WorldWideScience

Sample records for sensory cell populations

  1. A simple method for purification of vestibular hair cells and non-sensory cells, and application for proteomic analysis.

    Science.gov (United States)

    Herget, Meike; Scheibinger, Mirko; Guo, Zhaohua; Jan, Taha A; Adams, Christopher M; Cheng, Alan G; Heller, Stefan

    2013-01-01

    Mechanosensitive hair cells and supporting cells comprise the sensory epithelia of the inner ear. The paucity of both cell types has hampered molecular and cell biological studies, which often require large quantities of purified cells. Here, we report a strategy allowing the enrichment of relatively pure populations of vestibular hair cells and non-sensory cells including supporting cells. We utilized specific uptake of fluorescent styryl dyes for labeling of hair cells. Enzymatic isolation and flow cytometry was used to generate pure populations of sensory hair cells and non-sensory cells. We applied mass spectrometry to perform a qualitative high-resolution analysis of the proteomic makeup of both the hair cell and non-sensory cell populations. Our conservative analysis identified more than 600 proteins with a false discovery rate of Analysis of proteins exclusively detected in either population revealed 64 proteins that were specific to hair cells and 103 proteins that were only detectable in non-sensory cells. Statistical analyses extended these groups by 53 proteins that are strongly upregulated in hair cells versus non-sensory cells and vice versa by 68 proteins. Our results demonstrate that enzymatic dissociation of styryl dye-labeled sensory hair cells and non-sensory cells is a valid method to generate pure enough cell populations for flow cytometry and subsequent molecular analyses.

  2. Uptake of 3H-thymidine by the receptor cell populations after injury of the sensory nerve fibres

    International Nuclear Information System (INIS)

    Chuchkov, Ch.N.

    1978-01-01

    The material of the study was the skin from the beak of two-day ducklings. The investigation was carried out on the 2nd, 5th, 20th and 45th day after the crushing of the sensory nerve fibres entering the capsulated Herbst receptors. Twenty four hours before the biopsy, the ducklings were injected at 6 hours intervals with 3 H-thymidine. The number of labelled index in the three cell pupulations, participating in the receptor development was determined. The cells of the subcapsular space of all control animals (with intacted suborbital nerves) have shown the highest labelled index. The index of the capsular perineural cells is about 12 times lower, while the labelled index of the Schwann receptor cells is about 10 times lower. Following the denervation, the labelled index in increasing and reaches its maximum on the 5th postoperative day. The Schwann receptor cells in comparison to the two other cell populations show the most significant deviation during the regeneration (45th day after the intervention). The investigations show that all three cell populations pass through a miotic cycle of innovation. The low labelled index of the Schwann receptors (1-2 labelled cells in 1000) is an indication of a high differentiation. One can assume that their regeneration takes place at the expense of the proper proliferation activity as well as of the differentiation of the Schwann cells from the distal section of the regenerating sensory nerve fibres. Taking into consideration the high labelled index of the other populations, it seems most probable that their regeneration takes place for the expense of their own cell populations. (A.B.)

  3. [Characterization of stem cells derived from the neonatal auditory sensory epithelium].

    Science.gov (United States)

    Diensthuber, M; Heller, S

    2010-11-01

    In contrast to regenerating hair cell-bearing organs of nonmammalian vertebrates the adult mammalian organ of Corti appears to have lost its ability to maintain stem cells. The result is a lack of regenerative ability and irreversible hearing loss following auditory hair cell death. Unexpectedly, the neonatal auditory sensory epithelium has recently been shown to harbor cells with stem cell features. The origin of these cells within the cochlea's sensory epithelium is unknown. We applied a modified neurosphere assay to identify stem cells within distinct subregions of the neonatal mouse auditory sensory epithelium. Sphere cells were characterized by multiple markers and morphologic techniques. Our data reveal that both the greater and the lesser epithelial ridge contribute to the sphere-forming stem cell population derived from the auditory sensory epithelium. These self-renewing sphere cells express a variety of markers for neural and otic progenitor cells and mature inner ear cell types. Stem cells can be isolated from specific regions of the auditory sensory epithelium. The distinct features of these cells imply a potential application in the development of a cell replacement therapy to regenerate the damaged sensory epithelium.

  4. Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research.

    Science.gov (United States)

    Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B

    2014-08-01

    The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell-derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders.

  5. Kappe neurons, a novel population of olfactory sensory neurons

    OpenAIRE

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-01-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons ar...

  6. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae.

    Science.gov (United States)

    Frye, Mitchell D; Yang, Weiping; Zhang, Celia; Xiong, Binbin; Hu, Bo Hua

    2017-02-01

    In the sensory epithelium, macrophages have been identified on the scala tympani side of the basilar membrane. These basilar membrane macrophages are the spatially closest immune cells to sensory cells and are able to directly respond to and influence sensory cell pathogenesis. While basilar membrane macrophages have been studied in acute cochlear stresses, their behavior in response to chronic sensory cell degeneration is largely unknown. Here we report a systematic observation of the variance in phenotypes, the changes in morphology and distribution of basilar membrane tissue macrophages in different age groups of C57BL/6J mice, a mouse model of age-related sensory cell degeneration. This study reveals that mature, fully differentiated tissue macrophages, not recently infiltrated monocytes, are the major macrophage population for immune responses to chronic sensory cell death. These macrophages display dynamic changes in their numbers and morphologies as age increases, and the changes are related to the phases of sensory cell degeneration. Notably, macrophage activation precedes sensory cell pathogenesis, and strong macrophage activity is maintained until sensory cell degradation is complete. Collectively, these findings suggest that mature tissue macrophages on the basilar membrane are a dynamic group of cells that are capable of vigorous adaptation to changes in the local sensory epithelium environment influenced by sensory cell status. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Deriving Dorsal Spinal Sensory Interneurons from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Sandeep Gupta

    2018-02-01

    Full Text Available Summary: Cellular replacement therapies for neurological conditions use human embryonic stem cell (hESC- or induced pluripotent stem cell (hiPSC-derived neurons to replace damaged or diseased populations of neurons. For the spinal cord, significant progress has been made generating the in-vitro-derived motor neurons required to restore coordinated movement. However, there is as yet no protocol to generate in-vitro-derived sensory interneurons (INs, which permit perception of the environment. Here, we report on the development of a directed differentiation protocol to derive sensory INs for both hESCs and hiPSCs. Two developmentally relevant factors, retinoic acid in combination with bone morphogenetic protein 4, can be used to generate three classes of sensory INs: the proprioceptive dI1s, the dI2s, and mechanosensory dI3s. Critical to this protocol is the competence state of the neural progenitors, which changes over time. This protocol will facilitate developing cellular replacement therapies to reestablish sensory connections in injured patients. : In this article, Gupta and colleagues describe a robust protocol to derive spinal dorsal sensory interneurons from human pluripotent stem cells using the sequential addition of RA and BMP4. They find that neural progenitors must be in the correct competence state to respond to RA/BMP4 as dorsalizing signals. This competence state changes over time and determines the efficiency of the protocol. Keywords: spinal cord, neurons, sensory interneurons, proprioception, mechanosensation, human embryonic stem cells, induced pluripotent stem cells, directed differentiation, primate spinal cord, mouse spinal cord

  8. Characterizing Human Stem Cell–derived Sensory Neurons at the Single-cell Level Reveals Their Ion Channel Expression and Utility in Pain Research

    Science.gov (United States)

    Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B

    2014-01-01

    The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell–derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders. PMID:24832007

  9. Stem/progenitor cells derived from the cochlear sensory epithelium give rise to spheres with distinct morphologies and features.

    Science.gov (United States)

    Diensthuber, Marc; Oshima, Kazuo; Heller, Stefan

    2009-06-01

    Nonmammalian vertebrates regenerate lost sensory hair cells by means of asymmetric division of supporting cells. Inner ear or lateral line supporting cells in birds, amphibians, and fish consequently serve as bona fide stem cells resulting in high regenerative capacity of hair cell-bearing organs. Hair cell regeneration does not happen in the mammalian cochlea, but cells with proliferative capacity can be isolated from the neonatal cochlea. These cells have the ability to form clonal floating colonies, so-called spheres, when cultured in nonadherent conditions. We noticed that the sphere population derived from mouse cochlear sensory epithelium cells was heterogeneous, consisting of morphologically distinct sphere types, hereby classified as solid, transitional, and hollow. Cochlear sensory epithelium-derived stem/progenitor cells initially give rise to small solid spheres, which subsequently transition into hollow spheres, a change that is accompanied by epithelial differentiation of the majority of sphere cells. Only solid spheres, and to a lesser extent, transitional spheres, appeared to harbor self-renewing stem cells, whereas hollow spheres could not be consistently propagated. Solid spheres contained significantly more rapidly cycling Pax-2-expressing presumptive otic progenitor cells than hollow spheres. Islet-1, which becomes upregulated in nascent sensory patches, was also more abundant in solid than in hollow spheres. Likewise, hair cell-like cells, characterized by the expression of multiple hair cell markers, differentiated in significantly higher numbers in cell populations derived from solid spheres. We conclude that cochlear sensory epithelium cell populations initially give rise to small solid spheres that have self-renewing capacity before they subsequently convert into hollow spheres, a process that is accompanied by loss of stemness and reduced ability to spontaneously give rise to hair cell-like cells. Solid spheres might, therefore, represent

  10. Identification and Characterization of Mouse Otic Sensory Lineage Genes

    Directory of Open Access Journals (Sweden)

    Byron H. Hartman

    2015-03-01

    Full Text Available Vertebrate embryogenesis gives rise to all cell types of an organism through the development of many unique lineages derived from the three primordial germ layers. The otic sensory lineage arises from the otic vesicle, a structure formed through invagination of placodal non-neural ectoderm. This developmental lineage possesses unique differentiation potential, giving rise to otic sensory cell populations including hair cells, supporting cells, and ganglion neurons of the auditory and vestibular organs. Here we present a systematic approach to identify transcriptional features that distinguish the otic sensory lineage (from early otic progenitors to otic sensory populations from other major lineages of vertebrate development. We used a microarray approach to analyze otic sensory lineage populations including microdissected otic vesicles (embryonic day 10.5 as well as isolated neonatal cochlear hair cells and supporting cells at postnatal day 3. Non-otic tissue samples including periotic tissues and whole embryos with otic regions removed were used as reference populations to evaluate otic specificity. Otic populations shared transcriptome-wide correlations in expression profiles that distinguish members of this lineage from non-otic populations. We further analyzed the microarray data using comparative and dimension reduction methods to identify individual genes that are specifically expressed in the otic sensory lineage. This analysis identified and ranked top otic sensory lineage-specific transcripts including Fbxo2, Col9a2, and Oc90, and additional novel otic lineage markers. To validate these results we performed expression analysis on select genes using immunohistochemistry and in situ hybridization. Fbxo2 showed the most striking pattern of specificity to the otic sensory lineage, including robust expression in the early otic vesicle and sustained expression in prosensory progenitors and auditory and vestibular hair cells and supporting

  11. Sensory Hair Cells: An Introduction to Structure and Physiology.

    Science.gov (United States)

    McPherson, Duane R

    2018-06-18

    Sensory hair cells are specialized secondary sensory cells that mediate our senses of hearing, balance, linear acceleration, and angular acceleration (head rotation). In addition, hair cells in fish and amphibians mediate sensitivity to water movement through the lateral line system, and closely related electroreceptive cells mediate sensitivity to low-voltage electric fields in the aquatic environment of many fish species and several species of amphibian.Sensory hair cells share many structural and functional features across all vertebrate groups, while at the same time they are specialized for employment in a wide variety of sensory tasks. The complexity of hair cell structure is large, and the diversity of hair cell applications in sensory systems exceeds that seen for most, if not all, sensory cell types. The intent of this review is to summarize the more significant structural features and some of the more interesting and important physiological mechanisms that have been elucidated thus far. Outside vertebrates, hair cells are only known to exist in the coronal organ of tunicates. Electrical resonance, electromotility, and their exquisite mechanical sensitivity all contribute to the attractiveness of hair cells as a research subject.

  12. Kappe neurons, a novel population of olfactory sensory neurons.

    Science.gov (United States)

    Ahuja, Gaurav; Bozorg Nia, Shahrzad; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I

    2014-02-10

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  13. Think like a sponge: The genetic signal of sensory cells in sponges.

    Science.gov (United States)

    Mah, Jasmine L; Leys, Sally P

    2017-11-01

    A complex genetic repertoire underlies the apparently simple body plan of sponges. Among the genes present in poriferans are those fundamental to the sensory and nervous systems of other animals. Sponges are dynamic and sensitive animals and it is intuitive to link these genes to behaviour. The proposal that ctenophores are the earliest diverging metazoan has led to the question of whether sponges possess a 'pre-nervous' system or have undergone nervous system loss. Both lines of thought generally assume that the last common ancestor of sponges and eumetazoans possessed the genetic modules that underlie sensory abilities. By corollary extant sponges may possess a sensory cell homologous to one present in the last common ancestor, a hypothesis that has been studied by gene expression. We have performed a meta-analysis of all gene expression studies published to date to explore whether gene expression is indicative of a feature's sensory function. In sponges we find that eumetazoan sensory-neural markers are not particularly expressed in structures with known sensory functions. Instead it is common for these genes to be expressed in cells with no known or uncharacterized sensory function. Indeed, many sensory-neural markers so far studied are expressed during development, perhaps because many are transcription factors. This suggests that the genetic signal of a sponge sensory cell is dissimilar enough to be unrecognizable when compared to a bilaterian sensory or neural cell. It is possible that sensory-neural markers have as yet unknown functions in sponge cells, such as assembling an immunological synapse in the larval globular cell. Furthermore, the expression of sensory-neural markers in non-sensory cells, such as adult and larval epithelial cells, suggest that these cells may have uncharacterized sensory functions. While this does not rule out the co-option of ancestral sensory modules in later evolving groups, a distinct genetic foundation may underlie the

  14. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, Maurizio, E-mail: maurizio.lazzari@unibo.it; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-02-15

    Highlights: • Copper exposure affects ciliated olfactory receptors more than microvillar cells. • Crypt olfactory sensory neurons are not affected by copper exposure. • Copper exposure induces an increase in the amount of sensory epithelium. - Abstract: The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96 h of exposure to copper ions at the sublethal concentration of 30 μg L{sup −1}. Densitometric values of cONS, immunostained with anti-G {sub αolf}, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30 days, we observed a partial restoration of anti-G {sub

  15. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish

    International Nuclear Information System (INIS)

    Lazzari, Maurizio; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-01-01

    Highlights: • Copper exposure affects ciliated olfactory receptors more than microvillar cells. • Crypt olfactory sensory neurons are not affected by copper exposure. • Copper exposure induces an increase in the amount of sensory epithelium. - Abstract: The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96 h of exposure to copper ions at the sublethal concentration of 30 μg L"−"1. Densitometric values of cONS, immunostained with anti-G _α_o_l_f, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30 days, we observed a partial restoration of anti-G _

  16. Sensory hair cell regeneration in the zebrafish lateral line.

    Science.gov (United States)

    Lush, Mark E; Piotrowski, Tatjana

    2014-10-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. Copyright © 2014 Wiley Periodicals, Inc.

  17. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    Science.gov (United States)

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish. PMID:25045019

  18. SENSORY HAIR CELL REGENERATION IN THE ZEBRAFISH LATERAL LINE

    OpenAIRE

    Lush, Mark E.; Piotrowski, Tatjana

    2014-01-01

    Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing ther...

  19. Diverse coupling of neurons to populations in sensory cortex.

    Science.gov (United States)

    Okun, Michael; Steinmetz, Nicholas; Cossell, Lee; Iacaruso, M Florencia; Ko, Ho; Barthó, Péter; Moore, Tirin; Hofer, Sonja B; Mrsic-Flogel, Thomas D; Carandini, Matteo; Harris, Kenneth D

    2015-05-28

    A large population of neurons can, in principle, produce an astronomical number of distinct firing patterns. In cortex, however, these patterns lie in a space of lower dimension, as if individual neurons were "obedient members of a huge orchestra". Here we use recordings from the visual cortex of mouse (Mus musculus) and monkey (Macaca mulatta) to investigate the relationship between individual neurons and the population, and to establish the underlying circuit mechanisms. We show that neighbouring neurons can differ in their coupling to the overall firing of the population, ranging from strongly coupled 'choristers' to weakly coupled 'soloists'. Population coupling is largely independent of sensory preferences, and it is a fixed cellular attribute, invariant to stimulus conditions. Neurons with high population coupling are more strongly affected by non-sensory behavioural variables such as motor intention. Population coupling reflects a causal relationship, predicting the response of a neuron to optogenetically driven increases in local activity. Moreover, population coupling indicates synaptic connectivity; the population coupling of a neuron, measured in vivo, predicted subsequent in vitro estimates of the number of synapses received from its neighbours. Finally, population coupling provides a compact summary of population activity; knowledge of the population couplings of n neurons predicts a substantial portion of their n(2) pairwise correlations. Population coupling therefore represents a novel, simple measure that characterizes the relationship of each neuron to a larger population, explaining seemingly complex network firing patterns in terms of basic circuit variables.

