicted functional consequence. Furthermore, ~76K variants common in our sample (frequency >5%) are rare elsewhere (Genomes Project). We assessed the impact of these variants on circulating lipid levels and five inflammatory biomarkers. Fourteen signals, including two major new loci, were observed for lipid levels, and 19, including two novel loci, for inflammatory markers. New associations would be missed in analyses based on 1000 Genomes data, underlining the advantages of large-scale sequencing in this founder population. PMID:26366554

  12. A FRMD7 variant in a Japanese family causes congenital nystagmus.

    Science.gov (United States)

    Kohmoto, Tomohiro; Okamoto, Nana; Satomura, Shigeko; Naruto, Takuya; Komori, Takahide; Hashimoto, Toshiaki; Imoto, Issei

    2015-01-01

    Idiopathic congenital nystagmus (ICN) is a genetically heterogeneous eye movement disorder that causes a large proportion of childhood visual impairment. Here we describe a missense variant (p.L292P) within a mutation-rich region of FRMD7 detected in three affected male siblings in a Japanese family with X-linked ICN. Combining sequence analysis and results from structural and functional predictions, we report p.L292P as a variant potentially disrupting FRMD7 function associated with X-linked ICN.

  13. Evidence for a Complex Mosaic Genome Pattern in a Full-length Hepatitis C Virus Sequence

    Directory of Open Access Journals (Sweden)

    R.S. Ross

    2008-01-01

    Full Text Available The genome of the hepatitis C virus (HCV exhibits a high genetic variability. This remarkable heterogeneity is mainly attributed to the gradual accumulation of mutational changes, whereas the contribution of recombination events to the evolution of HCV remains controversial so far. While performing phylogenetic analyses including a large number of sequences deposited in the GenBank, we encountered a full-length HCV sequence (AY651061 that showed evidence for inter-subtype recombination and was, therefore, subjected to a detailed analysis of its molecular structure. The obtained results indicated that AY651061 does not represent a “simple” HCV 1c isolate, but a complex 1a/1c mosaic genome, showing five putative breakpoints in the core to NS3 regions. To our knowledge, this is the first report on a mosaic HCV full- length sequence with multiple breakpoints. The molecular structure of AY651061 is reminiscent of complex homologous recombinant variants occurring among other members of the flaviviridae family, e.g. GB virus C, dengue virus, and Japanese encephalitis virus. Our finding of a mosaic HCV sequence may have important implications for many fields of current HCV research which merit careful consideration.

  14. Arrhythmogenic KCNE gene variants: current knowledge and future challenges

    Directory of Open Access Journals (Sweden)

    Shawn M Crump

    2014-01-01

    Full Text Available There are twenty-five known inherited cardiac arrhythmia susceptibility genes, all of which encode either ion channel pore-forming subunits or proteins that regulate aspects of ion channel biology such as function, trafficking and localization. The human KCNE gene family comprises five potassium channel regulatory subunits, sequence variants in each of which are associated with cardiac arrhythmias. KCNE gene products exhibit promiscuous partnering and in some cases ubiquitous expression, hampering efforts to unequivocally correlate each gene to specific native potassium currents. Likewise, deducing the molecular etiology of cardiac arrhythmias in individuals harboring rare KCNE gene variants, or more common KCNE polymorphisms, can be challenging. In this review we provide an update on putative arrhythmia-causing KCNE gene variants, and discuss current thinking and future challenges in the study of molecular mechanisms of KCNE-associated cardiac rhythm disturbances.

  15. De Novo Coding Variants Are Strongly Associated with Tourette Disorder

    DEFF Research Database (Denmark)

    Willsey, A Jeremy; Fernandez, Thomas V; Yu, Dongmei

    2017-01-01

    Whole-exome sequencing (WES) and de novo variant detection have proven a powerful approach to gene discovery in complex neurodevelopmental disorders. We have completed WES of 325 Tourette disorder trios from the Tourette International Collaborative Genetics cohort and a replication sample of 186 ...

  16. Common low-density lipoprotein receptor p.G116S variant has a large effect on plasma low-density lipoprotein cholesterol in circumpolar inuit populations.

    Science.gov (United States)

    Dubé, Joseph B; Wang, Jian; Cao, Henian; McIntyre, Adam D; Johansen, Christopher T; Hopkins, Scarlett E; Stringer, Randa; Hosseinzadeh, Siyavash; Kennedy, Brooke A; Ban, Matthew R; Young, T Kue; Connelly, Philip W; Dewailly, Eric; Bjerregaard, Peter; Boyer, Bert B; Hegele, Robert A

    2015-02-01

    Inuit are considered to be vulnerable to cardiovascular disease because their lifestyles are becoming more Westernized. During sequence analysis of Inuit individuals at extremes of lipid traits, we identified 2 nonsynonymous variants in low-density lipoprotein receptor (LDLR), namely p.G116S and p.R730W. Genotyping these variants in 3324 Inuit from Alaska, Canada, and Greenland showed they were common, with allele frequencies 10% to 15%. Only p.G116S was associated with dyslipidemia: the increase in LDL cholesterol was 0.54 mmol/L (20.9 mg/dL) per allele (P=5.6×10(-49)), which was >3× larger than the largest effect sizes seen with other common variants in other populations. Carriers of p.G116S had a 3.02-fold increased risk of hypercholesterolemia (95% confidence interval, 2.34-3.90; P=1.7×10(-17)), but did not have classical familial hypercholesterolemia. In vitro, p.G116S showed 60% reduced ligand-binding activity compared with wild-type receptor. In contrast, p.R730W was associated with neither LDL cholesterol level nor altered in vitro activity. LDLR p.G116S is thus unique: a common dysfunctional variant in Inuit whose large effect on LDL cholesterol may have public health implications. © 2014 American Heart Association, Inc.

  17. G2S: A web-service for annotating genomic variants on 3D protein structures.

    Science.gov (United States)

    Wang, Juexin; Sheridan, Robert; Sumer, S Onur; Schultz, Nikolaus; Xu, Dong; Gao, Jianjiong

    2018-01-27

    Accurately mapping and annotating genomic locations on 3D protein structures is a key step in structure-based analysis of genomic variants detected by recent large-scale sequencing efforts. There are several mapping resources currently available, but none of them provides a web API (Application Programming Interface) that support programmatic access. We present G2S, a real-time web API that provides automated mapping of genomic variants on 3D protein structures. G2S can align genomic locations of variants, protein locations, or protein sequences to protein structures and retrieve the mapped residues from structures. G2S API uses REST-inspired design conception and it can be used by various clients such as web browsers, command terminals, programming languages and other bioinformatics tools for bringing 3D structures into genomic variant analysis. The webserver and source codes are freely available at https://g2s.genomenexus.org. g2s@genomenexus.org. Supplementary data are available at Bioinformatics online. © The Author (2018). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Importance of non-synonymous OCA2 variants in human eye colour prediction

    DEFF Research Database (Denmark)

    Andersen, Jeppe Dyrberg; Pietroni, Carlotta; Johansen, Peter

    2016-01-01

    in the promotor region of OCA2 (OMIM #611409). Nevertheless, many eye colors cannot be explained by only considering rs12913832:A>G. Methods: In this study, we searched for additional variants in OCA2 to explain human eye color by sequencing a 500 kbp region, encompassing OCA2 and its promotor region. Results: We...... identified three nonsynonymous OCA2 variants as important for eye color, including rs1800407:G>A (p.Arg419Gln) and two variants, rs74653330:A>T (p.Ala481Thr) and rs121918166:G>A (p.Val443Ile), not previously described as important for eye color variation. It was shown that estimated haplotypes consisting...

  19. A novel homozygous missense variant in NECTIN4 (PVRL4) causing ectodermal dysplasia cutaneous syndactyly syndrome.

    Science.gov (United States)

    Ahmad, Farooq; Nasir, Abdul; Thiele, Holger; Umair, Muhammad; Borck, Guntram; Ahmad, Wasim

    2018-02-12

    Ectodermal dysplasia syndactyly syndrome 1 (EDSS1) is a rare form of ectodermal dysplasia including anomalies of hair, nails, and teeth along with bilateral cutaneous syndactyly of hands and feet. In the present report, we performed a clinical and genetic characterization of a consanguineous Pakistani family with four individuals affected by EDSS1. We performed exome sequencing using DNA of one affected individual. Exome data analysis identified a novel homozygous missense variant (c.242T>C; p.(Leu81Pro)) in NECTIN4 (PVRL4). Sanger sequencing validated this variant and confirmed its cosegregation with the disease phenotype in the family members. Thus, our report adds a novel variant to the NECTIN4 mutation spectrum and contributes to the NECTIN4-related clinical characterization. © 2018 John Wiley & Sons Ltd/University College London.

