WorldWideScience

Sample records for separating organic contaminants

  1. Flotation separation of uranium from contaminated soils

    International Nuclear Information System (INIS)

    Misra, M.; Mehta, R.; Garcia, H.; Chai, C.D.; Smith, R.W.

    1995-01-01

    The volume of low-level contaminated soil at the Department of Energy's Nuclear Weapon Sites are in the order of several million tons. Most of the contaminants are uranium, plutonium, other heavy metals and organic compounds. Selected physical separation processes have shown demonstrated potential in concentrating the radionuclides in a small fraction of the soil. Depending upon the size, nature of bonding and distributions of radionuclides, more than 90% of the radionuclide activity can be concentrated in a small volume of fraction of the soil. The physico-chemical separation processes such as flotation in a mechanical and microbubble tall column cell have shown promising applications in cleaning up the high volume contaminated soil

  2. Prospects for separating heavy metal from contaminated soil

    International Nuclear Information System (INIS)

    Langen, M.; Hoberg, H.; Hamacher, B.

    1994-01-01

    For decades, large quantities of organic and inorganic pollutants have been brought into the soil as a result of the industrial operations of smelting and coking plants. This paper reports on the prospects of separating heavy metals from soil contaminated by smelting and coking plants by means of a physical/chemical washing procedure. Besides the description of virgin soil characteristics, cleaning results and process parameters of calssification, density separation and flotation processes are presented. It is shown that heavy metal pollution of virgin soil can be reduced by the classical process stages of soil washing. The metal content of virgin soil are critically assessed whereby the limits of the physical-chimical washing process will also be entered into. Emphasis is placed on the significance of the determination of limiting values for inorganic contamination, especially for soil contaminated with both organic and inorganic pollution. (orig.) [de

  3. Separation of contaminated concrete

    International Nuclear Information System (INIS)

    Bakiewicz, J.L.; Reymer, A.P.S.

    1990-01-01

    Separating the contaminated parts from the non-contaminated parts from decommissioned nuclear facilities may strongly reduce the amount of contaminated concrete. The reduction in volume of the radioactive contaminated concrete is dependent on how much cementstone is in the concrete. This research program shows that the radioactive contamination is mostly in the cementstone. However the choice that the cementstone parts, (or better said the radioactive parts) are smaller than 1 mm may not always be true. Normally the cementstone takes about 30% of the total concrete volume. A separation procedure composed by a combination of milling and thermal shock has been assessed. Both the cold and hot thermal shock in combination with milling are not able to separate the cementstone from the larger aggregates completely. However, the cementstone from the concrete with a low nominal grain size seems to be almost completely removed by the combination cold thermal shock/milling, while the cementstone from the concrete with a high nominal grain size seems to be almost completely removed by the combination hot thermal shock/milling. After both methods a layer of cementstone was still visible on the aggregates. Washing followed by a nitric acid treatment removed each 2 wt% of cementstone

  4. Hydrothermal processing of actinide contaminated organic wastes

    International Nuclear Information System (INIS)

    Worl, A.; Buelow, S.J.; Le, L.A.; Padilla, D.D.; Roberts, J.H.

    1997-01-01

    Hydrothermal oxidation is an innovative process for the destruction of organic wastes, that occurs above the critical temperature and pressure of water. The process provides high destruction and removal efficiencies for a wide variety of organic and hazardous substances. For aqueous/organic mixtures, organic materials, and pure organic liquids hydrothermal processing removes most of the organic and nitrate components (>99.999%) and facilitates the collection and separation of the actinides. We have designed, built and tested a hydrothermal processing unit for the removal of the organic and hazardous substances from actinide contaminated liquids and solids. Here we present results for the organic generated at the Los Alamos National Laboratory Plutonium Facility

  5. Process for the restoration of solids contaminated with hydrocarbons and heavy organic compounds

    International Nuclear Information System (INIS)

    Bala, G.A.; Thomas, C.P.; Jackson, J.D.; McMillin, R.A.

    1994-01-01

    Processes have been developed for the restoration of environments contaminated with hydrocarbons and heavy organics. The intended product is a field deployable materials handling system and phase separation process ranging in size from 1 yd 3 /hr to 50 yd 3 /hr for commercial application to environmental problems associated with the exploration, production, refining and transport of petroleum, petroleum products and organic chemicals. Effluents from contaminated sites will be clean solids (classified by size if appropriate), and the concentrated contaminant. The technology is based on biochemical solvation, liquid/liquid and liquid/solid extractions, materials classification, mechanical and hydraulic scrubbing, and phase separation of organic and aqueous phases. Fluid use is minimized through utilization of closed-loop (recycle) systems. Contaminants that are removed from the solid materials may be destroyed, disposed of using existing technologies, or used on-site for cogeneration of /power for plant operations. Additionally, if the contaminant is a valued product, the material may be recovered for application or sale. Clean solid material is not sterilized and may be returned to normal agricultural, commercial, residential or recreational use in most instances

  6. Test installation for separation of contaminated/activated concrete

    International Nuclear Information System (INIS)

    Klok, H.; Peeze Binkhorst, I.A.G.M.

    1993-01-01

    Large amounts of contaminated concrete are released when dismantling nuclear power plants. Volume reduction of contaminated concrete has economic and environmental advantages. A test facility has been built by which contaminated concrete can be separated in clean aggregate and contaminated cement. During the tests a considerable amount of dust accumulated in the valve construction of the test installation. This could result in an unacceptable accumulation of contaminated dust, blocking of the handle and emission of dust and grit during the operation of the test facility. The design of the valve construction was adjusted by using and testing flexible materials

  7. The isotopic contamination in electromagnetic isotope separators; La contagion isotopique dans les separateurs electromagnetiques d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, Ch [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  8. 40 CFR 141.61 - Maximum contaminant levels for organic contaminants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant levels for organic contaminants. 141.61 Section 141.61 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.61 Maximum contaminant...

  9. Air separation of heavy metal contaminants from soil

    International Nuclear Information System (INIS)

    Nelson, M.E.; Harper, M.J.; Buckon, A.D.

    1995-01-01

    Several heavy metal separation techniques are currently being developed for soil remediation at various Department of Defense and Department of Energy (DOE) Facilities. The majority of these techniques involve a wet process using water, pH modifiers or other compounds. The US Naval Academy (USNA) has developed a dry process for heavy metal separation. The process uses air classification technology to concentrate the metal contaminant into a fraction of the soil. The advantages of this dry process are that it creates no contaminated byproduct and uses commercially available technology. The USNA process is based on using a Gayco-Reliance air classifier. Tests have been conducted with the system at the Naval Academy and the University of Nevada-Reno (UNR). The USNA tests used soil from the Nevada Test Site mixed with bismuth at a concentration of 500--1,000 ppm. The UNR tests used soil from four DOE sites mixed with uranium oxides and plutonium at an activity level of 100--700 pCi per gram. Concentration of activities and volume reduction percentages are presented for the various soils and contaminants tested

  10. The isotopic contamination in electromagnetic isotope separators; La contagion isotopique dans les separateurs electromagnetiques d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, Ch. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the early years of isotope separation, and in particular electromagnetic isotope separation, needs for rapid results have conducted to empiric research. This paper describes fundamental research on the electromagnetic isotope separation to a better understanding of isotope separators as well as improving the performances. Focus has been made on the study of the principle of isotope contamination and the remedial action on the separator to improve the isotope separation ratio. In a first part, the author come back to the functioning of an electromagnetic separator and generalities on isotope contamination. Secondly, it describes the two stages separation method with two dispersive apparatus, an electromagnetic separation stage followed by an electrostatic separation stage, both separated by a diaphragm. The specifications of the electrostatic stage are given and its different settings and their consequences on isotope separation are investigated. In a third part, mechanisms and contamination factors in the isotope separation are discussed: natural isotope contamination, contamination by rebounding on the collector, contamination because of a low resolution, contamination by chromatism and diffusion effect, breakdown of condenser voltage. Analysis of experimental results shows the diffusion as the most important contamination factor in electromagnetic isotope separation. As contamination factors are dependent on geometric parameters, sector angle, radius of curvature in the magnetic field and clearance height are discussed in a fourth part. The better understanding of the mechanism of the different contamination factors and the study of influential parameters as pressure and geometric parameters lead to define a global scheme of isotope contamination and determinate optima separator design and experimental parameters. Finally, the global scheme of isotope contamination and hypothesis on optima specifications and experimental parameters has been checked during a

  11. Phytovolatilization of Organic Contaminants.

    Science.gov (United States)

    Limmer, Matt; Burken, Joel

    2016-07-05

    Plants can interact with a variety of organic compounds, and thereby affect the fate and transport of many environmental contaminants. Volatile organic compounds may be volatilized from stems or leaves (direct phytovolatilization) or from soil due to plant root activities (indirect phytovolatilization). Fluxes of contaminants volatilizing from plants are important across scales ranging from local contaminant spills to global fluxes of methane emanating from ecosystems biochemically reducing organic carbon. In this article past studies are reviewed to clearly differentiate between direct- and indirect-phytovolatilization and we discuss the plant physiology driving phytovolatilization in different ecosystems. Current measurement techniques are also described, including common difficulties in experimental design. We also discuss reports of phytovolatilization in the literature, finding that compounds with low octanol-air partitioning coefficients are more likely to be phytovolatilized (log KOA < 5). Reports of direct phytovolatilization at field sites compare favorably to model predictions. Finally, future research needs are presented that could better quantify phytovolatilization fluxes at field scale.

  12. Process for the separation of contaminant or mixture of contaminants from a Ch4-comprising gaseous feed streem

    NARCIS (Netherlands)

    2012-01-01

    The invention provides a process for the separation of a contaminant or mixture of contaminants from a CH4-comprising gaseous feed streem, comprising the subsequent steps of: a) passing a CH4-comprising gaseous feed streem comprising the contaminant or the mixture of contaminants in to and through a

  13. Quantifying the effect of sorption and bioavailability of hydrophobic organic contaminants

    International Nuclear Information System (INIS)

    Zhang, W.; Bouwer, E.; Cunningham, A.

    1994-01-01

    In-situ bioremediation has been applied successfully at a few sites. Several restrictions presently exist which could greatly limit the effectiveness of this promising technology. Hydrophobic organic contaminants tend to sorb onto soil. However, microorganisms are most effective in utilizing substrates from the aqueous phase. Sorption tends to separate the direct contact between microorganisms and contaminants necessary for biodegradation to occur. A series of experiments, which represented scenarios with fast sorption/desorption, slow sorption/desorption, mass transfer across boundary layer and mass transfer within attached microorganisms (biofilm), was conducted to demonstrate the concentration effect and the mass transfer effect. A method has been developed to quantify bioavailability of organic contaminants in aquatic environments. Bioavailability Factor (B f ), a dimensionless parameter derived from mathematical models and verified by experimental results, has been formulated to describe the impact of equilibrium sorption, nonequilibrium sorption, and mass transfer processes on the rate and extent of biodegradation of petroleum hydrocarbons

  14. 40 CFR 141.50 - Maximum contaminant level goals for organic contaminants.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Maximum contaminant level goals for organic contaminants. 141.50 Section 141.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Maximum Contaminant Level...

  15. The influence of interfacial properties on the two-phase liquid flow of organic contaminants in groundwater

    International Nuclear Information System (INIS)

    Demond, A.H.; Desai, F.N.; Hayes, K.F.

    1992-01-01

    DOE's waste sites are contaminated with a variety of organic liquids. Because of their low solubility in water, organic liquids such as these will persist as separate liquid phases and be transported as such in the subsurface. Thus, an improved understanding of the factors influencing the movement of a separate organic liquid phase in the subsurface is important to DOE's efforts to control groundwater contamination. Wettability is sometimes cited as the most important factor influencing two-phase flow in porous media. The wetting phase migrates preferentially through the smaller pores, whereas the nonwetting phase is concentrated in the larger pores. Typically, aquifers are thought of as strongly water-wet, implying that the organic liquid preferentially occupies the larger pores. But in fact, that state depends on the properties of the three interfaces of the system: between the organic liquid and water, water and the solid, and the organic liquid and the solid. Characteristics of the system which affect the interfacial properties also impact the wettability, such as the nature of the aquifer solids' surfaces, the composition of the goundwater and the properties of the organic contaminant. The alteration of wettability at DOE waste sites may be dominated by the presence of co-contaminants such as organic acids and bases which behave as surface-active agents or surfactants. Because of their physicochemical nature, surfactants will sorb preferentially at the interfaces of the system, thereby impacting the wettability and the distribution of the liquids in the porous medium. The over-all objective of this research was to determine how changes in interfacial properties affect two-phase flow. Specifically, the objective was to examine the effect of surfactant sorption on capillary pressure relationships by correlating measurements of sorption, zeta potential, interfacial tension and contact angle, with changes in the capillary pressure-saturation relationships

  16. Development of volume reduction method of cesium contaminated soil with magnetic separation

    International Nuclear Information System (INIS)

    Yukumatsu, Kazuki; Nomura, Naoki; Mishima, Fumihito; Akiyama, Yoko; Nishijima, Shigehiro

    2016-01-01

    In this study, we developed a new volume reduction technique for cesium contaminated soil by magnetic separation. Cs in soil is mainly adsorbed on clay which is the smallest particle constituent in the soil, especially on paramagnetic 2:1 type clay minerals which strongly adsorb and fix Cs. Thus selective separation of 2:1 type clay with a superconducting magnet could enable to reduce the volume of Cs contaminated soil. The 2:1 type clay particles exist in various particle sizes in the soil, which leads that magnetic force and Cs adsorption quantity depend on their particle size. Accordingly, we examined magnetic separation conditions for efficient separation of 2:1 type clay considering their particle size distribution. First, the separation rate of 2:1 type clay for each particle size was calculated by particle trajectory simulation, because magnetic separation rate largely depends on the objective size. According to the calculation, 73 and 89 % of 2:1 type clay could be separated at 2 and 7 T, respectively. Moreover we calculated dose reduction rate on the basis of the result of particle trajectory simulation. It was indicated that 17 and 51 % of dose reduction would be possible at 2 and 7 T, respectively. The difference of dose reduction rate at 2 T and 7 T was found to be separated a fine particle. It was shown that magnetic separation considering particle size distribution would contribute to the volume reduction of contaminated soil

  17. Method of separation of uranium from contaminating ions in an aqueous feed liquid containing uranyl ions

    International Nuclear Information System (INIS)

    Sundar, P.S.; Elikan, L.; Lyon, W.L.

    1975-01-01

    A coupled cationic/anionic method for the separation of uranium from contaminated aqueous solutions which contain uranyl ions is proposed. The fluid is extracted using an organic solvent containing a reagent which, together with the uranyl ions, forms a soluble aggregate in that solvent. As an example, 0.1 - 1 Mol/l Di-2-ethyl-hexyl-phosphorous acid in kerosene is mentioned. The organic solvent is then treated with a sealing liquid (volume ratio 20 - 35). For separation, an aqueous carbonate solution or a sulfuric acid solution can be used; the most favorable pH-values and concentrations for both cases are mentioned. The U +4 -ion at the sulfuric acid separation is subsequently oxidized to the uranyl ion with air. In each case, an extraction with an amine follows; after that, the amine is separated using an ammonium-carbonate solution and the uranium aggregate is precipitated, for example as ammonium uranyl tricarbonate, and then further processed to uranium oxide. The solvents and fluids used are led back in closed circuit; a flow diagram is given. (UWI) [de

  18. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  19. Group separation of organohalogenated contaminants by GCxGC

    Energy Technology Data Exchange (ETDEWEB)

    Korytar, P.; Leonards, P.; Boer, J. de [Netherlands Institute for Fisheries Research, IJmuiden (Netherlands); Parera, J. [Barcelona Univ. (Spain); Brinkman, U. [Vrije Univ., Amsterdam (Netherlands)

    2004-09-15

    The congener specific analysis of organohalogenated compounds is challenging, because of a large number of possibly interfering compounds not only within the compound class but also from congeners of other compound classes. Therefore, analytical procedures usually include complicated and time-consuming multi-step sample pre-treatment and/or selective detection (e.g. HRMS, MS/MS) in the consequent gas chromatographic analysis, what makes the procedures laborious and expensive. One way how to improve the situation would be to considerably increase the separation efficiency of the gas chromatographic analysis by replacing conventional GC by so-called comprehensive two-dimensional gas chromatography (GC x GC). In GC x GC two independent separations are applied to an entire sample which effects a considerably enhanced overall resolution and also, because of the analyte refocusing during modulation, an improved analyte detectability. One further aspect which makes GC x GC especially attractive is the ordered structure of the two-dimensional chromatograms, which is observed when mixtures of related compounds, homologues or congeners are analysed. One good example are the bands of alkanes, naphthenes and aromatics present in 2D chromatogram when petrochemical samples are analysed. The ordered structure was reported also within the compound class of some organohalogenated contaminants, more precisely, of polychlorinated biphenyls and toxaphenes (ordering to number of chlorine atoms on the skeleton). However, to date, no study of separation among the different compound classes has been reported. In the present paper, this topic will be studied for the most common contaminants. While the principle aim is the group type separation, some attention will be devoted also to within the class separation (e.g., for polychlorinated diphenylethers and polychlorinated alkanes).

  20. Organic separations with membranes

    International Nuclear Information System (INIS)

    Funk, E.W.

    1993-01-01

    This paper presents an overview of present and emerging applications of membrane technology for the separation and purification of organic materials. This technology is highly relevant for programs aimed at minimizing waste in processing and in the treatment of gaseous and liquid effluents. Application of membranes for organic separation is growing rapidly in the petrochemical industry to simplify processing and in the treatment of effluents, and it is expected that this technology will be useful in numerous other industries including the processing of nuclear waste materials

  1. Isotopic contamination in electromagnetic isotope separators; La contagion isotopique dans les separateurs electromagnetiques d'isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Cassignol, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The mechanisms producing isotopic contamination in the electromagnetic separation of isotopes are studied with the aid of the Separator of Saclay and an electrostatic analyzer in cascade. After a separate investigation the result of which is that no contamination comes from the spreading of initial energies of ions, two principal mechanisms are emphasized; scattering and instability of the regime of the sources. The characters of each type of contamination arising from both mechanisms are described in some detail. An unique scheme of isotopic contamination is then derived from the partial ones. This scheme is successfully verified in several experimental separations. The applications concern principally the performances of magnetic cascades and more complex apparatus. It is found that the isotopic purities that such machines can deliver are extremely high. (author) [French] On a etudie, a l'aide du separateur de Saclay et d'un analyseur electrostatique en cascade, les mecanismes par lesquels est produite la contamination isotopique dans la separation electromagnetique des isotopes. A la suite d'une deuxieme etude, qui a mene a la conclusion que la contamination ne provient pas d'une dispersion des energies initiales des ions, on propose deux mecanismes comme etant les plus importants; la diffusion et l'instabilite du regime des sources. On decrit en quelques details la nature de la contamination provenant de deux types de mecanisme. On deduit de ces deux mecanismes un seul schema qui a ete ensuite verifie par plusieurs separations experimentales. Les applications interessent surtout les performances des cascades magnetiques et les appareillages plus complexes. On trouve que les puretes isotopiques que peuvent fournir de tels appareils sont tres elevees. (auteur)

  2. Development of HUMASORB trademark, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    International Nuclear Information System (INIS)

    Sanjay, H.G.; Srivastava, K.C.; Walia, D.S.

    1995-01-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project

  3. Factors influencing the contamination rate of human organ-cultured corneas.

    Science.gov (United States)

    Röck, Daniel; Wude, Johanna; Bartz-Schmidt, Karl U; Yoeruek, Efdal; Thaler, Sebastian; Röck, Tobias

    2017-12-01

    To assess the influence of donor, environment and storage factors on the contamination rate of organ-cultured corneas, to consider the microbiological species causing corneal contamination and to investigate the corresponding sensitivities. Data from 1340 consecutive donor corneas were analysed retrospectively. Logistic regression analysis was used to assess the influence of different factors on the contamination rate of organ-cultured corneas for transplantation. The mean annual contamination rate was 1.8 ± 0.4% (range: 1.3-2.1%); 50% contaminations were of fungal origin with exclusively Candida species, and 50% contaminations were of bacterial origin with Staphylococcus species being predominant. The cause of donor death including infection and multiple organ dysfunction syndrome increased the risk of bacterial or fungal contamination during organ culture (p = 0.007 and p = 0.014, respectively). Differentiating between septic and aseptic donors showed an increased risk of contamination for septic donors (p = 0.0020). Mean monthly temperature including warmer months increased the risk of contamination significantly (p = 0.0031). Sex, donor age, death to enucleation, death to corneoscleral disc excision and storage time did not increase the risk of contamination significantly. The genesis of microbial contamination in organ-cultured donor corneas seems to be multifactorial. The main source of fungal or bacterial contamination could be resident species from the skin flora. The rate of microbial contamination in organ-cultured donor corneas seems to be dependent on the cause of donor death and mean monthly temperature. © 2017 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  4. Organic contaminants in soil : desorption kinetics and microbial degradation

    NARCIS (Netherlands)

    Schlebaum, W.

    1999-01-01

    The availability of organic contaminants in soils or sediments for microbial degradation or removal by physical means (e.g.) soil washing or soil venting) depends on the desorption kinetics of these contaminants from the soil matrix. When the organic contaminants desorb very slow from the

  5. Development of HUMASORB trademark, a lignite derived humic acid for removal of metals and organic contaminants from groundwater

    International Nuclear Information System (INIS)

    Sanjay, H.G.; Srivastave, K.C.; Walia, D.S.

    1995-01-01

    Heavy metal and organic contamination of surface and groundwater systems is a major environmental concern. The contamination is primarily due to improperly disposed industrial wastes. The presence of toxic heavy metal ions, volatile organic compounds (VOCs) and pesticides in water is of great concern and could affect the safety of drinking water. Decontamination of surface and groundwater can be achieved using a broad spectrum of treatment options such as precipitation, ion-exchange, microbial digestion, membrane separation, activated carbon adsorption, etc. The state of the art technologies for treatment of contaminated water however, can in one pass remediate only one class of contaminants, i.e., either VOCs (activated carbon) or heavy metals (ion exchange). This would require the use of at a minimum, two different stepwise processes to remediate a site. The groundwater contamination at different Department of Energy (DOE) sites (e.g., Hanford) is due to the presence of both VOCs and heavy metals. The two-step approach increases the cost of remediation. To overcome the sequential treatment of contaminated streams to remove both organics and metals, a novel material having properties to remove both classes of contaminants in one step is being developed as part of this project.The objective of this project is to develop a lignite-derived adsorbent, Humasorb TM to remove heavy metals and organics from ground water and surface water streams

  6. Inorganic and organic contaminants in Alaskan shorebird eggs.

    Science.gov (United States)

    Saalfeld, David T; Matz, Angela C; McCaffery, Brian J; Johnson, Oscar W; Bruner, Phil; Lanctot, Richard B

    2016-05-01

    Many shorebird populations throughout North America are thought to be declining, with potential causes attributed to habitat loss and fragmentation, reduced prey availability, increased predation, human disturbance, and increased exposure to environmental pollutants. Shorebirds may be particularly vulnerable to contaminant exposure throughout their life cycle, as they forage primarily on invertebrates in wetlands, where many contaminants accumulate disproportionately in the sediments. Therefore, it is important to document and monitor shorebird populations thought to be at risk and assess the role that environmental contaminants may have on population declines. To investigate potential threats and provide baseline data on shorebird contaminant levels in Alaskan shorebirds, contaminant concentrations were evaluated in shorebird eggs from 16 species residing in seven geographic distinct regions of Alaska. Similar to previous studies, low levels of most inorganic and organic contaminants were found, although concentrations of several inorganic and organic contaminants were higher than those of previous studies. For example, elevated strontium levels were observed in several species, especially black oystercatcher (Haematopus bachmani) sampled in Prince William Sound, Alaska. Additionally, contaminant concentrations varied among species, with significantly higher concentrations of inorganic contaminants found in eggs of pectoral sandpiper (Calidris melanotos), semipalmated sandpiper (Calidris pusilla), black oystercatcher, and bar-tailed godwit (Limosa lapponica). Similarly, significantly higher concentrations of some organic contaminants were found in the eggs of American golden plover (Pluvialis dominica), black-bellied plover (Pluvialis squatarola), pacific golden plover (Pluvialis fulva), bar-tailed godwit, and semipalmated sandpiper. Despite these elevated levels, current concentrations of contaminants in shorebird eggs suggest that breeding environments are

  7. Method of removing contaminants from plastic resins

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  8. Method for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  9. Approaches for assessment of terrestrial vertebrate responses to contaminants: moving beyond individual organisms

    Science.gov (United States)

    Albers, P.H.; Heinz, G.H.; Hall, R.J.; Albers, Peter H.; Heinz, Gary H.; Ohlendorf, Harry M.

    2000-01-01

    Conclusions: A need for a broader range ofinformation on effects of contaminants on individuals exists among the 4 classes of terrestrial vertebrates, especially mammals, reptiles, and amphibians. Separation of contaminant effects from other effects and reduction of speculative extrapolation within and among species requires information that can be produced only by combined field and laboratory investigations that incorporate seasonal or annual cycles and important spatial and interaction conditions. Assessments of contaminant effects at the population level and higher are frequently dependent on extrapolations from a lower organizational level. Actual measurements of the effects of contaminants on populations or communities, possibly in conjunction with case studies that establish relations between effects on individuals and effects on populations, are needed to reduce the uncertainty associated with these extrapolations. Associated with these assessment levels is the need for acceptable definitions of what we mean when we refer to a 'meaningful population change' or an 'effect on communities or ecosystems.' At these higher levels of organization we are also confronted with the need for procedures useful for separating contaminant effects from effects caused by other environmental conditions. Although the bulk of literature surveyed was of the focused cause-and-effect type that is necessary for proving relations between contaminants and wildlife, community or ecosystem field assessments, as sometimes performed with reptiles and amphibians, might be a useful alternative for estimating the potential of a contaminant to cause environmental harm. Assumptions about the special usefulness of reptiles and amphibians as environmental indicators ought to be tested with comparisons to mammals and birds. Information on the effects of contaminants above the individual level is needed to generate accurate estimates of the potential consequences of anthropogenic pollution (e

  10. Organics in water contamination analyzer, phase 1

    Science.gov (United States)

    1986-01-01

    The requirements which would result in identifying the components of an automatic analytical system for the analysis of specific organic compounds in the space station potable water supply are defined. The gas chromatographic system for such an analysis is limited to commercially available off-the-shelf hardware and includes the sample inlet, an ionization detector, capillary columns as well as computerized compound identification. The sampling system will be a special variation of the purge and trap Tenax mode using six-port valves and a 500 microliter water sample. Capillary columns used for the separating of contaminants will be bonded phase fused silica with a silicone stationary phase. Two detectors can be used: photoionization and far ultraviolet, since they are sensitive and compatible with capillary columns. A computer system evaluation and program with the principle of compound identification based on the retention index is presented.

  11. Removal of trace organic chemical contaminants by a membrane bioreactor.

    Science.gov (United States)

    Trinh, T; van den Akker, B; Stuetz, R M; Coleman, H M; Le-Clech, P; Khan, S J

    2012-01-01

    Emerging wastewater treatment processes such as membrane bioreactors (MBRs) have attracted a significant amount of interest internationally due to their ability to produce high quality effluent suitable for water recycling. It is therefore important that their efficiency in removing hazardous trace organic contaminants be assessed. Accordingly, this study investigated the removal of trace organic chemical contaminants through a full-scale, package MBR in New South Wales, Australia. This study was unique in the context of MBR research because it characterised the removal of 48 trace organic chemical contaminants, which included steroidal hormones, xenoestrogens, pesticides, caffeine, pharmaceuticals and personal care products (PPCPs). Results showed that the removal of most trace organic chemical contaminants through the MBR was high (above 90%). However, amitriptyline, carbamazepine, diazepam, diclofenac, fluoxetine, gemfibrozil, omeprazole, sulphamethoxazole and trimethoprim were only partially removed through the MBR with the removal efficiencies of 24-68%. These are potential indicators for assessing MBR performance as these chemicals are usually sensitive to changes in the treatment systems. The trace organic chemical contaminants detected in the MBR permeate were 1 to 6 orders of magnitude lower than guideline values reported in the Australian Guidelines for Water Recycling. The outcomes of this study enhanced our understanding of the levels and removal of trace organic contaminants by MBRs.

  12. Contaminated environments in the subsurface and bioremediation: organic contaminants.

    Science.gov (United States)

    Holliger, C; Gaspard, S; Glod, G; Heijman, C; Schumacher, W; Schwarzenbach, R P; Vazquez, F

    1997-07-01

    Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low biomass production and good electron acceptor availability, and they are sometimes the only possible solution. This review will focus on three important groups of environmental organic contaminants: hydrocarbons, chlorinated and nitroaromatic compounds. Whereas hydrocarbons are oxidized and completely mineralized under anaerobic conditions in the presence of electron acceptors such as nitrate, iron, sulfate and carbon dioxide, chlorinated and nitroaromatic compounds are reductively transformed. For the aerobic often persistent polychlorinated compounds, reductive dechlorination leads to harmless products or to compounds that are aerobically degradable. The nitroaromatic compounds are first reductively transformed to the corresponding amines and can subsequently be bound to the humic fraction in an aerobic process. Such new findings and developments give hope that in the near future contaminated aquifers can efficiently be remediated, a prerequisite for a sustainable use of the precious-subsurface drinking water resources.

  13. Development of Decontamination Technology for Separating Radioactive Constituents from Contaminated Concrete Waste

    International Nuclear Information System (INIS)

    Min, B. Y.; Kim, G. N.; Lee, G. W.; Choi, W. K.; Jung, U. S.

    2010-01-01

    The large amount of contaminated concrete produced during decommissioning procedures and available decontamination. In Korea, more than more than 60 tons of concrete wastes contaminated with uranium compounds have been generated from UCP (Uranium Conversion Plant) by dismantling. A recycling or a volume reduction of the concrete wastes through the application of appropriate treatment technologies have merits from the view point of an increase in a resource recycling as well as a decrease in the amount of wastes to be disposed of resulting in a reduction of a disposal cost and an enhancement of the disposal safety. For unconditional release of building and reduction of radioactive concrete waste, mechanical methods and thermal stress methods have been selected. In the advanced countries, such as France, Japan, Germany, Sweden, and Belgium, techniques for reduction and reuse of the decommissioning concrete wastes have applied to minimize the total radioactive concrete waste volume by thermal and mechanical processes. It was found that volume reduction of contaminated concrete can be achieved by separation of the fine cement stone and coarse gravel. Typically, the contaminated layer is only 1∼10mm thick because cementitious materials are porous media, the penetration of radionuclides may occur up to several centimenters from the surface of a material. Most of the dismantled concrete wastes are slightly contaminated rather than activated. This decontamination can be accomplished during the course of a separation of the concrete wastes contaminated with radioactive materials through a thermal treatment step of the radionuclide (e.g. cesium and strontium), transportation of the radionuclide to fine aggregates through a mechanical treatment step. Concrete is a structural material which generally consists of a binder (cement), water, and aggregate. The interaction between highly charged calcium silicate hydrate (C-S-H) particles in the presence of divalent calcium

  14. Biochar: a green sorbent to sequester acidic organic contaminants

    Science.gov (United States)

    Sigmund, Gabriel; Kah, Melanie; Sun, Huichao; Hofmann, Thilo

    2015-04-01

    Biochar is a carbon rich product of biomass pyrolysis that exhibits a high sorption potential towards a wide variety of inorganic and organic contaminants. Because it is a valuable soil additive and a potential carbon sink that can be produced from renewable resources, biochar has gained growing attention for the development of more sustainable remediation strategies. A lot of research efforts have been dedicated to the sorption of hydrophobic contaminants and metals to biochar. Conversely, the understanding of the sorption of acidic organic contaminants remains limited, and questions remain on the influence of biochar characteristics (e.g. ash content) on the sorption behaviour of acidic organic contaminants. To address this knowledge gap, sorption batch experiments were conducted with a series of structurally similar acidic organic contaminants covering a range of dissociation constant (2,4-D, MCPA, 2,4-DB and triclosan). The sorbents selected for experimentation included a series of 10 biochars covering a range of characteristics, multiwalled carbon nanotubes as model for pure carbonaceous phases, and an activated carbon as benchmark. Overall, sorption coefficient [L/kg] covered six orders of magnitude and generally followed the order 2,4-D pH dependent lipophilicity ratio (i.e. D instead of Kow), ash content and ionic strength are key factors influencing the sorption of acidic organic contaminants to biochars. Overall, the identified factors, as well as the environmental matrix, should be carefully considered when selecting the type of biochar for sequestration purposes.

  15. Enhanced organic contaminants accumulation in crops: Mechanisms, interactions with engineered nanomaterials in soil.

    Science.gov (United States)

    Wu, Xiang; Wang, Wei; Zhu, Lizhong

    2018-05-02

    The mechanism of enhanced accumulation of organic contaminants in crops with engineered nanomaterials (ENMs) were investigated by co-exposure of crops (Ipomoea aquatica Forsk (Swamp morning-glory), Cucumis sativus L. (cucumber), Zea mays L. (corn), Spinacia oleracea L. (spinach) and Cucurbita moschata (pumpkin))to a range of chemicals (polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and polybrominated diphenyl ether (PBDE)) and ENMs (TiO 2 , Ag, Al 2 O 3 , graphene, carbon nanotubes (CNTs)) in soil. Induced by 50 mg kg -1 graphene co-exposure, the increase range of BDE-209, BaP, p,p'-DDE, HCB, PYR, FLU, ANT, and PHEN in the plants were increased in the range of 7.51-36.42, 5.69-32.77, 7.09-59.43, 11.61-66.73, 4.58-57.71, 5.79-109.07, 12.85-109.76, and15.57-127.75 ng g -1 , respectively. The contaminants in ENMs-spiked and control soils were separated into bioavailable, bound and residual fractions using a sequential ultrasonic extraction procedure (SUEP) to investigate the mechanism of the enhanced accumulation. The bioavailable fraction in spiked soils showed no significant difference (p > 0.05) from that in the control, while the bound fraction increased in equal proportion (p > 0.05) to the reduction in the residual fraction. These results implied that ENMs can competitively adsorbed the bound of organic contaminants from soil and co-transferred into crops, followed by a portion of the residual fraction transferred to the bound fraction to maintain the balance of different fractions in soils. The mass balance was all higher than 98.5%, indicating the portion of degraded contaminants was less than 1.5%. These findings could expand our knowledge about the organic contaminants accumulation enhancement in crops with ENMs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Aqueous adsorption and removal of organic contaminants by carbon nanotubes

    International Nuclear Information System (INIS)

    Yu, Jin-Gang; Zhao, Xiu-Hui; Yang, Hua; Chen, Xiao-Hong; Yang, Qiaoqin; Yu, Lin-Yan; Jiang, Jian-Hui; Chen, Xiao-Qing

    2014-01-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. - Highlights: • We summarize the most recent research progress of CNTs for removal of organics. • Adsorption mechanisms between CNTs and organics were elucidated in detail. • The developing trends and prospects of CNTs for removal of organics were discussed

  17. Aqueous adsorption and removal of organic contaminants by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jin-Gang, E-mail: yujg@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Zhao, Xiu-Hui; Yang, Hua [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Chen, Xiao-Hong [Collaborative Innovation Center of Resource-conserving and Environment-friendly Society and Ecological Civilization, Changsha, Hunan 410083 (China); Yang, Qiaoqin [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9 (Canada); Yu, Lin-Yan [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China); Jiang, Jian-Hui [College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082 (China); Chen, Xiao-Qing, E-mail: xqchen@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, Central South University, Changsha, Hunan 410083 (China)

    2014-06-01

    Organic contaminants have become one of the most serious environmental problems, and the removal of organic contaminants (e.g., dyes, pesticides, and pharmaceuticals/drugs) and common industrial organic wastes (e.g., phenols and aromatic amines) from aqueous solutions is of special concern because they are recalcitrant and persistent in the environment. In recent years, carbon nanotubes (CNTs) have been gradually applied to the removal of organic contaminants from wastewater through adsorption processes. This paper reviews recent progress (145 studies published from 2010 to 2013) in the application of CNTs and their composites for the removal of toxic organic pollutants from contaminated water. The paper discusses removal efficiencies and adsorption mechanisms as well as thermodynamics and reaction kinetics. CNTs are predicted to have considerable prospects for wider application to wastewater treatment in the future. - Highlights: • We summarize the most recent research progress of CNTs for removal of organics. • Adsorption mechanisms between CNTs and organics were elucidated in detail. • The developing trends and prospects of CNTs for removal of organics were discussed.

  18. Nylon 6,6 Nonwoven Fabric Separates Oil Contaminates from Oil-in-Water Emulsions.

    Directory of Open Access Journals (Sweden)

    Ryan A Ortega

    Full Text Available Industrial oil spills into aquatic environments can have catastrophic environmental effects. First responders to oil spills along the coast of the Gulf of Mexico in the southern United States have used spunbond nylon fabric bags and fences to separate spilled oil and oil waste from contaminated water. Low area mass density spunbond nylon is capable of sorbing more than 16 times its mass in low viscosity crude oil and more than 26 times its mass in higher viscosity gear lube oil. Nylon bags separated more than 95% of gear lube oil contaminate from a 4.5% oil-in-water emulsion. Field testing of spunbond nylon fences by oil spill first responders has demonstrated the ability of this material to contain the oily contaminate while allowing water to flow through. We hypothesize that the effectiveness of nylon as an oil filter is due to the fact that it is both more oleophilic and more hydrophilic than other commonly used oil separation materials. The nylon traps oil droplets within the fabric or on the surface, while water droplets are free to flow through the fabric to the water on the opposite side of the fabric.

  19. Radioactive contamination of aquatic media and organisms

    International Nuclear Information System (INIS)

    Fontaine, Y.

    1960-01-01

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author) [fr

  20. Soil contamination with cadmium, consequences and remediation using organic amendments.

    Science.gov (United States)

    Khan, Muhammad Amjad; Khan, Sardar; Khan, Anwarzeb; Alam, Mehboob

    2017-12-01

    Cadmium (Cd) contamination of soil and food crops is a ubiquitous environmental problem that has resulted from uncontrolled industrialization, unsustainable urbanization and intensive agricultural practices. Being a toxic element, Cd poses high threats to soil quality, food safety, and human health. Land is the ultimate source of waste disposal and utilization therefore, Cd released from different sources (natural and anthropogenic), eventually reaches soil, and then subsequently bio-accumulates in food crops. The stabilization of Cd in contaminated soil using organic amendments is an environmentally friendly and cost effective technique used for remediation of moderate to high contaminated soil. Globally, substantial amounts of organic waste are generated every day that can be used as a source of nutrients, and also as conditioners to improve soil quality. This review paper focuses on the sources, generation, and use of different organic amendments to remediate Cd contaminated soil, discusses their effects on soil physical and chemical properties, Cd bioavailability, plant uptake, and human health risk. Moreover, it also provides an update of the most relevant findings about the application of organic amendments to remediate Cd contaminated soil and associated mechanisms. Finally, future research needs and directions for the remediation of Cd contaminated soil using organic amendments are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Waste reduction by separation of contaminated soils during environmental restoration

    International Nuclear Information System (INIS)

    Roybal, J.A.; Conway, R.; Galloway, B.; Vinsant, E.; Slavin, P.; Guerin, D.

    1998-06-01

    During cleanup of contaminated sites, Sandia National Laboratories, New Mexico (SNL/NM) frequently encounters soils with low-level radioactive contamination. The contamination is not uniformly distributed, but occurs within areas of clean soil. Because it is difficult to characterize heterogeneously contaminated soils in detail and to excavate such soils precisely using heavy equipment, it is common for large quantities of uncontaminated soil to be removed during excavation of contaminated sites. This practice results in the commingling and disposal of clean and contaminated material as low-level waste (LLW), or possibly low-level mixed waste (LLMW). Until recently, volume reduction of radioactively contaminated soil depended on manual screening and analysis of samples, which is a costly and impractical approach and does not uphold As Low As Reasonably Achievable (ALARA) principles. To reduce the amount of LLW and LLMW generated during the excavation process, SNL/NM is evaluating two alternative technologies. The first of these, the Segmented Gate System (SGS), is an automated system that located and removes gamma-ray emitting radionuclides from a host matrix (soil, sand, dry sludge). The matrix materials is transported by a conveyor to an analyzer/separation system, which segregates the clean and contaminated material based on radionuclide activity level. The SGS was used to process radioactively contaminated soil from the excavation of the Radioactive Waste Landfill. The second technology, Large Area Gamma Spectroscopy (LAGS), utilizes a gamma spec analyzer suspended over a slab upon which soil is spread out to a uniform depth. A counting period of approximately 30 minutes is used to obtain a full-spectrum analysis for the isotopes of interest. The LAGS is being tested on the soil that is being excavated from the Classified Waste Landfill

  2. Reducing Organic Contamination in NASA JSC Astromaterial Curation Facility

    Science.gov (United States)

    Calaway, M. J.; Allen, C. C.; Allton, J. H.

    2013-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids and comets will require handling and storing astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. Much was learned from the rigorous attempts to minimize and monitor organic contamination during Apollo, but it was not adequate for current analytical requirements; thus [1]. OSIRIS-REx, Hayabusa-2, and future Mars sample return will require better protocols for reducing organic contamination. Future isolation con-tainment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study established the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs [2, 3]. After standard ultra-pure water (UPW) cleaning, the majority of organic contaminates found were hydrocarbons, plasticizers, silicones, and solvents. Hydro-carbons loads (> C7) ranged from 1.9 to 11.8 ng/cm2 for TD-GC-MS wafer exposure analyses and 5.0 to 19.5 ng/L for TD-GC-MS adsorbent tube exposure. Plasticizers included peracetic acid sterilization were used in the atmospheric de-contamination (R) cabinets. Later, Lunar curation gloveboxes were degreased with a pressurized Freon 113 wash. Today, UPW has replaced Freon as the standard cleaning procedure, but does not have the degreasing solvency power of Freon. Future Cleaning Studies: Cleaning experiments are cur-rently being orchestrated to study how to degrease and reduce organics in a JSC curation glovebox lower than the established baseline. Several new chemicals in the industry have replaced traditional degreasing solvents such as Freon and others that are now federally restricted. However, these new suites of chemicals remain untested for lowering organics in curation gloveboxes. 3M's HFE-7100DL and Du

  3. Microbial interactions with organic contaminants in soil: Definitions, processes and measurement

    International Nuclear Information System (INIS)

    Semple, Kirk T.; Doick, Kieron J.; Wick, Lukas Y.; Harms, Hauke

    2007-01-01

    There has been and continues to be considerable scientific interest in predicting bioremediation rates and endpoints. This requires the development of chemical techniques capable of reliably predicting the bioavailability of organic compounds to catabolically active soil microbes. A major issue in understanding the link between chemical extraction and bioavailability is the problem of definition; there are numerous definitions, of varying degrees of complexity and relevance, to the interaction between organic contaminants and microorganisms in soil. The aim of this review is to consider the bioavailability as a descriptor for the rate and extent of biodegradation and, in an applied sense, bioremediation of organic contaminants in soil. To address this, the review will (i) consider and clarify the numerous definitions of bioavailability and discuss the usefulness of the term 'bioaccessibility'; (ii) relate definition to the microbiological and chemical measurement of organic contaminants' bioavailability in soil, and (iii) explore the mechanisms employed by soil microorganisms to attack organic contaminants in soil. - Understanding organic contaminant's behaviour in soil is key to chemically predicting biodegradation

  4. Experimental increase in availability of a PAH complex organic contamination from an aged contaminated soil: Consequences on biodegradation

    International Nuclear Information System (INIS)

    Cébron, Aurélie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Leyval, Corinne

    2013-01-01

    Although high PAH content and detection of PAH-degraders, the PAH biodegradation is limited in aged-contaminated soils due to low PAH availability (i.e., 1%). Here, we tried to experimentally increase the soil PAH availability by keeping both soil properties and contamination composition. Organic extract was first removed and then re-incorporated in the raw soil as fresh contaminants. Though drastic, this procedure only allowed a 6-time increase in the PAH availability suggesting that the organic constituents more than ageing were responsible for low availability. In the re-contaminated soil, the mineralization rate was twice more important, the proportion of 5–6 cycles PAH was higher indicating a preferential degradation of lower molecular weight PAH. The extraction treatment induced bacterial and fungal community structures modifications, Pseudomonas and Fusarium solani species were favoured, and the relative quantity of fungi increased. In re-contaminated soil the percentage of PAH-dioxygenase gene increased, with 10 times more Gram negative representatives. -- Highlights: ► Re-incorporation of soil organic extract increased 6-times the PAH availability. ► Complexity of organic contamination is the main driver of PAH availability. ► Biodegradation of PAH with less than 5-cycles increased with increasing PAH availability. ► Pseudomonas and Fusarium species are favoured when PAH availability increased. -- More than ageing, the complexity of organic contamination is the main driver of PAH availability

  5. Organic Contamination Baseline Study on NASA JSC Astromaterial Curation Gloveboxes

    Science.gov (United States)

    Calaway, Michael J.; Allton, J. H.; Allen, C. C.; Burkett, P. J.

    2013-01-01

    Future planned sample return missions to carbon-rich asteroids and Mars in the next two decades will require strict handling and curation protocols as well as new procedures for reducing organic contamination. After the Apollo program, astromaterial collections have mainly been concerned with inorganic contamination [1-4]. However, future isolation containment systems for astromaterials, possibly nitrogen enriched gloveboxes, must be able to reduce organic and inorganic cross-contamination. In 2012, a baseline study was orchestrated to establish the current state of organic cleanliness in gloveboxes used by NASA JSC astromaterials curation labs that could be used as a benchmark for future mission designs.

  6. Organic contaminants in thermal plume resident brown trout

    International Nuclear Information System (INIS)

    Romberg, G.P.; Bourne, S.

    1978-01-01

    A pilot study was conducted to identify possible contaminants accumulated by thermal plume-resident fish in Lake Michigan. Brown trout were maintained in tanks receiving intake and discharge (less than or equal to 21 0 C) water from a power plant and were fed a diet of frozen alewife. Fish were sampled over a period of 127 days in order to estimate uptake rates and equilibrium levels for toxic organic and inorganic materials occurring in Lake Michigan fish and water. Experimental fish and natural samples were analyzed to determine the distribution of contaminants in various tissues and the corresponding pollutant levels in similar size brown trout from Lake Michigan. The quantitative analyses for the major organic contaminants are summarized. Without exception, the pyloric caecum of brown trout contained the highest concentration of lipids, PCB's, and chlorinated pesticides. Gill and kidney samples contained lower concentrations of contaminants than the caecum, while liver and muscle values were lowest

  7. Method of processing radiation-contaminated organic polymer materials

    International Nuclear Information System (INIS)

    Kobayashi, Yoshii.

    1980-01-01

    Purpose: To process radiation contaminated organic high polymer materials with no evolution of toxic gases, at low temperature and with safety by hot-acid immersion process using sulfuric acid-hydrogen peroxide. Method: Less flammable or easily flammable organic polymers contaminated with radioactive substances, particularly with long life actinoid are heated and carbonized in concentrated sulfuric acid. Then, aqueous 30% H 2 O 2 solution is continuously added dropwise as an oxidizing agent till the solution turns colourless. If the carbonization was insufficient, addition of H 2 O 2 solution is stopped temporarily and the carbonization is conducted again. Thus, the organic polymers are completely decomposed by the wet oxidization. Then, the volume of the organic materials to be discharged is decreased and the radioactive substances contained are simultaneously concentrated and collected. (Seki, T.)

  8. Superhydrophobicity construction with dye-sensitised TiO2 on fabric surface for both oil/water separation and water bulk contaminants purification

    Science.gov (United States)

    Yu, Linfeng; Zhang, Shengmiao; Zhang, Meng; Chen, Jianding

    2017-12-01

    For the promising material for both oil/water separation and water-soluble contaminants, the Dye@TiO2-TEOS/VTEO hybrid modified polyester fabric is developed by a simple dip-coating process, which combines Dye-sensitised TiO2 with silicon contained superhydrophobic coating to guarantee the long-term stability of Dye-sensitised TiO2 system as well as material's sustainability. The modified fabric possesses selective oil/water seperation properties towards water and oil, besides, mechanical, acid and alkali durability shows this material's appropriate performance on oil/water separation. UV-Vis absorption spectrum reveals the Dye 4-(2H-imidazol-2-ylazo) benzoic acid could sensitize the semiconductor TiO2 for visible light catalytic organic pollutant degradation that is also confirmed by methylene blue degradation experiment. Density Functional calculation (DFT) witnesses that HOMO, HOMO-1 of Dye contributed by oxygen bonding to TiO2 can insert into TiO2 band gap and result in low energy electron excitation. The ability of oil/water separation and water-soluble contaminants purification provides the material opportunity to practical applications in environmental restoration and human life.

  9. Sorption of heavy metals and radionuclides on mineral surfaces in the presence of organic co-contaminants. 1997 annual progress report

    International Nuclear Information System (INIS)

    Leckie, J.; Redden, G.

    1997-01-01

    'This project fits well within the overall objectives established by the Environmental Management and Science Program to promote long-term basic research that will provide the tools for more effective and lower cost remediation efforts at DOE sites where hazardous and radioactive wastes or contamination zones are present. In order to develop the necessary remediation technology it has been recognized that a fundamental understanding of the various chemical and physical factors associated with waste treatment and contaminant transport must be established. Some of the specific topics include waste pretreatment, volume reduction, immobilization, separation methods, the interactions of actinides and heavy metals with surfaces in the presence of organic residues and co-contaminants, contaminant transport in the environment, and long-term storage site assessment. This project has direct and potential application in all these areas. The interaction and partitioning of contaminant metals and radionuclides between solution and solid- surface phases is a fundamental issue for waste treatment and predicting contaminant transport in the environment. Many factors are involved in the functional relationships describing chemical reactivity and physical distribution of chemical species. These include modification of chemical behavior by the suite of chemical co-contaminants in a system. Organic complexing agents are common components of waste mixtures and include both synthetic components specifically introduced as part of processing methods, and poorly characterized compounds that were introduced separately or evolved within the highly reactive wastes. Natural organic complexing agents such as citric acid and siderophores are common in nature and represent factors that will further influence contaminant transport in soils and aquatic systems. Knowledge of the existence of a metal-organic complex cannot automatically be used to predict changes in solid-solution partitioning of the

  10. Milk and serum standard reference materials for monitoring organic contaminants in human samples.

    Science.gov (United States)

    Schantz, Michele M; Eppe, Gauthier; Focant, Jean-François; Hamilton, Coreen; Heckert, N Alan; Heltsley, Rebecca M; Hoover, Dale; Keller, Jennifer M; Leigh, Stefan D; Patterson, Donald G; Pintar, Adam L; Sharpless, Katherine E; Sjödin, Andreas; Turner, Wayman E; Vander Pol, Stacy S; Wise, Stephen A

    2013-02-01

    Four new Standard Reference Materials (SRMs) have been developed to assist in the quality assurance of chemical contaminant measurements required for human biomonitoring studies, SRM 1953 Organic Contaminants in Non-Fortified Human Milk, SRM 1954 Organic Contaminants in Fortified Human Milk, SRM 1957 Organic Contaminants in Non-Fortified Human Serum, and SRM 1958 Organic Contaminants in Fortified Human Serum. These materials were developed as part of a collaboration between the National Institute of Standards and Technology (NIST) and the Centers for Disease Control and Prevention (CDC) with both agencies contributing data used in the certification of mass fraction values for a wide range of organic contaminants including polychlorinated biphenyl (PCB) congeners, chlorinated pesticides, polybrominated diphenyl ether (PBDE) congeners, and polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners. The certified mass fractions of the organic contaminants in unfortified samples, SRM 1953 and SRM 1957, ranged from 12 ng/kg to 2200 ng/kg with the exception of 4,4'-DDE in SRM 1953 at 7400 ng/kg with expanded uncertainties generally <14 %. This agreement suggests that there were no significant biases existing among the multiple methods used for analysis.

  11. Decontamination method for radiation contaminated metal

    International Nuclear Information System (INIS)

    Enda, Masami; Hosaka, Katsumi; Sakai, Hitoshi.

    1997-01-01

    An organic acid solution is used as a decontamination liquid, and base materials of radiation contaminated metals are dissolved in the solution. The concentration of the organic acid is measured, and the organic acid is supplied by an amount corresponding to the lowering of the concentration. The decontamination liquid wastes generated during the decontamination step are decomposed, and metals leached in the organic acid solution are separated. With such procedures, contamination intruded into the inside of the mother materials of the metals can be removed, and radioactivity of the contaminated metals such as stainless steels and carbon steels can be eliminated, or the radiation level thereof can be reduced. In addition, the amount of secondary wastes generated along with the decontamination can be suppressed. (T.M.)

  12. Metal–organic frameworks based membranes for liquid separation

    KAUST Repository

    Li, Xin

    2017-11-07

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  13. Metal-organic frameworks based membranes for liquid separation.

    Science.gov (United States)

    Li, Xin; Liu, Yuxin; Wang, Jing; Gascon, Jorge; Li, Jiansheng; Van der Bruggen, Bart

    2017-11-27

    Metal-organic frameworks (MOFs) represent a fascinating class of solid crystalline materials which can be self-assembled in a straightforward manner by the coordination of metal ions or clusters with organic ligands. Owing to their intrinsic porous characteristics, unique chemical versatility and abundant functionalities, MOFs have received substantial attention for diverse industrial applications, including membrane separation. Exciting research activities ranging from fabrication strategies to separation applications of MOF-based membranes have appeared. Inspired by the marvelous achievements of MOF-based membranes in gas separations, liquid separations are also being explored for the purpose of constructing continuous MOFs membranes or MOF-based mixed matrix membranes. Although these are in an emerging stage of vigorous development, most efforts are directed towards improving the liquid separation efficiency with well-designed MOF-based membranes. Therefore, as an increasing trend in membrane separation, the field of MOF-based membranes for liquid separation is highlighted in this review. The criteria for judicious selection of MOFs in fabricating MOF-based membranes are given. Special attention is paid to rational design strategies for MOF-based membranes, along with the latest application progress in the area of liquid separations, such as pervaporation, water treatment, and organic solvent nanofiltration. Moreover, some attractive dual-function applications of MOF-based membranes in the removal of micropollutants, degradation, and antibacterial activity are also reviewed. Finally, we define the remaining challenges and future opportunities in this field. This Tutorial Review provides an overview and outlook for MOF-based membranes for liquid separations. Further development of MOF-based membranes for liquid separation must consider the demands of strict separation standards and environmental safety for industrial application.

  14. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Susumu, E-mail: igarashi@qb.see.eng.osaka-u.ac.jp; Nomura, Naoki; Mishima, Fumihito; Akiyama, Yoko, E-mail: yoko-ak@see.eng.osaka-u.ac.jp

    2014-09-15

    Highlights: • The method for the soil decontamination by the superconducting magnet is proposed. • Magnetic separation of clay minerals was performed by HGMS. • Soil separation ratio was evaluated by quantitative analysis using XRD. • It is expected that HGMS can be applied to the actual soil decontamination. - Abstract: The accident of Fukushima Daiichi nuclear power plant caused the diffusion of radioactive cesium over the wide area. We examined the possibility of applying magnetic separation method using the superconducting magnet, which can process a large amount of the soil in high speed, to the soil decontamination and volume reduction of the radioactive cesium contaminated soil. Clay minerals are classified as 2:1 and 1:1 types by the difference of their layer structures, and these types of minerals are respectively paramagnetic and diamagnetic including some exception. It is known that most of the radioactive cesium is strongly adsorbed on the clay, especially on 2:1 type clay minerals. It is expected that the method which can separate only 2:1 type clay minerals selectively from the mixture clay minerals can enormously contribute to the volume reduction of the contaminated soil. In this study, the components in the clay before and after separation were evaluated to estimate the magnetic separation efficiency by using X-ray diffraction. From the results, the decontamination efficiency and the volume reduction ratio were estimated in order to examine the appropriate separation conditions for the practical decontamination of the soil.

  15. Contaminated environments in the subsurface and bioremediation: organic contaminants

    OpenAIRE

    Holliger, Christof; Gaspard, Sarra; Glod, Guy; Heijman, Cornelis; Schumacher, Wolfram; Schwarzenbach, René P.; Vazquez, Francisco

    2017-01-01

    Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low ...

  16. Bioavailability and mobility of organic contaminants in soil: new three-step ecotoxicological evaluation.

    Science.gov (United States)

    Prokop, Zbyněk; Nečasová, Anežka; Klánová, Jana; Čupr, Pavel

    2016-03-01

    A novel approach was developed for rapid assessment of bioavailability and potential mobility of contaminants in soil. The response of the same test organism to the organic extract, water extract and solid phase of soil was recorded and compared. This approach was designed to give an initial estimate of the total organic toxicity (response to organic extractable fraction), as well as the mobile (response to water extract) and bioavailable fraction (response to solid phase) of soil samples. Eighteen soil samples with different levels of pollution and content of organic carbon were selected to validate the novel three-step ecotoxicological evaluation approach. All samples were chemically analysed for priority contaminants, including aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), hexachlorocyclohexane (HCH) and dichlordiphenyltrichloroethane (DDT). The ecotoxicological evaluation involved determination of toxicity of the organic, mobile and bioavailable fractions of soil to the test organism, bacterium Bacillus cereus. We found a good correlation between the chemical analysis and the toxicity of organic extract. The low toxicity of water extracts indicated low water solubility, and thus, low potential mobility of toxic contaminants present in the soil samples. The toxicity of the bioavailable fraction was significantly greater than the toxicity of water-soluble (mobile) fraction of the contaminants as deduced from comparing untreated samples and water extracts. The bioavailability of the contaminants decreased with increasing concentrations of organic carbon in evaluated soil samples. In conclusion, the three-step ecotoxicological evaluation utilised in this study can give a quick insight into soil contamination in context with bioavailability and mobility of the contaminants present. This information can be useful for hazard identification and risk assessment of soil-associated contaminants. Graphical Abstract New three-step ecotoxicological

  17. Modelling the fate of oxidisable organic contaminants in groundwater

    DEFF Research Database (Denmark)

    Barry, D.A.; Prommer, H.; Miller, C.T.

    2002-01-01

    modelling framework is illustrated by pertinent examples, showing the degradation of dissolved organics by microbial activity limited by the availability of nutrients or electron acceptors (i.e., changing redox states), as well as concomitant secondary reactions. Two field-scale modelling examples......Subsurface contamination by organic chemicals is a pervasive environmental problem, susceptible to remediation by natural or enhanced attenuation approaches or more highly engineered methods such as pump-and-treat, amongst others. Such remediation approaches, along with risk assessment...... are discussed, the Vejen landfill (Denmark) and an example where metal contamination is remediated by redox changes wrought by injection of a dissolved organic compound. A summary is provided of current and likely future challenges to modelling of oxidisable organics in the subsurface. (C) 2002 Elsevier Science...

  18. Bioavailability of sediment-bound contaminants to marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Colby Coll., Waterville, ME (United States); Neff, J. [Battelle/Marine Sciences Lab., Sequim, WA (United States)]|[Battelle Ocean Sciences, Duxbury, MA (United States)

    1993-09-01

    The bioavailability of sediment-bound contaminants to marine organisms indicates that there exists a potential for transfer of these contaminants through marine food webs to commercial fisheries products consumed by humans. However, there has been relatively little effort to combine and synthesize data on chemical/biological interactions between benthic animals and seagrasses and the sediments in which they reside on the one hand, and on the chemistry of bioaccumulation on the other. This report provides a conceptual basis for an approach to bioavailability and biomagnification of sediment-bound contaminants that reviews biological and chemical approaches.

  19. Contaminant monitoring programmes using marine organisms: Quality assurance and good laboratory practice

    International Nuclear Information System (INIS)

    1990-01-01

    This publication provides guidelines for obtaining reliable and relevant data during monitoring programmes in which contaminants are measured in marine organisms. It describes the precautions to be taken in each of the procedural steps from planning and sampling to the publication of data reports. The purpose of this document is to provide general guidance on quality assurance and to outline the approach that could be taken by laboratories to achieve the specific aims(s) for each marine pollution monitoring programme. Since most laboratories are currently focussing on programmes involving marine organisms, this document will be confined to this aspect. Four main aims can be identified for programmes involving the collection and analysis of marine organisms for the three main groups of contaminants (metals, organochlorine compounds and petroleum hydrocarbons), these are: (i) The measurement of contaminant levels in edible marine organisms in relation to public health; (ii) The identification of heavily contaminated areas of the sea (''hot spots'') where levels of contaminants are at least an order of magnitude higher than levels in clean or uncontaminated areas; (iii) The establishment of present levels of contaminants in marine organisms (i.e., a ''baseline''); (iv) The assessment of changes in concentrations of contaminants in organisms over a period of time (trends). The selection of organisms will be dictated by the eating patterns of the population. These can be identified by a survey of the species sold at the market, by obtaining information from colleagues in government departments who deal with such matters or in the absence of such information, by distributing a questionnaire to a representative section of the general public. 9 refs, 4 figs

  20. Chemometric Analysis of Selected Organic Contaminants in Surface Water of Langat River Basin

    International Nuclear Information System (INIS)

    Mohamad Rafaie Mohamed Zubir; Rozita Osman; Norashikin Saim

    2016-01-01

    Chemometric techniques namely hierarchical agglomerative cluster analysis (HACA), discriminant analysis (DA), principal component analysis (PCA) and factor analysis (FA) were applied to the distribution of selected organic contaminants (polycyclic aromatic hydrocarbons (PAHs), sterols, pesticides (chloropyrifos), and phenol) to assess the potential of using these organic contaminants as chemical markers in Langat River Basin. Water samples were collected from February 2012 to January 2013 on a monthly basis for nine monitoring sites along Langat River Basin. HACA was able to classify the sampling sites into three clusters which can be correlated to the level of contamination (low, moderate and high contamination sites). DA was used to discriminate the sources of contamination using the selected organic contaminants and relate to the existing DOE local activities groupings. Forward and backward stepwise DA was able to discriminate two and five organic contaminants variables, respectively, from the original 13 selected variables. The five significant variables identified using backward stepwise DA were fluorene, pyrene, stigmastanol, stigmasterol and phenol. PCA and FA (varimax functionality) were used to identify the possible sources of each organic contaminant based on the inventory of local activities. Five principal components were obtained with 66.5 % of the total variation. Result from FA indicated that PAHs (pyrene, fluorene, acenaphthene, benzo[a]anthracene) originated from industrial activity and socio-economic activities; while sterols (coprostanol, stigmastanol and stigmasterol) were associated to domestic sewage and local socio-economic activities. The occurrence of chloropyrifos was correlated to agricultural activities, urban and domestic discharges. This study showed that the application of chemometrics on the distribution of selected organic contaminants was able to trace the sources of contamination in surface water. (author)

  1. Broad spectrum screening of 463 organic contaminants in rivers in Macedonia.

    Science.gov (United States)

    Stipaničev, Draženka; Dragun, Zrinka; Repec, Siniša; Rebok, Katerina; Jordanova, Maja

    2017-01-01

    Target screening of 463 organic contaminants in surface water using ultra high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) with direct injection was performed in spring of 2015 in northern Macedonia, at six sampling sites in four rivers belonging to Vardar basin: Kriva, Zletovska, Bregalnica and Vardar. The aim of the study was to differentiate between various types of organic contamination characteristic for different types of anthropogenic activities, such as mining, agriculture, and urbanization. Depending on the studied river, 9-16% of analyzed compounds were detected. The highest total levels of organic contaminants were recorded in agriculturally impacted Bregalnica River (1839-1962ngL -1 ) and Vardar River downstream from the city of Skopje (1945ngL -1 ), whereas the lowest level was found in the mining impacted Zletovska River (989ngL -1 ). The principal organic contaminants of the Bregalnica River were herbicides (45-55% of all detected compounds; 838-1094ngL -1 ), with the highest concentrations of bentazone (407-530ngL -1 ) and molinate (84-549ngL -1 ), common herbicides in rice cultivation. The main organic contaminants in the other rivers were drugs (70-80% of all detected compounds), with antibiotics as a predominant drug class. The highest drug concentrations were measured in the Vardar River, downstream from Skopje (1544ngL -1 ). Screening of surface water by UHPLC-QTOF-MS was proven as a practical tool for fast collection of comprehensive preliminary information on organic contamination of natural waters, which can present a significant contribution in the monitoring and preservation of good ecological status of freshwater ecosystems. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Electro kinetic remediation of contaminated habitats | Shenbagavalli ...

    African Journals Online (AJOL)

    Electrokinetics (EK) is a process that separates and extracts heavy metals, radionuclides and organic contaminants from saturated or unsaturated soils, sludge, and sediments. A low intensity direct current is applied across electrode pairs that have been implanted in the ground on each side of the contaminated soil mass.

  3. Emerging organic contaminants in groundwater

    OpenAIRE

    Stuart, Marianne; Lapworth, Dan

    2013-01-01

    Emerging organic contaminants (ECs) are compounds now being found in groundwater from agricultural, urban sources that were previously not detectable, or thought to be significant. ECs include pesticides and degradates, pharmaceuticals, industrial compounds, personal care products, fragrances, water treatment by-products, flame retardants and surfactants, as well as ‘life-style’ compounds such as caffeine and nicotine. ECs may have adverse effects on aquatic ecosystems and human health. Freq...

  4. Contaminants in Liquid Organic Fertilizers Used for Agriculture in Japan.

    Science.gov (United States)

    Hai, Dao M; Qiu, Xuchun; Xu, Hai; Honda, Masato; Yabe, Mitsuyasu; Kadokami, Kiwao; Shimasaki, Yohei; Oshima, Yuji

    2017-07-01

    To provide an overview of anthropogenic contaminants in liquid organic fertilizers (LOFs), products from four biogas plants in Kyushu, Japan, were analyzed for a wide range of contaminants, including copper, cadmium, tributyltin (TBT), dibutyltin (DBT), perfluorooctane sulfonate, 952 semi-volatile organic compounds, and 89 antibiotics. The highest concentrations of copper (31.1 mg/L) and cadmium (0.08 mg/L) were found in LOFs from the Hita biogas plant. Only ofloxacin and sulfapyridine were detected in total 89 antibiotics screened. TBT, DBT, and perfluorooctane sulfonate were present at low concentrations in the LOFs from all four locations. Among the 952 semi-volatile organic compounds, 78 compounds were detected in at least one sample and were present at concentrations between 1.2 and 139.6 mg/L. On the basis of comparisons with previous studies and quality standards for the use of organic fertilizers, the concentrations of contaminants in the studied LOFs indicate that they might be safe for agricultural purposes.

  5. Organic contaminants in environmental atmospheres and waters

    OpenAIRE

    Ramírez González, Noelia

    2011-01-01

    This Doctoral Thesis focuses on the development of efficient and highly sensitive analytical methods for determining organic contaminants in atmospheric, aquatic and house dust samples. The proposed analytical methods are based on single and comprehensive gas chromatography followed by different detectors (including mass spectrometry and nitrogen chemiluminiscence detection) and different sample preparation methods that have the aim of minimising the consumption of organic solvents in the who...