  20. Cell-cell junctions: a target of acoustic overstimulation in the sensory epithelium of the cochlea

    Directory of Open Access Journals (Sweden)

    Zheng Guiliang

    2012-06-01

    Full Text Available Abstract Background Exposure to intense noise causes the excessive movement of the organ of Corti, stretching the organ and compromising sensory cell functions. We recently revealed changes in the transcriptional expression of multiple adhesion-related genes during the acute phases of cochlear damage, suggesting that the disruption of cell-cell junctions is an early event in the process of cochlear pathogenesis. However, the functional state of cell junctions in the sensory epithelium is not clear. Here, we employed graded dextran-FITC, a macromolecule tracer that is impermeable to the organ of Corti under physiological conditions, to evaluate the barrier function of cell junctions in normal and noise-traumatized cochlear sensory epithelia. Results Exposure to an impulse noise of 155 dB (peak sound pressure level caused a site-specific disruption in the intercellular junctions within the sensory epithelium of the chinchilla cochlea. The most vulnerable sites were the junctions among the Hensen cells and between the Hensen and Deiters cells within the outer zone of the sensory epithelium. The junction clefts that formed in the reticular lamina were permeable to 40 and 500 but not 2,000 kDa dextran-FITC macromolecules. Moreover, this study showed that the interruption of junction integrity occurred in the reticular lamina and also in the basilar membrane, a site that had been considered to be resistant to acoustic injury. Finally, our study revealed a general spatial correlation between the site of sensory cell damage and the site of junction disruption. However, the two events lacked a strict one-to-one correlation, suggesting that the disruption of cell-cell junctions is a contributing, but not the sole, factor for initiating acute sensory cell death. Conclusions Impulse noise causes the functional disruption of intercellular junctions in the sensory epithelium of the chinchilla cochlea. This disruption occurs at an early phase of cochlear

  1. Sensory hair cell death and regeneration in fishes

    Directory of Open Access Journals (Sweden)

    Jerry D. Monroe

    2015-04-01

    Full Text Available Sensory hair cells are specialized mechanotransductive receptors required for hearing and vestibular function. Loss of hair cells in humans and other mammals is permanent and causes reduced hearing and balance. In the early 1980’s, it was shown that hair cells continue to be added to the inner ear sensory epithelia in cartilaginous and bony fishes. Soon thereafter, hair cell regeneration was documented in the chick cochlea following acoustic trauma. Since then, research using chick and other avian models has led to great insights into hair cell death and regeneration. However, with the rise of the zebrafish as a model organism for studying disease and developmental processes, there has been an increased interest in studying sensory hair cell death and regeneration in its lateral line and inner ears. Advances derived from studies in zebrafish and other fish species include understanding the effect of ototoxins on hair cells and finding otoprotectants to mitigate ototoxin damage, the role of cellular proliferation versus direct transdifferentiation during hair cell regeneration, and elucidating cellular pathways involved in the regeneration process. This review will summarize research on hair cell death and regeneration using fish models, indicate the potential strengths and weaknesses of these models, and discuss several emerging areas of future studies.

  2. Sensory Flask Cells in Sponge Larvae Regulate Metamorphosis via Calcium Signaling.

    Science.gov (United States)

    Nakanishi, Nagayasu; Stoupin, Daniel; Degnan, Sandie M; Degnan, Bernard M

    2015-12-01

    The Porifera (sponges) is one of the earliest phyletic lineages to branch off the metazoan tree. Although the body-plan of sponges is among the simplest in the animal kingdom and sponges lack nervous systems that communicate environmental signals to other cells, their larvae have sensory systems that generate coordinated responses to environmental cues. In eumetazoans (Cnidaria and Bilateria), the nervous systems of larvae often regulate metamorphosis through Ca(2+)-dependent signal transduction. In sponges, neither the identity of the receptor system that detects an inductive environmental cue (hereafter "metamorphic cues") nor the signaling system that mediates settlement and metamorphosis are known. Using a combination of behavioral assays and surgical manipulations, we show here that specialized epithelial cells-referred to as flask cells-enriched in the anterior third of the Amphimedon queenslandica larva are most likely to be the sensory cells that detect the metamorphic cues. Surgical removal of the region enriched in flask cells in a larva inhibits the initiation of metamorphosis. The flask cell has an apical sensory apparatus with a cilium surrounded by an apical F-actin-rich protrusion, and numerous vesicles, hallmarks of eumetazoan sensory-neurosecretory cells. We demonstrate that these flask cells respond to metamorphic cues by elevating intracellular Ca(2+) levels, and that this elevation is necessary for the initiation of metamorphosis. Taken together, these analyses suggest that sponge larvae have sensory-secretory epithelial cells capable of converting exogenous cues into internal signals via Ca(2+)-mediated signaling, which is necessary for the initiation of metamorphosis. Similarities in the morphology, physiology, and function of the sensory flask cells in sponge larvae with the sensory/neurosecretory cells in eumetazoan larvae suggest this sensory system predates the divergence of Porifera and Eumetazoa. © The Author 2015. Published by Oxford

  3. Espins and the actin cytoskeleton of hair cell stereocilia and sensory cell microvilli

    Science.gov (United States)

    Sekerková, Gabriella; Zheng, Lili; Loomis, Patricia A.; Mugnaini, Enrico; Bartles, James R.

    2008-01-01

    The espins are novel actin-bundling proteins that are produced in multiple isoforms from a single gene. They are present at high concentration in the parallel actin bundle of hair cell stereocilia and are the target of deafness mutations in mice and humans. Espins are also enriched in the microvilli of taste receptor cells, solitary chemoreceptor cells, vomeronasal sensory neurons and Merkel cells, suggesting that espins play important roles in the microvillar projections of vertebrate sensory cells. Espins are potent actin-bundling proteins that are not inhibited by Ca2+. In cells, they efficiently elongate parallel actin bundles and, thereby, help determine the steady-state length of microvilli and stereocilia. Espins bind actin monomer via their WH2 domain and can assemble actin bundles in cells. Certain espin isoforms can also bind phosphatidylinositol 4,5-bisphosphate, profilins or SH3 proteins. These biological activities distinguish espins from other actin-bundling proteins and may make them well-suited to sensory cells. PMID:16909209

  4. The expression of Toll-like receptor 4, 7 and co-receptors in neurochemical sub-populations of rat trigeminal ganglion sensory neurons.

    Science.gov (United States)

    Helley, M P; Abate, W; Jackson, S K; Bennett, J H; Thompson, S W N

    2015-12-03

    The recent discovery that mammalian nociceptors express Toll-like receptors (TLRs) has raised the possibility that these cells directly detect and respond to pathogens with implications for either direct nociceptor activation or sensitization. A range of neuronal TLRs have been identified, however a detailed description regarding the distribution of expression of these receptors within sub-populations of sensory neurons is lacking. There is also some debate as to the composition of the TLR4 receptor complex on sensory neurons. Here we use a range of techniques to quantify the expression of TLR4, TLR7 and some associated molecules within neurochemically-identified sub-populations of trigeminal (TG) and dorsal root (DRG) ganglion sensory neurons. We also detail the pattern of expression and co-expression of two isoforms of lysophosphatidylcholine acyltransferase (LPCAT), a phospholipid remodeling enzyme previously shown to be involved in the lipopolysaccharide-dependent TLR4 response in monocytes, within sensory ganglia. Immunohistochemistry shows that both TLR4 and TLR7 preferentially co-localize with transient receptor potential vallinoid 1 (TRPV1) and purinergic receptor P2X ligand-gated ion channel 3 (P2X3), markers of nociceptor populations, within both TG and DRG. A gene expression profile shows that TG sensory neurons express a range of TLR-associated molecules. LPCAT1 is expressed by a proportion of both nociceptors and non-nociceptive neurons. LPCAT2 immunostaining is absent from neuronal profiles within both TG and DRG and is confined to non-neuronal cell types under naïve conditions. Together, our results show that nociceptors express the molecular machinery required to directly respond to pathogenic challenge independently from the innate immune system. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Cell density and N-cadherin interactions regulate cell proliferation in the sensory epithelia of the inner ear.

    Science.gov (United States)

    Warchol, Mark E

    2002-04-01

    Sensory hair cells in the inner ears of nonmammalian vertebrates can regenerate after injury. In many species, replacement hair cells are produced by the proliferation of epithelial supporting cells. Thus, the ability of supporting cells to undergo renewed proliferation is a key determinant of regenerative ability. The present study used cultures of isolated inner ear sensory epithelia to identify cellular signals that regulate supporting cell proliferation. Small pieces of sensory epithelia from the chicken utricle were cultured in glass microwells. Under those conditions, cell proliferation was inversely related to local cell density. The signaling molecules N-cadherin, beta-catenin, and focal adhesion kinase were immunolocalized in the cultured epithelial cells, and high levels of phosphotyrosine immunoreactivity were present at cell-cell junctions and focal contacts of proliferating cells. Binding of microbeads coated with a function-blocking antibody to N-cadherin inhibited ongoing proliferation. The growth of epithelial cells was also affected by the density of extracellular matrix molecules. The results suggest that cell density, cell-cell contact, and the composition of the extracellular matrix may be critical influences on the regulation of sensory regeneration in the inner ear.

  6. Laser microdissection of sensory organ precursor cells of Drosophila microchaetes.

    Directory of Open Access Journals (Sweden)

    Eulalie Buffin

    Full Text Available BACKGROUND: In Drosophila, each external sensory organ originates from the division of a unique precursor cell (the sensory organ precursor cell or SOP. Each SOP is specified from a cluster of equivalent cells, called a proneural cluster, all of them competent to become SOP. Although, it is well known how SOP cells are selected from proneural clusters, little is known about the downstream genes that are regulated during SOP fate specification. METHODOLOGY/PRINCIPAL FINDINGS: In order to better understand the mechanism involved in the specification of these precursor cells, we combined laser microdissection, toisolate SOP cells, with transcriptome analysis, to study their RNA profile. Using this procedure, we found that genes that exhibit a 2-fold or greater expression in SOPs versus epithelial cells were mainly associated with Gene Ontology (GO terms related with cell fate determination and sensory organ specification. Furthermore, we found that several genes such as pebbled/hindsight, scabrous, miranda, senseless, or cut, known to be expressed in SOP cells by independent procedures, are particularly detected in laser microdissected SOP cells rather than in epithelial cells. CONCLUSIONS/SIGNIFICANCE: These results confirm the feasibility and the specificity of our laser microdissection based procedure. We anticipate that this analysis will give new insight into the selection and specification of neural precursor cells.

  7. Distinct types of glial cells populate the Drosophila antenna

    Directory of Open Access Journals (Sweden)

    Jhaveri Dhanisha

    2005-11-01

    Full Text Available Abstract Background The development of nervous systems involves reciprocal interactions between neurons and glia. In the Drosophila olfactory system, peripheral glial cells arise from sensory lineages specified by the basic helix-loop-helix transcription factor, Atonal. These glia wrap around the developing olfactory axons early during development and pattern the three distinct fascicles as they exit the antenna. In the moth Manduca sexta, an additional set of central glia migrate to the base of the antennal nerve where axons sort to their glomerular targets. In this work, we have investigated whether similar types of cells exist in the Drosophila antenna. Results We have used different P(Gal4 lines to drive Green Fluorescent Protein (GFP in distinct populations of cells within the Drosophila antenna. Mz317::GFP, a marker for cell body and perineural glia, labels the majority of peripheral glia. An additional ~30 glial cells detected by GH146::GFP do not derive from any of the sensory lineages and appear to migrate into the antenna from the brain. Their appearance in the third antennal segment is regulated by normal function of the Epidermal Growth Factor receptor and small GTPases. We denote these distinct populations of cells as Mz317-glia and GH146-glia respectively. In the adult, processes of GH146-glial cells ensheath the olfactory receptor neurons directly, while those of the Mz317-glia form a peripheral layer. Ablation of GH146-glia does not result in any significant effects on the patterning of the olfactory receptor axons. Conclusion We have demonstrated the presence of at least two distinct populations of glial cells within the Drosophila antenna. GH146-glial cells originate in the brain and migrate to the antenna along the newly formed olfactory axons. The number of cells populating the third segment of the antenna is regulated by signaling through the Epidermal Growth Factor receptor. These glia share several features of the sorting

  8. Connexin43 Hemichannels in Satellite Glial Cells, Can They Influence Sensory Neuron Activity?

    Directory of Open Access Journals (Sweden)

    Mauricio A. Retamal

    2017-11-01

    Full Text Available In this review article, we summarize the current insight on the role of Connexin- and Pannexin-based channels as modulators of sensory neurons. The somas of sensory neurons are located in sensory ganglia (i.e., trigeminal and nodose ganglia. It is well known that within sensory ganglia, sensory neurons do not form neither electrical nor chemical synapses. One of the reasons for this is that each soma is surrounded by glial cells, known as satellite glial cells (SGCs. Recent evidence shows that connexin43 (Cx43 hemichannels and probably pannexons located at SGCs have an important role in paracrine communication between glial cells and sensory neurons. This communication may be exerted via the release of bioactive molecules from SGCs and their subsequent action on receptors located at the soma of sensory neurons. The glio-neuronal communication seems to be relevant for the establishment of chronic pain, hyperalgesia and pathologies associated with tissue inflammation. Based on the current literature, it is possible to propose that Cx43 hemichannels expressed in SGCs could be a novel pharmacological target for treating chronic pain, which need to be directly evaluated in future studies.

  9. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia.

    Science.gov (United States)

    Togashi, Hideru

    2016-01-01

    Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism.

  10. Sensory Dysfunction and Sexuality in the U.S. Population of Older Adults.

    Science.gov (United States)

    Zhong, Selena; Pinto, Jayant M; Wroblewski, Kristen E; McClintock, Martha K

    2018-04-01

    first nationally representative study of sexuality and multisensory dysfunction in community-dwelling older adults. 4 of the 5 classic senses were measured with objective tests, and hearing was rated by interviewers in the context of their conversation. Medical and health care interventions that can reduce the burden of sensory dysfunction may improve older adults' sexual experience. Sensory dysfunction is associated with sexual inactivity, but not with sexual motivation. Among those who are sexually active, sensory dysfunction did not interfere with sexual expression. Improving the sexual experience of older adults requires a focus on sensory dysfunction as an impediment to sexual activity given that older adults remain sexually motivated. Zhong S, Pinto JM, Wroblewski KE, et al. Sensory Dysfunction and Sexuality in the U.S. Population of Older Adults. J Sex Med 2018;15:502-509. Copyright © 2018 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  11. CD8 T Cell Sensory Adaptation Dependent on TCR Avidity for Self-Antigens

    DEFF Research Database (Denmark)

    Marquez, M.-E.; Ellmeier, W.; Sanchez-Guajardo, Vanesa Maria

    2005-01-01

    dephosphorylation of linker for activation of T cells and ERK upon activation. Normal TCR levels and cytokine production were restored by culturing cells in the absence of TCR/spMHC interaction, demonstrating dynamic tuning of peripheral T cell responses. The effect of avidity for self-ligand(s) on this sensory...... ZAP-YEEI cells were enhanced. Our data provide support for central and peripheral sensory T cell adaptation induced as a function of TCR avidity for self-ligands and signaling level. This may contribute to buffer excessive autoreactivity while optimizing TCR repertoire usage....