  20. Rare variants in the neurotrophin signaling pathway implicated in schizophrenia risk.

    Science.gov (United States)

    Kranz, Thorsten M; Goetz, Ray R; Walsh-Messinger, Julie; Goetz, Deborah; Antonius, Daniel; Dolgalev, Igor; Heguy, Adriana; Seandel, Marco; Malaspina, Dolores; Chao, Moses V

    2015-10-01

    Multiple lines of evidence corroborate impaired signaling pathways as relevant to the underpinnings of schizophrenia. There has been an interest in neurotrophins, since they are crucial mediators of neurodevelopment and in synaptic connectivity in the adult brain. Neurotrophins and their receptors demonstrate aberrant expression patterns in cortical areas for schizophrenia cases in comparison to control subjects. There is little known about the contribution of neurotrophin genes in psychiatric disorders. To begin to address this issue, we conducted high-coverage targeted exome capture in a subset of neurotrophin genes in 48 comprehensively characterized cases with schizophrenia-related psychosis. We herein report rare missense polymorphisms and novel missense mutations in neurotrophin receptor signaling pathway genes. Furthermore, we observed that several genes have a higher propensity to harbor missense coding variants than others. Based on this initial analysis we suggest that rare variants and missense mutations in neurotrophin genes might represent genetic contributions involved across psychiatric disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Quantifying evolutionary dynamics from variant-frequency time series

    Science.gov (United States)

    Khatri, Bhavin S.

    2016-09-01

    From Kimura’s neutral theory of protein evolution to Hubbell’s neutral theory of biodiversity, quantifying the relative importance of neutrality versus selection has long been a basic question in evolutionary biology and ecology. With deep sequencing technologies, this question is taking on a new form: given a time-series of the frequency of different variants in a population, what is the likelihood that the observation has arisen due to selection or neutrality? To tackle the 2-variant case, we exploit Fisher’s angular transformation, which despite being discovered by Ronald Fisher a century ago, has remained an intellectual curiosity. We show together with a heuristic approach it provides a simple solution for the transition probability density at short times, including drift, selection and mutation. Our results show under that under strong selection and sufficiently frequent sampling these evolutionary parameters can be accurately determined from simulation data and so they provide a theoretical basis for techniques to detect selection from variant or polymorphism frequency time-series.

  2. Hypermutability of CpG dinucleotides in the propeptide-encoding sequence of the human albumin gene

    International Nuclear Information System (INIS)

    Brennan, S.O.; Peach, R.; Myles, T.; George, P.; Arai, Kunio; Madison, J.; Watkins, S.; Putnam, F.W.; Laurell, C.B.; Galliano, M.

    1990-01-01

    An electrophoretically slow albumin variant was detected with a phenotype frequency of about 1:1,000 in Sweden and was also found in a family of Scottish descent from Kaikoura, New Zealand, and in five families in Tradate, Italy. Structural study established that the major variant component was arginyl-albumin, in which arginine at the -1 position of the propeptide is still attached to the processed albumin. A minor component with the amino-terminal sequence of proalbumin was also present as 3-6% of the total albumin. After amplification of the gene segment encoding the prepro sequence of albumin, specific hybridization of DNA to an oligonucleotide probe encoding cysteine at position -2 indicated the mutation of arginine at the -2 position to cysteine (-2 Arg → Cys). This produced the propeptide sequence Arg-Gly-Val-Phe-Cys-Arg. This was confirmed by sequence analysis after pyridylethylation of the cysteine. This mutation produces an alternate signal peptidase cleavage site in the variant proalbumin precursor of arginyl-albumin giving rise to two possible products, arginyl-albumin and the variant proalbumin. Another plasma from Bremen had an alloalbumin with a previously described substitution (1 Asp → Val), which also affects propeptide cleavage. Hypermutability of two CpG dinucleotides in the codons for the diarginyl sequence may account for the frequency of mutations in the propeptide. Mutation at these two sites results in a series of recurrent proalbumin variants that have arisen independently in diverse populations

  3. Evaluation of Presumably Disease Causing SCN1A Variants in a Cohort of Common Epilepsy Syndromes

    DEFF Research Database (Denmark)

    Lal, Dennis; Reinthaler, Eva M; Dejanovic, Borislav

    2016-01-01

    OBJECTIVE: The SCN1A gene, coding for the voltage-gated Na+ channel alpha subunit NaV1.1, is the clinically most relevant epilepsy gene. With the advent of high-throughput next-generation sequencing, clinical laboratories are generating an ever-increasing catalogue of SCN1A variants. Variants are...

  4. Genome sequencing of idiopathic pulmonary fibrosis in conjunction with a medical school human anatomy course.

    Science.gov (United States)

    Kumar, Akash; Dougherty, Max; Findlay, Gregory M; Geisheker, Madeleine; Klein, Jason; Lazar, John; Machkovech, Heather; Resnick, Jesse; Resnick, Rebecca; Salter, Alexander I; Talebi-Liasi, Faezeh; Arakawa, Christopher; Baudin, Jacob; Bogaard, Andrew; Salesky, Rebecca; Zhou, Qian; Smith, Kelly; Clark, John I; Shendure, Jay; Horwitz, Marshall S

    2014-01-01

    Even in cases where there is no obvious family history of disease, genome sequencing may contribute to clinical diagnosis and management. Clinical application of the genome has not yet become routine, however, in part because physicians are still learning how best to utilize such information. As an educational research exercise performed in conjunction with our medical school human anatomy course, we explored the potential utility of determining the whole genome sequence of a patient who had died following a clinical diagnosis of idiopathic pulmonary fibrosis (IPF). Medical students performed dissection and whole genome sequencing of the cadaver. Gross and microscopic findings were more consistent with the fibrosing variant of nonspecific interstitial pneumonia (NSIP), as opposed to IPF per se. Variants in genes causing Mendelian disorders predisposing to IPF were not detected. However, whole genome sequencing identified several common variants associated with IPF, including a single nucleotide polymorphism (SNP), rs35705950, located in the promoter region of the gene encoding mucin glycoprotein MUC5B. The MUC5B promoter polymorphism was recently found to markedly elevate risk for IPF, though a particular association with NSIP has not been previously reported, nor has its contribution to disease risk previously been evaluated in the genome-wide context of all genetic variants. We did not identify additional predicted functional variants in a region of linkage disequilibrium (LD) adjacent to MUC5B, nor did we discover other likely risk-contributing variants elsewhere in the genome. Whole genome sequencing thus corroborates the association of rs35705950 with MUC5B dysregulation and interstitial lung disease. This novel exercise additionally served a unique mission in bridging clinical and basic science education.

  5. Genome sequencing of idiopathic pulmonary fibrosis in conjunction with a medical school human anatomy course.

    Directory of Open Access Journals (Sweden)

    Akash Kumar

    Full Text Available Even in cases where there is no obvious family history of disease, genome sequencing may contribute to clinical diagnosis and management. Clinical application of the genome has not yet become routine, however, in part because physicians are still learning how best to utilize such information. As an educational research exercise performed in conjunction with our medical school human anatomy course, we explored the potential utility of determining the whole genome sequence of a patient who had died following a clinical diagnosis of idiopathic pulmonary fibrosis (IPF. Medical students performed dissection and whole genome sequencing of the cadaver. Gross and microscopic findings were more consistent with the fibrosing variant of nonspecific interstitial pneumonia (NSIP, as opposed to IPF per se. Variants in genes causing Mendelian disorders predisposing to IPF were not detected. However, whole genome sequencing identified several common variants associated with IPF, including a single nucleotide polymorphism (SNP, rs35705950, located in the promoter region of the gene encoding mucin glycoprotein MUC5B. The MUC5B promoter polymorphism was recently found to markedly elevate risk for IPF, though a particular association with NSIP has not been previously reported, nor has its contribution to disease risk previously been evaluated in the genome-wide context of all genetic variants. We did not identify additional predicted functional variants in a region of linkage disequilibrium (LD adjacent to MUC5B, nor did we discover other likely risk-contributing variants elsewhere in the genome. Whole genome sequencing thus corroborates the association of rs35705950 with MUC5B dysregulation and interstitial lung disease. This novel exercise additionally served a unique mission in bridging clinical and basic science education.