  6. Interactions between eutrophication and contaminants - partitioning, bioaccumulation and effects on sediment-dwelling organisms

    Energy Technology Data Exchange (ETDEWEB)

    Hylland, Ketil; Schaanning, Morten; Skei, Jens; Berge, John Arthur; Eriksen, Dag Oe.; Skoeld, Mattias; Gunnarsson, Jonas

    1997-12-31

    This report describes an experiment on the interactions between eutrophication and contaminants in marine sediments. The experiment was performed in 24 continuously flushed glass aquaria within which three sediment-dwelling species were kept in a marine sediment. A filter-feeder, blue mussel, was kept in downstream aquaria. The experiment combined three environmental factors: oxygen availability, the presence or absence of contaminants, the addition of organic matter. The objectives were: (1) to quantify differences in the partitioning of contaminants between sediment, pore water and biota as a result of the treatment, (2) to quantify effects of treatments and interactions between treatments on sediment-dwelling organisms, (3) to identify differences, if any, in the release of contaminants from the sediment as the result of treatments. All three contaminants bio accumulated to higher levels in sediments with increased levels of organic material. Feeding directly or indirectly appeared to be the major route for bioaccumulation of benzo(a)pyrene and mercury. Cadmium was also controlled by the concentration in pore water. Sediment in enriched aquaria released more contaminants than sediment with low organic content. Organic enrichment strongly affected growth in the three sediment-dwelling organisms. Growth was less affected by decreased oxygen availability. The presence of contaminants had little effect on the three sediment-dwelling species at the concentrations used in the experiment. 103 refs., 14 figs., 12 tabs.

  7. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    Science.gov (United States)

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  8. Organic contaminant transport and fate in the subsurface: evolution of knowledge and understanding

    Science.gov (United States)

    Essaid, Hedeff I.; Bekins, Barbara A.; Cozzarelli, Isabelle M.

    2015-01-01

    Toxic organic contaminants may enter the subsurface as slightly soluble and volatile nonaqueous phase liquids (NAPLs) or as dissolved solutes resulting in contaminant plumes emanating from the source zone. A large body of research published in Water Resources Research has been devoted to characterizing and understanding processes controlling the transport and fate of these organic contaminants and the effectiveness of natural attenuation, bioremediation, and other remedial technologies. These contributions include studies of NAPL flow, entrapment, and interphase mass transfer that have advanced from the analysis of simple systems with uniform properties and equilibrium contaminant phase partitioning to complex systems with pore-scale and macroscale heterogeneity and rate-limited interphase mass transfer. Understanding of the fate of dissolved organic plumes has advanced from when biodegradation was thought to require oxygen to recognition of the importance of anaerobic biodegradation, multiple redox zones, microbial enzyme kinetics, and mixing of organic contaminants and electron acceptors at plume fringes. Challenges remain in understanding the impacts of physical, chemical, biological, and hydrogeological heterogeneity, pore-scale interactions, and mixing on the fate of organic contaminants. Further effort is needed to successfully incorporate these processes into field-scale predictions of transport and fate. Regulations have greatly reduced the frequency of new point-source contamination problems; however, remediation at many legacy plumes remains challenging. A number of fields of current relevance are benefiting from research advances from point-source contaminant research. These include geologic carbon sequestration, nonpoint-source contamination, aquifer storage and recovery, the fate of contaminants from oil and gas development, and enhanced bioremediation.

  9. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for which...

  10. Cherenkov and scintillation light separation in organic liquid scintillators

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D. [University of California, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Yeh, M. [Brookhaven National Laboratory, Upton, NY (United States)

    2017-12-15

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ{sub r} = 0.72 ± 0.33 ns. (orig.)

  11. Cherenkov and scintillation light separation in organic liquid scintillators

    International Nuclear Information System (INIS)

    Caravaca, J.; Descamps, F.B.; Land, B.J.; Orebi Gann, G.D.; Yeh, M.

    2017-01-01

    The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3% and 63 ± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5% and 38 ± 4. LAB/PPO data is consistent with a rise time of τ r = 0.72 ± 0.33 ns. (orig.)

  12. Review: Micro-organic contaminants in groundwater in China

    Science.gov (United States)

    Dong, Weihong; Xie, Wei; Su, Xiaosi; Wen, Chuanlei; Cao, Zhipeng; Wan, Yuyu

    2018-03-01

    Micro-organic contaminants (MOs) in groundwater, which may have adverse effects on human health and ecosystems worldwide, are gaining increased attention in China. A great deal of research has been conducted to investigate their sources, occurrences and behavior in aquifers. This paper reviews the main sources, distribution, concentrations and behavior of a wide range of MOs in groundwater in China. These MOs include well-established persistent organic pollutants—polycyclic aromatic hydrocarbons (PAHs), hexachlorocyclohexanes (HCHs), polychlorinated biphenyls (PCBs), endocrine disrupting chemicals (poly brominated diphenyl ethers (PBDEs), phthalic acid esters (PAEs), bisphenol A (BPA)—and some contaminants of emerging concern such as pharmaceutical and personal care products (antibiotics, caffeine, shampoos) and perfluorinated compounds (PFCs). The results reveal that the main MOs in groundwater are PAHs, organochlorine pesticides (OCPs), PBDEs, PAEs, and antibiotics. Moreover, some PFCs such as perfluorobutane sulfonic acid (PFBS), perfluorobutanoic acid (PFBA) and perfluorooctanoic acid (PFOA) have only recently been observed in groundwater as emerging organic contaminants. Additionally, most MOs are distributed in populated and industrialized areas such as the southeast coast of China. Finally, industrial emissions, wastewater treatment plant effluents and agricultural wastewater are found to be dominant sources of MOs in groundwater. Based on the existing pollution levels, regulation and amelioration of MOs are warranted.

  13. The organic contamination level based on the total soil mass is not a proper index of the soil contamination intensity

    Science.gov (United States)

    Hung, H.-W.; Daniel, Sheng G.; Lin, T.-F.; Su, Y.; Chiou, C.T.

    2009-01-01

    Concentrations of organic contaminants in common productive soils based on the total soil mass give a misleading account of actual contamination effects. This is attributed to the fact that productive soils are essentially water-saturated, with the result that the soil uptake of organic compounds occurs principally by partition into the soil organic matter (SOM). This report illustrates that the soil contamination intensity of a compound is governed by the concentration in the SOM (Com) rather than by the concentration in whole soil (Cs). Supporting data consist of the measured levels and toxicities of many pesticides in soils of widely differing SOM contents and the related levels in in-situ crops that defy explanation by the Cs values. This SOM-based index is timely needed for evaluating the contamination effects of food crops grown in different soils and for establishing a dependable priority ranking for intended remediation of numerous contamination sites.

  14. 9 CFR 310.18 - Contamination of carcasses, organs, or other parts.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Contamination of carcasses, organs, or... AND VOLUNTARY INSPECTION AND CERTIFICATION POST-MORTEM INSPECTION § 310.18 Contamination of carcasses... prevent contamination with fecal material, urine, bile, hair, dirt, or foreign matter; however, if...

  15. Surveillance for previously unmonitored organic contaminants in the San Francisco Estuary.

    Science.gov (United States)

    Oros, Daniel R; Jarman, Walter M; Lowe, Theresa; David, Nicole; Lowe, Sarah; Davis, Jay A

    2003-09-01

    The San Francisco Estuary Regional Monitoring Program initiated surveillance monitoring to identify previously unmonitored synthetic organic contaminants in the San Francisco Estuary. Organic extracts of water samples were analyzed using gas chromatography-mass spectrometry in full scan mode. The major contaminant classes identified in the samples were fire retardants, pesticides, personal care product ingredients, and plasticizers. Evidence from the literature suggests that some of these contaminants can persist in the environment, induce toxicity, and accumulate in marine biota and in higher food chain consumers. The major sources of these contaminants into the marine environment are the discharge of municipal and industrial wastewater effluents, urban stormwater, and agricultural runoff. As a proactive effort, it is suggested that surveillance studies be used routinely in monitoring programs to identify and prevent potential problem contaminants from harming the marine environment.

  16. Case studies in organic contaminant hydrogeology

    International Nuclear Information System (INIS)

    Baker, J.A.

    1989-01-01

    The effective management of domestic solid waste and hazardous, toxic, and radioactive waste is a major problem in the area of environmental geology and water sciences throughout the world. A series of case studies is presented of organic contaminants from both solid and hazardous waste disposal facilities to provide examples of these problems. The facilities were investigated to determine risks and liabilities before acquisition, to determine the site hydrogeologic conditions for design of appropriate groundwater monitoring plans, and/or to determine the potential for groundwater contamination. The case studies are of disposal facilities located in glacial tills, carbonaceous weathered clay soils, weathered shale, limestone bedrock, dolomite bedrock, and alluvial and sedimentary deposits. The results of these studies and investigations show certain relationships in the distribution of organic pollutants to the different geologic and hydrogeologic characteristics of each facility. In each of the four case studies, all 129 priority pollutants were analyzed in private wells and/or monitoring wells. The 31 volatile organic compounds (VOCs) of the priority pollutant list were the majority of organic compounds detected. When VOCs are found in groundwater impacted by disposal facilities, they are present in groups and tend to be distributed in patterns based on their relative concentrations. It is rare to find only one or two VOCs from facilities where leakage has been detected. The ethylenes and ethanes appear to be more prevalent and mobile than aromatic VOCs. The aromatics are restricted primarily to leachates and wastes and in monitoring wells located adjacent to facilities. 2 refs., 15 figs

  17. REDUCTIVE DEHALOGENATION OF ORGANIC CONTAMINANTS IN SOILS AND GROUND WATER

    Science.gov (United States)

    Introduction and large scale production of synthetic halogenated organic chemicals over the last 50 years has resulted in a group of contaminants which tend to persist in the environment and resist both biotic and abiotic degradation. The low solubility of these types of contamin...

  18. Sorption of polar and nonpolar organic contaminants by oil-contaminated soil.

    Science.gov (United States)

    Chen, Hong; Chen, Shuo; Quan, Xie; Zhao, Huimin; Zhang, Yaobin

    2008-12-01

    Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil-water distribution coefficients (K(oil)). The resulting oil-contaminated soil-water distribution coefficients (K(d)) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (C(oil)) but sorption-reducing (competitive) effects at intermediate C(oil) (approximately 1 g kg(-1)). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in K(d) at C(oil) above approximately 1 g kg(-1) were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.

  19. Organic Contamination Baseline Study: In NASA JSC Astromaterials Curation Laboratories. Summary Report

    Science.gov (United States)

    Calaway, Michael J.

    2013-01-01

    In preparation for OSIRIS-REx and other future sample return missions concerned with analyzing organics, we conducted an Organic Contamination Baseline Study for JSC Curation Labsoratories in FY12. For FY12 testing, organic baseline study focused only on molecular organic contamination in JSC curation gloveboxes: presumably future collections (i.e. Lunar, Mars, asteroid missions) would use isolation containment systems over only cleanrooms for primary sample storage. This decision was made due to limit historical data on curation gloveboxes, limited IR&D funds and Genesis routinely monitors organics in their ISO class 4 cleanrooms.

  20. Analysis of Organic and Inorganic Contaminants in Dried Sewage Sludge and By-Products of Dried Sewage Sludge Gasification

    Directory of Open Access Journals (Sweden)

    Sebastian Werle

    2014-01-01

    Full Text Available Organic and inorganic contaminants in sewage sludge may cause their presence also in the by-products formed during gasification processes. Thus, this paper presents multidirectional chemical instrumental activation analyses of dried sewage sludge as well as both solid (ash, char coal and liquid (tar by-products formed during sewage gasification in a fixed bed reactor which was carried out to assess the extent of that phenomenon. Significant differences were observed in the type of contaminants present in the solid and liquid by-products from the dried sewage sludge gasification. Except for heavy metals, the characteristics of the contaminants in the by-products, irrespective of their form (solid and liquid, were different from those initially determined in the sewage sludge. It has been found that gasification promotes the migration of certain valuable inorganic compounds from sewage sludge into solid by-products which might be recovered. On the other hand, the liquid by-products resulting from sewage sludge gasification require a separate process for their treatment or disposal due to their considerable loading with toxic and hazardous organic compounds (phenols and their derivatives.

  1. Contamination of living environment and human organism with plutonium

    International Nuclear Information System (INIS)

    Benes, J.

    1981-01-01

    The applicability of 239 Pu in nuclear power is discussed. The radiotoxic properties of plutonium, its tissue distribution and the effects of internal and external contamination are described. The contamination of the atmosphere, water, and soil with plutonium isotopes is discussed. Dosimetry is described of plutonium in the living and working environments as is plutonium determination in the human organism. (H.S.)

  2. Separation of organic ion exchange resins from sludge - engineering study

    International Nuclear Information System (INIS)

    Duncan, J.B.

    1998-01-01

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation

  3. Separation of organic ion exchange resins from sludge -- engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, J.B.

    1998-08-25

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.

  4. Studies on the remediation of environment contaminated with radioactive pollutants using the chemical separation technique

    Energy Technology Data Exchange (ETDEWEB)

    Kurotaki, Katsumi; Yonehara, Hidenori; Sahoo, S.K. [National Inst. of Radiological Sciences, Chiba (Japan); Ishii, Toshiaki [National Inst. of Radiological Sciences, Hitachinaka, Ibaraki (Japan). Lab. for Radioecology

    2001-12-01

    Remediation of soil and drinking water contaminated with radioactive nuclides is important for the mitigation of radiation exposure. Then we attempted to construct the remediation system including the dose estimation system using the chemical separation technique to remove pollutants from the environment. The information on air dose rate is important for assessment of risk from the radiation exposure. Then we measured the air dose rate and analysed the relationship between air dose rate and the contamination of soil at the area in Russia (Bryansk district) contaminated by Chernobyl Nuclear Power Plant accident. Moreover, we analysed the soil of Bryansk district on the concentration of rare earth elements, thorium and uranium and on the isotope ratio of strontium. On the other hand, we tried to develop the rapid measurement method of radioactivity of Sr-90 which is one of the dangerous radionuclides, because the method of radioactivity measurement in the literature is too time-consuming. It was reported recently that the molecules containing SH group form the covalent bond with gold atoms at the surface of gold plate and that crown ether compounds have strong affinity to strontium. Then we attempted to synthesize the crown ether containing SH group. In addition, we search the inorganic elements accumulated to special organisms of fishes and other animals in sea in order to find out new reagent for trace elements. Transition metal such as Co, Fe, Ni, Ti, V and Zn were detected from the intracellular granules in the bronchial heart of octopus. (author)

  5. Metal-metallothioneins like proteins investigation by heteroatom-tagged proteomics in two different snails as possible sentinel organisms of metal contamination in freshwater ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Franca Maltez, Heloisa [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Villanueva Tagle, Margarita [Faculty of Chemistry, University of La Habana (Cuba); Rosario Fernandez de la Campa, Maria del [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain); Sanz-Medel, Alfredo, E-mail: asm@uniovi.es [Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julian Claveria 8, 33006 Oviedo (Spain)

    2009-09-21

    Metal speciation analysis in MLPs was carried out in two snails, Marisa cornuarietis and Pomacea bridgesi, in order to investigate them as possible sentinel organisms of heavy metal contamination. To carry out this study snails born in a non-contaminated environment were divided into two groups: a control group and a contaminated one with cadmium administered for 40 days. Subsequently, we investigated the speciation of the induced MLPs in exposed animals in relation to controls. In order to obtain the MLP fraction, cytosols from both snail species where subjected to size-exclusion fractionation, monitoring on-line the metal signal (Cd, Cu and Zn) by ICP-MS while protein elution was followed by on-line UV detection. MLP fraction was then separated by anion-exchange (AE)-FPLC using optimal chromatographic conditions for the separation of the different MLP isoforms in both snail species. Specific detection of separated metalloforms was carried out again by the hyphenation of the AE chromatographic system with ICP-MS. The determination of the amount of metal bound to MLPs was carried out by post-column isotope dilution analysis ICP-MS, finding that the snail M. cornuarietis accumulated higher concentrations of cadmium than P. bridgesi. Thus this first snail could therefore be a better candidate sentinel organism of pollution in natural waters. Identification and characterization of the isoforms separated in M. cornuarietis was carried out for the entire or intact isoforms by MALDI-TOF and then conventional triptic digestion was also carried out to identify the nature of the formed peptides. The presence identification of a MLP isoform of relatively low molecular weight in M. cornuarietis is reported.

  6. Metal-metallothioneins like proteins investigation by heteroatom-tagged proteomics in two different snails as possible sentinel organisms of metal contamination in freshwater ecosystems.

    Science.gov (United States)

    Maltez, Heloisa França; Villanueva Tagle, Margarita; Fernández de la Campa, Maria del Rosario; Sanz-Medel, Alfredo

    2009-09-21

    Metal speciation analysis in MLPs was carried out in two snails, Marisa cornuarietis and Pomacea bridgesi, in order to investigate them as possible sentinel organisms of heavy metal contamination. To carry out this study snails born in a non-contaminated environment were divided into two groups: a control group and a contaminated one with cadmium administered for 40 days. Subsequently, we investigated the speciation of the induced MLPs in exposed animals in relation to controls. In order to obtain the MLP fraction, cytosols from both snail species where subjected to size-exclusion fractionation, monitoring on-line the metal signal (Cd, Cu and Zn) by ICP-MS while protein elution was followed by on-line UV detection. MLP fraction was then separated by anion-exchange (AE)-FPLC using optimal chromatographic conditions for the separation of the different MLP isoforms in both snail species. Specific detection of separated metalloforms was carried out again by the hyphenation of the AE chromatographic system with ICP-MS. The determination of the amount of metal bound to MLPs was carried out by post-column isotope dilution analysis ICP-MS, finding that the snail M. cornuarietis accumulated higher concentrations of cadmium than P. bridgesi. Thus this first snail could therefore be a better candidate sentinel organism of pollution in natural waters. Identification and characterization of the isoforms separated in M. cornuarietis was carried out for the entire or intact isoforms by MALDI-TOF and then conventional triptic digestion was also carried out to identify the nature of the formed peptides. The presence identification of a MLP isoform of relatively low molecular weight in M. cornuarietis is reported.

  7. Metal-metallothioneins like proteins investigation by heteroatom-tagged proteomics in two different snails as possible sentinel organisms of metal contamination in freshwater ecosystems

    International Nuclear Information System (INIS)

    Franca Maltez, Heloisa; Villanueva Tagle, Margarita; Rosario Fernandez de la Campa, Maria del; Sanz-Medel, Alfredo

    2009-01-01

    Metal speciation analysis in MLPs was carried out in two snails, Marisa cornuarietis and Pomacea bridgesi, in order to investigate them as possible sentinel organisms of heavy metal contamination. To carry out this study snails born in a non-contaminated environment were divided into two groups: a control group and a contaminated one with cadmium administered for 40 days. Subsequently, we investigated the speciation of the induced MLPs in exposed animals in relation to controls. In order to obtain the MLP fraction, cytosols from both snail species where subjected to size-exclusion fractionation, monitoring on-line the metal signal (Cd, Cu and Zn) by ICP-MS while protein elution was followed by on-line UV detection. MLP fraction was then separated by anion-exchange (AE)-FPLC using optimal chromatographic conditions for the separation of the different MLP isoforms in both snail species. Specific detection of separated metalloforms was carried out again by the hyphenation of the AE chromatographic system with ICP-MS. The determination of the amount of metal bound to MLPs was carried out by post-column isotope dilution analysis ICP-MS, finding that the snail M. cornuarietis accumulated higher concentrations of cadmium than P. bridgesi. Thus this first snail could therefore be a better candidate sentinel organism of pollution in natural waters. Identification and characterization of the isoforms separated in M. cornuarietis was carried out for the entire or intact isoforms by MALDI-TOF and then conventional triptic digestion was also carried out to identify the nature of the formed peptides. The presence identification of a MLP isoform of relatively low molecular weight in M. cornuarietis is reported.

  8. Phytoremediation of small organic contaminants using transgenic plants

    Science.gov (United States)

    James, C Andrew; Strand, Stuart E

    2010-01-01

    The efficacy of transgenic plants in the phytoremediation of small organic contaminants has been investigated. Two principal strategies have been pursued (1) the manipulation of phase I metabolic activity to enhance in planta degradation rates, or to impart novel metabolic activity, and (2) the enhanced secretion of reactive enzymes from roots leading to accelerated ex planta degradation of organic contaminants. A pair of dehalogenase genes from Xanthobacter autotrophicus was expressed in tobacco resulting in the dehalogenation of 1,2-dichloroethane, which was otherwise recalcitrant. A laccase gene from cotton was overexpressed in Arabidopsis thaliana resulting in increased secretory laccase activity and the enhanced resistance to trichlorophenol in soils. Although the results to date are promising, much of the work has been limited to laboratory settings; field demonstrations are needed. PMID:19342219

  9. Antifouling Cellulose Hybrid Biomembrane for Effective Oil/Water Separation.

    Science.gov (United States)

    Kollarigowda, Ravichandran H; Abraham, Sinoj; Montemagno, Carlo D

    2017-09-06

    Oil/water separation has been of great interest worldwide because of the increasingly serious environmental pollution caused by the abundant discharge of industrial wastewater, oil spill accidents, and odors. Here, we describe simple and economical superhydrophobic hybrid membranes for effective oil/water separation. Eco-friendly, antifouling membranes were fabricated for oil/water separation, waste particle filtration, the blocking of thiol-based odor materials, etc., by using a cellulose membrane (CM) filter. The CM was modified from its original superhydrophilic nature into a superhydrophobic surface via a reversible addition-fragmentation chain transfer technique. The block copolymer poly{[3-(trimethoxysilyl)propyl acrylate]-block-myrcene} was synthesized using a "grafting-from" approach on the CM. The surface contact angle that we obtained was >160°, and absorption tests of several organic contaminants (oils and solvents) exhibited superior levels of extractive activity and excellent reusability. These properties rendered this membrane a promising surface for oil/water separation. Interestingly, myrcene blocks thiol (through "-ene-" chemistry) contaminants, thereby bestowing a pleasant odor to polluted water by acting as an antifouling material. We exploited the structural properties of cellulose networks and simple chemical manipulations to fabricate an original material that proved to be effective in separating water from organic and nano/microparticulate contaminants. These characteristics allowed our material to effectively separate water from oily/particulate phases as well as embed antifouling materials for water purification, thus making it an appropriate absorber for chemical processes and environmental protection.

  10. Fundamental study on magnetic separation of aquatic organisms for preservation of marine ecosystem

    International Nuclear Information System (INIS)

    Sakaguchi, F.; Akiyama, Y.; Izumi, Y.; Nishijima, S.

    2009-01-01

    Recently, destruction and disturbance of marine ecosystem have been caused by changes in global environment and transplants of farmed fishes and shellfishes. To solve the problems, water treatment techniques to kill or to remove aquatic organisms are necessary. In this study, application of magnetic separation for removal of the aquatic organisms was examined in order to establish the process with high-speed, compact device and low environmental load. Techniques of magnetic seeding and magnetic separation using superconducting magnet are important for high-speed processing of aquatic organisms. Magnetic seeding is to adhere separating object to the surface of ferromagnetic particles, and magnetic separation is to remove aquatic organisms with magnetic force. First, we confirmed the possibility of magnetic seeding of aquatic organisms, and then interaction between aquatic organisms and ferromagnetic particles was examined. Next, for practical application of magnetic separation system using superconducting magnet for removal of aquatic organisms, particle trajectories were simulated and magnetic separation experiment using superconducting magnet was performed in order to design magnetic separation system to achieve high separation efficiency.

  11. Enteropathogenic bacterial contamination of a latosol following application of organic fertilizer

    Directory of Open Access Journals (Sweden)

    Pedro Alexandre Escosteguy

    2015-10-01

    Full Text Available Poultry manure is used as fertilizer in natura, but little is known about whether it contaminates the soil with pathogenic organisms. The aim of this study was to assess the effects of organic, organomineral and mineral fertilizers on soil contamination by enteric pathogens, using poultry manure as the organic fertilizer. Manure was applied in field experiments at rates of 7.0 ton. ha-1 (maize crop, 2008/2009, 8.0 ton. ha-1 (wheat crop, 2009 and 14 ton. ha-1 (maize crop, 2010/2011. Organomineral fertilizer was applied at the same rates but was comprised of 50% manure and 50% mineral fertilizer. At 30 and 70 days after fertilization, the organic fertilizer and the upper 0-5 cm layer of the soil were tested for the presence of helminth eggs and larvae and enteropathogenic bacteria. Fecal and non-fecal coliforms (Escherichia coli and Clostridium perfringes were found in the organic fertilizer, but neither Salmonella spp. nor enteroparasites were detected. The population of enteropathogenic bacteria in the soil was similar among the treatments for all crops at both evaluation times. The population of thermotolerant coliforms in the organic fertilizer was larger than the maximum level allowed in Brazil, but neither the organic or nor the organomineral fertilizer contaminated the soil.

  12. Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: Coefficients, mechanisms and ecological risks.

    Science.gov (United States)

    Li, Yi-Long; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Xu, Fu-Liu

    2015-11-01

    The complexation flocculation (CF) method was successfully employed to identify binding coefficients (Kdoc) of specific organic contaminants to dissolved organic matter (DOM, often indicated by dissolved organic carbon, DOC) in a multi-contaminant hydrophobic organic contaminant (HOC) system. Kdoc values were obtained for most of the evaluated 33 HOCs, indicating the feasibility and applicability of the CF method in a multi-contaminant system. Significant positive correlations were observed between binding coefficients and octanol-water partition coefficients (Kow) for organic halogen compounds, such as polybrominated diphenyl ethers (PBDEs) (R(2) = 0.95, p mechanisms between PAHs and organic halogen compounds exist. These differences further result in discriminative competition partitions of HOCs between DOM and organisms. Assuming that only freely dissolved HOCs are bioconcentrative, the results of DOM-influenced bioconcentration factor (BCFDOM) and DOM-influenced lowest observed effect level (LOELDOM) indicate that the ecological risk of HOCs is decreased by DOM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Cesium separation from contaminated milk using magnetic particles containing crystalline silicotitantes

    International Nuclear Information System (INIS)

    Nunez, L.; Kaminski, M.

    2000-01-01

    The Chernobyl nuclear reactor disaster in 1986 contaminated vast regions of prime grazing land. Subsequently, milk produced in the region has been contaminated with small amounts of the long-lived fission product cesium-137, and the Ukraine is seeking to deploy a simple separation process that will remove the Cs and preserve the nutritional value of the milk. Tiny magnetic particles containing crystalline silicotitanates (CST) have been manufactured and tested to this end. The results show that partitioning efficiency is optimized with low ratios of particle mass to volume. To achieve 90% Cs decontamination in a single-stage process, <3 g of magnetic CST per l milk is sufficient with a 30-min mixing time. A two-stage process would utilize <0.4 g/l per stage. The modeling of the magnetic CST system described herein can be achieved rather simply which is important for deployment in the affected Ukraine region

  14. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system

    OpenAIRE

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M.

    2016-01-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected wi...

  15. Radioactive contamination of aquatic media and organisms; La contamination radioactive des milieux et des organismes aquatiques

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, Y [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author) [French] Apres une courte etude des dechets radioactifs produits par les utilisations pacifiques ou militaires de l'Industrie Atomique, l'auteur fait etat d'abord des observations effectuees 'sur le terrain' concernant l'extension de la contamination des organismes aquatiques en rapport avec celle du milieu. L'auteur analyse ensuite les etudes experimentales se rapportant aussi bien au metabolisme des radioisotopes qu'aux facteurs et aux modalites de la contamination des organismes aquatiques par les dechets de l'industrie atomique. Un projet de travail experimental precis est presente a la fin de cette revue qui comporte pres de 300 references bibliographiques. (auteur)

  16. Separation of water from organic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Meldrum, I.G.; Villiers Naylor, T. de.

    1990-04-10

    This invention relates to the separation of water from fluids by the pervaporation process using a membrane. The invention is characterized in that the membrane has an active layer which consists essentially only of polymers of an unsaturated organic acid, the acid having not more than 6 carbon atoms for every acid group (not counting any carbon atoms in the acid groups), and the polymer having at least a substantial proportion of the acid groups in the form of a salt. The preferred fluids for use in the process of the invention are organic fluids, such as a hydrocarbon gas (in particular, methane) or a liquid. The process is especially suitable for separating water from mixtures with alkanols, in particular alkanols having 1 to 5 carbon atoms in the molecule, such as ethanol and isopropanol. The unsaturated organic acid may be a sulfur acid, such as a sulfonate or a sulfate or a phosphorus acid, but is preferably a carboxylic acid. Thus, the active layer may be poly(acrylic acid) or poly(maleic acid). The cation of the salt form of the acid groups is preferably an alkali metal, especially cesium. Experiments are described to illustrate the invention. 13 tabs.

  17. Contaminant risks from biosolids land application Contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver, British Columbia

    International Nuclear Information System (INIS)

    Bright, D.A.; Healey, N.

    2003-01-01

    The risks of organic contaminants in sewage sludges are evaluated. - This study examines the potential for environmental risks due to organic contaminants at sewage sludge application sites, and documents metals and various potential organic contaminants (volatile organics, chlorinated pesticides, PCBs, dioxins/furans, extractable petroleum hydrocarbons, PAHs, phenols, and others) in current production biosolids from five wastewater treatment plants (WWTPs) within the Greater Vancouver Regional District (GVRD). There has been greater focus in Europe, North America and elsewhere on metals accumulation in biosolids-amended soil than on organic substances, with the exception of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans. Another objective, therefore, was to evaluate the extent to which management of biosolids re-use based on metal/metalloid levels coincidentally minimizes environmental risks from organic contaminants. Historical-use contaminants such as chlorophenols, PCBs, and chlorinated pesticides were not detected at environmentally relevant concentrations in any of the 36 fresh biosolids samples, and appear to have virtually eliminated from sanitary collection system inputs. The few organic contaminants found in freshly produced biosolids samples that exhibited high concentrations relative to British Columbia and Canadian soil quality benchmarks included p-cresol, phenol, phenanthrene, pyrene, naphthalene, and heavy extractable petroleum hydrocarbons (HEPHs-nCl9-C34 effective carbon chain length). It was concluded that, with the exception of these petroleum hydrocarbon constituents or their microbial metabolites, the mixing of biosolids with uncontaminated soils during land application and based on the known metal concentrations in biosolids from the Greater Vancouver WWTPs investigated provides adequate protection against the environmental risks associated with organic substances such as dioxins and furans, phthalate esters, or volatile

  18. Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2010-10-01

    For water reuse applications, " tight" nanofiltration (NF) membranes (of polyamide) as an alternative to reverse osmosis (RO) can be an effective barrier against pharmaceuticals, pesticides, endocrine disruptors and other organic contaminants. The use of RO in existing water reuse facilities is addressed and questioned, taking into consideration that tight NF can be a more cost-effective and efficient technology to target the problem of organic contaminants. It was concluded that tight NF is an acceptable barrier for organic contaminants because its removal performance approaches that of RO, and because of reduced operation and maintenance (O&M) costs in long-term project implementation. Average removal of neutral compounds (including 1,4-dioxane) was about 82% and 85% for NF and RO, respectively, and average removal of ionic compounds was about 97% and 99% for NF and RO, respectively. In addition, " loose" NF after aquifer recharge and recovery (ARR) can be an effective barrier against micropollutants with removals over 90%. When there is the presence of difficult to remove organic contaminants such as NDMA and 1,4-dioxane; for 1,4-dioxane, source control or implementation of treatment processes in wastewater treatment plants will be an option; for NDMA, a good strategy is to limit its formation during wastewater treatment, but there is evidence that biodegradation of NDMA can be achieved during ARR. © 2010 Elsevier B.V.

  19. The Opera Instrument: An Advanced Curation Development for Mars Sample Return Organic Contamination Monitoring

    Science.gov (United States)

    Fries, M. D.; Fries, W. D.; McCubbin, F. M.; Zeigler, R. A.

    2018-01-01

    Mars Sample Return (MSR) requires strict organic contamination control (CC) and contamination knowledge (CK) as outlined by the Mars 2020 Organic Contamination Panel (OCP). This includes a need to monitor surficial organic contamination to a ng/sq. cm sensitivity level. Archiving and maintaining this degree of surface cleanliness may be difficult but has been achieved. MSR's CK effort will be very important because all returned samples will be studied thoroughly and in minute detail. Consequently, accurate CK must be collected and characterized to best interpret scientific results from the returned samples. The CK data are not only required to make accurate measurements and interpretations for carbon-depleted martian samples, but also to strengthen the validity of science investigations performed on the samples. The Opera instrument prototype is intended to fulfill a CC/CK role in the assembly, cleaning, and overall contamination history of hardware used in the MSR effort, from initial hardware assembly through post-flight sample curation. Opera is intended to monitor particulate and organic contamination using quartz crystal microbalances (QCMs), in a self-contained portable package that is cleanroom-compliant. The Opera prototype is in initial development capable of approximately 100 ng/sq. cm organic contamination sensitivity, with additional development planned to achieve 1 ng/sq. cm. The Opera prototype was funded by the 2017 NASA Johnson Space Center Innovation Charge Account (ICA), which provides funding for small, short-term projects.

  20. Selective Extraction of Organic Contaminants from Soil Using Pressurised Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Rozita Osman

    2013-01-01

    Full Text Available This study focuses on the application of sorbents in pressurised liquid extraction (PLE cell to establish a selective extraction of a variety of organic contaminants (polycyclic aromatic hydrocarbons (PAHs, chlorpyrifos, phenol, pentachlorophenol, and sterols from soil. The selectivity and efficiency of each sorbent depend on the properties of the material, extracting solvent, capacity factor, organic compounds of interest, and PLE operating parameters (temperature, pressure, and extraction time. Several sorbents (silica, alumina, and Florisil were evaluated and with the proper choice of solvents, polar and nonpolar compounds were successfully separated in two fractions. Nonpolar compounds (PAHs, chlorpyrifos, and pentachlorophenol were recovered in the first fraction using a polar sorbent such as Florisil or alumina, and n-hexane as eluting solvent, while more polar compounds (phenol and sterols were recovered in the second fraction using methanol. Silica (5 g was found to be effective for selective extraction with the satisfactory recoveries for all compounds (PAHs from 87.1–96.2%, chlorpyrifos 102.9%, sterols from 93.7–100.5%, phenol 91.9%, and pentachlorophenol 106.2%. The efficiency and precision of this extraction approach and the existing EPA Method 3545 were compared.

  1. Assessing the bioavailability of organic contaminants using a novel bioluminescent biosensor

    International Nuclear Information System (INIS)

    Keane, A.; Phoenix, P.; Lau, P.C.K.; Ghoshal, S.

    2002-01-01

    The limited rate and extent of biodegradation in contaminated soils is often attributed to a lack of bioavailability of hydrophobic organic compounds. To date, the majority of studies aimed at assessing bioavailability and modes of bacterial uptake have relied upon quantification of microbial degradation rates in comparison to rates of dissolution or desorption in corresponding abiotic systems. Several studies have indicated the possibility of a direct uptake mechanism for sorbed or separate phase compounds. However, there is a lack of direct evidence to support these claims. To address the need for a direct measurement technique for microbial bioavailability, we have constructed a whole-cell bioluminescent biosensor, Pseudomonas putida F1G4 (PpF1G4), by fusing lux genes that encode for bioluminescence to the solvent efflux pump (sep) promoter element in PpF1G4, which is induced by the presence of target organic compounds. When the biosensor microorganism is exposed to an inducing compound, the bioluminescence system is activated and the cell produces an intensity of visible light (λ = 495 nm) that is directly related to the level of exposure to the contaminant. Batch experiments were carried out to assess whether the biosensor is able to sense the presence of toluene, a representative target compound, contained in a NAPL. Preliminary results show that while PpF1G4 responds to toluene in the aqueous phase, the biosensor does not appear to emit a significant bioluminescence signal in response to the toluene present in the NAPL. Ongoing research is focusing on optimizing the experimental procedure to fully explore this issue. (author)

  2. Microporous Organic Materials for Membrane-Based Gas Separation.

    Science.gov (United States)

    Zou, Xiaoqin; Zhu, Guangshan

    2018-01-01

    Membrane materials with excellent selectivity and high permeability are crucial to efficient membrane gas separation. Microporous organic materials have evolved as an alternative candidate for fabricating membranes due to their inherent attributes, such as permanent porosity, high surface area, and good processability. Herein, a unique pore-chemistry concept for the designed synthesis of microporous organic membranes, with an emphasis on the relationship between pore structures and membrane performances, is introduced. The latest advances in microporous organic materials for potential membrane application in gas separation of H 2 , CO 2 , O 2 , and other industrially relevant gases are summarized. Representative examples of the recent progress in highly selective and permeable membranes are highlighted with some fundamental analyses from pore characteristics, followed by a brief perspective on future research directions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Effects of organic contaminants in sewage sludge on soil fertility, plants and animals

    International Nuclear Information System (INIS)

    Hall, J.E.; Sauerbeck, D.R.; L'Hermite, P.

    1992-01-01

    Sewage sludge production in Europe will continue to rise as a result of higher environmental standards, making disposal increasingly difficult in the future. A considerable part of this sludge is spread beneficially on agricultural land as an organic fertilizer, however, this outlet is very sensitive to the problems associated with the inorganic and organic contaminants which sludge inevitably contains. Much research has been devoted to the problems of contaminants in sludge and their potential effects on soil, plants, animals and man in recent years, and the European Commission's Concerted Action COST 681 has provided a valuable forum for the exchange of views and progress of research on sludge treatment and disposal. This book contains 19 papers presented to a joint meeting of Working Party 4 (Agricultural Value) and Working Party 5 (Environmental Effects) of COST 681, held at the German Federal Research Centre of Agriculture (FAL), Braunschweig on 6-8 June 1990. The meeting addressed two areas of current concern; the occurrence, behaviour and transfer of sludge-derived organic contaminants (Session 1), and the influence of inorganic and organic contaminants on soil micro-organisms and their activities (Session 2)

  4. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    International Nuclear Information System (INIS)

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large

  5. Organic contamination of ground water at Gas Works Park, Seattle, Washington

    Science.gov (United States)

    Turney, G.L.; Goerlitz, D.F.

    1990-01-01

    Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water. Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.

  6. Adsorption/membrane filtration as a contaminant concentration and separation process for mixed wastes and tank wastes. 1998 annual progress report

    International Nuclear Information System (INIS)

    Benjamin, M.M.; Korshin, G.

    1998-01-01

    'This report describes progress through May, 1998, which is a little past mid-way through the second year of a three-year project. The goal of the research is to develop a treatment system for the separation of contaminants in low-organic Hanford tank wastes into various sub-groups that are relatively easy to treat further to yield products that are amenable to final disposal. The main target contaminants are Sr and Cs, although heavy metals and actinide-group elements are also targets. Effort during the first half-year of the project was devoted primarily to development of experimental and analytical techniques that could be used to test and quantify the treatability of Sr and Cs in the extremely complex matrix of the tank wastes. The treatment technologies to be tested for isolation of Sr from other waste constituents included adsorption of Sr onto various mineral solids and membrane separation of particulate from dissolved Sr. The proposed technology for treating Cs was electrochemically controlled, reversible binding of the Cs to hexacyanoferrates. Results obtained during the remainder of the first year suggested that hematite (a-Fe 2 O 3 ) and iron-oxide-coated sand (IOCS) were the best adsorbents for Sr among the oxides tested, and work during the second project year followed up on that result.'

  7. Radioactive contamination of aquatic media and organisms; La contamination radioactive des milieux et des organismes aquatiques

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, Y. [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    After a brief account of the radioactive wastes produced by peaceful or military uses of Atomic Industry, the author first describes a series of observations carried out 'in the field' on the extent of contamination in aquatic organisms with respect to that of the medium. The experimental studies are then analysed, with reference both to the radioisotope metabolism and to the factors and types of contamination of aquatic organisms by wastes from atomic industry. A precise experimental project is presented at the end of the paper, including almost 300 references. (author) [French] Apres une courte etude des dechets radioactifs produits par les utilisations pacifiques ou militaires de l'Industrie Atomique, l'auteur fait etat d'abord des observations effectuees 'sur le terrain' concernant l'extension de la contamination des organismes aquatiques en rapport avec celle du milieu. L'auteur analyse ensuite les etudes experimentales se rapportant aussi bien au metabolisme des radioisotopes qu'aux facteurs et aux modalites de la contamination des organismes aquatiques par les dechets de l'industrie atomique. Un projet de travail experimental precis est presente a la fin de cette revue qui comporte pres de 300 references bibliographiques. (auteur)

  8. Hanford Site physical separations CERCLA treatability test plan

    International Nuclear Information System (INIS)

    1992-03-01

    This test plan describes specifications, responsibilities, and general procedures to be followed to conduct a physical separations soil treatability test in the North Process Pond of the 300-FF-1 Operable Unit at the Hanford Site, Washington. The objective of this test is to evaluate the use of physical separation systems as a means of concentrating chemical and radioactive contaminants into fine soil fractions and thereby minimizing waste volumes. If successful the technology could be applied to clean up millions of cubic meters of contaminated soils in waste sites at Hanford and other sites. It is not the intent of this test to remove contaminated materials from the fine soils. Physical separation is a simple and comparatively low cost technology to potentially achieve a significant reduction in the volume of contaminated soils. Organic contaminants are expected to be insignificant for the 300-FF-I Operable Unit test, and further removal of metals and radioactive contaminants from the fine fraction of soils will require secondary treatment such as chemical extraction, electromagnetic separation, or other technologies. Additional investigations/testing are recommended to assess the economic and technical feasibility of applying secondary treatment technologies, but are not within the scope of this test. This plan provides guidance and specifications for the treatability test to be conducted as a service contract. More detailed instructions and procedures will be provided as part of the vendors (sellers) proposal. The procedures will be approved by Westinghouse Hanford Company (Westinghouse Hanford) and finalized by the seller prior to initiating the test

  9. Effects of dissolved organic matter from a eutrophic lake on the freely dissolved concentrations of emerging organic contaminants.

    Science.gov (United States)

    Xiao, Yi-Hua; Huang, Qing-Hui; Vähätalo, Anssi V; Li, Fei-Peng; Chen, Ling

    2014-08-01

    The authors studied the effects of dissolved organic matter (DOM) on the bioavailability of bisphenol A (BPA) and chloramphenicol by measuring the freely dissolved concentrations of the contaminants in solutions containing DOM that had been isolated from a mesocosm in a eutrophic lake. The abundance and aromaticity of the chromophoric DOM increased over the 25-d mesocosm experiment. The BPA freely dissolved concentration was 72.3% lower and the chloramphenicol freely dissolved concentration was 56.2% lower using DOM collected on day 25 than using DOM collected on day 1 of the mesocosm experiment. The freely dissolved concentrations negatively correlated with the ultraviolent absorption coefficient at 254 nm and positively correlated with the spectral slope of chromophoric DOM, suggesting that the bioavailability of these emerging organic contaminants depends on the characteristics of the DOM present. The DOM-water partition coefficients (log KOC ) for the emerging organic contaminants positively correlated with the aromaticity of the DOM, measured as humic acid-like fluorescent components C1 (excitation/emission=250[313]/412 nm) and C2 (excitation/emission=268[379]/456 nm). The authors conclude that the bioavailability of emerging organic contaminants in eutrophic lakes can be affected by changes in the DOM. © 2014 SETAC.

  10. Separation of organic azeotropic mixtures by pervaporation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W.

    1991-12-01

    Distillation is a commonly used separation technique in the petroleum refining and chemical processing industries. However, there are a number of potential separations involving azetropic and close-boiling organic mixtures that cannot be separated efficiently by distillation. Pervaporation is a membrane-based process that uses selective permeation through membranes to separate liquid mixtures. Because the separation process is not affected by the relative volatility of the mixture components being separated, pervaporation can be used to separate azetropes and close-boiling mixtures. Our results showed that pervaporation membranes can be used to separate azeotropic mixtures efficiently, a result that is not achievable with simple distillation. The membranes were 5--10 times more permeable to one of the components of the mixture, concentrating it in the permeate stream. For example, the membrane was 10 times more permeable to ethanol than methyl ethyl ketone, producing 60% ethanol permeate from an azeotropic mixture of ethanol and methyl ethyl ketone containing 18% ethanol. For the ethyl acetate/water mixture, the membranes showed a very high selectivity to water (> 300) and the permeate was 50--100 times enriched in water relative to the feed. The membranes had permeate fluxes on the order of 0.1--1 kg/m{sup 2}{center dot}h in the operating range of 55--70{degrees}C. Higher fluxes were obtained by increasing the operating temperature.

  11. Microbial Fuel Cells for Organic-Contaminated Soil Remedial Applications

    NARCIS (Netherlands)

    Li, Xiaojing; Wang, Xin; Weng, Liping; Zhou, Qixing; Li, Yongtao

    2017-01-01

    Efficient noninvasive techniques are desired for repairing organic-contaminated soils. Bioelectrochemical technology, especially microbial fuel cells (MFCs), has been widely used to promote a polluted environmental remediation approach, and applications include wastewater, sludge, sediment, and

  12. 67 Ga and Zn separation by column chromatography using organic adsorbent

    International Nuclear Information System (INIS)

    Santos, Eliane E. dos; Mestnik, Sonia Ap. C.

    1995-01-01

    The radioisotope 67 Ga is widely used in nuclear medicine for detecting the presence of malignancy and for diagnosis of inflammatory diseases due to its suitable physical characteristics such as half-life of 78 h and γ-rays of 93 KeV(38%), 184(KeV(24%), 296 KeV(22%) and 388 KeV(4%). In this work we present the separation of 67 Ga from Zn using SM-7 (Bio Rad) as absorbent. After setting up the best experimental condition for the absorption of 67 Ga on the chromatographic column the volume of solution to remove all metal contaminants from this column was determined. A characteristic elution curve is also presented. From the studies carried out it was shown that 15,0 ml of 7,0 M HCL were sufficient to remove all contaminants from the column and also that 7,0 ml of 0,01 M HCL were enough to elute all 67 Ga. The 67 Ga separation yield was around 93%. (author). 4 refs., 1 fig

  13. Survey in organic contaminants content in sewage sludge from the Emilia Romagna region

    International Nuclear Information System (INIS)

    Mantovi, P.; Sassi, D.; Piccinini, S.; Rossi, L.

    2008-01-01

    Data was collected on the organic pollutants cited in the Working document on sludge, 3. draft (AOX, LAS, DEHP, NPE, PAH, PCB, PCDD/F), for sewage sludge deriving from 12 municipal-industrial wastewater treatment plants and 7 agro-industrial wastewater treatment plants located in the Emilia-Romagna region (Italy), taking samples in spring, summer and winter. The limit values given in the Working document were sporadically exceeded. The most frequent contamination was associated with LAS, in particular in the winter period. Results confirmed lower organic contaminant contents in sludge of agro-industrial origin, compared to sludge from municipal-industrial wastewater treatment plants, with generally not detectable values for the majority of organic pollutants. Comparison of the results collected in this survey with values recorded in other European countries shows that the organic contaminant content of sewage sludge obtained in plants in the Emilia-Romagna region, excepting LAS, is reasonable [it

  14. Pilot-scale UV/H2O2 study for emerging organic contaminants decomposition.

    Science.gov (United States)

    Chu, Xiaona; Xiao, Yan; Hu, Jiangyong; Quek, Elaine; Xie, Rongjin; Pang, Thomas; Xing, Yongjie

    2016-03-01

    Human behaviors including consumption of drugs and use of personal care products, climate change, increased international travel, and the advent of water reclamation for direct potable use have led to the introduction of significant amounts of emerging organic contaminants into the aqueous environment. In addition, the lower detection limits associated with improved scientific methods of chemical analysis have resulted in a recent increase in documented incidences of these contaminants which previously were not routinely monitored in water. Such contaminants may cause known or suspected adverse ecological and/or human health effects at very low concentrations. Conventional drinking water treatment processes may not effectively remove these organic contaminants. Advanced oxidation process (AOP) is a promising treatment process for the removal of most of these emerging organic contaminants, and has been accepted worldwide as a suitable treatment process. In this study, different groups of emerging contaminants were studied for decomposition efficiency using pilot-scale UV/H2O2 oxidation setup, including EDCs, PPCPs, taste and odor (T&O), and perfluorinated compounds. Results found that MP UV/H2O2 AOP was efficient in removing all the selected contaminants except perfluorinated compounds. Study of the kinetics of the process showed that both light absorption and quantum yield of each compound affected the decomposition performance. Analysis of water quality parameters of the treated water indicated that the outcome of both UV photolysis and UV/H2O2 processes can be affected by changes in the feed water quality.

  15. Anaerobic biodegradation of (emerging) organic contaminants in the aquatic environment.

    Science.gov (United States)

    Ghattas, Ann-Kathrin; Fischer, Ferdinand; Wick, Arne; Ternes, Thomas A

    2017-06-01

    Although strictly anaerobic conditions prevail in several environmental compartments, up to now, biodegradation studies with emerging organic contaminants (EOCs), such as pharmaceuticals and personal care products, have mainly focused on aerobic conditions. One of the reasons probably is the assumption that the aerobic degradation is more energetically favorable than degradation under strictly anaerobic conditions. Certain aerobically recalcitrant contaminants, however, are biodegraded under strictly anaerobic conditions and little is known about the organisms and enzymatic processes involved in their degradation. This review provides a comprehensive survey of characteristic anaerobic biotransformation reactions for a variety of well-studied, structurally rather simple contaminants (SMOCs) bearing one or a few different functional groups/structural moieties. Furthermore it summarizes anaerobic degradation studies of more complex contaminants with several functional groups (CMCs), in soil, sediment and wastewater treatment. While strictly anaerobic conditions are able to promote the transformation of several aerobically persistent contaminants, the variety of observed reactions is limited, with reductive dehalogenations and the cleavage of ether bonds being the most prevalent. Thus, it becomes clear that the transferability of degradation mechanisms deduced from culture studies of SMOCs to predict the degradation of CMCs, such as EOCs, in environmental matrices is hampered due the more complex chemical structure bearing different functional groups, different environmental conditions (e.g. matrix, redox, pH), the microbial community (e.g. adaptation, competition) and the low concentrations typical for EOCs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Hydrothermally stable molecular separation membranes from organically linked silica

    Energy Technology Data Exchange (ETDEWEB)

    Castricum, H.L.; Sah, A; Blank, D.H.A.; Ten Elshof, J.E. [Inorganic Materials Science, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Kreiter, R.; Vente, J.F. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2008-06-15

    A highly hydrothermally stable microporous network material has been developed that can be applied in energy-efficient molecular sieving. The material was synthesized by employing organically bridged monomers in acid-catalysed sol-gel hydrolysis and condensation, and is composed of covalently bonded organic and inorganic moieties. Due to its hybrid nature, it withstands higher temperatures than organic polymers and exhibits high solvolytical and acid stability. A thin film membrane that was prepared with the hybrid material was found to be stable in the dehydration of n-butanol at 150C for almost two years. This membrane is the first that combines a high resistance against water at elevated temperatures with a high separation factor and permeance. It therefore has high potential for energy-efficient molecular separation under industrial conditions, including the dehydration of organic solvents. The organically bridged monomers induce increased toughness in the thin film layer. This suppresses hydrolysis of Si-O-Si network bonds and results in a high resistance towards stress-induced cracking. The large non-hydrolysable units thus remain well incorporated in the surrounding matrix such that the material combines high (pore) structural and mechanical stability. The sol mean particle size was found to be a viable parameter to tune the thickness of the membrane layer and thus optimize the separation performance. We anticipate that other hybrid organosilicas can be made in a similar fashion, to yield a whole new class of materials with superior molecular sieving properties and high hydrothermal stability.

  17. Trace organic chemicals contamination in ground water recharge.

    Science.gov (United States)

    Díaz-Cruz, M Silvia; Barceló, Damià

    2008-06-01

    Population growth and unpredictable climate changes will pose high demands on water resources in the future. Even at present, surface water is certainly not enough to cope with the water requirement for agricultural, industrial, recreational and drinking purposes. In this context, the usage of ground water has become essential, therefore, their quality and quantity has to be carefully managed. Regarding quantity, artificial recharge can guarantee a sustainable level of ground water, whilst the strict quality control of the waters intended for recharge will minimize contamination of both the ground water and aquifer area. However, all water resources in the planet are threatened by multiple sources of contamination coming from the extended use of chemicals worldwide. In this respect, the environmental occurrence of organic micropollutants such as pesticides, pharmaceuticals, industrial chemicals and their metabolites has experienced fast growing interest. In this paper an overview of the priority and emerging organic micropollutants in the different source waters used for artificial aquifer recharge purposes and in the recovered water is presented. Besides, some considerations regarding fate and removal of such compounds are also addressed.

  18. Hierarchical responses to organic contaminants in aquatic ecotoxicological bioassays: from microcystins to biodegradation

    OpenAIRE

    Montenegro, Katia

    2008-01-01

    In this thesis I explore the ecotoxicological responses of aquatic organisms at different hierarchical levels to organic contaminants by means of bioassays. The bioassays use novel endpoints or approaches to elucidate the effects of exposure to contaminants and attempt to give mechanistic explanations that could be used to interpret effects at higher hierarchical scales. The sensitivity of population growth rate in the cyanobacteria species Microcystis aeruginosa to the herbicide glyp...

  19. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Shem, L.

    1993-03-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  20. Separation of heavy metals: Removal from industrial wastewaters and contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Shem, L.

    1993-01-01

    This paper reviews the applicable separation technologies relating to removal of heavy metals from solution and from soils in order to present the state-of-the-art in the field. Each technology is briefly described and typical operating conditions and technology performance are presented. Technologies described include chemical precipitation (including hydroxide, carbonate, or sulfide reagents), coagulation/flocculation, ion exchange, solvent extraction, extraction with chelating agents, complexation, electrochemical operation, cementation, membrane operations, evaporation, adsorption, solidification/stabilization, and vitrification. Several case histories are described, with a focus on waste reduction techniques and remediation of lead-contaminated soils. The paper concludes with a short discussion of important research needs in the field.

  1. Study of monitoring protection of radionuclides contamination in organism by autoradiography

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Kang Baoan; He Guangren

    1987-01-01

    In view of the exceptionally important role of the medical radiation protection in human health, the authors try to study on the monitoring of internal contamination of radionuclides in organism by different autoradiographic methods, such as: monitoring of the body retention of isolated or combined radionuclides by freezing microautoradiography; monitoring of blood, bone marrow and excreta radioactive samples by smear autoradiography; differentiation of two radionuclides contamination by double radionuclide autoradiography; especially, monitoring of low level of radionuclides contamination by fluorescence sensitization autoradiography. The sensitivity of autoradiographic formation was increased by the scintillator by 10 times

  2. Final Report for Project ''Role of Metal Bioavailability in In Situ Bioremediation of Metal and Organic Co-Contaminated Sites''; FINAL

    International Nuclear Information System (INIS)

    Raina M. Maier

    2002-01-01

    A large proportion of hazardous waste sites are co-contaminated with organics and various metals. Such co-contaminated sites are difficult to bioremediate due to the nature of the mixed contaminants. Specifically, the presence of a co-contaminating metal imposes increased stress on indigenous populations already impacted by organic contaminant stress. The overall objective of this research is to investigate the effect of varying metal bioavailability on microbial populations and biodegradation of organics to allow a better understanding of how optimize remediation of co-contaminated sites. The hypothesis for this project is that metal bioavailability is not directly correlated with metal stress imposed on microbial populations that are degrading organics in soil and that further understanding of the relationship between metal bioavailability and metal stress is required for successful treatment of sites contaminated with mixtures of organics and metals. The specific objectives to be addressed to accomplish this goal are: (1) To determine the influence of metal bioavailability in soil microcosms co-contaminated with organics and metals on degradation of the organic contaminants and on mechanisms of metal resistance and (2) To determine the efficacy of different bioremediation strategies for co-contaminated soils based on metal bioavailability

  3. Sequester of metals and mineralization of organic contaminants with microbial mats

    International Nuclear Information System (INIS)

    Bender, J.; Phillips, P.; Gould, J.P.

    1995-01-01

    Several recalcitrant organic contaminants are completely mineralized to simple products by microbial mats. Contaminants include chlordane, PCB, TNT, petroleum distillates, BM compounds and TCE in a mixed contaminant solution containing Zn. Degradation rates are relatively rapid under both dark and light conditions. In addition to complete degradation of organic materials, mats have been used to reduce selenate to elemental selenium, remove Pb, Cd, Cu, Zn, Co, Cr, Fe and Mn from water and sequester uranium (U 238 ) at a rate of 3.19 mg/m 2 /h. Results of three pilot projects, including field pond treatment of mine drainage and bioreactor treatment of BTEX compounds will be reported. Microbial mats are natural heterotrophic and autotrophic communities dominated by cyanobacteria (blue-green algae). They are self-organized laminated structures annealed fightly together by slimy secretions from various microbial components. The surface slime of the mats effectively immobilizes the ecosystem to a variety of substrates, thereby stabilizing the most efficient internal microbial structure. Cyanobacteria mats are generated for bioremediation applications by enriching a water surface with ensiled grass clippings together with mat inocula developed in the laboratory

  4. Improved, low cost inorganic-organic separators for rechargeable silver-zinc batteries

    Science.gov (United States)

    Sheibley, D. W.

    1979-01-01

    Several flexible, low-cost inorganic-organic separators with performance characteristics and cycle life equal to, or better than, the Lewis Research Center Astropower separator were developed. These new separators can be made on continuous-production equipment at about one-fourth the cost of the Astropower separator produced the same way. In test cells, these new separators demonstrate cycle life improvement, acceptable operating characteristics, and uniform current density. The various separator formulas, test cell construction, and data analysis are described.

  5. The Development of a Sub-Surface Monitoring System for Organic Contamination in Soils and Groundwater

    Directory of Open Access Journals (Sweden)

    Sharon L. Huntley

    2002-01-01

    Full Text Available A major problem when dealing with environmental contamination is the early detection and subsequent surveillance of the contamination. This paper describes the potential of sub-surface sensor technology for the early detection of organic contaminants in contaminated soils, sediments, and landfill sites. Rugged, low-power hydrocarbon sensors have been developed, along with a data-logging system, for the early detection of phase hydrocarbons in soil. Through laboratory-based evaluation, the ability of this system to monitor organic contamination in water-based systems is being evaluated. When used in conjunction with specific immunoassays, this can provide a sensitive and low-cost solution for long-term monitoring and analysis, applicable to a wide range of field applications.

  6. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio).

    Science.gov (United States)

    Rainieri, Sandra; Conlledo, Nadia; Larsen, Bodil K; Granby, Kit; Barranco, Alejandro

    2018-04-01

    Microplastics contamination of the aquatic environment is considered a growing problem. The ingestion of microplastics has been documented for a variety of aquatic animals. Studies have shown the potential of microplastics to affect the bioavailability and uptake route of sorbed co-contaminants of different nature in living organisms. Persistent organic pollutants and metals have been the co-contaminants majorly investigated in this field. The combined effect of microplastics and sorbed co-contaminants in aquatic organisms still needs to be properly understood. To address this, we have subjected zebrafish to four different feeds: A) untreated feed; B) feed supplemented with microplastics (LD-PE 125-250µm of diameter); C) feed supplemented with 2% microplastics to which a mixture of PCBs, BFRs, PFCs and methylmercury were sorbed; and D) feed supplemented with the mixture of contaminants only. After 3 weeks of exposure fish were dissected and liver, intestine, muscular tissue and brain were extracted. After visual observation, evaluation of differential gene expression of some selected biomarker genes in liver, intestine and brain were carried out. Additionally, quantification of perfluorinated compounds in liver, brain, muscular tissue and intestine of some selected samples were performed. The feed supplemented with microplastics with sorbed contaminants produced the most evident effects especially on the liver. The results indicate that microplastics alone does not produce relevant effects on zebrafish in the experimental conditions tested; on the contrary, the combined effect of microplastics and sorbed contaminants altered significantly their organs homeostasis in a greater manner than the contaminants alone. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish ( Danio rerio )

    DEFF Research Database (Denmark)

    Rainieri, Sandra; Conlledo, Nadia; Larsen, Bodil Katrine

    2018-01-01

    3 weeks of exposure fish were dissected and liver, intestine, muscular tissue and brain were extracted. After visual observation, evaluation of differential gene expression of some selected biomarker genes in liver, intestine and brain were carried out. Additionally, quantification of perfluorinated...... compounds in liver, brain, muscular tissue and intestine of some selected samples were performed. The feed supplemented with microplastics with sorbed contaminants produced the most evident effects especially on the liver. The results indicate that microplastics alone does not produce relevant effects......-contaminants of different nature in living organisms. Persistent organic pollutants and metals have been the co-contaminants majorly investigated in this field. The combined effect of microplastics and sorbed co-contaminants in aquatic organisms still needs to be properly understood. To address this, we have subjected...

  8. Process for iron separation from an organic solution containing uranium

    International Nuclear Information System (INIS)

    Textoris, A.; Lyaudet, G.; Bathelier, A.

    1987-01-01

    Iron is separated from an organic solution of U and Fe in a phosphine oxide and an acid organic phosphorus compound by reaction on oxalic acid or a mixture of sulfuric and phosphoric acid or phosphoric acid. Uranium stays in the initial organic solution and iron is transferred to the aqueous phase [fr

  9. Directional Charge Separation in Isolated Organic Semiconductor Crystalline Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Michael; Labastide, Joelle; Bond-Thompson, Hilary; Briseno, Alejandro; Collela, Nicolas

    2017-03-01

    In the conventional view of organic photovoltaics (OPV), localized electronic excitations (excitons) formed in the active layer are transported by random 3D diffusion to an interface where charge separation and extraction take place. Because radiative de-excitation is usually strongly allowed in organic semiconductors, efficient charge separation requires high exciton mobility, with much of the diffusive motion ‘wasted’ in directions that don’t result in an interface encounter. Our research efforts are focused on ways to enforce a preferred directionality in energy and/or charge transport using ordered crystalline nanowires in which the intermolecular interactions that facilitate transport along, for example, the pi-stacking axis, can be made several orders of magnitude stronger than those in a transverse direction. The results presented in our recent work (Nature Communications) is a first step towards realizing the goal of directional control of both energy transport and charge separation, where excitons shared between adjacent molecules dissociate exclusively along the pi-stacking direction.

  10. DETERMINATION OF MINERAL CONTAIN AND BACTERIA CONTAMINANT ON ORGANIC AND NONORGANIC FRESH VEGETABLES

    Directory of Open Access Journals (Sweden)

    Harsojo Harsojo

    2010-06-01

    Full Text Available The determination of mineral content and bacteria contaminant on fresh vegetable of long bean (Vegan ungulate Wall., white cabbage (Basic tolerance L., and lettuce (Lectuca sativa L. that cultivated by organic and nonorganic system have been done. The mineral content has been analyzed using neutron activation analysis and atomic absorption spectroscopy method, while bacteria contaminant by total plate count number using Nutrient Agar, Mac Conkey Agar, Baird Parker medium, and Salmonella using selective medium. The results showed that there are some essential mineral such as Fe, Zn, Ca, Co, and nonessential mineral Cd. There is tendency that fresh vegetable that cultivated by organic system contained Fe, Zn, Ca, Co and Cd mineral less than nonorganic. The Zn mineral content in nonorganic of fresh vegetable were higher than the limit of threshold number from Health Department, Republic of Indonesia (2004, while Cd mineral in organic or nonorganic of fresh vegetable were greater then threshold number from Codex Alimentarius Commision. The measurement of bacteria contaminant on organic and nonorganic of fresh vegetables contained aerob, coli, and Staphylococcus bacteria in organic of fresh vegetables were less compared to nonorganic of fresh vegetables.   Keywords: mineral, bacteria aerob, coli, Staphylococcus, Salmonella, organic, and nonorganic vegetable, neutron activation

  11. Laser-induced charge separation in organic nanofibers

    DEFF Research Database (Denmark)

    Tavares, Luciana; Behn, Dino; Kjelstrup-Hansen, Jakob

    Organic semiconductors have unique properties that can be tailored via synthetic chemistry for specific applications, which combined with their low price and straight-forward processing over large areas make them interesting materials for future devices. Certain oligomers can self-assemble into c......Organic semiconductors have unique properties that can be tailored via synthetic chemistry for specific applications, which combined with their low price and straight-forward processing over large areas make them interesting materials for future devices. Certain oligomers can self......-assemble into crystalline nanofibers by vapor deposition onto muscovite mica substrates, and we have recently shown that such nanofibers can be transferred to different substrates by roll-printing and used as the active material in e.g. organic field-effect transistors (OFETs), organic light-emitting transistors (OLETs......), and organic phototransistors (OPTs). However, several device-related issues incl. charge-separation and local band structure remain poorly understood. In this work, we use electrostatic force microscopy (EFM) combined with optical microscopy to study the local surface charge of an individual organic nanofiber...

  12. Organization A Comprehensive System Of Insurance Coverage In The Potential Chemical And Biological Contamination Zone In Regions

    Directory of Open Access Journals (Sweden)

    Nina Vladimirovna Zaytseva

    2014-12-01

    Full Text Available The article provides a scientific rationale for an integrated approach to the provision of insurance coverage in the potential chemical and biological contamination zone. The following modern forms of chemical safety in the Russian Federation were considered: state reserve’s system, target program financing, state social insurance. The separate issue tackles the obligatory civil liability insurance for owners of dangerous objects. For improvement of the existing insurance protection system against emergency situations, risks were analyzed (shared on exogenous and endogenous. Among the exogenous risks including natural and climatic conditions of a region, its geographical arrangement, economic specialization, the seismic and terrorist risks were chosen and approaches to its solution were suggested. In endogenous risks’ group, the special focus is on wear and tear and obsolescence of hazardous chemical and biological object’s fixed assets. In case of high risk of an incident, it is suggested to increase in extent of insurance protection through self-insurance, a mutual insurance in the form of the organization of societies of a mutual insurance or the self-regulating organizations, and also development of voluntary insurance of a civil liability, both the owner of hazardous object, and regions of the Russian Federation and municipalities. The model of insurance coverage in the potential chemical and biological contamination zone is based on a differentiated approach to the danger level of the area. A matrix of adequate forms and types of insurance (required for insurance coverage of the population in the potential chemical and biological contamination zone was constructed. Proposed health risk management toolkit in the potential chemical and biological contamination zone will allow to use financial resources for chemical and biological safety in the regions more efficiently.

  13. Trace organic removal by photochemical oxidation

    International Nuclear Information System (INIS)

    Gupta, S.K. Sen; Peori, R.G.; Wickware, S.L.

    1995-02-01

    Photochemical oxidation methods can be used for the destruction of dissolved organic contaminants in most process effluent streams, including those originating from the nuclear power sector. Evaporators can be used to separate organic contaminants from the aqueous phase if they are non volatile, but a large volume of secondary waste (concentrate) is produced, and the technology is capital-intensive. This paper describes two different types of photochemical oxidation technologies used to destroy trace organics in wastewater containing oil and grease. (author). 9 refs., 4 figs

  14. Mass separation and risk assessment of commingled contamination in soil and ground water

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Q.L.; Chau, T.S. [Alberta Environment, Red Deer, AB (Canada)

    2008-07-01

    Gasoline service stations in urban areas may be sources of groundwater pollution if petroleum hydrocarbons (PHCs) were to leak from underground storage tanks. Depending on the site-specific hydrogeologic conditions, the PHC could be retained in the soil, float on top of the groundwater table, dissolve in the groundwater or partition into soil vapour. This study focused on risk assessment and and management of soil and groundwater pollution caused by PHC releases from multiple sources which lead to commingling of subsurface plumes that require identification, assessment and control. Risk management decisions are made according to the different protection zones corresponding to different exposure pathways into which the commingled groundwater plume is divided, such as inhalation, ingestion and freshwater aquatic life. In order to effectively evaluate and manage commingled plumes, responsible parties must cooperate in sharing information on contaminated sites and developing joint programs for investigation, monitoring, remediation and risk management. This study proposed methodologies for determining mass contribution to a commingled plume from multiple contaminant sources. It was concluded that the levels of risk to human and environmental health can be determined by considering contaminant sources, migration pathways and potential receptors. Migration of PHCs in the subsurface is influenced by several uncertainties such as pollutant release and remediation histories, preferential pathways and hydrogeologic boundary conditions. Proper site characterization is necessary for reliable mass separation and to delineate contaminant plumes. Mathematical models can be used to simulate subsurface flow and transport processes. 5 refs., 4 figs.