  12. Toxicity to sensory neurons and Schwann cells in experimental linezolid-induced peripheral neuropathy.

    Science.gov (United States)

    Bobylev, Ilja; Maru, Helina; Joshi, Abhijeet R; Lehmann, Helmar C

    2016-03-01

    Peripheral neuropathy is a common side effect of prolonged treatment with linezolid. This study aimed to explore injurious effects of linezolid on cells of the peripheral nervous system and to establish in vivo and in vitro models of linezolid-induced peripheral neuropathy. C57BL/6 mice were treated with linezolid or vehicle over a total period of 4 weeks. Animals were monitored by weight, nerve conduction studies and behavioural tests. Neuropathic changes were assessed by morphometry on sciatic nerves and epidermal nerve fibre density in skin sections. Rodent sensory neuron and Schwann cell cultures were exposed to linezolid in vitro and assessed for mitochondrial dysfunction. Prolonged treatment with linezolid induced a mild, predominantly small sensory fibre neuropathy in vivo. Exposure of Schwann cells and sensory neurons to linezolid in vitro caused mitochondrial dysfunction primarily in neurons (and less prominently in Schwann cells). Sensory axonopathy could be partially prevented by co-administration of the Na(+)/Ca(2+) exchanger blocker KB-R7943. Clinical and pathological features of linezolid-induced peripheral neuropathy can be replicated in in vivo and in vitro models. Mitochondrial dysfunction may contribute to the axonal damage to sensory neurons that occurs after linezolid exposure. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Generation of Otic Sensory Neurons from Mouse Embryonic Stem Cells in 3D Culture

    Directory of Open Access Journals (Sweden)

    Michael Perny

    2017-12-01

    Full Text Available The peripheral hearing process taking place in the cochlea mainly depends on two distinct sensory cell types: the mechanosensitive hair cells and the spiral ganglion neurons (SGNs. The first respond to the mechanical stimulation exerted by sound pressure waves on their hair bundles by releasing neurotransmitters and thereby activating the latter. Loss of these sensorineural cells is associated with permanent hearing loss. Stem cell-based approaches aiming at cell replacement or in vitro drug testing to identify potential ototoxic, otoprotective, or regenerative compounds have lately gained attention as putative therapeutic strategies for hearing loss. Nevertheless, they rely on efficient and reliable protocols for the in vitro generation of cochlear sensory cells for their implementation. To this end, we have developed a differentiation protocol based on organoid culture systems, which mimics the most important steps of in vivo otic development, robustly guiding mouse embryonic stem cells (mESCs toward otic sensory neurons (OSNs. The stepwise differentiation of mESCs toward ectoderm was initiated using a quick aggregation method in presence of Matrigel in serum-free conditions. Non-neural ectoderm was induced via activation of bone morphogenetic protein (BMP signaling and concomitant inhibition of transforming growth factor beta (TGFβ signaling to prevent mesendoderm induction. Preplacodal and otic placode ectoderm was further induced by inhibition of BMP signaling and addition of fibroblast growth factor 2 (FGF2. Delamination and differentiation of SGNs was initiated by plating of the organoids on a 2D Matrigel-coated substrate. Supplementation with brain-derived neurotrophic factor (BDNF and neurotrophin-3 (NT-3 was used for further maturation until 15 days of in vitro differentiation. A large population of neurons with a clear bipolar morphology and functional excitability was derived from these cultures. Immunostaining and gene expression

  14. Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior.

    Science.gov (United States)

    Kobayashi, Kyogo; Nakano, Shunji; Amano, Mutsuki; Tsuboi, Daisuke; Nishioka, Tomoki; Ikeda, Shingo; Yokoyama, Genta; Kaibuchi, Kozo; Mori, Ikue

    2016-01-05

    Unveiling the molecular and cellular mechanisms underlying memory has been a challenge for the past few decades. Although synaptic plasticity is proven to be essential for memory formation, the significance of "single-cell memory" still remains elusive. Here, we exploited a primary culture system for the analysis of C. elegans neurons and show that a single thermosensory neuron has an ability to form, retain, and reset a temperature memory. Genetic and proteomic analyses found that the expression of the single-cell memory exhibits inter-individual variability, which is controlled by the evolutionarily conserved CaMKI/IV and Raf pathway. The variable responses of a sensory neuron influenced the neural activity of downstream interneurons, suggesting that modulation of the sensory neurons ultimately determines the behavioral output in C. elegans. Our results provide proof of single-cell memory and suggest that the individual differences in neural responses at the single-cell level can confer individuality. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Interplay between mast cells, enterochromaffin cells, and sensory signaling in the aging human bowel.

    Science.gov (United States)

    Yu, Y; Daly, D M; Adam, I J; Kitsanta, P; Hill, C J; Wild, J; Shorthouse, A; Grundy, D; Jiang, W

    2016-10-01

    Advanced age is associated with a reduction in clinical visceral pain perception. However, the underlying mechanisms remain largely unknown. Previous studies have suggested that an abnormal interplay between mast cells, enterochromaffin (EC) cells, and afferent nerves contribute to nociception in gastrointestinal disorders. The aim of this study was to investigate how aging affects afferent sensitivity and neuro-immune association in the human bowel. Mechanical and chemical sensitivity of human bowel afferents were examined by ex vivo afferent nerve recordings. Age-related changes in the density of mast cells, EC cells, sensory nerve terminals, and mast cell-nerve micro-anatomical association were investigated by histological and immune staining. Human afferents could be broadly classified into subpopulations displaying mechanical and chemical sensitivity, adaptation, chemo-sensitization, and recruitment. Interestingly human bowel afferent nerve sensitivity was attenuated with age. The density of substance P-immunoreactive (SP-IR) nerve varicosities was also reduced with age. In contrast, the density of ileal and colonic mucosal mast cells was increased with age, as was ileal EC cell number. An increased proportion of mast cells was found in close apposition to SP-IR nerves. Afferent sensitivity in human bowel was reduced with advancing age. Augmentation of mast cells and EC cell numbers and the mast cell-nerve association suggest a compensatory mechanism for sensory neurodegeneration. © 2016 The Authors. Neurogastroenterology & Motility Published by John Wiley & Sons Ltd.

  16. Depletion of resident macrophages does not alter sensory regeneration in the avian cochlea.

    Directory of Open Access Journals (Sweden)

    Mark E Warchol

    Full Text Available Macrophages are the primary effector cells of the innate immune system and are also activated in response to tissue injury. The avian cochlea contains a population of resident macrophages, but the precise function of those cells is not known. The present study characterized the behavior of cochlear macrophages after aminoglycoside ototoxicity and also examined the possible role of macrophages in sensory regeneration. We found that the undamaged chick cochlea contains a large resting population of macrophages that reside in the hyaline cell region, immediately outside the abneural (inferior border of the sensory epithelium. Following ototoxic injury, macrophages appear to migrate out of the hyaline cell region and towards the basilar membrane, congregating immediately below the lesioned sensory epithelium. In order to determine whether recruited macrophages contribute to the regeneration of sensory receptors, we quantified supporting cell proliferation and hair cell recovery after the elimination of most resident macrophages via application of liposomally-encapsulated clodronate. Examination of macrophage-depleted specimens at two days following ototoxic injury revealed no deficits in hair cell clearance, when compared to normal controls. In addition, we found that elimination of macrophages did not affect either regenerative proliferation of supporting cells or the production of replacement hair cells. However, we did find that macrophage-depleted cochleae contained reduced numbers of proliferative mesothelial cells below the basilar membrane. Our data suggest that macrophages are not required for normal debris clearance and regeneration, but that they may play a role in the maintenance of the basilar membrane.

  17. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    Science.gov (United States)

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  18. Ongoing cell death and immune influences on regeneration in the vestibular sensory organs

    Science.gov (United States)

    Warchol, M. E.; Matsui, J. I.; Simkus, E. L.; Ogilive, J. M.

    2001-01-01

    Hair cells in the vestibular organs of birds have a relatively short life span. Mature hair cells appear to die spontaneously and are then quickly replaced by new hair cells that arise from the division of epithelial supporting cells. A similar regenerative mechanism also results in hair cell replacement after ototoxic damage. The cellular basis of hair cell turnover in the avian ear is not understood. We are investigating the signaling pathways that lead to hair cell death and the relationship between ongoing cell death and cell production. In addition, work from our lab and others has demonstrated that the avian inner ear contains a resident population of macrophages and that enhanced numbers of macrophages are recruited to sites of hair cells lesions. Those observations suggest that macrophages and their secretory products (cytokines) may be involved in hair cell regeneration. Consistent with that suggestion, we have found that treatment with the anti-inflammatory drug dexamethasone reduces regenerative cell proliferation in the avian ear, and that certain macrophage-secreted cytokines can influence the proliferation of vestibular supporting cells and the survival of statoacoustic neurons. Those results suggest a role for the immune system in the process of sensory regeneration in the inner ear.

  19. Synaptic communication and signal processing among sensory cells in taste buds.

    Science.gov (United States)

    Chaudhari, Nirupa

    2014-08-15

    Taste buds (sensory structures embedded in oral epithelium) show a remarkable diversity of transmitters synthesized and secreted locally. The known transmitters accumulate in a cell type selective manner, with 5-HT and noradrenaline being limited to presynaptic cells, GABA being synthesized in both presynaptic and glial-like cells, and acetylcholine and ATP used for signalling by receptor cells. Each of these transmitters participates in local negative or positive feedback circuits that target particular cell types. Overall, the role of ATP is the best elucidated. ATP serves as a principal afferent transmitter, and also is the key trigger for autocrine positive feedback and paracrine circuits that result in potentiation (via adenosine) or inhibition (via GABA or 5-HT). While many of the cellular receptors and mechanisms for these circuits are known, their impact on sensory detection and perception remains to be elaborated in most instances. This brief review examines what is known, and some of the open questions and controversies surrounding the transmitters and circuits of the taste periphery. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  20. Respiration Gates Sensory Input Responses in the Mitral Cell Layer of the Olfactory Bulb

    Science.gov (United States)

    Short, Shaina M.; Morse, Thomas M.; McTavish, Thomas S.; Shepherd, Gordon M.; Verhagen, Justus V.

    2016-01-01

    Respiration plays an essential role in odor processing. Even in the absence of odors, oscillating excitatory and inhibitory activity in the olfactory bulb synchronizes with respiration, commonly resulting in a burst of action potentials in mammalian mitral/tufted cells (MTCs) during the transition from inhalation to exhalation. This excitation is followed by inhibition that quiets MTC activity in both the glomerular and granule cell layers. Odor processing is hypothesized to be modulated by and may even rely on respiration-mediated activity, yet exactly how respiration influences sensory processing by MTCs is still not well understood. By using optogenetics to stimulate discrete sensory inputs in vivo, it was possible to temporally vary the stimulus to occur at unique phases of each respiration. Single unit recordings obtained from the mitral cell layer were used to map spatiotemporal patterns of glomerular evoked responses that were unique to stimulations occurring during periods of inhalation or exhalation. Sensory evoked activity in MTCs was gated to periods outside phasic respiratory mediated firing, causing net shifts in MTC activity across the cycle. In contrast, odor evoked inhibitory responses appear to be permitted throughout the respiratory cycle. Computational models were used to further explore mechanisms of inhibition that can be activated by respiratory activity and influence MTC responses. In silico results indicate that both periglomerular and granule cell inhibition can be activated by respiration to internally gate sensory responses in the olfactory bulb. Both the respiration rate and strength of lateral connectivity influenced inhibitory mechanisms that gate sensory evoked responses. PMID:28005923

  1. Artificial induction of Sox21 regulates sensory cell formation in the embryonic chicken inner ear.

    Directory of Open Access Journals (Sweden)

    Stephen D Freeman

    Full Text Available During embryonic development, hair cells and support cells in the sensory epithelia of the inner ear derive from progenitors that express Sox2, a member of the SoxB1 family of transcription factors. Sox2 is essential for sensory specification, but high levels of Sox2 expression appear to inhibit hair cell differentiation, suggesting that factors regulating Sox2 activity could be critical for both processes. Antagonistic interactions between SoxB1 and SoxB2 factors are known to regulate cell differentiation in neural tissue, which led us to investigate the potential roles of the SoxB2 member Sox21 during chicken inner ear development. Sox21 is normally expressed by sensory progenitors within vestibular and auditory regions of the early embryonic chicken inner ear. At later stages, Sox21 is differentially expressed in the vestibular and auditory organs. Sox21 is restricted to the support cell layer of the auditory epithelium, while it is enriched in the hair cell layer of the vestibular organs. To test Sox21 function, we used two temporally distinct gain-of-function approaches. Sustained over-expression of Sox21 from early developmental stages prevented prosensory specification, and abolished the formation of both hair cells and support cells. However, later induction of Sox21 expression at the time of hair cell formation in organotypic cultures of vestibular epithelia inhibited endogenous Sox2 expression and Notch activity, and biased progenitor cells towards a hair cell fate. Interestingly, Sox21 did not promote hair cell differentiation in the immature auditory epithelium, which fits with the expression of endogenous Sox21 within mature support cells in this tissue. These results suggest that interactions among endogenous SoxB family transcription factors may regulate sensory cell formation in the inner ear, but in a context-dependent manner.

  2. Effect of gabazine on sensory stimulation train evoked response in mouse cerebellar Purkinje cells.

    Science.gov (United States)

    Bing, Yan-Hua; Jin, Wen-Zhe; Sun, Lei; Chu, Chun-Ping; Qiu, De-Lai

    2015-02-01

    Cerebellar Purkinje cells (PCs) respond to sensory stimulation via climbing fiber and mossy fiber-granule cell pathways, and generate motor-related outputs according to internal rules of integration and computation. However, the dynamic properties of sensory information processed by PC in mouse cerebellar cortex are currently unclear. In the present study, we examined the effects of the gamma-aminobutyric acid receptor A (GABA(A)) antagonist, gabazine, on the stimulation train on the simple spike firing of PCs by electrophysiological recordings method. Our data showed that the output of cerebellar PCs could be significantly affected by all pulses of the low-frequency (0.25 -2 Hz) sensory stimulation train, but only by the 1st and 2nd pulses of the high-frequency (≥ 4 Hz) sensory stimulation train. In the presence of gabazine (20 μM), each pulse of 1 Hz facial stimulation evoked simple spike firing in the PCs, but only the 1st and 2nd pulses of 4 Hz stimulation induced an increase in simple spike firing of the PCs. These results indicated that GABAA receptor-mediated inhibition did not significantly affect the frequency properties of sensory stimulation evoked responses in the mouse cerebellar PCs.

  3. Epigenetic influences on sensory regeneration: histone deacetylases regulate supporting cell proliferation in the avian utricle.

    Science.gov (United States)

    Slattery, Eric L; Speck, Judith D; Warchol, Mark E

    2009-09-01

    The sensory hair cells of the cochlea and vestibular organs are essential for normal hearing and balance function. The mammalian ear possesses a very limited ability to regenerate hair cells and their loss can lead to permanent sensory impairment. In contrast, hair cells in the avian ear are quickly regenerated after acoustic trauma or ototoxic injury. The very different regenerative abilities of the avian vs. mammalian ear can be attributed to differences in injury-evoked expression of genes that either promote or inhibit the production of new hair cells. Gene expression is regulated both by the binding of cis-regulatory molecules to promoter regions as well as through structural modifications of chromatin (e.g., methylation and acetylation). This study examined effects of histone deacetylases (HDACs), whose main function is to modify histone acetylation, on the regulation of regenerative proliferation in the chick utricle. Cultures of regenerating utricles and dissociated cells from the utricular sensory epithelia were treated with the HDAC inhibitors valproic acid, trichostatin A, sodium butyrate, and MS-275. All of these molecules prevent the enzymatic removal of acetyl groups from histones, thus maintaining nuclear chromatin in a "relaxed" (open) configuration. Treatment with all inhibitors resulted in comparable decreases in supporting cell proliferation. We also observed that treatment with the HDAC1-, 2-, and 3-specific inhibitor MS-275 was sufficient to reduce proliferation and that two class I HDACs--HDAC1 and HDAC2--were expressed in the sensory epithelium of the utricle. These results suggest that inhibition of specific type I HDACs is sufficient to prevent cell cycle entry in supporting cells. Notably, treatment with HDAC inhibitors did not affect the differentiation of replacement hair cells. We conclude that histone deacetylation is a positive regulator of regenerative proliferation but is not critical for avian hair cell differentiation.

  4. Different requirements for GFRα2-signaling in three populations of cutaneous sensory neurons.

    Science.gov (United States)

    Kupari, Jussi; Airaksinen, Matti S

    2014-01-01

    Many primary sensory neurons in mouse dorsal root ganglia (DRG) express one or several GFRα's, the ligand-binding receptors of the GDNF family, and their common signaling receptor Ret. GFRα2, the principal receptor for neurturin, is expressed in most of the small nonpeptidergic DRG neurons, but also in some large DRG neurons that start to express Ret earlier. Previously, GFRα2 has been shown to be crucial for the soma size of small nonpeptidergic nociceptors and for their target innervation of glabrous epidermis. However, little is known about this receptor in other Ret-expressing DRG neuron populations. Here we have investigated two populations of Ret-positive low-threshold mechanoreceptors that innervate different types of hair follicles on mouse back skin: the small C-LTMRs and the large Aβ-LTMRs. Using GFRα2-KO mice and immunohistochemistry we found that, similar to the nonpeptidergic nociceptors, GFRα2 controls the cell size but not the survival of both C-LTMRs and Aβ-LTMRs. In contrast to the nonpeptidergic neurons, GFRα2 is not required for the target innervation of C-LTMRs and Aβ-LTMRs in the back skin. These results suggest that different factors drive target innervation in these three populations of neurons. In addition, the observation that the large Ret-positive DRG neurons lack GFRα2 immunoreactivity in mature animals suggests that these neurons switch their GFRα signaling pathways during postnatal development.