  6. New population-based exome data are questioning the pathogenicity of previously cardiomyopathy-associated genetic variants

    DEFF Research Database (Denmark)

    Andreasen, Charlotte Hartig; Nielsen, Jonas B; Refsgaard, Lena

    2013-01-01

    Cardiomyopathies are a heterogeneous group of diseases with various etiologies. We focused on three genetically determined cardiomyopathies: hypertrophic (HCM), dilated (DCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC). Eighty-four genes have so far been associated with these card......Cardiomyopathies are a heterogeneous group of diseases with various etiologies. We focused on three genetically determined cardiomyopathies: hypertrophic (HCM), dilated (DCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC). Eighty-four genes have so far been associated...... with these cardiomyopathies, but the disease-causing effect of reported variants is often dubious. In order to identify possible false-positive variants, we investigated the prevalence of previously reported cardiomyopathy-associated variants in recently published exome data. We searched for reported missense and nonsense...... variants in the NHLBI-Go Exome Sequencing Project (ESP) containing exome data from 6500 individuals. In ESP, we identified 94 variants out of 687 (14%) variants previously associated with HCM, 58 out of 337 (17%) variants associated with DCM, and 38 variants out of 209 (18%) associated with ARVC...

  7. Rare and common variants in LPL and APOA5 in Thai subjects with severe hypertriglyceridemia: A resequencing approach.

    Science.gov (United States)

    Khovidhunkit, Weerapan; Charoen, Supannika; Kiateprungvej, Arunrat; Chartyingcharoen, Palm; Muanpetch, Suwanna; Plengpanich, Wanee

    2016-01-01

    Severe hypertriglyceridemia usually results from a combination of genetic and environmental factors. Few data exist on the genetics of severe hypertriglyceridemia in Asian populations. To examine the genetic variants of 3 candidate genes known to influence triglyceride metabolism, LPL, APOC2, and APOA5, which encode lipoprotein lipase, apolipoprotein C-II, and apolipoprotein A-V, respectively, in a large group of Thai subjects with severe hypertriglyceridemia. We identified sequence variants of LPL, APOC2, and APOA5 by sequencing exons and exon-intron junctions in 101 subjects with triglyceride levels ≥ 10 mmol/L (886 mg/dL) and compared with those of 111 normotriglyceridemic subjects. Six different rare variants in LPL were found in 13 patients, 2 of which were novel (1 heterozygous missense variant: p.Arg270Gly and 1 frameshift variant: p.Asp308Glyfs*3). Four previously identified heterozygous missense variants in LPL were p.Ala98Thr, p.Leu279Val, p.Leu279Arg, and p.Arg432Thr. Collectively, these rare variants were found only in the hypertriglyceridemic group but not in the control group (13% vs 0%, P severe hypertriglyceridemia. A common p.Gly185Cys APOA5 variant, in particular, was quite prevalent and potentially contributed to hypertriglyceridemia in this group of patients. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  8. A systematic approach to assessing the clinical significance of genetic variants.

    Science.gov (United States)

    Duzkale, H; Shen, J; McLaughlin, H; Alfares, A; Kelly, M A; Pugh, T J; Funke, B H; Rehm, H L; Lebo, M S

    2013-11-01

    Molecular genetic testing informs diagnosis, prognosis, and risk assessment for patients and their family members. Recent advances in low-cost, high-throughput DNA sequencing and computing technologies have enabled the rapid expansion of genetic test content, resulting in dramatically increased numbers of DNA variants identified per test. To address this challenge, our laboratory has developed a systematic approach to thorough and efficient assessments of variants for pathogenicity determination. We first search for existing data in publications and databases including internal, collaborative and public resources. We then perform full evidence-based assessments through statistical analyses of observations in the general population and disease cohorts, evaluation of experimental data from in vivo or in vitro studies, and computational predictions of potential impacts of each variant. Finally, we weigh all evidence to reach an overall conclusion on the potential for each variant to be disease causing. In this report, we highlight the principles of variant assessment, address the caveats and pitfalls, and provide examples to illustrate the process. By sharing our experience and providing a framework for variant assessment, including access to a freely available customizable tool, we hope to help move towards standardized and consistent approaches to variant assessment. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Experience of targeted Usher exome sequencing as a clinical test

    Science.gov (United States)

    Besnard, Thomas; García-García, Gema; Baux, David; Vaché, Christel; Faugère, Valérie; Larrieu, Lise; Léonard, Susana; Millan, Jose M; Malcolm, Sue; Claustres, Mireille; Roux, Anne-Françoise

    2014-01-01

    We show that massively parallel targeted sequencing of 19 genes provides a new and reliable strategy for molecular diagnosis of Usher syndrome (USH) and nonsyndromic deafness, particularly appropriate for these disorders characterized by a high clinical and genetic heterogeneity and a complex structure of several of the genes involved. A series of 71 patients including Usher patients previously screened by Sanger sequencing plus newly referred patients was studied. Ninety-eight percent of the variants previously identified by Sanger sequencing were found by next-generation sequencing (NGS). NGS proved to be efficient as it offers analysis of all relevant genes which is laborious to reach with Sanger sequencing. Among the 13 newly referred Usher patients, both mutations in the same gene were identified in 77% of cases (10 patients) and one candidate pathogenic variant in two additional patients. This work can be considered as pilot for implementing NGS for genetically heterogeneous diseases in clinical service. PMID:24498627

  10. Two splice variants of the bovine lactoferrin gene identified in Staphylococcus aureus isolated from mastitis in dairy cattle.

    Science.gov (United States)

    Huang, J M; Wang, Z Y; Ju, Z H; Wang, C F; Li, Q L; Sun, T; Hou, Q L; Hang, S Q; Hou, M H; Zhong, J F

    2011-12-21

    Bovine lactoferrin (bLF) is a member of the transferrin family; it plays an important role in the innate immune response. We identified novel splice variants of the bLF gene in mastitis-infected and healthy cows. Reverse transcription-polymerase chain reaction (RT-PCR) and clone sequencing analysis were used to screen the splice variants of the bLF gene in the mammary gland, spleen and liver tissues. One main transcript corresponding to the bLF reference sequence was found in three tissues in both healthy and mastitis-infected cows. Quantitative real-time PCR analysis showed that the expression levels of the LF gene's main transcript were not significantly different in tissues from healthy versus mastitis-infected cows. However, the new splice variant, LF-AS2, which has the exon-skipping alternative splicing pattern, was only identified in mammary glands infected with Staphylococcus aureus. Sequencing analysis showed that the new splice variant was 251 bp in length, including exon 1, part of exon 2, part of exon 16, and exon 17. We conclude that bLF may play a role in resistance to mastitis through alternative splicing mechanisms.

  11. Pleiotropic Effects of Variants in Dementia Genes in Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Laura Ibanez

    2018-04-01

    Full Text Available Background: The prevalence of dementia in Parkinson disease (PD increases dramatically with advancing age, approaching 80% in patients who survive 20 years with the disease. Increasing evidence suggests clinical, pathological and genetic overlap between Alzheimer disease, dementia with Lewy bodies and frontotemporal dementia with PD. However, the contribution of the dementia-causing genes to PD risk, cognitive impairment and dementia in PD is not fully established.Objective: To assess the contribution of coding variants in Mendelian dementia-causing genes on the risk of developing PD and the effect on cognitive performance of PD patients.Methods: We analyzed the coding regions of the amyloid-beta precursor protein (APP, Presenilin 1 and 2 (PSEN1, PSEN2, and Granulin (GRN genes from 1,374 PD cases and 973 controls using pooled-DNA targeted sequence, human exome-chip and whole-exome sequencing (WES data by single variant and gene base (SKAT-O and burden tests analyses. Global cognitive function was assessed using the Mini-Mental State Examination (MMSE or the Montreal Cognitive Assessment (MoCA. The effect of coding variants in dementia-causing genes on cognitive performance was tested by multiple regression analysis adjusting for gender, disease duration, age at dementia assessment, study site and APOE carrier status.Results: Known AD pathogenic mutations in the PSEN1 (p.A79V and PSEN2 (p.V148I genes were found in 0.3% of all PD patients. There was a significant burden of rare, likely damaging variants in the GRN and PSEN1 genes in PD patients when compared with frequencies in the European population from the ExAC database. Multiple regression analysis revealed that PD patients carrying rare variants in the APP, PSEN1, PSEN2, and GRN genes exhibit lower cognitive tests scores than non-carrier PD patients (p = 2.0 × 10−4, independent of age at PD diagnosis, age at evaluation, APOE status or recruitment site.Conclusions: Pathogenic mutations in

  12. Integrative Annotation of Variants from 1092 Humans: Application to Cancer Genomics

    DEFF Research Database (Denmark)

    Khurana, Ekta; Fu, Yao; Colonna, Vincenza

    2013-01-01

    Identifying Important Identifiers Each of us has millions of sequence variations in our genomes. Signatures of purifying or negative selection should help identify which of those variations is functionally important. Khurana et al. (1235587) used sequence polymorphisms from 1092 humans across 14...... sites tended to occur in network hub promoters. Many recurrent somatic cancer variants occurred in noncoding regulatory regions and thus might indicate mutations that drive cancer....