  15. Evaluation of trace organic contaminants in ultra-pure water production processes by measuring total organic halogen formation potential

    International Nuclear Information System (INIS)

    Urano, Kohei; Iwase, Yoko

    1984-01-01

    A new procedure for the determination of organic substances in water with high accuracy and high sensitivity was proposed, in which a hypochlorite is added to water, and the resultant total amount of organic halogen compounds (TOX formation potential) was measured, and it was applied to the evaluation of trace organic contaminants in ultra-pure water production process. In this investigation, the TOX formation potential of the raw water which was to be used for the ultra-pure water production process, intermediately treated water and ultra-pure water was measured to clarify the behavior of organic substances in the ultra-pure water production process and to demonstrate the usefulness of this procedure to evaluate trace organic contaminants in water. The measurement of TOX formation potential requires no specific technical skill, and only a short time, and gives accurate results, therefore, it is expected that the water quality control in the ultra-pure water production process can be performed more exactly by applying this procedure. (Yoshitake, I.)

  16. Surfactant screening of diesel-contaminated soil

    International Nuclear Information System (INIS)

    Peters, R.W.; Shem, L.; Montemagno, C.D.; Lewis, B.

    1991-01-01

    At one installation, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of the research program in which 21 surfactants were screened for possible use to mobilize the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on actual contaminated soil samples obtained from the site

  17. The speciation, stability, solubility and biodegradation of organic co-contaminant radionuclide complexes: A review

    International Nuclear Information System (INIS)

    Keith-Roach, Miranda J.

    2008-01-01

    The potential migration of radionuclides is of concern at contaminated land sites and, in the long term, waste repositories. Pathways of migration need to be characterised on a predictive level so that management decisions can be made with confidence. A pathway that is relatively poorly understood at present is radionuclide solubilisation due to complexation by organic complexing agents that are present in mixed radioactive wastes, and at radioactively contaminated land sites. Interactions of the complexing agents with radionuclides and the host environment, and the response to changes in the physicochemical conditions make their role far from simple to elucidate. In addition, chemical and biodegradation of the organic materials may be important. In this paper, key co-contaminant organics are reviewed with emphasis on their environmental fate and impact on radionuclide migration

  18. The speciation, stability, solubility and biodegradation of organic co-contaminant radionuclide complexes: A review

    Energy Technology Data Exchange (ETDEWEB)

    Keith-Roach, Miranda J. [Biogeochemistry and Environmental Analytical Chemistry Group/Consolidated Radio-isotope Facility, School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: mkeith-roach@plymouth.ac.uk

    2008-06-15

    The potential migration of radionuclides is of concern at contaminated land sites and, in the long term, waste repositories. Pathways of migration need to be characterised on a predictive level so that management decisions can be made with confidence. A pathway that is relatively poorly understood at present is radionuclide solubilisation due to complexation by organic complexing agents that are present in mixed radioactive wastes, and at radioactively contaminated land sites. Interactions of the complexing agents with radionuclides and the host environment, and the response to changes in the physicochemical conditions make their role far from simple to elucidate. In addition, chemical and biodegradation of the organic materials may be important. In this paper, key co-contaminant organics are reviewed with emphasis on their environmental fate and impact on radionuclide migration.

  19. Influences of binding to dissolved organic matter on hydrophobic organic compounds in a multi-contaminant system: Coefficients, mechanisms and ecological risks

    International Nuclear Information System (INIS)

    Li, Yi-Long; He, Wei; Liu, Wen-Xiu; Kong, Xiang-Zhen; Yang, Bin; Yang, Chen; Xu, Fu-Liu

    2015-01-01

    The complexation flocculation (CF) method was successfully employed to identify binding coefficients (K_d_o_c) of specific organic contaminants to dissolved organic matter (DOM, often indicated by dissolved organic carbon, DOC) in a multi-contaminant hydrophobic organic contaminant (HOC) system. K_d_o_c values were obtained for most of the evaluated 33 HOCs, indicating the feasibility and applicability of the CF method in a multi-contaminant system. Significant positive correlations were observed between binding coefficients and octanol–water partition coefficients (K_o_w) for organic halogen compounds, such as polybrominated diphenyl ethers (PBDEs) (R"2 = 0.95, p < 0.05) and organic chlorine pesticides (OCPs) (methoxychlor excluded, R"2 = 0.82, p < 0.05). The positive correlations identified between the lgK_d_o_c and lgBCF (bioconcentration factor) for PBDEs and OCPs, as well as the negative correlation observed for polycyclic aromatic hydrocarbons (PAHs), indicated that different binding or partition mechanisms between PAHs and organic halogen compounds exist. These differences further result in discriminative competition partitions of HOCs between DOM and organisms. Assuming that only freely dissolved HOCs are bioconcentrative, the results of DOM-influenced bioconcentration factor (BCF_D_O_M) and DOM-influenced lowest observed effect level (LOEL_D_O_M) indicate that the ecological risk of HOCs is decreased by DOM. - Highlights: • Complexing-flocculation is viable in measuring K_d_o_c in a multi-polluted system. • The binding mechanisms between PAHs and organic halogens were different. • DOM should be considered when assessing ecological risk of HOCs in natural ecosystem. - Assuming only freely dissolved HOCs are effective, bioconcentration factors and ecological risks of HOCs are decreased by dissolved organic matter via binding.

  20. Paired organs--Should they be treated jointly or separately in internal dosimetry?

    Energy Technology Data Exchange (ETDEWEB)

    Parach, Ali-Asghar; Rajabi, Hossein; Askari, Mohammad-Ali [Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran-Iran (Iran, Islamic Republic of)

    2011-10-15

    Purpose: Size, shape, and the position of paired organs are different in abdomen. However, the counterpart organs are conventionally treated jointly together in internal dosimetry. This study was performed to quantify the difference of specific absorbed fraction of organs in considering paired organs jointly like single organs or as two separate organs. Methods: Zubal phantom and GATE Monte Carlo package were used to calculate the SAF for the self-absorption and cross-irradiation of the lungs, kidneys, adrenal glands (paired organs), liver, spleen, stomach, and pancreas (single organs). The activity was assumed uniformly distributed in the organs, and simulation was performed for monoenergetic photons of 10, 50, 100, 500, 1000 keV and mono-energetic electrons of 350, 500, 690, 935, 1200 keV. Results: The results demonstrated that self-absorption of left and right counterpart organs may be different depending upon the differences in their masses. The cross-irradiations between left-to-right and right-to-left counterpart organs are always equal irrespective of difference in their masses. Cross-irradiation from the left and right counterpart organs to other organs are different (4-24 times in Zubal phantom) depending on the photon energy and organs. The irradiation from a single source organ to the left and right counterpart paired organs is always different irrespective of activity concentration. Conclusions: Left and right counterpart organs always receive different absorbed doses from target organs and deliver different absorbed doses to target organs. Therefore, in application of radiopharmaceuticals in which the dose to the organs plays a role, counterpart organs should be treated separately as two separate organs.

  1. Paired organs--Should they be treated jointly or separately in internal dosimetry?

    International Nuclear Information System (INIS)

    Parach, Ali-Asghar; Rajabi, Hossein; Askari, Mohammad-Ali

    2011-01-01

    Purpose: Size, shape, and the position of paired organs are different in abdomen. However, the counterpart organs are conventionally treated jointly together in internal dosimetry. This study was performed to quantify the difference of specific absorbed fraction of organs in considering paired organs jointly like single organs or as two separate organs. Methods: Zubal phantom and GATE Monte Carlo package were used to calculate the SAF for the self-absorption and cross-irradiation of the lungs, kidneys, adrenal glands (paired organs), liver, spleen, stomach, and pancreas (single organs). The activity was assumed uniformly distributed in the organs, and simulation was performed for monoenergetic photons of 10, 50, 100, 500, 1000 keV and mono-energetic electrons of 350, 500, 690, 935, 1200 keV. Results: The results demonstrated that self-absorption of left and right counterpart organs may be different depending upon the differences in their masses. The cross-irradiations between left-to-right and right-to-left counterpart organs are always equal irrespective of difference in their masses. Cross-irradiation from the left and right counterpart organs to other organs are different (4-24 times in Zubal phantom) depending on the photon energy and organs. The irradiation from a single source organ to the left and right counterpart paired organs is always different irrespective of activity concentration. Conclusions: Left and right counterpart organs always receive different absorbed doses from target organs and deliver different absorbed doses to target organs. Therefore, in application of radiopharmaceuticals in which the dose to the organs plays a role, counterpart organs should be treated separately as two separate organs.

  2. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system

    DEFF Research Database (Denmark)

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M.

    2016-01-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse...... experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA......), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met.Obtained degradation kinetics are in the order, BPA

  3. Profiling micro-organic contaminants in groundwater using multi-level piezometers

    OpenAIRE

    White, Debbie; Lapworth, Dan; Stuart, Marianne; Williams, Peter

    2015-01-01

    The presence of micro-organic pollutants, including ‘emerging contaminants’ within groundwater is of increasing interest. Robust protocols are required to minimise the introduction of contamination during the sampling process. Below we discuss the sampling protocols used to reduce inputs of plasticisers during the sampling process, as well as the techniques used to characterise the distribution of micro-organic pollutants in the subsurface. In this study multi-level piezometers...

  4. Transport of organic contaminants in subsoil horizons and effects of dissolved organic matter related to organic waste recycling practices.

    Science.gov (United States)

    Chabauty, Florian; Pot, Valérie; Bourdat-Deschamps, Marjolaine; Bernet, Nathalie; Labat, Christophe; Benoit, Pierre

    2016-04-01

    Compost amendment on agricultural soil is a current practice to compensate the loss of organic matter. As a consequence, dissolved organic carbon concentration in soil leachates can be increased and potentially modify the transport of other solutes. This study aims to characterize the processes controlling the mobility of dissolved organic matter (DOM) in deep soil layers and their potential impacts on the leaching of organic contaminants (pesticides and pharmaceutical compounds) potentially present in cultivated soils receiving organic waste composts. We sampled undisturbed soil cores in the illuviated horizon (60-90 cm depth) of an Albeluvisol. Percolation experiments were made in presence and absence of DOM with two different pesticides, isoproturon and epoxiconazole, and two pharmaceutical compounds, ibuprofen and sulfamethoxazole. Two types of DOM were extracted from two different soil surface horizons: one sampled in a plot receiving a co-compost of green wastes and sewage sludge applied once every 2 years since 1998 and one sampled in an unamended plot. Results show that DOM behaved as a highly reactive solute, which was continuously generated within the soil columns during flow and increased after flow interruption. DOM significantly increased the mobility of bromide and all pollutants, but the effects differed according the hydrophobic and the ionic character of the molecules. However, no clear effects of the origin of DOM on the mobility of the different contaminants were observed.

  5. Effects of predicted climatic changes on distribution of organic contaminants in brackish water mesocosms

    Energy Technology Data Exchange (ETDEWEB)

    Ripszam, M., E-mail: matyas.ripszam@chem.umu.se [Department of Chemistry, Umea University, 901 87 Umeå (Sweden); Gallampois, C.M.J. [Department of Chemistry, Umea University, 901 87 Umeå (Sweden); Berglund, Å. [Department of Ecology and Environmental Sciences, Umeå University, 901 87 Umeå (Sweden); Larsson, H. [Umeå Marine Sciences Centre, Umeå University, Norrbyn, 905 71 Hörnefors (Sweden); Andersson, A. [Department of Ecology and Environmental Sciences, Umeå University, 901 87 Umeå (Sweden); Tysklind, M.; Haglund, P. [Department of Chemistry, Umea University, 901 87 Umeå (Sweden)

    2015-06-01

    Predicted consequences of future climate change in the northern Baltic Sea include increases in sea surface temperatures and terrestrial dissolved organic carbon (DOC) runoff. These changes are expected to alter environmental distribution of anthropogenic organic contaminants (OCs). To assess likely shifts in their distributions, outdoor mesocosms were employed to mimic pelagic ecosystems at two temperatures and two DOC concentrations, current: 15 °C and 4 mg DOC L{sup −1} and, within ranges of predicted increases, 18 °C and 6 mg DOC L{sup −1}, respectively. Selected organic contaminants were added to the mesocosms to monitor changes in their distribution induced by the treatments. OC partitioning to particulate matter and sedimentation were enhanced at the higher DOC concentration, at both temperatures, while higher losses and lower partitioning of OCs to DOC were observed at the higher temperature. No combined effects of higher temperature and DOC on partitioning were observed, possibly because of the balancing nature of these processes. Therefore, changes in OCs' fates may largely depend on whether they are most sensitive to temperature or DOC concentration rises. Bromoanilines, phenanthrene, biphenyl and naphthalene were sensitive to the rise in DOC concentration, whereas organophosphates, chlorobenzenes (PCBz) and polychlorinated biphenyls (PCBs) were more sensitive to temperature. Mitotane and diflufenican were sensitive to both temperature and DOC concentration rises individually, but not in combination. - Highlights: • More contaminants remained in the ecosystem at higher organic carbon levels. • More contaminants were lost in the higher temperature treatments. • The combined effects are competitive with respect to contaminant cycling. • The individual properties of each contaminant determine their respective fate.

  6. Effects of predicted climatic changes on distribution of organic contaminants in brackish water mesocosms

    International Nuclear Information System (INIS)

    Ripszam, M.; Gallampois, C.M.J.; Berglund, Å.; Larsson, H.; Andersson, A.; Tysklind, M.; Haglund, P.

    2015-01-01

    Predicted consequences of future climate change in the northern Baltic Sea include increases in sea surface temperatures and terrestrial dissolved organic carbon (DOC) runoff. These changes are expected to alter environmental distribution of anthropogenic organic contaminants (OCs). To assess likely shifts in their distributions, outdoor mesocosms were employed to mimic pelagic ecosystems at two temperatures and two DOC concentrations, current: 15 °C and 4 mg DOC L −1 and, within ranges of predicted increases, 18 °C and 6 mg DOC L −1 , respectively. Selected organic contaminants were added to the mesocosms to monitor changes in their distribution induced by the treatments. OC partitioning to particulate matter and sedimentation were enhanced at the higher DOC concentration, at both temperatures, while higher losses and lower partitioning of OCs to DOC were observed at the higher temperature. No combined effects of higher temperature and DOC on partitioning were observed, possibly because of the balancing nature of these processes. Therefore, changes in OCs' fates may largely depend on whether they are most sensitive to temperature or DOC concentration rises. Bromoanilines, phenanthrene, biphenyl and naphthalene were sensitive to the rise in DOC concentration, whereas organophosphates, chlorobenzenes (PCBz) and polychlorinated biphenyls (PCBs) were more sensitive to temperature. Mitotane and diflufenican were sensitive to both temperature and DOC concentration rises individually, but not in combination. - Highlights: • More contaminants remained in the ecosystem at higher organic carbon levels. • More contaminants were lost in the higher temperature treatments. • The combined effects are competitive with respect to contaminant cycling. • The individual properties of each contaminant determine their respective fate

  7. Protection against radioactive contamination of foods and agricultural products

    International Nuclear Information System (INIS)

    Szabo, A.; Kovacs, Z.

    1977-01-01

    Methods suitable for diminishing radioactive contamination of foods and agricultural products and reducing at the same time the irradiation hazards for the human organism are dealt with. The possibilities for the decontamination of foods vegetal and of animal origin are discussed separately. (author)

  8. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship

    KAUST Repository

    Adil, Karim; Belmabkhout, Youssef; Pillai, Renjith S.; Cadiau, Amandine; Bhatt, Prashant; Assen, Ayalew Hussen Assen; Maurin, Guillaume; Eddaoudi, Mohamed

    2017-01-01

    The separation of related molecules with similar physical/chemical properties is of prime industrial importance and practically entails a substantial energy penalty, typically necessitating the operation of energy-demanding low temperature fractional distillation techniques. Certainly research efforts, in academia and industry alike, are ongoing with the main aim to develop advanced functional porous materials to be adopted as adsorbents for the effective and energy-efficient separation of various important commodities. Of special interest is the subclass of metal-organic frameworks (MOFs) with pore aperture sizes below 5-7 Å, namely ultra-microporous MOFs, which in contrast to conventional zeolites and activated carbons show great prospects for addressing key challenges in separations pertaining to energy and environmental sustainability, specifically materials for carbon capture and separation of olefin/paraffin, acetylene/ethylene, linear/branched alkanes, xenon/krypton, etc. In this tutorial review we discuss the latest developments in ultra-microporous MOF adsorbents and their use as separating agents via thermodynamics and/or kinetics and molecular sieving. Appreciably, we provide insights into the distinct microscopic mechanisms governing the resultant separation performances, and suggest a plausible correlation between the inherent structural features/topology of MOFs and the associated gas/vapour separation performance.

  9. Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship

    KAUST Repository

    Adil, Karim

    2017-05-30

    The separation of related molecules with similar physical/chemical properties is of prime industrial importance and practically entails a substantial energy penalty, typically necessitating the operation of energy-demanding low temperature fractional distillation techniques. Certainly research efforts, in academia and industry alike, are ongoing with the main aim to develop advanced functional porous materials to be adopted as adsorbents for the effective and energy-efficient separation of various important commodities. Of special interest is the subclass of metal-organic frameworks (MOFs) with pore aperture sizes below 5-7 Å, namely ultra-microporous MOFs, which in contrast to conventional zeolites and activated carbons show great prospects for addressing key challenges in separations pertaining to energy and environmental sustainability, specifically materials for carbon capture and separation of olefin/paraffin, acetylene/ethylene, linear/branched alkanes, xenon/krypton, etc. In this tutorial review we discuss the latest developments in ultra-microporous MOF adsorbents and their use as separating agents via thermodynamics and/or kinetics and molecular sieving. Appreciably, we provide insights into the distinct microscopic mechanisms governing the resultant separation performances, and suggest a plausible correlation between the inherent structural features/topology of MOFs and the associated gas/vapour separation performance.

  10. Monitoring of organic contaminants in sediments using low field proton nuclear magnetic resonance

    Science.gov (United States)

    Zhang, Chi; Rupert, Yuri

    2016-04-01

    The effective monitoring of soils and groundwater contaminated with organic compounds is an important goal of many environmental restoration efforts. Recent geophysical methods such as electrical resistivity, complex conductivity, and ground penetrating radar have been successfully applied to characterize organic contaminants in the subsurface and to monitor remediation process both in laboratory and in field. Low field proton nuclear magnetic resonance (NMR) is a geophysical tool sensitive to the molecular-scale physical and chemical environment of hydrogen-bearing fluids in geological materials and shows promise as a novel method for monitoring contaminant remediation. This laboratory research focuses on measurements on synthetic samples to determine the sensitivity of NMR to the presence of organic contaminants and improve understanding of relationships between NMR observables, hydrological properties of the sediments, and amount and state of contaminants in porous media. Toluene, a light non-aqueous phase liquid (LNAPL) has been selected as a representative organic contaminant. Three types of porous media (pure silica sands, montmorillonite clay, and various sand-clay mixtures with different sand/clay ratios) were prepared as synthetic sediments. NMR relaxation time (T2) and diffusion-relaxation (D - T2) correlation measurements were performed in each sediment saturated with water and toluene mixed fluid at assorted concentrations (0% toluene and 100% water, 1% toluene and 99% water, 5% toluene and 95% water, 25% toluene and 75% water, and 100% toluene and 0% water) to 1) understand the effect of different porous media on the NMR responses in each fluid mixture, 2) investigate the role of clay content on T2 relaxation of each fluid, 3) quantify the amount hydrocarbons in the presence of water in each sediment, and 4) resolve hydrocarbons from water in D - T2 map. Relationships between the compositions of porous media, hydrocarbon concentration, and hydraulic

  11. Metal–organic framework membranes: from synthesis to separation application

    KAUST Repository

    Qiu, Shilun

    2014-06-26

    Metal-organic framework (MOF) materials, which are constructed from metal ions or metal ion clusters and bridging organic linkers, exhibit regular crystalline lattices with relatively well-defined pore structures and interesting properties. As a new class of porous solid materials, MOFs are attractive for a variety of industrial applications including separation membranes-a rapidly developing research area. Many reports have discussed the synthesis and applications of MOFs and MOF thin films, but relatively few have addressed MOF membranes. This critical review provides an overview of the diverse MOF membranes that have been prepared, beginning with a brief introduction to the current techniques for the fabrication of MOF membranes. Gas and liquid separation applications with different MOF membranes are also included (175 references). This journal is © the Partner Organisations 2014.

  12. Evidence of Maternal Offloading of Organic Contaminants in White Sharks (Carcharodon carcharias)

    Science.gov (United States)

    Mull, Christopher G.; Lyons, Kady; Blasius, Mary E.; Winkler, Chuck; O’Sullivan, John B.; Lowe, Christopher G.

    2013-01-01

    Organic contaminants were measured in young of the year (YOY) white sharks (Carcharodon carcharias) incidentally caught in southern California between 2005 and 2012 (n = 20) and were found to be unexpectedly high considering the young age and dietary preferences of young white sharks, suggesting these levels may be due to exposure in utero. To assess the potential contributions of dietary exposure to the observed levels, a five-parameter bioaccumulation model was used to estimate the total loads a newborn shark would potentially accumulate in one year from consuming contaminated prey from southern California. Maximum simulated dietary accumulation of DDTs and PCBs were 25.1 and 4.73 µg/g wet weight (ww) liver, respectively. Observed ΣDDT and ΣPCB concentrations (95±91 µg/g and 16±10 µg/g ww, respectively) in a majority of YOY sharks were substantially higher than the model predictions suggesting an additional source of contaminant exposure beyond foraging. Maternal offloading of organic contaminants during reproduction has been noted in other apex predators, but this is the first evidence of transfer in a matrotrophic shark. While there are signs of white shark population recovery in the eastern Pacific, the long-term physiological and population level consequences of biomagnification and maternal offloading of environmental contaminants in white sharks is unclear. PMID:23646154

  13. Reconditioning contaminated gravel

    International Nuclear Information System (INIS)

    Walsh, H.; Bowers, J.S.; Cadwell, K.

    1995-02-01

    Lawrence Livermore National Laboratory (LLNL) has developed a portable screening system that will recondition radioactively contaminated gravel in the field. The separation technique employed by this system removes dirt, contaminated debris, and other fine particles from gravel. At LLNL, gravel is used in conjunction with the experimental testing of explosives to reduce shock wave propagation. The gravel surrounds the experimental device and buffers the energy generated from the explosion. During an explosion, some of the gravel is broken down into small particles and mixed with contaminants. Contaminants in the used gravel originate from metal sheathing and other parts comprising, the experimental device. These contaminants may consist of radionuclides and metals that are considered hazardous by the State of California when disposed. This paper describes the process that conveys contaminated material into the screener system, sprays the material with recycled water or other mild cleaning chemicals, and separates particles based on size. Particles greater than a specified size are discharged out of the screener separator and recycled back into use, thereby reducing the amount of mixed waste generated and minimizing the need for new gravel. The fines or silt are flushed out of the separator with the water and are removed from the water and consolidated into a drum with the use of a hydrocyclone separator and drum decant system. Because the water in the spray system is recycled, minimal makeup water is needed. The system monitors pH and total dissolved solids

  14. Removal of Separable Organic From Tank 241-C-103 Scoping Study

    Energy Technology Data Exchange (ETDEWEB)

    KOCH, M.R.

    2000-05-16

    This study is based on previous evaluations/proposals for removing the floating organic layer in C-103. A practical method is described with assumptions, cost and schedule estimates, and risks. Proposed operational steps include bulk organic removal, phase separation, organic washing and offsite disposal, followed by an in-situ polishing process.

  15. Removal of Separable Organic From Tank 241-C-103 Scoping Study

    International Nuclear Information System (INIS)

    KOCH, M.R.

    2000-01-01

    This study is based on previous evaluations/proposals for removing the floating organic layer in C-103. A practical method is described with assumptions, cost and schedule estimates, and risks. Proposed operational steps include bulk organic removal, phase separation, organic washing and offsite disposal, followed by an in-situ polishing process

  16. Measurement of contamination by radioisotopes for medical examination and treatment in medical organizations

    International Nuclear Information System (INIS)

    Hamada, Masahiko

    1975-01-01

    For safety control of radioactive contamination by medical examination and treatment in medical organizations, establishment of a Health and Physics Department is desired. It is necessary to dispose of radiopharmaceuticals according to the classification of safety and to separate the use of non-sealed nuclides from the radiotherapy room. In relation to radioactive air pollution, attention should be paid to the sampling test of hood, management of 133 Xe using room, and air pollution in the disposal storage room and patient urine storage room. Concerning the disposal of liquid waste, it is most important to devise entirely different method of disposal according to the level differences in the amount of diagnostic use and the therapeutic dose. The method of use is most important also for the decision of the size of storage tank. For sampling and monitoring it is advisable to use up to the 10th rank nuclide for safety counting in consideration of physicochemical conditions. (Chiba, N.)

  17. Treatment of heterogeneous mixed wastes: Enzyme degradation of cellulosic materials contaminated with hazardous organics and toxic and radioactive metals

    International Nuclear Information System (INIS)

    Vanderberg, L.A.; Foreman, T.M.; Attrep, M. Jr.; Brainard, J.R.; Sauer, N.

    1999-01-01

    The redirection and downsizing of the US Department of Energy's nuclear weapons complex requires that many facilities be decontaminated and decommissioned (D and D). At Los Alamos National Laboratory, much of the low-level radioactive, mixed, and hazardous/chemical waste volume handled by waste management operations was produced by D and D and environmental restoration activities. A combination of technologies--air stripping and biodegradation of volatile organics, enzymatic digestion of cellulosics, and metal ion extraction--was effective in treating a radiologically contaminated heterogeneous paint-stripping waste. Treatment of VOCs using a modified bioreactor avoided radioactive contamination of byproduct biomass and inhibition of biodegradation by toxic metal ions in the waste. Cellulase digestion of bulk cellulose minimized the final solid waste volume by 80%. Moreover, the residue passed TCLP for RCRA metals. Hazardous metals and radioactivity in byproduct sugar solutions were removed using polymer filtration, which employs a combination of water-soluble chelating polymers and ultrafiltration to separate and concentrate metal contaminants. Polymer filtration was used to concentrate RCRA metals and radioactivity into <5% of the original wastewater volume. Permeate solutions had no detectable radioactivity and were below RCRA-allowable discharge limits for Pb and Cr

  18. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.

    Science.gov (United States)

    Park, Jin Hee; Lamb, Dane; Paneerselvam, Periyasamy; Choppala, Girish; Bolan, Nanthi; Chung, Jae-Woo

    2011-01-30

    As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, mainly through plant uptake and animal transfer. With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest in developing technologies to remediate contaminated sites. Bioremediation is a natural process which relies on soil microorganisms and higher plants to alter metal(loid) bioavailability and can be enhanced by addition of organic amendments to soils. Large quantities of organic amendments, such as manure compost, biosolid and municipal solid wastes are used as a source of nutrients and also as a conditioner to improve the physical properties and fertility of soils. These organic amendments that are low in metal(loid)s can be used as a sink for reducing the bioavailability of metal(loid)s in contaminated soils and sediments through their effect on the adsorption, complexation, reduction and volatilization of metal(loid)s. This review examines the mechanisms for the enhanced bioremediation of metal(loid)s by organic amendments and discusses the practical implications in relation to sequestration and bioavailability of metal(loid)s in soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. The effect of organic contaminants on the spectral induced polarization response of porous media - mechanistic approach

    Science.gov (United States)

    Schwartz, N.; Huisman, J. A.; Furman, A.

    2012-12-01

    In recent years, there is a growing interest in using geophysical methods in general and spectral induced polarization (SIP) in particular as a tool to detect and monitor organic contaminants within the subsurface. The general idea of the SIP method is to inject alternating current through a soil volume and to measure the resultant potential in order to obtain the relevant soil electrical properties (e.g. complex impedance, complex conductivity/resistivity). Currently, a complete mechanistic understanding of the effect of organic contaminants on the SIP response of soil is still absent. In this work, we combine laboratory experiments with modeling to reveal the main processes affecting the SIP signature of soil contaminated with organic pollutant. In a first set of experiments, we investigate the effect of non-aqueous phase liquids (NAPL) on the complex conductivity of unsaturated porous media. Our results show that addition of NAPL to the porous media increases the real component of the soil electrical conductivity and decreases the polarization of the soil (imaginary component of the complex conductivity). Furthermore, addition of NAPL to the soil resulted in an increase of the electrical conductivity of the soil solution. Based on these results, we suggest that adsorption of NAPL to the soil surface, and exchange process between polar organic compounds in the NAPL and inorganic ions in the soil are the main processes affecting the SIP signature of the contaminated soil. To further support our hypothesis, the temporal change of the SIP signature of a soil as function of a single organic cation concentration was measured. In addition to the measurements of the soil electrical properties, we also measured the effect of the organic cation on the chemical composition of both the bulk and the surface of the soil. The results of those experiments again showed that the electrical conductivity of the soil increased with increasing contaminant concentration. In addition

  20. Chromatographic separation and detection of contaminants from whole milk powder using a chitosan-modified silver nanoparticles surface-enhanced Raman scattering device.

    Science.gov (United States)

    Li, Dan; Lv, Di Y; Zhu, Qing X; Li, Hao; Chen, Hui; Wu, Mian M; Chai, Yi F; Lu, Feng

    2017-06-01

    Methods for the on-site analysis of food contaminants are in high demand. Although portable Raman spectroscopy is commonly used to test food on-site, it can be challenge to achieve this goal with rapid detection and inexpensive substrate. In this study, we detected trace food contaminants in samples of whole milk powder using the methods that combined chromatography with surface-enhanced Raman scattering detection (SERS). We developed a simple and efficient technique to fabricate the paper with chitosan-modified silver nanoparticles as a SERS-active substrate. The soaking time of paper and the concentration of chitosan solution were optimized for chromatographic separation and SERS detection. We then studied the separation properties for real applications including complex sample matrices, and detected melamine at 1mg/L, dicyandiamide at 100mg/L and sodium sulfocyanate at 10mg/L in whole milk powder. As such, our methods have great potential for field-based detection of milk contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Persistence and internalization of Salmonella on/in organic spinach sprout: exploring the contamination route

    Science.gov (United States)

    Purpose: The effects of contamination route, including seed and water, on the persistence and internalization of Salmonella in organic spinach cultivars- Lazio, Space, Emilia and Waitiki were studied. Methods: Seeds (1g) were contaminated with S. Newport using 10 ml of S. Newport-water suspension ov...

  2. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  3. Metabolic responses of Eisenia fetida after sub-lethal exposure to organic contaminants with different toxic modes of action

    Energy Technology Data Exchange (ETDEWEB)

    McKelvie, Jennifer R.; Wolfe, David M.; Celejewski, Magda A. [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, ON M1C 1A4 (Canada); Alaee, Mehran [Environment Canada, 867 Lakeshore Rd., P.O. Box 5050, Burlington, ON L7R 4A6 (Canada); Simpson, Andre J. [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, ON M1C 1A4 (Canada); Simpson, Myrna J., E-mail: myrna.simpson@utoronto.ca [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, ON M1C 1A4 (Canada)

    2011-12-15

    Nuclear magnetic resonance (NMR) - based metabolomics has the potential to identify toxic responses of contaminants within a mixture in contaminated soil. This study evaluated the metabolic response of Eisenia fetida after exposure to an array of organic compounds to determine whether contaminant-specific responses could be identified. The compounds investigated in contact tests included: two pesticides (carbaryl and chlorpyrifos), three pharmaceuticals (carbamazephine, estrone and caffeine), two persistent organohalogens (Aroclor 1254 and PBDE 209) and two industrial compounds (nonylphenol and dimethyl phthalate). Control and contaminant-exposed metabolic profiles were distinguished using principal component analysis and potential contaminant-specific biomarkers of exposure were found for several contaminants. These results suggest that NMR-based metabolomics offers considerable promise for differentiating between the different toxic modes of action (MOA) associated with sub-lethal toxicity to earthworms. - Highlights: > NMR-based earthworm metabolomic analysis of the toxic mode of action of various environmental contaminants. > Organic chemicals with different toxic modes of action resulted in varied metabolomic responses for E. fetida. > NMR-based metabolomics differentiates between the different modes of action associated with sub-lethal toxicity. - {sup 1}H NMR metabolomics was used to identify potential biomarkers of organic contaminant exposure in Eisenia fetida earthworms.

  4. Penguin colonies as secondary sources of contamination with persistent organic pollutants

    NARCIS (Netherlands)

    Roosens, L.; Brink, van den N.W.; Riddle, M.; Blust, R.; Neels, H.; Covaci, A.

    2007-01-01

    Although long-range atmospheric transport has been described as the predominant mechanism for exposing polar regions to persistent organic pollutants (POPs), recent studies have suggested that bird activity can also contribute substantially to contaminant levels in some environments. However,

  5. Microbe and Mineral Mediated Transformation of Heavy Metals, Radionuclides, and Organic Contaminants

    Science.gov (United States)

    Gerlach, R.

    2011-12-01

    Microorganisms influence their surroundings in many ways and humans have utilized microbially catalyzed reactions for benefit for centuries. Over the past few decades, microorganisms have been used for the control of contaminant transport in subsurface environments where many microbe mineral interactions occur. This presentation will discuss microbially influenced mineral formation and transformation as well as their influence on the fate of organic contaminants such as chlorinated aliphatics & 2,4,6-trinitrotoluene (TNT), heavy metals such as chromium, and radionuclides such as uranium & strontium. Both, batch and flow experiments have been performed, which monitor the net effect of microbe mineral interactions on the fate of these contaminants. This invited presentation will place an emphasis on the relative importance of direct microbial (i.e. biotic) transformations, mineral-mediated transformations as well as other abiotic reactions influencing the fate of environmental contaminants. Experiments will be summarized and placed in context of past and future engineered applications for the control of subsurface contaminants.

  6. Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor; Maeng, Sungkyu; Fujioka, Takahiro; Kennedy, Maria Dolores; Amy, Gary L.

    2010-01-01

    . The use of RO in existing water reuse facilities is addressed and questioned, taking into consideration that tight NF can be a more cost-effective and efficient technology to target the problem of organic contaminants. It was concluded that tight NF

  7. Passive sampling methods for contaminated sediments: State of the science for organic contaminants

    Science.gov (United States)

    Lydy, Michael J; Landrum, Peter F; Oen, Amy MP; Allinson, Mayumi; Smedes, Foppe; Harwood, Amanda D; Li, Huizhen; Maruya, Keith A; Liu, Jingfu

    2014-01-01

    This manuscript surveys the literature on passive sampler methods (PSMs) used in contaminated sediments to assess the chemical activity of organic contaminants. The chemical activity in turn dictates the reactivity and bioavailability of contaminants in sediment. Approaches to measure specific binding of compounds to sediment components, for example, amorphous carbon or specific types of reduced carbon, and the associated partition coefficients are difficult to determine, particularly for native sediment. Thus, the development of PSMs that represent the chemical activity of complex compound–sediment interactions, expressed as the freely dissolved contaminant concentration in porewater (Cfree), offer a better proxy for endpoints of concern, such as reactivity, bioaccumulation, and toxicity. Passive sampling methods have estimated Cfree using both kinetic and equilibrium operating modes and used various polymers as the sorbing phase, for example, polydimethylsiloxane, polyethylene, and polyoxymethylene in various configurations, such as sheets, coated fibers, or vials containing thin films. These PSMs have been applied in laboratory exposures and field deployments covering a variety of spatial and temporal scales. A wide range of calibration conditions exist in the literature to estimate Cfree, but consensus values have not been established. The most critical criteria are the partition coefficient between water and the polymer phase and the equilibrium status of the sampler. In addition, the PSM must not appreciably deplete Cfree in the porewater. Some of the future challenges include establishing a standard approach for PSM measurements, correcting for nonequilibrium conditions, establishing guidance for selection and implementation of PSMs, and translating and applying data collected by PSMs. Integr Environ Assess Manag 2014;10:167–178. © 2014 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of

  8. Flotation separation of arsenopyrite from several sulphide minerals with organic depressants

    Institute of Scientific and Technical Information of China (English)

    Wang Fuliang; Wang Ligang; Sun Chuanyao

    2008-01-01

    In this paper,the separation of arsenopyrite from chalcopyrite,pyrite,galena with organic depressants (guergum and sodium humic)was discussed,and the functioning mechanism of those organic depressants was dis-cussed.The experimental results of monomineral flotation indicated that both guergum and sodium humic have depress-ing effect on arsenopyrite in the presence of ethyl xanthate.Guergum and sodium humic showed different depressing a-bility to pyrite,chalcopyrite and galena,and the higher the pH value in pulp,the stronger the depressing ability.Ultra-violet-Visible Spectrophotometric study showed that the adsorption layer of xanthate on surface of minerals had been de-sorbed by the two organic depressants,and the selective desorption of the collector layer was found from different miner-als.The xanthate cover on minerals surface was set free when dosage of the organic depressants was high enough.For artificially-mixed minerals,the separation of arsenopyrite from other sulphides was successfully realized by controlling dosage of the organic depressants.And sodium humic had been used successfully to decrease arsenic content in sulphide concentr ates in a commercial Lead-Zinc concentrator.

  9. Gas Separation Using Organic-Vapor-Resistent Membranes In Conjunctin With Organic-Vapor-Selective Membranes

    Science.gov (United States)

    Baker, Richard W.; Pinnau, Ingo; He, Zhenjie; Da Costa, Andre R.; Daniels, Ramin; Amo, Karl D.; Wijmans, Johannes G.

    2003-06-03

    A process for treating a gas mixture containing at least an organic compound gas or vapor and a second gas, such as natural gas, refinery off-gas or air. The process uses two sequential membrane separation steps, one using membrane selective for the organic compound over the second gas, the other selective for the second gas over the organic vapor. The second-gas-selective membranes use a selective layer made from a polymer having repeating units of a fluorinated polymer, and demonstrate good resistance to plasticization by the organic components in the gas mixture under treatment, and good recovery after exposure to liquid aromatic hydrocarbons. The membrane steps can be combined in either order.

  10. Titania nano-coated quartz wool for the photocatalytic mineralisation of emerging organic contaminants.

    Science.gov (United States)

    Saracino, M; Pretali, L; Capobianco, M L; Emmi, S S; Navacchia, M L; Bezzi, F; Mingazzini, C; Burresi, E; Zanelli, A

    2018-01-01

    Many emerging contaminants pass through conventional wastewater treatment plants, contaminating surface and drinking water. The implementation of advanced oxidation processes in existing plants for emerging contaminant remediation is one of the challenges for the enhancement of water quality in the industrialised countries. This paper reports on the production of a TiO 2 nano-layer on quartz wool in a relevant amount, its characterisation by X-ray diffraction and scanning electron microscopy, and its use as a photocatalyst under ultraviolet radiation for the simultaneous mineralisation of five emerging organic contaminants (benzophenone-3, benzophenone-4, carbamazepine, diclofenac, and triton X-100) dissolved in deionised water and tap water. This treatment was compared with direct ultraviolet photolysis and with photocatalytic degradation on commercial TiO 2 micropearls. The disappearance of every pollutant was measured by high performance liquid chromatography and mineralisation was assessed by the determination of total organic carbon. After 4 hours of treatment with the TiO 2 nano-coated quartz wool, the mineralisation exceeds 90% in deionised water and is about 70% in tap water. This catalyst was reused for seven cycles without significant efficiency loss.

  11. Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2011-10-01

    Reverse osmosis (RO) in existing water reuse facilities is a water industry standard. However, that approach may be questioned taking into consideration that "tight" NF can be equal or "better" than RO. NF can achieve the same removals of RO membranes when dealing with emerging organic contaminants (pharmaceuticals, pesticides, endocrine disruptors and others). Experiments using 18 emerging contaminants were performed using membranes NF200 and NF90 at bench-scale units, and for a more complete study, results of NF and RO pilot and full-scale experiments where compared to our experimental results. The removal results showed that NF can remove many emerging contaminants. The average removal by tight NF was 82% for neutral contaminants and 97% for ionic contaminants. The average removal by RO was 85% for neutral contaminants and 99% for ionic contaminants. Aquifer recharge and recovery (ARR) followed by NF can effectively remove emerging contaminants with removals over 90% when loose NF membranes are used.

  12. Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse

    KAUST Repository

    Yangali-Quintanilla, Victor

    2011-01-01

    Reverse osmosis (RO) in existing water reuse facilities is a water industry standard. However, that approach may be questioned taking into consideration that "tight" NF can be equal or "better" than RO. NF can achieve the same removals of RO membranes when dealing with emerging organic contaminants (pharmaceuticals, pesticides, endocrine disruptors and others). Experiments using 18 emerging contaminants were performed using membranes NF200 and NF90 at bench-scale units, and for a more complete study, results of NF and RO pilot and fullscale experiments where compared to our experimental results. The removal results showed that NF can remove many emerging contaminants. The average removal by tight NF was 82% for neutral contaminants and 97% for ionic contaminants. The average removal by RO was 85% for neutral contaminants and 99% for ionic contaminants. Aquifer recharge and recovery (ARR) followed by NF can effectively remove emerging contaminants with removals over 90% when loose NF membranes are used. © 2011 2011 Desalination Publications. All rights reserved.

  13. Metabolic responses of Eisenia fetida after sub-lethal exposure to organic contaminants with different toxic modes of action

    International Nuclear Information System (INIS)

    McKelvie, Jennifer R.; Wolfe, David M.; Celejewski, Magda A.; Alaee, Mehran; Simpson, Andre J.; Simpson, Myrna J.

    2011-01-01

    Nuclear magnetic resonance (NMR) - based metabolomics has the potential to identify toxic responses of contaminants within a mixture in contaminated soil. This study evaluated the metabolic response of Eisenia fetida after exposure to an array of organic compounds to determine whether contaminant-specific responses could be identified. The compounds investigated in contact tests included: two pesticides (carbaryl and chlorpyrifos), three pharmaceuticals (carbamazephine, estrone and caffeine), two persistent organohalogens (Aroclor 1254 and PBDE 209) and two industrial compounds (nonylphenol and dimethyl phthalate). Control and contaminant-exposed metabolic profiles were distinguished using principal component analysis and potential contaminant-specific biomarkers of exposure were found for several contaminants. These results suggest that NMR-based metabolomics offers considerable promise for differentiating between the different toxic modes of action (MOA) associated with sub-lethal toxicity to earthworms. - Highlights: → NMR-based earthworm metabolomic analysis of the toxic mode of action of various environmental contaminants. → Organic chemicals with different toxic modes of action resulted in varied metabolomic responses for E. fetida. → NMR-based metabolomics differentiates between the different modes of action associated with sub-lethal toxicity. - 1 H NMR metabolomics was used to identify potential biomarkers of organic contaminant exposure in Eisenia fetida earthworms.

  14. Exploiting large-pore metal-organic frameworks for separations through entropic molecular mechanisms

    NARCIS (Netherlands)

    Torres-Knoop, A.; Dubbeldam, D.

    2015-01-01

    We review the molecular mechanisms behind adsorption and the separations of mixtures in metal-organic frameworks and zeolites. Separation mechanisms can be based on differences in the affinity of the adsorbate with the framework and on entropic effects. To develop next-generation adsorbents, the

  15. Microbiological Analysis of an Active Pilot-Scale Mobile Bioreactor Treating Organic Contaminants

    International Nuclear Information System (INIS)

    Brigmon, R.L.

    1997-01-01

    Samples were obtained for microbiological analysis from a granular activated carbon fluidized bed bioreactor (GAC-FBR). This GAC-FBR was in operation at a former manufactured gas plant (MGP) Site in Augusta Georgia for in situ groundwater bioremediation of organics. The samples included contaminated site groundwater, GAC-FBR effluent, and biofilm coated granular activated carbon at 5, 9, and 13 feet within the GAC-FBR column. The objective of this analysis was to correlate contaminant removal with microbiological activity within the GAC-FBR

  16. Volatile organic carbon/air separation test using gas membranes

    International Nuclear Information System (INIS)

    King, C.V.; Kaschemekat, J.

    1993-08-01

    An estimated 900 metric tons of carbon tetrachloride were discharged to soil columns during the Plutonium Finishing Plant Operations at the Hanford Site. The largest percentage of this volatile organic compound was found in the vadose region of the 200 West Area. Using a Vacuum Extraction System, the volatile organic compound was drawn from the soil in an air mixture at a concentration of about 1,000 parts per million. The volatile organic compounds were absorbed from the air stream using granulated activated carbon canisters. A gas membrane separation system, developed by Membrane Technology and Research, Inc., was tested at the Vacuum Extraction System site to determine if the volatile organic compound load on the granulated activated carbon could be reduced. The Vacuum Extraction System condensed most of the volatile organic compound into liquid carbon tetrachloride and vented the residual gas stream into the granulated activated carbon. This system reduced the cost of operation about $5/kilogram of volatile organic compound removed

  17. Organic Pollutant Contamination of the River Tichá Orlice as Assessed by Biochemical Markers

    Directory of Open Access Journals (Sweden)

    M. Havelková

    2008-01-01

    Full Text Available This study used biochemical markers to assess contamination at two contaminated sites (Králíky and Lichkov and one control site (Červená Voda on the River Tichá Orlice, a left-side tributary of the River Elbe. The brown trout (Salmo trutta fario was selected as an indicator species. Enzymes of the first stage of xenobiotic conversion, namely cytochrome P450 (CYP 450 and ethoxyresorufin-O-deethylase (EROD in the liver were selected as biochemical markers. Blood plasma vitellogenin concentrations were used to evaluate xenoestrogenic effects of contamination. Results were compared with the most important inductors of these markers, i.e. with organic pollutants (PCB, HCH, HCB, OCS and DDT and their metabolites in fish muscle and with PAH concentrations in bottom sediments. The highest contamination with organic pollutants was at Králíky, and this was reflected in increased cytochrome P450, EROD activity and vitellogenin concentrations. Significant differences were demonstrated in EROD activity and vitellogenin concentrations between Králíky and Červená Voda (P s = -0.964 between EROD activity and vitellogenin concentrations was demonstrated. This relationship was discussed from the point of view of a possible induction or inhibition of the assessed biomarkers at persistently highly contaminated sites.

  18. The Use of Modified Bentonite for Removal of Aromatic Organics from Contaminated Soil.

    Science.gov (United States)

    Gitipour; Bowers; Bodocsi

    1997-12-15

    This study investigates the clay-aromatic interactions with a view to the use of bentonite clay for binding benzene, toluene, ethylbenzene, and o-xylene (BTEX compounds) in contaminated soils. BTEX compounds are the most toxic aromatic constituents of gasoline present in many underground storage tanks. Modified (organophilic) and ordinary bentonites are used to remove these organics. The organophilic bentonites are prepared by replacing the exchangeable inorganic cations present in bentonite particles with a quaternary ammonium salt. Various clay-to-soil ratios were applied to determine the efficiency of the modified bentonite in enhancing the cement-based solidification/stabilization (S/S) of BTEX contaminated soils. Toxicity characteristics leaching procedure (TCLP) tests were performed on soil samples to evaluate the leaching of the organics. In addition, X-ray diffraction analyses were conducted to assess the changes in the basal spacing of the clays as a result of their interaction with BTEX compounds. The findings of this study reveal that organophilic bentonite can act as a successful adsorbent for removing the aromatic organics from contaminated soil. Thus, this material is viable for enhancing the performance of cement-based S/S processes, as an adsorbent for petroleum spills, and for landfill liners and slurry walls. Copyright 1997 Academic Press.

  19. The use of modified bentonite for removal of aromatic organics from contaminated soil

    International Nuclear Information System (INIS)

    Gitipour, S.; Bowers, M.T.; Bodocsi, A.

    1997-01-01

    This study investigates the clay-aromatic interactions with a view to the use of bentonite clay for binding benzene, toluene, ethylbenzene, and o-xylene (BTEX compounds) in contaminated soils. BTEX compounds are the most toxic aromatic constituents of gasoline present in many underground storage tanks. Modified (organophilic) and ordinary bentonites are used to remove these organics. The organophilic bentonites are prepared by replacing the exchangeable inorganic cations present in bentonite particles with a quaternary ammonium salt. Various clay-to-soil ratios were applied to determine the efficiency of the modified bentonite in enhancing the cement-based solidification/stabilization (S/S) of BTEX contaminated soils. Toxicity characteristics leaching procedure (TCLP) tests were performed on soil samples to evaluate the leaching of the organics. In addition, X-ray diffraction analyses were conducted to assess the changes in the basal spacing of the clays as a result of their interaction with BTEX compounds. The findings of this study reveal that organophilic bentonite can act as a successful adsorbent for removing the aromatic organics from contaminated soil. Thus, this material is viable for enhancing the performance of cement-based S/S processes, as an adsorbent for petroleum spills, and for landfill liners and slurry walls

  20. Leaching of organic contaminants from storage of reclaimed asphalt pavement.

    Science.gov (United States)

    Norin, Malin; Strömvall, A M

    2004-03-01

    Recycling of asphalt has been promoted by rapid increases in both the use and price of petroleum-based bitumen. Semi-volatile organic compounds in leachates from reclaimed asphalt pavement, measured in field samples and in laboratory column test, were analysed through a GC/MS screen-test methodology. Sixteen PAH (polyaromatic hydrocarbons) were also analysed in leachates from the column study. The highest concentrations of semi-volatile compounds, approximately 400 microg l(-1), were measured in field samples from the scarified stockpile. Naphthalene, butylated hydroxytoluene (BHT) and dibutyl phthalate (DBP) were the most dominant of the identified semi-volatiles. The occurrence of these compounds in urban groundwater, also indicate high emission rates and persistent structures of the compounds, making them potentially hazardous. Car exhausts, rubber tires and the asphalt material itself are all probable emission sources, determined from the organic contaminants released from the stockpiles. The major leaching mechanism indicated was dissolution of organic contaminants from the surface of the asphalt gravels. In the laboratory column test, the release of high-molecular weight and more toxic PAH was higher in the leachates after two years than at the commencement of storage. The concentrations of semi-volatiles in leachates, were also several times lower than those from the field stockpile. These results demonstrate the need to follow up laboratory column test with real field measurements.

  1. Blood culture contamination with Enterococci and skin organisms: implications for surveillance definitions of primary bloodstream infections.

    Science.gov (United States)

    Freeman, Joshua T; Chen, Luke Francis; Sexton, Daniel J; Anderson, Deverick J

    2011-06-01

    Enterococci are a common cause of bacteremia but are also common contaminants. In our institution, approximately 17% of positive blood cultures with enterococci are mixed with skin organisms. Such isolates are probable contaminants. The specificity of the current definition of primary bloodstream infection could be increased by excluding enterococci mixed with skin organisms. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  2. Phyto remediation of PAH contaminated soil

    International Nuclear Information System (INIS)

    Petruzzelli, G.; Pedron, F.; Barbafieri, M.; Cervelli, St.; Vigna Guidi, G.

    2005-01-01

    Phyto-remediation may enhance degradation of organic compounds promoting an adequate substrate for microbial growth. The aim of this work was to evaluate the efficiency of two plant species, Lupinus albus and Zea mais, in the bio-remediation of a PAH contaminated soil. This soil has been collected in a contaminated industrial area in Italy characterized by PAH concentrations up to 16000 mg/Kg. Microcosms experiments were carried out by planting Lupinus albus and Zea mais in the polluted soil; controls without plants were run separately. Growing period lasted by three months. Plants favoured PAH biodegradation by percentages of 32% with Lupinus albus and 22% with Zea mais, with respect to non vegetated microcosms. (authors)

  3. Biogenic volatile organic compounds as a potential stimulator for organic contaminant degradation by soil microorganisms

    International Nuclear Information System (INIS)

    McLoughlin, Emma; Rhodes, Angela H.; Owen, Susan M.; Semple, Kirk T.

    2009-01-01

    The effects of monoterpenes on the degradation of 14 C-2,4-dichlorophenol (DCP) were investigated in soils collected from areas surrounding monoterpene and non-monoterpene-emitting vegetation. Indigenous microorganisms degraded 14 C-2,4-DCP to 14 CO 2 , after 1 d contact time. Degradation was enhanced by prior exposure of the soils to 2,4-DCP for 32 d, increasing extents of mineralisation up to 60%. Monoterpene amendments further enhanced 2,4-DCP degradation, but only following pre-exposure to both 2,4-DCP and monoterpene, with total 2,4-DCP mineralisation extents of up to 71%. Degradation was greatest at the higher monoterpene concentrations (≥1 μg kg -1 ). Total mineralisation extents were similar between concentrations, but higher than the control and the 0.1 μg kg -1 amendment, indicating that increases in monoterpene concentration has a diminishing enhancing effect. We suggest that monoterpenes can stimulate the biodegradation of 2,4-DCP by indigenous soil microorganisms and that monoterpene amendment in soils is an effective strategy for removing organic contaminants. - A amendment of soils with monoterpenes may induce organic contaminant degradation by indigenous soil microorganisms

  4. Separation of organic and inorganic arsenic species by HPLC-ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Londesborough, S. [University of Helsinki, Department of Chemistry (Finland); Mattusch, J.; Wennrich, R. [UFZ-Centre for Environmental Research Leipzig-Halle, Department of Analytical Chemistry, Leipzig (Germany)

    1999-03-01

    The HPLC separation of eight anionic, cationic or neutral arsenic species (arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, arsenocholine, trimethylarsine oxide and tetramethylarsonium ion) on a high-capacity, anion-exchange column (Ion Pac AS 7, Dionex) was studied. The separation was performed during one run with a nitric acid gradient ranging from pH 4-1.3. The influence of sodium dodecyl sulfate (SDS), sodium octyl sulfate (SOS) and 1,2-benzenedisulfonic acid (BDSA) as ion pairing eluent modifiers was investigated. In addition the effect of elevated temperatures (30 to 40 C) was studied. The best results were obtained at room temperature of 20 C with 0.05 mM benzenedisulfonic acid as the eluent modifier. The chromatograph was connected to an ICP-MS via a cross-flow nebulizer. Detection limits obtained with the optimized chromatographic separation were 0.16-0.60 {mu}g As L{sup -1} for different species. The proposed speciation method was applied to the determination of arsenic species in the DORM-2 reference material (Dogfish Muscle) and in aqueous extracts of mushrooms collected on arsenic contaminated ground. (orig.) With 7 figs., 4 tabs., 17 refs.

  5. Motion-based, high-yielding, and fast separation of different charged organics in water.

    Science.gov (United States)

    Xuan, Mingjun; Lin, Xiankun; Shao, Jingxin; Dai, Luru; He, Qiang

    2015-01-12

    We report a self-propelled Janus silica micromotor as a motion-based analytical method for achieving fast target separation of polyelectrolyte microcapsules, enriching different charged organics with low molecular weights in water. The self-propelled Janus silica micromotor catalytically decomposes a hydrogen peroxide fuel and moves along the direction of the catalyst face at a speed of 126.3 μm s(-1) . Biotin-functionalized Janus micromotors can specifically capture and rapidly transport streptavidin-modified polyelectrolyte multilayer capsules, which could effectively enrich and separate different charged organics in water. The interior of the polyelectrolyte multilayer microcapsules were filled with a strong charged polyelectrolyte, and thus a Donnan equilibrium is favorable between the inner solution within the capsules and the bulk solution to entrap oppositely charged organics in water. The integration of these self-propelled Janus silica micromotors and polyelectrolyte multilayer capsules into a lab-on-chip device that enables the separation and analysis of charged organics could be attractive for a diverse range of applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Oil-water separators for use in ships

    Energy Technology Data Exchange (ETDEWEB)

    Parry, G.; Nuttall, P.J.

    1978-11-04

    After ratification by the United Nations Assembly of the 15 ppm limit for the oil content in water discharges from ships, as recommended by the Intergovernmental Maritime Consultative Organization, all oil separating systems used to treat cargo tank washings, oil-contaminated ballast water from double-bottom tanks, engineroom bilge water, or oily sludge from self-cleaning fuel oil purifiers, will be subjected to a stringent test procedure specified by IMCO. This specification requires the use of centrifugal supply pumps capable of discharging at 1.5 times the separator capacity and operating at over 1000 rpm. To meet the 15 ppm standards, filtration or coalescence equipment must be added to conventional single-stage static separators. Tests by Alexander Esplen and Co. Ltd. showed that a two-stage Comyn coagulator incorporating elements specially designed by Vokes Ltd. meets the IMCO requirements. Separator system control and maintenance problems are discussed.

  7. The delivery of organic contaminants to the Arctic food web: Why sea ice matters

    DEFF Research Database (Denmark)

    Pucko, M.; Stern, Gary; Macdonald, Robie

    2015-01-01

    For decades sea ice has been perceived as a physical barrier for the loading of contaminants to the Arctic Ocean. We show that sea ice, in fact, facilitates the delivery of organic contaminants to the Arctic marine food web through processes that: 1) are independent of contaminant physical......–chemical properties (e.g. 2–3-fold increase in exposure to brine-associated biota), and 2) depend on physical–chemical properties and, therefore, differentiate between contaminants (e.g. atmospheric loading of contaminants to melt ponds over the summer, and their subsequent leakage to the ocean). We estimate...... risk of increased exposures through melt pond loading and drainage due to the high ratio of melt pond water to seawater concentration (Melt pond Enrichment Factor, MEF), which ranges from 2 for dacthal to 10 for endosulfan I. Melt pond contaminant enrichment can be perceived as a hypothetical ‘pump...

  8. Removal of heavy metals and organic contaminants from aqueous streams by novel filtration methods. 1998 annual progress report

    International Nuclear Information System (INIS)

    Rodriguez, N.M.

    1998-01-01

    'Graphite nanofibers are a new type of material consisting of nanosized graphite platelets where only edges are exposed. Taking advantage of this unique configuration the authors objective is: (1) To produce graphite nanofibers with structural properties suitable for the removal of contaminants from water. (2) To test the suitability of the material in the removal of organic from aqueous solutions. (3) To determine the ability of the nanofibers to function as an electrochemical separation medium the selective removal of metal contaminants from solutions. This report summarizes work after 1.5 of a 3-year project. During this period, efforts have been concentrated on the production, characterization and optimization of graphite nanofibers (GNF). This novel material has been developed in the laboratory from the metal catalyzed decomposition of certain hydrocarbons (1). The structures possess a cross-sectional area that varies between 5 to 100 nm and have lengths ranging from 5 to 100 mm (2). High-resolution transmission electron microscopy studies have revealed that the nanofibers consist of extremely well-ordered graphite platelets, which are oriented in various directions with respect to the fiber axis (3). The arrangement of the graphene layers can be tailored to a desired geometry by choice of the correct catalyst system and reaction conditions, and it is therefore possible to generate structures where the layers are stacked in a ribbon, herring-bone, or stacked orientation. The research has been directed on two fronts: (a) the use of the material for the removal of organic contaminants, and (b) taking advantage of the high electrical conductivity as well as high surface area of the material to use it as electrode for the electrochemical removal of metal pollutants from aqueous streams.'

  9. EMERGING TECHNOLOGY Summary. CROSS-FLOW PERVAPORATION FOR REMOVAL OF VOCS FROM CONTAMINATED WASTEWATER (EPA/540/SR-94/512)

    Science.gov (United States)

    Pervaporation is a membrane technology using & dense, nonporous polymeric film to separate contaminated water from a vacuum source. The membrane preferentially partitions the volatile organic compounds (VOC) organic phase used In this test This process has proven to be an alterna...

  10. Separation of polar compounds using a flexible metal-organic framework

    NARCIS (Netherlands)

    Motkuri, R.K.; Thallapally, P.K.; Annapureddy, H.V.R.; Dang, L.X.; Krishna, R.; Nune, S.K.; Fernandez, C.A.; Liu, J.; McGrail, B.P.

    2015-01-01

    A flexible metal-organic framework constructed from a flexible linker is shown to possess the capability of separating mixtures of polar compounds (propanol isomers) by exploiting the differences in the saturation capacities of the constituents. Transient breakthrough simulations show that these

  11. Emerging organic contaminants in groundwater : a review of sources, fate and occurrence

    OpenAIRE

    Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S.

    2012-01-01

    Emerging organic contaminants (EOCs) detected in groundwater may have adverse effects on human health and aquatic ecosystems. This paper reviews the existing occurrence data in groundwater for a range of EOCs including pharmaceutical, personal care, ‘life-style’ and selected industrial compounds. The main sources and pathways for organic EOCs in groundwater are reviewed, with occurrence data for EOCs in groundwater included from both targeted studies and broad reconnaissance surveys. Nanogram...

  12. The characterization of organic contaminants during the development of the Space Station water reclamation and management system

    Science.gov (United States)

    Cole, H.; Habercom, M.; Crenshaw, M.; Johnson, S.; Manuel, S.; Martindale, W.; Whitman, G.; Traweek, M.

    1991-01-01

    Examples of the application of various methods for characterizing samples for alcohols, fatty acids, detergents, and volatile/semivolatile basic, neutral, and phenolic acid contaminants are presented. Data, applications, and interpretations are given for a variety of methods including sample preparation/cleanup procedures, ion chromatography, and gas chromatography with various detectors. Summaries of the major organic contaminants that contribute to the total organic carbon content are presented.

  13. Organic Contamination Baseline Study in NASA Johnson Space Center Astromaterials Curation Laboratories

    Science.gov (United States)

    Calaway, Michael J.; Allen, Carlton C.; Allton, Judith H.

    2014-01-01

    Future robotic and human spaceflight missions to the Moon, Mars, asteroids, and comets will require curating astromaterial samples with minimal inorganic and organic contamination to preserve the scientific integrity of each sample. 21st century sample return missions will focus on strict protocols for reducing organic contamination that have not been seen since the Apollo manned lunar landing program. To properly curate these materials, the Astromaterials Acquisition and Curation Office under the Astromaterial Research and Exploration Science Directorate at NASA Johnson Space Center houses and protects all extraterrestrial materials brought back to Earth that are controlled by the United States government. During fiscal year 2012, we conducted a year-long project to compile historical documentation and laboratory tests involving organic investigations at these facilities. In addition, we developed a plan to determine the current state of organic cleanliness in curation laboratories housing astromaterials. This was accomplished by focusing on current procedures and protocols for cleaning, sample handling, and storage. While the intention of this report is to give a comprehensive overview of the current state of organic cleanliness in JSC curation laboratories, it also provides a baseline for determining whether our cleaning procedures and sample handling protocols need to be adapted and/or augmented to meet the new requirements for future human spaceflight and robotic sample return missions.

  14. Reduction in bioavailability of arsenic in contaminated irrigated soil using zinc and organic manure

    International Nuclear Information System (INIS)

    Batool, S.Q.

    2012-01-01

    The experiments were conducted to reduce the bioavailability of arsenic with application of organic and inorganic materials from contaminated soils irrigated with arsenic contaminated water. The results showed that the amount of extractable arsenic increased with submergence and decreased with application of organic material. However, amount of such decrease altered with inorganic material i.e. zinc and decrease was greater with As5Zn10 (0.17 to 0.0 mg/kg) where zinc was applied at the rate of 10 mg/kg. Among the different organic materials, arsenic content in soil remarkably decreased with application of farmyard manure. The decrease in arsenic content was less than upper toxic limit of arsenic in soil i.e.10mg/kg for paddy soils. Other manures also showed decrease in arsenic concentration but with desorption after half interval of treatment. Best remediating agents used for arsenic retention was zinc sulphate> organic compost >farmyard manure. (author)

  15. Cadmium accumulation by muskmelon under salt stress in contaminated organic soil

    Energy Technology Data Exchange (ETDEWEB)

    Gabrijel, Ondrasek [University of Zagreb, Faculty of Agriculture, Svetosimunska 25, 10000 Zagreb (Croatia)], E-mail: gondrasek@agr.hr; Davor, Romic [University of Zagreb, Faculty of Agriculture, Svetosimunska 25, 10000 Zagreb (Croatia); Zed, Rengel [Soil Science and Plant Nutrition, Faculty of Natural and Agricultural Sciences, University of Western Australia, Crawley WA 6009 (Australia); Marija, Romic; Monika, Zovko [University of Zagreb, Faculty of Agriculture, Svetosimunska 25, 10000 Zagreb (Croatia)

    2009-03-15

    Human-induced salinization and trace element contamination are widespread and increasing rapidly, but their interactions and environmental consequences are poorly understood. Phytoaccumulation, as the crucial entry pathway for biotoxic Cd into the human foodstuffs, correlates positively with rhizosphere salinity. Hypothesising that organic matter decreases the bioavailable Cd{sup 2+} pool and therefore restricts its phytoextraction, we assessed the effects of four salinity levels (0, 20, 40 and 60 mM NaCl) and three Cd levels (0.3, 5.5 and 10.4 mg kg{sup -1}) in peat soil on mineral accumulation/distribution as well as vegetative growth and fruit yield parameters of muskmelon (Cucumis melo L.) in a greenhouse. Salt stress reduced shoot biomass and fruit production, accompanied by increased Na and Cl and decreased K concentration in above-ground tissues. A 25- and 50-day exposure to salinity increased Cd accumulation in leaves up to 87% and 46%, respectively. Accumulation of Cd in the fruits was up to 43 times lower than in leaves and remained unaltered by salinity. Soil contamination by Cd enhanced its accumulation in muskmelon tissues by an order of magnitude compared with non-contaminated control. In the drainage solution, concentrations of Na and Cl slightly exceeded those in the irrigation solution, whereas Cd concentration in drainage solution was lower by 2-3 orders of magnitude than the total amount added. Chemical speciation and distribution modelling (NICA-Donnan) using Visual MINTEQ showed predominance of dissolved organic ligands in Cd chemisorption and complexation in all treatments; however, an increase in salt addition caused a decrease in organic Cd complexes from 99 to 71%, with free Cd{sup 2+} increasing up to 6% and Cd-chlorocomplexes up to 23%. This work highlights the importance of soil organic reactive surfaces in reducing trace element bioavailability and phytoaccumulation. Chloride salinity increased Cd accumulation in leaves but not in fruit

  16. Microparticle Separation by Cyclonic Separation

    Science.gov (United States)

    Karback, Keegan; Leith, Alexander

    2017-11-01

    The ability to separate particles based on their size has wide ranging applications from the industrial to the medical. Currently, cyclonic separators are primarily used in agriculture and manufacturing to syphon out contaminates or products from an air supply. This has led us to believe that cyclonic separation has more applications than the agricultural and industrial. Using the OpenFoam computational package, we were able to determine the flow parameters of a vortex in a cyclonic separator in order to segregate dust particles to a cutoff size of tens of nanometers. To test the model, we constructed an experiment to separate a test dust of various sized particles. We filled a chamber with Arizona test dust and utilized an acoustic suspension technique to segregate particles finer than a coarse cutoff size and introduce them into the cyclonic separation apparatus where they were further separated via a vortex following our computational model. The size of the particles separated from this experiment will be used to further refine our model. Metropolitan State University of Denver, Colorado University of Denver, Dr. Randall Tagg, Dr. Richard Krantz.