  5. Dynamic properties of sensory stimulation evoked responses in mouse cerebellar granule cell layer and molecular layer.

    Science.gov (United States)

    Bing, Yan-Hua; Zhang, Guang-Jian; Sun, Lei; Chu, Chun-Ping; Qiu, De-Lai

    2015-01-12

    Sensory information coming from climbing fiber and mossy fiber-granule cell pathways, generates motor-related outputs according to internal rules of integration and computation in the cerebellar cortex. However, the dynamic properties of sensory information processing in mouse cerebellar cortex are less understood. Here, we studied the dynamic properties of sensory stimulation-evoked responses in the cerebellar granule cell layer (GCL) and molecular layer (ML) by electrophysiological recordings method. Our data showed that air-puff stimulation (5-10 ms in duration) of the ipsilateral whisker pad evoked single-peak responses in the GCL and ML; whereas a duration of stimulation ≥30 ms in GCL and ≥60 ms in ML, evoked double-peak responses that corresponded with stimulation-on and -off responses via mossy fiber pathway. The highest frequency of stimulation train for evoking GCL responses was 33 Hz. In contrast, the highest frequency of stimulation train for evoking ML responses was 4 Hz. These results indicate that the cerebellar granule cells transfer the high-fidelity sensory information from mossy fibers, which is cut-off by molecular layer interneurons (MLIs). Our results suggest that the MLIs network acts as a low-pass filter during the processing of high-frequency sensory information. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Cortically-controlled population stochastic facilitation as a plausible substrate for guiding sensory transfer across the thalamic gateway.

    Directory of Open Access Journals (Sweden)

    Sébastien Béhuret

    Full Text Available The thalamus is the primary gateway that relays sensory information to the cerebral cortex. While a single recipient cortical cell receives the convergence of many principal relay cells of the thalamus, each thalamic cell in turn integrates a dense and distributed synaptic feedback from the cortex. During sensory processing, the influence of this functional loop remains largely ignored. Using dynamic-clamp techniques in thalamic slices in vitro, we combined theoretical and experimental approaches to implement a realistic hybrid retino-thalamo-cortical pathway mixing biological cells and simulated circuits. The synaptic bombardment of cortical origin was mimicked through the injection of a stochastic mixture of excitatory and inhibitory conductances, resulting in a gradable correlation level of afferent activity shared by thalamic cells. The study of the impact of the simulated cortical input on the global retinocortical signal transfer efficiency revealed a novel control mechanism resulting from the collective resonance of all thalamic relay neurons. We show here that the transfer efficiency of sensory input transmission depends on three key features: i the number of thalamocortical cells involved in the many-to-one convergence from thalamus to cortex, ii the statistics of the corticothalamic synaptic bombardment and iii the level of correlation imposed between converging thalamic relay cells. In particular, our results demonstrate counterintuitively that the retinocortical signal transfer efficiency increases when the level of correlation across thalamic cells decreases. This suggests that the transfer efficiency of relay cells could be selectively amplified when they become simultaneously desynchronized by the cortical feedback. When applied to the intact brain, this network regulation mechanism could direct an attentional focus to specific thalamic subassemblies and select the appropriate input lines to the cortex according to the descending

  7. Sensory nerve action potentials and sensory perception in women with arthritis of the hand.

    Science.gov (United States)

    Calder, Kristina M; Martin, Alison; Lydiate, Jessica; MacDermid, Joy C; Galea, Victoria; MacIntyre, Norma J

    2012-05-10

    Arthritis of the hand can limit a person's ability to perform daily activities. Whether or not sensory deficits contribute to the disability in this population remains unknown. The primary purpose of this study was to determine if women with osteoarthritis (OA) or rheumatoid arthritis (RA) of the hand have sensory impairments. Sensory function in the dominant hand of women with hand OA or RA and healthy women was evaluated by measuring sensory nerve action potentials (SNAPs) from the median, ulnar and radial nerves, sensory mapping (SM), and vibratory and current perception thresholds (VPT and CPT, respectively) of the second and fifth digits. All SNAP amplitudes were significantly lower for the hand OA and hand RA groups compared with the healthy group (p sensory fibers in the median, ulnar and radial nerves. Less apparent were losses in conduction speed or sensory perception.

  8. Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices

    Science.gov (United States)

    Tremblay, Marie-Ève; Zettel, Martha L.; Ison, James R.; Allen, Paul D.; Majewska, Ania K.

    2011-01-01

    Normal aging is often accompanied by a progressive loss of receptor sensitivity in hearing and vision, whose consequences on cellular function in cortical sensory areas have remained largely unknown. By examining the primary auditory (A1) and visual (V1) cortices in two inbred strains of mice undergoing either age-related loss of audition (C57BL/6J) or vision (CBA/CaJ), we were able to describe cellular and subcellular changes that were associated with normal aging (occurring in A1 and V1 of both strains) or specifically with age-related sensory loss (only in A1 of C57BL/6J or V1 of CBA/CaJ), using immunocytochemical electron microscopy and light microscopy. While the changes were subtle in neurons, glial cells and especially microglia were transformed in aged animals. Microglia became more numerous and irregularly distributed, displayed more variable cell body and process morphologies, occupied smaller territories, and accumulated phagocytic inclusions that often displayed ultrastructural features of synaptic elements. Additionally, evidence of myelination defects were observed, and aged oligodendrocytes became more numerous and were more often encountered in contiguous pairs. Most of these effects were profoundly exacerbated by age-related sensory loss. Together, our results suggest that the age-related alteration of glial cells in sensory cortical areas can be accelerated by activity-driven central mechanisms that result from an age-related loss of peripheral sensitivity. In light of our observations, these age-related changes in sensory function should be considered when investigating cellular, cortical and behavioral functions throughout the lifespan in these commonly used C57BL/6J and CBA/CaJ mouse models. PMID:22223464

  9. L-Amino Acids Elicit Diverse Response Patterns in Taste Sensory Cells: A Role for Multiple Receptors

    Science.gov (United States)

    Pal Choudhuri, Shreoshi; Delay, Rona J.; Delay, Eugene R.

    2015-01-01

    Umami, the fifth basic taste, is elicited by the L-amino acid, glutamate. A unique characteristic of umami taste is the response potentiation by 5’ ribonucleotide monophosphates, which are also capable of eliciting an umami taste. Initial reports using human embryonic kidney (HEK) cells suggested that there is one broadly tuned receptor heterodimer, T1r1+T1r3, which detects L-glutamate and all other L-amino acids. However, there is growing evidence that multiple receptors detect glutamate in the oral cavity. While much is understood about glutamate transduction, the mechanisms for detecting the tastes of other L-amino acids are less well understood. We used calcium imaging of isolated taste sensory cells and taste cell clusters from the circumvallate and foliate papillae of C57BL/6J and T1r3 knockout mice to determine if other receptors might also be involved in detection of L-amino acids. Ratiometric imaging with Fura-2 was used to study calcium responses to monopotassium L-glutamate, L-serine, L-arginine, and L-glutamine, with and without inosine 5’ monophosphate (IMP). The results of these experiments showed that the response patterns elicited by L-amino acids varied significantly across taste sensory cells. L-amino acids other than glutamate also elicited synergistic responses in a subset of taste sensory cells. Along with its role in synergism, IMP alone elicited a response in a large number of taste sensory cells. Our data indicate that synergistic and non-synergistic responses to L-amino acids and IMP are mediated by multiple receptors or possibly a receptor complex. PMID:26110622

  10. Conversion of neurons and glia to external-cell fates in the external sensory organs of Drosophila hamlet mutants by a cousin-cousin cell-type respecification.

    Science.gov (United States)

    Moore, Adrian W; Roegiers, Fabrice; Jan, Lily Y; Jan, Yuh-Nung

    2004-03-15

    The Drosophila external sensory organ forms in a lineage elaborating from a single precursor cell via a stereotypical series of asymmetric divisions. HAMLET transcription factor expression demarcates the lineage branch that generates two internal cell types, the external sensory neuron and thecogen. In HAMLET mutant organs, these internal cells are converted to external cells via an unprecedented cousin-cousin cell-fate respecification event. Conversely, ectopic HAMLET expression in the external cell branch leads to internal cell production. The fate-determining signals NOTCH and PAX2 act at multiple stages of lineage elaboration and HAMLET acts to modulate their activity in a branch-specific manner.

  11. Anatomical and molecular consequences of Unilateral Naris Closure on two populations of olfactory sensory neurons expressing defined odorant receptors.

    Science.gov (United States)

    Molinas, Adrien; Aoudé, Imad; Soubeyre, Vanessa; Tazir, Bassim; Cadiou, Hervé; Grosmaitre, Xavier

    2016-07-28

    Mammalian olfactory sensory neurons (OSNs), the primary elements of the olfactory system, are located in the olfactory epithelium lining the nasal cavity. Exposed to the environment, their lifespan is short. Consequently, OSNs are regularly regenerated and several reports show that activity strongly modulates their development and regeneration: the peripheral olfactory system can adjust to the amount of stimulus through compensatory mechanisms. Unilateral naris occlusion (UNO) was frequently used to investigate this mechanism at the entire epithelium level. However, there is little data regarding the effects of UNO at the cellular level, especially on individual neuronal populations expressing a defined odorant receptor. Here, using UNO during the first three postnatal weeks, we analyzed the anatomical and molecular consequences of sensory deprivation in OSNs populations expressing the MOR23 and M71 receptors. The density of MOR23-expressing neurons is decreased in the closed side while UNO does not affect the density of M71-expressing neurons. Using Real Time qPCR on isolated neurons, we observed that UNO modulates the transcript levels for transduction pathway proteins (odorant receptors, CNGA2, PDE1c). The transcripts modulated by UNO will differ between populations depending on the receptor expressed. These results suggest that sensory deprivation will have different effects on different OSNs' populations. As a consequence, early experience will shape the functional properties of OSNs differently depending on the type of odorant receptor they express. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Effects of gamma-irradiation before and after cooking on bacterial population and sensory quality of Dakgalbi

    International Nuclear Information System (INIS)

    Yoon, Young Min; Park, Jong-Heum; Lee, Ji-Hye; Park, Jae-Nam; Park, Jin-Kyu; Sung, Nak-Yun; Song, Beom-Seok; Kim, Jae-Hun; Yoon, Yohan; Gao, Meixu; Yook, Hong-Sun; Lee, Ju-Woon

    2012-01-01

    The purpose of this study was to compare the effect of gamma irradiation on the total bacterial population and the sensory quality of Dakgalbi irradiated before and after cooking. Fresh chicken meat was cut into small pieces and used to prepare Dakgalbi. For the preparation of Dakgalbi cooked with gamma-irradiated chicken meat and sauce (IBC), raw chicken meat and Dakgalbi sauce were irradiated and then stir-fried. For the preparation of Dakgalbi irradiated after cooking with raw chicken meat and sauce (IAC), raw chicken meat and Dakgalbi sauce were first cooked and subsequently irradiated. Under the accelerated storage condition of 35 °C for 7 days, bacteria in IBC were below the detection limit (1 log CFU/g) on day 1 but were detected on day 2 and gradually increased hereafter. In IAC, on the other hand, bacteria were not detected at all. Evaluation of sensory quality also decreased on both samples. However, IAC showed a better trend. Our results indicate that IAC protocol was a more effective method for reducing bacterial growth in Dakgalbi. - Highlights: ► We compared the microbial safety and sensory property of Dakgalbi irradiated before and after cooking. ► Dakgalbi irradiated after cooking can be more effective processing method on microbial safety. ► Sensory property decreased on both Dakgalbis by irradiation-induced off-flavor. ► Dakgalbi irradiated after cooking showed a better tendency on the sensory evaluation.

  13. Memory-guided sensory comparisons in the prefrontal cortex: contribution of putative pyramidal cells and interneurons.

    Science.gov (United States)

    Hussar, Cory R; Pasternak, Tatiana

    2012-02-22

    Comparing two stimuli that occur at different times demands the coordination of bottom-up and top-down processes. It has been hypothesized that the dorsolateral prefrontal (PFC) cortex, the likely source of top-down cortical influences, plays a key role in such tasks, contributing to both maintenance and sensory comparisons. We examined this hypothesis by recording from the PFC of monkeys comparing directions of two moving stimuli, S1 and S2, separated by a memory delay. We determined the contribution of the two principal cell types to these processes by classifying neurons into broad-spiking (BS) putative pyramidal cells and narrow-spiking (NS) putative local interneurons. During the delay, BS cells were more likely to exhibit anticipatory modulation and represent the remembered direction. While this representation was transient, appearing at different times in different neurons, it weakened when direction was not task relevant, suggesting its utility. During S2, both putative cell types showed comparison-related activity modulations. These modulations were of two types, each carried by different neurons, which either preferred trials with stimuli moving in the same direction or trials with stimuli of different directions. These comparison effects were strongly correlated with choice, suggesting their role in circuitry underlying decision making. These results provide the first demonstration of distinct contributions made by principal cell types to memory-guided perceptual decisions. During sensory stimulation both cell types represent behaviorally relevant stimulus features contributing to comparison and decision-related activity. However in the absence of sensory stimulation, putative pyramidal cells dominated, carrying information about the elapsed time and the preceding direction.

  14. Localization of SSeCKS in unmyelinated primary sensory neurons

    Directory of Open Access Journals (Sweden)

    Siegel Sandra M

    2008-03-01

    Full Text Available Abstract Background SSeCKS (Src SupprEssed C Kinase Substrate is a proposed protein kinase C substrate/A kinase anchoring protein (AKAP that has recently been characterized in the rat peripheral nervous system. It has been shown that approximately 40% of small primary sensory neurons contain SSeCKS-immunoreactivity in a population largely separate from substance P (95.2%, calcitonin gene related peptide (95.3%, or fluoride resistant acid phosphatase (55.0% labeled cells. In the spinal cord, it was found that SSeCKS-immunoreactive axon collaterals terminate in the dorsal third of lamina II outer in a region similar to that of unmyelinated C-, or small diameter myelinated Aδ-, fibers. However, the precise characterization of the anatomical profile of the primary sensory neurons containing SSeCKS remains to be determined. Here, immunohistochemical labeling at the light and ultrastructural level is used to clarify the myelination status of SSeCKS-containing sensory neuron axons and to further clarify the morphometric, and provide insight into the functional, classification of SSeCKS-IR sensory neurons. Methods Colocalization studies of SSeCKS with myelination markers, ultrastructural localization of SSeCKS labeling and ablation of largely unmyelinated sensory fibers by neonatal capsaicin administration were all used to establish whether SSeCKS containing sensory neurons represent a subpopulation of unmyelinated primary sensory C-fibers. Results Double labeling studies of SSeCKS with CNPase in the dorsal horn and Pzero in the periphery showed that SSeCKS immunoreactivity was observed predominantly in association with unmyelinated primary sensory fibers. At the ultrastructural level, SSeCKS immunoreactivity was most commonly associated with axonal membrane margins of unmyelinated fibers. In capsaicin treated rats, SSeCKS immunoreactivity was essentially obliterated in the dorsal horn while in dorsal root ganglia quantitative analysis revealed a 43

  15. Localization of calcium in the sensory cells of the Dionaea trigger hair by laser micro-mass analysis (LAMMA)

    International Nuclear Information System (INIS)

    Buchen, B.; Schröder, W.H.