  13. Exome sequencing for gene discovery in lethal fetal disorders--harnessing the value of extreme phenotypes.

    Science.gov (United States)

    Filges, Isabel; Friedman, Jan M

    2015-10-01

    Massively parallel sequencing has revolutionized our understanding of Mendelian disorders, and many novel genes have been discovered to cause disease phenotypes when mutant. At the same time, next-generation sequencing approaches have enabled non-invasive prenatal testing of free fetal DNA in maternal blood. However, little attention has been paid to using whole exome and genome sequencing strategies for gene identification in fetal disorders that are lethal in utero, because they can appear to be sporadic and Mendelian inheritance may be missed. We present challenges and advantages of applying next-generation sequencing approaches to gene discovery in fetal malformation phenotypes and review recent successful discovery approaches. We discuss the implication and significance of recessive inheritance and cross-species phenotyping in fetal lethal conditions. Whole exome sequencing can be used in individual families with undiagnosed lethal congenital anomaly syndromes to discover causal mutations, provided that prior to data analysis, the fetal phenotype can be correlated to a particular developmental pathway in embryogenesis. Cross-species phenotyping allows providing further evidence for causality of discovered variants in genes involved in those extremely rare phenotypes and will increase our knowledge about normal and abnormal human developmental processes. Ultimately, families will benefit from the option of early prenatal diagnosis. © 2014 John Wiley & Sons, Ltd.

  14. Whole-genome sequencing of monozygotic twins discordant for schizophrenia indicates multiple genetic risk factors for schizophrenia.

    Science.gov (United States)

    Tang, Jinsong; Fan, Yu; Li, Hong; Xiang, Qun; Zhang, Deng-Feng; Li, Zongchang; He, Ying; Liao, Yanhui; Wang, Ya; He, Fan; Zhang, Fengyu; Shugart, Yin Yao; Liu, Chunyu; Tang, Yanqing; Chan, Raymond C K; Wang, Chuan-Yue; Yao, Yong-Gang; Chen, Xiaogang

    2017-06-20

    Schizophrenia is a common disorder with a high heritability, but its genetic architecture is still elusive. We implemented whole-genome sequencing (WGS) analysis of 8 families with monozygotic (MZ) twin pairs discordant for schizophrenia to assess potential association of de novo mutations (DNMs) or inherited variants with susceptibility to schizophrenia. Eight non-synonymous DNMs (including one splicing site) were identified and shared by twins, which were either located in previously reported schizophrenia risk genes (p.V24689I mutation in TTN, p.S2506T mutation in GCN1L1, IVS3+1G > T in DOCK1) or had a benign to damaging effect according to in silico prediction analysis. By searching the inherited rare damaging or loss-of-function (LOF) variants and common susceptible alleles from three classes of schizophrenia candidate genes, we were able to distill genetic alterations in several schizophrenia risk genes, including GAD1, PLXNA2, RELN and FEZ1. Four inherited copy number variations (CNVs; including a large deletion at 16p13.11) implicated for schizophrenia were identified in four families, respectively. Most of families carried both missense DNMs and inherited risk variants, which might suggest that DNMs, inherited rare damaging variants and common risk alleles together conferred to schizophrenia susceptibility. Our results support that schizophrenia is caused by a combination of multiple genetic factors, with each DNM/variant showing a relatively small effect size. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. All rights reserved.

  15. Mitochondrial DNA (mtDNA) variants in the European haplogroups HV, JT, and U do not have a major role in schizophrenia.

    Science.gov (United States)

    Torrell, Helena; Salas, Antonio; Abasolo, Nerea; Morén, Constanza; Garrabou, Glòria; Valero, Joaquín; Alonso, Yolanda; Vilella, Elisabet; Costas, Javier; Martorell, Lourdes

    2014-10-01

    It has been reported that certain genetic factors involved in schizophrenia could be located in the mitochondrial DNA (mtDNA). Therefore, we hypothesized that mtDNA mutations and/or variants would be present in schizophrenia patients and may be related to schizophrenia characteristics and mitochondrial function. This study was performed in three steps: (1) identification of pathogenic mutations and variants in 14 schizophrenia patients with an apparent maternal inheritance of the disease by sequencing the entire mtDNA; (2) case-control association study of 23 variants identified in step 1 (16 missense, 3 rRNA, and 4 tRNA variants) in 495 patients and 615 controls, and (3) analyses of the associated variants according to the clinical, psychopathological, and neuropsychological characteristics and according to the oxidative and enzymatic activities of the mitochondrial respiratory chain. We did not identify pathogenic mtDNA mutations in the 14 sequenced patients. Two known variants were nominally associated with schizophrenia and were further studied. The MT-RNR2 1811A > G variant likely does not play a major role in schizophrenia, as it was not associated with clinical, psychopathological, or neuropsychological variables, and the MT-ATP6 9110T > C p.Ile195Thr variant did not result in differences in the oxidative and enzymatic functions of the mitochondrial respiratory chain. The patients with apparent maternal inheritance of schizophrenia did not exhibit any mutations in their mtDNA. The variants nominally associated with schizophrenia in the present study were not related either to phenotypic characteristics or to mitochondrial function. We did not find evidence pointing to a role for mtDNA sequence variation in schizophrenia. © 2014 Wiley Periodicals, Inc.

  16. Application of rare variant transmission disequilibrium tests to epileptic encephalopathy trio sequence data

    NARCIS (Netherlands)

    Allen, Andrew S.; Berkovic, Samuel F.; Bridgers, Joshua; Cossette, Patrick; Dlugos, Dennis; Epstein, Michael P.; Glauser, Tracy; Goldstein, David B.; Heinzen, Erin L.; Jiang, Yu; Johnson, Michael R.; Kuzniecky, Ruben; Lowenstein, Daniel H.; Marson, Anthony G.; Mefford, Heather C.; O'Brien, Terence J.; Ottman, Ruth; Petrou, Steven; Petrovski, Slavé; Poduri, Annapurna; Ren, Zhong; Scheffer, Ingrid E.; Sherr, Elliott; Wang, Quanli; Balling, Rudi; Barisic, Nina; Baulac, Stéphanie; Caglayan, Hande; Craiu, Dana; De Jonghe, Peter; Depienne, Christel; Guerrini, Renzo; Helbig, Ingo; Hjalgrim, Helle; Hoffman-Zacharska, Dorota; Jähn, Johanna A.; Klein, Karl Martin; Koeleman, Bobby; Komarek, Vladimir; Krause, Roland; Leguern, Eric; Lehesjoki, Anna-Elina; Lemke, Johannes R.; Lerche, Holger; Linnankivi, Tarja; Marini, Carla; May, Patrick; Møller, Rikke S.; Muhle, Hiltrud; Pal, Deb; Palotie, Aarno; Rosenow, Felix; Selmer, Kaja; Serratosa, Jose M.; Sisodiya, Sanjay M.; Stephani, Ulrich; Sterbova, Katalin; Striano, Pasquale; Suls, Arvid; Talvik, Tiina; von Spiczak, Sarah; Weber, Yvonne G.; Weckhuysen, Sarah; Zara, Federico; Abou-Khalil, Bassel; Alldredge, Brian K.; Amrom, Dina; Andermann, Eva; Andermann, Frederick; Bautista, Jocelyn F.; Bluvstein, Judith; Cascino, Gregory D.; Consalvo, Damian; Crumrine, Patricia; Devinsky, Orrin; Fiol, Miguel E.; Fountain, Nathan B.; French, Jacqueline; Friedman, Daniel; Haas, Kevin; Haut, Sheryl R.; Hayward, Jean; Joshi, Sucheta; Kanner, Andres; Kirsch, Heidi E.; Kossoff, Eric H.; Kuperman, Rachel; McGuire, Shannon M.; Motika, Paul V.; Novotny, Edward J.; Paolicchi, Juliann M.; Parent, Jack; Park, Kristen; Shellhaas, Renée A; Sirven, Joseph; Smith, Michael C.; Sullivan, Joseph; Thio, Liu Lin; Venkat, Anu; Vining, Eileen P. G.; Von Allmen, Gretchen K.; Weisenberg, Judith L.; Widdess-Walsh, Peter; Winawer, Melodie R.