  17. [Physicochemical and microbiological factors influencing the bioavailability of organic contaminants in subsoils

    International Nuclear Information System (INIS)

    1992-01-01

    We report progress in elucidating the microbiological variables important in determining the relative success of bacteria in utilizing soil-sorbed contaminants. Two bacterial species, Pseudomonas putida (ATCC 17484) and an Alcaligenes sp. isolated from petroleum contaminated soil are known to differ markedly in their ability to utilize soil-sorbed napthalene based on a kinetic comparison of their capability of naphthalene mineralization in soil-containing and soil-free systems. The kinetic analysis led us to conclude that strain 17484 had direct access to naphthalene present in a labile sorbed state which promoted the rapid desorption of naphthalene from the non-labile phase. Conversely, both the rate and extent of naphthalene mineralization by strain NP-Alk suggested that this organism had access only to naphthalene in solution. Desorption was thus limited and the efficiency of total naphthalene removal from these soil slurries was poor. These conclusions were based on the average activities of cells in soil slurries without regard for the disposition of the organisms with respect to the sorbent. Since both organisms degrade naphthalene by apparently identical biochemical pathways, have similar enzyme kinetic properties, and are both motile, gram negative organisms, we undertook a series of investigations to gain a better understanding of what microbiological properties were important in bioavailability

  18. Separation of organic azeotropic mixtures by pervaporation. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R.W.

    1991-12-01

    Distillation is a commonly used separation technique in the petroleum refining and chemical processing industries. However, there are a number of potential separations involving azetropic and close-boiling organic mixtures that cannot be separated efficiently by distillation. Pervaporation is a membrane-based process that uses selective permeation through membranes to separate liquid mixtures. Because the separation process is not affected by the relative volatility of the mixture components being separated, pervaporation can be used to separate azetropes and close-boiling mixtures. Our results showed that pervaporation membranes can be used to separate azeotropic mixtures efficiently, a result that is not achievable with simple distillation. The membranes were 5--10 times more permeable to one of the components of the mixture, concentrating it in the permeate stream. For example, the membrane was 10 times more permeable to ethanol than methyl ethyl ketone, producing 60% ethanol permeate from an azeotropic mixture of ethanol and methyl ethyl ketone containing 18% ethanol. For the ethyl acetate/water mixture, the membranes showed a very high selectivity to water (> 300) and the permeate was 50--100 times enriched in water relative to the feed. The membranes had permeate fluxes on the order of 0.1--1 kg/m{sup 2}{center_dot}h in the operating range of 55--70{degrees}C. Higher fluxes were obtained by increasing the operating temperature.

  19. Burrowing and avoidance behaviour in marine organisms exposed to pesticide-contaminated sediment

    DEFF Research Database (Denmark)

    Møhlenberg, Flemming; Kiørboe, Thomas

    1983-01-01

    Behavioural effects of marine sediment contaminated with pesticides (6000 ppm parathion, 200 ppm methyl parathion, 200 ppm malathion) were studied in a number of marine organisms in laboratory tests and in situ. The burrowing behaviour in Macoma baltica, Cerastoderma edule, Abra alba, Nereis...

  20. The chemistry of separations ligand degradation by organic radical cations

    International Nuclear Information System (INIS)

    Mezyk, S.P.; Horne, G.P.; Mincher, B.J.; Zalupski, P.R.; Cook, A.R.; Wishart, J.F.

    2016-01-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R"."+), carbon-centered radicals (R".), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R"."+ as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  1. Evaluation of organic contamination in urban groundwater surrounding a municipal landfill, Zhoukou, China.

    Science.gov (United States)

    Han, D M; Tong, X X; Jin, M G; Hepburn, Emily; Tong, C S; Song, X F

    2013-04-01

    This paper investigates the organic pollution status of shallow aquifer sediments and groundwater around Zhoukou landfill. Chlorinated aliphatic hydrocarbons, monocylic aromatic hydrocarbons, halogenated aromatic hydrocarbons, organochlorine pesticides and other pesticides, and polycyclic aromatic hydrocarbons (PAHs) have been detected in some water samples. Among the detected eleven PAHs, phenanthrene, fluorine, and fluoranthene are the three dominant in most of the groundwater samples. Analysis of groundwater samples around the landfill revealed concentrations of PAHs ranging from not detected to 2.19 μg/L. The results show that sediments below the waste dump were low in pollution, and the shallow aquifer, at a depth of 18-30 m, was heavily contaminated, particularly during the wet season. An oval-shaped pollution halo has formed, spanning 3 km from west to east and 2 km from south to north, and mainly occurs in groundwater depths of 2-4 m. For PAH source identification, both diagnostic ratios of selected PAHs and principal component analysis were studied, suggesting mixed sources of pyro- and petrogenic derived PAHs in the Zhoukou landfill. Groundwater table fluctuations play an important role in the distribution of organic pollutants within the shallow aquifer. A conceptual model of leachate migration in the Quaternary aquifers surrounding the Zhoukou landfill has been developed to describe the contamination processes based on the major contaminant (PAHs). The groundwater zone contaminated by leachate has been identified surrounding the landfill.

  2. Organic acid enhanced electrodialytic extraction of lead from contaminated soil fines in suspension

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ahring, Birgitte Kiær; Ottosen, Lisbeth M.

    2007-01-01

    for decontamination of the sludge was investigated. The ability of 11 organic acids to extract Pb from the fine fraction of contaminated soil (grains soil fines in suspension......The implementation of soil washing technology for the treatment of heavy metal contaminated soils is limited by the toxicity and unwieldiness of the remaining heavy metal contaminated sludge. In this work, the feasibility of combining electrodialytic remediation with heterotrophic leaching...... was tested. Five of the acids showed the ability to extract Ph from the soil fines in excess of the effect caused solely by pH changes. Addition of the acids, however, severely impeded EDR, hence promotion of EDR by combination with heterotrophic leaching was rejected. In contrast, enhancement of EDR...

  3. Depositional history of organic contaminants on the Palos Verdes Shelf, California

    Science.gov (United States)

    Eganhouse, R.P.; Pontolillo, J.

    2000-01-01

    During more than 60 years, sedimentation on the Palos Verdes Shelf has been dominated by time-varying inputs of municipal wastewater from the Los Angeles County Sanitation Districts (LACSD) and debris from the Portuguese Bend Landslide (PBL). The present study examines the depositional history of wastewater-derived organic contaminants at a site approximately 6-8 km downcurrent from the outfall system. Sediments at this location are impacted by contributions from both sources, but the relative influence of the sources has changed over time. Two classes of hydrophobic organic contaminants (chlorinated hydrocarbons, long-chain alkylbenzenes) were determined in sediment cores collected in 1981 and 1992. Using molecular stratigraphy, we determined average sedimentation rates (cm/year) and mass accumulation rates (g cm-2 year-1) for the following periods: 1955-1965, 1965-1971, 1971-1981 and 1981-1992. The results show that sedimentation and mass accumulation rates increased from 1955 to 1971 and decreased from 1971 to 1981. These trends are consistent with historical information on the emission of suspended solids from the outfall system, indicating that the discharge of wastes dominated sedimentation at the site during this period. In the 1980s and early 1990s, however, mass accumulation rates increased in spite of continually decreasing emissions of wastewater solids. Several lines of evidence indicate that this increase was due to mobilization of debris from the PBL during and after unusually strong winter storms in the 1980s. As a result, heavily contaminated sediments deposited during the years of greatest waste emissions (i.e. 1950-1970) have been buried to greater sub-bottom depths, thereby reducing their availability for mobilization to the overlying water column. These results highlight the dynamic nature of sedimentation in contaminated coastal ecosystems and its importance to the long-term fate and effects of toxic substances.

  4. Arsenic uptake by lettuce from As-contaminated soil remediated with Pteris vittata and organic amendment.

    Science.gov (United States)

    de Oliveira, Letuzia M; Suchismita, Das; Gress, Julia; Rathinasabapathi, Bala; Chen, Yanshan; Ma, Lena Q

    2017-06-01

    Leaching of inorganic arsenic (As) from chromated copper arsenate (CCA)-treated wood may elevate soil As levels. Thus, an environmental concern arises regarding As accumulation in vegetables grown in these soils. In this study, a greenhouse experiment was conducted to investigate the ability of As-hyperaccumulator P. vittata and organic amendments in reducing As uptake by lettuce (Lactuca sativa) from a soil contaminated from CCA-treated wood (63.9 mg kg -1 As). P. vittata was grown for 150 d in a CCA-contaminated soil amended with biochar, activated carbon or coffee grounds at 1%, followed by lettuce for another 55 d. After harvest, plant biomass and As concentrations in plant and soil were determined. The presence of P. vittata reduced As content in lettuce by 21% from 27.3 to 21.5 mg kg -1 while amendment further reduced As in lettuce by 5.6-18%, with activated C being most effective. Our data showed that both P. vittata and organic amendments were effective in reducing As concentration in lettuce. Though no health-based standard for As in vegetables exists in USA, care should be taken when growing lettuce in contaminated soils. Our data showed that application of organic amendments with P. vittata reduced As hazards in CCA-contaminated soils. Published by Elsevier Ltd.

  5. Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process

    International Nuclear Information System (INIS)

    Wang, J.-Y.; Huang, X.-J.; Kao, Jimmy C.M.; Stabnikova, Olena

    2007-01-01

    Kaolins contaminated with heavy metals, Cu and Pb, and organic compounds, p-xylene and phenanthrene, were treated with an upward electrokinetic soil remediation (UESR) process. The effects of current density, cathode chamber flushing fluid, treatment duration, reactor size, and the type of contaminants under the vertical non-uniform electric field of UESR on the simultaneous removal of the heavy metals and organic contaminants were studied. The removal efficiencies of p-xylene and phenanthrene were higher in the experiments with cells of smaller diameter or larger height, and with distilled water flow in the cathode chamber. The removal efficiency of Cu and Pb were higher in the experiments with smaller diameter or shorter height cells and 0.01 M HNO 3 solution as cathode chamber flow. In spite of different conditions for removal of heavy metals and organics, it is possible to use the upward electrokinetic soil remediation process for their simultaneous removal. Thus, in the experiments with duration of 6 days removal efficiencies of phenanthrene, p-xylene, Cu and Pb were 67%, 93%, 62% and 35%, respectively. The experiment demonstrated the feasibility of simultaneous removal of organic contaminants and heavy metals from kaolin using the upward electrokinetic soil remediation process

  6. For successfully completed clean-ups treating different kinds of contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, A.; Bentz, R.; Huerzeler, R.A.; Matter, B. [Ciba Specialty Chemicals Inc., Basel (Switzerland)

    2003-07-01

    In this Special Session 4 remediation projects are presented, that were run in different environments and under different constraints. The projects / sites showed the following characteristics: Amponville (F) This project represents a successful clean up of an uncontrolled dump by drums containing Chlorophenol-wastes from an old agrochemical production site. Contaminated sandy soil had to be excavated and treated in a Thermal Desorption unit on site. An interactive CD-ROM data medium was created for documentation. Niederglatt (CH) A old industrial area contaminated by organics (hydrocarbons, polyaromatics) as well as by chromium Cr(VI) was remediated by soil-excavation. The soil had to be analysed, separated and treated accordingly. Chromium-contaminated material had to be treated physically and chemically. The soil affected by organic pollutants had to be washed off-site. Special attention was given to the water flowing off the site, groundwater control and to dust deposit measures in the near environment. Dielsdorf (CH) This site contained wastes from former Lindane-production, containing HCH, Dinitro-o-Cresol and metals like As, Cu and Pb. The contaminated soil and the wastes had to be excavated, analysed, partly backfilled and the rest treated in different ways. Residual pollutants concentration was calculated following a risk-analysis/mobility-calculation and agreed upon with the authorities before starting the remediation work. Schweizerhalle (CH) A huge fire left an area of contaminated soil that was affected by argo-chemicals and their incineration-products. The most harmful pollutants were mercury and phosphoric esters. After coverage by a tent and lowering of the groundwater level the gravel and the sandy soil was excavated and treated in an on-site large-scale Soil Washing and Treating installation by using surfactants and other reagents to separate the pollutants. Most of the soil could be backfilled on-site. Less than 5% of the soil volume containing

  7. Campylobacter contamination and the relative risk of illness from organic broiler meat in comparison with conventional broiler meat

    DEFF Research Database (Denmark)

    Rosenquist, Hanne; Boysen, Louise; Krogh, Anne Louise

    2013-01-01

    Danish organic broiler meat, represented by carcasses sampled at the end of processing after chilling, was more frequently contaminated with thermotolerant Campylobacter spp. than conventional broiler carcasses; the yearly mean prevalence being 54.2% (CI: 40.9-67.5) for organic and 19.7% (CI: 14.......8-24.7) for conventional carcasses. Campylobacter jejuni was the most frequently isolated species. The difference in prevalence was obvious in all quarters of the year. Contamination of organic and conventional broiler carcasses was more likely to occur in the warmer summer months, in this case in the third quarter......, as also documented for conventional broiler flocks. When contaminated, the mean concentration of Campylobacter on neck skin samples of organic and conventional carcasses was not significantly different (P=0.428); 2.0±0.65log10cfu/g and 2.1±0.93log10cfu/g, respectively. Assessing the relative risk...

  8. Inverse modeling of the biodegradation of emerging organic contaminants in the soil-plant system.

    Science.gov (United States)

    Hurtado, Carlos; Trapp, Stefan; Bayona, Josep M

    2016-08-01

    Understanding the processes involved in the uptake and accumulation of organic contaminants into plants is very important to assess the possible human risk associated with. Biodegradation of emerging contaminants in plants has been observed, but kinetical studies are rare. In this study, we analyse experimental data on the uptake of emerging organic contaminants into lettuce derived in a greenhouse experiment. Measured soil, root and leaf concentrations from four contaminants were selected within the applicability domain of a steady-state two-compartment standard plant uptake model: bisphenol A (BPA), carbamazepine (CBZ), triclosan (TCS) and caffeine (CAF). The model overestimated concentrations in most cases, when no degradation rates in plants were entered. Subsequently, biodegradation rates were fitted so that the measured concentrations were met. Obtained degradation kinetics are in the order, BPA < CAF ≈ TCS < CBZ in roots, and BPA ≈ TCS < CBZ < CAF in leaves. Kinetics determined by inverse modeling are, despite the inherent uncertainty, indicative of the dissipation rates. The advantage of the procedure that is additional knowledge can be gained from existing experimental data. Dissipation kinetics found via inverse modeling is not a conclusive proof for biodegradation and confirmation by experimental studies is needed. Copyright © 2016. Published by Elsevier Ltd.

  9. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents

    Science.gov (United States)

    Jasper, Justin T.; Nguyen, Mi T.; Jones, Zackary L.; Ismail, Niveen S.; Sedlak, David L.; Sharp, Jonathan O.; Luthy, Richard G.; Horne, Alex J.; Nelson, Kara L.

    2013-01-01

    Abstract Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe. PMID:23983451

  10. Unit Process Wetlands for Removal of Trace Organic Contaminants and Pathogens from Municipal Wastewater Effluents.

    Science.gov (United States)

    Jasper, Justin T; Nguyen, Mi T; Jones, Zackary L; Ismail, Niveen S; Sedlak, David L; Sharp, Jonathan O; Luthy, Richard G; Horne, Alex J; Nelson, Kara L

    2013-08-01

    Treatment wetlands have become an attractive option for the removal of nutrients from municipal wastewater effluents due to their low energy requirements and operational costs, as well as the ancillary benefits they provide, including creating aesthetically appealing spaces and wildlife habitats. Treatment wetlands also hold promise as a means of removing other wastewater-derived contaminants, such as trace organic contaminants and pathogens. However, concerns about variations in treatment efficacy of these pollutants, coupled with an incomplete mechanistic understanding of their removal in wetlands, hinder the widespread adoption of constructed wetlands for these two classes of contaminants. A better understanding is needed so that wetlands as a unit process can be designed for their removal, with individual wetland cells optimized for the removal of specific contaminants, and connected in series or integrated with other engineered or natural treatment processes. In this article, removal mechanisms of trace organic contaminants and pathogens are reviewed, including sorption and sedimentation, biotransformation and predation, photolysis and photoinactivation, and remaining knowledge gaps are identified. In addition, suggestions are provided for how these treatment mechanisms can be enhanced in commonly employed unit process wetland cells or how they might be harnessed in novel unit process cells. It is hoped that application of the unit process concept to a wider range of contaminants will lead to more widespread application of wetland treatment trains as components of urban water infrastructure in the United States and around the globe.

  11. Electron beam induced strong organic/inorganic grafting for thermally stable lithium-ion battery separators

    Science.gov (United States)

    Choi, Yunah; Kim, Jin Il; Moon, Jungjin; Jeong, Jongyeob; Park, Jong Hyeok

    2018-06-01

    A tailored interface between organic and inorganic materials is of great importance to maximize the synergistic effects from hybridization. Polyethylene separators over-coated with inorganic thin films are the state-of-the art technology for preparing various secondary batteries with high safety. Unfortunately, the organic/inorganic hybrid separators have the drawback of a non-ideal interface, thus causing poor thermal/dimensional stability. Here, we report a straightforward method to resolve the drawback of the non-ideal interface between vapor deposited SiO2 and polyethylene separators, to produce a highly stable lithium-ion battery separator through strong chemical linking generated by direct electron beam irradiation. The simple treatment with an electron beam with an optimized dose generates thermally stable polymer separators, which may enhance battery safety under high-temperature conditions. Additionally, the newly formed Si-O-C or Si-CH3 chemical bonding enhances electrolyte-separator compatibility and thus may provide a better environment for ionic transport between the cathode and anode, thereby leading to better charge/discharge behaviors.

  12. Life Cycle Assessment of pretreatment technologies for anaerobic digestion of source-separated organic household waste

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2013-01-01

    The environmental performance of two pretreatment technologies for source-separated organic waste was compared using life cycle assessment (LCA). An innovative pulping process where source-separated organic waste is pulped with cold water forming a volatile solid rich biopulp was compared to a more...... including a number of non-toxic and toxic impact categories were assessed. No big difference in the overall performance of the two technologies was observed. The difference for the separate life cycle steps was, however, more pronounced. More efficient material transfer in the scenario with waste pulping...

  13. Protection of environmental contamination by radioactive materials and remediation of environment

    International Nuclear Information System (INIS)

    2003-05-01

    This report consisted of the environmental contamination of radioactive and non-radioactive materials. 38 important accident examples of environmental contamination of radioactive materials in the world from 1944 to 2001 are stated. Heavily polluted areas by accidents are explained, for example, Chernobyl, atomic reactor accidents, development of nuclear weapon in USA and USSR, radioactive waste in the sea. The environmental contamination ability caused by using radioactive materials, medical use, operating reactor, disposal, transferring, crashing of airplane and artificial satellite, release are reported. It contains measurements and monitor technologies, remediation technologies of environmental contamination and separation and transmutation of radioactive materials. On the environmental contamination by non-radioactive materials, transformation of the soil contamination in Japan and its control technologies are explained. Protection and countermeasure of environmental contamination of radioactive and non-radioactive materials in Japan and the international organs are presented. There are summary and proposal in the seventh chapter. (S.Y.)

  14. The chemistry of separations ligand degradation by organic radical cations

    Energy Technology Data Exchange (ETDEWEB)

    Mezyk, S.P.; Horne, G.P. [California State University at Long Beach, Long Beach, CA 90840 (United States); Mincher, B.J.; Zalupski, P.R. [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Cook, A.R.; Wishart, J.F. [Chemistry Department, Brookhaven National Laboratory, New York, 11973 (United States)

    2016-07-01

    Solvent based extractions of used nuclear fuel use designer ligands in an organic phase extracting ligand complexed metal ions from an acidic aqueous phase. These extractions will be performed in highly radioactive environments, and the radiation chemistry of all these complexing agents and their diluents will play a major role in determining extraction efficiency, separation factors, and solvent-recycle longevity. Although there has been considerable effort in investigating ligand damage occurring in acidic water radiolysis conditions, only minimal fundamental kinetic and mechanistic data has been reported for the degradation of extraction ligands in the organic phase. Extraction solvent phases typically use normal alkanes such as dodecane, TPH, and kerosene as diluents. The radiolysis of such diluents produce a mixture of radical cations (R{sup .+}), carbon-centered radicals (R{sup .}), solvated electrons, and molecular products such as hydrogen. Typically, the radical species will preferentially react with the dissolved oxygen present to produce relatively inert peroxyl radicals. This isolates the alkane radical cation species, R{sup .+} as the major radiolytically-induced organic species that can react with, and degrade, extraction agents in this phase. Here we report on our recent studies of organic radical cation reactions with 2 ligands: CMPO and TODGA. Elucidating these parameters, and combining them with the known acidic aqueous phase chemistry, will allow a full, fundamental, understanding of the impact of radiation on solvent extraction based separation processes to be achieved. (authors)

  15. Contamination of an arctic terrestrial food web with marine-derived persistent organic pollutants transported by breeding seabirds

    International Nuclear Information System (INIS)

    Choy, Emily S.; Kimpe, Linda E.; Mallory, Mark L.; Smol, John P.; Blais, Jules M.

    2010-01-01

    At Cape Vera, Devon Island (Nunavut, Canada), a colony of northern fulmars (Fulmarus glacialis) concentrates and releases contaminants through their guano to the environment. We determined whether persistent organic pollutants (POPs) from seabirds were transferred to coastal food webs. Snow buntings (Plectrophenax nivalis) were the most contaminated species, with ΣPCB and ΣDDT (mean: 168, 106 ng/g ww) concentrations surpassing environmental guidelines for protecting wildlife. When examined collectively, PCB congeners and DDT in jewel lichen (Xanthoria elegans) were lower in samples taken farther from the seabird colony, and increased with increasing δ 15 N values. However, only concentrations of p'p-DDE:ΣDDT and PCB-95 were significantly correlated inversely with distance from the seabird cliffs. Linkages between marine-derived POPs and their concentrations in terrestrial mammals were less clear. Our study provides novel contaminant data for these species and supports biovector transport as a source of organic contaminants to certain components of the terrestrial food web. - This study provides evidence of contaminant transport by seabirds to a coastal Arctic food web.

  16. Contamination of an arctic terrestrial food web with marine-derived persistent organic pollutants transported by breeding seabirds

    Energy Technology Data Exchange (ETDEWEB)

    Choy, Emily S., E-mail: echoy087@uottawa.c [Program for Chemical and Environmental Toxicology, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada); Kimpe, Linda E., E-mail: linda.kimpe@uottawa.c [Program for Chemical and Environmental Toxicology, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada); Mallory, Mark L., E-mail: mark.mallory@ec.gc.c [Canadian Wildlife Service, Environment Canada, Iqaluit, NU, X0A 0H0 (Canada); Smol, John P., E-mail: smolj@queensu.c [Paleoecological Environmental Assessment and Research Lab (PEARL), Department of Biology, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Blais, Jules M., E-mail: jules.blais@uottawa.c [Program for Chemical and Environmental Toxicology, Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5 (Canada)

    2010-11-15

    At Cape Vera, Devon Island (Nunavut, Canada), a colony of northern fulmars (Fulmarus glacialis) concentrates and releases contaminants through their guano to the environment. We determined whether persistent organic pollutants (POPs) from seabirds were transferred to coastal food webs. Snow buntings (Plectrophenax nivalis) were the most contaminated species, with {Sigma}PCB and {Sigma}DDT (mean: 168, 106 ng/g ww) concentrations surpassing environmental guidelines for protecting wildlife. When examined collectively, PCB congeners and DDT in jewel lichen (Xanthoria elegans) were lower in samples taken farther from the seabird colony, and increased with increasing {delta}{sup 15}N values. However, only concentrations of p'p-DDE:{Sigma}DDT and PCB-95 were significantly correlated inversely with distance from the seabird cliffs. Linkages between marine-derived POPs and their concentrations in terrestrial mammals were less clear. Our study provides novel contaminant data for these species and supports biovector transport as a source of organic contaminants to certain components of the terrestrial food web. - This study provides evidence of contaminant transport by seabirds to a coastal Arctic food web.

  17. Modeling the pH-mediated Extraction of Ionizable Organic Contaminants to Improve the Quality of Municipal Sewage Sludge Destined for Land Application

    OpenAIRE

    Venkatesan, Arjun K.; Halden, Rolf U.

    2016-01-01

    A model was developed to assess the impact of adding acids and bases to processed municipal sewage sludge (MSS) to mobilize contaminants, facilitating their removal from sludge by flushing prior to land application. Among 312 organic contaminants documented to occur in U.S. MSS, 71 or 23% were identified as ionizable organic contaminants (IOCs), contributing a disproportionately large fraction of 82% of the total mass of sludge-borne contaminants. Detected IOCs included 57 pharmaceuticals and...

  18. The Development of Magnetic Molecules for the Selective Removal of Contaminants

    International Nuclear Information System (INIS)

    Bushart, S.P.; Bradbury, D.; Elder, G.; Duffield, J.; Pascual, I.; Ratcliffe, N.

    2006-01-01

    'Magnetic molecules' are a new type of decontaminant for removing dilute dissolved contaminants from solution. Magnetic molecules have a specific ion exchange function to selectively react with a particular type of ionic contamination in a liquid solution. The magnetic molecules also have a very small magnetic ferritin core (ferritin is an iron-III mammalian storage protein having about 10 nm diameter), which enables the magnetic molecule to be removed from solution by magnetic filtration. The ion exchange function is attached to the magnetic ferritin core by organic reaction sequences. The ion exchange function selectively bonds to a specific type of contaminant ion. For example, ion exchange functions can selectively target radioactive contaminant ions such as cobalt, cesium and plutonium. The procedure for decontamination is that the appropriate magnetic molecule (which targets the contaminant which it is desired to remove) is added to the solution and the solution is then passed through a magnetic filter. The contaminant binds to the magnetic molecule and is then removed by the magnetic filter. The magnetic molecule/contaminant can then be recovered from the magnetic filter by back-washing. Work has been undertaken towards the development of magnetic molecules for use as radioactive decontaminants for radioactive waste management purposes. Previously we have reported on the functionalization of ferritin with the chelating agent DTPA and have shown that this can be used to bind Ca(II) in solution and separate it from Na(I) ions by the process of equilibrium dialysis. Approximately 100 DTPA molecules could be bound to the surface of the ferritin molecule. Synthetic conditions have been optimised, and which will be reported here, ferritin has been functionalized with approximately 1200 DTPA molecules per mole of ferritin and used successfully to achieve a quantitative separation of Co(II) from Cs(I) ions by equilibrium dialysis. This separation has been carried

  19. Comparison of Passive Samplers for Monitoring Dissolved Organic Contaminants in Water Column Deployments

    Science.gov (United States)

    Nonionic organic contaminants (NOCs) are difficult to measure in the water column due to their inherent chemical properties resulting in low water solubility and high particle activity. Traditional sampling methods require large quantities of water to be extracted and interferen...

  20. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    International Nuclear Information System (INIS)

    Ullmann, Amos; Brauner, Neima; Vazana, Shlomi; Katz, Zhanna; Goikhman, Roman; Seemann, Boaz; Marom, Hanit; Gozin, Michael

    2013-01-01

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied

  1. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, Amos, E-mail: Ullmann@eng.tau.ac.il [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Brauner, Neima; Vazana, Shlomi; Katz, Zhanna [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Goikhman, Roman [The Hebrew University of Jerusalem, The Robert H. Smith, Faculty of Agriculture, Food and Environment, Rehovot (Israel); Seemann, Boaz; Marom, Hanit [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Gozin, Michael, E-mail: cogozin@gmail.com [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-09-15

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied.

  2. SEPARATION OF HAZARDOUS ORGANICS BY LOW PRESSURE REVERSE OSMOSIS MEMBRANES - PHASE II FINAL REPORT

    Science.gov (United States)

    Extensive experimental studies showed that thin-film, composite membranes can be used effectively for the separation of selected hazardous organic compounds. This waste treatment technique offers definite advantages in terms of high solute separations at low pressures (<2MPa) and...

  3. Micropore clogging by leachable pyrogenic organic carbon: A new perspective on sorption irreversibility and kinetics of hydrophobic organic contaminants to black carbon.

    Science.gov (United States)

    Wang, Bingyu; Zhang, Wei; Li, Hui; Fu, Heyun; Qu, Xiaolei; Zhu, Dongqiang

    2017-01-01

    Black carbon (BC) plays a crucial role in sequestering hydrophobic organic contaminants in the environment. This study investigated key factors and mechanisms controlling nonideal sorption (e.g., sorption irreversibility and slow kinetics) of model hydrophobic organic contaminants (nitrobenzene, naphthalene, and atrazine) by rice-straw-derived BC. After removing the fraction of leachable pyrogenic organic carbon (LPyOC) (referring to composites of dissoluble non-condensed organic carbon and associated mineral components) with deionized water or 0.5 M NaOH, sorption of these sorbates to BC was enhanced. The sorption enhancement was positively correlated with sorbate molecular size in the order of atrazine > naphthalene > nitrobenzene. The removal of LPyOC also accelerated sorption kinetics and reduced sorption irreversibility. These observations were attributed to increased accessibility of BC micropores initially clogged by the LPyOC. Comparison of BC pore size distributions before and after atrazine sorption further suggested that the sorbate molecules preferred to access the micropores that were more open, and the micropore accessibility was enhanced by the removal of LPyOC. Consistently, the sorption of nitrobenzene and atrazine to template-synthesized mesoporous carbon (CMK3), a model sorbent with homogeneous pore structures, showed decreased kinetics, but increased irreversibility by impregnating sorbent pores with surface-grafted alkylamino groups and by subsequent loading of humic acid. These findings indicated an important and previously unrecognized role of LPyOC (i.e., micropore clogging) in the nonideal sorption of organic contaminants to BC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Quantitative analysis of impact of awareness-raising activities on organic solid waste separation behaviour in Balikpapan City, Indonesia.

    Science.gov (United States)

    Murase, Noriaki; Murayama, Takehiko; Nishikizawa, Shigeo; Sato, Yuriko

    2017-10-01

    Many cities in Indonesia are under pressure to reduce solid waste and dispose of it properly. In response to this pressure, the Japan International Cooperation Agency and the Indonesian Government have implemented a solid waste separation and collection project to reduce solid waste in the target area (810 households) of Balikpapan City. We used a cluster randomised controlled trial method to measure the impact of awareness-raising activities that were introduced by the project on residents' organic solid waste separation behaviour. The level of properly separated organic solid waste increased by 6.0% in areas that conducted awareness-raising activities. Meanwhile, the level decreased by 3.6% in areas that did not conduct similar activities. Therefore, in relative comparison, awareness-raising increased the level by 9.6%. A comparison among small communities in the target area confirmed that awareness-raising activities had a significant impact on organic solid waste separation. High frequencies of monitoring at waste stations and door-to-door visits by community members had a positive impact on organic solid waste separation. A correlation between the proximity of environmental volunteers' houses to waste stations and a high level of separation was also confirmed. The awareness-raising activities introduced by the project led to a significant increase in the separation of organic solid waste.

  5. Expanded target-chemical analysis reveals extensive mixed-organic-contaminant exposure in USA streams

    Science.gov (United States)

    Bradley, Paul M.; Journey, Celeste A.; Romanok, Kristin; Barber, Larry B.; Buxton, Herbert T.; Foreman, William T.; Furlong, Edward T.; Glassmeyer, Susan T.; Hladik, Michelle L.; Iwanowicz, Luke R.; Jones, Daniel K.; Kolpin, Dana W.; Kuivila, Kathryn M.; Loftin, Keith A.; Mills, Marc A.; Meyer, Michael T.; Orlando, James L.; Reilly, Timothy J.; Smalling, Kelly L.; Villeneuve, Daniel L.

    2017-01-01

    Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66–84% of all sites. Detected contaminant concentrations varied from less than 1 ng L–1 to greater than 10 μg L–1, with 77 and 278 having median detected concentrations greater than 100 ng L–1 and 10 ng L–1, respectively. Cumulative detections and concentrations ranged 4–161 compounds (median 70) and 8.5–102 847 ng L–1, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71–82% of the variability in the total number of compounds detected (linear regression; p-values: environment application (pesticides), designed-bioactive organics (median 41 per site at μg L–1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L–1.

  6. Secondary environmental impacts of remedial alternatives for sediment contaminated with hydrophobic organic contaminants.

    Science.gov (United States)

    Choi, Yongju; Thompson, Jay M; Lin, Diana; Cho, Yeo-Myoung; Ismail, Niveen S; Hsieh, Ching-Hong; Luthy, Richard G

    2016-03-05

    This study evaluates secondary environmental impacts of various remedial alternatives for sediment contaminated with hydrophobic organic contaminants using life cycle assessment (LCA). Three alternatives including two conventional methods, dredge-and-fill and capping, and an innovative sediment treatment technique, in-situ activated carbon (AC) amendment, are compared for secondary environmental impacts by a case study for a site at Hunters Point Shipyard, San Francisco, CA. The LCA results show that capping generates substantially smaller impacts than dredge-and-fill and in-situ amendment using coal-based virgin AC. The secondary impacts from in-situ AC amendment can be reduced effectively by using recycled or wood-based virgin AC as production of these materials causes much smaller impacts than coal-based virgin AC. The secondary environmental impacts are highly sensitive to the dredged amount and the distance to a disposal site for dredging, the capping thickness and the distance to the cap materials for capping, and the AC dose for in-situ AC amendment. Based on the analysis, this study identifies strategies to minimize secondary impacts caused by different remediation activities: optimize the dredged amount, the capping thickness, or the AC dose by extensive site assessments, obtain source materials from local sites, and use recycled or bio-based AC. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Task 15 - Remediation of Organically Contaminated Soil Using Hot/Liquid (Subcritical) Water. Semiannual report, November 1, 1996-- March 31,1997

    International Nuclear Information System (INIS)

    Hawthorne, Steven B.

    1997-01-01

    This activity will perform a pilot-scale demonstration of the use of hot/liquid water for the removal of organic contaminants from soil at the pilot (20 to 40 kg) scale. Lab-scale studies will be performed to determine the optimum temperature, contact time, and flow rates for removal of the organic contaminants. Initial investigations into using carbon sorbents to clean the extractant water for recycle use and to concentrate the extracted contaminants in a small volume for disposal will also be performed

  8. Screening of inorganic and organic contaminants in floodwater in paddy fields of Hue and Thanh Hoa in Vietnam

    DEFF Research Database (Denmark)

    Trinh Thu, Ha; Marcussen, Helle; Hansen, Hans Chr. Bruun

    2017-01-01

    In the rainy season, rice growing areas in Vietnam often become flooded by up to 1.5 m water. The floodwater brings contaminants from cultivated areas, farms and villages to the rice fields resulting in widespread contamination. In 2012 and 2013, the inorganic and organic contaminants in floodwater...... was investigated in Thanh Hoa and Hue. Water samples were taken at 16 locations in canals, paddy fields and rivers before and during the flood. In total, 940 organic micro-pollutants in the water samples were determined simultaneously by GC-MS method with automatic identification and quantification system (AIQS...... detection frequency of 90%, followed by isoprothiolane (88%) and fenobucarb (71%). The results indicated that contaminants in floodwater come from untreated wastewater from villages, and the agricultural activities are the major sources of increased pesticides resuspended in the floodwater in this study....

  9. Bioremediation of soil and ground water impacted with organic contaminants

    International Nuclear Information System (INIS)

    Woods, W.B.

    1991-01-01

    Two case studies demonstrate the controlled use of micro-organisms to degrade organic contaminants under aerobic and anaerobic conditions. The aerobic study illustrates the degradation of hydrocarbons in a soil matrix. Data are presented that show a two-phase degradation of total petroleum hydrocarbons (TPH) from about 1,300 ppm TPH to cleanup levels of 100 ppm or less in two months. Total aerobic microorganism and substate-specific degrader counts were tracked throughout the study. Typical total aerobic counts of 10 6 colony forming units (CFU)/g and hydrocarbon degrader counts of 10 4 CFU/g were observed. Hydrocarbon degraders were enumerated on minimal salts media incubated in the presence of hydrocarbon vapors. The anaerobic study documents the successful use of a supplemental carbon source and fertilizers to stimulate indigenous microbe to degrade ketones. A nutrient mix of s polysaccharide, a nitrate electron acceptor and an inorganic orthophosphate was used to augment 100,000 yd 3 of soil contaminated with ketones at about 1,000 ppm. The key elements of a biotreatment project are discussed (i.e., site characterization, treatability studies, biotreatment design, site construction, system maintenance, final disposal and site closure). Lastly, the benefits of bioremediation vs. other remediation alternatives such as landfill disposal, incineration, and stabilization/fixation are discussed in terms of cost and liability

  10. Environmental contamination and transmission of Ascaris suum in Danish organic pig farms

    DEFF Research Database (Denmark)

    Katakam, Kiran K.; Thamsborg, Stig M.; Dalsgaard, Anders

    2016-01-01

    Background: Although Ascaris suum is the most common pig nematode, the on-farm transmission dynamics are not well described. Methods: We performed a 1-year field study on five organic pig farms, mapping egg contamination levels in pens and pasture soil as well as faecal egg counts in starter pigs...... % in starters, finishers, dry and lactating sows, respectively. For starters and finishers, the prevalence varied with season increasing towards the end of the year when 83-96 % of finishing pigs from each farm had fresh liver white spots. Farrowing pastures were contaminated with a mean of 78-171 larvated eggs....../kg dry soil depending on farm, while pastures for starter pigs contained 290-5397 larvated eggs/kg dry soil. The concentration of eggs in soil was highest in the autumn. Indoors, all pen areas were contaminated with A. suum eggs at comparable levels for shallow and deep litter. Overall there were 106...

  11. Quantification of fossil organic matter in contaminated sediments from an industrial watershed: Validation of the quantitative multimolecular approach by radiocarbon analysis

    International Nuclear Information System (INIS)

    Jeanneau, Laurent; Faure, Pierre

    2010-01-01

    The quantitative multimolecular approach (QMA) based on an exhaustive identification and quantification of molecules from the extractable organic matter (EOM) has been recently developed in order to investigate organic contamination in sediments by a more complete method than the restrictive quantification of target contaminants. Such an approach allows (i) the comparison between natural and anthropogenic inputs, (ii) between modern and fossil organic matter and (iii) the differentiation between several anthropogenic sources. However QMA is based on the quantification of molecules recovered by organic solvent and then analyzed by gas chromatography-mass spectrometry, which represent a small fraction of sedimentary organic matter (SOM). In order to extend the conclusions of QMA to SOM, radiocarbon analyses have been performed on organic extracts and decarbonated sediments. This analysis allows (i) the differentiation between modern biomass (contemporary 14 C) and fossil organic matter ( 14 C-free) and (ii) the calculation of the modern carbon percentage (PMC). At the confluence between Fensch and Moselle Rivers, a catchment highly contaminated by both industrial activities and urbanization, PMC values in decarbonated sediments are well correlated with the percentage of natural molecular markers determined by QMA. It highlights that, for this type of contamination by fossil organic matter inputs, the conclusions of QMA can be scaled up to SOM. QMA is an efficient environmental diagnostic tool that leads to a more realistic quantification of fossil organic matter in sediments.

  12. Efficient Separations and Processing Crosscutting Program. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    The Efficient Separations and Processing (ESP) Crosscutting Program was created in 1991 to identify, develop, and perfect separations technologies and processes to treat wastes and address environmental problems throughout the DOE Complex. The ESP funds several multi-year tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESP supports applied research and development (R and D) leading to demonstration or use of these separations technologies by other organizations within DOE-EM. Treating essentially all DOE defense wastes requires separation methods that concentrate the contaminants and/or purify waste streams for release to the environment or for downgrading to a waste form less difficult and expensive to dispose of. Initially, ESP R and D efforts focused on treatment of high-level waste (HLW) from underground storage tanks (USTs) because of the potential for large reductions in disposal costs and hazards. As further separations needs emerge and as waste management and environmental restoration priorities change, the program has evolved to encompass the breadth of waste management and environmental remediation problems

  13. Synergistic extraction of transition metal cations from aqueous media by two separated organic phases

    International Nuclear Information System (INIS)

    Goldberg, I.

    1991-12-01

    We have therefore initiated novel approaches to the study of the mechanism of the synergistic extraction of metal ions by means of two separated organic phases, which are brought in contact with the same aqueous phase. The present work is concerned with the extraction of transition metals and actinides ions from nitric acid by chelating agents e.g., HTTA thenoyltrifluoroacetone in a diluent - the first organic phase, and by natural donor, e.g., TBP, tri-butyl phosphate in a diluent the second organic phase. The adduct formation was studied by means of spectrochemical and radiochemical methods. In the first approach the aqueous phase was attacked with both organic phases simultanously (the static or parallel extraction). In this method organic phase are separated one from the other. It was shown that even in the absence of mixing, synergism is observed under this experimental conditions. The results indicate, that adduct formation occurs in both organic phases. Nevertheless the enhanchment of extraction in the TBP phase is by far greater than that in the HTTA containing phase. This approach has one disadvatage, viz., the experiments are very time consuming, a typical experiment requiring over 10 days. In order to overcome this difficulty, the following experiments were carried out: the aqueous phase were first shaken with diluent containing an anionic ligand and the phases were allowed to separate. Then the aqueous solution were shaken with diluent containing a netural donor and the phase again were allowed to separate. The concentration of the metal ions in all the phases were determined. The experiments were repeated with an other diluent replacing the first diluent in one or both organic phases. In this way eight sequences of experiments were carried out for each concentration set chosen. The results thus point out that this experimental approach open new possibilities to investigate the mechanism and the kinetics of synergistic extraction processes. (author) the

  14. Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils

    International Nuclear Information System (INIS)

    Dumat, C.; Quenea, K.; Bermond, A.; Toinen, S.; Benedetti, M.F.

    2006-01-01

    The role of metals in the behaviour of soil organic matter (SOM) is not well documented. Therefore, we investigated the influence of metals (Pb, Zn, Cu and Cd) on the dynamic of SOM in contaminated soils where maize (C 4 plant) replaced C 3 cultures. Three pseudogley brown leached soil profiles under maize with a decreasing gradient in metals concentrations were sampled. On size fractions, stable carbon isotopic ratio (δ 13 C), metals, organic carbon and nitrogen concentrations were measured in function of depth. The determined sequence for the amount of C 4 organic matter in the bulk fractions: M 3 (0.9) > M 2 (0.4) > M 1 (0.3) is in agreement with a significant influence of metals on the SOM turnover. New C 4 SOM, mainly present in the labile coarser fractions and less contaminated by metals than the stabilised C 3 SOM of the clay fraction, is more easily degraded by microorganisms. - Measure of δ 13 C and total metal concentrations in size fractions of contaminated soils suggests an influence of metals on the soil organic matter dynamic

  15. Biodegradation of organ chlorine pesticides in contaminated soil collected from Yen Tap, Cam Khe, Phu Tho

    International Nuclear Information System (INIS)

    Nguyen Thuy Binh; Nguyen Van Toan; Pham Thi Thai; Dinh Thi Thu Hang

    2007-01-01

    Biodegradation of POPs contaminant in soil collected from Phu Tho province and Nghe An province had carried out. The process comprises treating soil, which contains anaerobic and aerobic microbes capable of transforming lindane and DDT into harmless material and being under anaerobic and aerobic steps. Significant biodegradation of POPs contaminants occurred in there tests. But some of toxic organic compounds remained. (author)

  16. Decontaminating method for radioactive contaminant

    International Nuclear Information System (INIS)

    Suzuki, Ken-ichi.

    1994-01-01

    After decontamination of radioactive contaminates with d-limonene, a radioactive material separating agent not compatible with liquid wastes caused by decontamination is added to the liquid wastes. Then after stirring, they are stood still to be separated into two phases, and the radioactive materials in the liquid waste phase caused by decontamination are transferred to the phase of the radioactive material separating agent. With such procedures, they can satisfactorily be separated into two phases of d-limonene and the radioactive material separating agent. Further, d-limonene remaining after the separation can be used again as a decontaminating agent for radioactive contaminates. Therefore, the amount of d-limonene to be used can be reduced, to lower the cost for cleaning, thereby enabling to reduce the amount of radioactive wastes formed. (T.M.)

  17. Parasitic Contamination of Raw Vegetables in Zanjan Markets, Iran

    Directory of Open Access Journals (Sweden)

    Negin Torabi

    2016-09-01

    Full Text Available Background: Complex surface of vegetables facilitate attachment and transmission of several pathogens. No previous study has been conducted in survey of parasitic contamination of vegetables in Zanjan. This study aimed to detect the parasitic contamination in common raw vegetables in Zanjan markets. Methods: A total of 352 raw vegetable samples, including leek, parsley, basil, mint, radish, cress and dill were collected from grocery stores using cluster sampling in different regions of the city during 2014. The edible parts of vegetables were separated and immersed in normal saline solution. Floating vegetables were removed and the solution was allowed to sediment at room temperature for 24 hours. The pellet was examined following sedimentation and floatation methods. Results:Various Organisms were detected in 54% (190 of the 352 samples, but only 2.8% of samples had pathogenic parasites including; Trichostrongylus eggs (3, Hookworm eggs (2, Eimeria oocysts (2, Sarcocystis oocyst (1, Strongyloides larvae (1, and Fasciola eggs (1. The contamination rate of vegetables was highest (90.4% in the fall (p˂0.05. Conclusion: Vegetable contamination with parasitic organisms in this area was low, maybe due to irrigation of vegetables with sources other than sewage water, but it is still necessary to improve sanitary conditions of vegetables.

  18. Remediation of Biological Organic Fertilizer and Biochar in Paddy Soil Contaminated by Cd and Pb

    Directory of Open Access Journals (Sweden)

    MA Tie-zheng

    2015-02-01

    Full Text Available The effect of application of biological organic fertilizer and biochar on the immobilized remediation of paddy soil contaminated by Cd and Pb was studied under the field experiment. The results showed that biological organic fertilizer and biochar increased the soil pH and soil nutrient contents, and reduced the soil available Cd and Pb concentrations significantly. The soil pH had significantly negative correla-tion with the soil available Cd and Pb contents. The application of biological organic fertilizer and biochar decreased Cd and Pb concentration in all parts of the rice plant, with Cd concentration in brown rice decrease by 22.00% and 18.34% and Pb decease in brown rice by 33.46% and 12.31%. The concentration of Cd and Pb in brown rice had significant positive correlation with the soil available Cd and Pb concentra-tions. It was observed that both biological organic fertilizer and biochar had a positive effect on the remediation of paddy soil contaminated by Cd and Pb.

  19. Membrane Separation of 2-Ethyl Hexyl Amine/1-Decene

    KAUST Repository

    Bawareth, Bander

    2012-12-01

    1-Decene is a valuable product in linear alpha olefins plants that is contaminated with 2-EHA (2-ethyl hexyl amine). Using organic solvent nanofiltration membranes for this separation is quite challengeable. A membrane has to be a chemically stable in this environment with reasonable and stable separation factor. This paper shows that Teflon AF 2400 and cellulose acetate produced interesting results in 1-decene/2-EHA separation. The separation factor of Teflon AF 2400 is 3 with a stable permeance of 1.1x10-2 L/(m2·h·bar). Likewise, cellulose acetate gave 2-EHA/1-decene separation factor of 2 with a lower permeance of 3.67x10-3 L/(m2·h·bar). A series of hydrophilic membranes were tested but they did not give any separation due to high degree of swelling of 2-EHA with these polymers. The large swelling causes the membrane to lose its diffusivity selectivity because of an increase in the polymer\\'s chain mobility.

  20. Application of Homochiral Alkylated Organic Cages as Chiral Stationary Phases for Molecular Separations by Capillary Gas Chromatography.

    Science.gov (United States)

    Xie, Shengming; Zhang, Junhui; Fu, Nan; Wang, Bangjin; Hu, Cong; Yuan, Liming

    2016-11-08

    Molecular organic cage compounds have attracted considerable attention due to their potential applications in gas storage, catalysis, chemical sensing, molecular separations, etc. In this study, a homochiral pentyl cage compound was synthesized from a condensation reaction of ( S , S )-1,2-pentyl-1,2-diaminoethane and 1,3,5-triformylbenzene. The imine-linked pentyl cage diluted with a polysiloxane (OV-1701) was explored as a novel stationary phase for high-resolution gas chromatographic separation of organic compounds. Some positional isomers were baseline separated on the pentyl cage-coated capillary column. In particular, various types of enantiomers including chiral alcohols, esters, ethers and epoxides can be resolved without derivatization on the pentyl cage-coated capillary column. The reproducibility of the pentyl cage-coated capillary column for separation was investigated using nitrochlorobenzene and styrene oxide as analytes. The results indicate that the column has good stability and separation reproducibility after being repeatedly used. This work demonstrates that molecular organic cage compounds could become a novel class of chiral separation media in the near future.

  1. Application of Homochiral Alkylated Organic Cages as Chiral Stationary Phases for Molecular Separations by Capillary Gas Chromatography

    Directory of Open Access Journals (Sweden)

    Shengming Xie

    2016-11-01

    Full Text Available Molecular organic cage compounds have attracted considerable attention due to their potential applications in gas storage, catalysis, chemical sensing, molecular separations, etc. In this study, a homochiral pentyl cage compound was synthesized from a condensation reaction of (S,S-1,2-pentyl-1,2-diaminoethane and 1,3,5-triformylbenzene. The imine-linked pentyl cage diluted with a polysiloxane (OV-1701 was explored as a novel stationary phase for high-resolution gas chromatographic separation of organic compounds. Some positional isomers were baseline separated on the pentyl cage-coated capillary column. In particular, various types of enantiomers including chiral alcohols, esters, ethers and epoxides can be resolved without derivatization on the pentyl cage-coated capillary column. The reproducibility of the pentyl cage-coated capillary column for separation was investigated using nitrochlorobenzene and styrene oxide as analytes. The results indicate that the column has good stability and separation reproducibility after being repeatedly used. This work demonstrates that molecular organic cage compounds could become a novel class of chiral separation media in the near future.

  2. Certified reference materials for organic contaminants for use in monitoring of the aquatic environment

    NARCIS (Netherlands)

    Boer, de J.; McGovern, E.

    2001-01-01

    Over the last three decades organic contaminants have been of increasing importance in environmental monitoring. Dioxins, furans, polychlorinated biphenyls and organochlorine pesticides have determined the environmental research agenda. This has led to an increasing demand for certified reference

  3. Real-time detection of organic contamination events in water distribution systems by principal components analysis of ultraviolet spectral data.

    Science.gov (United States)

    Zhang, Jian; Hou, Dibo; Wang, Ke; Huang, Pingjie; Zhang, Guangxin; Loáiciga, Hugo

    2017-05-01

    The detection of organic contaminants in water distribution systems is essential to protect public health from potential harmful compounds resulting from accidental spills or intentional releases. Existing methods for detecting organic contaminants are based on quantitative analyses such as chemical testing and gas/liquid chromatography, which are time- and reagent-consuming and involve costly maintenance. This study proposes a novel procedure based on discrete wavelet transform and principal component analysis for detecting organic contamination events from ultraviolet spectral data. Firstly, the spectrum of each observation is transformed using discrete wavelet with a coiflet mother wavelet to capture the abrupt change along the wavelength. Principal component analysis is then employed to approximate the spectra based on capture and fusion features. The significant value of Hotelling's T 2 statistics is calculated and used to detect outliers. An alarm of contamination event is triggered by sequential Bayesian analysis when the outliers appear continuously in several observations. The effectiveness of the proposed procedure is tested on-line using a pilot-scale setup and experimental data.

  4. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence

    International Nuclear Information System (INIS)

    Lapworth, D.J.; Baran, N.; Stuart, M.E.; Ward, R.S.

    2012-01-01

    Emerging organic contaminants (EOCs) detected in groundwater may have adverse effects on human health and aquatic ecosystems. This paper reviews the existing occurrence data in groundwater for a range of EOCs including pharmaceutical, personal care, ‘life-style’ and selected industrial compounds. The main sources and pathways for organic EOCs in groundwater are reviewed, with occurrence data for EOCs in groundwater included from both targeted studies and broad reconnaissance surveys. Nanogram-microgram per litre concentrations are present in groundwater for a large range of EOCs as well as metabolites and transformation products and under certain conditions may pose a threat to freshwater bodies for decades due to relatively long groundwater residence times. In the coming decades, more of these EOCs are likely to have drinking water standards, environmental quality standards and/or groundwater threshold values defined, and therefore a better understanding of the spatial and temporal variation remains a priority. - Highlights: ► First review to focus on EOCs in groundwater. ► A large range (n > 180) of EOCs are detected in groundwater. ► Significant concentrations (10 2 –10 4 ng/L) for a range of EOCs, including endocrine disruptors. ► Groundwater EOC occurrence is poorly characterised compared to other freshwater resources. - A large range of emerging organic contaminants are now being detected in groundwater as a result of recent and historical anthropogenic activities.

  5. Variation in pH of Model Secondary Organic Aerosol during Liquid-Liquid Phase Separation.

    Science.gov (United States)

    Dallemagne, Magda A; Huang, Xiau Ya; Eddingsaas, Nathan C

    2016-05-12

    The majority of atmospheric aerosols consist of both organic and inorganic components. At intermediate relative humidity (RH), atmospheric aerosol can undergo liquid-liquid phase separation (LLPS) in which the organic and inorganic fractions segregate from each other. We have extended the study of LLPS to the effect that phase separation has on the pH of the overall aerosols and the pH of the individual phases. Using confocal microscopy and pH sensitive dyes, the pH of internally mixed model aerosols consisting of polyethylene glycol 400 and ammonium sulfate as well as the pH of the organic fraction during LLPS have been directly measured. During LLPS, the pH of the organic fraction was observed to increase to 4.2 ± 0.2 from 3.8 ± 0.1 under high RH when the aerosol was internally mixed. In addition, the high spatial resolution of the confocal microscope allowed us to characterize the composition of each of the phases, and we have observed that during LLPS the organic shell still contains large quantities of water and should be characterized as an aqueous organic-rich phase rather than simply an organic phase.

  6. Porous anionic indium-organic framework with enhanced gas and vapor adsorption and separation ability.

    Science.gov (United States)

    Huang, Yuanbiao; Lin, Zujin; Fu, Hongru; Wang, Fei; Shen, Min; Wang, Xusheng; Cao, Rong

    2014-09-01

    A three-dimensional microporous anionic metal-organic framework (MOF) (Et4N)3[In3(TATB)4] (FJI-C1, H3TATB=4,4',4''-s-triazine-2,4,6-triyltribenzoic acid) with large unit cell volume has been synthesized. Assisted by the organic cation group Et4N in the pores of the compound, FJI-C1 not only shows high adsorption uptakes of C2 and C3 hydrocarbons, but also exhibits highly selective separation of propane, acetylene, ethane, and ethylene from methane at room temperature. Furthermore, it also exhibits high separation selectivity for propane over C2 hydrocarbons and acetylene can be readily separated from their C2 hydrocarbons mixtures at low pressure due to the high selectivity for C2H2 in comparison to C2H4 and C2H6. In addition, FJI-C1 with hydrophilic internal pores surfaces shows highly efficient adsorption separation of polar molecules from nonpolar molecules. Notably, it exhibits high separation selectivity for benzene over cyclohexane due to the π-π interactions between benzene molecules and s-triazine rings of the porous MOF. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The use of passive membrane samplers to assess organic contaminant inputs at five coastal sites in west Maui, Hawaii

    Science.gov (United States)

    Campbell, Pamela L.; Prouty, Nancy G.; Storlazzi, Curt; D'antonio, Nicole

    2017-07-26

    Five passive membrane samplers were deployed for 28 continuous days at select sites along and near the west Maui coastline to assess organic compounds and contaminant inputs to diverse, shallow coral reef ecosystems. Daily and weekly fluctuations in such inputs were captured on the membranes using integrative sampling. The distribution of organic compounds observed at these five coastal sites showed considerable variation; with high concentrations of terrestrially sourced organic compounds such as C29 sterols and high molecular weight n-alkanes at the strongly groundwater-influenced Kahekili vent site. In comparison, the coastal sites were presumably influenced more by seasonal surface and stream water runoff and therefore had marine-sourced organic compounds and fewer pharmaceuticals and personal care products. The direct correlation to upstream land-use practices was not obvious and may require additional wet-season sampling. Pharmaceuticals and personal care products as well as flame retardants were detected at all sites, and the Kahekili vent site had the highest number of detections. Planned future work must also determine the organic compound and contaminant concentrations adsorbed onto water column particulate matter, because it may also be an important vector for contaminant transport to coral reef ecosystems. The impact of contaminants per individual (such as fecundity and metabolism) as well as per community (such as species abundance and diversity) is necessary for an accurate assessment of environmental stress. Results presented herein provide current contaminant inputs to select nearshore environments along the west Maui coastline captured during the dry season, and they can be useful to aid potential future evaluations and (or) comparisons.

  8. Occurrence, distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland in Singapore.

    Science.gov (United States)

    Wang, Qian; Kelly, Barry C

    2017-09-01

    This study involved a field-based investigation to assess the occurrence, distribution and bioaccumulation behaviour of hydrophobic organic contaminants in a large-scale constructed wetland. Samples of raw leachate, water and wetland plants, Typha angustifolia, were collected for chemical analysis. Target contaminants included polychlorinated biphenyls (PCBs), organochlorine pesticides (OCP), as well as several halogenated flame retardants (HFRs) and personal care products (triclosan and synthetic musks). In addition to PCBs and OCPs, synthetic musks, triclosan (TCS) and dechlorane plus stereoisomers (syn- and anti-DPs) were frequently detected. Root concentration factors (log RCF L/kg wet weight) of the various contaminants ranged between 3.0 and 7.9. Leaf concentration factors (log LCF L/kg wet weight) ranged between 2.4 and 8.2. syn- and anti-DPs exhibited the greatest RCF and LCF values. A strong linear relationship was observed between log RCF and octanol-water partition coefficient (log K OW ). Translocation factors (log TFs) were negatively correlated with log K OW . The results demonstrate that more hydrophobic compounds exhibit higher degrees of partitioning into plant roots and are less effectively transported from roots to plant leaves. Methyl triclosan (MTCS) and 2,8-dichlorodibenzo-p-dioxin (DCDD), TCS degradation products, exhibited relatively high concentrations in roots and leaves., highlighting the importance of degradation/biotransformation. The results further suggest that Typha angustifolia in this constructed wetland can aid the removal of hydrophobic organic contaminants present in this landfill leachate. The findings will aid future investigations regarding the fate and bioaccumulation of hydrophobic organic contaminants in constructed wetlands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. An investigation of groundwater organics, soil minerals, and activated carbon on the complexation, adsorption, and separation of technetium-99

    International Nuclear Information System (INIS)

    Gu, B.

    1996-01-01

    This report summarizes studies on the interactions of technetium-99 (Tc) with different organic compounds and soil minerals under both oxidizing and reducing conditions. The report is divided into four parts and includes (1) effect of natural organic matter (NOM) on the complexation and solubility of Tc, (2) complexation between Tc and trichloroethylene (TCE) in aqueous solutions, (3) adsorption of Tc on soil samples from Paducah Gaseous Diffusion Plant (PGDP), and (4) adsorption and separation of Tc on activated carbon. Various experimental techniques were applied to characterize and identify Tc complexation with organic compounds and TCE, including liquid-liquid extraction, membrane filtration, size exclusion, and gel chromatography. Results indicate, within the experimental error, Tc (as pertechnetate, TcO 4 ) did not appear to form complexes with groundwater or natural organic matter under both atmospheric and reducing conditions. However, Tc can form complexes with certain organic compounds or specific functional groups such as salicylate. Tc did not appear to form complexes with TCE in aqueous solution.Both liquid-liquid extraction and high performance liquid chromatography (HPLC) gave no indication Tc was complexed with TCE. The correlations between Tc and TCE concentrations in monitoring wells at PGDP may be a coincidence because TCE was commonly used as a decontamination reagent. Once TCE and Tc entered the groundwater, they behaved similarly because both TcO 4 - and TCE are poorly adsorbed by soils. An effective remediation technique to remove TcO 4 - from PGDP contaminated groundwater is needed. One possibility is the use of an activated carbon adsorption technique developed in this study

  10. Estimating the fates of organic contaminants in an aquifer using QSAR.

    Science.gov (United States)

    Lim, Seung Joo; Fox, Peter

    2013-01-01

    The quantitative structure activity relationship (QSAR) model, BIOWIN, was modified to more accurately estimate the fates of organic contaminants in an aquifer. The predictions from BIOWIN were modified to include oxidation and sorption effects. The predictive model therefore included the effects of sorption, biodegradation, and oxidation. A total of 35 organic compounds were used to validate the predictive model. The majority of the ratios of predicted half-life to measured half-life were within a factor of 2 and no ratio values were greater than a factor of 5. In addition, the accuracy of estimating the persistence of organic compounds in the sub-surface was superior when modified by the relative fraction adsorbed to the solid phase, 1/Rf, to that when modified by the remaining fraction of a given compound adsorbed to a solid, 1 - fs.

  11. EFFECT OF CONTAMINANT AND ORGANIC MATTER BIOAVAILABILITY ON THE MICROBIAL DEHALOGENATION OF SEDIMENT-BOUND CHLOROBENZENES. (R825513C007)

    Science.gov (United States)

    The extent of reductive dechlorination occurring in contaminated, estuarine sediments was investigated. Contaminant and organic matter bioavailability and their effect on the reductive dechlorination of sediment-bound chlorobenzenes was the main focus of the work presented her...

  12. Treatment of organic aromatic contaminants in soil with fungi and biochar

    OpenAIRE

    Anasonye, Festus

    2017-01-01

    Soils that are contaminated with organic aromatic compounds such as polyaromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and 2,4,6-trinitrotoluene (TNT) have previously been treated by combustion at elevated temperatures. Although, combustion is effective, it is expensive due to high energy and equipment requirements. However, innovative technologies such as the use of fungi and/or biochar can offer an alternative option that is friendly to the envir...

  13. Study on the metabolism of contamination of radioactive materials in organism by autoradiographic techniques

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Zhang Lansheng; Kang Baoan

    1988-08-01

    The metabolism of contamination of radioactive materials in organism was studied by diferent types of autoradiographic techniques, such as: (1) in body level by whole-body autoradiography; (2) in organ level by whole-organ autoradiography; (3) in cellular level by microautoradiography; (4) in subcellular level by electron microscopic autoradiography; (5) in combinative form by tissue fixative autoradiography; (6) in ionizing form by freezing autoradiography; (7) for radioactive mateials with two radionuclides by double radionuclide autoradiography; (8) for radioactive materials with low level of radionuclides by fluorescence sensitization autoradiography; (9) in dissociative products by chromatographic autoradiography

  14. Selected trace-element and organic contaminants in the streambed sediments of the Potomac River Basin, August 1992

    Science.gov (United States)

    Gerhart, James M.; Blomquist, Joel D.

    1995-01-01

    This report describes the occurrence and distribution of five selected contaminants in streambed sediments at 22 stream sites in the Potomac River Basin. Lead, mercury, and total DDT (dichlorodiphenyltrichloroethane) were detected at all sites, and chlordane and total PCB's (polychlorinated biphenyls) were detected at most sites. At six sites, streambed-sediment concentrations of contaminants were detected at levels with the potential to cause frequent adverse effects on aquatic organisms that live in the sediments. Chlordane was detected at these high levels at sampling sites on the Anacostia River, the North Branch Potomac River, Bull Run, and Accotink Creek; mercury was detected at these levels at sites on the South River and the South Fork Shenandoah River; and total PCB's were detected at these levels at the site on the South Fork Shenandoah River. The highest concentrations of all five contaminants generally occurred at sampling sites downstream from areas with industrial plants, urban centers, or orchard and agricultural activity. The occurrence of these contaminants in streambed sediments of the Potomac River Basin is of concern because the contaminants (1) are environmentally persistent, (2) are available for downstream transport during high streamflow periods, and (3) have the potential to cause adverse effects on the health of aquatic organisms and humans through bioaccumulation.

  15. Enhanced degradation of organic contaminants in water by peroxydisulfate coupled with bisulfite

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Chengdu, E-mail: qichengdu@mail.tsinghua.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), Beijing Key Laboratory for Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing 100084 (China); Liu, Xitao, E-mail: liuxt@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Li, Yang; Lin, Chunye; Ma, Jun; Li, Xiaowan; Zhang, Huijuan [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2017-04-15

    Highlights: • S(IV)/PDS system showed synergistic degradation of BPA than S(IV) and PDS. • BPA degradation involved hydroxyl and oxysulfur radicals in the S(IV)/PDS system. • Based on the identified intermediates, the BPA degradation pathway was proposed. - Abstract: In this study, the bisulfite-peroxydisulfate system (S(IV)/PDS) widely used in polymerization was innovatively applied for organic contaminants degradation in water. The addition of S(IV) into PDS system remarkably enhanced the degradation efficiency of bisphenol A (BPA, a frequently detected endocrine disrupting chemical in the environments) from 17.0% to 84.7% within 360 min. The degradation efficiency of BPA in the S(IV)/PDS system followed pseudo-first-order kinetics, with rate constant values ranging from 0.00005 min{sup −1} to 0.02717 min{sup −1} depending on the operating parameters, such as the initial S(IV) and PDS dosage, solution pH, reaction temperature, chloride and water type. Furthermore, nitrogen purging experiment, radical scavenging experiment and electron spin resonance (ESR) analysis were used to elucidate the possible mechanism. The results revealed that sulfate radical was the dominant reactive species in the S(IV)/PDS system. Finally, based on the results of liquid chromatography–mass spectrometry (LC–MS) and gas chromatography–mass spectrometry (GC–MS), the BPA degradation pathway was proposed to involve β-scission (C−C), hydroxylation, dehydration, oxidative skeletal rearrangement, and ring opening. This study helps to characterize the combination of PDS and inorganic S(IV), a common industrial contaminant, to generate reactive species to enhance organic contaminants degradation in water.

  16. Application of hazard analysis critical control points (HACCP) to organic chemical contaminants in food.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-03-01

    Hazard Analysis Critical Control Points (HACCP) is a systematic approach to the identification, assessment, and control of hazards that was developed as an effective alternative to conventional end-point analysis to control food safety. It has been described as the most effective means of controlling foodborne diseases, and its application to the control of microbiological hazards has been accepted internationally. By contrast, relatively little has been reported relating to the potential use of HACCP, or HACCP-like procedures, to control chemical contaminants of food. This article presents an overview of the implementation of HACCP and discusses its application to the control of organic chemical contaminants in the food chain. Although this is likely to result in many of the advantages previously identified for microbiological HACCP, that is, more effective, efficient, and economical hazard management, a number of areas are identified that require further research and development. These include: (1) a need to refine the methods of chemical contaminant identification and risk assessment employed, (2) develop more cost-effective monitoring and control methods for routine chemical contaminant surveillance of food, and (3) improve the effectiveness of process optimization for the control of chemical contaminants in food.

  17. Technology for reuse of contaminated concrete constituents

    International Nuclear Information System (INIS)

    Binkhorst, I.P.; Cornelissen, H.A.W.

    1998-01-01

    During decommissioning activities of nuclear installations, large amounts of contaminated concrete will have to be processed. All this concrete has to be treated and stored as radioactive waste, which implies major economical and environmental consequences. It was shown that the contamination is mainly concentrated in the porous cement stone. By separating this cement stone from the clean dense aggregate particles, a considerable volume reduction can be reached. KEMA has developed, designed and constructed a pilot plant scale test installation for separation of aggregate from contaminated concrete. The separation is based on a thermal treatment followed by milling and sieving. The clean aggregate can be re-used in concrete, whereas the (slightly) contaminated cement stone could be upgraded to a binder for concrete used in the nuclear industry. (author)

  18. Geochemical and mineralogical investigation of uranium in multi-element contaminated, organic-rich subsurface sediment

    International Nuclear Information System (INIS)

    Qafoku, Nikolla P.; Gartman, Brandy N.; Kukkadapu, Ravi K.; Arey, Bruce W.; Williams, Kenneth H.; Mouser, Paula J.; Heald, Steve M.; Bargar, John R.; Janot, Noémie; Yabusaki, Steve; Long, Philip E.