    1986-01-01

    In Dionaea, mechanical bending of the trigger hair induces action potentials which spread over the trap lobes to the motor cells (review Bentrup 1979). The perception of the stimulus and its transformation into a physiological signal occurs in a ring of specialized epidermal cells in the indentation zone of the trigger hair. These sensory cells (Haberlandt 1906) are characterized by a highly evolved ER complex at the apical and the basal cell pole. The ER surrounds several vacuoles containing poly phenols (Buchen et al. 1983). In order to study the function of these cell structures in sensory transduction, we examined the development of the trigger hair (Casser et al. 1985). During its development, a change in the membrane potential could be measured for the first time when the structural polarity of the sensory cell was established. Yet the short action potentials which are necessary for trap closure were fired only if the typical ER complex in the cell poles was visible. Since membrane potential changes are mediated by ions, we tried to identify and to localize ions possibly involved in these processes. Here we present the first results

  16. Adipose-derived stromal cells enhance auditory neuron survival in an animal model of sensory hearing loss.

    Science.gov (United States)

    Schendzielorz, Philipp; Vollmer, Maike; Rak, Kristen; Wiegner, Armin; Nada, Nashwa; Radeloff, Katrin; Hagen, Rudolf; Radeloff, Andreas

    2017-10-01

    A cochlear implant (CI) is an electronic prosthesis that can partially restore speech perception capabilities. Optimum information transfer from the cochlea to the central auditory system requires a proper functioning auditory nerve (AN) that is electrically stimulated by the device. In deafness, the lack of neurotrophic support, normally provided by the sensory cells of the inner ear, however, leads to gradual degeneration of auditory neurons with undesirable consequences for CI performance. We evaluated the potential of adipose-derived stromal cells (ASCs) that are known to produce neurotrophic factors to prevent neural degeneration in sensory hearing loss. For this, co-cultures of ASCs with auditory neurons have been studied, and autologous ASC transplantation has been performed in a guinea pig model of gentamicin-induced sensory hearing loss. In vitro ASCs were neuroprotective and considerably increased the neuritogenesis of auditory neurons. In vivo transplantation of ASCs into the scala tympani resulted in an enhanced survival of auditory neurons. Specifically, peripheral AN processes that are assumed to be the optimal activation site for CI stimulation and that are particularly vulnerable to hair cell loss showed a significantly higher survival rate in ASC-treated ears. ASC transplantation into the inner ear may restore neurotrophic support in sensory hearing loss and may help to improve CI performance by enhanced AN survival. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Involvement of p53 and Bcl-2 in sensory cell degeneration in aging rat cochleae.

    Science.gov (United States)

    Xu, Yang; Yang, Wei Ping; Hu, Bo Hua; Yang, Shiming; Henderson, Donald

    2017-06-01

    p53 and Bcl-2 (B-cell lymphoma 2) are involved in the process of sensory cell degeneration in aging cochleae. To determine molecular players in age-related hair cell degeneration, this study examined the changes in p53 and Bcl-2 expression at different stages of apoptotic and necrotic death of hair cells in aging rat cochleae. Young (3-4 months) and aging (23-24 months) Fisher 344/NHsd rats were used. The thresholds of the auditory brainstem response (ABR) were measured to determine the auditory function. Immunolabeling was performed to determine the expression of p53 and Bcl-2 proteins in the sensory epithelium. Propidium iodide staining was performed to determine the morphologic changes in hair cell nuclei. Aging rats exhibited a significant elevation in ABR thresholds at all tested frequencies (p aging hair cells showing the early signs of apoptotic changes in their nuclei. The Bcl-2 expression increase was also observed in hair cells displaying early signs of necrosis. As the hair cell degenerative process advanced, p53 and Bcl-2 immunoreactivity became reduced or absent. In the areas where no detectable nuclear staining was present, p53 and Bcl-2 immunoreactivity was absent.

  18. Zika Virus Persistently and Productively Infects Primary Adult Sensory Neurons In Vitro

    Directory of Open Access Journals (Sweden)

    Brianna K. Swartwout

    2017-10-01

    Full Text Available Zika virus (ZIKV has recently surged in human populations, causing an increase in congenital and Guillain-Barré syndromes. While sexual transmission and presence of ZIKV in urine, semen, vaginal secretions, and saliva have been established, the origin of persistent virus shedding into biological secretions is not clear. Using a primary adult murine neuronal culture model, we have determined that ZIKV persistently and productively infects sensory neurons of the trigeminal and dorsal root ganglia, which innervate glands and mucosa of the face and the genitourinary tract, respectively, without apparent injury. Autonomic neurons that innervate these regions are not permissive for infection. However, productive ZIKV infection of satellite glial cells that surround and support sensory and autonomic neurons in peripheral ganglia results in their destruction. Persistent infection of sensory neurons, without affecting their viability, provides a potential reservoir for viral shedding in biological secretions for extended periods of time after infection. Furthermore, viral destruction of satellite glial cells may contribute to the development of Guillain-Barré Syndrome via an alternative mechanism to the established autoimmune response.

  19. Zika Virus Persistently and Productively Infects Primary Adult Sensory Neurons In Vitro.

    Science.gov (United States)

    Swartwout, Brianna K; Zlotnick, Marta G; Saver, Ashley E; McKenna, Caroline M; Bertke, Andrea S

    2017-10-13

    Zika virus (ZIKV) has recently surged in human populations, causing an increase in congenital and Guillain-Barré syndromes. While sexual transmission and presence of ZIKV in urine, semen, vaginal secretions, and saliva have been established, the origin of persistent virus shedding into biological secretions is not clear. Using a primary adult murine neuronal culture model, we have determined that ZIKV persistently and productively infects sensory neurons of the trigeminal and dorsal root ganglia, which innervate glands and mucosa of the face and the genitourinary tract, respectively, without apparent injury. Autonomic neurons that innervate these regions are not permissive for infection. However, productive ZIKV infection of satellite glial cells that surround and support sensory and autonomic neurons in peripheral ganglia results in their destruction. Persistent infection of sensory neurons, without affecting their viability, provides a potential reservoir for viral shedding in biological secretions for extended periods of time after infection. Furthermore, viral destruction of satellite glial cells may contribute to the development of Guillain-Barré Syndrome via an alternative mechanism to the established autoimmune response.

  20. Therapeutic potential of stem cells in auditory hair cell repair

    Directory of Open Access Journals (Sweden)

    Ryuji Hata

    2009-01-01

    Full Text Available The prevalence of acquired hearing loss is very high. About 10% of the total population and more than one third of the population over 65 years suffer from debilitating hearing loss. The most common type of hearing loss in adults is idiopathic sudden sensorineural hearing loss (ISSHL. In the majority of cases, ISSHL is permanent and typically associated with loss of sensory hair cells in the organ of Corti. Following the loss of sensory hair cells, the auditory neurons undergo secondary degeneration. Sensory hair cells and auditory neurons do not regenerate throughout life, and loss of these cells is irreversible and cumulative. However, recent advances in stem cell biology have gained hope that stem cell therapy comes closer to regenerating sensory hair cells in humans. A major advance in the prospects for the use of stem cells to restore normal hearing comes with the recent discovery that hair cells can be generated ex vivo from embryonic stem (ES cells, adult inner ear stem cells and neural stem cells. Furthermore, there is increasing evidence that stem cells can promote damaged cell repair in part by secreting diffusible molecules such as growth factors. These results suggest that stem-cell-based treatment regimens can be applicable to the damaged inner ear as future clinical applications.Previously we have established an animal model of cochlear ischemia in gerbils and showed progressive hair cell loss up to 4 days after ischemia. Auditory brain stem response (ABR recordings have demonstrated that this gerbil model displays severe deafness just after cochlear ischemia and gradually recovers thereafter. These pathological findings and clinical manifestations are reminiscent of ISSHL in humans. In this study, we have shown the effectiveness of stem cell therapy by using this animal model of ISSHL.

  1. GABA and its B-receptor are present at the node of Ranvier in a small population of sensory fibers, implicating a role in myelination

    DEFF Research Database (Denmark)

    Corell, Mikael; Wicher, Grzegorz; Radomska, Katarzyna J

    2015-01-01

    throughout development and after injury. A small population of myelinated sensory fibers displayed all of these molecules at the node of Ranvier, indicating a role in axon-glia communication. Functional studies using GABAB receptor agonists and antagonists were performed in fetal DRG primary cultures...... to study the function of this receptor during development. The results show that GABA, via its B receptor, is involved in the myelination process but not in Schwann cell proliferation. The data from adult nerves suggest additional roles in axon-glia communication after injury.......The γ-aminobutyric acid (GABA) type B receptor has been implicated in glial cell development in the peripheral nervous system (PNS), although the exact function of GABA signaling is not known. To investigate GABA and its B receptor in PNS development and degeneration, we studied the expression...

  2. The L1-type cell adhesion molecule Neuroglian is necessary for maintenance of sensory axon advance in the Drosophila embryo

    Directory of Open Access Journals (Sweden)

    Martin Veronica

    2008-04-01

    Full Text Available Abstract Background Cell adhesion molecules have long been implicated in the regulation of axon growth, but the precise cellular roles played by individual cell adhesion molecules and the molecular basis for their action are still not well understood. We have used the sensory system of the Drosophila embryo to shed light on the mechanism by which the L1-type cell adhesion molecule Neuroglian regulates axon growth. Results We have found a highly penetrant sensory axon stalling phenotype in neuroglian mutant embryos. Axons stalled at a variety of positions along their normal trajectory, but most commonly in the periphery some distance along the peripheral nerve. All lateral and dorsal cluster sensory neurons examined, except for the dorsal cluster neuron dbd, showed stalling. Sensory axons were never seen to project along inappropriate pathways in neuroglian mutants and stalled axons showed normal patterns of fasciculation within nerves. The growth cones of stalled axons possessed a simple morphology, similar to their appearance in wild-type embryos when advancing along nerves. Driving expression of the wild-type form of Neuroglian in sensory neurons alone rescued the neuroglian mutant phenotype of both pioneering and follower neurons. A partial rescue was achieved by expressing the Neuroglian extracellular domain. Over/mis-expression of Neuroglian in all neurons, oenocytes or trachea had no apparent effect on sensory axon growth. Conclusion We conclude that Neuroglian is necessary to maintain axon advance along axonal substrates, but is not required for initiation of axon outgrowth, axon fasciculation or recognition of correct growth substrates. Expression of Neuroglian in sensory neurons alone is sufficient to promote axon advance and the intracellular region of the molecule is largely dispensable for this function. It is unlikely, therefore, that Nrg acts as a molecular 'clutch' to couple adhesion of F-actin within the growth cone to the

  3. Sensory adaptation for timing perception.

    Science.gov (United States)

    Roseboom, Warrick; Linares, Daniel; Nishida, Shin'ya

    2015-04-22

    Recent sensory experience modifies subjective timing perception. For example, when visual events repeatedly lead auditory events, such as when the sound and video tracks of a movie are out of sync, subsequent vision-leads-audio presentations are reported as more simultaneous. This phenomenon could provide insights into the fundamental problem of how timing is represented in the brain, but the underlying mechanisms are poorly understood. Here, we show that the effect of recent experience on timing perception is not just subjective; recent sensory experience also modifies relative timing discrimination. This result indicates that recent sensory history alters the encoding of relative timing in sensory areas, excluding explanations of the subjective phenomenon based only on decision-level changes. The pattern of changes in timing discrimination suggests the existence of two sensory components, similar to those previously reported for visual spatial attributes: a lateral shift in the nonlinear transducer that maps relative timing into perceptual relative timing and an increase in transducer slope around the exposed timing. The existence of these components would suggest that previous explanations of how recent experience may change the sensory encoding of timing, such as changes in sensory latencies or simple implementations of neural population codes, cannot account for the effect of sensory adaptation on timing perception.

  4. Oropharyngeal and laryngeal sensory innervation in the pathophysiology of swallowing disorders and sensory stimulation treatments.

    Science.gov (United States)

    Alvarez-Berdugo, Daniel; Rofes, Laia; Casamitjana, J Francesc; Padrón, Andreína; Quer, Miquel; Clavé, Pere

    2016-09-01

    Oropharyngeal dysphagia (OD) affects older and neurological patients, causing malnutrition and dehydration and increasing the risk for aspiration pneumonia. There is evidence that sensory deficits in those populations are closely related to swallowing disorders, and several research groups are developing new therapies based on sensory stimulation of this area. More information on the sensory innervation participating in the swallow response is needed to better understand the pathophysiology of OD and to develop new treatments. This review focuses on the sensory innervation of the human oropharynx and larynx in healthy people compared with patients with swallowing disorders in order to unravel the abnormalities that may lead to the loss of sensitivity in patients with OD. We also hypothesize the pathway through which active sensory-enhancement treatments may elicit their therapeutic effect on patients with swallowing dysfunctions. As far as we know, this is the first time a review covers the anatomy, histology, ultrastructure, and molecular biology of the sensory innervation of the swallowing function. © 2016 New York Academy of Sciences.

  5. Pox neuro control of cell lineages that give rise to larval poly-innervated external sensory organs in Drosophila.

    Science.gov (United States)

    Jiang, Yanrui; Boll, Werner; Noll, Markus

    2015-01-15

    The Pox neuro (Poxn) gene of Drosophila plays a crucial role in the development of poly-innervated external sensory (p-es) organs. However, how Poxn exerts this role has remained elusive. In this study, we have analyzed the cell lineages of all larval p-es organs, namely of the kölbchen, papilla 6, and hair 3. Surprisingly, these lineages are distinct from any previously reported cell lineages of sensory organs. Unlike the well-established lineage of mono-innervated external sensory (m-es) organs and a previously proposed model of the p-es lineage, we demonstrate that all wild-type p-es lineages exhibit the following features: the secondary precursor, pIIa, gives rise to all three support cells-socket, shaft, and sheath, whereas the other secondary precursor, pIIb, is neuronal and gives rise to all neurons. We further show that in one of the p-es lineages, that of papilla 6, one cell undergoes apoptosis. By contrast in Poxn null mutants, all p-es lineages have a reduced number of cells and their pattern of cell divisions is changed to that of an m-es organ, with the exception of a lineage in a minority of mutant kölbchen that retains a second bipolar neuron. Indeed, the role of Poxn in p-es lineages is consistent with the specification of the developmental potential of secondary precursors and the regulation of cell division but not apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Immunohistochemical study of sensory nerve formations in human glabrous skin.

    Science.gov (United States)

    Haro, J J; Vega, J A; del Valle, M E; Calzada, B; Zaccheo, D; Malinovsky, L

    1991-01-01

    The sensory nerve formations (or corpuscles) of normal human glabrous skin from hand and fingers, obtained by punch biopsies, were studied by the streptavidin-biotin method using monoclonal antibodies directed against neurofilament protein (NFP), S-100 protein, glial fibrillary acidic protein (GFAP), cytokeratins, and vimentin. NFP immunoreactivity (IR) was observed in the central axons of most sensory formations, while S-100 protein IR was restricted to non-neuronal cells forming the so-called inner cells core or lamellar cells. Furthermore, vimentin IR was found in the same cells of Meissner's and glomerular corpuscles. None of the sensory nerve formations were stained for GFAP or keratin. The present results suggest that the main nature of the intermediate filaments of the non-neuronal cells of sensory nerve formations from human glabrous skin is represented by vimentin and not by GFAP. Thus, our findings suggest that lamellar and inner core cells of SNF are modified and specialized Schwann cells and not epithelial or perineurial derived cells.

  7. Synaptic plasticity and sensory-motor improvement following fibrin sealant dorsal root reimplantation and mononuclear cell therapy

    Science.gov (United States)

    Benitez, Suzana U.; Barbizan, Roberta; Spejo, Aline B.; Ferreira, Rui S.; Barraviera, Benedito; Góes, Alfredo M.; de Oliveira, Alexandre L. R.

    2014-01-01

    Root lesions may affect both dorsal and ventral roots. However, due to the possibility of generating further inflammation and neuropathic pain, surgical procedures do not prioritize the repair of the afferent component. The loss of such sensorial input directly disturbs the spinal circuits thus affecting the functionality of the injuried limb. The present study evaluated the motor and sensory improvement following dorsal root reimplantation with fibrin sealant (FS) plus bone marrow mononuclear cells (MC) after dorsal rhizotomy. MC were used to enhance the repair process. We also analyzed changes in the glial response and synaptic circuits within the spinal cord. Female Lewis rats (6–8 weeks old) were divided in three groups: rhizotomy (RZ group), rhizotomy repaired with FS (RZ+FS group) and rhizotomy repaired with FS and MC (RZ+FS+MC group). The behavioral tests electronic von-Frey and Walking track test were carried out. For immunohistochemistry we used markers to detect different synapse profiles as well as glial reaction. The behavioral results showed a significant decrease in sensory and motor function after lesion. The reimplantation decreased glial reaction and improved synaptic plasticity of afferent inputs. Cell therapy further enhanced the rewiring process. In addition, both reimplanted groups presented twice as much motor control compared to the non-treated group. In conclusion, the reimplantation with FS and MC is efficient and may be considered an approach to improve sensory-motor recovery following dorsal rhizotomy. PMID:25249946

  8. ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons

    Directory of Open Access Journals (Sweden)

    Fierro Leonardo

    2005-11-01

    Full Text Available Abstract Background ASIC3, the most sensitive of the acid-sensing ion channels, depolarizes certain rat sensory neurons when lactic acid appears in the extracellular medium. Two functions have been proposed for it: 1 ASIC3 might trigger ischemic pain in heart and muscle; 2 it might contribute to some forms of touch mechanosensation. Here, we used immunocytochemistry, retrograde labelling, and electrophysiology to ask whether the distribution of ASIC3 in rat sensory neurons is consistent with either of these hypotheses. Results Less than half (40% of dorsal root ganglion sensory neurons react with anti-ASIC3, and the population is heterogeneous. They vary widely in cell diameter and express different growth factor receptors: 68% express TrkA, the receptor for nerve growth factor, and 25% express TrkC, the NT3 growth factor receptor. Consistent with a role in muscle nociception, small ( Conclusion Our data indicates that: 1 ASIC3 is expressed in a restricted population of nociceptors and probably in some non-nociceptors; 2 co-expression of ASIC3 and CGRP, and the absence of P2X3, are distinguishing properties of a class of sensory neurons, some of which innervate blood vessels. We suggest that these latter afferents may be muscle metaboreceptors, neurons that sense the metabolic state of muscle and can trigger pain when there is insufficient oxygen.