    2017-01-01

    The classic epileptic encephalopathies, including infantile spasms (IS) and Lennox-Gastaut syndrome (LGS), are severe seizure disorders that usually arise sporadically. De novo variants in genes mainly encoding ion channel and synaptic proteins have been found to account for over 15% of patients

  17. Amplicon-based semiconductor sequencing of human exomes: performance evaluation and optimization strategies.

    Science.gov (United States)

    Damiati, E; Borsani, G; Giacopuzzi, Edoardo

    2016-05-01

    The Ion Proton platform allows to perform whole exome sequencing (WES) at low cost, providing rapid turnaround time and great flexibility. Products for WES on Ion Proton system include the AmpliSeq Exome kit and the recently introduced HiQ sequencing chemistry. Here, we used gold standard variants from GIAB consortium to assess the performances in variants identification, characterize the erroneous calls and develop a filtering strategy to reduce false positives. The AmpliSeq Exome kit captures a large fraction of bases (>94 %) in human CDS, ClinVar genes and ACMG genes, but with 2,041 (7 %), 449 (13 %) and 11 (19 %) genes not fully represented, respectively. Overall, 515 protein coding genes contain hard-to-sequence regions, including 90 genes from ClinVar. Performance in variants detection was maximum at mean coverage >120×, while at 90× and 70× we measured a loss of variants of 3.2 and 4.5 %, respectively. WES using HiQ chemistry showed ~71/97.5 % sensitivity, ~37/2 % FDR and ~0.66/0.98 F1 score for indels and SNPs, respectively. The proposed low, medium or high-stringency filters reduced the amount of false positives by 10.2, 21.2 and 40.4 % for indels and 21.2, 41.9 and 68.2 % for SNP, respectively. Amplicon-based WES on Ion Proton platform using HiQ chemistry emerged as a competitive approach, with improved accuracy in variants identification. False-positive variants remain an issue for the Ion Torrent technology, but our filtering strategy can be applied to reduce erroneous variants.

  18. Annotating DNA variants is the next major goal for human genetics.

    Science.gov (United States)

    Cutting, Garry R

    2014-01-02

    Clinical genetic testing has undergone a dramatic transformation in the past two decades. Diagnostic laboratories that previously tested for well-established disease-causing DNA variants in a handful of genes have evolved into sequencing factories identifying thousands of variants of known and unknown medical consequence. Sorting out what does and does not cause disease in our genomes is the next great challenge in making genetics a central feature of healthcare. I propose that closing the gap in our ability to interpret variation responsible for Mendelian disorders provides a grand and unprecedented opportunity for geneticists. Human geneticists are well placed to coordinate a systematic evaluation of variants in collaboration with basic scientists and clinicians. Sharing of knowledge, data, methods, and tools will aid both researchers and healthcare workers in achieving their common goal of defining the pathogenic potential of variants. Generation of variant annotations will inform genetic testing and will deepen our understanding of gene and protein function, thereby aiding the search for molecular targeted therapies. Copyright © 2014 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Identification of hemoglobin variants by top-down mass spectrometry using selected diagnostic product ions.

    Science.gov (United States)

    Coelho Graça, Didia; Hartmer, Ralf; Jabs, Wolfgang; Beris, Photis; Clerici, Lorella; Stoermer, Carsten; Samii, Kaveh; Hochstrasser, Denis; Tsybin, Yury O; Scherl, Alexander; Lescuyer, Pierre

    2015-04-01

    Hemoglobin disorder diagnosis is a complex procedure combining several analytical steps. Due to the lack of specificity of the currently used protein analysis methods, the identification of uncommon hemoglobin variants (proteoforms) can become a hard task to accomplish. The aim of this work was to develop a mass spectrometry-based approach to quickly identify mutated protein sequences within globin chain variants. To reach this goal, a top-down electron transfer dissociation mass spectrometry method was developed for hemoglobin β chain analysis. A diagnostic product ion list was established with a color code strategy allowing to quickly and specifically localize a mutation in the hemoglobin β chain sequence. The method was applied to the analysis of rare hemoglobin β chain variants and an (A)γ-β fusion protein. The results showed that the developed data analysis process allows fast and reliable interpretation of top-down electron transfer dissociation mass spectra by nonexpert users in the clinical area.

  20. Is the gene encoding Chibby implicated as a tumour suppressor in colorectal cancer ?

    International Nuclear Information System (INIS)

    Gad, Sophie; Teboul, David; Lièvre, Astrid; Goasguen, Nicolas; Berger, Anne; Beaune, Philippe; Laurent-Puig, Pierre

    2004-01-01

    A novel member of the Wnt signalling pathway, Chibby, was recently identified. This protein inhibits Wnt/β-catenin mediated transcriptional activation by competing with Lef-1 (the transcription factor and target of β-catenin) to bind to β-catenin. This suggests that Chibby could be a tumour suppressor protein. The C22orf2 gene coding Chibby is located on chromosome 22, a region recurrently lost in colorectal cancer. Activation of the Wnt pathway is a major feature of colorectal cancer and occurs through inactivation of APC or activation of β-catenin. All of this led us to analyse the possible implication of Chibby in colorectal carcinogenesis. First, 36 tumour and matched normal colonic mucosa DNA were genotyped with five microsatellite markers located on chromosome 22 to search for loss of heterozygosity. Then, mutation screening of the C22orf2 coding sequence and splice sites was performed in the 36 tumour DNA. Finally, expression of Chibby was analysed by quantitative RT-PCR on 10 patients, 4 with loss of heterozygosity (LOH) on chromosome 22. Loss of heterozygosity involving the C22orf2 region was detected in 11 out of 36 patients (30%). Sequencing analysis revealed a known variant, rs3747174, in exon 5: T321C leading to a silent amino acid polymorphism A107A. Allelic frequencies were 0.69 and 0.31 for T and C variants respectively. No other mutation was detected. Among the 10 patients studied, expression analysis revealed that Chibby is overexpressed in 2 tumours and underexpressed in 1. No correlations were found with 22q LOH status. As no somatic mutation was detected in C22orf2 in 36 colorectal tumour DNA, our results do not support the implication of Chibby as a tumour suppressor in colorectal carcinogenesis. This was supported by the absence of underexpression of Chibby among the tumour samples with 22q LOH. The implication of other Wnt pathway members remains to be identified to explain the part of colorectal tumours without mutation in APC and β-catenin

  1. PHARMACOGENETIC TESTING OPPORTUNITIES IN CARDIOLOGY BASED ON EXOME SEQUENCING

    Directory of Open Access Journals (Sweden)

    N. V. Shcherbakova

    2014-01-01

    Full Text Available Aim. To study what cardiac drugs currently have any comments on biomarkers and what information can be obtained by pharmacogenetic testing using data exome sequencing in patients with cardiac diseases.Material and methods. Exome sequencing in random participant of the ATEROGEN IVANOVO study and bioinformatics analysis of the data were performed. Point mutations were annotated using ANNOVAR program, as well as comparison with a number of specialized databases was done on the basis of user protocols.Results. 11 cardiac drugs and 7 genes which variants can influence cardiac drug metabolism were analyzed. According to exome sequencing of the participant we did not reveal allelic variants that require dose regime correction and careful efficacy control.Conclusion. The exome sequencing application is the next step to a wide range of personalized therapy. Future opportunities for improvement of the risk-benefit ratio in each patient are the main purpose of the collection and analysis of pharmacogenetic data.