    2014-01-01

    Highlights: • Subsurface naturally reduced zones (NRZ) contain U and other potential co-contaminants. • The NRZ has a remarkable assortment of chemically complex, potential U hosts. • Micron-scale, multi-contaminant areas were discovered in NRZ. • U(IV) occurs as biogenic UO 2 (82%), or biomass – bound monomeric U(IV) (18%). • NRZs may exhibit contaminant sink-source complex behavior. - Abstract: Subsurface regions of alluvial sediments characterized by an abundance of refractory or lignitic organic carbon compounds and reduced Fe and S bearing minerals, which are referred to as naturally reduced zones (NRZ), are present at the Integrated Field Research Challenge site in Rifle, CO (a former U mill site), and other contaminated subsurface sites. A study was conducted to demonstrate that the NRZ contains a variety of contaminants and unique minerals and potential contaminant hosts, investigate micron-scale spatial association of U with other co-contaminants, and determine solid phase-bounded U valence state and phase identity. The NRZ sediment had significant solid phase concentrations of U and other co-contaminants suggesting competing sorption reactions and complex temporal variations in dissolved contaminant concentrations in response to transient redox conditions, compared to single contaminant systems. The NRZ sediment had a remarkable assortment of potential contaminant hosts, such as Fe oxides, siderite, Fe(II) bearing clays, rare solids such as ZnS framboids and CuSe, and, potentially, chemically complex sulfides. Micron-scale inspections of the solid phase showed that U was spatially associated with other co-contaminants. High concentration, multi-contaminant, micron size (ca. 5–30 μm) areas of mainly U(IV) (53–100%) which occurred as biogenic UO 2 (82%), or biomass – bound monomeric U(IV) (18%), were discovered within the sediment matrix confirming that biotically induced reduction and subsequent sequestration of contaminant U(VI) via

  19. Development of a lab-scale contaminated organic effluents treatment process using evaporation and supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Turc, H.A.; Joussot-Dubien, C

    2004-07-01

    The organic liquid waste produced in the ATALANTE facility have to be treated in order to reduce the fire and contamination risks. Therefore, the Mini-DELOS process has been developed, which combines a low pressure evaporator in a shielded enclosure and a continuous supercritical water oxidation (SCWO) reactor in a glovebox. Evaporation makes it possible to evacuate the main organic stream as decontaminated distillates to an industrial incinerator. The remaining residue, concentrating the radioactivity can be converted through SCWO into a contaminated aqueous effluent, fully compatible with the existing outlets of the facility. The preliminary results of the first year of active operation of the Mini- DELOS process are here presented. (authors)

  20. Resuspended contaminated sediments cause sublethal stress to oysters: A biomarker differentiates total suspended solids and contaminant effects.

    Science.gov (United States)

    Edge, Katelyn J; Dafforn, Katherine A; Simpson, Stuart L; Ringwood, Amy H; Johnston, Emma L

    2015-06-01

    Resuspended contaminated sediments represent an important route of contaminant exposure for aquatic organisms. During resuspension events, filter-feeding organisms are exposed to contaminants, in both the dissolved form (at the gills) and the particulate form (in the digestive system). In addition, these organisms must manage the physical stress associated with an increase in total suspended solids (TSS). To date, few studies have experimentally compared the contributions to biological stress of contaminated and clean suspended solids. The authors mixed field-collected sediments (cellular biomarkers (lysosomal membrane stability, lipid peroxidation, and glutathione) were measured to evaluate sublethal toxicity. Lysosomal membrane stability was the most sensitive biomarker for distinguishing effects from resuspended contaminated sediments, as increasing amounts of contaminated TSS increased lysosomal membrane destabilization. The authors' results illustrate the importance of considering contaminant exposures from resuspended sediments when assessing the toxicity of contaminants to aquatic organisms. © 2015 SETAC.

  1. Enhancement of biomembrane functions under phase-separated conditions: A self-organized criticality phenomenon?

    International Nuclear Information System (INIS)

    Eze, M.O.; Chela Flores, J.

    1993-12-01

    Self-organized criticality (SOC) is hereby proposed as a possible physical basis for explaining observations in the temperature-dependence of the rates of biological membrane-associated events. The biomembrane undergoes a reversible, cooperative, thermotropic gel-to-liquid crystalline phase transition which is broad, and involves lateral phase separation. The lateral phase separated (rather than the totally gel-, or the totally liquid crystalline-) membrane state has been observed to be the state in which vital membrane functions are facilitated. The membrane in this unique state is viewed, for our purposes here, as a dynamical, extended dissipative system with spatial and temporal degrees of freedom, exhibiting power law behaviour, typical of the self-organized critical state. Experiments are suggested for verifying this hypothesis. (author). 30 refs

  2. Application of groundwater residence time tracers and broad screening for micro-organic contaminants in the Indo-Gangetic aquifer system

    Science.gov (United States)

    Lapworth, Dan; Das, Prerona; Mukherjee, Abhijit; Petersen, Jade; Gooddy, Daren; Krishan, Gopal

    2017-04-01

    Groundwater abstracted from aquifers underlying urban centres across India provide a vital source of domestic water. Abstraction from municipal and private supplies is considerable and growing rapidly with ever increasing demand for water from expanding urban populations. This trend is set to continue. The vulnerability of deeper aquifers (typically >100 m below ground) used for domestic water to contamination migration from often heavily contaminated shallow aquifer systems has not been studies in detail in India. This paper focusses on the occurrence of micro-organic contaminants within sedimentary aquifers beneath urban centres which are intensively pumped for drinking water and domestic use. New preliminary results from a detailed case study undertaken across Varanasi, a city with an estimated population of ca. 1.5 million in Uttar Pradesh. Micro -organic groundwater quality status and evolution with depth is investigated through selection of paired shallow and deep sites across the city. These results are considered within the context of paired groundwater residence time tracers within the top 150m within the sedimentary aquifer system. Groundwater emerging contaminant results are compared with surface water quality from the Ganges which is also used for drinking water supply. Broad screening for >800 micro-organic compounds was undertaken. Age dating tools were employed to constrain and inform a conceptual model of groundwater recharge and contaminant evolution within the sedimentary aquifer system.

  3. Morin-based nanofiltration membranes for organic solvent separation processes

    KAUST Repository

    Perez Manriquez, Liliana

    2018-02-26

    In this work we demonstrate the successful optimization of the interfacial polymerization reaction for the manufacture of organic solvent nanofiltration membranes by replacing the toxic amines commonly used for this method with the natural occurring bio-polyphenol morin. For the manufacture of this type of OSN membrane a crosslinked PAN support was coated by interfacial polymerization using morin as the monomer of the aqueous phase and terephtaloyl chloride as the monomer of the organic phase. These membranes showed an exceptional performance and resistance to NMP by having a a permeance of 0.3L/m2 h bar in NMP with a rejection of 96% of Brilliant Blue dye which has a molecular weight of 825.97g/mol, making these membranes attractive for harsh industrial separation processes due to their ease of manufacture, low cost, and excellent performance.

  4. Specific oriented metal-organic framework membranes and their facet-tuned separation performance.

    Science.gov (United States)

    Mao, Yiyin; Su, Binbin; Cao, Wei; Li, Junwei; Ying, Yulong; Ying, Wen; Hou, Yajun; Sun, Luwei; Peng, Xinsheng

    2014-09-24

    Modulating the crystal morphology, or the exposed crystal facets, of metal-organic frameworks (MOFs) expands their potential applications in catalysis, adsorption, and separation. In this article, by immobilizing the citrate modulators on Au nanoparticles and subsequently being fixed on solid copper hydroxide nanostrands, a well-intergrown and oriented HKUST-1 cube crystal membrane was formed at room temperature. In contrast, in the absence of Au nanoparticles, well-intergrown and oriented cuboctahedron and octahedron membranes were formed in water/ethanol and ethanol, respectively. The gas separation performances of these HKUST-1 membranes were tuned via their exposed facets with defined pore sizes. The HKUST-1 cube membrane with exposed {001} facets demonstrated the highest permeance but lowest gas binary separation factors, while the octahedron membrane with exposed {111} facets presented the highest separation factors but lowest permeance, since the window size of {111} facets is 0.46 nm which is smaller than 0.9 nm of {001} facets. Separation of 0.38 nm CO2 from 0.55 nm SF6 was realized by the HKUST-1 octahedron membrane. As a proof of concept, this will open a new way to design MOF-related separation membranes by facet controlling.

  5. Protonated graphitic carbon nitride coated metal-organic frameworks with enhanced visible-light photocatalytic activity for contaminants degradation

    Science.gov (United States)

    Huang, Jie; Zhang, Xibiao; Song, Haiyan; Chen, Chunxia; Han, Fuqin; Wen, Congcong

    2018-05-01

    Most of the reported composites of g-C3N4/metal-organic frameworks (MOFs) were obtained via exfoliation of g-C3N4 and wrapping the nanosheets on MOFs with weak interaction. In this work, chemical protonation of g-C3N4 and dip-coating was adopted as a feasible pathway to achieve the real combination of g-C3N4 derivatives with a familiar MOF material MIL-100(Fe). Structural, chemical and photophysical properties of the novel hybrid photocatalysts were characterized and compared to those of the parent materials. It was verified that the protonated g-C3N4 species of appropriate content were uniformly coated along the frameworks of MIL-100(Fe) with strong interaction. The optimal materials maintained the intact framework structure, surface property and porosity of MIL-100(Fe), as well as the inherent structural units and physicochemical properties of C3N4. In comparison to the parent materials, the protonated g-C3N4 coated MIL-100(Fe) materials exhibited enhanced photocatalytic activity in degradation of rhodamine B or methylene blue dye, as well as in oxidative denitrogenation for pyridine by molecular oxygen under visible light. Introduction of protonated g-C3N4 on MOFs improved the adsorption ability for contaminant molecules. Furthermore, coating effect provided a platform for rapid photoexcited electrons transfer and superior separation of photogenerated electron-hole pairs. Photocatalytic conversion of the three contaminants followed different mechanisms.

  6. Review of remediation techniques for arsenic (As) contamination: a novel approach utilizing bio-organisms.

    Science.gov (United States)

    Rahman, Shahedur; Kim, Ki-Hyun; Saha, Subbroto Kumar; Swaraz, A M; Paul, Dipak Kumar

    2014-02-15

    Arsenic (As) contamination has recently become a worldwide problem, as it is found to be widespread not only in drinking water but also in various foodstuffs. Because of the high toxicity, As contamination poses a serious risk to human health and ecological system. To cope with this problem, a great deal of effort have been made to account for the mechanisms of As mineral formation and accumulation by some plants and aquatic organisms exposed to the high level of As. Hence, bio-remediation is now considered an effective and potent approach to breakdown As contamination. In this review, we provide up-to-date knowledge on how biological tools (such as plants for phytoremediation and to some extent microorganisms) can be used to help resolve the effects of As problems on the Earth's environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The delivery of organic contaminants to the Arctic food web: why sea ice matters.

    Science.gov (United States)

    Pućko, Monika; Stern, Gary A; Macdonald, Robie W; Jantunen, Liisa M; Bidleman, Terry F; Wong, Fiona; Barber, David G; Rysgaard, Søren

    2015-02-15

    For decades sea ice has been perceived as a physical barrier for the loading of contaminants to the Arctic Ocean. We show that sea ice, in fact, facilitates the delivery of organic contaminants to the Arctic marine food web through processes that: 1) are independent of contaminant physical-chemical properties (e.g. 2-3-fold increase in exposure to brine-associated biota), and 2) depend on physical-chemical properties and, therefore, differentiate between contaminants (e.g. atmospheric loading of contaminants to melt ponds over the summer, and their subsequent leakage to the ocean). We estimate the concentrations of legacy organochlorine pesticides (OCPs) and current-use pesticides (CUPs) in melt pond water in the Beaufort Sea, Canadian High Arctic, in 2008, at near-gas exchange equilibrium based on Henry's law constants (HLCs), air concentrations and exchange dynamics. CUPs currently present the highest risk of increased exposures through melt pond loading and drainage due to the high ratio of melt pond water to seawater concentration (Melt pond Enrichment Factor, MEF), which ranges from 2 for dacthal to 10 for endosulfan I. Melt pond contaminant enrichment can be perceived as a hypothetical 'pump' delivering contaminants from the atmosphere to the ocean under ice-covered conditions, with 2-10% of CUPs annually entering the Beaufort Sea via this input route compared to the standing stock in the Polar Mixed Layer of the ocean. The abovementioned processes are strongly favored in first-year ice compared to multi-year ice and, therefore, the dynamic balance between contaminant inventories and contaminant deposition to the surface ocean is being widely affected by the large-scale icescape transition taking place in the Arctic. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Organic Contaminants and Treatment Chemicals in Steam-Water Cycles : Thermal stability, decomposition products and flow-accelerated corrosion

    NARCIS (Netherlands)

    Moed, D.H.

    2015-01-01

    Boiler feedwater and steam have to be of high purity, because of the susceptibility of the steam-water cycle to corrosion. Organic contaminants break down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam-water cycle

  9. A charge-polarized porous metal-organic framework for gas chromatographic separation of alcohols from water.

    Science.gov (United States)

    Sun, Jian-Ke; Ji, Min; Chen, Cheng; Wang, Wu-Gen; Wang, Peng; Chen, Rui-Ping; Zhang, Jie

    2013-02-25

    A bipyridinium ligand with a charge separated skeleton has been introduced into a metal-organic framework to yield a porous material with charge-polarized pore space, which exhibits selective adsorption for polar guest molecules and can be further used in gas chromatography for the separation of alcohol-water mixtures.

  10. Promising Strategy To Improve Charge Separation in Organic Photovoltaics : Installing Permanent Dipoles in PCBM Analogues

    NARCIS (Netherlands)

    de Gier, Hilde D.; Jahani, Fatemeh; Broer, Ria; Hummelen, Jan C.; Havenith, Remco W. A.

    2016-01-01

    A multidisciplinary approach involving organic synthesis and theoretical chemistry was applied to investigate a promising strategy to improve charge separation in organic photovoltaics: installing permanent dipoles in fullerene derivatives. First, a PCBM analogue with a permanent dipole in the side

  11. Capillary electrophoresis separation of neutral organic compounds, pharmaceutical drugs, proteins and peptides, enantiomers, and anions

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wei -Liang [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    Addition of a novel anionic surfactant, namely lauryl polyoxyethylene sulfate, to an aqueous-acetonitrile electrolyte makes it possible to separate nonionic organic compounds by capillary electrophoresis. Separation is based on differences in the association between analytes and the surfactant. Highly hydrophobic compounds such as polyaromatic hydrocarbons are well separated by this new surfactant. Migration times of analytes can be readily changed over an unusually large range by varying the additive concentration and the proportion of acetonitrile in the electrolyte. Several examples are given, including the separation of four methylbenz[a]anthracene isomers and the separation of normal and deuterated acetophenone. The effect of adding this new surfactant to the acidic electrolyte was also investigated. Incorporation of cetyltrimethylammonium bromide in the electrolyte is shown to dynamically coat the capillary and reverse electroosmotic flow. Chiral recognition mechanism is studied using novel synthetic surfactants as chiral selectors, which are made from amino acids reacting with alkyl chloroformates. A satisfactory separation of both inorganic and organic anions is obtained using electrolyte solutions as high as 5 M sodium chloride using direct photometric detection. The effect of various salts on electrophoretic and electroosmotic mobility is further discussed. Several examples are given under high-salt conditions.

  12. First evidence of persistent organic contaminants as potential anthropogenic stressors in the Barndoor Skate Dipturus laevis.

    Science.gov (United States)

    Lyons, Kady; Adams, Douglas H

    2017-03-15

    Although exploited populations of elasmobranchs may be able to recover from fishing pressure, there is little information regarding the Barndoor Skate's ability to cope with other anthropogenic stressors such as organic contaminants (OCs). Legacy OCs were measured in liver, muscle and ova from fourteen Barndoor Skates with mature skates having significantly greater mean concentrations of OCs than immature skates, demonstrating bioaccumulation with age. Using Toxic Equivalency Factors, skates were found to have levels of PCBs that have been shown to elicit negative physiological responses in other fishes and these results highlight the need for future studies to investigate the potential impacts that bioaccumulated organic contaminants have on the recovery and conservation of this vulnerable species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Separation of rare earth by column chromatography using organic resins XAD/DEPHA

    Energy Technology Data Exchange (ETDEWEB)

    Zini, J.; Ferreira, J.C.; Bergamaschi, V.S.; Santos, I.; Carvalho, F.M.S., E-mail: jcferrei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (CCCH/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio

    2013-07-01

    The designation of light and heavy rare earth was used the fractionation used in separation processes. In this study the process of separation of rare earth, in groups, by chromatographic column consisting in fixing of cations these elements in an organic resin Amberlite XAD16 functionalized with the extracting agent DEPHA and another portion functionalized with a mixture of extractors DEPHA/TOP. The preparation of these resins was performed in two forms, one directly as the extracting agent to the resin and the other to be used in ethyl alcohol. Conditioned resins were introduced in chromatographic columns in separation of groups, light and heavy, using a standard solution of cerium nitrate and standard solution of holmium nitrate groups to represent light and heavy respectively. The characterization technique used to identify the rare earth elements was Spectrometry X-Ray Fluorescence (XRF). The results using the technique of chromatography were satisfactory, obtaining 100% separation of the elements. (author)

  14. Separation of rare earth by column chromatography using organic resins XAD/DEPHA

    International Nuclear Information System (INIS)

    Zini, J.; Ferreira, J.C.; Bergamaschi, V.S.; Santos, I.; Carvalho, F.M.S.

    2013-01-01

    The designation of light and heavy rare earth was used the fractionation used in separation processes. In this study the process of separation of rare earth, in groups, by chromatographic column consisting in fixing of cations these elements in an organic resin Amberlite XAD16 functionalized with the extracting agent DEPHA and another portion functionalized with a mixture of extractors DEPHA/TOP. The preparation of these resins was performed in two forms, one directly as the extracting agent to the resin and the other to be used in ethyl alcohol. Conditioned resins were introduced in chromatographic columns in separation of groups, light and heavy, using a standard solution of cerium nitrate and standard solution of holmium nitrate groups to represent light and heavy respectively. The characterization technique used to identify the rare earth elements was Spectrometry X-Ray Fluorescence (XRF). The results using the technique of chromatography were satisfactory, obtaining 100% separation of the elements. (author)

  15. Monitoring organic contaminants in eggs of glaucous and glaucous-winged gulls (Larus hyperboreus and Larus glaucescens) from Alaska

    International Nuclear Information System (INIS)

    Vander Pol, Stacy S.; Becker, Paul R.; Ellisor, Michael B.; Moors, Amanda J.; Pugh, Rebecca S.; Roseneau, David G.

    2009-01-01

    Gull eggs have been used to monitor contaminants in many parts of the world. The Seabird Tissue Archival and Monitoring Project (STAMP) is a long-term program designed to track trends in pollutants in northern marine environments using seabird eggs. Glaucous and glaucous-winged gull (Larus hyperboreus and Larus glaucescens) eggs collected in 2005 from seven Alaskan colonies were analyzed for organic contaminants. Concentrations ranged from below detection limits to 322 ng g -1 wet mass in one egg for 4,4'-DDE and differed among the samples collected in the Gulf of Alaska and Bering and Chukchi Seas. Chick growth and survival rates may be affected by the contaminant levels found in the eggs, but the eggs should be safe for human consumption if they are eaten in small quantities. STAMP plans to continue collecting and banking gull eggs for future real-time and retrospective analyses. - Organic contaminant concentrations in Alaskan gull eggs could possibly be affecting chick growth and survival rates, but the eggs should be safe for humans to eat in small quantities

  16. Sorption of Emerging Organic Wastewater Contaminants to Four Soils

    Directory of Open Access Journals (Sweden)

    Sarah Roberts

    2014-04-01

    Full Text Available Conventional onsite wastewater treatment system design relies on a septic tank and soil treatment unit (STU for treatment of wastewater and integration of the final effluent into the environment. Organic water contaminants (OWCs, chemicals found in pharmaceutical drugs, detergents, surfactants, and other personal care and cleaning products, have been observed in septic tank effluent and the environment. Sorption of OWC mass to soil is a key mechanism in the removal and retardation of many of these chemicals in effluent as it travels through an STU. The primary purpose of this study was to investigate the relationship between the fraction of organic carbon of soil and the equilibrium sorption partitioning coefficient of a selected group of relevant and diverse OWCs. A secondary goal is to evaluate current methods of modeling the sorption of selected OWCs in soil. Five point Freundlich isotherms were constructed from equilibrium sorption batch tests for target OWCs with four different soils. For soils with organic carbon fraction between 0.021 and 0.054, Kd values were calculated between 60 and 185 for 4-nonylphenol, 75 to 260 for triclosan, 115 to 270 for bisphenol-A, 3 to 255 for 17β-estradiol, 40 to 55 for 17α-ethynylestradiol, and 28 to 70 for estrone. An empirically derived, direct relationship between foc and Kd may be a useful approach to estimating sorption for a soil based on organic carbon content.

  17. Organic Contaminant Levels in Three Fish Species Downchannel from the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, G.J.; Fresquez, P.R.; Beveridge, J.W.

    1999-06-01

    The LANL contribution, if any, to organic contaminant levels in the common carp, the channel catfish, and the white sucker in the Rio Grande appear to be small; however, low sample sizes, high variation, and potential interaction of species effect with location treatment effect require additional sampling and analysis.

  18. Two-Dimensional Metal-Organic Framework Nanosheets for Membrane-Based Gas Separation.

    Science.gov (United States)

    Peng, Yuan; Li, Yanshuo; Ban, Yujie; Yang, Weishen

    2017-08-07

    Metal-organic framework (MOF) nanosheets could serve as ideal building blocks of molecular sieve membranes owing to their structural diversity and minimized mass-transfer barrier. To date, discovery of appropriate MOF nanosheets and facile fabrication of high performance MOF nanosheet-based membranes remain as great challenges. A modified soft-physical exfoliation method was used to disintegrate a lamellar amphiprotic MOF into nanosheets with a high aspect ratio. Consequently sub-10 nm-thick ultrathin membranes were successfully prepared, and these demonstrated a remarkable H 2 /CO 2 separation performance, with a separation factor of up to 166 and H 2 permeance of up to 8×10 -7  mol m -2  s -1  Pa -1 at elevated testing temperatures owing to a well-defined size-exclusion effect. This nanosheet-based membrane holds great promise as the next generation of ultrapermeable gas separation membrane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Oxidation by UV and ozone of organic contaminants dissolved in deionized and raw mains water

    International Nuclear Information System (INIS)

    Francis, P.D.

    1987-01-01

    Organic contaminants dissolved in deionized pretreated and raw mains water were reacted with ultraviolet light and ozone. Ozone first was used for partial oxidation followed by ozone combined with ultraviolet radiation to produce total oxidation. The reduction of total organic carbon (TOC) level and direct oxidation of halogenated compounds were measured throughout the treatment process. The rate of TOC reduction was compared for ozone injected upstream and inside the reactor

  20. Electrokinetic-enhanced bioremediation of organic contaminants: a review of processes and environmental applications.

    Science.gov (United States)

    Gill, R T; Harbottle, M J; Smith, J W N; Thornton, S F

    2014-07-01

    There is current interest in finding sustainable remediation technologies for the removal of contaminants from soil and groundwater. This review focuses on the combination of electrokinetics, the use of an electric potential to move organic and inorganic compounds, or charged particles/organisms in the subsurface independent of hydraulic conductivity; and bioremediation, the destruction of organic contaminants or attenuation of inorganic compounds by the activity of microorganisms in situ or ex situ. The objective of the review is to examine the state of knowledge on electrokinetic bioremediation and critically evaluate factors which affect the up-scaling of laboratory and bench-scale research to field-scale application. It discusses the mechanisms of electrokinetic bioremediation in the subsurface environment at different micro and macroscales, the influence of environmental processes on electrokinetic phenomena and the design options available for application to the field scale. The review also presents results from a modelling exercise to illustrate the effectiveness of electrokinetics on the supply electron acceptors to a plume scale scenario where these are limiting. Current research needs include analysis of electrokinetic bioremediation in more representative environmental settings, such as those in physically heterogeneous systems in order to gain a greater understanding of the controlling mechanisms on both electrokinetics and bioremediation in those scenarios. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2012-05-01

    Full Text Available The partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA. Gas-particle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambient relative humidity (RH, as well as temperature and organic loading levels. We introduce a novel combination of the thermodynamic models AIOMFAC (for liquid mixture non-ideality and EVAPORATION (for pure compound vapor pressures with oxidation product information from the Master Chemical Mechanism (MCM for the computation of gas-particle partitioning of organic compounds and water. The presence and impact of a liquid-liquid phase separation in the condensed phase is calculated as a function of variations in relative humidity, organic loading levels, and associated changes in aerosol composition. We show that a complex system of water, ammonium sulfate, and SOA from the ozonolysis of α-pinene exhibits liquid-liquid phase separation over a wide range of relative humidities (simulated from 30% to 99% RH. Since fully coupled phase separation and gas-particle partitioning calculations are computationally expensive, several simplified model approaches are tested with regard to computational costs and accuracy of predictions compared to the benchmark calculation. It is shown that forcing a liquid one-phase aerosol with or without consideration of non-ideal mixing bears the potential for vastly incorrect partitioning predictions. Assuming an ideal mixture leads to substantial overestimation of the particulate organic mass, by more than 100% at RH values of 80% and by more than 200% at RH values of 95%. Moreover, the simplified one-phase cases stress two key points for accurate gas-particle partitioning calculations: (1 non-ideality in the condensed phase needs to be considered and (2 liquid-liquid phase separation is a consequence of considerable deviations

  2. Applications of covalent organic frameworks (COFs): From gas storage and separation to drug delivery

    Institute of Scientific and Technical Information of China (English)

    Ming-Xue Wu; Ying-Wei Yang

    2017-01-01

    Covalent organic frameworks (COFs) are an emerging class of porous covalent organic structures whose backbones were composed of light elements (B,C,N,O,Si) and linked by robust covalent bonds to endow such material with desirable properties,i.e.,inherent porosity,well-defined pore aperture,ordered channel structure,large surface area,high stability,and multi-dimension.As expected,the abovementioned properties of COFs broaden the applications of this class of materials in various fields such as gas storage and separation,catalysis,optoelectronics,sensing,small molecules adsorption,and drug delivery.In this review,we outlined the synthesis of COFs and highlighted their applications ranging from the initial gas storage and separation to drug delivery.

  3. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes.

    Science.gov (United States)

    Estevez, Esmeralda; Cabrera, María del Carmen; Fernández-Vera, Juan Ramón; Molina-Díaz, Antonio; Robles-Molina, José; Palacios-Díaz, María del Pino

    2016-05-01

    Irrigation with reclaimed water (R) is necessary to guarantee the sustainability of semi-arid areas. Results obtained during a two years monitoring network (2009-2011) in Gran Canaria are presented, including the analysis of chemical parameters, N and S isotopes, priority substances (2008/105/EC, 2013/39/EU), other organic contaminants and heavy metals in groundwater and R used to irrigate a golf course. The aims of this work are to evaluate the contamination in a volcanic aquifer, relate the presence of organic contaminants and heavy metals with the hydrogeochemistry and identify pollution sources in the area. No priority substance exceeded the EU thresholds for surface water, although seventeen were detected in R. The most frequent compounds were hexachlorobenzene, chlorpyrifos ethyl, fluorene, phenanthrene and pyrene. These compounds were detected at low concentration, except chlorpyrifos. Chlorpyrifos ethyl, terbuthylazine, diuron, terbutryn, procymidone, atrazine and propazine exceeded the European threshold concentration for pesticides in groundwater (100ngL(-1)). Therefore, the priority substances chlorpyrifos ethyl and diuron must be included in monitoring studies. The priority pesticides chlorfenvinphos and diazinon were always detected in R but rarely in groundwater. Besides, the existence of contaminants not related to the current R irrigation has been identified. Absence of environmental problems related to heavy metals can be expected. The relationship among contaminant presence, hydrogeochemistry, including the stable isotopic prints of δ(18)O, δ(15)N and δ(34)S and preferential recharge paths has been described. The coastal well shows high values of EC, nitrate, a variable chemistry, and 50% of organic contaminants detected above 100ngL(-1). The well located in the recharge area presents a stable hydrochemistry, the lowest value of δ(15)N and the lowest contaminants occurrence. The area is an example of a complex volcanic media with several

  4. Contaminated water treatment

    Science.gov (United States)

    Gormly, Sherwin J. (Inventor); Flynn, Michael T. (Inventor)

    2010-01-01

    Method and system for processing of a liquid ("contaminant liquid") containing water and containing urine and/or other contaminants in a two step process. Urine, or a contaminated liquid similar to and/or containing urine and thus having a relatively high salt and urea content is passed through an activated carbon filter to provide a resulting liquid, to remove most of the organic molecules. The resulting liquid is passed through a semipermeable membrane from a membrane first side to a membrane second side, where a fortified drink having a lower water concentration (higher osmotic potential) than the resulting liquid is positioned. Osmotic pressure differential causes the water, but not most of the remaining inorganic (salts) contaminant(s) to pass through the membrane to the fortified drink. Optionally, the resulting liquid is allowed to precipitate additional organic molecules before passage through the membrane.

  5. Hydrophobic organic contaminants in surficial sediments of Baltimore Harbor: Inventories and sources

    International Nuclear Information System (INIS)

    Ashley, J.T.F.; Baker, J.E.

    1999-01-01

    The heavily urbanized and industrialized Baltimore Harbor/Patapsco River/Back River system is one of the most highly contaminated regions of the Chesapeake Bay. In June 1996, surficial sediments were collected at 80 sites throughout the subestuarine system, including historically undersampled creek sand embayments. The samples were analyzed for a suite of hydrophobic organic contaminants (HOCs) consisting of 32 polycyclic aromatic hydrocarbons (PAHs) and 113 polychlorinated biphenyl (PCB) congeners. Total PAH and total PCB concentrations ranged from 90 to 46,200 and 8 to 2,150 ng/g dry weight, respectively. There was enormous spatial variability in the concentrations of HOCs, which was not well correlated to grain size or organic carbon content, suggesting nonequilibrium partitioning and/or proximity to sources as important factors explaining the observed spatial variability. High concentrations of both classes of HOCs were localized around major urban stormwater runoff discharges. Elevated PAH concentrations were also centered around the Sparrow's Point Industrial Complex, most likely a result of the pyrolysis of coal during the production of steel. All but 1 of the 80 sites exceeded the effects range-low (ERL) for total PCBs and, of those sites, 40% exceeded the effects range-medium (ERM), suggesting toxicity to marine benthic organisms would frequently occur. Using principal component analysis, differences in PAH signatures were discerned. Higher molecular weight PAHs were enriched in signatures from sediments close to suspected sources (i.e., urban stormwater runoff and steel production complexes) compared to those patterns observed at sites further from outfalls or runoff. Due to varying solubilities and affinities for organic matter of the individual PAHs, partitioning of the heavier weight PAHs may enrich settling particles with high molecular weight PAHs. Lower molecular weight PAHs, having lower affinity for particles, may travel from the source to a

  6. Surfactant-modified zeolites as permeable barriers to organic and inorganic groundwater contaminants

    International Nuclear Information System (INIS)

    Bowman, R.S.; Sullivan, E.J.

    1995-01-01

    We have shown in laboratory experiments that natural zeolites treated with hexadecyltrimethylammonium (HDTMA) are effective sorbents for nonpolar organics, inorganic cations, and inorganic anions. Due to their low cost (∼$0.75/kg) and granular nature, HDTMA-zeolites appear ideal candidates for reactive, permeable subsurface barriers. The HDTMA-zeolites are stable over a wide range of pH (3-13), ionic strength (1 M Cs + or Ca 2+ ), and in organic solvents. Surfactant-modified zeolites sorb nonpolar organics (benzene, toluene, xylene, chlorinated aliphatics) via a partitioning mechanism, inorganic cations (Pb 2+ ) via ion exchange and surface complexation, and inorganic anions (CrO 4 2- , SeO 4 2- , SO 4 2- ) via surface precipitation.The goal of this work is to demonstrate the use of surfactant-modified zeolite as a permeable barrier to ground water contaminants

  7. Detection of PPCPs in marine organisms from contaminated coastal waters of the Saudi Red Sea.

    Science.gov (United States)

    Ali, Aasim M; Rønning, Helene Thorsen; Sydnes, Leiv K; Alarif, Walied M; Kallenborn, Roland; Al-Lihaibi, Sultan S

    2018-04-15

    The occurrence of PPCPs in macroalgae, barnacle and fish samples from contaminated coastal waters of the Saudi Red Sea is reported. Solvent extraction followed by solid phase extraction was applied to isolate the compounds, and their quantification was carried out by high performance liquid chromatography-tandem mass spectrometry. Atenolol, ranitidine, chlorpheniramine, DEET, and atrazine were detected in one or more macroalgae at caffeine, methylparaben, and carbamazepine were present atmaximum concentrations of 41.3, 44.3, and 1.7ng/g (on a dry weight basis=dw), respectively. Eleven PPCPs were detected in the barnacle samples at concentrations between contaminated waters where a continuous supply of non-persistent contaminants such as PPCPs is available for long-term exposure of local benthic organisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. High-Throughput Molecular Simulations of Metal Organic Frameworks for CO2 Separation: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Ilknur Erucar

    2018-02-01

    Full Text Available Metal organic frameworks (MOFs have emerged as great alternatives to traditional nanoporous materials for CO2 separation applications. MOFs are porous materials that are formed by self-assembly of transition metals and organic ligands. The most important advantage of MOFs over well-known porous materials is the possibility to generate multiple materials with varying structural properties and chemical functionalities by changing the combination of metal centers and organic linkers during the synthesis. This leads to a large diversity of materials with various pore sizes and shapes that can be efficiently used for CO2 separations. Since the number of synthesized MOFs has already reached to several thousand, experimental investigation of each MOF at the lab-scale is not practical. High-throughput computational screening of MOFs is a great opportunity to identify the best materials for CO2 separation and to gain molecular-level insights into the structure–performance relationships. This type of knowledge can be used to design new materials with the desired structural features that can lead to extraordinarily high CO2 selectivities. In this mini-review, we focused on developments in high-throughput molecular simulations of MOFs for CO2 separations. After reviewing the current studies on this topic, we discussed the opportunities and challenges in the field and addressed the potential future developments.

  9. Robust Multilayer Graphene-Organic Frameworks for Selective Separation of Monovalent Anions.

    Science.gov (United States)

    Zhao, Yan; Zhu, Jiajie; Li, Jian; Zhao, Zhijuan; Charchalac Ochoa, Sebastian Ignacio; Shen, Jiangnan; Gao, Congjie; Van der Bruggen, Bart

    2018-05-30

    The chemical and mechanical stability of graphene nanosheets was used in this work to design a multilayer architecture of graphene, grafted with sulfonated 4,4'-diaminodiphenyl sulfone (SDDS). Quaternized poly(phenylene oxide) (QPPO) was synthesized and mixed with SDDS (rGO-SDDS-rGO@QPPO), yielding a multilayer graphene-organic framework (MGOF) with positive as well as negative functional groups that can be applied as a versatile electrodriven membrane in electrodialysis (ED). Multilayer graphene-organic frameworks are a new class of multilayer structures, with an architecture having a tunable interlayer spacing connected by cationic polymer material. MGOF membranes were demonstrated to allow for an excellent selective separation of monovalent anions in aqueous solution. Furthermore, different types of rGO-SDDS-rGO@QPPO membranes were found to have a good mechanical strength, with a tensile strength up to 66.43 MPa. The membrane (rGO-SDDS-rGO@QPPO-2) also has a low surface electric resistance (2.79 Ω·cm 2 ) and a low water content (14.5%) and swelling rate (4.7%). In addition, the selective separation between Cl - and SO 4 2- of the MGOF membranes could be as high as 36.6%.

  10. Separations Science and Technology, Semiannual progress report, October 1991--March 1992

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Betts, S.; Chamberlain, D.B.

    1994-01-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period October 1991--March 1992. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Two other projects are underway with the objective of developing (1) a membrane-assisted solvent extraction method for treating natural and process waters contaminated by volatile organic compounds and (2) evaporation technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process

  11. Separation science and technology. Semiannual progress report, April 1992--September 1992

    International Nuclear Information System (INIS)

    Vandegrift, G.F.; Betts, S.; Bowers, D.L.

    1994-09-01

    This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory, in the period April-September 1992. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Two other projects are underway with the objective of developing (1) a membrane-assisted solvent extraction method for treating natural and process waters contaminated by volatile organic compounds and (2) evaporation technology for concentrating radioactive waste and product streams such as those generated by the TRUEX process

  12. Application of compost for effective bioremediation of organic contaminants and pollutants in soil.

    Science.gov (United States)

    Kästner, Matthias; Miltner, Anja

    2016-04-01

    Soils contaminated with hazardous chemicals worldwide are awaiting remediation activities; bioremediation is often considered as a cost-effective remediation approach. Potential bioapproaches are biostimulation, e.g. by addition of nutrients, fertiliser and organic substrates, and bioaugmentation by addition of compound-degrading microbes or of organic amendments containing active microorganisms, e.g. activated sludge or compost. In most contaminated soils, the abundance of the intrinsic metabolic potential is too low to be improved by biostimulation alone, since the physical and chemical conditions in these soils are not conducive to biodegradation. In the last few decades, compost or farmyard manure addition as well as composting with various organic supplements have been found to be very efficient for soil bioremediation. In the present minireview, we provide an overview of the composting and compost addition approaches as 'stimulants' of natural attenuation. Laboratory degradation experiments are often biased either by not considering the abiotic factors or by focusing solely on the elimination of the chemicals without taking the biotic factors and processes into account. Therefore, we first systemise the concepts of composting and compost addition, then summarise the relevant physical, chemical and biotic factors and mechanisms for improved contaminant degradation triggered by compost addition. These factors and mechanisms are of particular interest, since they are more relevant and easier to determine than the composition of the degrading community, which is also addressed in this review. Due to the mostly empirical knowledge and the nonstandardised biowaste or compost materials, the field use of these approaches is highly challenging, but also promising. Based on the huge metabolic diversity of microorganisms developing during the composting processes, a highly complex metabolic diversity is established as a 'metabolic memory' within developing and mature

  13. Global warming and environmental contaminants in aquatic organisms: the need of the etho-toxicology approach.

    Science.gov (United States)

    Manciocco, Arianna; Calamandrei, Gemma; Alleva, Enrico

    2014-04-01

    Environmental contaminants are associated with a wide spectrum of pathological effects. Temperature increase affects ambient distribution and toxicity of these chemicals in the water environment, representing a potentially emerging problem for aquatic species with short-, medium- and long-term repercussions on human health through the food chain. We assessed peer-reviewed literature, including primary studies, review articles and organizational reports available. We focused on studies concerning toxicity of environmental pollutants within a global warming scenario. Existing knowledge on the effects that the increase of water temperature in a contaminated situation has on physiological mechanisms of aquatic organisms is presented. Altogether we consider the potential consequences for the human beings due to fish and shellfish consumption. Finally, we propose an etho-toxicological approach to study the effects of toxicants in conditions of thermal increase, using aquatic organisms as experimental models under laboratory controlled conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Incineration method for plutonium recovery from alpha contaminated organic compounds

    International Nuclear Information System (INIS)

    Yahata, Taneaki; Abe, Jiro; Kato, Michiharu; Kurihara, Masayoshi

    1985-01-01

    An incineration method for plutonium recovery from α contaminated organic compounds in a flow of controlled oxygen gas is stated. The species of such thermal decomposition products as hydrocarbons, free carbon, carbon monoxide and hydrogen were determined by mass spectrography. The mixture of the products which are the source of tar or soot was converted to CO 2 and H 2 O in contact with copper oxide catalyst without flaming. This incineration method is composed of two stages. The first stage is the decomposition of organic compounds in the streams of gas mixtures containing oxygen in low ratios. The second stage is the incineration of the decomposition products by catalytic reaction in the streams of gas with higher oxygen ratios. Plutonium was recovered as the form of plutonium dioxide from the incineration residues of the first stage. The behavior of oil was examined as a representative of liquid organic compounds. It was found to evaporate below ca. 500 0 C, but was completely incinerated by the catalytic reaction with copper oxide catalyst in the flow of gas with controlled oxygen amount and was changed to CO 2 and H 2 O. (author)

  15. Adsorption of ionizable organic contaminants on multi-walled carbon nanotubes with different oxygen contents

    International Nuclear Information System (INIS)

    Li Xiaona; Zhao Huimin; Quan Xie; Chen Shuo; Zhang Yaobin; Yu Hongtao

    2011-01-01

    Multi-walled carbon nanotubes (MWNTs), which are considered to be promising candidates for the adsorption of toxic organics, are released into aqueous environment with their increasing production and application. In this study, the adsorption behaviors of five structurally related ionizable organic contaminants namely perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonamide (PFOSA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-n-nonylphenol (4-NP) onto MWNTs with different oxygen contents (3.84-22.85%) were investigated. The adsorption kinetics was investigated and simulated with pseudo-second-order model. The adsorption isotherms were found to be fitted with Freundlich model and influenced by both the properties of organic chemicals and the oxygen contents of MWNTs. As adsorption capacity decreases dramatically with the increasing of oxygen contents, the MWNTs with the lowest oxygen contents possess the highest adsorption capacity among four MWNTs. For the MWNTs with the oxygen contents of 3.84%, the adsorption affinity related with hydrophobic interaction and π-electron polarizability decreased in the order of 4-NP > PFOSA > PFOS > 2,4-D > PFOA. Furthermore, the adsorption characters of five contaminants were affected by solution pH and solute pK a considering electrostatic repulse force and hydrogen bonding, which showed the adsorption of MWNTs with lower oxygen content is much sensitive to solution chemistry.

  16. Evidence of micropore filling for sorption of nonpolar organic contaminants by condensed organic matter.

    Science.gov (United States)

    Ran, Yong; Yang, Yu; Xing, Baoshan; Pignatello, Joseph J; Kwon, Seokjoo; Su, Wei; Zhou, Li

    2013-01-01

    Although microporosity and surface area of natural organic matter (NOM) are crucial for mechanistic evaluation of the sorption process for nonpolar organic contaminants (NOCs), they have been underestimated by the N adsorption technique. We investigated the CO-derived internal hydrophobic microporosity () and specific surface area (SSA) obtained on dry samples and related them to sorption behaviors of NOCs in water for a wide range of condensed NOM samples. The is obtained from the total CO-derived microporosity by subtracting out the contribution of the outer surfaces of minerals and NOM using N adsorption-derived parameters. The correlation between or CO-SSA and fractional organic carbon content () is very significant, demonstrating that much of the microporosity is associated with internal NOM matrices. The average and CO-SSA are, respectively, 75.1 μL g organic carbon (OC) and 185 m g OC from the correlation analysis. The rigid aliphatic carbon significantly contributes to the microporosity of the Pahokee peat. A strong linear correlation is demonstrated between / and the OC-normalized sorption capacity at the liquid or subcooled liquid-state water solubility calculated via the Freundlich equation for each of four NOCs (phenanthrene, naphthalene, 1,3,5-trichlorobenzene, and 1,2-dichlorobenzene). We concluded that micropore filling ("adsorption") contributes to NOC sorption by condensed NOM, but the exact contribution requires knowing the relationship between the dry-state, CO-determined microporosity and the wet-state, NOC-available microporosity of the organic matter. The findings offer new clues for explaining the nonideal sorption behaviors of NOCs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Comparative assessment of LECA and Spartina maritima to remove emerging organic contaminants from wastewater.

    Science.gov (United States)

    Ferreira, Ana Rita; Guedes, Paula; Mateus, Eduardo P; Ribeiro, Alexandra B; Couto, Nazaré

    2017-03-01

    The present work aimed to evaluate the capacity of constructed wetlands (CWs) to remove three emerging organic contaminants with different physicochemical properties: caffeine (CAF), oxybenzone (MBPh), and triclosan (TCS). The simulated CWs were set up with a matrix of light expanded clay aggregates (LECA) and planted with Spartina maritima, a salt marsh plant. Controlled experiments were carried out in microcosms using deionized water and wastewater collected at a wastewater treatment plant (WWTP), with different contaminant mass ranges, for 3, 7, and 14 days. The effects of variables were tested isolatedly and together (LECA and/or S. maritima). The presence of LECA and/or S. maritima has shown higher removal (around 61-97%) of lipophilic compounds (MBPh and TCS) than the hydrophilic compound (CAF; around 19-85%). This was attributed to the fact that hydrophilic compounds are dissolved in the water column, whereas the lipophilic ones suffer sorption processes promoting their removal by plant roots and/or LECA. In the control (only wastewater), a decrease in the three contaminant levels was observed. Adsorption and bio/rhizoremediation are the strongest hypothesis to explain the decrease in contaminants in the tested conditions.

  18. EFFICIENCY OF THE EARTHWORM Eisenia fetida UNDER THE EFFECT OF ORGANIC MATTER FOR BIOREMEDIATION OF SOILS CONTAMINATED WITH CADMIUM AND CHROMIUM

    Directory of Open Access Journals (Sweden)

    G. R. Mostafaii

    Full Text Available Abstract The use of earthworms to bioremediate soil results in decreasing the pollutant concentration through a bioaccumulation mechanism of the contaminants in the earthworm's body. The present work is an empirical study that was carried out on soils contaminated with chromium and cadmium. Organic matter in the amount of 5% and 9% of soil weight was added. Chromium and cadmium concentrations in soil and in the body of worms were measured at two time periods of 21 and 42 days. According to the results, increasing from 5% to 9% the organic material of the soil contaminated with chromium at the initial concentration of 0.06 mg/g, the removal efficiency decreased by 5%. In 0.1 mg/g concentration the bioremediation efficiency decreased by 20%, showing that the earthworms probably have more tendency to consume the organic material and low tendency for consuming the soil contaminated by metal. Results showed that, considering the increased mortality of worms in the soil at a concentration of 0.08 mg/g of chromium, using this method is not recommended. For cadmium we require more study, though we can say that the organic material had no influence on the bioremediation of the soil.

  19. A review of metal (Pb and Zn) sensitive and pH tolerant bioassay organisms for risk screening of metal-contaminated acidic soils

    International Nuclear Information System (INIS)

    Chapman, E.Emily V.; Dave, Göran; Murimboh, John D.

    2013-01-01

    To improve risk estimates at the screening stage of Ecological Risk Assessment (ERA), short duration bioassays tailored to undisturbed soil cores from the contaminated site could be useful. However, existing standardized bioassays use disturbed soil samples and often pH sensitive organisms. This is a problem as naturally acidic soils are widespread. Changing soil properties to suit the test organism may change metal bioavailability, leading to erroneous risk estimates. For bioassays in undisturbed soil cores to be effective, species able to withstand natural soil properties must be identified. This review presents a critical examination of bioassay species' tolerance of acidic soils and sensitivity to metal contaminants such as Pb and Zn. Promising organisms include; Dendrobaena octaedra, Folsomia candida, Caenorhabditis elegans, Oppia nitens, Brassica rapa, Trifolium pratense, Allium cepa, Quercus rubra and Acer rubrum. The MetSTICK test and the Bait lamina test were also identified as suitable microorganism tests. -- Highlights: •Risk screening of metal contaminated soils should consider metal bioavailability. •Metal bioavailability is dependent on soil properties such as pH. •Many standardized bioassay organisms are sensitive to acidic soils. •This review identifies acid tolerant and metal sensitive bioassays and species. •The identified tests can improve risk screening of acidic metal contaminated soil. -- This review identifies bioassay species able to withstand naturally acidic soils while being sensitive to metal contaminants

  20. Organization of internal contamination monitoring

    International Nuclear Information System (INIS)

    Badreddine, A.

    1986-07-01

    The nuclear energy takes a big part in the world's energy production. The nuclear techniques are used in most fields of life. Nevertheless the use of radioactive materials may cause prejudice to human beings by radiation contamination. The International Commission on Radiological Protection gives the general rules and regulations to avoid this danger. In the publication No. 30, the ICRP gives a metabolic model for the respiratory system and values of Annual Limit of Intake. The ALI for inhalation supposes a standard AMAD (Activity Median Aerodynamic Diameter) of 1 um. We have measured the AMAD in a laboratory under different conditions of functioning in order to show its variation. Then we have analysed the effect of this variation on the internal contamination monitoring. Thus we have calculated the Effective Committed Dose (ECD), the ALI, then the Derived Investigation Level (DIL) for different values of AMAD for Whole-Body Counting (WBC)

  1. Plutonium separation by reduction stripping. Application to processing of mixed oxide (U,Pu)O2 fuel fabrication wastes

    International Nuclear Information System (INIS)

    Arnal, Thierry; Cousinou, Gerard; Ganivet, Michel.

    1978-11-01

    A procedure is described for separating plutonium from a uranium VI and plutonium IV mixture contained in an organic phase (tributyl phosphate diluted in dodecane). This separation is obtained by extracting the plutonium III using two organic reducers: hydrazine and paraminophenol. Paraminophenol has excellent reducing qualities, similar to those of ferrous sulphamate, but has the added advantage of not contaminating extracted plutonium. This procedure is currently used in processing production wastes from mixed oxide (U,Pu)O 2 fuels; the installation using this procedure is described in detail in this paper. Operating results show the remarkable efficiency of this procedure: the separated plutonium and uranium mass flows have been increased to 185 and 350 g.h -1 respectively; the uranium contains less than 0.1 ppm of plutonium on completion of the purification cycle [fr

  2. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains data presented in the figures of the paper "On the implications of aerosol liquid water and phase separation for organic aerosol mass"...

  3. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Muhlbachova, G. [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Sagova-Mareckova, M., E-mail: sagova@vurv.cz [Crop Research Institute, Drnovska 507, 161 06 Prague 6, Ruzyne (Czech Republic); Omelka, M. [Charles University, Faculty of Mathematics and Physics, Dept. of Probability and Mathematical Statistics, Prague 8, Karlin (Czech Republic); Szakova, J.; Tlustos, P. [Czech University of Life Sciences, Department of Agroenvironmental Chemistry and Plant Nutrition, Prague 6, Suchdol (Czech Republic)

    2015-01-01

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals.

  4. The influence of soil organic carbon on interactions between microbial parameters and metal concentrations at a long-term contaminated site

    International Nuclear Information System (INIS)

    Muhlbachova, G.; Sagova-Mareckova, M.; Omelka, M.; Szakova, J.; Tlustos, P.

    2015-01-01

    The effects of lead, zinc, cadmium, arsenic and copper deposits on soil microbial parameters were investigated at a site exposed to contamination for over 200 years. Soil samples were collected in triplicates at 121 sites differing in contamination and soil organic carbon (SOC). Microbial biomass, respiration, dehydrogenase activity and metabolic quotient were determined and correlated with total and extractable metal concentrations in soil. The goal was to analyze complex interactions between toxic metals and microbial parameters by assessing the effect of soil organic carbon in the relationships. The effect of SOC was significant in all interactions and changed the correlations between microbial parameters and metal fractions from negative to positive. In some cases, the effect of SOC was combined with that of clay and soil pH. In the final analysis, dehydrogenase activity was negatively correlated to total metal concentrations and acetic acid extractable metals, respiration and metabolic quotient were to ammonium nitrate extractable metals. Dehydrogenase activity was the most sensitive microbial parameter correlating most frequently with contamination. Total and extractable zinc was most often correlated with microbial parameters. The large data set enabled robust explanation of discrepancies in organic matter functioning occurring frequently in analyzing of contaminated soil processes. - Highlights: • Soil organic carbon affected all interactions between metals and microorganisms. • Soil organic carbon adjustment changed correlations from positive to negative. • Ammonium nitrate extractable metals were the most influencing fraction. • Dehydrogenase activity was the most affected soil parameter. • Zinc was the most toxic metal among studied metals

  5. Carbon tetrachloride contamination, 200 West Area, Hanford Site: Arid Site Integrated Demonstration for remediation of volatile organic compounds

    International Nuclear Information System (INIS)

    Last, G.V.; Rohay, V.J.

    1991-01-01

    The Arid State Integrated Demonstration is a US Department of Energy (DOE) program targeted at the acquisition, development, demonstration, and deployment of technologies for evaluation and cleanup of volatile organic and associated contaminants in soils and ground waters. Several DOE laboratories, universities, and industry will participate in the program. Candidate technologies will be demonstrated in the areas of site characterization; performance prediction, monitoring, and evaluations; contaminant extraction and ex situ treatment; in situ remediations; and site closure and monitoring. The performance of these demonstrated technologies will be compared to baseline technologies and documented to promote the transfer of new technologies to industry for use at DOE facilities. The initial host site is the Hanford Site's 200 West Area. The location of the demonstration contains primarily carbon tetrachloride (CCl 4 ), chloroform, and a variety of associated mixed waste contaminants. Chemical processes used to recover and purify plutonium at Hanford's plutonium finishing plant (Z Plant) resulted in the production of actinide-bearing waste liquid. Both aqueous and organic liquid wastes were generated, and were routinely discharged to subsurface disposal facilities. The primary radionuclide in the waste streams was plutonium, and the primary organic was CCl 4 . This paper contains brief descriptions of the principal CCl 4 waste disposal facilities in Hanford's 200 West Area, associated hydrogeology, existing information on the extent of soil and ground-water contamination, and a conceptual outline of suspected subsurface CCl 4 distributions

  6. Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid

    International Nuclear Information System (INIS)

    Sung, J.; Kim, J.; Lee, Y.; Seol, J.; Ryu, J.; Park, K.

    2011-01-01

    The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 deg. C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined. (authors)

  7. The distribution of some rare metals in the process of separation of organic matter from Estonian dictyonema argillite

    International Nuclear Information System (INIS)

    Palvadre, R.; Ahelik, V.

    1993-01-01

    The distribution of rare metals Mo, U and V in the process of separation of organic matter from Maardu and Toolse argillite s is discussed. The beneficiation process of argillite consists of the hydro cycling treatment, in the course of which organic matter is separated as a light fraction, followed by direct flotation of organic matter and pyrite concentrates. Determinations of Mo and U were made by X-ray fluorescence, V by titration and pyrite by titration of iron. It can be concluded that rare metals Mo, U and V were concentrating in organic matter, their recovery in pyrite and quartz was negligible, depending on the degree of pyrite separation. The recovery of rare metals, especially that of V in the mineral phase, was more considerable in the processing of Maardu argillite, whose content of clay minerals was higher than that of Toolse argillite. 4 tabs., 6 refs

  8. Effects of low molecular weight organic acids on 137Cs release from contaminated soils

    International Nuclear Information System (INIS)

    Chiang, Po Neng; Wang, Ming Kuang; Huang, Pan Ming; Wang, Jeng Jong

    2011-01-01

    Radio pollutant removal is one of several priority restoration strategies for the environment. This study assessed the effect of low molecular weight organic acid on the lability and mechanisms for release of 137 Cs from contaminated soils. The amount of 137 Cs radioactivity released from contaminated soils reacting with 0.02 M low molecular weight organic acids (LMWOAs) specifically acetic, succinic, oxalic, tartaric, and citric acid over 48 h were 265, 370, 760, 850, and 1002 Bq kg -1 , respectively. The kinetic results indicate that 137 Cs exhibits a two-step parabolic diffusion equation and a good linear relationship, indicating that the parabolic diffusion equation describes the data quite well, as shown by low p and high r 2 values. The fast stage, which was found to occur within a short period of time (0.083-3 h), corresponds to the interaction of LMWOAs with the surface of clay minerals; meanwhile, during the slow stage, which occurs over a much longer time period (3-24 h), desorption primarily is attributed to inter-particle or intra-particle diffusion. After a fifth renewal of the LMWOAs, the total levels of 137 Cs radioactivity released by acetic, succinic, oxalic, tartaric, and citric acid were equivalent to 390, 520, 3949, 2061, and 4422 Bq kg -1 soil, respectively. H + can protonate the hydroxyl groups and oxygen atoms at the broken edges or surfaces of the minerals, thereby weakening Fe-O and Al-O bonds. After protonation of H + , organic ligands can attack the OH and OH 2 groups in the minerals easily, to form complexes with surface structure cations, such as Al and Fe. The amounts of 137 Cs released from contaminated soil treated with LMWOAs were substantially increased, indicating that the LMWOAs excreted by the roots of plants play a critical role in 137 Cs release.

  9. A novel modeling tool with multi-stressor functionality for organic contaminant transport and fate in the Baltic Sea

    Energy Technology Data Exchange (ETDEWEB)

    Undeman, E., E-mail: emma.undeman@itm.su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Department of Applied Environmental Science, Stockholm University, 11418 Stockholm (Sweden); Gustafsson, E., E-mail: erik.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden); Gustafsson, B.G., E-mail: bo.gustafsson@su.se [Baltic Nest Institute, Baltic Sea Centre, Stockholm University, 10691 Stockholm (Sweden)

    2014-11-01

    The coupled physical–biogeochemical model BALTSEM, previously used to assess nutrient/carbon cycles and eutrophication in the Baltic Sea, has been expanded to include algorithms for calculations of organic contaminant environmental transport and fate. This novel model version (BALTSEM-POP) is evaluated for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and hexachlorobenzene (HCB) in Baltic Sea surface water and sediment. Modeled dissolved concentrations are usually within a factor of 2–4 of observed concentrations, however with larger deviations for furans. Calculated concentrations in particulate organic matter are less accurate (within factors of 1–700), likely due to errors in estimated pelagic biomass, particulate matter–water partitioning, and large natural variability in field data. Concentrations in sediments are usually predicted within a factor of 6. The good performance of the model illustrates its usefulness for exploration of contaminant fate in response to variations in nutrient input and climatic conditions in the Baltic Sea marine environment. - Highlights: • A new model for organic chemical transport and fate in the Baltic Sea is presented. • Physical and biogeochemical processes are linked to organic contaminant transport. • The model is evaluated for PCBs, HCB and PCDD/Fs. • The model can predict dissolved concentrations within a factor of ca 2–4. • Predictions for concentrations in particulate matter and sediment are less accurate.

  10. A national-scale assessment of micro-organic contaminants in groundwater of England and Wales.

    Science.gov (United States)

    Manamsa, Katya; Crane, Emily; Stuart, Marianne; Talbot, John; Lapworth, Dan; Hart, Alwyn

    2016-10-15

    A large variety of micro-organic (MO) compounds is used in huge quantities for a range of purposes (e.g. manufacturing, food production, healthcare) and is now being frequently detected in the aquatic environment. Interest in the occurrence of MO contaminants in the terrestrial and aquatic environments continues to grow, as well as in their environmental fate and potential toxicity. However, the contamination of groundwater resources by MOs has a limited evidence base compared to other freshwater resources. Of particular concern are newly 'emerging contaminants' such as pharmaceuticals and lifestyle compounds, particularly those with potential endocrine disrupting properties. While groundwater often has a high degree of protection from pollution due to physical, chemical and biological attenuation processes in the subsurface compared to surface aquatic environments, trace concentrations of a large range of compounds are still detected in groundwater and in some cases may persist for decades due to the long residence times of groundwater systems. This study provides the first national-scale assessment of micro-organic compounds in groundwater in England and Wales. A large set of monitoring data was analysed to determine the relative occurrence and detected concentrations of different groups of compounds and to determine relationships with land-use, aquifer type and groundwater vulnerability. MOs detected including emerging compounds such as caffeine, DEET, bisphenol A, anti-microbial agents and pharmaceuticals as well as a range of legacy contaminants including chlorinated solvents and THMs, petroleum hydrocarbons, pesticides and other industrial compounds. There are clear differences in MOs between land-use types, particularly for urban-industrial and natural land-use. Temporal trends of MO occurrence are assessed but establishing long-term trends is not yet possible. Copyright © 2016 British Geological Survey, NERC. Published by Elsevier B.V. All rights reserved.

  11. Identification of specific organic contaminants in different units of a chemical production site.

    Science.gov (United States)

    Dsikowitzky, L; Botalova, O; al Sandouk-Lincke, N A; Schwarzbauer, J

    2014-07-01

    Due to the very limited number of studies dealing with the chemical composition of industrial wastewaters, many industrial organic contaminants still escape our view and consequently also our control. We present here the chemical characterization of wastewaters from different units of a chemical complex, thereby contributing to the characterization of industrial pollution sources. The chemicals produced in the investigated complex are widely and intensively used and the synthesis processes are common and applied worldwide. The chemical composition of untreated and treated wastewaters from the chemical complex was investigated by applying a non-target screening which allowed for the identification of 39 organic contaminants. According to their application most of them belonged to four groups: (i) unspecific educts or intermediates of industrial syntheses, (ii) chemicals for the manufacturing of pharmaceuticals, (iii) educts for the synthesis of polymers and resins, and (iv) compounds known as typical constituents of municipal sewage. A number of halogenated compounds with unknown toxicity and with very high molecular diversity belonged to the second group. Although these compounds were completely removed or degraded during wastewater treatment, they could be useful as "alarm indicators" for industrial accidents in pharmaceutical manufacturing units or for malfunctions of wastewater treatment plants. Three potential branch-specific indicators for polymer manufacturing were found in the outflow of the complex. Among all compounds, bisphenol A, which was present in the leachate water of the on-site waste deposit, occurred in the highest concentrations of up to 20 000 μg L(-1). The comparison of contaminant loads in the inflow and outflow of the on-site wastewater treatment facility showed that most contaminants were completely or at least significantly removed or degraded during the treatment, except two alkylthiols, which were enriched during the treatment process

  12. Separation of Contaminants in The Freeze/Thaw Process

    Directory of Open Access Journals (Sweden)

    Szpaczyński Janusz A.

    2017-06-01

    Full Text Available These studies examined the concept of concentration and purification of several types of wastewater by freezing and thawing. The experiments demonstrated that freezing of contaminated liquid contributed to concentration of contaminants in solution as well as significant concentration and agglomeration of solid particles. A high degree of purification was achieved for many parameters. The results of comparative laboratory tests for single and multiple freezing are presented. It was found that there was a higher degree of concentration of pollutants in wastewater frozen as man-made snow than in bulk ice. Furthermore, the hypothesis that long storage time of liquid as snow and sufficient temperature gradient metamorphism allows for high efficiency of the concentration process was confirmed. It was reported that the first 30% of the melted liquid volume contained over 90% of all impurities. It gives great opportunities to use this method to concentrate pollutants. The results revealed that the application of this process in full scale is possible. Significant agglomeration of solid particles was also noted. Tests with clay slurry showed that repeated freezing and thawing processes significantly improve the characteristics of slurry for sedimentation and filtration.

  13. Alternative method for determination of contaminated heparin using chiral recognition.

    Science.gov (United States)

    Szekely, J; Collins, M; Currie, C A

    2014-05-15

    Since 2008 a significant amount of work has focused on the development of methods to analyze contaminated heparin. This work focuses on utilizing heparin's ability to serve as a chiral selector as a means for determining contamination. Specifically, the effect of contamination on the separation of pheniramine and chloroquine enantiomers was explored. Separations were conducted using heparin contaminated with chondroitin sulfate at varying levels. For each pair of enantiomers, electrophoretic mobility and resolution were calculated. For pheniramine enantiomers, an increase in contamination leads to a decrease in the electrophoretic mobility and resolution. A linear relationship between contamination level and electrophoretic mobility of the pheniramine enantiomers was observed for the entire contamination range. A linear relationship was also found between contamination level and resolution of the enantiomers between 0 and 70 percent contamination. For the separation of chloroquine enantiomers, it was found that at low levels of contamination, the resolution of enantiomers was increased due to the secondary interaction between the chloroquine enantiomers and the chondroitin sulfate. Results of this study illustrate the potential of using chiral recognition as a means to determine heparin contamination as well as the improvement of the chiral resolution of chloroquine with the additional of low levels of chondroitin sulfate A. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Bioaccesibility Extraction of Hydrophobic Pollutants: Benefits of Separating Leaching Agent and Acceptor Medium

    DEFF Research Database (Denmark)

    Cocovi-Solberg, D. J.; Miro, M.; Loibner, A. P.

    2015-01-01

    Bioaccessibility extractions of organic pollutants from environmental solid samples are increasingly used in environmental risk assessment and management. Recent research has indicated that many bioaccessibility extraction methods have limited sink capacity for hydrophobic organic chemicals, which...... are a step forward, they also lead to challenges related to the separation of sink and matrix and/or the subsequent quantification of the bioaccessible fraction. The present study aimed at developing a new approach for (1) enhancing the sink capacity of bioaccessibility extractions, (2) improving phase......, the developed method was applied to PAH contaminated soils and the results compared to results obtained with other existing methods....

  15. Separation properties of aluminium-plastic laminates in post-consumer Tetra Pak with mixed organic solvent.

    Science.gov (United States)

    Zhang, S F; Zhang, L L; Luo, K; Sun, Z X; Mei, X X

    2014-04-01

    The separation properties of the aluminium-plastic laminates in postconsumer Tetra Pak structure were studied in this present work. The organic solvent blend of benzene-ethyl alcohol-water was used as the separation reagent. Then triangle coordinate figure analysis was taken to optimize the volume proportion of various components in the separating agent and separation process. And the separation temperature of aluminium-plastic laminates was determined by the separation time, efficiency, and total mass loss of products. The results show that cost-efficient separations perform best with low usage of solvents at certain temperatures, for certain times, and within a certain range of volume proportions of the three components in the solvent agent. It is also found that similar solubility parameters of solvents and polyethylene adhesives (range 26.06-34.85) are a key factor for the separation of the aluminium-plastic laminates. Such multisolvent processes based on the combined-system concept will be vital to applications in the recycling industry.

  16. A model compound study: The ecotoxicological evaluation of five organic contaminants employing a battery of marine bioassays

    International Nuclear Information System (INIS)

    Macken, Ailbhe; Giltrap, Michelle; Foley, Barry; McGovern, Evin; McHugh, Brendan; Davoren, Maria

    2008-01-01

    This paper describes the ecotoxicological evaluation of five organic contaminants frequently detected in marine sediments (tributyltin, triphenyltin, benzo[a]pyrene, fluoranthene, and PCB 153) using three marine species (Vibrio fischeri, Tetraselmis suecica, and Tisbe battagliai). The sensitivity of each species varied for all compounds. The triorganotins were consistently the most toxic to all species. The applicability of each test system to assess the acute toxicity of environmental contaminants and their use in Toxicity Identification Evaluation (TIE) is discussed. Suitability of the Microtox and T. battagliai tests for employment in TIE studies were further assessed through spiking experiments with tributyltin. Results demonstrated that the most effective treatment to remove organotin toxicity from the sample was the C 18 resin. The results of this study have important implications for risk assessment in estuarine and coastal waters in Ireland, where, at present the monitoring of sediment and water quality is predominantly reliant on chemical analysis alone. - Ecotoxicological evaluation of five organic marine sediment contaminants was conducted and the suitability of the test species for marine porewater TIE discussed

  17. A model compound study: The ecotoxicological evaluation of five organic contaminants employing a battery of marine bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Macken, Ailbhe [Radiation and Environmental Science Centre, Focas Institute, DIT, Kevin Street, Dublin 8 (Ireland)], E-mail: ailbhe.macken@dit.ie; Giltrap, Michelle [Radiation and Environmental Science Centre, Focas Institute, DIT, Kevin Street, Dublin 8 (Ireland); Marine Institute, Rinville, Oranmore, Co. Galway (Ireland)], E-mail: michelle.giltrap@marine.ie; Foley, Barry [School of Chemical and Pharmaceutical Sciences, DIT, Kevin Street, Dublin 8 (Ireland)], E-mail: barry.foley@dit.ie; McGovern, Evin [Marine Institute, Rinville, Oranmore, Co. Galway (Ireland)], E-mail: evin.mcgovern@marine.ie; McHugh, Brendan [Marine Institute, Rinville, Oranmore, Co. Galway (Ireland)], E-mail: brendan.mchugh@marine.ie; Davoren, Maria [Radiation and Environmental Science Centre, Focas Institute, DIT, Kevin Street, Dublin 8 (Ireland)], E-mail: maria.davoren@dit.ie

    2008-06-15

    This paper describes the ecotoxicological evaluation of five organic contaminants frequently detected in marine sediments (tributyltin, triphenyltin, benzo[a]pyrene, fluoranthene, and PCB 153) using three marine species (Vibrio fischeri, Tetraselmis suecica, and Tisbe battagliai). The sensitivity of each species varied for all compounds. The triorganotins were consistently the most toxic to all species. The applicability of each test system to assess the acute toxicity of environmental contaminants and their use in Toxicity Identification Evaluation (TIE) is discussed. Suitability of the Microtox and T. battagliai tests for employment in TIE studies were further assessed through spiking experiments with tributyltin. Results demonstrated that the most effective treatment to remove organotin toxicity from the sample was the C{sub 18} resin. The results of this study have important implications for risk assessment in estuarine and coastal waters in Ireland, where, at present the monitoring of sediment and water quality is predominantly reliant on chemical analysis alone. - Ecotoxicological evaluation of five organic marine sediment contaminants was conducted and the suitability of the test species for marine porewater TIE discussed.