  9. Dicer maintains the identity and function of proprioceptive sensory neurons.

    Science.gov (United States)

    O'Toole, Sean M; Ferrer, Monica M; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R; Nelson, Sacha B

    2017-03-01

    Neuronal cell identity is established during development and must be maintained throughout an animal's life (Fishell G, Heintz N. Neuron 80: 602-612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899-907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359-373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension, micro

  10. BMP4 signaling is involved in the generation of inner ear sensory epithelia

    Directory of Open Access Journals (Sweden)

    Wang Yucheng

    2005-08-01

    Full Text Available Abstract Background The robust expression of BMP4 in the incipient sensory organs of the inner ear suggests possible roles for this signaling protein during induction and development of auditory and vestibular sensory epithelia. Homozygous BMP4-/- animals die before the inner ear's sensory organs develop, which precludes determining the role of BMP4 in these organs with simple gene knockout experiments. Results Here we use a chicken otocyst culture system to perform quantitative studies on the development of inner ear cell types and show that hair cell and supporting cell generation is remarkably reduced when BMP signaling is blocked, either with its antagonist noggin or by using soluble BMP receptors. Conversely, we observed an increase in the number of hair cells when cultured otocysts were treated with exogenous BMP4. BMP4 treatment additionally prompted down-regulation of Pax-2 protein in proliferating sensory epithelial progenitors, leading to reduced progenitor cell proliferation. Conclusion Our results implicate BMP4 in two events during chicken inner ear sensory epithelium formation: first, in inducing the switch from proliferative sensory epithelium progenitors to differentiating epithelial cells and secondly, in promoting the differentiation of hair cells within the developing sensory epithelia.

  11. Stratifying patients with peripheral neuropathic pain based on sensory profiles

    DEFF Research Database (Denmark)

    Vollert, Jan; Maier, Christoph; Attal, Nadine

    2017-01-01

    In a recent cluster analysis, it has been shown that patients with peripheral neuropathic pain can be grouped into 3 sensory phenotypes based on quantitative sensory testing profiles, which are mainly characterized by either sensory loss, intact sensory function and mild thermal hyperalgesia and...... populations that need to be screened to reach a subpopulation large enough to conduct a phenotype-stratified study. The most common phenotype in diabetic polyneuropathy was sensory loss (83%), followed by mechanical hyperalgesia (75%) and thermal hyperalgesia (34%, note that percentages are overlapping...

  12. Distribution of binding sites for the plant lectin Ulex europaeus agglutinin I on primary sensory neurones in seven different mammalian species.

    Science.gov (United States)

    Gerke, Michelle B; Plenderleith, Mark B

    2002-01-01

    There is an increasing body of evidence to suggest that different functional classes of neurones express characteristic cell-surface carbohydrates. Previous studies have shown that the plant lectin Ulex europaeus agglutinin-I (UEA) binds to a population of small to medium diameter primary sensory neurones in rabbits and humans. This suggests that a fucose-containing glycoconjugate may be expressed by nociceptive primary sensory neurones. In order to determine the extent to which this glycoconjugate is expressed by other species, in the current study, we have examined the distribution of UEA-binding sites on primary sensory neurones in seven different mammals. Binding sites for UEA were associated with the plasma membrane and cytoplasmic granules of small to medium dorsal root ganglion cells and their axon terminals in laminae I-III of the grey matter of the spinal cord, in the rabbit, cat and marmoset monkey. However, no binding was observed in either the dorsal root ganglia or spinal cord in the mouse, rat, guinea pig or flying fox. These results indicate an inter-species variation in the expression of cell-surface glycoconjugates on mammalian primary sensory neurones.

  13. Effects of gamma-irradiation before and after cooking on bacterial population and sensory quality of Dakgalbi

    Science.gov (United States)

    Yoon, Young Min; Park, Jong-Heum; Lee, Ji-Hye; Park, Jae-Nam; Park, Jin-Kyu; Sung, Nak-Yun; Song, Beom-Seok; Kim, Jae-Hun; Yoon, Yohan; Gao, Meixu; Yook, Hong-Sun; Lee, Ju-Woon

    2012-08-01

    The purpose of this study was to compare the effect of gamma irradiation on the total bacterial population and the sensory quality of Dakgalbi irradiated before and after cooking. Fresh chicken meat was cut into small pieces and used to prepare Dakgalbi. For the preparation of Dakgalbi cooked with gamma-irradiated chicken meat and sauce (IBC), raw chicken meat and Dakgalbi sauce were irradiated and then stir-fried. For the preparation of Dakgalbi irradiated after cooking with raw chicken meat and sauce (IAC), raw chicken meat and Dakgalbi sauce were first cooked and subsequently irradiated. Under the accelerated storage condition of 35 °C for 7 days, bacteria in IBC were below the detection limit (1 log CFU/g) on day 1 but were detected on day 2 and gradually increased hereafter. In IAC, on the other hand, bacteria were not detected at all. Evaluation of sensory quality also decreased on both samples. However, IAC showed a better trend. Our results indicate that IAC protocol was a more effective method for reducing bacterial growth in Dakgalbi.

  14. Membrane potential correlates of sensory perception in mouse barrel cortex.

    Science.gov (United States)

    Sachidhanandam, Shankar; Sreenivasan, Varun; Kyriakatos, Alexandros; Kremer, Yves; Petersen, Carl C H

    2013-11-01

    Neocortical activity can evoke sensory percepts, but the cellular mechanisms remain poorly understood. We trained mice to detect single brief whisker stimuli and report perceived stimuli by licking to obtain a reward. Pharmacological inactivation and optogenetic stimulation demonstrated a causal role for the primary somatosensory barrel cortex. Whole-cell recordings from barrel cortex neurons revealed membrane potential correlates of sensory perception. Sensory responses depended strongly on prestimulus cortical state, but both slow-wave and desynchronized cortical states were compatible with task performance. Whisker deflection evoked an early (sensory response that was encoded through cell-specific reversal potentials. A secondary late (50-400 ms) depolarization was enhanced on hit trials compared to misses. Optogenetic inactivation revealed a causal role for late excitation. Our data reveal dynamic processing in the sensory cortex during task performance, with an early sensory response reliably encoding the stimulus and later secondary activity contributing to driving the subjective percept.

  15. Connectivity from OR37 expressing olfactory sensory neurons to distinct cell types in the hypothalamus

    Directory of Open Access Journals (Sweden)

    Andrea eBader

    2012-11-01

    Full Text Available Olfactory sensory neurons which express a member from the OR37 subfamily of odorant receptor genes are wired to the main olfactory bulb in a unique monoglomerular fashion; from these glomeruli an untypical connectivity into higher brain centers exists. In the present study we have investigated by DiI and transsynaptic tracing approaches how the connection pattern from these glomeruli into distinct hypothalamic nuclei is organized. The application of DiI onto the ventral domain of the bulb which harbors the OR37 glomeruli resulted in the labeling of fibers within the paraventricular and supraoptic nucleus of the hypothalamus; some of these fibers were covered with varicose-like structures. No DiI-labeled cell somata were detectable in these nuclei. The data indicate that projection neurons which originate in the OR37 region of the main olfactory bulb form direct connections into these nuclei. The cells that were labeled by the transsynaptic tracer WGA in these nuclei were further characterized. Their distribution pattern in the paraventricular nucleus was reminiscent of cells which produce distinct neuropeptides. Double labeling experiments confirmed that they contained vasopressin, but not the related neuropeptide oxytocin. Morphological analysis revealed that they comprise of magno- and parvocellular cells. A comparative investigation of the WGA-positive cells in the supraoptic nucleus demonstrated that these were vasopressin-positive, as well, whereas oxytocin-producing cells of this nucleus also contained no transsynaptic tracer. Together, the data demonstrate a connectivity from OR37 expressing sensory neurons to distinct hypothalamic neurons with the same neuropeptide content.

  16. Thin Layer Sensory Cues Affect Antarctic Krill Swimming Kinematics

    Science.gov (United States)

    True, A. C.; Webster, D. R.; Weissburg, M. J.; Yen, J.

    2013-11-01

    A Bickley jet (laminar, planar free jet) is employed in a recirculating flume system to replicate thin shear and phytoplankton layers for krill behavioral assays. Planar laser-induced fluorescence (LIF) and particle image velocimetry (PIV) measurements quantify the spatiotemporal structure of the chemical and free shear layers, respectively, ensuring a close match to in situ hydrodynamic and biochemical conditions. Path kinematics from digitized trajectories of free-swimming Euphausia superba examine the effects of hydrodynamic sensory cues (deformation rate) and bloom level phytoplankton patches (~1000 cells/mL, Tetraselamis spp.) on krill behavior (body orientation, swimming modes and kinematics, path fracticality). Krill morphology is finely tuned for receiving and deciphering both hydrodynamic and chemical information that is vital for basic life processes such as schooling behaviors, predator/prey, and mate interactions. Changes in individual krill behavior in response to ecologically-relevant sensory cues have the potential to produce population-scale phenomena with significant ecological implications. Krill are a vital trophic link between primary producers (phytoplankton) and larger animals (seabirds, whales, fish, penguins, seals) as well as the subjects of a valuable commercial fishery in the Southern Ocean; thus quantifying krill behavioral responses to relevant sensory cues is an important step towards accurately modeling Antarctic ecosystems.

  17. Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes.

    Science.gov (United States)

    Smith, Michael E; Monroe, J David

    2016-01-01

    Sensory hair cells are the mechanotransductive receptors that detect gravity, sound, and vibration in all vertebrates. Damage to these sensitive receptors often results in deficits in vestibular function and hearing. There are currently two main reasons for studying the process of hair cell loss in fishes. First, fishes, like other non-mammalian vertebrates, have the ability to regenerate hair cells that have been damaged or lost via exposure to ototoxic chemicals or acoustic overstimulation. Thus, they are used as a biomedical model to understand the process of hair cell death and regeneration and find therapeutics that treat or prevent human hearing loss. Secondly, scientists and governmental natural resource managers are concerned about the potential effects of intense anthropogenic sounds on aquatic organisms, including fishes. Dr. Arthur N. Popper and his students, postdocs and research associates have performed pioneering experiments in both of these lines of fish hearing research. This review will discuss the current knowledge regarding the causes and consequences of both lateral line and inner ear hair cell damage in teleost fishes.

  18. An Inversion Disrupting FAM134B Is Associated with Sensory Neuropathy in the Border Collie Dog Breed

    Directory of Open Access Journals (Sweden)

    Oliver P. Forman

    2016-09-01

    Full Text Available Sensory neuropathy in the Border Collie is a severe neurological disorder caused by the degeneration of sensory and, to a lesser extent, motor nerve cells with clinical signs starting between 2 and 7 months of age. Using a genome-wide association study approach with three cases and 170 breed matched controls, a suggestive locus for sensory neuropathy was identified that was followed up using a genome sequencing approach. An inversion disrupting the candidate gene FAM134B was identified. Genotyping of additional cases and controls and RNAseq analysis provided strong evidence that the inversion is causal. Evidence of cryptic splicing resulting in novel exon transcription for FAM134B was identified by RNAseq experiments. This investigation demonstrates the identification of a novel sensory neuropathy associated mutation, by mapping using a minimal set of cases and subsequent genome sequencing. Through mutation screening, it should be possible to reduce the frequency of or completely eliminate this debilitating condition from the Border Collie breed population.

  19. A Combinatorial Approach to Induce Sensory Axon Regeneration into the Dorsal Root Avulsed Spinal Cord

    DEFF Research Database (Denmark)

    Hoeber, Jan; Konig, Niclas; Trolle, Carl

    2017-01-01

    Spinal root injuries result in newly formed glial scar formation, which prevents regeneration of sensory axons causing permanent sensory loss. Previous studies showed that delivery of trophic factors or implantation of human neural progenitor cells supports sensory axon regeneration and partly......MIM), supported sensory axon regeneration. However, when hscNSPC and MesoMIM were combined, sensory axon regeneration failed. Morphological and tracing analysis showed that sensory axons grow through the newly established glial scar along “bridges” formed by migrating stem cells. Coimplantation of Meso...... their level of differentiation. Our data show that (1) the ability of stem cells to migrate into the spinal cord and organize cellular “bridges” in the newly formed interface is crucial for successful sensory axon regeneration, (2) trophic factor mimetics delivered by mesoporous silica may be a convenient...

  20. IMPACT OF THE FERMENTATION PROCESS WITH IMMOBILIZED YEAST CELLS ON THE AROMA PROFILE AND SENSORY QUALITY OF DISTILLATES PRODUCED FROM TWO FIG (Ficus carica L. CULTIVARS

    Directory of Open Access Journals (Sweden)

    Borislav Miličević

    2017-01-01

    Full Text Available The aim of this research was to investigate the influence of immobilized cell fermentation on aroma and sensory characteristics of distillates produced from two fig varieties commonly grown in Croatia (Petrovača bijela and Petrovača crna. Distillate samples were produced both by classical and immobilized yeast fermentation technology. Aroma profile was determined using GC/FID and sensory analysis was conducted according to German DLG model. Results showed that immobilized cell technique gives distillates with higher ethanol and lower ester contents, but of higher sensory quality. It is a promising technique for production of high quality fruit distillates.

  1. In Vitro Analysis of the Role of Schwann Cells on Axonal Degeneration and Regeneration Using Sensory Neurons from Dorsal Root Ganglia.

    Science.gov (United States)

    López-Leal, Rodrigo; Diaz, Paula; Court, Felipe A

    2018-01-01

    Sensory neurons from dorsal root ganglion efficiently regenerate after peripheral nerve injuries. These neurons are widely used as a model system to study degenerative mechanisms of the soma and axons, as well as regenerative axonal growth in the peripheral nervous system. This chapter describes techniques associated to the study of axonal degeneration and regeneration using explant cultures of dorsal root ganglion sensory neurons in vitro in the presence or absence of Schwann cells. Schwann cells are extremely important due to their involvement in tissue clearance during axonal degeneration as well as their known pro-regenerative effect during regeneration in the peripheral nervous system. We describe methods to induce and study axonal degeneration triggered by axotomy (mechanical separation of the axon from its soma) and treatment with vinblastine (which blocks axonal transport), which constitute clinically relevant mechanical and toxic models of axonal degeneration. In addition, we describe three different methods to evaluate axonal regeneration using quantitative methods. These protocols constitute a valuable tool to analyze in vitro mechanisms associated to axonal degeneration and regeneration of sensory neurons and the role of Schwann cells in these processes.

  2. Incidence, risk, and associated factors of depression in adults with physical and sensory disabilities: A nationwide population-based study.

    Directory of Open Access Journals (Sweden)

    Szu-Ching Shen

    Full Text Available Physical disability has been associated with the risk of depression. We examined the incidence, risk, and associated factors of depression in Taiwanese adults with physical/sensory disabilities.Two national databases were used to retrospectively analyze 749,491 ≥20-year-old Taiwanese with physical/sensory disabilities in 2002-2008. The incidence of depression was analyzed by univariate Poisson regression. Risk factors of depression were followed up through 2014 and examined with a Cox proportional hazards model.Among the study subjects, the incidence of depression was 6.29 per 1000 person-years, with 1.83 per 1000 person-years corresponding to major depression. The subjects' depression risk was affected by disability type, disability severity, gender, age, education, marital status, aboriginal status, monthly salary, residence urbanization level, and Charlson comorbidity index (CCI. Subjects with rare diseases, mild disability, female gender, age 35-44 years, a high school education level, divorced/widowed status, non-aboriginal status, a NT$22,801-28,800 monthly salary, a highly urbanized residence area, or a CCI≥3 were at higher risk for depression.Adults with physical/sensory disabilities have a 3.7-fold higher incidence of depression than the general population. Social services departments and family members should take extra measures toward preventing and treating depression in this subpopulation.

  3. Changes in the Adult Vertebrate Auditory Sensory Epithelium After Trauma

    Science.gov (United States)

    Oesterle, Elizabeth C.