  2. BRCA2 Hypomorphic Missense Variants Confer Moderate Risks of Breast Cancer

    DEFF Research Database (Denmark)

    Shimelis, Hermela; Mesman, Romy L S; Von Nicolai, Catharina

    2017-01-01

    Breast cancer risks conferred by many germline missense variants in the BRCA1 and BRCA2 genes, often referred to as variants of uncertain significance (VUS), have not been established. In this study, associations between 19 BRCA1 and 33 BRCA2 missense substitution variants and breast cancer risk ......, moderately increased risks of breast cancer, with potential implications for risk management guidelines in women with these specific variants. Cancer Res; 77(11); 2789-99. ©2017 AACR....... were investigated through a breast cancer case-control study using genotyping data from 38 studies of predominantly European ancestry (41,890 cases and 41,607 controls) and nine studies of Asian ancestry (6,269 cases and 6,624 controls). The BRCA2 c.9104A>C, p.Tyr3035Ser (OR = 2.52; P = 0.04), and BRCA...... of breast cancer among Asians. Functional characterization of the BRCA2 variants using four quantitative assays showed reduced BRCA2 activity for p.Tyr3035Ser compared with wild-type. Overall, our results show how BRCA2 missense variants that influence protein function can confer clinically relevant...

  3. Multiple Functional Variants in cis Modulate PDYN Expression.

    Science.gov (United States)

    Babbitt, Courtney C; Silverman, Jesse S; Haygood, Ralph; Reininga, Jennifer M; Rockman, Matthew V; Wray, Gregory A

    2010-02-01

    Understanding genetic variation and its functional consequences within cis-regulatory regions remains an important challenge in human genetics and evolution. Here, we present a fine-scale functional analysis of segregating variation within the cis-regulatory region of prodynorphin, a gene that encodes an endogenous opioid precursor with roles in cognition and disease. In order to characterize the functional consequences of segregating variation in cis in a region under balancing selection in different human populations, we examined associations between specific polymorphisms and gene expression in vivo and in vitro. We identified five polymorphisms within the 5' flanking region that affect transcript abundance: a 68-bp repeat recognized in prior studies, as well as two microsatellites and two single nucleotide polymorphisms not previously implicated as functional variants. The impact of these variants on transcription differs by brain region, sex, and cell type, implying interactions between cis genotype and the differentiated state of cells. The effects of individual variants on expression level are not additive in some combinations, implying epistatic interactions between nearby variants. These data reveal an unexpectedly complex relationship between segregating genetic variation and its expression-trait consequences and highlights the importance of close functional scrutiny of natural genetic variation within even relatively well-studied cis-regulatory regions.

  4. DCLK1 variants are associated across schizophrenia and attention deficit/hyperactivity disorder

    DEFF Research Database (Denmark)

    Håvik, Bjarte; Degenhardt, Franziska A; Johansson, Stefan

    2012-01-01

    that have neuro-cognitive dysfunctions: schizophrenia (SCZ), bipolar affective disorder (BP) and attention deficit/hyperactivity disorder (ADHD). We mined six genome wide association studies (GWASs) that were available publically or through collaboration; three for BP, two for SCZ and one for ADHD. We also......Doublecortin and calmodulin like kinase 1 (DCLK1) is implicated in synaptic plasticity and neurodevelopment. Genetic variants in DCLK1 are associated with cognitive traits, specifically verbal memory and general cognition. We investigated the role of DCLK1 variants in three psychiatric disorders...

  5. Mitochondrial DNA sequence variation in Finnish patients with matrilineal diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Soini Heidi K

    2012-07-01

    Full Text Available Abstract Background The genetic background of type 2 diabetes is complex involving contribution by both nuclear and mitochondrial genes. There is an excess of maternal inheritance in patients with type 2 diabetes and, furthermore, diabetes is a common symptom in patients with mutations in mitochondrial DNA (mtDNA. Polymorphisms in mtDNA have been reported to act as risk factors in several complex diseases. Findings We examined the nucleotide variation in complete mtDNA sequences of 64 Finnish patients with matrilineal diabetes. We used conformation sensitive gel electrophoresis and sequencing to detect sequence variation. We analysed the pathogenic potential of nonsynonymous variants detected in the sequences and examined the role of the m.16189 T>C variant. Controls consisted of non-diabetic subjects ascertained in the same population. The frequency of mtDNA haplogroup V was 3-fold higher in patients with diabetes. Patients harboured many nonsynonymous mtDNA substitutions that were predicted to be possibly or probably damaging. Furthermore, a novel m.13762 T>G in MTND5 leading to p.Ser476Ala and several rare mtDNA variants were found. Haplogroup H1b harbouring m.16189 T > C and m.3010 G > A was found to be more frequent in patients with diabetes than in controls. Conclusions Mildly deleterious nonsynonymous mtDNA variants and rare population-specific haplotypes constitute genetic risk factors for maternally inherited diabetes.

  6. Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance.

    Science.gov (United States)

    Patel, Kashyap A; Kettunen, Jarno; Laakso, Markku; Stančáková, Alena; Laver, Thomas W; Colclough, Kevin; Johnson, Matthew B; Abramowicz, Marc; Groop, Leif; Miettinen, Päivi J; Shepherd, Maggie H; Flanagan, Sarah E; Ellard, Sian; Inagaki, Nobuya; Hattersley, Andrew T; Tuomi, Tiinamaija; Cnop, Miriam; Weedon, Michael N

    2017-10-12

    Finding new causes of monogenic diabetes helps understand glycaemic regulation in humans. To find novel genetic causes of maturity-onset diabetes of the young (MODY), we sequenced MODY cases with unknown aetiology and compared variant frequencies to large public databases. From 36 European patients, we identify two probands with novel RFX6 heterozygous nonsense variants. RFX6 protein truncating variants are enriched in the MODY discovery cohort compared to the European control population within ExAC (odds ratio = 131, P = 1 × 10 -4 ). We find similar results in non-Finnish European (n = 348, odds ratio = 43, P = 5 × 10 -5 ) and Finnish (n = 80, odds ratio = 22, P = 1 × 10 -6 ) replication cohorts. RFX6 heterozygotes have reduced penetrance of diabetes compared to common HNF1A and HNF4A-MODY mutations (27, 70 and 55% at 25 years of age, respectively). The hyperglycaemia results from beta-cell dysfunction and is associated with lower fasting and stimulated gastric inhibitory polypeptide (GIP) levels. Our study demonstrates that heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance.Maturity-onset diabetes of the young (MODY) is the most common subtype of familial diabetes. Here, Patel et al. use targeted DNA sequencing of MODY patients and large-scale publically available data to show that RFX6 heterozygous protein truncating variants cause reduced penetrance MODY.

  7. Somatic mosaicism of a CDKL5 mutation identified by next-generation sequencing.

    Science.gov (United States)

    Kato, Takeshi; Morisada, Naoya; Nagase, Hiroaki; Nishiyama, Masahiro; Toyoshima, Daisaku; Nakagawa, Taku; Maruyama, Azusa; Fu, Xue Jun; Nozu, Kandai; Wada, Hiroko; Takada, Satoshi; Iijima, Kazumoto

    2015-10-01

    CDKL5-related encephalopathy is an X-linked dominantly inherited disorder that is characterized by early infantile epileptic encephalopathy or atypical Rett syndrome. We describe a 5-year-old Japanese boy with intractable epilepsy, severe developmental delay, and Rett syndrome-like features. Onset was at 2 months, when his electroencephalogram showed sporadic single poly spikes and diffuse irregular poly spikes. We conducted a genetic analysis using an Illumina® TruSight™ One sequencing panel on a next-generation sequencer. We identified two epilepsy-associated single nucleotide variants in our case: CDKL5 p.Ala40Val and KCNQ2 p.Glu515Asp. CDKL5 p.Ala40Val has been previously reported to be responsible for early infantile epileptic encephalopathy. In our case, the CDKL5 heterozygous mutation showed somatic mosaicism because the boy's karyotype was 46,XY. The KCNQ2 variant p.Glu515Asp is known to cause benign familial neonatal seizures-1, and this variant showed paternal inheritance. Although we believe that the somatic mosaic CDKL5 mutation is mainly responsible for the neurological phenotype in the patient, the KCNQ2 variant might have some neurological effect. Genetic analysis by next-generation sequencing is capable of identifying multiple variants in a patient. Copyright © 2015 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  8. Unique spectrum of SPAST variants in Estonian HSP patients: presence of benign missense changes but lack of exonic rearrangements