  18. Accumulation patterns of lipophilic organic contaminants in surface sediments and in economic important mussel and fish species from Jakarta Bay, Indonesia

    International Nuclear Information System (INIS)

    Dwiyitno; Dsikowitzky, Larissa; Nordhaus, Inga; Andarwulan, Nuri; Irianto, Hari Eko; Lioe, Hanifah Nuryani; Ariyani, Farida; Kleinertz, Sonja

    2016-01-01

    Non-target screening analyses were conducted in order to identify a wide range of organic contaminants in sediment and animal tissue samples from Jakarta Bay. High concentrations of di-iso-propylnaphthalenes (DIPNs), linear alkylbenzenes (LABs) and polycyclic aromatic hydrocarbons (PAHs) were detected in all samples, whereas phenylmethoxynaphthalene (PMN), DDT and DDT metabolites (DDX) were detected at lower concentrations. In order to evaluate the uptake and accumulation by economic important mussel (Perna viridis) and fish species, contaminant patterns of DIPNs, LABs and PAHs in different compartments were compared. Different patterns of these contaminant groups were found in sediment and animal tissue samples, suggesting compound-specific accumulation and metabolism processes. Significantly higher concentrations of these three contaminant groups in mussel tissue as compared to fish tissue from Jakarta Bay were found. Because P. viridis is an important aquaculture species in Asia, this result is relevant for food safety. - Highlights: • Analyses of surface sediment and animal tissue samples from a tropical coastal system • Non-target screening enabled identification of a wide range of organic contaminants. • Comparison of contaminant patterns in surface sediments and animal tissue samples • Results illustrate compound-specific accumulation and metabolism processes. • Higher concentrations of all contaminants in mussel tissue as compared to fish tissue

  19. Impact of fresh organic matter incorporation on PAH fate in a contaminated industrial soil

    International Nuclear Information System (INIS)

    Pernot, Audrey; Ouvrard, Stéphanie; Leglize, Pierre; Watteau, Françoise; Derrien, Delphine

    2014-01-01

    The impacts of fresh organic matter (OM) incorporation in an industrial PAH-contaminated soil on its structure and contaminant concentrations (available and total) were monitored. A control soil and a soil amended with the equivalent of 10 years maize residue input were incubated in laboratory-controlled conditions over 15 months. The structure of the amended soil showed an aggregation process trend which is attributable to (i) the enhanced microbial activity resulting from fresh OM input itself and (ii) the fresh OM and its degradation products. Initially the added organic matter was evenly distributed among all granulodensimetric fractions, and then rapidly degraded in the sand fraction, while stabilizing and accumulating in the silts. PAH degradation remained slight, despite the enhanced microbial biomass activity, which was similar to kinetics of the turnover rate of OM in an uncontaminated soil. The silts stabilized the anthropogenic OM and associated PAH. The addition of fresh OM tended to contribute to this stabilization process. Thus, in a context of plant growth on this soil two opposing processes might occur: rhizodegradation of the available contaminant and enhanced stabilization of the less available fraction due to carbon input. - Highlights: • Fresh OM input in an industrial soil leads to aggregation. • TC and δ 13 C increase in fine silts. • Fine silts store both the natural and anthropogenic OM. • PAH concentration and availability are not impacted by an addition of OM

  20. Impact of fresh organic matter incorporation on PAH fate in a contaminated industrial soil

    Energy Technology Data Exchange (ETDEWEB)

    Pernot, Audrey [Université de Lorraine, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); INRA, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); Université de Lorraine, LIEC, UMR 7360, Vandoeuvre-lès-Nancy, F-54506 (France); CNRS, LIEC, UMR 7360, Vandoeuvre-lès-Nancy, F-54506 (France); Ouvrard, Stéphanie, E-mail: stephanie.ouvrard@univ-lorraine.fr [Université de Lorraine, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); INRA, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); Leglize, Pierre [Université de Lorraine, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); INRA, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); Watteau, Françoise [Université de Lorraine, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); INRA, LSE, UMR 1120, Vandoeuvre-lès-Nancy, F-54518 (France); CNRS, UMS 3562, Vandoeuvre-lès-Nancy, F-54501 (France); Derrien, Delphine [INRA, BEF, UR 1138, Centre Nancy-Lorraine, Champenoux, F-54280 (France); and others

    2014-11-01

    The impacts of fresh organic matter (OM) incorporation in an industrial PAH-contaminated soil on its structure and contaminant concentrations (available and total) were monitored. A control soil and a soil amended with the equivalent of 10 years maize residue input were incubated in laboratory-controlled conditions over 15 months. The structure of the amended soil showed an aggregation process trend which is attributable to (i) the enhanced microbial activity resulting from fresh OM input itself and (ii) the fresh OM and its degradation products. Initially the added organic matter was evenly distributed among all granulodensimetric fractions, and then rapidly degraded in the sand fraction, while stabilizing and accumulating in the silts. PAH degradation remained slight, despite the enhanced microbial biomass activity, which was similar to kinetics of the turnover rate of OM in an uncontaminated soil. The silts stabilized the anthropogenic OM and associated PAH. The addition of fresh OM tended to contribute to this stabilization process. Thus, in a context of plant growth on this soil two opposing processes might occur: rhizodegradation of the available contaminant and enhanced stabilization of the less available fraction due to carbon input. - Highlights: • Fresh OM input in an industrial soil leads to aggregation. • TC and δ{sup 13}C increase in fine silts. • Fine silts store both the natural and anthropogenic OM. • PAH concentration and availability are not impacted by an addition of OM.

  1. Organization of work for prevention of propagation of radioactive contamination, for decontamination of the premise surfaces and individual protective means in case of radiation accident

    International Nuclear Information System (INIS)

    Klochkov, V.N.; Vas'kin, A.G.; Filatova, V.M.

    1995-01-01

    Radiation accident results in radioactive contamination of the surface, clothes and other property. If proper measures are taken, it will prevent propagation of contamination. Decontamination of surfaces - is a complicated and tedious process. The paper has examined the measures of organization and technical aspects of prevention of propagation of radioactive contamination. Methods of decontamination of internal surfaces of premises are demonstrated, organization of the individual protective means is determined. 9 refs

  2. Radioactive contamination of honey and other bee-keeping products

    International Nuclear Information System (INIS)

    Frantsevich, L.I.; Komissar, A.D.; Levchenko, I.A.

    1990-01-01

    Great amount of dust is collected in propolis under emergency atmospheric fallouts. Specific coefficient of the product migration amounts to several m 2 per 1 kg. Propolis is a good biological indicator of radioactive fallouts. The propolis collection is inadmissible after radioactive fallouts. Cocoon residuals obtained during bees-wax separation contain many radionuclides and should be disposed in special places. Nuclides are absent in bees-wax. Nuclides accumulated absent in a bee organism migrate into honey and queen milk, the honey is contaminated mainly via biogenic path

  3. Heavy metal(loid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: Distributions, sources, and driving forces.

    Science.gov (United States)

    Huang, Guanxing; Zhang, Ming; Liu, Chunyan; Li, Liangping; Chen, Zongyu

    2018-09-01

    Urbanization and industrialization have increased groundwater resource demands, and may drive the change of heavy metal(loid)s and organic chemicals in groundwater in the Pearl River Delta (PRD), southern China. Thus, a comprehensive understanding of the distributions, sources, and driving forces of heavy metal(loid)s and organic chemicals in groundwater in the PRD is vital for water resource management in this region. In this study, eight heavy metal(loid)s and fifty-five organic chemicals in groundwater across the PRD were investigated. The results show that undrinkable groundwater related to heavy metal(loid)s was mainly due to high concentrations of Fe (19.3%) and As (6.8%). Eighteen organic contaminants were detected in groundwater in the PRD, where the most frequently detected organic contaminant was naphthalene, and its detection rate was 2.51%. In 5.3% of all groundwater samples, one or more organic contaminants were found. All detected organic contaminants, except ones without allowable limits, in groundwater were at concentrations below allowable limits of China. The mean concentrations of heavy metal(loid)s in granular aquifers were higher than those in fissured and karst aquifers, especially for Fe and As. Except Se, the mean concentrations of other heavy metal(loid)s and the frequency of detection of organic contaminants in groundwater in urbanized and peri-urban areas were higher than those in non-urbanized areas, especially for Hg, Co, and organic contaminants. Fe, As, and Se in groundwater mainly originated from the release of Fe/As/Se rich sediments. The former two were driven by reduction reactions, while the latter was driven by oxidation resulting from the infiltration of NO 3 - . In contrast, other five heavy metal(loid)s and organic contaminants in groundwater mainly originated from the anthropogenic sources, such as the infiltration of industrial sewage. It is evident that urbanization and industrialization are two powerful driving forces for

  4. Development of novel separation techniques for biological samples in capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Huan -Tsung [Iowa State Univ., Ames, IA (United States)

    1994-07-27

    This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good way to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.

  5. Organic Contaminants Library for the Sample Analysis at Mars

    Science.gov (United States)

    Misra, P.; Garcia-Sanchez, R.; Canham, J.; Mahaffy, P. R.

    2012-12-01

    A library containing mass spectra for Sample Analysis at Mars (SAM) materials has been developed with the purpose of contamination identification and control. Based on analysis of the Gas Chromatography-Mass Spectrometric (GCMS) data through thermal desorption, organic compounds were successfully identified from material samples, such as polymers, paints and adhesives. The library contains the spectra for all the compounds found in each of these analyzed files and is supplemented by a file information spreadsheet, a spreadsheet-formatted library for easy searching, and a Perfluorotributylamine (PFTBA) based normalization protocol to make corrections to SAM data in order to meet the standard set by commercial libraries. An example of the library in use can be seen in Figure 1, where the abundances match closely, the spectral shape is retained, and the library picks up on it with an 88% identification probability. Of course, there are also compounds that have not been identified and are retained as unknowns. The library we have developed, along with its supplemental materials, is useful from both organizational and practical viewpoints. Through them we are able to organize large volumes of GCMS data, while at the same time breaking down the components that each material sample is made of. This approach in turn allows us straightforward and fast access to information that will be critical while performing analysis on the data recorded by the SAM instrumentation. In addition, the normalization protocol dramatically increased the identification probability. In SAM GCMS, PFTBA signals were obfuscated, resulting in library matches far away from PFTBA; by using the normalization protocol we were able to transform it into a 92% probable spectral match for PFTBA. The project has demonstrated conclusively that the library is successful in identifying unknown compounds utilizing both the Automated Mass Spectral Deconvolution & Identification System (AMDIS) and the Ion

  6. State-of-the-art of recycling e-wastes by vacuum metallurgy separation.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2014-12-16

    In recent era, more and more electric and electronic equipment wastes (e-wastes) are generated that contain both toxic and valuable materials in them. Most studies focus on the extraction of valuable metals like Au, Ag from e-wastes. However, the recycling of metals such as Pb, Cd, Zn, and organics has not attracted enough attentions. Vacuum metallurgy separation (VMS) processes can reduce pollution significantly using vacuum technique. It can effectively recycle heavy metals and organics from e-wastes in an environmentally friendly way, which is beneficial for both preventing the heavy metal contaminations and the sustainable development of resources. VMS can be classified into several methods, such as vacuum evaporation, vacuum carbon reduction and vacuum pyrolysis. This paper respectively reviews the state-of-art of these methods applied to recycling heavy metals and organics from several kinds of e-wastes. The method principle, equipment used, separating process, optimized operating parameters and recycling mechanism of each case are illustrated in details. The perspectives on the further development of e-wastes recycling by VMS are also presented.

  7. Comparison of Passive Samplers for Monitoring Dissolved Organic Contaminants in Water Column Deployments NAC/SETAC 2012

    Science.gov (United States)

    Nonionic organic contaminants (NOCs) are difficult to measure in the water column due to their inherent chemical properties resulting in low water solubility and high particle activity. Traditional sampling methods require large quantities of water to be extracted and interferen...

  8. Biocomplementation of SVE to achieve clean-up goals in soils contaminated with toluene and xylene.

    Science.gov (United States)

    Soares, António Alves; Pinho, Maria Teresa; Albergaria, José Tomás; Domingues, Valentina; da Conceição Alvim-Ferraz, Maria; Delerue-Matos, Cristina

    2013-10-01

    Soil vapor extraction (SVE) and bioremediation (BR) are two of the most common soil remediation technologies. Their application is widespread; however, both present limitations, namely related to the efficiencies of SVE on organic soils and to the remediation times of some BR processes. This work aimed to study the combination of these two technologies in order to verify the achievement of the legal clean-up goals in soil remediation projects involving seven different simulated soils separately contaminated with toluene and xylene. The remediations consisted of the application of SVE followed by biostimulation. The results show that the combination of these two technologies is effective and manages to achieve the clean-up goals imposed by the Spanish Legislation. Under the experimental conditions used in this work, SVE is sufficient for the remediation of soils, contaminated separately with toluene and xylene, with organic matter contents (OMC) below 4 %. In soils with higher OMC, the use of BR, as a complementary technology, and when the concentration of contaminant in the gas phase of the soil reaches values near 1 mg/L, allows the achievement of the clean-up goals. The OMC was a key parameter because it hindered SVE due to adsorption phenomena but enhanced the BR process because it acted as a microorganism and nutrient source.

  9. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes

    International Nuclear Information System (INIS)

    Estevez, Esmeralda; Cabrera, María del Carmen; Fernández-Vera, Juan Ramón; Molina-Díaz, Antonio; Robles-Molina, José; Palacios-Díaz, María del Pino

    2016-01-01

    Irrigation with reclaimed water (R) is necessary to guarantee the sustainability of semi-arid areas. Results obtained during a two years monitoring network (2009–2011) in Gran Canaria are presented, including the analysis of chemical parameters, N and S isotopes, priority substances (2008/105/EC, 2013/39/EU), other organic contaminants and heavy metals in groundwater and R used to irrigate a golf course. The aims of this work are to evaluate the contamination in a volcanic aquifer, relate the presence of organic contaminants and heavy metals with the hydrogeochemistry and identify pollution sources in the area. No priority substance exceeded the EU thresholds for surface water, although seventeen were detected in R. The most frequent compounds were hexachlorobenzene, chlorpyrifos ethyl, fluorene, phenanthrene and pyrene. These compounds were detected at low concentration, except chlorpyrifos. Chlorpyrifos ethyl, terbuthylazine, diuron, terbutryn, procymidone, atrazine and propazine exceeded the European threshold concentration for pesticides in groundwater (100 ng L"−"1). Therefore, the priority substances chlorpyrifos ethyl and diuron must be included in monitoring studies. The priority pesticides chlorfenvinphos and diazinon were always detected in R but rarely in groundwater. Besides, the existence of contaminants not related to the current R irrigation has been identified. Absence of environmental problems related to heavy metals can be expected. The relationship among contaminant presence, hydrogeochemistry, including the stable isotopic prints of δ"1"8O, δ"1"5N and δ"3"4S and preferential recharge paths has been described. The coastal well shows high values of EC, nitrate, a variable chemistry, and 50% of organic contaminants detected above 100 ng L"−"1. The well located in the recharge area presents a stable hydrochemistry, the lowest value of δ"1"5N and the lowest contaminants occurrence. The area is an example of a complex volcanic media with

  10. Monitoring priority substances, other organic contaminants and heavy metals in a volcanic aquifer from different sources and hydrological processes

    Energy Technology Data Exchange (ETDEWEB)

    Estevez, Esmeralda, E-mail: eestevez@proyinves.ulpgc.es [Dpt. Física (GEOVOL), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Agrifood and Phytopathological Laboratory (Cabildo de Gran Canaria), 35413 Arucas, Canary Islands (Spain); Cabrera, María del Carmen, E-mail: mcarmen.cabrera@ulpgc.es [Dpt. Física (GEOVOL), Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); IMDEA Water Institute, Alcalá de Henares, Madrid (Spain); Fernández-Vera, Juan Ramón, E-mail: jrfernandezv@grancanaria.com [Agrifood and Phytopathological Laboratory (Cabildo de Gran Canaria), 35413 Arucas, Canary Islands (Spain); Molina-Díaz, Antonio, E-mail: amolina@ujaen.es [Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen (Spain); Robles-Molina, José, E-mail: jroblesmol@gmail.com [Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry, University of Jaen, 23071 Jaen (Spain); Palacios-Díaz, María del Pino, E-mail: mp.palaciosdiaz@ulpgc.es [Dpt. de Patología Animal, Producción Animal, Bromatología y Tecnología de los Alimentos (GEOVOL), Universidad de Las Palmas de Gran Canaria, 35413 Arucas, Canary Islands (Spain)

    2016-05-01

    Irrigation with reclaimed water (R) is necessary to guarantee the sustainability of semi-arid areas. Results obtained during a two years monitoring network (2009–2011) in Gran Canaria are presented, including the analysis of chemical parameters, N and S isotopes, priority substances (2008/105/EC, 2013/39/EU), other organic contaminants and heavy metals in groundwater and R used to irrigate a golf course. The aims of this work are to evaluate the contamination in a volcanic aquifer, relate the presence of organic contaminants and heavy metals with the hydrogeochemistry and identify pollution sources in the area. No priority substance exceeded the EU thresholds for surface water, although seventeen were detected in R. The most frequent compounds were hexachlorobenzene, chlorpyrifos ethyl, fluorene, phenanthrene and pyrene. These compounds were detected at low concentration, except chlorpyrifos. Chlorpyrifos ethyl, terbuthylazine, diuron, terbutryn, procymidone, atrazine and propazine exceeded the European threshold concentration for pesticides in groundwater (100 ng L{sup −1}). Therefore, the priority substances chlorpyrifos ethyl and diuron must be included in monitoring studies. The priority pesticides chlorfenvinphos and diazinon were always detected in R but rarely in groundwater. Besides, the existence of contaminants not related to the current R irrigation has been identified. Absence of environmental problems related to heavy metals can be expected. The relationship among contaminant presence, hydrogeochemistry, including the stable isotopic prints of δ{sup 18}O, δ{sup 15}N and δ{sup 34}S and preferential recharge paths has been described. The coastal well shows high values of EC, nitrate, a variable chemistry, and 50% of organic contaminants detected above 100 ng L{sup −1}. The well located in the recharge area presents a stable hydrochemistry, the lowest value of δ{sup 15}N and the lowest contaminants occurrence. The area is an example of a complex

  11. Analytical strategies for organic food packaging contaminants.

    Science.gov (United States)

    Sanchis, Yovana; Yusà, Vicent; Coscollà, Clara

    2017-03-24

    In this review, we present current approaches in the analysis of food-packaging contaminants. Gas and liquid chromatography coupled to mass spectrometry detection have been widely used in the analysis of some relevant families of these compounds such as primary aromatic amines, bisphenol A, bisphenol A diglycidyl ether and related compounds, UV-ink photoinitiators, perfluorinated compounds, phthalates and non-intentionally added substances. Main applications for sample treatment and different types of food-contact material migration studies have been also discussed. Pressurized Liquid Extraction, Solid-Phase Microextraction, Focused Ultrasound Solid-Liquid Extraction and Quechers have been mainly used in the extraction of food contact material (FCM) contaminants, due to the trend of minimising solvent consumption, automatization of sample preparation and integration of extraction and clean-up steps. Recent advances in analytical methodologies have allowed unequivocal identification and confirmation of these contaminants using Liquid Chromatography coupled to High Resolution Mass Spectrometry (LC-HRMS) through mass accuracy and isotopic pattern applying. LC-HRMS has been used in the target analysis of primary aromatic amines in different plastic materials, but few studies have been carried out applying this technique in post-target and non-target analysis of FCM contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    International Nuclear Information System (INIS)

    Chan, Wai Kit; Jouët, Justine; Heng, Samuel; Yeung, King Lun; Schrotter, Jean-Christophe

    2012-01-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation. - Graphical abstract: Advanced ozone membrane reactor synergistically combines membrane distributor for ozone, membrane contactor for sorption and reaction and membrane separator for clean water production to achieve an order of magnitude enhancement in treatment performance compared to traditional ozone reactor. Highlights: ► Novel reactor using membranes for ozone distributor, reaction contactor and water separator. ► Designed to achieve an order of magnitude enhancement over traditional reactor. ► Al 2 O 3 and hydrotalcite coatings capture and trap pollutants giving additional 30% TOC removal. ► High surface area coating prevents polarization and improves membrane separation and life.

  13. Methods to assess bioavailability of hydrophobic organic contaminants: Principles, operations, and limitations.

    Science.gov (United States)

    Cui, Xinyi; Mayer, Philipp; Gan, Jay

    2013-01-01

    Many important environmental contaminants are hydrophobic organic contaminants (HOCs), which include PCBs, PAHs, PBDEs, DDT and other chlorinated insecticides, among others. Owing to their strong hydrophobicity, HOCs have their final destination in soil or sediment, where their ecotoxicological effects are closely regulated by sorption and thus bioavailability. The last two decades have seen a dramatic increase in research efforts in developing and applying partitioning based methods and biomimetic extractions for measuring HOC bioavailability. However, the many variations of both analytical methods and associated measurement endpoints are often a source of confusion for users. In this review, we distinguish the most commonly used analytical approaches based on their measurement objectives, and illustrate their practical operational steps, strengths and limitations using simple flowcharts. This review may serve as guidance for new users on the selection and use of established methods, and a reference for experienced investigators to identify potential topics for further research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Effects of predicted climatic changes on distribution of organic contaminants in brackish water mesocosms.

    Science.gov (United States)

    Ripszam, M; Gallampois, C M J; Berglund, Å; Larsson, H; Andersson, A; Tysklind, M; Haglund, P

    2015-06-01

    Predicted consequences of future climate change in the northern Baltic Sea include increases in sea surface temperatures and terrestrial dissolved organic carbon (DOC) runoff. These changes are expected to alter environmental distribution of anthropogenic organic contaminants (OCs). To assess likely shifts in their distributions, outdoor mesocosms were employed to mimic pelagic ecosystems at two temperatures and two DOC concentrations, current: 15°C and 4 mg DOCL(-1) and, within ranges of predicted increases, 18°C and 6 mg DOCL(-1), respectively. Selected organic contaminants were added to the mesocosms to monitor changes in their distribution induced by the treatments. OC partitioning to particulate matter and sedimentation were enhanced at the higher DOC concentration, at both temperatures, while higher losses and lower partitioning of OCs to DOC were observed at the higher temperature. No combined effects of higher temperature and DOC on partitioning were observed, possibly because of the balancing nature of these processes. Therefore, changes in OCs' fates may largely depend on whether they are most sensitive to temperature or DOC concentration rises. Bromoanilines, phenanthrene, biphenyl and naphthalene were sensitive to the rise in DOC concentration, whereas organophosphates, chlorobenzenes (PCBz) and polychlorinated biphenyls (PCBs) were more sensitive to temperature. Mitotane and diflufenican were sensitive to both temperature and DOC concentration rises individually, but not in combination. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Modeling the pH-mediated extraction of ionizable organic contaminants to improve the quality of municipal sewage sludge destined for land application

    International Nuclear Information System (INIS)

    Venkatesan, Arjun K.; Halden, Rolf U.

    2016-01-01

    A model was developed to assess the impact of adding acids and bases to processed municipal sewage sludge (MSS) to mobilize contaminants, facilitating their removal from sludge by flushing prior to land application. Among 312 organic contaminants documented to occur in U.S. MSS, 71 or 23% were identified as ionizable organic contaminants (IOCs), contributing a disproportionately large fraction of 82% of the total mass of sludge-borne contaminants. Detected IOCs included 57 pharmaceuticals and personal care products, 12 perfluorinated compounds, one surfactant and one pesticide. Annually, about 2000 t of IOCs were estimated to be released to U.S. soils via land-application of MSS. A partitioning model developed to assess the impact of pH on hydrophobic sorption revealed that between 36 and 85% of the mass of individual classes of IOCs potentially could be desorbed from MSS via pH adjustment and flushing. Thus, modeling results suggest that a sequential pH treatment [acidic (~ pH 2) followed by basic (~ pH 12) treatment] has the potential to reduce the burden of harmful IOCs in MSS applied on U.S. land by up to 40 ± 16 t annually. This approach may serve as a cost-effective treatment process that can be implemented easily in existing sludge treatment infrastructure in the U.S. and worldwide, serving to significantly improve the quality of MSS destined for land application. - Highlights: • Sorption model predicts the leachability of ionizable organics from sludge. • Ionic organics make up 82% of total contaminant mass in U.S. sludge. • 36–85% of ionic organic pollutants are removable by pH treatment. • Proposed sludge treatment promises cost-effective risk reduction.

  16. Modeling the pH-mediated extraction of ionizable organic contaminants to improve the quality of municipal sewage sludge destined for land application

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Arjun K.; Halden, Rolf U., E-mail: halden@asu.edu

    2016-04-15

    A model was developed to assess the impact of adding acids and bases to processed municipal sewage sludge (MSS) to mobilize contaminants, facilitating their removal from sludge by flushing prior to land application. Among 312 organic contaminants documented to occur in U.S. MSS, 71 or 23% were identified as ionizable organic contaminants (IOCs), contributing a disproportionately large fraction of 82% of the total mass of sludge-borne contaminants. Detected IOCs included 57 pharmaceuticals and personal care products, 12 perfluorinated compounds, one surfactant and one pesticide. Annually, about 2000 t of IOCs were estimated to be released to U.S. soils via land-application of MSS. A partitioning model developed to assess the impact of pH on hydrophobic sorption revealed that between 36 and 85% of the mass of individual classes of IOCs potentially could be desorbed from MSS via pH adjustment and flushing. Thus, modeling results suggest that a sequential pH treatment [acidic (~ pH 2) followed by basic (~ pH 12) treatment] has the potential to reduce the burden of harmful IOCs in MSS applied on U.S. land by up to 40 ± 16 t annually. This approach may serve as a cost-effective treatment process that can be implemented easily in existing sludge treatment infrastructure in the U.S. and worldwide, serving to significantly improve the quality of MSS destined for land application. - Highlights: • Sorption model predicts the leachability of ionizable organics from sludge. • Ionic organics make up 82% of total contaminant mass in U.S. sludge. • 36–85% of ionic organic pollutants are removable by pH treatment. • Proposed sludge treatment promises cost-effective risk reduction.

  17. Bioclogging Effects Relevant to In-Situ Bioremediation of Organic Contaminants

    Science.gov (United States)

    Bielefeldt, A. R.; Illangasekare, T.

    2002-05-01

    This presentation will summarize 5 years of laboratory experiments investigating the effects of biodegradation of organic contaminants on the hydrodynamic properties of saturated sand due to biomass accumulation. The contaminants studied included naphthalene, decane, diesel fuel, propylene glycol, and aircraft de-icing fluid (ADF). Most of the experiments were conducted in columns (~6 cm dia x 15 cm L). A wide range of environmental conditions were simulated including low to high organic loading (1.2 to 38,000 mg C/kg dry sand/d), various nutrient concentrations (C:N 3:1 to 5424:1), seepage velocity (0.5-11 m/d), and sand size (average diameter 0.19, 0.32, 0.49 mm). Changes in the hydraulic conductivity and dispersivity of the media over time and the biomass distribution in the sand at the end of the experiments were measured. In general, the hydraulic conductivity in the columns declined over time until a steady-state minimum was reached when the new biogrowth was balanced by endogenous decay and shear stress losses from the system. The minimum conductivity was generally 2 to 4 orders of magnitude below that of the clean sand. Dispersivity was evaluated using bromide tracer tests and monitoring the break-through curves. Dispersivity after biomass growth was always higher than that of the clean sand (up to 10x), but trends over time did not always consistently increase. Under selected conditions the dispersivity initially increased and then decreased, although never achieving a level below that of the clean sand. Final biomass concentrations in the sand at steady state ranged from 0.1 to 10 mg dry weight/g dry sand. In some experiments the biomass was evenly distributed through the sand while in others significantly more biomass was present at the column inlet. Some experiments were also conducted in larger 2-D tanks (122 cm L x 46 cm H x 6 cm W) which allowed the groundwater flow to route around local areas of bioclogging as would be likely to occur in subsurface

  18. Contaminant Effects on California Bay–Delta Species and Human Health

    Directory of Open Access Journals (Sweden)

    Stephanie Fong

    2016-12-01

    Full Text Available doi: https://doi.org/10.15447/sfews.2016v14iss4art5Many contaminants in the California Bay–Delta (Bay–Delta exceed regulatory standards, affect aquatic species, and potentially affect human health. Recent studies provide multiple lines of evidence that contaminants affect species of concern in the Bay–Delta (e.g., the decline of several important fish species referred to as the “Pelagic Organism Decline” or POD. Contaminants occur as dynamic complex mixtures and exert effects at multiple levels of biological organization. Multiple chemicals impair processes at cellular and physiological levels (measured as growth, development, and behavior abnormalities, and when viability and reproductive output are affected, populations are affected. As an important example, the population decline of the endangered Delta Smelt (Hypomesus transpacificus is significantly associated with multiple stressors, including insecticide use. New analyses presented in this paper show significant correlations between pyrethroid use and declining abundance of POD fish species. Water sampled from the Bay–Delta causes multiple deleterious effects in fish, and Delta Smelt collected from the Bay–Delta exhibit contaminant effects. Fish prey items are also affected by contaminants; this may have an indirect effect on their populations. Co-occurrence with thermal changes or disease can exacerbate contaminant effects. Contaminants also pose threats to human health via consumption of fish and shellfish, drinking water, and contact recreation, in particular, mercury, cyanobacteria toxins, disinfection byproducts, pathogens, pesticides, and pharmaceuticals and personal care products. The role of contaminants in the decline of Bay–Delta species is difficult to accurately assess in a complex, dynamic system. However, tools and approaches are available to evaluate contaminant effects on Bay–Delta species, and separate the effects of multiple stressors. Integrated

  19. Evaluation of a two-step thermal method for separating organic and elemental carbon for radiocarbon analysis

    NARCIS (Netherlands)

    Dusek, U.; Monaco, M.; Prokopiou, M.; Gongriep, F.; Hitzenberger, R.; Meijer, H. A. J.; Rockmann, T.

    2014-01-01

    We thoroughly characterized a system for thermal separation of organic carbon (OC) and elemental carbon (EC) for subsequent radiocarbon analysis. Different organic compounds as well as ambient aerosol filter samples were introduced into an oven system and combusted to CO2 in pure O-2. The main

  20. Waste processing system for product contaminated with radioactivity

    International Nuclear Information System (INIS)

    Sotoyama, Koichi; Takaya, Jun-ichi; Takahashi, Suehiro.

    1987-01-01

    Purpose: To enable to processing contaminated products while separating them into metals at high contamination level and non-metals at low contamination level. Constitution: Pulverized radioactive wastes conveyed on a conveyor belt are uniformly irradiated by a ring-illumination device and then they are picked-up by a television camera or the like. The picked-up signals are sent to an image processing device, applied with appropriate binarization and metal objects are separated by utilizing the light absorbing property of non-metal and light reflection property of metals. The graviational center for the metal object is calculated from the binarized image, the positional information is provided to a robot controller and the metal object is transferred to another position by a robot. Since only the metal object at high radioactive contamination level can be taken out separately, it is no more necessary to process the entire wastes as the high level decontamination products, to thereby provide an economical advantage. (Sekiya, K.)

  1. Full-scale demonstration of treatment of mechanically separated organic residue in a bioreactor at VAM in Wijster

    NARCIS (Netherlands)

    Oonk, H.; Woelders, H.

    1999-01-01

    At the VAM waste treatment company in Wijster a demonstration is in progress of bioreactor technology for the treatment of mechanically separated organic residue (MSOR) of a waste separation plant. This bioreactor is an in situ fermentation cell in which physical, chemical and biological processes

  2. Non-biological removal of organic pollutants from water

    International Nuclear Information System (INIS)

    Mersmann, A.; Kutzer, S.; Kajszika, H.; Wintrich, H.

    1995-01-01

    Contaminants present in waste water, seepage water and ground water include salts, heavy metals and organic compounds of low biodegradability. This paper considers the wide range of physico-chemical processes available for separation of such compounds from water and points out their optimal and economic range of application. Main subjects are desorption processes (air/steam stripping), adsorption processes (activated carbon, polymeric resins) and membrane separation processes. Alternative water treatment technologies (evaporation, distillation, liquid-liquid-extraction, oxidation, flocculation and precipitation) and combined processes are presented and discussed. (orig.) [de

  3. Organic Contaminant Content and Physico-Chemical Characteristics of Waste Materials Recycled in Agriculture

    Directory of Open Access Journals (Sweden)

    Hannah Rigby

    2015-12-01

    Full Text Available A range of wastes representative of materials currently applied, or with future potential to be applied, to agricultural land in the UK as fertilisers and soil improvers or used as animal bedding in livestock production, were investigated. In addition to full physico-chemical characterization, the materials were analysed for a suite of priority organic contaminants. In general, contaminants were present at relatively low concentrations. For example, for biosolids and compost-like-output (CLO, concentrations of polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs and polychlorinated biphenyls (PCBs were approximately 1−10 and 5–50 times lower, respectively, than various proposed or implemented European limit values for these contaminants in biosolids or composts applied to agricultural land. However, the technical basis for these limits may require re-evaluation in some cases. Polybrominated, and mixed halogenated, dibenzo-p-dioxins/dibenzofurans are not currently considered in risk assessments of dioxins and dioxin-like chemicals, but were detected at relatively high concentrations compared with PCDD/Fs in the biosolids and CLOs and their potential contribution to the overall toxic equivalency is assessed. Other ‘emerging’ contaminants, such as organophosphate flame retardants, were detected in several of the waste materials, and their potential significance is discussed. The study is part of a wider research programme that will provide evidence that is expected to improve confidence in the use of waste-derived materials in agriculture and to establish guidelines to protect the food chain where necessary.

  4. Dynamics And Remediation Of Fine Textured Soils And Ground Water Contaminated With Salts And Chlorinated Organic Compounds

    Science.gov (United States)

    Murata, Alison; Naeth, M. Anne

    2017-04-01

    Soil and ground water are frequently contaminated by industrial activities, posing a potential risk to human and environmental health and limiting land use. Proper site management and remediation treatments can return contaminated areas to safe and useful states. Most remediation research focuses on single contaminants in coarse and medium textured soils. Contaminant mixtures are common and make remediation efforts complex due to differing chemical properties. Remediation in fine textured soils is difficult since their low hydraulic conductivities hinder addition of amendments into and removal of contaminated media out of the impacted zone. The objective of this research is to assess contaminant dynamics and potential remediation techniques for fine textured soil and ground water impacted by multiple contaminants in Edmonton, Alberta, Canada. The University of Alberta's Ellerslie Waste Management Facility was used to process liquid laboratory waste from 1972 to 2007. A waste water pond leak prior to 1984 resulted in salt and chlorinated organic compound contamination. An extensive annual ground water monitoring data set for the site is available since 1988. Analytical parameters include pH, electrical conductivity, major ions, volatile organic compounds, and metals. Data have been compared to Alberta Tier 1 Soil and Groundwater Remediation Guidelines to identify exceedances. The parameters of greatest concern, based on magnitude and frequency of detection, are electrical conductivity, sodium, chloride, chloroform, and dichloromethane. Spatial analyses of the data show that the contamination is focused in and down gradient of the former waste water pond. Temporal analyses show different trends depending on monitoring well location. Laboratory column experiments were used to assess leaching as a potential treatment for salt contamination in fine textured soils. Saturated hydraulic conductivity was measured for seven soils from two depth intervals with or without

  5. Potential contamination of shipboard air samples by diffusive emissions of PCBs and other organic pollutants: implications and solutions.

    Science.gov (United States)

    Lohmann, Rainer; Jaward, Foday M; Durham, Louise; Barber, Jonathan L; Ockenden, Wendy; Jones, Kevin C; Bruhn, Regina; Lakaschus, Soenke; Dachs, Jordi; Booij, Kees

    2004-07-15

    Air samples were taken onboard the RRS Bransfield on an Atlantic cruise from the United Kingdom to Halley, Antarctica, from October to December 1998, with the aim of establishing PCB oceanic background air concentrations and assessing their latitudinal distribution. Great care was taken to minimize pre- and post-collection contamination of the samples, which was validated through stringent QA/QC procedures. However, there is evidence that onboard contamination of the air samples occurred,following insidious, diffusive emissions on the ship. Other data (for PCBs and other persistent organic pollutants (POPs)) and examples of shipboard contamination are presented. The implications of these findings for past and future studies of global POPs distribution are discussed. Recommendations are made to help critically appraise and minimize the problems of insidious/diffusive shipboard contamination.

  6. Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil.

    Science.gov (United States)

    Abdelhafez, Ahmed A; Li, Jianhua; Abbas, Mohamed H H

    2014-12-01

    The main objectives of the current study were to evaluate the potential effects of biochar derived from sugar cane bagasse (SC-BC) and orange peel (OP-BC) on improving the physicochemical properties of a metal smelter contaminated soil, and determining its potentiality for stabilizing Pb and As in soil. To achieve these goals, biochar was produced in a small-scale biochar producing plant, and an incubation experiment was conducted using a silt loam metal-contaminated soil treated with different application rates of biochar (0-10% w/w). The obtained results showed that, the addition of SC-BC and OP-BC increased significantly the soil aggregate stability, water-holding capacity, cation exchange capacity, organic matter and N-status in soil. SC-BC considerably decreased the solubility of Pb to values lower than the toxic regulatory level of the toxicity characteristics leaching procedure extraction (5 mg L(-1)). The rise in soil pH caused by biochar application, and the increase of soil organic matter transformed the labile Pb into less available fractions i.e. "Fe-Mn oxides" and "organic" bound fractions. On the other hand, As was desorbed from Fe-Mn oxides, which resulted in greater mobility of As in the treated soil. We concluded that SC-BC and OP-BC could be used successfully for remediating soils highly contaminated with Pb. However, considerable attention should be paid when using it in soil contaminated with As. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Contaminating fibrin in CPD-blood: solubility in plasma and distribution in blood components following separation

    International Nuclear Information System (INIS)

    Skjonsberg, O.H.; Kierulf, P.; Gravem, K.; Fagerhol, M.K.; Godal, H.C.

    1986-01-01

    In order to estimate the solubility of contaminating fibrin in CPD-blood, thrombin induced fibrin polymerzation in CPD-plasma was examined by light scattering and fibrinopeptide A (FPA) determinations. In addition, I-125 fibrin monomer enriched CPD-blood was used to investigate fibrin monomer retention in blood bags and transfusion filters (170 microns) and fibrin distribution in blood components derived from CPD-blood. Initial fibrin polymerization in CPD-blood occurred after conversion of 15 per cent of the fibrinogen to fibrin, implying that substantial amounts of fibrin may be kept solubilized in CPD-blood bags. Only minor amounts of I-125 fibrin monomers were retained in blood bags (2.4 per cent) and in transfusion filters (2.9 per cent) after sham transfusions. After separating I-125-fibrin monomer enriched CPD-blood into its constituent components, the major part of fibrin (75.0 per cent) could be traced in the cryoprecipitate

  8. A reactive transport model for mercury fate in contaminated soil--sensitivity analysis.

    Science.gov (United States)

    Leterme, Bertrand; Jacques, Diederik

    2015-11-01

    We present a sensitivity analysis of a reactive transport model of mercury (Hg) fate in contaminated soil systems. The one-dimensional model, presented in Leterme et al. (2014), couples water flow in variably saturated conditions with Hg physico-chemical reactions. The sensitivity of Hg leaching and volatilisation to parameter uncertainty is examined using the elementary effect method. A test case is built using a hypothetical 1-m depth sandy soil and a 50-year time series of daily precipitation and evapotranspiration. Hg anthropogenic contamination is simulated in the topsoil by separately considering three different sources: cinnabar, non-aqueous phase liquid and aqueous mercuric chloride. The model sensitivity to a set of 13 input parameters is assessed, using three different model outputs (volatilized Hg, leached Hg, Hg still present in the contaminated soil horizon). Results show that dissolved organic matter (DOM) concentration in soil solution and the binding constant to DOM thiol groups are critical parameters, as well as parameters related to Hg sorption to humic and fulvic acids in solid organic matter. Initial Hg concentration is also identified as a sensitive parameter. The sensitivity analysis also brings out non-monotonic model behaviour for certain parameters.

  9. Tunable Injection Barrier in Organic Resistive Switches Based on Phase-Separated Ferroelectric-Semiconductor Blends

    NARCIS (Netherlands)

    Asadi, Kamal; de Boer, Tom G.; Blom, Paul W. M.; de Leeuw, Dago M.

    2009-01-01

    Organic non-volatile resistive bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers are fabricated. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor-electrode contact and, hence, the resistance of the comprising

  10. Tunable injection barrier in organic resistive switches based on phase-separated ferroelectric-semiconductor blends

    NARCIS (Netherlands)

    Asadi, K.; Boer, T.G. de; Blom, P.W.M.; Leeuw, D.M. de

    2009-01-01

    Organic non-volatile resistive bistable diodes based on phase-separated blends of ferroelectric and semiconducting polymers are fabricated. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor-electrode contact and, hence, the resistance of the comprising

  11. Characterize Human Forward Contamination Project

    Science.gov (United States)

    Rucker, Michelle

    2015-01-01

    Let's face it: wherever we go, we will inevitably carry along the little critters that live in and on us. Conventional wisdom has long held that it's unlikely those critters could survive the space environment, but in 2007 microscopic animals called Tardigrades survived exposure to space and in 2008 Cyanobacteria lived for 548 days outside the International Space Station (ISS). But what about the organisms we might reasonably expect a crewed spacecraft to leak or vent? Do we even know what they are? How long might our tiny hitch-hikers survive in close proximity to a warm spacecraft that periodically leaks/vents water or oxygen-and how might they mutate with long-duration exposure? Unlike the Mars rovers that we cleaned once and sent on their way, crew members will provide a constantly regenerating contaminant source. Are we prepared to certify that we can meet forward contamination protocols as we search for life at new destinations? This project has four technical objectives: 1. TEST: Develop a test plan to leverage existing equipment (i.e. ISS) to characterize the kinds of organisms we can reasonably expect pressurized, crewed volumes to vent or leak overboard; as part of testing, we'll need to develop an Extravehicular Activity (EVA)-compatible tool that can withstand the pressure and temperature extremes of space, as well as collect, separate, and store multiple samples; 2. ANALYSIS: Develop an analysis plan to study those organisms in relevant destination environments, including spacecraft-induced conditions; 3. MODEL: Develop a modeling plan to model organism transport mechanisms in relevant destination environments; 4. SHARE: Develop a plan to disseminate findings and integrate recommendations into exploration requirements & ops. In short, we propose a system engineering approach to roadmap the necessary experiments, analysis, and modeling up front--rather than try to knit together disparate chunks of data into a sensible conclusion after the fact.

  12. Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Caixia [School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, No. 99, Ziyang Road, Nanchang 330022 (China); State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); SmartState Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia 29208,USA (United States); Nie, Minghua [School of Geography and Environment, Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, No. 99, Ziyang Road, Nanchang 330022 (China); Department of Environmental Science and Engineering, Fudan University, 220Handan Road, Shanghai 200433 (China); Yang, Yi, E-mail: yyang@geo.ecnu.edu.cn [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Key Laboratory of Geographic Information Science of the Ministry of Education, Department of Geosciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Zhou, Junliang [State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Liu, Min [Key Laboratory of Geographic Information Science of the Ministry of Education, Department of Geosciences, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Baalousha, Mohammed; Lead, Jamie R. [SmartState Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia 29208,USA (United States)

    2015-12-15

    Highlights: • Colloidal fractions in wastewaters were isolated using cross flow ultrafiltration. • EOCs exhibited a pseudo - first - order degradation kinetics in all water samples. • Photolysis of EOCs in permeate were accelerated, while inhibited in the retentates. • EOCs with higher degradation rates were detected at low level in natural water. - Abstract: The effect of colloids on the occurrence, phase distribution and photolysis of twenty-seven emerging organic contaminants (EOCs) was studied in domestic and livestock wastewaters (DW and LW), respectively. Filtered water (<1 μm) was separated into permeate (<1 kDa) and retentate (1 kDa-1 μm) by cross flow ultrafiltration. Results indicated that total concentration of EOCs ranged from 1220 ng L{sup −1} in permeate of DW to 5065 ng L{sup −1} in retentate of LW. The average EOC fraction associated with colloids was 13.5% and 14.4% in DW and LW. Most of the EOCs exhibited pseudo-first-order degradation kinetics in all water samples. Control experiments using glass and quartz reactors showed that UV light was more effective on the photolysis of most EOCs. The EOCs photolysis in the three fractions of DW and LW could be accelerated or inhibited compared to ultrapure water with the enhancement factor ranging from −0.94 to 7.33. The impact of colloids on the photolysis of EOCs depended on the compound and the source of water. The photolysis of most EOCs in permeates and filtrates was generally accelerated, while inhibited in the retentates, which could be attributed to the relatively high dissolved organic carbon contents in retentates.

  13. 1993 Proceedings volume 1--Contamination control; symposium on minienvironments; symposium on biocontamination control

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Volume 1 contains the proceedings from three symposia. Contamination Control includes the following topics: Atmospheric pressure ionization mass spectroscopy (APIMS) applications; APIMS development; contamination control in cleanroom air; defect reduction in semiconductor processes; contamination control in the aerospace industry; filtration of gases; ultrapure chemical and DI water; filtration of chemicals; wafer cleaning/trace contaminant effects; wafer cleaning techniques; detection of particles in UHP fluids; detection of surface particles; modeling contamination; detection of surface organics; modeling, particle transport, deposition, and removal; and detection of surface metallics. Symposium on Minienvironments includes the following: design of minienvironments; robotics and I/O transport; testing, methods, and standards. The Symposium on Biocontamination Control includes the following: microbial CC facility requirements in pharmaceutical, biological, and medical device manufacture; cleaning and disinfecting methods and devices for bio CC; biocontamination control devices, methodology, and standards, airborne and surface microbial monitoring methods and devices; and regulatory issues in bio CC--present and future. All papers within the scope of the Energy Data Base have been processed separately for inclusion on the data base

  14. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.G.; Zachara, J.M. [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE`s Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  15. Strategies for monitoring the emerging polar organic contaminants in water with emphasis on integrative passive sampling.

    Science.gov (United States)

    Söderström, Hanna; Lindberg, Richard H; Fick, Jerker

    2009-01-16

    Although polar organic contaminants (POCs) such as pharmaceuticals are considered as some of today's most emerging contaminants few of them are regulated or included in on-going monitoring programs. However, the growing concern among the public and researchers together with the new legislature within the European Union, the registration, evaluation and authorisation of chemicals (REACH) system will increase the future need of simple, low cost strategies for monitoring and risk assessment of POCs in aquatic environments. In this article, we overview the advantages and shortcomings of traditional and novel sampling techniques available for monitoring the emerging POCs in water. The benefits and drawbacks of using active and biological sampling were discussed and the principles of organic passive samplers (PS) presented. A detailed overview of type of polar organic PS available, and their classes of target compounds and field of applications were given, and the considerations involved in using them such as environmental effects and quality control were discussed. The usefulness of biological sampling of POCs in water was found to be limited. Polar organic PS was considered to be the only available, but nevertheless, an efficient alternative to active water sampling due to its simplicity, low cost, no need of power supply or maintenance, and the ability of collecting time-integrative samples with one sample collection. However, the polar organic PS need to be further developed before they can be used as standard in water quality monitoring programs.

  16. Magnetic separation for environmental remediation

    International Nuclear Information System (INIS)

    Schake, A.R.; Avens, L.R.; Hill, D.D.; Padilla, D.D.; Prenger, F.C.; Romero, D.A.; Worl, L.A.; Tolt, T.L.

    1994-01-01

    High Gradient Magnetic Separation (HGMS) is a form of magnetic separation used to separate solids from other solids, liquids or gases. HGMS uses large magnetic field gradients to separate ferromagnetic and paramagnetic particles from diamagnetic host materials. The technology relies only on physical properties, and therefore separations can be achieved while producing a minimum of secondary waste. Actinide and fission product wastes within the DOE weapons complex pose challenging problems for environmental remediation. Because the majority of actinide complexes and many fission products are paramagnetic, while most host materials are diamagnetic, HGMS can be used to concentrate the contaminants into a low volume waste stream. The authors are currently developing HGMS for applications to soil decontamination, liquid waste treatment, underground storage tank waste treatment, and actinide chemical processing residue concentration. Application of HGMS usually involves passing a slurry of the contaminated mixture through a magnetized volume. Field gradients are produced in the magnetized volume by a ferromagnetic matrix material, such as steel wool, expanded metal, iron shot, or nickel foam. The matrix fibers become trapping sites for ferromagnetic and paramagnetic particles in the host material. The particles with a positive susceptibility are attracted toward an increasing magnetic field gradient and can be extracted from diamagnetic particles, which react in the opposite direction, moving away from the areas of high field gradients. The extracted paramagnetic contaminants are flushed from the matrix fibers when the magnetic field is reduced to zero or when the matrix canister is removed from the magnetic field. Results are discussed for the removal of uranium trioxide from water, PuO 2 , U, and Pu from various soils (Fernald, Nevada Test Site), and the waste water treatment of Pu and Am isotopes using HGMS

  17. Process for reducing radioactive contamination in waste product gypsum

    International Nuclear Information System (INIS)

    Lange, P.H. Jr.

    1979-01-01

    A process is described for reducing the radioactive contamination in waste product gypsum in which waste product gypsum is reacted with a dilute sulfuric acid containing barium sulfate to form an acid slurry at an elevated temperature, the slurry is preferably cooled, the acid component is separated from the solid, and the resulting solid is separated into a fine fraction and a coarse fraction. The fine fraction predominates in barium sulfate and radioactive contamination. The coarse fraction predominates in a purified gypsum product of reduced radioactive contamination

  18. Evaluating non-incinerative treatment of organically contaminated low level mixed waste

    International Nuclear Information System (INIS)

    Shuck, D.L.; Wade, J.F.

    1993-01-01

    This investigation examines the feasibility of using non-incinerator technologies effectively to treat organically contaminated mixed waste. If such a system is feasible now, it would be easier to license because it would avoid the stigma that incineration has in the publics' perception. As other DOE facilities face similar problems, this evaluation is expected to be of interest to both DOE and the attendees of WM'93. This investigation considered treatment to land disposal restriction (LDR) standards of 21 different low level mixed (LLM) waste streams covered by the Rocky Flats Federal Facilities Compliance Agreement (FFCA) agreement with the Environmental Protection Agency (EPA). Typically the hazardous components consists of organic solvent wastes and the radioactive component consists of uranic/transuranic wastes. Limited amounts of cyanide and lead wastes are also involved. The primary objective of this investigation was to identify the minimum number of non-thermal unit processes needed to effectively treat this collection of mixed waste streams

  19. CO2 capture by Condensed Rotational Separation

    NARCIS (Netherlands)

    Benthum, van R.J.; Kemenade, van H.P.; Brouwers, J.J.H.; Golombok, M.

    2010-01-01

    Condensed Rotational Separation (CRS) technology is a patented method to upgrade gas mixtures. A novel application is thecapture of CO2 from coal-combustion fired power stations: Condensed Contaminant Centrifugal Separation in Coal Combustion(C5sep). CRS involves partial condensation of a gas

  20. Decontamination method of contaminated metals

    International Nuclear Information System (INIS)

    Kawamura, Fumio; Ueda, Yoshihiro; Sato, Chikara; Komori, Itaru.

    1980-01-01

    Purpose: To effectively separate radioactive materials from molten metals in dry-processing method by heating metals contaminated with radioactive materials at a temperature below melting point to oxidize the surface thereof, then heating them to melt and include the radioactive materials into the oxides. Method: Metals contaminated with radioactive materials are heated at a temperature below the melting point thereof in an oxidizing atmosphere to oxidize the surface. Thereafter they are heated to melt at temperature above the melting point of the metals, and the molten metals are separated with the radioactive materials included in the oxides. For instance, radiation-contaminated aluminum pipe placed on the bed of an electrical heating furnace, and heated at 500 0 C which is lower than the melting point 660 0 C of aluminum for 1 - 2 hours while supplying air from an air pipe into the furnace, and an oxide film is formed on the surface of the aluminum pipe. Then, the furnace temperature is increased to 750 0 C wherein molten aluminum is flown down to a container and the oxide film is separated by floating it as the slug on the molten aluminum. (Horiuchi, T.)

  1. Separation method for uranium, plutonium, and neptunium with each other from spent nuclear fuel

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Hotoku, Shinobu; Fujine, Sachio; Maeda, Mitsuru.

    1994-01-01

    In a nuclear fuel reprocessing step of the present invention, an Np oxidation step is provided on a high level side of a co-contamination step, and an Np separation step and a U/Pu recovering step provided preceding to a U/Pu distribution step. Np oxidation step uses an oxidizer which is not extracted by an organic solvent such as ammonium vanadate for oxidizing Np from pentavalence to hexavalence. The Np separation step uses n-butylaldehyde for selectively reducing only hexavalent Np into pentavalent Np in a system in which hexavalent Np and tetravalent Pu are present together. In the U/Pu recovering step, pentavalent U and tetravalent Pu which shift by so much as distribution equilibrium are extracted together with pentavalent Np by using an organic solvent. The U/Pu distribution step uses iso-butylaldehyde as a reagent for selectively reducing only tetravalent Pu present together with hexavalent U into trivalent. With such procedures, U, Pu and Np can be separated with each other by more simplified fuel processing process. (T.M.)

  2. System for removing contaminants from plastic resin

    Science.gov (United States)

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  3. Restoration of contaminated soils

    International Nuclear Information System (INIS)

    Miranda J, Jose Eduardo

    2009-01-01

    A great variety of techniques are used for the restoration of contaminated soils. The contamination is present by both organic and inorganic pollutants. Environmental conditions and soil characteristics should take into account in order to implement a remedial technique. The bioremediation technologies are showed as help to remove a variety of soil contaminants. (author) [es

  4. Remarkably enhanced gas separation by partial self-conversion of a laminated membrane to metal-organic frameworks.

    Science.gov (United States)

    Liu, Yi; Pan, Jia Hong; Wang, Nanyi; Steinbach, Frank; Liu, Xinlei; Caro, Jürgen

    2015-03-02

    Separation methods based on 2D interlayer galleries are currently gaining widespread attention. The potential of such galleries as high-performance gas-separation membranes is however still rarely explored. Besides, it is well recognized that gas permeance and separation factor are often inversely correlated in membrane-based gas separation. Therefore, breaking this trade-off becomes highly desirable. Here, the gas-separation performance of a 2D laminated membrane was improved by its partial self-conversion to metal-organic frameworks. A ZIF-8-ZnAl-NO3 layered double hydroxide (LDH) composite membrane was thus successfully prepared in one step by partial conversion of the ZnAl-NO3 LDH membrane, ultimately leading to a remarkably enhanced H2 /CH4 separation factor and H2 permeance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Decontamination method for radioactively contaminated material

    International Nuclear Information System (INIS)

    Shoji, Yuichi; Mizuguchi, Hiroshi; Sakai, Hitoshi; Komatsubara, Masaru

    1998-01-01

    Radioactively contaminated materials having surfaces contaminated by radioactive materials are dissolved in molten salts by the effect of chlorine gas. The molten salts are brought into contact with a low melting point metal to reduce only radioactive materials by substitution reaction and recover them into the low melting point metal. Then, a low melting point metal phase and a molten salt phase are separated. The low melting point metal phase is evaporated to separate the radioactive materials from molten metals. On the other hand, other metal ions dissolved in the molten salts are reduced into metals by electrolysis at an anode and separated from the molten salts and served for regeneration. The low melting point metals are reutilized together with contaminated lead, after subjected to decontamination, generated from facilities such as nuclear power plant or lead for disposal. Since almost all materials including the molten salts and the molten metals can be enclosed, the amount of wastes can be reduced. In addition, radiation exposure of operators who handle them can be reduced. (T.M.)

  6. Methods to assess bioavailability of hydrophobic organic contaminants: Principles, operations, and limitations

    International Nuclear Information System (INIS)

    Cui Xinyi; Mayer, Philipp; Gan, Jay

    2013-01-01

    Many important environmental contaminants are hydrophobic organic contaminants (HOCs), which include PCBs, PAHs, PBDEs, DDT and other chlorinated insecticides, among others. Owing to their strong hydrophobicity, HOCs have their final destination in soil or sediment, where their ecotoxicological effects are closely regulated by sorption and thus bioavailability. The last two decades have seen a dramatic increase in research efforts in developing and applying partitioning based methods and biomimetic extractions for measuring HOC bioavailability. However, the many variations of both analytical methods and associated measurement endpoints are often a source of confusion for users. In this review, we distinguish the most commonly used analytical approaches based on their measurement objectives, and illustrate their practical operational steps, strengths and limitations using simple flowcharts. This review may serve as guidance for new users on the selection and use of established methods, and a reference for experienced investigators to identify potential topics for further research. - This review summarizes the principles and operations of bioavailability prediction methods, discusses their strengths and limitations, and highlights issues for future research.

  7. Green Approach to the Fabrication of Superhydrophobic Mesh Surface for Oil/Water Separation.

    Science.gov (United States)

    Wang, Fajun; Lei, Sheng; Xu, Yao; Ou, Junfei

    2015-07-20

    We report a simple and environment friendly method to fabricate superhydrophobic metallic mesh surfaces for oil/water separation. The obtained mesh surface exhibits superhydrophobicity and superoleophilicity after it was dried in an oven at 200 °C for 10 min. A rough silver layer is formed on the mesh surface after immersion, and the spontaneous adsorption of airborne carbon contaminants on the silver surface lower the surface free energy of the mesh. No low-surface-energy reagents and/or volatile organic solvents are used. In addition, we demonstrate that by using the mesh box, oils can be separated and collected from the surface of water repeatedly, and that high separation efficiencies of larger than 92 % are retained for various oils. Moreover, the superhydrophobic mesh also possesses excellent corrosion resistance and thermal stability. Hence, these superhydrophobic meshes might be good candidates for the practical separation of oil from the surface of water. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Low pressure drop filtration of airborne molecular organic contaminants using open-channel networks

    Science.gov (United States)

    Dallas, Andrew J.; Joriman, Jon; Ding, Lefei; Weineck, Gerald; Seguin, Kevin

    2007-03-01

    Airborne molecular contamination (AMC) continues to play a very decisive role in the performance of many microelectronic devices and manufacturing processes. Besides airborne acids and bases, airborne organic contaminants such as 1-methyl-2-pyrrolidinone (NMP), hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), perfluoroalkylamines and condensables are of primary concern in these applications. Currently, the state of the filtration industry is such that optimum filter life and removal efficiency for organics is offered by granular carbon filter beds. However, the attributes that make packed beds of activated carbon extremely efficient also impart issues related to elevated filter weight and pressure drop. Most of the lower pressure drop AMC filters currently offered are quite expensive and are simply pleated combinations of various adsorptive and reactive media. On the other hand, low pressure drop filters, such as those designed as open-channel networks (OCN's), offer good filter life and removal efficiency with the additional benefits of significant reductions in overall filter weight and pressure drop. Equally important for many applications, the OCN filters can reconstruct the airflow so as to enhance the operation of a tool or process. For tool mount assemblies and fan filter units (FFUs) this can result in reduced fan and blower speeds, which subsequently can provide reduced vibration and energy costs. Additionally, these low pressure drop designs can provide a cost effective way of effectively removing AMC in full fab (or HVAC) filtration applications without significantly affecting air-handling requirements. Herein, we will present a new generation of low pressure drop OCN filters designed for the removal of airborne organics in a wide range of applications.

  9. The effect of vadose zone heterogeneities on vapor phase migration and aquifer contamination by volatile organics

    Energy Technology Data Exchange (ETDEWEB)

    Seneviratne, A.; Findikakis, A.N. [Bechtel Corporation, San Francisco, CA (United States)

    1995-03-01

    Organic vapors migrating through the vadose zone and inter-phase transfer can contribute to the contamination of larger portions of aquifers than estimated by accounting only for dissolved phase transport through the saturated zone. Proper understanding of vapor phase migration pathways is important for the characterization of the extent of both vadose zone and the saturated zone contamination. The multiphase simulation code T2VOC is used to numerically investigate the effect of heterogeneties on the vapor phase migration of chlorobenzene at a hypothetical site where a vapor extraction system is used to remove contaminants. Different stratigraphies consisting of alternate layers of high and low permeability materials with soil properties representative of gravel, sandy silt and clays are evaluated. The effect of the extent and continuity of low permeability zones on vapor migration is evaluated. Numerical simulations are carried out for different soil properties and different boundary conditions. T2VOC simulations with zones of higher permeability were made to assess the role of how such zones in providing enhanced migration pathways for organic vapors. Similarly, the effect of the degree of saturation of the porous medium on vapor migration was for a range of saturation values. Increased saturation reduces the pore volume of the medium available for vapor diffusion. Stratigraphic units with higher aqueous saturation can retard the vapor phase migration significantly.

  10. PARASITIC CONTAMINATION OF WELLS DRINKING WATER IN MAZANDARAN PROVINCE

    Directory of Open Access Journals (Sweden)

    Z. Yousefi ، H. Ziaei hezarjaribi ، A. A. Enayati ، R. A. Mohammadpoor

    2009-10-01

    Full Text Available There is a direct relation between the prevalence of some parasitic diseases and the presence of those etiologic agents in water. The purpose of this research was to determine the contamination rate of wells drinking water to parasites in Mazandaran province in the north of Iran. 989 water samples were randomly taken based on the population of towns and number of health centers from 12 cities of Mazandaran province and transferred to the laboratory in sterile containers. Water samples were then filtered and analyzed according to the World Health Organization guidelines. Direct method and Gram staining procedure were used to identify the parasites. If cryptosporidium was seen, floatation (sheather’s sugar and modified Ziehl-Neelsen staining method were performed. Parasites count was undertaken using McMaster counting slide (0.3 mL. 197 out of 989 water samples were contaminated with different parasites. From 197 contaminated samples, 20 different types of parasites were separated of which 53 (26.9% were pathogenic, 100 (50.8% non pathogenic, and 44 non-infective stages of parasites. Distance between wells and sources of contamination, type of water distribution systems, city and chlorination status had significantly statistical relationship with contamination prevalence (p<0.001. According to the results and considering the direct correlation between safe water and human health, proper implementation of providing hygienic drinking water should be enforced.

  11. High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. New lithium isotope separation technique using ionic-liquid impregnated organic membranes (Ionic-Liquid-i-OMs) have been developed. Lithium ions are able to move by electrodialysis through certain Ionic-Liquid-i-OMs between the cathode and the anode in lithium solutions. In this report, the effects of protection cover and membrane thickness on the durability of membrane and the efficiency of isotope separation were evaluated. In order to improve the durability of the Ionic-Liquid-i-OM, we developed highly-durable Ionic-Liquid-i-OM. Both surfaces of the Ionic-Liquid-i-OM were covered by a nafion 324 overcoat or a cation exchange membrane (SELEMION TM CMD) to prevent the outflow of the ionic liquid. It was observed that the durability of the Ionic-Liquid-i-OM was improved by a nafion 324 overcoat. On the other hand, the organic membrane selected was 1, 2 or 3 mm highly-porous Teflon film, in order to efficiently impregnate the ionic liquid. The 6 Li isotope separation factor by electrodialysis using highly-porous Teflon film of 3 mm thickness was larger than using that of 1 or 2 mm thickness.

  12. Covalent organic polymer functionalized activated carbon: A novel material for water contaminant removal and CO2 capture

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    Covalent organic polymers (COPs) have emerged as one of the leading advanced materials for environmental applications, such as the capture and recovery of carbon dioxide and the removal of contaminants from polluted water. COPs exhibit many remarkable properties that other leading advanced materi...

  13. Fingerprinting of petroleum hydrocarbons (PHC) and other biogenic organic compounds (BOC) in oil-contaminated and background soil samples.

    Science.gov (United States)

    Wang, Zhendi; Yang, C; Yang, Z; Hollebone, B; Brown, C E; Landriault, M; Sun, J; Mudge, S M; Kelly-Hooper, F; Dixon, D G

    2012-09-01

    Total petroleum hydrocarbons (TPH) or petroleum hydrocarbons (PHC) are one of the most widespread soil contaminants in Canada, the United States and many other countries worldwide. Clean-up of PHC-contaminated soils costs the Canadian economy hundreds of millions of dollars annually. In Canada, most PHC-contaminated site evaluations are based on the methods developed by the Canadian Council of the Ministers of the Environment (CCME). However, the CCME method does not differentiate PHC from BOC (the naturally occurring biogenic organic compounds), which are co-extracted with petroleum hydrocarbons in soil samples. Consequently, this could lead to overestimation of PHC levels in soil samples. In some cases, biogenic interferences can even exceed regulatory levels (300 μg g(-1) for coarse soils and 1300 μg g(-1) for fine soils for Fraction 3, C(16)-C(34) range, in the CCME Soil Quality Level). Resulting false exceedances can trigger unnecessary and costly cleanup or remediation measures. Therefore, it is critically important to develop new protocols to characterize and quantitatively differentiate PHC and BOC in contaminated soils. The ultimate objective of this PERD (Program of Energy Research and Development) project is to correct the misconception that all detectable hydrocarbons should be regulated as toxic petroleum hydrocarbons. During 2009-2010, soil and plant samples were collected from over forty oil-contaminated and paired background sites in various provinces. The silica gel column cleanup procedure was applied to effectively remove all target BOC from the oil-contaminated sample extracts. Furthermore, a reliable GC-MS method in combination with the derivatization technique, developed in this laboratory, was used for identification and characterization of various biogenic sterols and other major biogenic compounds in these oil-contaminated samples. Both PHC and BOC in these samples were quantitatively determined. This paper reports the characterization

  14. Efficient Separations and Processing Integrated Program (ESP-IP): Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The Efficient Separations and Processing Integrated Program (ESPIP) was created in 1991 to identify, develop and perfect separations technologies and processes to treat wastes and address environmental problems throughout the DOE Complex. These wastes and environmental problems, located at more than 100 contaminated installations in 36 states and territories, are the result of half a century of nuclear processing activities by DOE and its predecessor organizations. The cost of cleaning up this legacy has been estimated to be of the order of hundreds of billions of dollars, and ESPIP's origin came with the realization that if new separations and processes can produce even a marginal reduction in cost then billions of dollars will be saved. The ultimate mission for ESPIP, as outlined in the ESPIP Strategic Plan, is: to provide Separations Technologies and Processes (STPS) to process and immobilize a wide spectrum of radioactive and hazardous defense wastes; to coordinate STP research and development efforts within DOE; to explore the potential uses of separated radionuclides; to transfer demonstrated separations and processing technologies developed by DOE to the US industrial sector, and to facilitate competitiveness of US technology and industry in the world market. Technology research and development currently under investigation by ESPIP can be divided into four broad areas: cesium and strontium removal; TRU and other HLW separations; sludge technology, and other technologies

  15. Visualising the equilibrium distribution and mobility of organic contaminants in soil using the chemical partitioning space.

    Science.gov (United States)

    Wong, Fiona; Wania, Frank

    2011-06-01

    Assessing the behaviour of organic chemicals in soil is a complex task as it is governed by the physical chemical properties of the chemicals, the characteristics of the soil as well as the ambient conditions of the environment. The chemical partitioning space, defined by the air-water partition coefficient (K(AW)) and the soil organic carbon-water partition coefficient (K(OC)), was employed to visualize the equilibrium distribution of organic contaminants between the air-filled pores, the pore water and the solid phases of the bulk soil and the relative importance of the three transport processes removing contaminants from soil (evaporation, leaching and particle erosion). The partitioning properties of twenty neutral organic chemicals (i.e. herbicides, pharmaceuticals, polychlorinated biphenyls and volatile chemicals) were estimated using poly-parameter linear free energy relationships and superimposed onto these maps. This allows instantaneous estimation of the equilibrium phase distribution and mobility of neutral organic chemicals in soil. Although there is a link between the major phase and the dominant transport process, such that chemicals found in air-filled pore space are subject to evaporation, those in water-filled pore space undergo leaching and those in the sorbed phase are associated with particle erosion, the partitioning coefficient thresholds for distribution and mobility can often deviate by many orders of magnitude. In particular, even a small fraction of chemical in pore water or pore air allows for evaporation and leaching to dominate over solid phase transport. Multiple maps that represent soils that differ in the amount and type of soil organic matter, water saturation, temperature, depth of surface soil horizon, and mineral matters were evaluated.