    2012-01-01

    Auditory hair cells transduce sound vibrations into membrane potential changes, ultimately leading to changes in neuronal firing and sound perception. This review provides an overview of the characteristics and repair capabilities of traumatized auditory sensory epithelium in the adult vertebrate ear. Injured mammalian auditory epithelium repairs itself by forming permanent scars but is unable to regenerate replacement hair cells. In contrast, injured non-mammalian vertebrate ear generates replacement hair cells to restore hearing functions. Non-sensory support cells within the auditory epithelium play key roles in the repair processes. PMID:23178236

  4. Verification and clarification of patterns of sensory integrative dysfunction.

    Science.gov (United States)

    Mailloux, Zoe; Mulligan, Shelley; Roley, Susanne Smith; Blanche, Erna; Cermak, Sharon; Coleman, Gina Geppert; Bodison, Stefanie; Lane, Christianne Joy

    2011-01-01

    Building on established relationships between the constructs of sensory integration in typical and special needs populations, in this retrospective study we examined patterns of sensory integrative dysfunction in 273 children ages 4-9 who had received occupational therapy evaluations in two private practice settings. Test results on the Sensory Integration and Praxis Tests, portions of the Sensory Processing Measure representing tactile overresponsiveness, and parent report of attention and activity level were included in the analyses. Exploratory factor analysis identified patterns similar to those found in early studies by Ayres (1965, 1966a, 1966b, 1969, 1972b, 1977, & 1989), namely Visuodyspraxia and Somatodyspraxia, Vestibular and Proprioceptive Bilateral Integration and Sequencing, Tactile and Visual Discrimination, and Tactile Defensiveness and Attention. Findings reinforce associations between constructs of sensory integration and assist with understanding sensory integration disorders that may affect childhood occupation. Limitations include the potential for subjective interpretation in factor analysis and inability to adjust measures available in charts in a retrospective research.

  5. Emergence of cytotoxic resistance in cancer cell populations: Single-cell mechanisms and population-level consequences

    International Nuclear Information System (INIS)

    Lorenzi, Tommaso; Chisholm, Rebecca H.; Lorz, Alexander; Neves de Almeida, Luís; Clairambault, Jean; Larsen, Annette K.; Escargueil, Alexandre

    2016-01-01

    We formulate an individual-based model and a population model of phenotypic evolution, under cytotoxic drugs, in a cancer cell population structured by the expression levels of survival-potential and proliferation-potential. We apply these models to a recently studied experimental system. Our results suggest that mechanisms based on fundamental laws of biology can reversibly push an actively-proliferating, and drug-sensitive, cell population to transition into a weakly-proliferative and drug-tolerant state, which will eventually facilitate the emergence of more potent, proliferating and drug-tolerant cells.

  6. Emergence of cytotoxic resistance in cancer cell populations: Single-cell mechanisms and population-level consequences

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzi, Tommaso [Centre de Mathématiques et de Leurs Applications, ENS Cachan, CNRS, Cachan 94230 Cedex, France & INRIA-Paris-Rocquencourt, MAMBA Team, Domaine de Voluceau, BP105, 78153 Le Chesnay Cedex (France); Chisholm, Rebecca H. [School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052 (Australia); Lorz, Alexander; Neves de Almeida, Luís; Clairambault, Jean [Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris (France); CNRS, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris (France); INRIA-Paris-Rocquencourt, MAMBA Team, Domaine de Voluceau, BP105, 78153 Le Chesnay Cedex (France); Larsen, Annette K.; Escargueil, Alexandre [Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris (France); INSERM, UMR-S 938, Laboratory of “Cancer Biology and Therapeutics”, F-75012, Paris (France)

    2016-06-08

    We formulate an individual-based model and a population model of phenotypic evolution, under cytotoxic drugs, in a cancer cell population structured by the expression levels of survival-potential and proliferation-potential. We apply these models to a recently studied experimental system. Our results suggest that mechanisms based on fundamental laws of biology can reversibly push an actively-proliferating, and drug-sensitive, cell population to transition into a weakly-proliferative and drug-tolerant state, which will eventually facilitate the emergence of more potent, proliferating and drug-tolerant cells.

  7. The Sensory Neocortex and Associative Memory.

    Science.gov (United States)

    Aschauer, Dominik; Rumpel, Simon

    2018-01-01

    Most behaviors in mammals are directly or indirectly guided by prior experience and therefore depend on the ability of our brains to form memories. The ability to form an association between an initially possibly neutral sensory stimulus and its behavioral relevance is essential for our ability to navigate in a changing environment. The formation of a memory is a complex process involving many areas of the brain. In this chapter we review classic and recent work that has shed light on the specific contribution of sensory cortical areas to the formation of associative memories. We discuss synaptic and circuit mechanisms that mediate plastic adaptations of functional properties in individual neurons as well as larger neuronal populations forming topographically organized representations. Furthermore, we describe commonly used behavioral paradigms that are used to study the mechanisms of memory formation. We focus on the auditory modality that is receiving increasing attention for the study of associative memory in rodent model systems. We argue that sensory cortical areas may play an important role for the memory-dependent categorical recognition of previously encountered sensory stimuli.

  8. Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings.

    Science.gov (United States)

    Schmid, Florian; Wachsmuth, Lydia; Schwalm, Miriam; Prouvot, Pierre-Hugues; Jubal, Eduardo Rosales; Fois, Consuelo; Pramanik, Gautam; Zimmer, Claus; Faber, Cornelius; Stroh, Albrecht

    2016-11-01

    Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca 2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca 2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca 2+ transients contrasted by an increase of blood oxygenation level-dependent responses, indicating that the optical recordings convey complementary information on neuronal network activity to the corresponding hemodynamic response. To study the similarity of optogenetic and sensory activation, we quantified the density of cells expressing channelrhodopsin-2 and modeled light propagation in the tissue. We estimated the effectively illuminated volume and numbers of optogenetically stimulated neurons, being indicative of sparse activation. At the functional level, upon either sensory or optogenetic stimulation we detected single-peak short-latency primary Ca 2+ responses with similar amplitudes and found that blood oxygenation level-dependent responses showed similar time courses. These data suggest that ofMRI can serve as a representative model for functional brain mapping. © The Author(s) 2015.

  9. Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings

    Science.gov (United States)

    Schmid, Florian; Wachsmuth, Lydia; Schwalm, Miriam; Prouvot, Pierre-Hugues; Jubal, Eduardo Rosales; Fois, Consuelo; Pramanik, Gautam; Zimmer, Claus; Stroh, Albrecht

    2015-01-01

    Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca2+ transients contrasted by an increase of blood oxygenation level-dependent responses, indicating that the optical recordings convey complementary information on neuronal network activity to the corresponding hemodynamic response. To study the similarity of optogenetic and sensory activation, we quantified the density of cells expressing channelrhodopsin-2 and modeled light propagation in the tissue. We estimated the effectively illuminated volume and numbers of optogenetically stimulated neurons, being indicative of sparse activation. At the functional level, upon either sensory or optogenetic stimulation we detected single-peak short-latency primary Ca2+ responses with similar amplitudes and found that blood oxygenation level-dependent responses showed similar time courses. These data suggest that ofMRI can serve as a representative model for functional brain mapping. PMID:26661247

  10. [Treatment of sensory information in neurodevelopmental disorders].

    Science.gov (United States)

    Zoenen, D; Delvenne, V

    2018-01-01

    The processing of information coming from the elementary sensory systems conditions the development and fulfilment of a child's abilities. A dysfunction in the sensory stimuli processing may generate behavioural patterns that might affect a child's learning capacities as well as his relational sphere. The DSM-5 recognizes the sensory abnormalities as part of the symptomatology of Autism Spectrum Disorders. However, similar features are observed in other neurodevelopmental disorders. Over the years, these conditions have been the subject of numerous controversies. Nowadays, they are all grouped together under the term of Neurodevelopmental Disorders in DSM-5. The semiology of these disorders is rich and complex due to the frequent presence of comorbidities and their impact on cognitive, behavioural, and sensorimotor organization but also on a child's personality, as well as his family, his school, or his social relationships. We carried out a review of the literature on the alterations in the treatment of sensory information in ASD but also on the different neurodevelopmental clinical panels in order to show their impact on child development. Atypical sensory profiles have been demonstrated in several neurodevelopmental clinical populations such as Autism Spectrum Disorder, Attention Deficit/Hyperactivity Disorders, Dysphasia and Intellectual Disability. Abnomalies in the processing of sensory information should be systematically evaluated in child developmental disorders.

  11. Processing of Sensory Information in the Olfactory System

    DEFF Research Database (Denmark)

    The olfactory system is an attractive model system due to the easy control of sensory input and the experimental accessibility in animal studies. The odorant signals are processed from receptor neurons to a neural network of mitral and granular cells while various types of nonlinear behaviour can...... and equation-free techniques allow for a better reproduction and understanding of recent experimental findings. Talks: Olfaction as a Model System for Sensory-Processing Neural Networks (Jens Midtgaard, University of Copenhagen, Denmark) Nonlinear Effects of Signal Transduction in Olfactory Sensory Neurons...

  12. An Inversion Disrupting FAM134B Is Associated with Sensory Neuropathy in the Border Collie Dog Breed.

    Science.gov (United States)

    Forman, Oliver P; Hitti, Rebekkah J; Pettitt, Louise; Jenkins, Christopher A; O'Brien, Dennis P; Shelton, G Diane; De Risio, Luisa; Quintana, Rodrigo Gutierrez; Beltran, Elsa; Mellersh, Cathryn

    2016-09-08

    Sensory neuropathy in the Border Collie is a severe neurological disorder caused by the degeneration of sensory and, to a lesser extent, motor nerve cells with clinical signs starting between 2 and 7 months of age. Using a genome-wide association study approach with three cases and 170 breed matched controls, a suggestive locus for sensory neuropathy was identified that was followed up using a genome sequencing approach. An inversion disrupting the candidate gene FAM134B was identified. Genotyping of additional cases and controls and RNAseq analysis provided strong evidence that the inversion is causal. Evidence of cryptic splicing resulting in novel exon transcription for FAM134B was identified by RNAseq experiments. This investigation demonstrates the identification of a novel sensory neuropathy associated mutation, by mapping using a minimal set of cases and subsequent genome sequencing. Through mutation screening, it should be possible to reduce the frequency of or completely eliminate this debilitating condition from the Border Collie breed population. Copyright © 2016 Forman et al.

  13. Specialized Cilia in Mammalian Sensory Systems

    Directory of Open Access Journals (Sweden)

    Nathalie Falk

    2015-09-01

    Full Text Available Cilia and flagella are highly conserved and important microtubule-based organelles that project from the surface of eukaryotic cells and act as antennae to sense extracellular signals. Moreover, cilia have emerged as key players in numerous physiological, developmental, and sensory processes such as hearing, olfaction, and photoreception. Genetic defects in ciliary proteins responsible for cilia formation, maintenance, or function underlie a wide array of human diseases like deafness, anosmia, and retinal degeneration in sensory systems. Impairment of more than one sensory organ results in numerous syndromic ciliary disorders like the autosomal recessive genetic diseases Bardet-Biedl and Usher syndrome. Here we describe the structure and distinct functional roles of cilia in sensory organs like the inner ear, the olfactory epithelium, and the retina of the mouse. The spectrum of ciliary function in fundamental cellular processes highlights the importance of elucidating ciliopathy-related proteins in order to find novel potential therapies.

  14. Comparing Sensory Information Processing and Alexithymia between People with Substance Dependency and Normal.

    Science.gov (United States)

    Bashapoor, Sajjad; Hosseini-Kiasari, Seyyedeh Tayebeh; Daneshvar, Somayeh; Kazemi-Taskooh, Zeinab

    2015-01-01

    Sensory information processing and alexithymia are two important factors in determining behavioral reactions. Some studies explain the effect of the sensitivity of sensory processing and alexithymia in the tendency to substance abuse. Giving that, the aim of the current study was to compare the styles of sensory information processing and alexithymia between substance-dependent people and normal ones. The research method was cross-sectional and the statistical population of the current study comprised of all substance-dependent men who are present in substance quitting camps of Masal, Iran, in October 2013 (n = 78). 36 persons were selected randomly by simple randomly sampling method from this population as the study group, and 36 persons were also selected among the normal population in the same way as the comparison group. Both groups was evaluated by using Toronto alexithymia scale (TAS) and adult sensory profile, and the multivariate analysis of variance (MANOVA) test was applied to analyze data. The results showed that there are significance differences between two groups in low registration (P processing and difficulty in describing emotions (P process sensory information in a different way than normal people and show more alexithymia features than them.

  15. Deficient GABAergic gliotransmission may cause broader sensory tuning in schizophrenia.

    Science.gov (United States)

    Hoshino, Osamu

    2013-12-01

    We examined how the depression of intracortical inhibition due to a reduction in ambient GABA concentration impairs perceptual information processing in schizophrenia. A neural network model with a gliotransmission-mediated ambient GABA regulatory mechanism was simulated. In the network, interneuron-to-glial-cell and principal-cell-to-glial-cell synaptic contacts were made. The former hyperpolarized glial cells and let their transporters import (remove) GABA from the extracellular space, thereby lowering ambient GABA concentration, reducing extrasynaptic GABAa receptor-mediated tonic inhibitory current, and thus exciting principal cells. In contrast, the latter depolarized the glial cells and let the transporters export GABA into the extracellular space, thereby elevating the ambient GABA concentration and thus inhibiting the principal cells. A reduction in ambient GABA concentration was assumed for a schizophrenia network. Multiple dynamic cell assemblies were organized as sensory feature columns. Each cell assembly responded to one specific feature stimulus. The tuning performance of the network to an applied feature stimulus was evaluated in relation to the level of ambient GABA. Transporter-deficient glial cells caused a deficit in GABAergic gliotransmission and reduced ambient GABA concentration, which markedly deteriorated the tuning performance of the network, broadening the sensory tuning. Interestingly, the GABAergic gliotransmission mechanism could regulate local ambient GABA levels: it augmented ambient GABA around stimulus-irrelevant principal cells, while reducing ambient GABA around stimulus-relevant principal cells, thereby ensuring their selective responsiveness to the applied stimulus. We suggest that a deficit in GABAergic gliotransmission may cause a reduction in ambient GABA concentration, leading to a broadening of sensory tuning in schizophrenia. The GABAergic gliotransmission mechanism proposed here may have an important role in the

  16. The Relationship between Clinical Presentation and Unusual Sensory Interests in Autism Spectrum Disorders: A Preliminary Investigation

    Science.gov (United States)

    Zachor, Ditza A.; Ben-Itzchak, Esther

    2014-01-01

    Unusual responses to sensory stimuli have been described in autism spectrum disorder (ASD).The study examined the frequencies of "unusual sensory interests" and "negative sensory responses" and their relation to functioning in a large ASD population (n = 679). Having "unusual sensory interests" was reported in 70.4%…

  17. P2X receptors, sensory neurons and pain.

    Science.gov (United States)

    Bele, Tanja; Fabbretti, Elsa

    2015-01-01

    Pain represents a very large social and clinical problem since the current treatment provides insufficient pain relief. Plasticity of pain receptors together with sensitisation of sensory neurons, and the role of soluble mediators released from non-neuronal cells render difficult to understand the spatial and temporal scale of pain development, neuronal responses and disease progression. In pathological conditions, ATP is one of the most powerful mediators that activates P2X receptors that behave as sensitive ATP-detectors, such as neuronal P2X3 receptor subtypes and P2X4 and P2X7 receptors expressed on non-neuronal cells. Dissecting the molecular mechanisms occurring in sensory neurons and in accessory cells allows to design appropriate tissue- and cell- targeted approaches to treat chronic pain.

  18. Gain control network conditions in early sensory coding.

    Directory of Open Access Journals (Sweden)

    Eduardo Serrano

    Full Text Available Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of neurons that receive input and change the input current that they receive. Using a mean field approximation for the network activity we derive relationships between the parameters of the network that ensure that the overall level of activity of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally, we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate models and Hodgkin-Huxley conductance based models.