    Directory of Open Access Journals (Sweden)

    Gross-Paju Katrin

    2010-03-01

    Full Text Available Abstract Background Hereditary spastic paraplegia (HSP is a clinically and genetically heterogeneous disorder that can be an autosomal-dominant, autosomal-recessive, or X-linked disease. The most common autosomal-dominant form of the disease derives from mutations in the SPAST gene. Methods The aim of this study was to analyze 49 patients diagnosed with HSP from the Estonian population for sequence variants of the SPAST gene and to describe the associated phenotypes. Healthy control individuals (n = 100 with no family history of HSP were also analyzed. All patient samples were screened using denaturing high performance liquid chromatography (DHPLC and multiplex ligation-dependent probe amplification (MLPA assay. Samples with abnormal DHPLC and MLPA profiles were sequenced, with the same regions sequenced in control samples. Results Sequence variants of SPAST were identified in 19/49 HSP patients (38.8%, twelve among them had pathogenic mutations. Within the latter group there was one sporadic case. Eight patients had pure, and four - complex HSP. The twelve variants were identified: seven pathogenic (c.1174-1G>C, c.1185delA, c.1276C>T, c.1352_1356delGAGAA, c.1378C>A, c.1518_1519insTC, c.1841_1842insA and five non-pathogenic (c.131C>T, c.484G>A, c.685A>G, c.1245+202delG, c.1245+215G>C. Only 2 of these mutations had previously been described (c.131C>T, c.1245+202delG. Three mutations, c.1174-1G>C, c.1276 C>T, c.1378C>A, showed intrafamilial segregation. Conclusion This study identified new variants of the SPAST gene which included benign missense variants and short insertions/deletions. No large rearrangements were found. Based on these data, 7 new pathogenic variants of HSP are associated with clinical phenotypes.

  9. Severe osteoarthritis of the hand associates with common variants within the ALDH1A2 gene and with rare variants at 1p31

    DEFF Research Database (Denmark)

    Styrkarsdottir, Unnur; Thorleifsson, Gudmar; Helgadottir, Hafdis T

    2014-01-01

    Osteoarthritis is the most common form of arthritis and is a major cause of pain and disability in the elderly. To search for sequence variants that confer risk of osteoarthritis of the hand, we carried out a genome-wide association study (GWAS) in subjects with severe hand osteoarthritis, using...

  10. Korean Variant Archive (KOVA): a reference database of genetic variations in the Korean population.

    Science.gov (United States)

    Lee, Sangmoon; Seo, Jihae; Park, Jinman; Nam, Jae-Yong; Choi, Ahyoung; Ignatius, Jason S; Bjornson, Robert D; Chae, Jong-Hee; Jang, In-Jin; Lee, Sanghyuk; Park, Woong-Yang; Baek, Daehyun; Choi, Murim

    2017-06-27

    Despite efforts to interrogate human genome variation through large-scale databases, systematic preference toward populations of Caucasian descendants has resulted in unintended reduction of power in studying non-Caucasians. Here we report a compilation of coding variants from 1,055 healthy Korean individuals (KOVA; Korean Variant Archive). The samples were sequenced to a mean depth of 75x, yielding 101 singleton variants per individual. Population genetics analysis demonstrates that the Korean population is a distinct ethnic group comparable to other discrete ethnic groups in Africa and Europe, providing a rationale for such independent genomic datasets. Indeed, KOVA conferred 22.8% increased variant filtering power in addition to Exome Aggregation Consortium (ExAC) when used on Korean exomes. Functional assessment of nonsynonymous variant supported the presence of purifying selection in Koreans. Analysis of copy number variants detected 5.2 deletions and 10.3 amplifications per individual with an increased fraction of novel variants among smaller and rarer copy number variable segments. We also report a list of germline variants that are associated with increased tumor susceptibility. This catalog can function as a critical addition to the pre-existing variant databases in pursuing genetic studies of Korean individuals.

  11. MALDI-ISD Mass Spectrometry Analysis of Hemoglobin Variants: a Top-Down Approach to the Characterization of Hemoglobinopathies

    Science.gov (United States)

    Théberge, Roger; Dikler, Sergei; Heckendorf, Christian; Chui, David H. K.; Costello, Catherine E.; McComb, Mark E.

    2015-08-01

    Hemoglobinopathies are the most common inherited disorders in humans and are thus the target of screening programs worldwide. Over the past decade, mass spectrometry (MS) has gained a more important role as a clinical means to diagnose variants, and a number of approaches have been proposed for characterization. Here we investigate the use of matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF MS) with sequencing using in-source decay (MALDI-ISD) for the characterization of Hb variants. We explored the effect of matrix selection using super DHB or 1,5-diaminonaphthalene on ISD fragment ion yield and distribution. MALDI-ISD MS of whole blood using super DHB simultaneously provided molecular weights for the alpha and beta chains, as well as extensive fragmentation in the form of sequence defining c-, (z + 2)-, and y-ion series. We observed sequence coverage on the first 70 amino acids positions from the N- and C-termini of the alpha and beta chains in a single experiment. An abundant beta chain N-terminal fragment ion corresponding to βc34 was determined to be a diagnostic marker ion for Hb S (β6 Glu→Val, sickle cell), Hb C (β6 Glu→Lys), and potentially for Hb E (β26 Glu→Lys). The MALDI-ISD analysis of Hb S and HbSC yielded mass shifts corresponding to the variants, demonstrating the potential for high-throughput screening. Characterization of an alpha chain variant, Hb Westmead (α122 His→Gln), generated fragments that established the location of the variant. This study is the first clinical application of MALDI-ISD MS for the determination and characterization of hemoglobin variants.

  12. Amino acid substitutions in inherited albumin variants from Amerindian and Japanese populations

    International Nuclear Information System (INIS)

    Takahashi, N.; Takahashi, Y.; Isobe, T.; Putnam, F.W.; Fujita, M.; Satoh, C.; Neel, J.V.

    1987-01-01

    The authors report an effort to determine the basis for the altered migration of seven inherited albumin variants detected by one-dimensional electrophoresis in population surveys involving tribal Amerindians and Japanese children. An amino acid substitution has thus far been determined for four of the variants. The randomness in the albumin polypeptide of these and the other sixteen independently ascertained amino acid substitutions of albumin and proalbumin thus far established was analyzed; the clustering of eight of these at two positions in the six-amino acid propeptide sequence seems noteworthy. By comparison with other proteins studied by electrophoresis, albumin exhibits average variability. It is a paradox that individuals who, for genetic reasons, lack albumin exhibit no obvious ill effects; yet, electrophoretic variants of albumin are no more numerous than are variants of proteins, the absence of which results in severe disease

  13. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity

    DEFF Research Database (Denmark)

    Turcot, Valérie; Lu, Yingchang; Highland, Heather M

    2018-01-01

    ,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) obesity, 2 variants...... were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter......, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity....

  14. Alternative Splicing and Caspase-Mediated Cleavage Generate Antagonistic Variants of the Stress Oncoprotein LEDGF/p75

    Science.gov (United States)

    Brown-Bryan, Terry A.; Leoh, Lai S.; Ganapathy, Vidya; Pacheco, Fabio J.; Mediavilla-Varela, Melanie; Filippova, Maria; Linkhart, Thomas A.; Gijsbers, Rik; Debyser, Zeger; Casiano, Carlos A.