  16. MALDI-TOF MS for the Identification of Cultivable Organic-Degrading Bacteria in Contaminated Groundwater near Unconventional Natural Gas Extraction Sites

    Directory of Open Access Journals (Sweden)

    Inês C. Santos

    2017-08-01

    Full Text Available Groundwater quality and quantity is of extreme importance as it is a source of drinking water in the United States. One major concern has emerged due to the possible contamination of groundwater from unconventional oil and natural gas extraction activities. Recent studies have been performed to understand if these activities are causing groundwater contamination, particularly with respect to exogenous hydrocarbons and volatile organic compounds. The impact of contaminants on microbial ecology is an area to be explored as alternatives for water treatment are necessary. In this work, we identified cultivable organic-degrading bacteria in groundwater in close proximity to unconventional natural gas extraction. Pseudomonas stutzeri and Acinetobacter haemolyticus were identified using matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF MS, which proved to be a simple, fast, and reliable method. Additionally, the potential use of the identified bacteria in water and/or wastewater bioremediation was studied by determining the ability of these microorganisms to degrade toluene and chloroform. In fact, these bacteria can be potentially applied for in situ bioremediation of contaminated water and wastewater treatment, as they were able to degrade both compounds.

  17. MALDI-TOF MS for the Identification of Cultivable Organic-Degrading Bacteria in Contaminated Groundwater near Unconventional Natural Gas Extraction Sites.

    Science.gov (United States)

    Santos, Inês C; Martin, Misty S; Carlton, Doug D; Amorim, Catarina L; Castro, Paula M L; Hildenbrand, Zacariah L; Schug, Kevin A

    2017-08-10

    Groundwater quality and quantity is of extreme importance as it is a source of drinking water in the United States. One major concern has emerged due to the possible contamination of groundwater from unconventional oil and natural gas extraction activities. Recent studies have been performed to understand if these activities are causing groundwater contamination, particularly with respect to exogenous hydrocarbons and volatile organic compounds. The impact of contaminants on microbial ecology is an area to be explored as alternatives for water treatment are necessary. In this work, we identified cultivable organic-degrading bacteria in groundwater in close proximity to unconventional natural gas extraction. Pseudomonas stutzeri and Acinetobacter haemolyticus were identified using matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF MS), which proved to be a simple, fast, and reliable method. Additionally, the potential use of the identified bacteria in water and/or wastewater bioremediation was studied by determining the ability of these microorganisms to degrade toluene and chloroform. In fact, these bacteria can be potentially applied for in situ bioremediation of contaminated water and wastewater treatment, as they were able to degrade both compounds.

  18. Methods development for separation of inorganic anions, organic acids and bases, and neutral organic compounds by ion chromatography and capillary electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jie [Iowa State Univ., Ames, IA (United States)

    1999-04-01

    A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several different eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.

  19. Contamination versus preservation of cosmetics

    DEFF Research Database (Denmark)

    Lundov, Michael Dyrgaard; Moesby, Lise; Zachariae, Claus

    2009-01-01

    Cosmetics with high water content are at a risk of being contaminated by micro-organisms that can alter the composition of the product or pose a health risk to the consumer. Pathogenic micro-organisms such as Staphylococcus aureus and Pseudomonas aeruginosa are frequently found in contaminated...... cosmetics. In order to avoid contamination of cosmetics, the manufacturers add preservatives to their products. In the EU and the USA, cosmetics are under legislation and all preservatives must be safety evaluated by committees. There are several different preservatives available but the cosmetic market...

  20. NSF-RANN trace contaminants abstracts

    International Nuclear Information System (INIS)

    Copenhaver, E.D.; Harnden, D.S.

    1976-10-01

    Specific areas of interest of the Environmental Aspects of Trace Contaminants Program are organic chemicals of commerce, metals and organometallic compounds, air-borne contaminants, and environmental assay methodology. Fifty-three abstracts of literature on trace contaminants are presented. Author, keyword, and permuted title indexes are included

  1. Solvent-free synthesis and application of nano-Fe/Ca/CaO/[PO{sub 4}] composite for dual separation and immobilization of stable and radioactive cesium in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mallampati, Srinivasa Reddy, E-mail: srireddys@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749 (Korea, Republic of); Mitoma, Yoshiharu, E-mail: mitomay@pu-hiroshima.ac.jp [Department of Environmental Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, 562 Nanatsuka-Cho Shobara City, Hiroshima 727-0023 (Japan); Okuda, Tetsuji [Environmental Research and Management Center, Hiroshima University, 1-5-3 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8513 (Japan); Simion, Cristian [Politehnica University of Bucharest, Department of Organic Chemistry, Bucharest 060042 (Romania); Lee, Byeong Kyu [Department of Civil and Environmental Engineering, University of Ulsan, Daehak-ro 93, Nam-gu, Ulsan 680-749 (Korea, Republic of)

    2015-10-30

    Graphical abstract: A possible pathway for immobilization with the nano-Fe/Ca/CaO/[PO{sub 4}] treatment (a) {sup 133}Cs is adsorbed onto the soil particles, (b) Cs encapsulation through the formation of immobile salts, and (c) solid (small/finer or larger/aggregate) soil fraction separation. - Highlights: • Nano-Fe/Ca/CaO/[PO{sub 4}] composite for Cs immobilization in soil was developed. • Enhanced cesium separation and immobilization was done in dry condition. • By SEM analysis the amount of cesium detectable on soil particle surface decreases. • Leachable cesium concentrations reduced, lower than the standard regulatory limit. • Nano-Fe/Ca/CaO/[PO{sub 4}] a highly potential amendment for the remediation of Cs. - Abstract: This study assessed the synthesis and application of nano-Fe/Ca/CaO-based composite material for use as a separation and immobilizing treatment of dry soil contaminated by stable ({sup 133}Cs) and radioactive cesium species ({sup 134}Cs and {sup 137}Cs). After grinding with nano-Fe/CaO, nano-Fe/Ca/CaO, and nano-Fe/Ca/CaO/[PO{sub 4}], approximately 31, 25, and 22 wt% of magnetic fraction soil was separated. Their resultant {sup 133}Cs immobilization values were about 78, 81, and 100%, respectively. When real radioactive cesium contaminated soil obtained from Fukushima was treated with nano-Fe/Ca/CaO/[PO{sub 4}], approximately 27.3 wt% of magnetic and 72.75% of non-magnetic soil fractions were separated. The highest amount of entrapped {sup 134}Cs and {sup 137}Cs was found in the lowest weight of the magnetically separated soil fraction (i.e., 80% in 27.3% of treated soil). Results show that {sup 134}Cs and {sup 137}Cs either in the magnetic or non-magnetic soil fractions was 100% immobilized. The morphology and mineral phases of the nano-Fe/Ca/CaO/[PO{sub 4}] treated soil were characterized using SEM–EDS, EPMA, and XRD analysis. The EPMA and XRD patterns indicate that the main fraction of enclosed/bound materials on treated soil

  2. Coupled cationic and anionic method of separating uranium

    International Nuclear Information System (INIS)

    Sundar, P.; Elikan, L.; Lyon, W.L.

    1976-01-01

    Uranium is separated from contaminating metal ions in an aqueous feed liquor containing the uranyl ion. The liquor is extracted with a first, noninterfering, water-immiscible, organic solvent containing a reagent which reacts with the uranyl ion to form a complex soluble in the organic solvent. The organic solvent is scrubbed with water if necessary, then stripped with a stripping liquor of an aqueous sulfuric acid liquor having a pH of about 0.5 to about 6 containing a reducing ion or an aqueous carbonate solution having a pH of about 8 to about 9. If the sulfuric acid liquor is used the stripped uranous ion is oxidized and the sulfuric acid liquor is diluted to prevent the precipitation of a uranium complex. The stripping liquor is extracted with an amine liquor comprising a second, noninterfering, water-immiscible, organic solvent and a tertiary or quaternary amine. The amine liquor is stripped with an ammonium carbonate solution to precipitate a uranium complex. The uranium complex is filtered off and may be calcined to produce U 3 O 8 or UO 2 . 38 claims, 1 figure

  3. Dose assessment and radioecological consequences to aquatic organisms in the areas of Russia exposed to radioactive contamination

    International Nuclear Information System (INIS)

    Kryshev, I.I.; Sazykina, T.G.

    1996-01-01

    A comparative analysis of the radioecological state of aquatic ecosystems in the territory of Russia was performed. The following water bodies were considered: lakes and rivers in the Ural and Chernobyl contaminated areas, the Yenisei River, cooling ponds of nuclear power plants, and the Arctic Seas. It was demonstrated that in all cases under consideration, doses to aquatic organisms were markedly higher than those to humans. Especially high exposure levels to fish and molluscs much in excess of the natural background were observed in a number of water bodies in the Ural and Chernobyl contaminated areas

  4. Occurrence of organic wastewater and other contaminants in cave streams in northeastern Oklahoma and northwestern Arkansas

    Science.gov (United States)

    Bidwell, Joseph R.; Becker, C.; Hensley, S.; Stark, R.; Meyer, M.T.

    2010-01-01

    The prevalence of organic wastewater compounds in surface waters of the United States has been reported in a number of recent studies. In karstic areas, surface contaminants might be transported to groundwater and, ultimately, cave ecosystems, where they might impact resident biota. In this study, polar organic chemical integrative samplers (POCISs) and semipermeable membrane devices (SPMDs) were deployed in six caves and two surface-water sites located within the Ozark Plateau of northeastern Oklahoma and northwestern Arkansas in order to detect potential chemical contaminants in these systems. All caves sampled were known to contain populations of the threatened Ozark cavefish (Amblyopsis rosae). The surface-water site in Oklahoma was downstream from the outfall of a municipal wastewater treatment plant and a previous study indicated a hydrologic link between this stream and one of the caves. A total of 83 chemicals were detected in the POCIS and SPMD extracts from the surface-water and cave sites. Of these, 55 chemicals were detected in the caves. Regardless of the sampler used, more compounds were detected in the Oklahoma surface-water site than in the Arkansas site or the caves. The organic wastewater chemicals with the greatest mass measured in the sampler extracts included sterols (cholesterol and ??-sitosterol), plasticizers [diethylhexylphthalate and tris (2-butoxyethyl) phosphate], the herbicide bromacil, and the fragrance indole. Sampler extracts from most of the cave sites did not contain many wastewater contaminants, although extracts from samplers in the Oklahoma surfacewater site and the cave hydrologically linked to it had similar levels of diethylhexyphthalate and common detections of carbamazapine, sulfamethoxazole, benzophenone, N-diethyl-3-methylbenzamide (DEET), and octophenol monoethoxylate. Further evaluation of this system is warranted due to potential ongoing transport of wastewaterassociated chemicals into the cave. Halogenated organics

  5. Research and development of lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi

    2013-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.% 6 Li. In Japan, new lithium isotope separation technique using ionic-liquid impregnated organic membranes have been developed. The improvement in the durability of the ionic-liquid impregnated organic membrane is one of the main issues for stable, long-term operation of electrodialysis cells while maintaining good performance. Therefore, we developed highly-durable ionic-liquid impregnated organic membrane. Both ends of the ionic-liquid impregnated organic membrane were covered by a nafion 324 overcoat to prevent the outflow of the ionic liquid. The transmission of Lithium aqueous solution after 10 hours under the highly-durable ionic-liquid impregnated organic membrane is almost 13%. So this highly-durable ionic-liquid impregnated organic membrane for long operating of electrodialysis cells has been developed through successful prevention of ion liquid dissolution. (J.P.N.)

  6. Size enlargement of radioactive and hazardous species and their separation by microfiltration and ultrafiltration membranes

    International Nuclear Information System (INIS)

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1993-01-01

    Separation and volume reduction of aqueous solutions involving membranes is evolving into an expanding and diversified field. Numerous commercially successful membranes and their applications are now available. Among different driving forces used in membrane separation, pressure-driven separation has gained wide application. Depending on the size of the dissolved species in solution to be separated, the pressure needed to achieve the desired separation varies. The microfiltration and ultrafiltration membrane systems are low-pressure processes that generally operate below 350 kPa. To exploit these membranes in applications involving the removal of dissolved contaminants from solutions, it is essential to create a suitable size for the dissolved contaminants, so that the membranes can effectively retain them while producing a filtrate stream essentially free of contaminants. Size enlargement of the dissolved contaminants can be achieved through solution conditioning with the addition of one or a combination of chemical reagents and powdered materials. Examples of typical additives include: pH chemicals, polyelectrolytes, microorganisms and powdered adsorption/ion-exchange materials. In many situations, adequate control and optimization of the system chemistry and hydraulic conditions provide high selectivity and efficiency for contaminant removal. This paper summarizes removal efficiency data for cadmium, lead, mercury, uranium, arsenic, strontium-90/85, cesium-137 and iron. These data resulted from various initiatives on membrane technology undertaken during the past five years by the Waste Processing Technology group at Chalk River Laboratories. The technology involves size enlargement of contaminants present in waste solution, and their separation using either microfiltration or ultrafiltration. The data support remedial applications involving treatment of contaminated groundwater and soils

  7. Enantioselective stable isotope analysis (ESIA) — A new concept to evaluate the environmental fate of chiral organic contaminants

    International Nuclear Information System (INIS)

    Badea, Silviu-Laurentiu; Danet, Andrei-Florin

    2015-01-01

    Since 2011, the enantiospecific stable carbon isotope analysis (ESIA) has emerged as an innovative technique to assess the environmental fate of chiral emerging compounds by combining in one experimental technique both compound specific isotope analysis (CSIA) and enantioselective analysis. To date, the ESIA was applied for four classes of compounds: α-hexachlorocyclohexane (α-HCH), polar herbicides (phenoxy acids), synthetic polycyclic musk galaxolide (HHCB), and phenoxyalkanoic methyl herbicides. From an analytical point of view there are factors that are hindering the application of ESIA methods for the field samples: (i.e. amounts of target analyte, matrix effects, GC resolution) and overcoming these factors is challenging. While ESIA was shown as a mature technique for the first three abovementioned class of compounds, no isotope analysis of individual enantiomers could be performed for phenoxyalkanoic methyl herbicides. With respect to field studies, one study showed that ESIA might be a promising tool to distinguish between biotic and abiotic transformation pathways of chiral organic contaminants and even to differentiate between their aerobic and anaerobic biotransformation pathways. The development of ESIA methods for new chiral emerging contaminants in combination with development of multi-element isotope analysis will contribute to a better characterization of transformation pathways of chiral organic contaminants. - Highlights: • ESIA is an innovative technique to assess the environmental fate of chiral pollutants • Overcoming the analytical limitations of ESIA is challenging • Development of ESIA methods for new chiral emerging contaminants is needed

  8. Enantioselective stable isotope analysis (ESIA) — A new concept to evaluate the environmental fate of chiral organic contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Badea, Silviu-Laurentiu, E-mail: badeasilviu@gmail.com [Department of Chemistry, Umeå University, SE-901 87 Umeå (Sweden); Danet, Andrei-Florin [Department of Analytical Chemistry, University of Bucharest, Faculty of Chemistry, 90-92 Panduri Str., Bucharest 050657 (Romania)

    2015-05-01

    Since 2011, the enantiospecific stable carbon isotope analysis (ESIA) has emerged as an innovative technique to assess the environmental fate of chiral emerging compounds by combining in one experimental technique both compound specific isotope analysis (CSIA) and enantioselective analysis. To date, the ESIA was applied for four classes of compounds: α-hexachlorocyclohexane (α-HCH), polar herbicides (phenoxy acids), synthetic polycyclic musk galaxolide (HHCB), and phenoxyalkanoic methyl herbicides. From an analytical point of view there are factors that are hindering the application of ESIA methods for the field samples: (i.e. amounts of target analyte, matrix effects, GC resolution) and overcoming these factors is challenging. While ESIA was shown as a mature technique for the first three abovementioned class of compounds, no isotope analysis of individual enantiomers could be performed for phenoxyalkanoic methyl herbicides. With respect to field studies, one study showed that ESIA might be a promising tool to distinguish between biotic and abiotic transformation pathways of chiral organic contaminants and even to differentiate between their aerobic and anaerobic biotransformation pathways. The development of ESIA methods for new chiral emerging contaminants in combination with development of multi-element isotope analysis will contribute to a better characterization of transformation pathways of chiral organic contaminants. - Highlights: • ESIA is an innovative technique to assess the environmental fate of chiral pollutants • Overcoming the analytical limitations of ESIA is challenging • Development of ESIA methods for new chiral emerging contaminants is needed.

  9. Food waste management using an electrostatic separator with corona discharge

    Science.gov (United States)

    Lai, Koonchun; Lim, Sooking; Teh, Pehchiong

    2015-05-01

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm.

  10. Food waste management using an electrostatic separator with corona discharge

    International Nuclear Information System (INIS)

    Lai, Koonchun; Teh, Pehchiong; Lim, Sooking

    2015-01-01

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm

  11. Food waste management using an electrostatic separator with corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Koonchun; Teh, Pehchiong [Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman (Malaysia); Lim, Sooking [Faculty of Engineering and Science, Universiti Tunku Abdul Rahman (Malaysia)

    2015-05-15

    In Malaysia, municipal solid waste contains a high portion of organic matters, typically contributed by food waste. It is estimated that about 45% of the municipal waste are food waste, followed by the non-food waste such as plastics, metals, glass and others. Food waste, while being properly sorted and contamination free from non-food waste, can be reused (e.g. fertiliser) instead of being landfilled. Therefore, recycling of food waste is crucial not only from the view point of waste management, but also with respect to the reduction of resource losses and greenhouse gases emission. A new waste separation process involved food particles, non-food particles and electrostatic discharge was investigated in this study. The empirical results reveal that the corona electrostatic separation is an environmental-friendly way in recovering foods from municipal waste. The efficiency of the separator, under same operating conditions, varies with the particle size of the food and non-food particles. The highest efficiency of 82% is recorded for the particle sizes between 1.5 and 3.0 mm.

  12. Uptake of Organic Contaminants from Soil into Vegetables and Fruits

    DEFF Research Database (Denmark)

    Trapp, Stefan; Legind, Charlotte Nielsen

    2011-01-01

    Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plantspecific properties that determine the importance...... of these pathways are described in this chapter. A variety of models have been developed, specific for crop types and with steady-state or dynamic solutions. Model simulations can identify sensitive properties and relevant processes. Persistent, polar (log KOW contaminants have...... the highest potential for accumulation from soil, and concentrations in leaves may be several hundred times higher than in soil. However, for most contaminants the accumulation in vegetables or fruits is much lower. Lipophilic (log KOW > 3) contaminants are mainly transported to leaves by attached soil...

  13. An overview of the bioremediation of inorganic contaminants

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Gorby, Y.A.

    1995-01-01

    Bioremediation, or the biological treatment of wastes, usually is associated with the remediation of organic contaminants. Similarly, there is an increasing body of literature and expertise in applying biological systems to assist in the bioremediation of soils, sediments, and water contaminated with inorganic compounds including metals, radionuclides, nitrates, and cyanides. Inorganic compounds can be toxic both to humans and to organisms used to remediate these contaminants. However, in contrast to organic contaminants, most inorganic contaminants cannot be degraded, but must be remediated by altering their transport properties. Immobilization, mobilization, or transformation of inorganic contaminants via bioaccumulation, biosorption, oxidation, reduction, methylation, demethylation, metal-organic complexation, ligand degradation, and phytoremediation are the various processes applied in the bioremediation of inorganic compounds. This paper briefly describes these processes, referring to other contributors in this book as examples when possible, and summarize the factors that must be considered when choosing bioremediation as a cleanup technology for inorganics. Understanding the current state of knowledge as well as the limitations for bioremediation of inorganic compounds will assist in identifying and implementing successful remediation strategies at sites containing inorganic contaminants. 79 refs

  14. Magnetic separation for soil decontamination

    International Nuclear Information System (INIS)

    Avens, L.R.; Worl, L.A.; deAguero, K.J.; Padilla, D.D.; Prenger, F.C.; Stewart, W.F.; Hill, D.D.; Tolt, T.L.

    1993-01-01

    High gradient magnetic separation (HGMS) is a physical separation process that is used to extract magnetic particles from mixtures. The technology is used on a large scale in the kaolin clay industry to whiten or brighten kaolin clay and increase its value. Because all uranium and plutonium compounds are slightly magnetic, HGMS can be used to separate these contaminants from non-magnetic soils. A Cooperative Research and Development Agreement (CRADA) was signed in 1992 between Los Alamos National Laboratory (LANL) and Lockheed Environmental Systems and Technologies Company (LESAT) to develop HGMS for soil decontamination. This paper reports progress and describes the HGMS technology

  15. Multi-residue analysis of legacy POPs and emerging organic contaminants in Singapore's coastal waters using gas chromatography-triple quadrupole tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Hui; Bayen, Stéphane; Kelly, Barry C

    2015-08-01

    A gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) based method was developed for determination of 86 hydrophobic organic compounds in seawater. Solid-phase extraction (SPE) was employed for sequestration of target analytes in the dissolved phase. Ultrasound assisted extraction (UAE) and florisil chromatography were utilized for determination of concentrations in suspended sediments (particulate phase). The target compounds included multi-class hydrophobic contaminants with a wide range of physical-chemical properties. This list includes several polycyclic and nitro-aromatic musks, brominated and chlorinated flame retardants, methyl triclosan, chlorobenzenes, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). Spiked MilliQ water and seawater samples were used to evaluate the method performance. Analyte recoveries were generally good, with the exception of some of the more volatile target analytes (chlorobenzenes and bromobenzenes). The method is very sensitive, with method detection limits typically in the low parts per quadrillion (ppq) range. Analysis of 51 field-collected seawater samples (dissolved and particulate-bound phases) from four distinct coastal sites around Singapore showed trace detection of several polychlorinated biphenyl congeners and other legacy POPs, as well as several current-use emerging organic contaminants (EOCs). Polycyclic and nitro-aromatic musks, bromobenzenes, dechlorane plus isomers (syn-DP, anti-DP) and methyl triclosan were frequently detected at appreciable levels (2-20,000pgL(-1)). The observed concentrations of the monitored contaminants in Singapore's marine environment were generally comparable to previously reported levels in other coastal marine systems. To our knowledge, these are the first measurements of these emerging contaminants of concern in Singapore or Southeast Asia. The developed method may prove beneficial for future environmental monitoring of hydrophobic organic contaminants

  16. Global contamination trends of persistent organic chemicals

    National Research Council Canada - National Science Library

    Loganathan, Bommanna G; Lam, Paul K. S

    2012-01-01

    "Composed by a diverse group of experts, this reference covers the history, present status, and projected future trends of environmental contamination from highly toxic synthetic chemical pollutants...

  17. Bioaccumulation of radionuclides and metals by microorganisms: Potential role in the separation of inorganic contaminants and for the in situ treatment of the subsurface

    International Nuclear Information System (INIS)

    Bolton, H. Jr.; Wildung, R.E.

    1993-01-01

    Radionuclide, metal and organic contaminants are present in relatively inaccessible subsurface environments at many U.S Department of Energy (DOE) sites. Subsurface contamination is of concern to DOE because the migration of these contaminants into relatively deep subsurface zones indicates that they exist in a mobile chemical form and thus could potentially enter domestic groundwater supplies. Currently, economic approaches to stabilize or remediate these deep contaminated zones are limited, because these systems are not well characterized and there is a lack of understanding of how geochemical, microbial, and hydrological processes interact to influence contaminant behavior. Microorganisms offer a potential means for radionuclide and metal immobilization or mobilization for subsequent surface treatment. Bioaccumulation is a specific microbial sequestering mechanism wherein mobile radionuclides and metals become associated with the microbial biomass by both intra- and extracellular sequestering ligands. Since most of the microorganism in the subsurface are associated with the stationary strata, bioaccumulation of mobile radionuclides and metals would initially result in a decrease in the transport of inorganic contaminants. How long the inorganic contaminants would remain immobilized, the selectivity of the bioaccumulation process for specific inorganic contaminants, the mechanism involved, and how the geochemistry and growth conditions of the subsurface environment influence bioaccumulation are not currently known. This presentation focuses on the microbial process of immobilizing radionuclides and metals and using this process to reduce inorganic contaminant migration at DOE sites. Background research with near-surface microorganisms will be presented to demonstrate this process and show its potential to reduce inorganic contaminant migration. Future research needs and approaches in this relatively new research area will also be discussed

  18. Barrier capacity of weathered coal mining wastes with respect to heavy metal and organic contaminants

    International Nuclear Information System (INIS)

    Twardowska, I.; Jarosinska, B.

    1992-01-01

    Some types of weathered, buffered coal mining wastes (CMW), being essentially heterogenous and complex mineralogical system of developed surface area, under certain conditions could be widely applicable for binding a variety of contaminants both inorganic in cationic or anionic form, and organic compounds. The experiments reported earlier, showed excellent Cr(VI)-binding capacity of CMW. In this paper, experiments on simultaneous removal of heavy metals Cr t , Cu 2+ , Zn 2+ and Cd 2+ from highly (pH 2.5) and mildly acidic solutions (pH 4.0), as well as of organic compounds and color reduction in leachate from solid industrial waste dump (foundry wastes) will be presented

  19. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.

    Science.gov (United States)

    Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping

    2012-05-15

    In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF

  20. On the role of local charge carrier mobility in the charge separation mechanism of organic photovoltaics.

    Science.gov (United States)

    Yoshikawa, Saya; Saeki, Akinori; Saito, Masahiko; Osaka, Itaru; Seki, Shu

    2015-07-21

    Although the charge separation (CS) and transport processes that compete with geminate and non-geminate recombination are commonly regarded as the governing factors of organic photovoltaic (OPV) efficiency, the details of the CS mechanism remain largely unexplored. Here we provide a systematic investigation on the role of local charge carrier mobility in bulk heterojunction films of ten different low-bandgap polymers and polythiophene analogues blended with methanofullerene (PCBM). By correlating with the OPV performances, we demonstrated that the local mobility of the blend measured by time-resolved microwave conductivity is more important for the OPV output than those of the pure polymers. Furthermore, the results revealed two separate trends for crystalline and semi-crystalline polymers. This work offers guidance in the design of high-performance organic solar cells.

  1. Polarization Energies at Organic–Organic Interfaces: Impact on the Charge Separation Barrier at Donor–Acceptor Interfaces in Organic Solar Cells

    KAUST Repository

    Ryno, Sean

    2016-05-31

    We probe the energetic landscape at a model pentacene/fullerene-C60 interface to investigate the interactions between positive and negative charges, which are critical to the processes of charge separation and recombination in organic solar cells. Using a polarizable force field, we find that polarization energy, i.e. the stabilization a charge feels due to its environment, is larger at the interface than in the bulk for both a positive and a negative charge. The combination of the charge being more stabilized at the interface and the Coulomb attraction between the charges, results in a barrier to charge separation at the pentacene-C60 interface that can be in excess of 0.7 eV for static configurations of the donor and acceptor locations. However, the impact of molecular motions, i.e., the dynamics, at the interface at room temperature results in a distribution of polarization energies and in charge separation barriers that can be significantly reduced. The dynamic nature of the interface is thus critical, with the polarization energy distributions indicating that sites along the interface shift in time between favorable and unfavorable configurations for charge separation.

  2. A potential approach for monitoring drinking water quality from groundwater systems using organic matter fluorescence as an early warning for contamination events.

    Science.gov (United States)

    Stedmon, Colin A; Seredyńska-Sobecka, Bożena; Boe-Hansen, Rasmus; Le Tallec, Nicolas; Waul, Christopher K; Arvin, Erik

    2011-11-15

    The fluorescence characteristics of natural organic matter in a groundwater based drinking water supply plant were studied with the aim of applying it as a technique to identify contamination of the water supply. Excitation-emission matrices were measured and modeled using parallel factor analysis (PARAFAC) and used to identify which wavelengths provide the optimal signal for monitoring contamination events. The fluorescence was characterized by four components: three humic-like and one amino acid-like. The results revealed that the relative amounts of two of the humic-like components were very stable within the supply plant and distribution net and changed in a predictable fashion depending on which wells were supplying the water. A third humic-like component and an amino acid-like component did not differ between wells. Laboratory contamination experiments with wastewater revealed that combined they could be used as an indicator of microbial contamination. Their fluorescence spectra did not overlap with the other components and therefore the raw broadband fluorescence at the wavelengths specific to their fluorescence could be used to detect contamination. Contamination could be detected at levels equivalent to the addition of 60 μg C/L in drinking water with a TOC concentration of 3.3 mg C/L. The results of this study suggest that these types of drinking water systems, which are vulnerable to microbial contamination due to the lack of disinfectant treatment, can be easily monitored using online organic matter fluorescence as an early warning system to prompt further intensive sampling and appropriate corrective measures. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Microfluidic immunomagnetic separation for enhanced bacterial detection

    DEFF Research Database (Denmark)

    Hoyland, James; Kunstmann-Olsen, Casper; Ahmed, Shakil

    A combined lab-on-a-chip approach combining immunomagnetic separation (IMS) and flow cytometry was developed for the enrichment and detection of salmonella contamination in food samples. Immunomagnetic beads were immobilized in chips consisting of long fractal meanders while contaminated samples...... to obtain maximum capturing efficiency. The effects of channel volume, path length and number of bends of microfluidic chip on IMS efficiency were also determined....

  4. 17 CFR 274.11b - Form N-3, registration statement of separate accounts organized as management investment companies.

    Science.gov (United States)

    2010-04-01

    ... statement of separate accounts organized as management investment companies. 274.11b Section 274.11b... accounts organized as management investment companies. Form N-3 shall be used as the registration statement... offer variable annuity contracts to register as management investment companies. This form shall also be...

  5. 17 CFR 239.17a - Form N-3, registration statement for separate accounts organized as management investment companies.

    Science.gov (United States)

    2010-04-01

    ... statement for separate accounts organized as management investment companies. 239.17a Section 239.17a... accounts organized as management investment companies. Form N-3 shall be used for registration under the... register under the Investment Company Act of 1940 as management investment companies, and certain other...

  6. Recent Progress in Asymmetric Catalysis and Chromatographic Separation by Chiral Metal–Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Suchandra Bhattacharjee

    2018-03-01

    Full Text Available Metal–organic frameworks (MOFs, as a new class of porous solid materials, have emerged and their study has established itself very quickly into a productive research field. This short review recaps the recent advancement of chiral MOFs. Here, we present simple, well-ordered instances to classify the mode of synthesis of chiral MOFs, and later demonstrate the potential applications of chiral MOFs in heterogeneous asymmetric catalysis and enantioselective separation. The asymmetric catalysis sections are subdivided based on the types of reactions that have been successfully carried out recently by chiral MOFs. In the part on enantioselective separation, we present the potentiality of chiral MOFs as a stationary phase for high-performance liquid chromatography (HPLC and high-resolution gas chromatography (GC by considering fruitful examples from current research work. We anticipate that this review will provide interest to researchers to design new homochiral MOFs with even greater complexity and effort to execute their potential functions in several fields, such as asymmetric catalysis, enantiomer separation, and chiral recognition.

  7. Stabilization of Rocky Flats combustible residues contaminated with plutonium metal and organic solvents

    International Nuclear Information System (INIS)

    Bowen, S.M.; Cisneros, M.R.; Jacobson, L.L.; Schroeder, N.C.; Ames, R.L.

    1998-01-01

    This report describes tests on a proposed flowsheet designed to stabilize combustible residues that were generated at the Rocky Flats Environmental Technology Site (RFETS) during the machining of plutonium metal. Combustible residues are essentially laboratory trash contaminated with halogenated organic solvents and plutonium metal. The proposed flowsheet, designed by RFETS, follows a glovebox procedure that includes (1) the sorting and shredding of materials, (2) a low temperature thermal desorption of solvents from the combustible materials, (3) an oxidation of plutonium metal with steam, and (4) packaging of the stabilized residues. The role of Los Alamos National Laboratory (LANL) in this study was to determine parameters for the low temperature thermal desorption and steam oxidation steps. Thermal desorption of carbon tetrachloride (CCl 4 ) was examined using a heated air stream on a Rocky Flats combustible residue surrogate contaminated with CCl 4 . Three types of plutonium metal were oxidized with steam in a LANL glovebox to determine the effectiveness of this procedure for residue stabilization. The results from these LANL experiments are used to recommend parameters for the proposed RFETS stabilization flowsheet

  8. Diffused sunlight driven highly synergistic pathway for complete mineralization of organic contaminants using reduced graphene oxide supported photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Babu, Sundaram Ganesh; Ramalingam Vinoth [SRM Research Institute, SRM University, Kattankulathur 603203, Chennai, Tamilnadu (India); Neppolian, Bernaurdshaw, E-mail: neppolian.b@res.srmuniv.ac.in [SRM Research Institute, SRM University, Kattankulathur 603203, Chennai, Tamilnadu (India); Dionysiou, Dionysios D. [Environmental Engineering and Science Program, Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Ashokkumar, Muthupandian [The School of Chemistry, University of Melbourne, Parkville, Melbourne, Victoria 3010 (Australia)

    2015-06-30

    Highlights: • Diffused sunlight is firstly used as an effective source for the degradation of organics. • More than 10 fold synergistic effect is achieved by sono-photocatalysis. • rGO enhances the degradation efficiency up to 54% as compared with CuO–TiO{sub 2} alone. • Plausible mechanism and intermediates formed are supported with experimental studies. - Abstract: Diffused sunlight is found to be an effective light source for the efficient degradation and mineralization of organic pollutant (methyl orange as a probe) by sono-photocatalytic degradation using reduced graphene oxide (rGO) supported CuO–TiO{sub 2} photocatalyst. The prepared catalysts are characterized by XRD, XPS, UV–vis DRS, PL, photoelectrochemical, SEM-EDS and TEM. A 10 fold synergy is achieved for the first time by combining sonochemical and photocatalytic degradation under diffused sunlight. rGO loading augments the activity of bare CuO–TiO{sub 2} more than two fold. The ability of rGO in storing, transferring, and shuttling electrons at the heterojunction between TiO{sub 2} and CuO facilitates the separation of photogenerated electron–hole pairs, as evidenced by the photoluminescence results. The complete mineralization of MO and the by-products within a short span of time is confirmed by TOC analysis. Further, hydroxyl radical mediated degradation under diffused sunlight is confirmed by LC–MS. This system shows similar activity for the degradation of methylene blue and 4-chlorophenol indicating the versatility of the catalyst for the degradation of various pollutants. This investigation is likely to open new possibilities for the development of highly efficient diffused sunlight driven TiO{sub 2} based photocatalysts for the complete mineralization of organic contaminants.

  9. Impact of organic carbon and nutrients mobilized during chemical oxidation on subsequent bioremediation of a diesel-contaminated soil

    NARCIS (Netherlands)

    Sutton, N.B.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.

    2014-01-01

    Remediation with in situ chemical oxidation (ISCO) impacts soil organic matter (SOM) and the microbial community, with deleterious effects on the latter being a major hurdle to coupling ISCO with in situ bioremediation (ISB). We investigate treatment of a diesel-contaminated soil with Fenton’s

  10. Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Segura, Sergi, E-mail: sergigarcia@ub.edu [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia); Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Keller, Jürg [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia); Brillas, Enric [Laboratori d’Electroquímica dels Materials i del Medi Ambient, Departament de Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona (Spain); Radjenovic, Jelena, E-mail: j.radjenovic@awmc.uq.edu.au [Advanced Water Management Centre, The University of Queensland, Level 4, Gehrmann Bld. (60), St Lucia, QLD 072 (Australia)

    2015-02-11

    Graphical abstract: - Highlights: • Mineralization of secondary effluent by anodic oxidation with BDD anode. • Complete removal of 29 pharmaceuticals and pesticides at trace level concentrations. • Organochlorine and organobromine byproducts were formed at low μM concentrations. • Chlorine species evolution assessed to evaluate the anodic oxidation applicability. - Abstract: Electrochemical advanced oxidation processes (EAOPs) have been widely investigated as promising technologies to remove trace organic contaminants from water, but have rarely been used for the treatment of real waste streams. Anodic oxidation with a boron-doped diamond (BDD) anode was applied for the treatment of secondary effluent from a municipal sewage treatment plant containing 29 target pharmaceuticals and pesticides. The effectiveness of the treatment was assessed from the contaminants decay, dissolved organic carbon and chemical oxygen demand removal. The effect of applied current and pH was evaluated. Almost complete mineralization of effluent organic matter and trace contaminants can be obtained by this EAOP primarily due to the action of hydroxyl radicals formed at the BDD surface. The oxidation of Cl{sup −} ions present in the wastewater at the BDD anode gave rise to active chlorine species (Cl{sub 2}/HClO/ClO{sup −}), which are competitive oxidizing agents yielding chloramines and organohalogen byproducts, quantified as adsorbable organic halogen. However, further anodic oxidation of HClO/ClO{sup −} species led to the production of ClO{sub 3}{sup −} and ClO{sub 4}{sup −} ions. The formation of these species hampers the application as a single-stage tertiary treatment, but posterior cathodic reduction of chlorate and perchlorate species may reduce the risks associated to their presence in the environment.

  11. Determination of solute organic concentration in contaminated soils using a chemical-equilibrium soil column system

    DEFF Research Database (Denmark)

    Gamst, Jesper; Kjeldsen, Peter; Christensen, Thomas Højlund

    2007-01-01

    using two soils with different content of organic carbon (f(oc) of 1.5 and 6.5%, respectively). A quadruple blind test of the ER-V system using glass beads in stead of soil showed an acceptable recovery (65-85%) of all of the 11 VOCs tested. Only for the most volatile compound (heptane, K-H similar...... to 80) an unacceptable recovery was found (9%). The contact time needed for obtaining chemical equilibrium was tested in the ER-H system by performing five test with different duration (1, 2, 4, 7 and 19 days) using the low organic carbon soil. Seven days of contact time appeared sufficient...... for determination of solute concentration in a contaminated soil were developed; (1) a chemical Equilibrium and Recirculation column test for Volatile organic chemicals (ER-V) and (2) a chemical Equilibrium and Recirculation column test for Hydrophobic organic chemicals (ER-H). The two test systems were evaluated...

  12. Field demonstration of ex situ biological treatability of contaminated groundwater at the Strachan gas plant

    International Nuclear Information System (INIS)

    Kurz, M.D.; Stepan, D.J.

    1997-03-01

    A multi-phase study was conducted to deal with the issues of groundwater and soil contamination by sour gas processing plants in Alberta. Phase One consisted of a review of all soil and groundwater monitoring data submitted to Alberta Environment by sour gas plants in accordance with the Canadian Clean Water Act. The current phase involves the development, evaluation and demonstration of selected remediation technologies to address subsurface contamination of sediments and groundwater at sour gas treatment plants with special attention to the presence of natural gas condensate in the subsurface. Results are presented from a pilot-scale biological treatability test that was performed at the Gulf Strachan Natural Gas Processing Plant in Rocky Mountain House, Alberta, where contaminated groundwater from the plant was being pumped to the surface through many recovery wells to control contaminant migration. The recovered groundwater was directed to a pump-and-treat system that consisted of oil-water separation, iron removal, hardness removal, and air stripping, before being reinjected. The pilot-scale biological treatability testing was conducted to evaluate process stability in treating groundwater without pretreatment for iron and hardness reduction and to evaluate the removal of organic contaminants. Results of a groundwater characterization analysis are discussed. Chemical characteristics of the groundwater at the Strachan Gas Plant showed that an ex situ remediation technology would address the dissolved volatile and semi-volatile organic contamination from natural gas condensates, as well as the nitrogenous compounds resulting from the use of amine-based process chemicals. 4 refs., 5 tabs., 4 figs

  13. Postsynthesis Modification of a Metallosalen-Containing Metal-Organic Framework for Selective Th(IV)/Ln(III) Separation.

    Science.gov (United States)

    Guo, Xiang-Guang; Qiu, Sen; Chen, Xiuting; Gong, Yu; Sun, Xiaoqi

    2017-10-16

    An uncoordinated salen-containing metal-organic framework (MOF) obtained through postsynthesis removal of Mn(III) ions from a metallosalen-containing MOF material has been used for selective separation of Th(IV) ion from Ln(III) ions in methanol solutions for the first time. This material exhibited an adsorption capacity of 46.345 mg of Th/g. The separation factors (β) of Th(IV)/La(III), Th(IV)/Eu(III), and Th(IV)/Lu(III) were 10.7, 16.4, and 10.3, respectively.

  14. A self-cleaning underwater superoleophobic mesh for oil-water separation

    KAUST Repository

    Zhang, Lianbin

    2013-07-31

    Oil-water separation has recently become a global challenging task because of the frequent occurrence of oil spill accidents due to the offshore oil production and transportation, and there is an increasing demand for the development of effective and inexpensive approaches for the cleaning-up of the oily pollution in water system. In this study, a self-cleaning underwater superoleophobic mesh that can be used for oil-water separation is prepared by the layer-by-layer (LbL) assembly of sodium silicate and TiO2 nanoparticles on the stainless steel mesh. The integration of the self-cleaning property into the all-inorganic separation mesh by using TiO2 enables the convenient removal of the contaminants by ultraviolet (UV) illumination, and allows for the facile recovery of the separation ability of the contaminated mesh, making it promising for practial oil-water separation applications.

  15. Containing and discarding method for radiation contaminated materials and radiation contaminated material containing composite member

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko.

    1995-01-01

    A container for high level radiation contaminated materials is loaded in an outer container in a state of forming a gap between the outer container and a container wall, low level radiation contaminated materials are filled to the gap between the container of the radiation contaminated materials and the container wall, and then the outer container is sealed. In addition, the thickness of the layer of the low level radiation contaminated materials is made substantially uniform. Then, since radiation rays from the container of the radiation contaminated materials are decayed by the layer of the low level radiation contaminated materials at the periphery of the container and the level of the radiation rays emitted from the outer container is extremely reduced than in a case where the entire amount of high level radiation contaminated materials are filled, the level is suppressed to an extent somewhat higher than the level in the case where the entire amount of the low level radiation contaminated materials are filled. Accordingly, the management corresponds to that for the low level radiation contaminated materials, and the steps for the management and the entire volume thereof are reduced than in a case where the high level radiation contaminated materials and the low level radiation contaminated materials are sealed separately. (N.H.)

  16. Legacy and emerging organohalogenated contaminants in wild edible aquatic organisms: Implications for bioaccumulation and human exposure.

    Science.gov (United States)

    Sun, Runxia; Luo, Xiaojun; Li, Qing X; Wang, Tao; Zheng, Xiaobo; Peng, Pingan; Mai, Bixian

    2018-03-01

    Highly industrialized and urbanized watersheds may receive various contaminants from anthropogenic activities. In this study, legacy and emerging organohalogenated contaminants (OHCs) were measured in edible wild aquatic organisms sampled from the Pearl River and Dongjiang River in a representative industrial and urban region in China. High concentrations of target contaminants were observed. The Pearl River exhibited higher concentrations of OHCs than the Dongjiang River due to high industrialization and urbanization. Agrochemical inputs remained an important source of OHCs in industrialized and urbanized watershed in China, but vigilance is needed for recent inputs of polychlorinated biphenyls (PCBs) originated from e-waste recycling activities. Bioaccumulation of dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), PCBs, polybrominated diphenyl ethers (PBDEs), and Dechlorane Plus (DP) was biological species- and compound-specific, which can be largely attributed to metabolic capability for xenobiotics. No health risk was related to the daily intake of DDTs, HCHs, and PBDEs via consumption of wild edible species investigated for local residents. However, the current exposure to PCBs through consuming fish is of potential health concern. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation

    Science.gov (United States)

    Wang, Xuerui; Chi, Chenglong; Zhang, Kang; Qian, Yuhong; Gupta, Krishna M.; Kang, Zixi; Jiang, Jianwen; Zhao, Dan

    2017-02-01

    It is highly desirable to reduce the membrane thickness in order to maximize the throughput and break the trade-off limitation for membrane-based gas separation. Two-dimensional membranes composed of atomic-thick graphene or graphene oxide nanosheets have gas transport pathways that are at least three orders of magnitude higher than the membrane thickness, leading to reduced gas permeation flux and impaired separation throughput. Here we present nm-thick molecular sieving membranes composed of porous two-dimensional metal-organic nanosheets. These membranes possess pore openings parallel to gas concentration gradient allowing high gas permeation flux and high selectivity, which are proven by both experiment and molecular dynamics simulation. Furthermore, the gas transport pathways of these membranes exhibit a reversed thermo-switchable feature, which is attributed to the molecular flexibility of the building metal-organic nanosheets.

  18. Sequential extraction of uranium metal contamination

    International Nuclear Information System (INIS)

    Murry, M.M.; Spitz, H.B.; Connick, W.B.

    2016-01-01

    Samples of uranium contaminated dirt collected from the dirt floor of an abandoned metal rolling mill were analyzed for uranium using a sequential extraction protocol involving a series of five increasingly aggressive solvents. The quantity of uranium extracted from the contaminated dirt by each reagent can aid in predicting the fate and transport of the uranium contamination in the environment. Uranium was separated from each fraction using anion exchange, electrodeposition and analyzed by alpha spectroscopy analysis. Results demonstrate that approximately 77 % of the uranium was extracted using NH 4 Ac in 25 % acetic acid. (author)

  19. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation

    Science.gov (United States)

    Yue, Liang; Wang, Shan; Zhou, Ding; Zhang, Hao; Li, Bao; Wu, Lixin

    2016-02-01

    Consecutive two-dimensional frameworks comprised of molecular or cluster building blocks in large area represent ideal candidates for membranes sieving molecules and nano-objects, but challenges still remain in methodology and practical preparation. Here we exploit a new strategy to build soft single-layer ionic organic-inorganic frameworks via electrostatic interaction without preferential binding direction in water. Upon consideration of steric effect and additional interaction, polyanionic clusters as connection nodes and cationic pseudorotaxanes acting as bridging monomers connect with each other to form a single-layer ionic self-assembled framework with 1.4 nm layer thickness. Such soft supramolecular polymer frameworks possess uniform and adjustable ortho-tetragonal nanoporous structure in pore size of 3.4-4.1 nm and exhibit greatly convenient solution processability. The stable membranes maintaining uniform porous structure demonstrate precisely size-selective separation of semiconductor quantum dots within 0.1 nm of accuracy and may hold promise for practical applications in selective transport, molecular separation and dialysis systems.

  20. Time trend of butyl- and phenyl-tin contamination in organisms of the Lagoon of Venice (1999-2003).

    Science.gov (United States)

    Zanon, F; Rado, N; Centanni, E; Zharova, N; Pavoni, B

    2009-05-01

    In the period 1999-2003 a monitoring study on the accumulation of organotin compounds in edible organisms in the Lagoon of Venice was conducted. Butyl and Phenyl derivatives were determined in pooled samples of Mytilus galloprovincialis and Tapes spp. with the aims of assessing organotin contamination in the Lagoon of Venice in the period just preceding their ban in Europe, monitoring the concentrations in organisms with a high commercial use, evaluating a potential hazard for human health due to seafood and identifying the possible contamination sources. Sampling stations (up to 20) were distributed around the Lagoon and particularly concentrated in the area close to the town of Chioggia. Significantly higher (analysis of variance (ANOVA), p 0.05) in either species. Furthermore, by analyzing the entire data set, it is evident that most stations show analogous concentrations in the 3 years for both species, whereas few have anomalously higher concentrations. If organotin concentrations in specimens from some sites are compared with the Tolerable Average Residue Level, a possible risk for human health must be considered.

  1. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface

    Science.gov (United States)

    Lovley, Derek R.; Anderson, Robert T.

    Dissimilatory Fe(III)-reducing microorganisms have the ability to destroy organic contaminants under anaerobic conditions by oxidizing them to carbon dioxide. Some Fe(III)-reducing microorganisms can also reductively dechlorinate chlorinated contaminants. Fe(III)-reducing microorganisms can reduce a variety of contaminant metals and convert them from soluble forms to forms that are likely to be immobilized in the subsurface. Studies in petroleum-contaminated aquifers have demonstrated that Fe(III)-reducing microorganisms can be effective agents in removing aromatic hydrocarbons from groundwater under anaerobic conditions. Laboratory studies have demonstrated the potential for Fe(III)-reducing microorganisms to remove uranium from contaminated groundwaters. The activity of Fe(III)-reducing microorganisms can be stimulated in several ways to enhance organic contaminant oxidation and metal reduction. Molecular analyses in both field and laboratory studies have demonstrated that microorganisms of the genus Geobacter become dominant members of the microbial community when Fe(III)-reducing conditions develop as the result of organic contamination, or when Fe(III) reduction is artificially stimulated. These results suggest that further understanding of the ecophysiology of Geobacter species would aid in better prediction of the natural attenuation of organic contaminants under anaerobic conditions and in the design of strategies for the bioremediation of subsurface metal contamination. Des micro-organismes simulant la réduction du fer ont la capacité de détruire des polluants organiques dans des conditions anérobies en les oxydant en dioxyde de carbone. Certains micro-organismes réducteurs de fer peuvent aussi dé-chlorer par réduction des polluants chlorés. Des micro-organismes réducteurs de fer peuvent réduire tout un ensemble de métaux polluants et les faire passer de formes solubles à des formes qui sont susceptibles d'être immobilisées dans le milieu

  2. Th biodistribution in internal contamination of animals

    International Nuclear Information System (INIS)

    Ciubotariu, M.; Danis, A.; Dumitrescu, G.; Cucu, M.

    1999-01-01

    Fissionable elements (U,Th) internal contamination have been studied using the fission track method as analysis method of the U and/or Th contaminant elements and Wistar-London breed rats as experiment animals. Different ways to obtain internal contaminations have been investigated: ingestion, inhalation, absorption by skin and through wounds. After the U internal contamination study was carried out, in this stage the Th internal contamination by ingestion is in progress. Using the identical aliquot parts of a solution calibrated in Th, corresponding to an Annual Limit Intake, three Wistar-London breed rats were contaminated. They were kept in normal life conditions and under permanent medical surveillance up to their sacrification. The animals were sacrificed at different time intervals after their contamination: 2 days, 7 days and 14 days, respectively. After the sacrification, their vital organs were sampled, weighed, calcined, re-weighed and finally analysed by track detection using the fission track micro-mappings technique. Also, their evacuations were sampled every 24 hours weighed, calcined and analysed in the same way as the vital organs. The Th fission track micro-mappings technique was used in the following conditions: - mica-muscovite as track detector pre-etched for fossil tracks 18 h in HF-40 per cent at room temperature; - the neutron irradiations were performed in the nuclear reactor VVR-S Bucharest at the neutron fluences of 3.10 15 - 2.10 16 fast neutrons/c m 2 ; - the visualization of the Th induced fission tracks were obtained by chemical etching in HF-40 per cent, 3 h at room temperature; - the Th track micro-mappings obtained in track detectors were studied by optical microscopy using a stereo microscope WILD M7S for ensemble study (X6-X31) and a binocular ZEISS JENA microscope for qualitative and quantitative studies (X150). The biological reference materials calibrated in Th were prepared in our laboratory using the calcined organs and the

  3. Uptake of Organic Contaminants from Soil into Vegetables and Fruits

    DEFF Research Database (Denmark)

    Trapp, Stefan; Legind, Charlotte Nielsen

    2011-01-01

    Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plantspecific properties that determine the importance of these path......Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plantspecific properties that determine the importance...... of these pathways are described in this chapter. A variety of models have been developed, specific for crop types and with steady-state or dynamic solutions. Model simulations can identify sensitive properties and relevant processes. Persistent, polar (log KOW ... particles, or from air. Volatile contaminants have a low potential for accumulation because they quickly escape to air. Experimental data are listed that support these model predictions, but underline also the high variability of accumulation under field conditions. Plant uptake predictions are uncertain...

  4. Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination.

    Science.gov (United States)

    Różańska, Anna; Chmielarczyk, Agnieszka; Romaniszyn, Dorota; Sroka-Oleksiak, Agnieszka; Bulanda, Małgorzata; Walkowicz, Monika; Osuch, Piotr; Knych, Tadeusz

    2017-07-20

    Background: Hospital equipment made from copper alloys can play an important role in complementing traditional methods of disinfection. Aims of the study: The aim of this study was to assess the dynamics of the antimicrobial properties of selected copper alloys in different simulations of environmental conditions (with organic contamination vs. without organic contamination), and to test alternatives to the currently used testing methods. Materials and Methods: A modification of Japanese standard JIS Z 2801 as well as Staphylococcus aureus (SA) and Escherichia coli (EC) suspended in NaCl vs. tryptic soy broth (TSB) were used in tests performed on seven commonly used copper alloys, copper, and stainless steel. Results: A much faster reduction of the bacterial suspension was observed for the inoculum prepared in NaCl than in TSB. A faster reduction for EC than for SA was observed in the inoculum prepared in NaCl. The opposite results were found for the inoculum based on TSB. A significant correlation between the copper concentration in the copper alloys and the time and degree of bacterial suspension reduction was only observed in the case of EC. Conclusions: This study confirmed the antimicrobial properties of copper alloys, and additionally showed that Staphylococcus aureus was more resistant than Escherichia coli in the variant of the experiment without organic contamination. However, even for SA, a total reduction of the bacterial inoculum's density took no longer than 2 h. Under conditions simulating organic contamination, all of the tested alloys were shown to have bactericidal or bacteriostatic properties, which was contrary to the results from stainless steel.

  5. Contamination analysis unit

    International Nuclear Information System (INIS)

    Gregg, H.R.; Meltzer, M.P.

    1996-01-01

    The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig

  6. Monitor for alpha beta contamination of hands; Moniteur de contamination alpha beta des mains

    Energy Technology Data Exchange (ETDEWEB)

    Guitton, J

    1958-07-01

    The following specifications of hands alpha beta contamination monitor are presented: the position of the hands, the detection and separation of alpha and beta, the information processing, the programming, the results presentation and general characteristics. (A.L.B.)

  7. Contaminated sediment removal from a spent fuel storage canal

    International Nuclear Information System (INIS)

    Geber, K.R.

    1993-01-01

    A leaking underground spent fuel transfer canal between a decommissioned reactor and a radiochemical separations building at the Oak Ridge National Laboratory (ORNL) was found to contain RCRA-hazardous and radioactive sediment. Closure of the Part B RCRA permitted facility required the use of an underwater robotic vacuum and a filtration-containment system to separate and stabilize the contaminated sediment. This paper discusses the radiological controls established to maintain contamination and exposures As Low As Reasonably Achievable (ALARA) during the sediment removal

  8. Application of multiple tracers (SF6 and chloride) to identify the transport by characteristics of contaminant at two separate contaminated sites

    Science.gov (United States)

    Lee, K. K.; Lee, S. S.; Kim, H. H.; Koh, E. H.; Kim, M. O.; Lee, K.; Kim, H. J.

    2016-12-01

    Multiple tracers were applied for source and pathway detection at two different sites. CO2 gas injected in the subsurface for a shallow-depth CO2 injection and leak test can be regarded as a potential contaminant source. Therefore, it is necessary to identify the migration pattern of CO2 gas. Also, at a DNAPL contaminated site, it is important to figure out the characteristics of plume evolution from the source zone. In this study, multiple tracers (SF6 and chloride) were used to evaluate the applicability of volatile and non-volatile tracers and to identify the characteristics of contaminant transport at each CO2 injection and leak test site and DNAPL contaminated site. Firstly, at the CO2 test site, multiple tracers were used to perform the single well push-drift-pull tracer test at total 3 specific depth zones. As results of tests, volatile and non-volatile tracers showed different mass recovery percentage. Most of chloride mass was recovered but less than half of SF6 mass was recovered due to volatile property. This means that only gaseous SF6 leak out to unsaturated zone. However, breakthrough curves of both tracers indicated similar peak time, effective porosity, and regional groundwater velocity. Also, at both contaminated sites, natural gradient tracer tests were performed with multiple tracers. With the results of natural gradient tracer test, it was possible to confirm the applicability of multiple tracers and to understand the contaminant transport in highly heterogeneous aquifer systems through the long-term monitoring of tracers. Acknowledgement: financial support was provided by the R&D Project on Environmental Management of Geologic CO2 Storage)" from the KEITI (Project Number: 2014001810003) and Korea Ministry of Environment as "The GAIA project (2014000540010)".

  9. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge.

    Science.gov (United States)

    Liu, Cheng-Chung; Chen, Guan-Bu

    2013-01-15

    Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg(-1)) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L(-1) DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (NNH(4)) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. The status of soil contamination by semivolatile organic chemicals (SVOCs) in China: A review

    Energy Technology Data Exchange (ETDEWEB)

    Cai Quanying [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)], E-mail: cai_quanying@yahoo.com; Mo Cehui [Department of Environmental Engineering, Jinan University, Guangzhou 510632 (China)], E-mail: tchmo@jnu.edu.cn; Wu Qitang [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China); Katsoyiannis, Athanasios [European Commission, Joint Research Centre, Institute for Health and Consumer Protection (IHCP), Physical and Chemical Exposure Unit, Ispra (Vatican City State, Holy See,), TP-281, Via E. Fermi 1, I-21020 (Italy)], E-mail: athanasios.katsogiannis@jrc.it; Zeng Qiaoyun [College of Resources and Environment, South China Agricultural University, Guangzhou 510642 (China)

    2008-01-25

    This paper summarizes the published scientific data on the soil contamination by semivolatile organic chemicals (SVOCs) in China. Data has been found for more than 150 organic compounds which were grouped into six classes, namely, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and phthalic acid esters (PAEs). An overview of data collected from the literature is presented in this paper. The Chinese regulation and/or other maximum acceptable values for SVOCs were used for the characterization of soils. In general, the compounds that are mostly studied in Chinese soils are OCPs, PAHs and PCBs. According to the studies reviewed here, the most abundant compounds were PAEs and PAHs (up to 46 and 28 mg kg{sup -1} dry weight, respectively); PCBs and OCPs occurred generally at concentrations lower than 100 {mu}g kg{sup -1} dry weight. Nevertheless, quite high concentrations of PCDD/Fs, PCBs and PBDEs were observed in contaminated sites (e.g., the sites affected by electronic waste activities). The average concentrations of PAHs and OCPs in soils of North China were higher than those in South China. The principal component analysis demonstrated different distribution patterns for PAH, PCB and PCDD/F congeners and for the various sites/regions examined. The isomer ratios of DDTs and hexachlorocyclohexanes (HCHs) indicated different sources and residue levels in soils. Finally, this review has highlighted several areas where further research is considered necessary.

  11. Dissolved organic matter from soils contaminated by coal tars: towards a better understanding of its nature and reactivity

    International Nuclear Information System (INIS)

    Hanser, Ogier

    2015-01-01

    A large amount of wastelands inherited from former industrial activities contains persistent organic contamination (coal, coal tar...). While the regulation requires an evaluation of the contamination degree of these soils, it doesn't take into account the transformation byproducts such as polar compounds, poorly studied. Yet they solubilize in aqueous phase by percolation of meteoric waters through these contaminated sites. Despite the fact that literature targeting the fresh DOM is abundant, it is not directly transposable to the anthropogenic DOM coming from wastelands, which still need to be more precisely defined to improve our knowledge of this specific DOM and its evolution over time. A multi-technical approach was developed to comprehend the anthropogenic DOM coming from former coking and gas plant soils, thanks to a combination of laboratory experiments (under controlled conditions) and on field devices (lysimeters). Their study show that they contained a high aromatic DOM, while the aromatic polycyclic compounds only consist of a low proportion of the total DOM. Complementary experiences targeting the influence of some parameters (pH, hydrophobicity) suggest a strong link between the pH and the spatial DOM organization and a decrease in the apparent molecular weight with the hydrophobicity. Artificial aging experiences show an enrichment in polar condensed compounds leading to their water mobilization. (author) [fr

  12. Chemical characteristics and methane potentials of source-separated and pre-treated organic municipal solid waste

    DEFF Research Database (Denmark)

    Hansen, Trine Lund; Svärd, Å; Angelidaki, Irini

    2003-01-01

    A research project has investigated the biogas potential of pre-screened source-separated organic waste. Wastes from five Danish cities have been pre-treated by three methods: screw press; disc screen; and shredder and magnet. This paper outlines the sampling procedure used, the chemical...... composition of the wastes and the estimated methane potentials....

  13. Comparison of natural organic acids and synthetic chelates at enhancing phytoextraction of metals from a multi-metal contaminated soil

    International Nuclear Information System (INIS)

    Clistenes do Nascimento, Williams A.; Amarasiriwardena, Dula; Xing, Baoshan

    2006-01-01

    Chemically assisted phytoremediation has been developing to induce accumulation of metals by high biomass plants. Synthetic chelates have shown high effectiveness to reach such a goal, but they pose serious drawbacks in field application due to the excessive amount of metals solubilized. We compared the performance of synthetic chelates with naturally occurring low molecular weight organic acids (LMWOA) in enhancing phytoextraction of metals by Indian mustard (Brassica juncea) from multi-metal contaminated soils. Gallic and citric acids were able to induce removal of Cd, Zn, Cu, and Ni from soil without increasing the leaching risk. Net removal of these metals caused by LMWOA can be as much as synthetic chelates. A major reason for this is the lower phytotoxicity of LMWOA. Furthermore, supplying appropriate mineral nutrients increased biomass and metal removal. - Organic acids can be as efficient as synthetic chelates for use in phytoextraction of multi-metal contaminated soils

  14. Influence of organic components onto state of radioactive strontium in soils

    International Nuclear Information System (INIS)

    Sokolik, G.A.; Ovsyannikova, S.V.; Cherevko, E.S.; Rubinchik, S.Ya.

    2005-01-01

    Influence of soil organic components onto radioactive strontium mobility in the soil medium has been analyzed. Distribution of the Sr 90 between various organic fractions of soils having different quantitative and qualitative composition of organic matter has been studied. The samples of mineral and organic soils contaminated by radionuclides of Chernobyl origin were used as the objects of investigation. Fulvic- and humic-acid fractions differed in solubility and mobility in a soil medium have been separated. Differentiation of soils on the Sr 90 mobility in accordance with portion of radionuclide in the immobile organic fractions has been fulfilled. New types of organic and organomineral additives decreased mobility and biological availability of the Sr 90 have been suggested on a base of obtained data. (authors)

  15. INTERACTION’S EFFECT OF ORGANIC MATERIAL AND AGGREGATION ON EXTRACTION EFFICIENCY OF TPHS FROM PETROLEUM CONTAMINATED SOILS WITH MAE

    Directory of Open Access Journals (Sweden)

    H. Ganjidoust and Gh. Naghizadeh

    2005-10-01

    Full Text Available Microwave-Assisted Extraction (MAE is a type of low-temperature thermal desorption process that its numerous advantages have caused a wide spread use of it. Microwave heating is a potentially attractive technique as it provides volumetric heating process to improve heating efficiencies as compared with conventional techniques. The ability to rapidly heat the sample solvent mixture is inherent to MAE and the main advantage of this technique. Presently MAE has been shown to be one of the best technologies for removing environmental pollutants specially PAHs, phenols and PCBs from soils and sediments. Five different mixtures and types of aggregation (Sand, Top soil, Kaolinite besides three concentrations of crude oil as a contaminant (1000, 5000 and 10000 mg/L were considered. The results indicated that regardless of aggregation, the presence of humus component in soil reduces the efficiency. Minimum and maximum efficiencies were for sandy soil (containing organic components and kaolinite (without any organic content, respectively. According to the results of this research when some amount of humus and organic materials are available in the matrix, it causes the extraction efficiency to perform as a function of just humus materials but not aggregation. Increasing the concentration of crude oil reduced the efficiency with a sharp steep for higher concentration (5000-10000 mg/L and less steeper for lower concentration (1000-5000 mg/L. The concentration of the contaminant, works just as an independent function with extraction time and aggregation factors. The extraction period of 10 min. can be suggested as an optimum extraction time in FMAE for PAHs contaminated soils.

  16. Distribution of organic contamination of sediments from Ichkeul Lake and Bizerte Lagoon, Tunisia.

    Science.gov (United States)

    Ben Salem, Fida; Ben Said, Olfa; Mahmoudi, Ezzeddine; Duran, Robert; Monperrus, Mathilde

    2017-10-15

    Analyses of organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and butyl tins (BuSn) were conducted on sediments from Ichkeul Lake-Bizerte Lagoon watershed (Tunisia). A total of 59 compounds (16 PAHs, 12 PCBs, 22 OCPs and 9 BuSn) were measured in 40 surface sediment samples collected during two campaigns. High concentrations of total PAHs were identified in the lagoon ranging from 122 to 19600ng·g -1 . Several OCPs, including endrin, dieldrin, and lindane (Hexachlorocyclohexane or HCH or BHC) were found in high concentrations in Ichkeul Lake, ranging from 28 to 2012ngg -1 . PAHs and OCPs varied seasonally, in response to the complex hydrology of the watershed. The concentrations of total PCBs ranged between 0.04 and 10.653ngg -1 and suggests low total PCBs sediment contamination, when compared to most international criteria. Total BuSn concentrations range between 67 and 526ng·g -1 , which are relatively low when compared to most international criteria and ecological risk assessments. This is the first study of organic contamination in Ichkeul Lake (RAMSAR and UNESCO World Heritage site). Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. An improved SOIL*EX trademark process for the removal of hazardous and radioactive contaminants from soils, sludges and other materials

    International Nuclear Information System (INIS)

    Bloom, R.R.; Bonnema, B.E.; Navratil, J.D.; Falconer, K.L.; Van Vliet, J.A.; Diel, B.N.