    2009-01-01

    There is increasing evidence that an augmented state of cellular oxidative stress modulates the expression of stress genes implicated in diseases associated with health disparities such as certain cancers and diabetes. Lens epithelium–derived growth factor p75 (LEDGF/p75), also known as DFS70 autoantigen, is emerging as a survival oncoprotein that promotes resistance to oxidative stress–induced cell death and chemotherapy. We previously showed that LEDGF/p75 is targeted by autoantibodies in prostate cancer patients and is overexpressed in prostate tumors, and that its stress survival activity is abrogated during apoptosis. LEDGF/p75 has a COOH-terminally truncated splice variant, p52, whose role in stress survival and apoptosis has not been thoroughly investigated. We observed unbalanced expression of these proteins in a panel of tumor cell lines, with LEDGF/p75 generally expressed at higher levels. During apoptosis, caspase-3 cleaved p52 to generate a p38 fragment that lacked the NH2-terminal PWWP domain and failed to transactivate the Hsp27 promoter in reporter assays. However, p38 retained chromatin association properties and repressed the transactivation potential of LEDGF/p75. Overexpression of p52 or its variants with truncated PWWP domains in several tumor cell lines induced apoptosis, an activity that was linked to the presence of an intron-derived COOH-terminal sequence. These results implicate the PWWP domain of p52 in transcription function but not in chromatin association and proapoptotic activities. Consistent with their unbalanced expression in tumor cells, LEDGF/p75 and p52 seem to play antagonistic roles in the cellular stress response and could serve as targets for novel antitumor therapies. PMID:18708362

  15. Comparative transcriptome analysis of three color variants of the sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Jo, Jihoon; Park, Jongsun; Lee, Hyun-Gwan; Kern, Elizabeth M A; Cheon, Seongmin; Jin, Soyeong; Park, Joong-Ki; Cho, Sung-Jin; Park, Chungoo

    2016-08-01

    The sea cucumber Apostichopus japonicus Selenka 1867 represents an important resource in biomedical research, traditional medicine, and the seafood industry. Much of the commercial value of A. japonicus is determined by dorsal/ventral color variation (red, green, and black), yet the taxonomic relationships between these color variants are not clearly understood. We performed the first comparative analysis of de novo assembled transcriptome data from three color variants of A. japonicus. Using the Illumina platform, we sequenced nearly 177,596,774 clean reads representing a total of 18.2Gbp of sea cucumber transcriptome. A comparison of over 0.3 million transcript scaffolds against the Uniprot/Swiss-Prot database yielded 8513, 8602, and 8588 positive matches for green, red, and black body color transcriptomes, respectively. Using the Panther gene classification system, we assessed an extensive and diverse set of expressed genes in three color variants and found that (1) among the three color variants of A. japonicus, genes associated with RNA binding protein, oxidoreductase, nucleic acid binding, transferase, and KRAB box transcription factor were most commonly expressed; and (2) the main protein functional classes are differently regulated in all three color variants (extracellular matrix protein and phosphatase for green color, transporter and potassium channel for red color, and G-protein modulator and enzyme modulator for black color). This work will assist in the discovery and annotation of novel genes that play significant morphological and physiological roles in color variants of A. japonicus, and these sequence data will provide a useful set of resources for the rapidly growing sea cucumber aquaculture industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Rare A2ML1 variants confer susceptibility to otitis media

    Science.gov (United States)

    Santos-Cortez, Regie Lyn P.; Chiong, Charlotte M.; Reyes-Quintos, Ma. Rina T.; Tantoco, Ma. Leah C.; Wang, Xin; Acharya, Anushree; Abbe, Izoduwa; Giese, Arnaud P.; Smith, Joshua D.; Allen, E. Kaitlynn; Li, Biao; Cutiongco-de la Paz, Eva Maria; Garcia, Marieflor Cristy; Llanes, Erasmo Gonzalo D.V.; Labra, Patrick John; Gloria-Cruz, Teresa Luisa I.; Chan, Abner L.; Wang, Gao T.; Daly, Kathleen A.; Shendure, Jay; Bamshad, Michael J.; Nickerson, Deborah A.; Patel, Janak A.; Riazuddin, Saima; Sale, Michele M.; Chonmaitree, Tasnee; Ahmed, Zubair M.; Abes, Generoso T.; Leal, Suzanne M.

    2015-01-01

    A duplication variant within middle-ear-specific gene A2ML1 co-segregates with otitis media in an indigenous Filipino pedigree (LOD score=7.5 at reduced penetrance) and lies within a founder haplotype that is also shared by three otitis-prone European- and Hispanic-American children, but is absent in non-otitis-prone children and >62,000 next-generation sequences. Seven additional A2ML1 variants were identified in six otitis-prone children. Collectively our studies support a role for A2ML1 in the pathophysiology of otitis media. PMID:26121085

  17. Novel compound heterozygous NMNAT1 variants associated with Leber congenital amaurosis

    DEFF Research Database (Denmark)

    Siemiatkowska, Anna M; van den Born, L Ingeborgh; van Genderen, Maria M

    2014-01-01

    , were screened in 532 additional patients with retinal dystrophies. This cohort encompassed 108 persons with isolated or autosomal recessive cone-rod dystrophy (CRD), 271 with isolated or autosomal recessive retinitis pigmentosa (RP), and 49 with autosomal dominant RP, as well as 104 persons with LCA...... and associated phenotypes in different types of inherited retinal dystrophies. METHODS: DNA samples of 161 patients with LCA without genetic diagnosis were analyzed for variants in NMNAT1 using Sanger sequencing. Variants in exon 5 of NMNAT1, which harbors the majority of the previously identified mutations...

  18. Pre- and Post-Conditions Expressed in Variants of the Modal µ-Calculus

    Science.gov (United States)

    Tanabe, Yoshinori; Sekizawa, Toshifusa; Yuasa, Yoshifumi; Takahashi, Koichi

    Properties of Kripke structures can be expressed by formulas of the modal µ-calculus. Despite its strong expressive power, the validity problem of the modal µ-calculus is decidable, and so are some of its variants enriched by inverse programs, graded modalities, and nominals. In this study, we show that the pre- and post-conditions of transformations of Kripke structures, such as addition/deletion of states and edges, can be expressed using variants of the modal µ-calculus. Combined with decision procedures we have developed for those variants, the properties of sequences of transformations on Kripke structures can be deduced. We show that these techniques can be used to verify the properties of pointer-manipulating programs.

  19. Identification of the first homozygous 1-bp deletion in GDF9 gene leading to primary ovarian insufficiency by using targeted massively parallel sequencing.

    Science.gov (United States)

    França, M M; Funari, M F A; Nishi, M Y; Narcizo, A M; Domenice, S; Costa, E M F; Lerario, A M; Mendonca, B B

    2018-02-01

    Targeted massively parallel sequencing (TMPS) has been used in genetic diagnosis for Mendelian disorders. In the past few years, the TMPS has identified new and already described genes associated with primary ovarian insufficiency (POI) phenotype. Here, we performed a targeted gene sequencing to find a genetic diagnosis in idiopathic cases of Brazilian POI cohort. A custom SureSelect XT DNA target enrichment panel was designed and the sequencing was performed on Illumina NextSeq sequencer. We identified 1 homozygous 1-bp deletion variant (c.783delC) in the GDF9 gene in 1 patient with POI. The variant was confirmed and segregated using Sanger sequencing. The c.783delC GDF9 variant changed an amino acid creating a premature termination codon (p.Ser262Hisfs*2). This variant was not present in all public databases (ExAC/gnomAD, NHLBI/EVS and 1000Genomes). Moreover, it was absent in 400 alleles from fertile Brazilian women screened by Sanger sequencing. The patient's mother and her unaffected sister carried the c.783delC variant in a heterozygous state, as expected for an autosomal recessive inheritance. Here, the TMPS identified the first homozygous 1-bp deletion variant in GDF9. This finding reveals a novel inheritance pattern of pathogenic variant in GDF9 associated with POI, thus improving the genetic diagnosis of this disorder. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Self accommodation morphology of martensite variants in Zr-2.5wt%Nb alloy

    International Nuclear Information System (INIS)

    Srivastava, D.; Madangopal, K.; Banerjee, S.; Ranganathan, S.

    1993-01-01

    The role of self accommodation of the different martensite variants in controlling the morphologies of the Zr-2.5wt%Nb alloy martensite has been examined. Three distinct types of grouping of martensite variants have been found to be predominantly present. Crystallographic descriptions of these groups have been provided and the degrees of self accommodation for these have been estimated and compared with those corresponding to other possible variant groupings around the symmetry axes of the parent phase. The frequently observed 3-variant group, which shows an indentation mark morphology when viewed along β directions in the transmission electron microscope, has been seen to have the highest degree of self accommodation amongst the cases considered. Based on the observations made, a growth sequence leading to the formation of the final martensitic structure has been proposed