    1995-01-01

    Rust's patented SOIL*EX process is designed to remove hazardous and radioactive contaminants from soils, sludges and a matrix of other materials while destroying volatile organic compounds often associated with contaminated soil and debris. The process is comprised of three major process operations. The first operation involves the dissolution of contaminants that are chemically or mechanically bonded to the solid phase. The second process operation involves separation of the solid phase from the dissolution solution (mother liquor), which contains the dissolved contaminants. The final operation concentrates and removes the contaminants from the mother liquor. A pilot-scale SOIL*EX system was constructed at Rust's Clemson Technical Center for a Proof-of-Process demonstration. The demonstration program included the design, fabrication, and operation of pilot scale and demonstration equipment and systems. The pilot plant, an accurate scaled-down version of a proposed full-scale treatment system, was operated for five months to demonstrate the efficiency of the overall process. The pilot plant test program focused on demonstrating that the SOIL*EX process would remove and concentrate the contaminants and destroy volatile organic compounds. The pilot plant processed nearly 20 tons of soils and sludges, and test results indicated that all contaminants of concern were removed. Additionally, Rust completed numerous bench scale tests to optimize the chemistry. This paper discusses the pilot plant test criteria and results along with the salient design features of the SOIL*EX system and planned improvements

  18. Emerging organic contaminants in coastal waters: anthropogenic impact, environmental release and ecological risk.

    Science.gov (United States)

    Jiang, Jheng-Jie; Lee, Chon-Lin; Fang, Meng-Der

    2014-08-30

    This study provides a first estimate of the sources, distribution, and risk presented by emerging organic contaminants (EOCs) in coastal waters off southwestern Taiwan. Ten illicit drugs, seven nonsteroidal anti-inflammatory drugs (NSAIDs), five antibiotics, two blood lipid regulators, two antiepileptic drugs, two UV filters, caffeine, atenolol, and omeprazole were analyzed by solid-phase extraction and liquid chromatography coupled to tandem mass spectrometry (SPE-LC-MS/MS). Thirteen EOCs were detected in coastal waters, including four NSAIDs (acetaminophen, ibuprofen, ketoprofen, and codeine), three antibiotics (ampicillin, erythromycin, and cefalexin), three illicit drugs (ketamine, pseudoephedrine, and MDMA), caffeine, carbamazepine, and gemfibrozil. The median concentrations for the 13 EOCs ranged from 1.47 ng/L to 156 ng/L. Spatial variation in concentration of the 13 EOCs suggests discharge into coastal waters via ocean outfall pipes and rivers. Codeine and ampicillin have significant pollution risk quotients (RQ>1), indicating potentially high risk to aquatic organisms in coastal waters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Health status of Largescale Sucker (Catostomus macrocheilus) collected along an organic contaminant gradient in the lower Columbia River, Oregon and Washington, USA

    Science.gov (United States)

    Torres, Leticia; Nilsen, Elena B.; Grove, Robert A.; Patino, Reynaldo

    2014-01-01

    The health of Largescale Sucker (Catostomus macrocheilus) in the lower Columbia River (USA) was evaluated using morphometric and histopathological approaches, and its association with organic contaminants accumulated in liver was evaluated in males. Fish were sampled from three sites along a contaminant gradient In 2009, body length and mass, condition factor, gonadosomatic index, and hematocrit were measured in males and females; liver and gonad tissue were collected from males for histological analyses; and organ composites were analyzed for contaminant content in males. In 2010, additional data were collected for males and females, including external fish condition assessment, histopathologies of spleen, kidney and gill and, for males, liver contaminant content. Multivariate analysis of variance indicated that biological traits in males, but not females, differed among sites in 2009 and 2010. Discriminant function analysis indicated that site-related differences among male populations were relatively small in 2009, but in 2010, when more variables were analyzed, males differed among sites in regards to kidney, spleen, and liver histopathologies and gill parasites. Kidney tubular hyperplasia, liver and spleen macrophage aggregations, and gill parasites were generally more severe in the downstream sites compared to the reference location. The contaminant content of male livers was also generally higher downstream, and the legacy pesticide hexachlorobenzene and flame retardants BDE-47 and BDE-154 were the primary drivers for site discrimination. However, bivariate correlations between biological variables and liver contaminants retained in the discriminant models failed to reveal associations between the two variable sets. In conclusion, whereas certain non-reproductive biological traits and liver contaminant contents of male Largescale Sucker differed according to an upstream-downstream gradient in the lower Columbia River, results from this study did not reveal

  20. Analysis of soils contaminated with petroleum constituents

    International Nuclear Information System (INIS)

    O'Shay, T.A.; Hoddinott, K.

    1994-01-01

    This symposium was held in Atlanta, Georgia on June 24, 1993. The purpose of the symposium was to provide a forum for exchange of information on petroleum contaminated soils. When spilled on the ground, petroleum products can cause massive problems in the environment. In this Special Technical Publication (STP), papers were selected in two categories; the analytical procedures for soil contaminated with petroleum hydrocarbons and the behavior of hydrocarbon contaminated soils. Individual papers have been processed separately for inclusion in the appropriate data bases

  1. Potential external contamination with bisphenol A and other ubiquitous organic environmental chemicals during biomonitoring analysis: an elusive laboratory challenge.

    Science.gov (United States)

    Ye, Xiaoyun; Zhou, Xiaoliu; Hennings, Ryan; Kramer, Joshua; Calafat, Antonia M

    2013-03-01

    Biomonitoring studies are conducted to assess internal dose (i.e., body burden) to environmental chemicals. However, because of the ubiquitous presence in the environment of some of these chemicals, such as bisphenol A (BPA), external contamination during handling and analysis of the biospecimens collected for biomonitoring evaluations could compromise the reported concentrations of such chemicals. We examined the contamination with the target analytes during analysis of biological specimens in biomonitoring laboratories equipped with state-of-the-art analytical instrumentation. We present several case studies using the quantitative determination of BPA and other organic chemicals (i.e., benzophenone-3, triclosan, parabens) in human urine, milk, and serum to identify potential contamination sources when the biomarkers measured are ubiquitous environmental contaminants. Contamination with target analytes during biomonitoring analysis could result from solvents and reagents, the experimental apparatus used, the laboratory environment, and/or even the analyst. For biomonotoring data to be valid-even when obtained from high-quality analytical methods and good laboratory practices-the following practices must be followed to identify and track unintended contamination with the target analytes during analysis of the biological specimens: strict quality control measures including use of laboratory blanks; replicate analyses; engineering controls (e.g., clean rooms, biosafety cabinets) as needed; and homogeneous matrix-based quality control materials within the expected concentration ranges of the study samples.

  2. Antimicrobial Properties of Selected Copper Alloys on Staphylococcus aureus and Escherichia coli in Different Simulations of Environmental Conditions: With vs. without Organic Contamination

    Directory of Open Access Journals (Sweden)

    Anna Różańska

    2017-07-01

    Full Text Available Background: Hospital equipment made from copper alloys can play an important role in complementing traditional methods of disinfection. Aims of the study: The aim of this study was to assess the dynamics of the antimicrobial properties of selected copper alloys in different simulations of environmental conditions (with organic contamination vs. without organic contamination, and to test alternatives to the currently used testing methods. Materials and Methods: A modification of Japanese standard JIS Z 2801 as well as Staphylococcus aureus (SA and Escherichia coli (EC suspended in NaCl vs. tryptic soy broth (TSB were used in tests performed on seven commonly used copper alloys, copper, and stainless steel. Results: A much faster reduction of the bacterial suspension was observed for the inoculum prepared in NaCl than in TSB. A faster reduction for EC than for SA was observed in the inoculum prepared in NaCl. The opposite results were found for the inoculum based on TSB. A significant correlation between the copper concentration in the copper alloys and the time and degree of bacterial suspension reduction was only observed in the case of EC. Conclusions: This study confirmed the antimicrobial properties of copper alloys, and additionally showed that Staphylococcus aureus was more resistant than Escherichia coli in the variant of the experiment without organic contamination. However, even for SA, a total reduction of the bacterial inoculum’s density took no longer than 2 h. Under conditions simulating organic contamination, all of the tested alloys were shown to have bactericidal or bacteriostatic properties, which was contrary to the results from stainless steel.

  3. Phytoremediation of lead (Pb) and arsenic (As) by Melastoma malabathricum L. from contaminated soil in separate exposure.

    Science.gov (United States)

    Selamat, S Norleela; Abdullah, S Rozaimah Sheikh; Idris, M

    2014-01-01

    This study was conducted to investigate the uptake of lead (Pb) and arsenic (As) from contaminated soil using Melastoma malabathricum L. species. The cultivated plants were exposed to As and Pb in separate soils for an observation period of 70 days. From the results of the analysis, M. malabathricum accumulated relatively high range of As concentration in its roots, up to a maximum of 2800 mg/kg. The highest accumulation of As in stems and leaves was 570 mg/kg of plant. For Pb treatment, the highest concentration (13,800 mg/kg) was accumulated in the roots of plants. The maximum accumulation in stems was 880 mg/kg while maximum accumulation in leaves was 2,200 mg/kg. Only small amounts of Pb were translocated from roots to above ground plant parts (TF 1) is indicative this plants is a good bioaccumulator for these metals. Therefore, phytostabilisation is the mechanism at work in M. malabathricum's uptake of Pb, while phytoextraction is the dominant mechanism with As.

  4. Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence

    OpenAIRE

    Kumpf, Robert P.; Shi, Chun-Lin; Larrieu, Antoine; Stø, Ida Myhrer; Butenko, Melinka A.; Péret, Benjamin; Riiser, Even Sannes; Bennett, Malcolm J.; Aalen, Reidunn B.

    2013-01-01

    Throughout their life cycle, plants produce new organs, such as leaves, flowers, and lateral roots. Organs that have served their purpose may be shed after breakdown of primary cell walls between adjacent cell files at the site of detachment. In Arabidopsis, floral organs abscise after pollination, and this cell separation event is controlled by the peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAESA-LI...

  5. Analytical and preparative separation of organic acids from water by extraction with trioctylamine

    International Nuclear Information System (INIS)

    Eberle, S.H.; Hoyer, O.; Knobel, K.P.; Hodenberg, S. von

    1977-12-01

    The extraction of pure organic acids and of humic and ligninsulfonic acid from water by a solution of trioctylamine in chloroform was investigated (technical grade amine = ALAMINE). Quantitative separation is achieved by double extraction with 5% ALAMINE at pH 3,5 - 4. The acids may be back-extracted with dilute sodium hydroxide solution. Procedures are described for the analytical extraction of water samples of 200 to 2.000 ml and for the flow-through processing of large water volumes. (orig.) [de

  6. The effect of the controlled oxygen on the incineration of radio contaminated organic compounds

    International Nuclear Information System (INIS)

    Yahata, Taneaki; Abe, Jiro; Hoshino, Akira.

    1982-02-01

    It is very important to resolve the method of safety storage and the reduction of volume of radio contaminated waste for utilization of atomic energies. Presently, the amounts of radio contaminated organic compounds such as ion exchange resin, vinyl chloride resin and so on are increased year by year. These compounds are very difficult to burning because of the occurrence of soot or flying ash, so that the waste are solidified using with cement or asphalt. But the burning of these compounds are most efficient method for reduction of volume of the wastes. The present work is an attempt to evaluate the effect of controlled oxygen on the incineration of these compounds, using by differential thermoelectrobalance. The given off gas from these compounds are mixture of hydrocarbon and free carbon examined by mass spectrography. As the result of this study, these compounds are decomposed perfectly under 5 - 10% of oxygen gas flow at about 650 0 C and the off gas from the compounds is disappeared contact with heated copper oxide without soot or flying ash. (author)

  7. Separation of alcohols from organic liquid mixtures by pervaporation

    NARCIS (Netherlands)

    Park, Hyun-Chae

    1993-01-01

    In the chemical industry, distillation is generally the preferred technique to separate a liquid mixture. However some liquid mixtures such as azeotropic mixtures, close-boiling hydrocarbons, and various isomers are difficult to separate by simple distillation. For the separation of these mixtures

  8. Contamination of broiler chickens with radiocaesium contaminated feed and its reduction

    International Nuclear Information System (INIS)

    Poeschl, M.

    2004-01-01

    The present study summarises information gleaned during investigations of the transfer of radiocaesium ( 137 Cs) and tests of countermeasures of a chemical character, i.e. feed additives limiting the transfer from the feed of broiler chicken. The regularities of the transport and distribution of radiocaesium in the organism (liver, kidneys, muscles, intestines) from feed were studied, including tests of the effect of the source of radiocaesium, date of administration and age of the chickens. The results confirmed that the retention of radiocaesium from feed into the body organs was very rapid (several hours) as was the release from the body (T 1/2b = 0.5-2 days) during the decontamination. Differences were discovered in the distribution and dynamics of the content of 137 Cs between breast and leg meat. The tests showed a very effective and relatively simple method of measuring the contaminated chickens in vivo. Special clay mineral or cellulose-based feed additives, and also modified hexacyanoferrates, especially when applied prior to contamination proper, considerably reduced the retention of radiocaesium into the breast and leg meat, and if the meat has already been contaminated, or if contamination was inevitable, the concentrations of 137 Cs in broiler chicken meat admissible for foodstuffs could be obtained much more quickly. (authors)

  9. New land disposal restrictions on contaminated soil and debris, and newly identified toxicity characteristic organics

    International Nuclear Information System (INIS)

    Fortune, William B.; Schumann, Jean C.; Fallon, William E.; Badden, Janet W.; Smith, Edward H.

    1992-01-01

    The applicability of the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions (LDR) program to radioactive mixed wastes (RMW) has been clarified through U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) rulemakings and notices. However, a number of waste management concerns involving RMW and RMW-contaminated soil and debris continue to exist with respect to achieving compliance with LDR provisions and treatment standards. Consequently, DOE has become increasingly proactive in its participation in the LDR rulemaking process and in the identification of LDR compliance issues associated with its RMW inventories. Both data and recommendations from across the DOE complex were collected and transmitted to EPA in response to proposed requirements that would implement LDR for contaminated soil and debris, and certain newly identified toxicity characteristic (TC) organics. Much of this information focused on concerns related to the application of proposed regulatory approaches to RMW streams. Highlights from the information included in these DOE responses are presented. (author)

  10. Historical storage budgets of organic carbon, nutrient and contaminant elements in saltmarsh sediments: Biogeochemical context for managed realignment, Humber Estuary, UK

    International Nuclear Information System (INIS)

    Andrews, J.E.; Samways, G.; Shimmield, G.B.

    2008-01-01

    Biogeochemical data from Welwick marsh (Humber Estuary, UK), an actively accreting saltmarsh, provides a decadal-centennial-scale natural analogue for likely future biogeochemical storage effects of managed realignment sites accreting either intertidal muds or saltmarsh. Marsh topographic profiles and progradation history from aerial photographs were combined with 137 Cs and niobium contamination history to establish and verify chronology and sediment mass accumulation. These data, combined with down-core measurements of particulate organic carbon (C org ), organic nitrogen (N org ), particle reactive phosphorus and selected contaminant metal (Zn, Pb, Cu, As and Nb) contents were then used to calculate sediment and chemical storage terms and to quantify changes in these over time. These data are used to help predict likely future biogeochemical storage changes at managed realignment sites in the estuary. The net effect of returning some 26 km 2 of reclaimed land to intertidal environments now (about 25% of the maximum possible realignment storage identified for the estuary) could result in the storage of some 40,000 tonnes a -1 of sediment which would also bury about 800 tonnes a -1 of C org and 40 tonnes a -1 of N org . Particulate contaminant P burial would be around 25 tonnes a -1 along with ∼ 6 tonnes a -1 contaminant Zn, 3 tonnes a -1 contaminant Pb, and ∼ 1 tonnes a -1 contaminant As and Cu. The study also shows that reclamation activities in the outer estuary since the mid-1700s has prevented, in total, the deposition of about 10 million tonnes of sediment, along with 320,000 tonnes of C org and 16,000 tonnes of N org . The study provides a mid-1990s baseline against which future measurements at the site can determine changes in burial fluxes and improvement or deterioration in contaminant metal contents of the sediments. The data are directly relevant for local managed realignment sites but also broadly indicative for sites generally on the European

  11. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge

    International Nuclear Information System (INIS)

    Liu, Cheng-Chung; Chen, Guan-Bu

    2013-01-01

    Highlights: ► Increases in acidity, washing frequency, and operational temperature enhance the Cd removal. ► Approximately 80% of Cd can be removed from the soil by dissolved organic matter (DOM) washing. ► The DOM washing can moderate the loss of soil fertility. ► The DOM washing will have a great improvement if we employ NaOH, KOH, Ca(OH) 2 , and Mg(OH) 2 to prepare the DOM solution together. -- Abstract: Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg −1 ) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L −1 DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (N-NH 4 ) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively

  12. Reclamation of cadmium-contaminated soil using dissolved organic matter solution originating from wine-processing waste sludge

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cheng-Chung, E-mail: ccliu@niu.edu.tw [Department of Environmental Engineering, National Ilan University, Ilan, 260, Taiwan (China); Chen, Guan-Bu [Department of Environmental Engineering, National Ilan University, Ilan, 260, Taiwan (China)

    2013-01-15

    Highlights: ► Increases in acidity, washing frequency, and operational temperature enhance the Cd removal. ► Approximately 80% of Cd can be removed from the soil by dissolved organic matter (DOM) washing. ► The DOM washing can moderate the loss of soil fertility. ► The DOM washing will have a great improvement if we employ NaOH, KOH, Ca(OH){sub 2}, and Mg(OH){sub 2} to prepare the DOM solution together. -- Abstract: Soil washing using an acid solution is a common practice for removing heavy metals from contaminated soil in Taiwan. However, serious loss of nutrients from soil is a major drawback of the washing. Distillery sludge can be used to prepare a dissolved organic matter (DOM) solution by extracting its organic constituents with alkaline solutions. This study employed DOM solutions to remediate Cd-contaminated soil (with concentrations up to 21.5 mg kg{sup −1}) and determine the factors affecting removal of Cd, such as pH, initial concentration of DOM solution, temperature, and washing frequency. When washing with pH 3.0 and 1250 mg L{sup −1} DOM solution, about 80% and 81% of Cd were removed from the topsoil at 27 °C and subsoil at 40 °C, respectively. To summarize the changes in fertility during DOM washing with various pH solutions: the increase in organic matter content ranged from 7.7% to 23.7%; cation exchange capacity (CEC) ranged from 4.6% to 13.9%; available ammonium (N-NH{sub 4}) content ranged from 39.4% to 2175%; and available phosphorus content ranged from 34.5% to 182%. Exchangeable K, Ca, and Mg remained in the topsoil after DOM washing, with concentrations of 1.1, 2.4, and 1.5 times higher than those treated with HCl solution at the same pH, respectively.

  13. Role of biochar on composting of organic wastes and remediation of contaminated soils-a review.

    Science.gov (United States)

    Wu, Shaohua; He, Huijun; Inthapanya, Xayanto; Yang, Chunping; Lu, Li; Zeng, Guangming; Han, Zhenfeng

    2017-07-01

    Biochar is produced by pyrolysis of biomass residues under limited oxygen conditions. In recent years, biochar as an amendment has received increasing attention on composting and soil remediation, due to its unique properties such as chemical recalcitrance, high porosity and sorption capacity, and large surface area. This paper provides an overview on the impact of biochar on the chemical characteristics (greenhouse gas emissions, nitrogen loss, decomposition and humification of organic matter) and microbial community structure during composting of organic wastes. This review also discusses the use of biochar for remediation of soils contaminated with organic pollutants and heavy metals as well as related mechanisms. Besides its aging, the effects of biochar on the environment fate and efficacy of pesticides deserve special attention. Moreover, the combined application of biochar and compost affects synergistically on soil remediation and plant growth. Future research needs are identified to ensure a wide application of biochar in composting and soil remediation. Graphical abstract ᅟ.

  14. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Salati, S.; Quadri, G.; Tambone, F. [Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy); Adani, F., E-mail: fabrizio.adani@unimi.i [Dipartimento di Produzione Vegetale, Universita degli Studi di Milano, Via Celoria 2, 20133 Milano (Italy)

    2010-05-15

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. - Organic fraction of MSW affects the bioavailability of heavy metals in soil.

  15. Preliminary assessment of contaminants in the sediment and organisms of the Swartkops Estuary, South Africa.

    Science.gov (United States)

    Nel, L; Strydom, N A; Bouwman, H

    2015-12-30

    Urban estuaries are susceptible to metal and organic pollution, yet most remain understudied in South Africa with respect to the presence, concentrations and distribution of contaminants. Metal and organic chemical concentrations were assessed in sediment and organisms from different trophic levels in the lower reaches of the Swartkops Estuary. Species sampled included Upogebia africana (Malacostraca: Upogebiidae), Gilchristella aestuaria (Clupeidae), Psammogobius knysnaensis (Gobiidae), Mugil cephalus (Mugilidae), Lichia amia (Carangidae), Argyrosomus japonicus (Sciaenidae), Pomadasys commersonnii (Haemulidae) and Larus dominicanus (Avis: Laridae). This study is one of the most comprehensive studies to date assessing pollution levels in a food web in estuaries in South Africa. Due to biomagnification, higher concentrations of Arsenic, Lead, Mercury and Cadmium were found in the juveniles stages of popular angling fishes. High concentrations of Cadmium and Arsenic were recorded in the liver of L. amia, A. japonicus and P. commersonnii which exceed international quality food guidelines. Eggs from the gull, L. dominicanus, showed detectable concentrations of PCBs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil

    International Nuclear Information System (INIS)

    Salati, S.; Quadri, G.; Tambone, F.; Adani, F.

    2010-01-01

    In this study, the ability of the organic fraction of municipal solid wastes (OFMSW) to enhance heavy metal uptake of maize shoots compared with ethylenediamine disuccinic acid (EDDS) was tested on soil contaminated with heavy metals. Soils treated with OFMSW and EDDS significantly increased the concentration of heavy metals in maize shoots (increments of 302%, 66%, 184%, 169%, and 23% for Cr, Cu, Ni, Zn, and Pb with respect to the control and increments of 933%, 482%, 928%, 428%, and 5551% for soils treated with OFMSW and EDDS, respectively). In soil treated with OFMSW, metal uptake was favored because of the high presence of dissolved organic matter (DOM) (41.6x than soil control) that exhibited ligand properties because of the high presence of carboxylic acids. Because of the toxic effect of EDDS on maize plants, soil treated with OFMSW achieved the highest extraction of total heavy metals. - Organic fraction of MSW affects the bioavailability of heavy metals in soil.

  17. Use of membrane separation processes for the separation of radionuclides from liquid and gas streams

    International Nuclear Information System (INIS)

    Vladisavljevic, G.T.; Rajkovic, M.B.

    1999-01-01

    Use of membranes for the separation and recovery of radionuclides from contaminated liquid and gas streams has been discussed in this paper. The special attention has been paid to the use of ion-exchange membranes for electrodialysis and Donnan dialysis, as well as the use of facilitated liquid membranes for liquid pertraction. (author)

  18. Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence.

    Science.gov (United States)

    Kumpf, Robert P; Shi, Chun-Lin; Larrieu, Antoine; Stø, Ida Myhrer; Butenko, Melinka A; Péret, Benjamin; Riiser, Even Sannes; Bennett, Malcolm J; Aalen, Reidunn B

    2013-03-26

    Throughout their life cycle, plants produce new organs, such as leaves, flowers, and lateral roots. Organs that have served their purpose may be shed after breakdown of primary cell walls between adjacent cell files at the site of detachment. In Arabidopsis, floral organs abscise after pollination, and this cell separation event is controlled by the peptide INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), which signals through the leucine-rich repeat receptor-like kinases HAESA (HAE) and HAESA-LIKE2 (HSL2). Emergence of new lateral root primordia, initiated deep inside the root under the influence of auxin, is similarly dependent on cell wall dissolution between cells in the overlaying endodermal, cortical, and epidermal tissues. Here we show that this process requires IDA, HAE, and HSL2. Mutation in these genes constrains the passage of the growing lateral root primordia through the overlaying layers, resulting in altered shapes of the lateral root primordia and of the overlaying cells. The HAE and HSL2 receptors are redundant in function during floral organ abscission, but during lateral root emergence they are differentially involved in regulating cell wall remodeling genes. In the root, IDA is strongly auxin-inducible and dependent on key regulators of lateral root emergence--the auxin influx carrier LIKE AUX1-3 and AUXIN RESPONSE FACTOR7. The expression levels of the receptor genes are only transiently induced by auxin, suggesting they are limiting factors for cell separation. We conclude that elements of the same cell separation signaling module have been adapted to function in different developmental programs.

  19. 3D resistivity method to monitor degradation of an organic contaminant in sand boxes

    Science.gov (United States)

    Fernandez, P. M.; Bloem, E.; Philippe, R.; French, H. K.

    2015-12-01

    Degradation of organic chemicals under various saturation conditions is a process highly relevant to protect groundwater. The redox potential drives the degradation of organic compounds. Its variation affects the water chemistry, gas release and responses of the geo-electrical signature. This study explores how non-invasive measurements sensitive to geo-electrical properties provides quantitative information about the in-situ redox situation. During this presentation, the preliminary results of a laboratory experiment to study the degradation of deicing chemicals with 3D resistivity and self-potential techniques, water samples will be shown. The experiment consists of sand boxes (1.0x0.5x0.4 m) to which both sides of each box is contaminated with propylene glycol, an aircraft deicing fluid, commonly used in Norwegian airports. Each source is placed near the water table with static conditions. At one side a conductor is placed, linking the contamination zone at the water table and the unsaturated zone with a low water content, to improve the degradation by facilitating the electron exchange. At the other side, degradation occurs under natural conditions. Each box is equipped with 288 electrodes, distributed on six faces to perform 3D resistivity measurements. In addition to the resistivity, self-potential measurements are taken from the sand surface. Six water wells are installed above and below the water table to provide more information on the degradation processes. Moreover, measurements of carbon dioxide on the surface are performed as higher concentrations are expected where the pollutant is degraded.

  20. Process for reducing radioactive contamination in phosphogypsum

    International Nuclear Information System (INIS)

    Palmer, J.W.; Gaynor, J.C.

    1983-01-01

    In a process for reducing radioactive contamination of phosphogypsum, anhydrite crystals are obtained through dehydration of the phosphogypsum in strong sulfuric acid: a portion of the anhydrite crystals is converted to subtantially radiation free gypsum by crystallizing out on radiation free gypsum seed crystals. These coarse radiation free gypsum crystals are then separated from the small anhydrite crystal relics containing substantially all of the radioactive contamination

  1. Successful field tests of a multi-process phytoremediation system for decontamination of persistent petroleum and organic contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, B.M.; Huang, X.D.; Gurska, Y.; Gerhardt, K.E.; Wang, W.; Lampi, M.A.; Zhang, C.; Khalid, A.; Isherwood, D.; Chang, P.; Wang, H.; Dixon, D.G.; Glick, B.R. [Waterloo Univ., ON (Canada)

    2006-07-01

    A large number of aquatic and terrestrial environments are polluted with various levels of toxicants. Metals, organics and total petroleum hydrocarbons from anthropogenic sources pose a risk to both human health and the health of ecosystems. Although these persistent contaminants are difficult to remediate, several industrial sites throughout North America are being remediated as part of land reclamation and restoration programs. This paper addressed the issue of phytoremediation for removing contaminants from soils. Phytoremediation is considered to be a viable remediation strategy because the increased biomass of plants, relative to the biomass of soil microbes in the absence of plants, allows for higher throughput. Extensive root systems can infiltrate large volumes of soil, thus promoting degradation of contaminants over a wide area. This paper described a newly developed multi-process phytoremediation system with accelerated remediation kinetics to effectively remove polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPH) and chlorinated hydrocarbons (CHC) from soils. The system combines land farming/sunlight exposure; inoculation of contaminant degrading bacteria; and, plant growth with plant growth promoting rhizobacteria which mitigates the effects of stress ethylene in plants. The primary factor for success was the interaction between the plant and the plant growth promoting rhizobacteria. Several field tests were conducted following successful greenhouse tests. Results at a TPH contaminated site in Sarnia, Ontario showed that over a 2 year period, 60 to 70 per cent remediation of 15 per cent TPH was achieved. At a site in Turner Valley, Alberta, 35 per cent remediation of 1 per cent recalcitrant TPH was achieved, while a DDT contaminated site near Simcoe, Ontario had nearly 30 per cent of CHC removed in a 3 month period. 34 refs., 2 tabs., 2 figs.

  2. Successful field tests of a multi-process phytoremediation system for decontamination of persistent petroleum and organic contaminants

    International Nuclear Information System (INIS)

    Greenberg, B.M.; Huang, X.D.; Gurska, Y.; Gerhardt, K.E.; Wang, W.; Lampi, M.A.; Zhang, C.; Khalid, A.; Isherwood, D.; Chang, P.; Wang, H.; Dixon, D.G.; Glick, B.R.

    2006-01-01

    A large number of aquatic and terrestrial environments are polluted with various levels of toxicants. Metals, organics and total petroleum hydrocarbons from anthropogenic sources pose a risk to both human health and the health of ecosystems. Although these persistent contaminants are difficult to remediate, several industrial sites throughout North America are being remediated as part of land reclamation and restoration programs. This paper addressed the issue of phytoremediation for removing contaminants from soils. Phytoremediation is considered to be a viable remediation strategy because the increased biomass of plants, relative to the biomass of soil microbes in the absence of plants, allows for higher throughput. Extensive root systems can infiltrate large volumes of soil, thus promoting degradation of contaminants over a wide area. This paper described a newly developed multi-process phytoremediation system with accelerated remediation kinetics to effectively remove polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPH) and chlorinated hydrocarbons (CHC) from soils. The system combines land farming/sunlight exposure; inoculation of contaminant degrading bacteria; and, plant growth with plant growth promoting rhizobacteria which mitigates the effects of stress ethylene in plants. The primary factor for success was the interaction between the plant and the plant growth promoting rhizobacteria. Several field tests were conducted following successful greenhouse tests. Results at a TPH contaminated site in Sarnia, Ontario showed that over a 2 year period, 60 to 70 per cent remediation of 15 per cent TPH was achieved. At a site in Turner Valley, Alberta, 35 per cent remediation of 1 per cent recalcitrant TPH was achieved, while a DDT contaminated site near Simcoe, Ontario had nearly 30 per cent of CHC removed in a 3 month period. 34 refs., 2 tabs., 2 figs

  3. Application of retention modelling to the simulation of separation of organic anions in suppressed ion chromatography.

    Science.gov (United States)

    Zakaria, Philip; Dicinoski, Greg W; Ng, Boon Khing; Shellie, Robert A; Hanna-Brown, Melissa; Haddad, Paul R

    2009-09-18

    The ion-exchange separation of organic anions of varying molecular mass has been demonstrated using ion chromatography with isocratic, gradient and multi-step eluent profiles on commercially available columns with UV detection. A retention model derived previously for inorganic ions and based solely on electrostatic interactions between the analytes and the stationary phase was applied. This model was found to accurately describe the observed elution of all the anions under isocratic, gradient and multi-step eluent conditions. Hydrophobic interactions, although likely to be present to varying degrees, did not limit the applicability of the ion-exchange retention model. Various instrumental configurations were investigated to overcome problems associated with the use of organic modifiers in the eluent which caused compatibility issues with the electrolytically derived, and subsequently suppressed, eluent. The preferred configuration allowed the organic modifier stream to bypass the eluent generator, followed by subsequent mixing before entering the injection valve and column. Accurate elution prediction was achieved even when using 5-step eluent profiles with errors in retention time generally being less than 1% relative standard deviation (RSD) and all being less than 5% RSD. Peak widths for linear gradient separations were also modelled and showed good agreement with experimentally determined values.

  4. Halogenated organic contaminants (HOCs) in sediment from a highly eutrophicated lake, China: occurrence, distribution and mass inventories.

    Science.gov (United States)

    Wang, Ji-Zhong; Liu, Liang-Ying; Zhang, Kai; Liang, Bo; Li, Guo-Lian; Chen, Tian-Hu

    2012-11-01

    Halogenated organic contaminants (HOCs) including 16 polybrominated diphenyl ethers (PBDEs) and 37 polychlorinated biphenyls (PCBs) were determined in 49 surfacial sediments from Chaohu Lake, a highly eutrophicated lake, China. PBDEs were detected in almost samples with the range of the total concentration (defined as Σ(16)PBDEs) from 0.84 to 86.6 ng g(-1). Compared with the occurrence of PBDEs in Pearl River Delta and Yangtze River Delta in China, lower percentage of BDE-209 over the concentration of Σ(16)PBDEs was inferred by the high-volume application of penta-BDE mixture product for local domestic furniture purpose. The total concentration of 37 PCBs (Σ(37)PCBs) ranged from 0.05 to 3.36 ng g(-1) with the most detection of PCB-1, -4, -52 and -71. Both the concentrations of Σ(16)PBDE and Σ(37)PCB poorly correlated with total organic carbon (TOC), suggesting the significant contribution of phytoplankton organic carbons to sediment TOC. The contamination by PBDEs and PCBs in western region of the lake was significantly more serious than in eastern lake. Our findings about the higher residues of PBDEs and PCBs in sediments at the estuary of Nanfei River compared to the other estuaries also supported the conclusion that urban area (Hefei city) was the main source of PBDEs and PCBs. The comparison with the concentration of HOC in the present study with those in other lacustrine sediments around the world suggested the contamination by PBDEs in Chaohu Lake is at middle of the global concentration range, whereas PCBs is at low end of the global range which could be elucidated by local economic development and historical usage of PBDEs and PCBs. The mass inventories of HOCs in the lake were estimated at 561 and 38 kg, which corresponds to only 0.000006% and 0.0001% of these global historical produce volumes, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2016-01-25

    Highlights: • Pyrolysis characteristics are conducted for a better understanding of LCDs pyrolysis. • Optimum design is developed which is significant to guide the further industrial process. • Acetic acid and TPP are recycled and separated. - Abstract: Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box–Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min{sup −1} and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  6. Pyrolysis characteristics and pyrolysis products separation for recycling organic materials from waste liquid crystal display panels

    International Nuclear Information System (INIS)

    Wang, Ruixue; Xu, Zhenming

    2016-01-01

    Highlights: • Pyrolysis characteristics are conducted for a better understanding of LCDs pyrolysis. • Optimum design is developed which is significant to guide the further industrial process. • Acetic acid and TPP are recycled and separated. - Abstract: Waste liquid crystal display (LCD) panels mainly contain inorganic materials (glass substrate with indium-tin oxide film), and organic materials (polarizing film and liquid crystal). The organic materials should be removed beforehand since the organic matters would hinder the indium recycling process. In the present study, pyrolysis process is used to remove the organic materials and recycle acetic as well as and triphenyl phosphate (TPP) from waste LCD panels in an environmental friendly way. Several highlights of this study are summarized as follows: (i) Pyrolysis characteristics and pyrolysis kinetics analysis are conducted which is significant to get a better understanding of the pyrolysis process. (ii) Optimum design is developed by applying Box–Behnken Design (BBD) under response surface methodology (RSM) for engineering application which is significant to guide the further industrial recycling process. The oil yield could reach 70.53 wt% and the residue rate could reach 14.05 wt% when the pyrolysis temperature is 570 °C, nitrogen flow rate is 6 L min"−"1 and the particle size is 0.5 mm. (iii) Furthermore, acetic acid and TPP are recycled, and then separated by rotary evaporation, which could reduce the consumption of fossil energy for producing acetic acid, and be reused in electronics manufacturing industry.

  7. Towards a magnetic field separation in Ion Beam Sputtering processes

    Energy Technology Data Exchange (ETDEWEB)

    Malobabic, Sina, E-mail: s.malobabic@lzh.de [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany); Jupé, Marco [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany); Kadhkoda, Puja [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Ristau, Detlev [Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover (Germany); Quest: Centre of Quantum Engineering and Space-Time Research, Leibniz Universität Hannover (Germany)

    2015-10-01

    Defects embedded in coatings due to particle contamination are considered as a primary factor limiting the quality of optical coatings in Ion Beam Sputtering. An approach combining the conventional Ion Beam Sputtering process with a magnetic separator in order to remove these particles from film growth is presented. The separator provides a bent axial magnetic field that guides the material flux towards the substrate positioned at the exit of the separator. Since there is no line of sight between target and substrate, the separator prevents that the particles generated in the target area can reach the substrate. In this context, optical components were manufactured that reveal a particle density three times lower than optical components which were deposited using a conventional Ion Beam Sputtering process. - Highlights: • We use bent magnetic fields to guide and separate the sputtered deposition material. • No line of sight between substrate and target prevents thin films from particles. • The transport efficiency of binary and ternary oxides is investigated. • The defect statistics of manufactured dielectric ternary multilayers are evaluated. • The phase separation leads to a drastically reduction of particle contamination.

  8. Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions.

    Science.gov (United States)

    Hurtado, Carlos; Domínguez, Carmen; Pérez-Babace, Lorea; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2016-03-15

    The widespread distribution of emerging organic contaminants (EOCs) in the water cycle can lead to their incorporation in irrigated crops, posing a potential risk for human consumption. To gain further insight into the processes controlling the uptake of organic microcontaminants, Batavia lettuce (Lactuca sativa) grown under controlled conditions was watered with EOCs (e.g., non-steroidal anti-inflammatories, sulfonamides, β-blockers, phenolic estrogens, anticonvulsants, stimulants, polycyclic musks, biocides) at different concentrations (0-40μgL(-1)). Linear correlations were obtained between the EOC concentrations in the roots and leaves and the watering concentrations for most of the contaminants investigated. However, large differences were found in the root concentration factors ( [Formula: see text] =0.27-733) and leaf translocation concentration factors ( [Formula: see text] =0-3) depending on the persistence of the target contaminants in the rhizosphere and the specific physicochemical properties of each one. With the obtained dataset, a simple predictive model based on a linear regression and the root bioconcentration and translocation factors can be used to estimate the concentration of the target EOCs in leaves based on the dose supplied in the irrigation water or the soil concentration. Finally, enantiomeric fractionation of racemic ibuprofen from the initial spiking mixture suggests that biodegradation mainly occurs in the rhizosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Biological cycles of radioactive contaminants

    International Nuclear Information System (INIS)

    Michon, M.-G.

    1959-01-01

    Artificial radio-elements (synthesized for scientific or industrial purposes)having been released, may be absorbed by plants or animals, and may eventually involve a catenation of organisms as some feed on the others. All organisms living in a polluted river become more radioactive than the water, which was to be expected, in as much as organisms are hypertonic in respect to sweet water. Conversely, soil brings into play physico-chemical phenomena (absorption) such that plants can get only a small portion of contaminating radio-elements, land animal feeding on such plants are relatively less exposed to contamination, and carnivorous animals feeding on herbivorous are still less exposed. Man, notably is fairly well protected, whereas lower organisms, notably unicellular organisms may suffer (mutations..). Reprint of a paper published in 'Revue de Pathologie Generale et de Physiologie Clinique', n. 707, April 1959, p. 505-514 [fr

  10. Contamination Analyzer

    Science.gov (United States)

    1994-01-01

    Measurement of the total organic carbon content in water is important in assessing contamination levels in high purity water for power generation, pharmaceutical production and electronics manufacture. Even trace levels of organic compounds can cause defects in manufactured products. The Sievers Model 800 Total Organic Carbon (TOC) Analyzer, based on technology developed for the Space Station, uses a strong chemical oxidizing agent and ultraviolet light to convert organic compounds in water to carbon dioxide. After ionizing the carbon dioxide, the amount of ions is determined by measuring the conductivity of the deionized water. The new technique is highly sensitive, does not require compressed gas, and maintenance is minimal.

  11. Environmental contaminants, ecosystems and human health

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S.K.; Miller, E.W.; Brenner, F.J. [eds.] [Lafayette College, Easton, PA (United States). Dept. of Biology

    1995-12-31

    The authors cover a variety of concerns regarding the adverse impacts of contaminants on ecosystems and human health. The twelve chapters in the first section of the text address the impact of contaminants on ecosystem function, and ten of the remaining twenty-two chapters are devoted to the effects of contaminants on human health. Part three presents eight case studies in humans, while the final four chapters provide the reader with an assessment of environmental problems and analyses. Two chapters, on the health effects of power plant generated air pollution and on black lung disease, have been abstracted separately for the IEA Coal Research CD-ROM.

  12. Plants' use of different nitrogen forms in response to crude oil contamination

    International Nuclear Information System (INIS)

    Nie Ming; Lu Meng; Yang Qiang; Zhang Xiaodong; Xiao Ming; Jiang Lifen; Yang Ji; Fang Changming; Chen Jiakuan; Li Bo

    2011-01-01

    In this study, we investigated Phragmites australis' use of different forms of nitrogen (N) and associated soil N transformations in response to petroleum contamination. 15 N tracer studies indicated that the total amount of inorganic and organic N assimilated by P. australis was low in petroleum-contaminated soil, while the rates of inorganic and organic N uptake on a per-unit-biomass basis were higher in petroleum-contaminated soil than those in un-contaminated soil. The percentage of organic N in total plant-assimilated N increased with petroleum concentration. In addition, high gross N immobilization and nitrification rates relative to gross N mineralization rate might reduce inorganic-N availability to the plants. Therefore, the enhanced rate of N uptake and increased importance of organic N in plant N assimilation might be of great significance to plants growing in petroleum-contaminated soils. Our results suggest that plants might regulate N capture under petroleum contamination. - Plant strategies of utilizing nitrogen in crude oil-contaminated soils.

  13. Seasonally and regionally determined indication potential of bioassays in contaminated river sediments.

    Science.gov (United States)

    Hilscherová, Klára; Dusek, Ladislav; Sídlová, Tereza; Jálová, Veronika; Cupr, Pavel; Giesy, John P; Nehyba, Slavomír; Jarkovský, Jirí; Klánová, Jana; Holoubek, Ivan

    2010-03-01

    River sediments are a dynamic system, especially in areas where floods occur frequently. In the present study, an integrative approach is used to investigate the seasonal and spatial dynamics of contamination of sediments from a regularly flooded industrial area in the Czech Republic, which presents a suitable model ecosystem for pollutant distribution research at a regional level. Surface sediments were sampled repeatedly to represent two different hydrological situations: spring (after the peak of high flow) and autumn (after longer period of low flow). Samples were characterized for abiotic parameters and concentrations of priority organic pollutants. Toxicity was assessed by Microtox test; genotoxicity by SOS-chromotest and green fluorescent protein (GFP)-yeast test; and the presence of compounds with specific mode of action by in vitro bioassays for dioxin-like activity, anti-/androgenicity, and anti-/estrogenicity. Distribution of organic contaminants varied among regions and seasonally. Although the results of Microtox and genotoxicity tests were relatively inconclusive, all other specific bioassays led to statistically significant regional and seasonal differences in profiles and allowed clear separation of upstream and downstream regions. The outcomes of these bioassays indicated an association with concentrations of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) as master variables. There were significant interrelations among dioxin-like activity, antiandrogenicity and content of organic carbon, clay, and concentration of PAHs and PCBs, which documents the significance of abiotic factors in accumulation of pollutants. The study demonstrates the strength of the specific bioassays in indicating the changes in contamination and emphasizes the crucial role of a well-designed sampling plan, in which both spatial and temporal dynamics should be taken into account, for the correct interpretations of information in risk assessments.

  14. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams

    Science.gov (United States)

    Buxton, Herbert T.; Kolpin, Dana W.

    2002-01-01

    A recent study by the Toxic Substances Hydrology Program of the U.S. Geological Survey (USGS) shows that a broad range of chemicals found in residential, industrial, and agricultural wastewaters commonly occurs in mixtures at low concentrations downstream from areas of intense urbanization and animal production. The chemicals include human and veterinary drugs (including antibiotics), natural and synthetic hormones, detergent metabolites, plasticizers, insecticides, and fire retardants. One or more of these chemicals were found in 80 percent of the streams sampled. Half of the streams contained 7 or more of these chemicals, and about one-third of the streams contained 10 or more of these chemicals. This study is the first national-scale examination of these organic wastewater contaminants in streams and supports the USGS mission to assess the quantity and quality of the Nation's water resources. A more complete analysis of these and other emerging water-quality issues is ongoing.

  15. Post-separation families: Residential arrangements and everyday life of separated parents and their children

    NARCIS (Netherlands)

    Bakker, W.

    2015-01-01

    This dissertation is about post-separation families, their residential arrangements and the organization and practising of their everyday post-separation (family) life. Divorce and separation are common life events in most Western countries. In the Netherlands, 30% of all children under age 18

  16. Microbial activities in boreal soils: Biodegradation of organic contaminants at low temperature and ammonia oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kurola, J. (University of Helsinki, Faculty of Biosciences, Department of Ecological and Environmental Sciences, Lahti (FI))

    2006-07-01

    This thesis deals with the response of biodegradation of selected anthropogenic organic contaminants and natural autochthonous organic matter to low temperature in boreal surface soils. Furthermore, the thesis describes activity, diversity and population size of autotrophic ammonia-oxidizing bacteria (AOB) in a boreal soil used for landfarming of oil-refinery wastes, and presents a new approach, in which the particular AOB were enriched and cultivated in situ from the landfarming soil onto cation exchange membranes. This thesis demonstrates that rhizosphere fraction of natural forest humus soil and agricultural clay loam soil from Helsinki Metropolitan area were capable of degrading of low to moderate concentrations (0.2 - 50 mug cm-3) of PCP, phenanthrene and 2,4,5-TCP at temperatures realistic to boreal climate (-2.5 to +15 deg C). At the low temperatures, the biodegradation of PCP, phenanthrene and 2,4,5-TCP was more effective (Q10-values from 1.6 to 7.6) in the rhizosphere fraction of the forest soil than in the agricultural soil. Q10-values of endogenous soil respiration (carbon dioxide evolution) and selected hydrolytic enzyme activities (acetate-esterase, butyrate-esterase and beta-glucosidase) in acid coniferous forest soil were 1.6 to 2.8 at temperatures from -3 to +30 deg C. The results indicated that the temperature dependence of decomposition of natural autochthonous soil organic matter in the studied coniferous forest was only moderate. The numbers of AOB in the landfarming (sandy clay loam) soil were determined with quantitative polymerase chain reaction (real-time PCR) and with Most Probable Number (MPN) methods, and potential ammonium oxidation activity was measured with the chlorate inhibition technique. The results indicated presence of large and active AOB populations in the heavily oil-contaminated and urea-fertilised landfarming soil. Assessment of the populations of AOB with denaturing gradient gel electrophoresis (DGGE) profiling and sequence

  17. Chemical and toxicologic assessment of organic contaminants in surface water using passive samplers

    Science.gov (United States)

    Alvarez, D.A.; Cranor, W.L.; Perkins, S.D.; Clark, R.C.; Smith, S.B.

    2008-01-01

    Passive sampling methodologies were used to conduct a chemical and toxicologic assessment of organic contaminants in the surface waters of three geographically distinct agricultural watersheds. A selection of current-use agrochemicals and persistent organic pollutants, including polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine pesticides, were targeted using the polar organic chemical integrative sampler (POCIS) and the semipermeable membrane device passive samplers. In addition to the chemical analysis, the Microtox assay for acute toxicity and the yeast estrogen screen (YES) were conducted as potential assessment tools in combination with the passive samplers. During the spring of 2004, the passive samplers were deployed for 29 to 65 d at Leary Weber Ditch, IN; Morgan Creek, MD; and DR2 Drain, WA. Chemical analysis of the sampler extracts identified the agrochemicals predominantly used in those areas, including atrazine, simazine, acetochlor, and metolachlor. Other chemicals identified included deethylatrazine and deisopropylatrazine, trifluralin, fluoranthene, pyrene, cis- and trans-nonachlor, and pentachloroanisole. Screening using Microtox resulted in no acutely toxic samples. POCIS samples screened by the YES assay failed to elicit a positive estrogenic response. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  18. Evaluation of in situ remediation methods in soils contaminated with organic pollutants

    OpenAIRE

    Simpanen, Suvi

    2016-01-01

    Soil contamination is a result of human activities that allow hazardous substances to accumulate in soil and thereby to increase the risk to the environment or to human health. There is an estimate of over 2.5 million contaminated sites in Europe and nearly 24 000 of these are in Finland. The most common soil contaminants are oil hydrocarbons and metals. The main anthropogenic activities that contribute to soil contamination include fuel distribution and storage, industrial activity, waste tr...

  19. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment

    International Nuclear Information System (INIS)

    Bian, Rongjun; Joseph, Stephen; Cui, Liqiang; Pan, Genxing; Li, Lianqing; Liu, Xiaoyu; Zhang, Afeng; Rutlidge, Helen; Wong, Singwei; Chia, Chee; Marjo, Chris; Gong, Bin; Munroe, Paul; Donne, Scott

    2014-01-01

    Highlights: • Biochar significantly increased soil pH, organic matter and immobilized soil Cd and Pb. • Biochar treatment consistently reduced rice Cd and Pb content in three years. • Contaminated biochar from the study field contained much higher heavy metals than fresh biochar. • Biochar caused metal immobilization primarily due to the precipitation and surface adsorption. - Abstract: Heavy metal contamination in croplands has been a serious concern because of its high health risk through soil-food chain transfer. A field experiment was conducted in 2010–2012 in a contaminated rice paddy in southern China to determine if bioavailability of soil Cd and Pb could be reduced while grain yield was sustained over 3 years after a single soil amendment of wheat straw biochar. Contaminated biochar particles were separated from the biochar amended soil and microscopically analyzed to help determine where, and how, metals were immobilized with biochar. Biochar soil amendment (BSA) consistently and significantly increased soil pH, total organic carbon and decreased soil extractable Cd and Pb over the 3 year period. While rice plant tissues’ Cd content was significantly reduced, depending on biochar application rate, reduction in plant Pb concentration was found only in root tissue. Analysis of the fresh and contaminated biochar particles indicated that Cd and Pb had probably been bonded with the mineral phases of Al, Fe and P on and around and inside the contaminated biochar particle. Immobilization of the Pb and Cd also occurred to cation exchange on the porous carbon structure

  20. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Rongjun [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Joseph, Stephen [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308 (Australia); Cui, Liqiang [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Pan, Genxing, E-mail: pangenxing@aliyun.com [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Li, Lianqing [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Liu, Xiaoyu; Zhang, Afeng [Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095 (China); Rutlidge, Helen [Solid State and Elemental Analysis Unit, Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW 2052 (Australia); Wong, Singwei [Electron Microscope Unit, University of Newcastle, Callaghan, NSW 2308 (Australia); Chia, Chee [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Marjo, Chris; Gong, Bin [Solid State and Elemental Analysis Unit, Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW 2052 (Australia); Munroe, Paul [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Donne, Scott [Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2014-05-01

    Highlights: • Biochar significantly increased soil pH, organic matter and immobilized soil Cd and Pb. • Biochar treatment consistently reduced rice Cd and Pb content in three years. • Contaminated biochar from the study field contained much higher heavy metals than fresh biochar. • Biochar caused metal immobilization primarily due to the precipitation and surface adsorption. - Abstract: Heavy metal contamination in croplands has been a serious concern because of its high health risk through soil-food chain transfer. A field experiment was conducted in 2010–2012 in a contaminated rice paddy in southern China to determine if bioavailability of soil Cd and Pb could be reduced while grain yield was sustained over 3 years after a single soil amendment of wheat straw biochar. Contaminated biochar particles were separated from the biochar amended soil and microscopically analyzed to help determine where, and how, metals were immobilized with biochar. Biochar soil amendment (BSA) consistently and significantly increased soil pH, total organic carbon and decreased soil extractable Cd and Pb over the 3 year period. While rice plant tissues’ Cd content was significantly reduced, depending on biochar application rate, reduction in plant Pb concentration was found only in root tissue. Analysis of the fresh and contaminated biochar particles indicated that Cd and Pb had probably been bonded with the mineral phases of Al, Fe and P on and around and inside the contaminated biochar particle. Immobilization of the Pb and Cd also occurred to cation exchange on the porous carbon structure.

  1. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    International Nuclear Information System (INIS)

    Zhang, Yuanyuan; Liu, Junhong

    2011-01-01

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  2. Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China); Liu, Junhong, E-mail: liujh@qust.edu.cn [Department of Pharmaceutics, Qingdao University of Science and Technology, 53 Zhengzhou Road, P.O. Box 70, Qingdao 266042 (China)

    2011-05-15

    Transgenic alfalfa plants simultaneously expressing human CYP2E1 and glutathione S-transferase (GST) were generated from hypocotyl segments by the use of an Agrobacterium transformation system for the phytoremediation of the mixed contaminated soil with heavy metals and organic pollutants. The transgenic alfalfa plants were screened by a combination of kanamycin resistance, PCR, GST and CYP2E1 activity and Western blot analysis. The capabilities of mixed contaminants (heavy metals-organic compounds) resistance of pKHCG transgenic alfalfa plants became markedly increased compared with the transgenic alfalfa plants expressing single gene (GST or CYP2E1) and the non-transgenic control plants. The pKHCG alfalfa plants exhibited strong resistance towards the mixtures of cadmium (Cd) and trichloroethylene (TCE) that were metabolized by the introduced GST and CYP2E1 in combination. Our results show that the pKHCG transgenic alfalfa plants have good potential for phytoremediation because they have cross-tolerance towards the complex contaminants of heavy metals and organic pollutants. Therefore, these transgenic alfalfa plants co-expressing GST and human P450 CDNAs may have a great potential for phytoremediation of mixed environmental contaminants.

  3. Adsorption and desorption of contaminants

    International Nuclear Information System (INIS)

    Palumbo, A.V.; Strong-Gunderson, J.M.; DeFlaun, M.; Ensley, B.

    1994-01-01

    The microbial remediation of sites Contaminated with organics is well documented, however, there are some significant problems that remain to be solved in the areas of contaminants sorbed to soils and non-aqueous phase liquid (NAPL) contamination. Methods of in situ bioremediation techniques employ either the stimulation of indigenous populations by nutrient addition, or the addition of prepared bacterial cultures to the subsurface environment. Problems of contaminant sorption and NAPL's are related in that both encompass reduced contaminant bioavailability. Non-aqueous phase liquids have been identified as a priority area for research in the In situ Program due to their presence at DOE sites and the lack of adequate technology to effectively treat this contamination. Bioremediation technologies developed as a result of this project are easily transferred to industry

  4. An rf separator for cloud muons at TRIUMF

    International Nuclear Information System (INIS)

    Macdonald, J.A.; Blackmore, E.W.; Bryman, D.A.; Doornbos, J.; Erdman, K.L.; Pearce, R.M.; Poirier, R.L.; Poutissou, J-M.; Spuller, J.

    1983-03-01

    A particle separator utilizing a magnetic field crossed with an rf electric field has been built and incorporated into the M9 secondary channel to produce a clean negative muon beam at 77 MeV/c +- 5 %. The separator is driven at the main cyclotron frequency (23 MHz) and is phase locked to the primary proton beam. Separation is achieved by using the temporal and velocity differences between the muons produced near the production target (cloud muons), and the pion and electron contaminants in the beam

  5. The synthesis, characterization and application of iron oxide nanocrystals in magnetic separations for arsenic and uranium removal

    Science.gov (United States)

    Mayo, John Thomas

    Arsenic and uranium in the environment are hazardous to human health and require better methods for detection and remediation. Nanocrystalline iron oxides offer a number of advantages as sorbents for water purification and environmental remediation. First, highly uniform and crystalline iron oxide nanocrystals (nMAG) were prepared using thermal decomposition of iron salts in organic solutions; for the applications of interest in this thesis, a central challenge was the adaptation of these conventional synthetic methods to the needs of low infrastructure and economically disadvantaged settings. We show here that it is possible to form highly uniform and magnetically responsive nanomaterials using starting reagents and equipment that are readily available and economical. The products of this approach, termed the 'Kitchen Synthesis', are of comparable quality and effectiveness to laboratory materials. The narrow size distributions of the iron oxides produced in the laboratory synthesis made it possible to study the size-dependence of the magnetic separation efficiency of nanocrystals; generally as the diameter of particles increased they could be removed under lower applied magnetic fields. In this work we take advantage of this size-dependence to use magnetic separation as a tool to separate broadly distributed populations of magnetic materials. Such work makes it possible to use these materials in multiplexed separation and sensing schemes. With the synthesis and magnetic separation studies of these materials completed, it was possible to optimize their applications in water purification and environmental remediation. These materials removed both uranium and arsenic from contaminated samples, and had remarkably high sorption capacities --- up to 12 wt% for arsenic and 30 wt% for uranium. The contaminated nMAG is removed from the drinking water by either retention in a sand column, filter, or by magnetic separation. The uranium adsorption process was also utilized

  6. Separation of flow

    CERN Document Server

    Chang, Paul K

    2014-01-01

    Interdisciplinary and Advanced Topics in Science and Engineering, Volume 3: Separation of Flow presents the problem of the separation of fluid flow. This book provides information covering the fields of basic physical processes, analyses, and experiments concerning flow separation.Organized into 12 chapters, this volume begins with an overview of the flow separation on the body surface as discusses in various classical examples. This text then examines the analytical and experimental results of the laminar boundary layer of steady, two-dimensional flows in the subsonic speed range. Other chapt

  7. Kinetic model for the dosimetry of radiopharmaceuticals contaminated by Mo-99

    International Nuclear Information System (INIS)

    Shearer, D.R.; Pezzullo, J.C.

    1986-01-01

    Radiopharmaceuticals tagged with Tc-99m may become contaminated with breakthrough products from the Mo-99/Tc-99m generator. If a fraction of the contaminant becomes bound to the radiopharmaceutical, the dose to the radiopharmaceutical target organ from the contaminant must be considered. The dose to the contaminant target organ may then be calculated as the sum of the doses from a) the initially unbound contaminant, and b) the contaminant later released by degradation of the radiopharmaceutical. This paper presents a model which takes the above processes into account. The model is illustrated with clinical data derived from Mo-99 contaminated radiopharmaceuticals. 5 references, 2 figures, 6 tables

  8. Arsenic contamination of underground water in Bangladesh: cause, effect, separation, determination and remedy

    International Nuclear Information System (INIS)

    Ahmed, M.J.

    2003-01-01

    Arsenic contamination of underground water of Bangladesh has become the gravest concern for the lives of millions of people of this land. Probable causes and effects of arsenic contamination of underground water of Bangladesh have been extensively discussed. The extent of current knowledge regarding the specification of arsenic in environmental waters in delineated. A simple, non-extractive, highly sensitive and selective quench photometric methods for the rapid determination of arsenic at trace levels in aqueous medium has been developed. This paper also presents a short review of the technologies used for arsenic removal of underground water in Bangladesh. (author)

  9. Phytoremediation of soils co-contaminated by organic compounds and heavy metals: bioassays with Lupinus luteus L. and associated endophytic bacteria.

    Science.gov (United States)

    Gutiérrez-Ginés, M J; Hernández, A J; Pérez-Leblic, M I; Pastor, J; Vangronsveld, J

    2014-10-01

    In the central part of the Iberian Peninsula there are old sealed landfills containing soils co-contaminated by several heavy metals (Cu, Zn, Pb, Cd, Ni, As, Cr, Fe, Al, Mn) and organic pollutants of different families (hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pesticides and other organochlorinated compounds, phenols and volatile compounds), which this work will address. We have focused on phytoremedial plants that are able to deal with this type of complex pollution, not only species that tolerate the joint effect of heavy metals in the soil, but also those that can take advantage of associated bacteria to efficiently break down organic compounds. This study was carried out with Lupinus luteus and its endophytes in two greenhouse experiments: A) growing in a substrate artificially contaminated with benzo(a)pyrene (BaP), and B) using real co-contaminated landfill soils. Endophytes of roots and shoots were isolated in both bioassays. Plant growth-promotion tests and organic pollutant tolerance and degradation tests were conducted on all strains isolated in bioassay A), and on those proving to be pure cultures from bioassay B). The selected landfill is described as are isolation and test procedures. Results indicate that plants did not show toxicity symptoms when exposed to BaP but did when grown in landfill soil. Some endophytes demonstrated plant growth-promotion capacity and tolerance to BaP and other organic compounds (diesel and PCB commercial mixtures). A few strains may even have the capacity to metabolize those organic pollutants. The overall decline in plant growth-promotion capacity in those strains isolated from the landfill soil experiment, compared with those from the bioassay with BaP, may indicate that lupin endophytes are not adapted to metal concentration in roots and shoots and fail to grow. As a result, most isolated root endophytes must have colonized root tissues from the soil. While preliminary degradation tests

  10. Systematic study of the contamination of wastewater treatment plant effluents by organic priority compounds in Almeria province (SE Spain).

    Science.gov (United States)

    Barco-Bonilla, Nieves; Romero-González, Roberto; Plaza-Bolaños, Patricia; Martínez Vidal, José L; Garrido Frenich, Antonia

    2013-03-01

    The occurrence of priority organic pollutants in wastewater (WW) effluents was evaluated in a semi-arid area, characterized by a high agricultural and tourism activity, as Almeria province (Southeastern Spain). Twelve wastewater treatment plants (WWTPs) were sampled in three campaigns during 2011, obtaining a total of 33 WW samples, monitoring 226 compounds, including pesticides, polycyclic aromatic hydrocarbons (PAHs), phenolic compounds and volatile organic compounds (VOCs). Certain banned organochlorine pesticides such as aldrin, pentachlorobenzene, o,p'-DDD and endosulfan lactone were found, and the most frequently detected pesticides were herbicides (diuron, triazines). PAHs and VOCs were also detected, noting that some of these pollutants were ubiquitous. Regarding phenolic compounds, 4-tertoctylphenol was found in all the WW samples at high concentration levels (up to 89.7 μg/L). Furthermore, it was observed that WW effluent samples were less contaminated in the second and third sampling periods, which corresponded to dry season. This evaluation revealed that despite the WW was treated in the WWTP, organic contaminants are still being detected in WW effluents and therefore they are released into the environment. Finally the risk of environmental threat due to the presence of some compounds in WWTP effluents, especially concerning 4-tertoctylphenol must be indicated. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Analyses of organic and inorganic contaminants in Salton Sea fish.

    Science.gov (United States)

    Riedel, Ralf; Schlenk, Daniel; Frank, Donnell; Costa-Pierce, Barry

    2002-05-01

    Chemical contamination of fish from the Salton Sea, a quasi-marine lake in Southern California, could adversely impact millions of birds using the Pacific Flyway and thousands of humans using the lake for recreation. Bairdiella icistia (bairdiella), Cynoscion xanthulus (orangemouth corvina), and Oreochromis spp. (tilapia) were sampled from two river mouths and two nearshore areas of the Salton Sea. Muscle tissues were analyzed for a complete suite of 14 trace metals and 53 pesticides. Fish muscle tissues had concentrations of selenium ranging between 1.89 and 2.73 microg/g wet weight. 4,4'-DDE accounted for 94% of the total DDT metabolites. Total DDTs ranged between 17.1 and 239.0 and total PCBs between 2.5 and 18.6 ng/g wet weight. PCB congeners 132, 138, 153, 168, and 180 comprised over 50% of the total PCBs. Given the potential implementation of a commercial fishing at the Salton Sea in the future, the presence of persistent organic pollutants and selenium warrants further research into the effects of these mixtures on fish populations, and on wildlife and humans consuming fish.

  12. A Model Compound Study: The ecotoxicological evaluation of five organic contaminants with a battery of marine bioassays

    OpenAIRE

    Macken, A.; Giltrap, M.; Foley, B.; McGovern, E.; McHugh, B.; Davoren, M.

    2008-01-01

    This paper describes the ecotoxicological evaluation of five organic contaminants frequently detected in marine sediments (tributyltin, triphenyltin, benzo[a]pyrene, fluoranthene, and PCB 153) using three marine species (Vibrio fischeri, Tetraselmis suecica, and Tisbe battagliai). The sensitivity of each species varied for all compounds. The triorganotins were consistently the most toxic to all species. The applicability of each test system to assess the acute toxicity of environmental contam...

  13. Analysis of food contaminants

    National Research Council Canada - National Science Library

    Gilbert, John

    1984-01-01

    ... quantification methods used in the analysis of mycotoxins in foods - Confirmation and quantification of trace organic food contaminants by mass spectrometry-selected ion monitoring - Chemiluminescence...

  14. Effects of Subsurface Microbial Ecology on Geochemical Evolution of a Crude-Oil Contaminated Aquifer

    Science.gov (United States)

    Bekins, B. A.; Cozzarelli, I. M.; Godsy, E. M.; Warren, E.; Hostettler, F. D.

    2001-12-01

    We have identified several subsurface habitats for microorganisms in a crude oil contaminated located near Bemidji, Minnesota. These aquifer habitats include: 1) the unsaturated zone contaminated by hydrocarbon vapors, 2) the zones containing separate-phase crude oil, and 3) the aqueous-phase contaminant plume. The surficial glacial outwash aquifer was contaminated when a crude oil pipeline burst in 1979. We analyzed sediment samples from the contaminated aquifer for the most probable numbers of aerobes, iron reducers, fermenters, and three types of methanogens. The microbial data were then related to gas, water, and oil chemistry, sediment extractable iron, and permeability. The microbial populations in the various contaminated subsurface habitats each have special characteristics and these affect the aquifer and contaminant chemistry. In the eight-meter-thick, vapor-contaminated vadose zone, a substantial aerobic population has developed that is supported by hydrocarbon vapors and methane. Microbial numbers peak in locations where access to both hydrocarbons and nutrients infiltrating from the surface is maximized. The activity of this population prevents hydrocarbon vapors from reaching the land surface. In the zone where separate-phase crude oil is present, a consortium of methanogens and fermenters dominates the populations both above and below the water table. Moreover, gas concentration data indicate that methane production has been active in the oily zone since at least 1986. Analyses of the extracted separate-phase oil show that substantial degradation of C15 -C35 n-alkanes has occurred since 1983, raising the possibility that significant degradation of C15 and higher n-alkanes has occurred under methanogenic conditions. However, lab and field data suggest that toxic inhibition by crude oil results in fewer acetate-utilizing methanogens within and adjacent to the separate-phase oil. Data from this and other sites indicate that toxic inhibition of

  15. Investigation the foam dynamics capacity of SDS in foam generator by affecting the presence of organic and inorganic contaminant

    Science.gov (United States)

    Haryanto, Bode; Siswarni, M. Z.; Sianipar, Yosef C. H.; Sinaga, Tongam M. A.; Bestari, Imam

    2017-05-01

    The effect of negative charge SDS monomer on its foam capacity with the presence of contaminants was investigated in foam generator. Generally, surfactant with higher concentration has higher foam capacity. The higher concentration will increase the number of monomer then increase the micelles in liquid phase. Increasing the number of monomer with the negative charge is a potential to increase interaction with metal ion with positive charge in solution. The presence of inorganic compound as metal ion with positive charge and organic compound (colloid) as particle of coffee impacting to generate the foam lamella with monomer is evaluated. Foam dynamic capacity of only SDS with variation of CMC, 1 x; 2 x; 3 x have the height 7.5, 8.0 and 8.3 cm respectively with the different range time were investigated. The Height of foam dynamic capacity with the presence of 20 ppm Cd2+ ion contaminant was 8.0, 8.3 and 8.4 cm at the same CMC variation of SDS. The presence of metal ion contaminant within the foam was confirmed by AAS. The black coffee particles and oil as contaminant decreased the foam capacity significantly in comparing to metal ions.

  16. Removal of iron contaminant from zirconium chloride solution

    International Nuclear Information System (INIS)

    Voit, D.O.

    1992-01-01

    This patent describes a process for eliminating iron contaminant from an aqueous zirconium chloride solution that has been contaminated with FeCl 3 in a plant in which zirconium and hafnium chloride solutions are separated by a main MINK solvent extraction system and the FeCl 3 is normally removed from the zirconium chloride solution by a secondary MINK solvent extraction system

  17. Methods for calculation of engineering parameters for gas separation. [vapor pressure and solubility of gases in organic liquids

    Science.gov (United States)

    Lawson, D. D.

    1979-01-01

    A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  18. Associated microbial contaminants in in-vitro micropropagation of ...

    African Journals Online (AJOL)

    Studies were carried out to determine the microbial contaminants associated with in-vitro micropropagation of Ipomea batatas (sweet potato). The contaminants were found to be mostly fungal organisms, Aspergillus Spp (62%), Penicillum Spp. (31%), Fusarium Spp. (5%) and Alternaria Spp. (2%). Bacterial contamination ...

  19. Simultaneous Microwave Extraction and Separation of Volatile and Non-Volatile Organic Compounds of Boldo Leaves. From Lab to Industrial Scale

    Directory of Open Access Journals (Sweden)

    Loïc Petigny

    2014-04-01

    Full Text Available Microwave extraction and separation has been used to increase the concentration of the extract compared to the conventional method with the same solid/liquid ratio, reducing extraction time and separate at the same time Volatile Organic Compounds (VOC from non-Volatile Organic Compounds (NVOC of boldo leaves. As preliminary study, a response surface method has been used to optimize the extraction of soluble material and the separation of VOC from the plant in laboratory scale. The results from the statistical analysis revealed that the optimized conditions were: microwave power 200 W, extraction time 56 min and solid liquid ratio of 7.5% of plants in water. Lab scale optimized microwave method is compared to conventional distillation, and requires a power/mass ratio of 0.4 W/g of water engaged. This power/mass ratio is kept in order to upscale from lab to pilot plant.

  20. Some problems in calibrating surface contamination meters

    International Nuclear Information System (INIS)

    Chen Zigen; LI Xingyuan; Shuai Xiaoping.

    1984-01-01

    It is necessary that instruments are calibrated accurately in order to obtain reliable survey data of surface contamination. Some problems in calibrating surface contamination meters are expounded in this paper. Measurement comparison for beta surface contamination meters is organized within limited scope, thus survey quality is understood, questions are discovered, significance of calibration is expounded further. (Author)