  19. Mutations in ap1b1 cause mistargeting of the Na(+/K(+-ATPase pump in sensory hair cells.

    Directory of Open Access Journals (Sweden)

    Rachel Clemens Grisham

    Full Text Available The hair cells of the inner ear are polarized epithelial cells with a specialized structure at the apical surface, the mechanosensitive hair bundle. Mechanotransduction occurs within the hair bundle, whereas synaptic transmission takes place at the basolateral membrane. The molecular basis of the development and maintenance of the apical and basal compartments in sensory hair cells is poorly understood. Here we describe auditory/vestibular mutants isolated from forward genetic screens in zebrafish with lesions in the adaptor protein 1 beta subunit 1 (ap1b1 gene. Ap1b1 is a subunit of the adaptor complex AP-1, which has been implicated in the targeting of basolateral membrane proteins. In ap1b1 mutants we observed that although the overall development of the inner ear and lateral-line organ appeared normal, the sensory epithelium showed progressive signs of degeneration. Mechanically-evoked calcium transients were reduced in mutant hair cells, indicating that mechanotransduction was also compromised. To gain insight into the cellular and molecular defects in ap1b1 mutants, we examined the localization of basolateral membrane proteins in hair cells. We observed that the Na(+/K(+-ATPase pump (NKA was less abundant in the basolateral membrane and was mislocalized to apical bundles in ap1b1 mutant hair cells. Accordingly, intracellular Na(+ levels were increased in ap1b1 mutant hair cells. Our results suggest that Ap1b1 is essential for maintaining integrity and ion homeostasis in hair cells.

  20. Inflammatory mediator bradykinin increases population of sensory neurons expressing functional T-type Ca(2+) channels.

    Science.gov (United States)

    Huang, Dongyang; Liang, Ce; Zhang, Fan; Men, Hongchao; Du, Xiaona; Gamper, Nikita; Zhang, Hailin

    2016-04-29

    T-type Ca(2+) channels are important regulators of peripheral sensory neuron excitability. Accordingly, T-type Ca(2+) currents are often increased in various pathological pain conditions, such as inflammation or nerve injury. Here we investigated effects of inflammation on functional expression of T-type Ca(2+) channels in small-diameter cultured dorsal root ganglion (DRG) neurons. We found that overnight treatment of DRG cultures with a cocktail of inflammatory mediators bradykinin (BK), adenosine triphosphate (ATP), norepinephrine (NE) and prostaglandin E2 (PGE2) strongly increased the population size of the small-diameter neurons displaying low-voltage activated (LVA, T-type) Ca(2+) currents while having no effect on the peak LVA current amplitude. When applied individually, BK and ATP also increased the population size of LVA-positive neurons while NE and PGE2 had no effect. The PLC inhibitor U-73122 and B2 receptor antagonist, Hoe-140, both abolished the increase of the population of LVA-positive DRG neurons. Inflammatory treatment did not affect CaV3.2 mRNA or protein levels in DRG cultures. Furthermore, an ubiquitination inhibitor, MG132, did not increase the population of LVA-positive neurons. Our data suggest that inflammatory mediators BK and ATP increase the abundance of LVA-positive DRG neurons in total neuronal population by stimulating the recruitment of a 'reserve pool' of CaV3.2 channels, particularly in neurons that do not display measurable LVA currents under control conditions. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Sensory processing and corollary discharge effects in posterior caudal lobe Purkinje cells in a weakly electric mormyrid fish.

    Science.gov (United States)

    Alviña, Karina; Sawtell, Nathaniel B

    2014-07-15

    Although it has been suggested that the cerebellum functions to predict the sensory consequences of motor commands, how such predictions are implemented in cerebellar circuitry remains largely unknown. A detailed and relatively complete account of predictive mechanisms has emerged from studies of cerebellum-like sensory structures in fish, suggesting that comparisons of the cerebellum and cerebellum-like structures may be useful. Here we characterize electrophysiological response properties of Purkinje cells in a region of the cerebellum proper of weakly electric mormyrid fish, the posterior caudal lobe (LCp), which receives the same mossy fiber inputs and projects to the same target structures as the electrosensory lobe (ELL), a well-studied cerebellum-like structure. We describe patterns of simple spike and climbing fiber activation in LCp Purkinje cells in response to motor corollary discharge, electrosensory, and proprioceptive inputs and provide evidence for two functionally distinct Purkinje cell subtypes within LCp. Protocols that induce rapid associative plasticity in ELL fail to induce plasticity in LCp, suggesting differences in the adaptive functions of the two structures. Similarities and differences between LCp and ELL are discussed in light of these results. Copyright © 2014 the American Physiological Society.

  2. Npn-1 contributes to axon-axon interactions that differentially control sensory and motor innervation of the limb.

    Directory of Open Access Journals (Sweden)

    Rosa-Eva Huettl

    2011-02-01

    Full Text Available The initiation, execution, and completion of complex locomotor behaviors are depending on precisely integrated neural circuitries consisting of motor pathways that activate muscles in the extremities and sensory afferents that deliver feedback to motoneurons. These projections form in tight temporal and spatial vicinities during development, yet the molecular mechanisms and cues coordinating these processes are not well understood. Using cell-type specific ablation of the axon guidance receptor Neuropilin-1 (Npn-1 in spinal motoneurons or in sensory neurons in the dorsal root ganglia (DRG, we have explored the contribution of this signaling pathway to correct innervation of the limb. We show that Npn-1 controls the fasciculation of both projections and mediates inter-axonal communication. Removal of Npn-1 from sensory neurons results in defasciculation of sensory axons and, surprisingly, also of motor axons. In addition, the tight coupling between these two heterotypic axonal populations is lifted with sensory fibers now leading the spinal nerve projection. These findings are corroborated by partial genetic elimination of sensory neurons, which causes defasciculation of motor projections to the limb. Deletion of Npn-1 from motoneurons leads to severe defasciculation of motor axons in the distal limb and dorsal-ventral pathfinding errors, while outgrowth and fasciculation of sensory trajectories into the limb remain unaffected. Genetic elimination of motoneurons, however, revealed that sensory axons need only minimal scaffolding by motor axons to establish their projections in the distal limb. Thus, motor and sensory axons are mutually dependent on each other for the generation of their trajectories and interact in part through Npn-1-mediated fasciculation before and within the plexus region of the limbs.

  3. Nociceptor sensory neurons suppress neutrophil and γδ T cell responses in bacterial lung infections and lethal pneumonia.

    Science.gov (United States)

    Baral, Pankaj; Umans, Benjamin D; Li, Lu; Wallrapp, Antonia; Bist, Meghna; Kirschbaum, Talia; Wei, Yibing; Zhou, Yan; Kuchroo, Vijay K; Burkett, Patrick R; Yipp, Bryan G; Liberles, Stephen D; Chiu, Isaac M

    2018-05-01

    Lung-innervating nociceptor sensory neurons detect noxious or harmful stimuli and consequently protect organisms by mediating coughing, pain, and bronchoconstriction. However, the role of sensory neurons in pulmonary host defense is unclear. Here, we found that TRPV1 + nociceptors suppressed protective immunity against lethal Staphylococcus aureus pneumonia. Targeted TRPV1 + -neuron ablation increased survival, cytokine induction, and lung bacterial clearance. Nociceptors suppressed the recruitment and surveillance of neutrophils, and altered lung γδ T cell numbers, which are necessary for immunity. Vagal ganglia TRPV1 + afferents mediated immunosuppression through release of the neuropeptide calcitonin gene-related peptide (CGRP). Targeting neuroimmunological signaling may be an effective approach to treat lung infections and bacterial pneumonia.

  4. Controlling the diversity of cell populations in a stem cell culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  5. Natural bizbenzoquinoline derivatives protect zebrafish lateral line sensory hair cells from aminoglycoside toxicity

    Directory of Open Access Journals (Sweden)

    Matthew eKruger

    2016-03-01

    Full Text Available Moderate to severe hearing loss affects 360 million people worldwide and most often results from damage to sensory hair cells. Hair cell damage can result from aging, genetic mutations, excess noise exposure, and certain medications including aminoglycoside antibiotics. Aminoglycosides are effective at treating infections associated with cystic fibrosis and other life-threatening conditions such as sepsis, but cause hearing loss in 20-30% of patients. It is therefore imperative to develop new therapies to combat hearing loss and allow safe use of these potent antibiotics. We approach this drug discovery question using the larval zebrafish lateral line because zebrafish hair cells are structurally and functionally similar to mammalian inner ear hair cells and respond similarly to toxins. We screened a library of 502 natural compounds in order to identify novel hair cell protectants. Our screen identified four bisbenzylisoquinoline derivatives: berbamine, E6 berbamine, hernandezine, and isotetrandrine, each of which robustly protected hair cells from aminoglycoside-induced damage. Using fluorescence microscopy and electrophysiology, we demonstrated that the natural compounds confer protection by reducing antibiotic uptake into hair cells and showed that hair cells remain functional during and after incubation in E6 berbamine. We also determined that these natural compounds do not reduce antibiotic efficacy. Together, these natural compounds represent a novel source of possible otoprotective drugs that may offer therapeutic options for patients receiving aminoglycoside treatment.

  6. Defining the cellular environment in the organ of Corti following extensive hair cell loss: a basis for future sensory cell replacement in the Cochlea.

    Directory of Open Access Journals (Sweden)

    Ruth R Taylor

    Full Text Available BACKGROUND: Following the loss of hair cells from the mammalian cochlea, the sensory epithelium repairs to close the lesions but no new hair cells arise and hearing impairment ensues. For any cell replacement strategy to be successful, the cellular environment of the injured tissue has to be able to nurture new hair cells. This study defines characteristics of the auditory sensory epithelium after hair cell loss. METHODOLOGY/PRINCIPAL FINDINGS: Studies were conducted in C57BL/6 and CBA/Ca mice. Treatment with an aminoglycoside-diuretic combination produced loss of all outer hair cells within 48 hours in both strains. The subsequent progressive tissue re-organisation was examined using immunohistochemistry and electron microscopy. There was no evidence of significant de-differentiation of the specialised columnar supporting cells. Kir4.1 was down regulated but KCC4, GLAST, microtubule bundles, connexin expression patterns and pathways of intercellular communication were retained. The columnar supporting cells became covered with non-specialised cells migrating from the outermost region of the organ of Corti. Eventually non-specialised, flat cells replaced the columnar epithelium. Flat epithelium developed in distributed patches interrupting regions of columnar epithelium formed of differentiated supporting cells. Formation of the flat epithelium was initiated within a few weeks post-treatment in C57BL/6 mice but not for several months in CBA/Ca's, suggesting genetic background influences the rate of re-organisation. CONCLUSIONS/SIGNIFICANCE: The lack of dedifferentiation amongst supporting cells and their replacement by cells from the outer side of the organ of Corti are factors that may need to be considered in any attempt to promote endogenous hair cell regeneration. The variability of the cellular environment along an individual cochlea arising from patch-like generation of flat epithelium, and the possible variability between individuals

  7. Anterograde axonal transport and intercellular transfer of WGA-HRP in trigeminal-innervated sensory receptors of rat incisive papilla.

    Science.gov (United States)

    Chan, K Y; Byers, M R

    1985-04-08

    The ultrastructure and identification of WGA-HRP-labeled sensory receptors in the rat incisive papilla (the most anterior part of hard palate) were studied using semiserial thin sections. Various sensory receptors were organized according to three locations: dome region (ventral), chemosensory corpuscle region (medial to orifice of incisive canal), and lateral labium (apposing the incisive canal). In the dome region, the sensory receptors were localized in three sensory zones that were associated with surface ridges (one medial and two lateral). In each of these zones, intraepithelial receptor axons and Merkel receptors occurred in the epithelium, while simple unencapsulated corpuscles, glomerular-Meissner corpuscles, and incisive (encapsulated) corpuscles occurred in the lamina propria. In the chemosensory corpuscle region, chemosensory corpuscles and intraepithelial receptor axons were located in the epithelium, and incisive corpuscles were present in the lamina propria. In the lateral labium, only intraepithelial receptor axons were prominent. In all these sensory receptors, the preterminal axons and axon terminals were labeled with the tracer protein. In addition, some nonneuronal cells closely associated with the axon terminals were selectively labeled, e.g., terminal Schwann cells, lamellar Schwann cells, Merkel cells, corpuscular basal cells and chemosensory cells. Other adjacent cells were not labeled, e.g., unspecialized epithelial cells, capsular cells, corpuscular sustentacular cells, and fibroblasts. In both labeled axons and cells, WGA-HRP was incorporated into vesicles, tubules, and vacuolar organelles. The specific intercellular transfer of tracer protein may indicate trophic interactions between axon terminals and support cells in sensory receptors. The specific organization of multiple sensory receptors in the rat incisive papilla may provide a useful alternative system for studying somatosensory physiology.

  8. Sensory evaluation of a highly nutritive bread, formulated for populations suffering food emergencies, preserved with ionizing radiation

    International Nuclear Information System (INIS)

    Gonzalez, G.S.; Gómez, B.; Cova, M.C.; Narvaiz, Patricia

    2011-01-01

    The aim of this work was to evaluate with sensorial analysis, the feasibility of extending the shelf life at room temperature of highly nutritive bread, specially formulated for people suffering alimentary emergencies such as floods, earthquakes, geographical isolation or malnourishment, by means of ionizing radiation. The shelf life of any bread is limited by microbial growth, so the food industry uses chemicals and /or refrigeration to control it. Twenty one breads were formulated and manufactured employing wheat and soybean flours, dehydrated whey, skim milk and egg, vegetal oil, water, and some commercial food additives as emulsifiers and water retention substances. A final formulation was chosen by means of a preliminary sensory evaluation. Bibliographic estimations were made on its nutritional quality as compared to that of a regular wheat bread; improvements were found on vitamins, minerals, proteins, lipids and fibre. Forty 450 g breads were manufactured, oven cooked at 220°C for 20 minutes, packaged with polyethylene film, 100 microns thickness, and irradiated at the semi industrial cobalt-60 facility of the Ezeiza Atomic Centre, about 600,000 Ci of activity, with doses of 0, 6 and 10 kilo Grays, dose rate: 10 kGy/h, dose uniformity: 1.1. Control and irradiated samples were stored at room temperature and relative humidity for 43 days. Sensory analysis was performed with a panel of about 50 consumers on days 3, 29 and 43, evaluating aroma, aspect, colour, flavour, texture and general acceptability with hedonic scores ranging from 1 to 9. No significant differences between control and irradiated samples were found, being the latter afforded scores close to 7 even at the end of the storage period. Control samples had to be discarded on day 6 due to visible mould growth. So this bread formulation, suitable to fulfill most of the nutritional requirements of a population under alimentary emergency, attained at least a 7 fold shelf life increase when treated

  9. Desynchronizing electrical and sensory coordinated reset neuromodulation.

    Science.gov (United States)

    Popovych, Oleksandr V; Tass, Peter A

    2012-01-01

    Coordinated reset (CR) stimulation is a desynchronizing stimulation technique based on timely coordinated phase resets of sub-populations of a synchronized neuronal ensemble. It has initially been computationally developed for electrical deep brain stimulation (DBS), to enable an effective desynchronization and unlearning of pathological synchrony and connectivity (anti-kindling). Here we computationally show for ensembles of spiking and bursting model neurons interacting via excitatory and inhibitory adaptive synapses that a phase reset of neuronal populations as well as a desynchronization and an anti-kindling can robustly be achieved by direct electrical stimulation or indirect (synaptically-mediated) excitatory and inhibitory stimulation. Our findings are relevant for DBS as well as for sensory stimulation in neurological disorders characterized by pathological neuronal synchrony. Based on the obtained results, we may expect that the local effects in the vicinity of a depth electrode (realized by direct stimulation of the neurons' somata or stimulation of axon terminals) and the non-local CR effects (realized by stimulation of excitatory or inhibitory efferent fibers) of deep brain CR neuromodulation may be similar or even identical. Furthermore, our results indicate that an effective desynchronization and anti-kindling can even be achieved by non-invasive, sensory CR neuromodulation. We discuss the concept of sensory CR neuromodulation in the context of neurological disorders.

  10. Desynchronizing Electrical and Sensory Coordinated Reset Neuromodulation

    Directory of Open Access Journals (Sweden)

    Oleksandr V. Popovych

    2012-03-01

    Full Text Available Coordinated reset (CR stimulation is a desynchronizing stimulation technique based on timely coordinated phase resets of sub-populations of a synchronized neuronal ensemble. It has initially been computationally developed for electrical deep brain stimulation (DBS,to enable an effective desynchronization and unlearning of pathological synchrony and connectivity (anti-kindling. Here we computationally show for ensembles of spiking and bursting model neurons interacting via excitatory and inhibitory adaptive synapses that a phase reset of neuronal populations as well as a desynchronization and an anti-kindling can robustly be achieved by direct electrical stimulation or indirect (synaptically-mediated excitatory and inhibitory stimulation.Our findings are relevant for DBS as well as for sensory stimulation in neurological disorders characterized by pathological neuronalsynchrony. Based on the obtained results, we may expect that the local effects in the vicinity of a depth electrode (realized by direct stimulation of the neurons' somata or stimulation of axon terminals and the non-local CR effects (realized by stimulation of excitatory or inhibitory efferent fibers of deep brain CR neuromodulation may be similar or even identical. Furthermore, ourresults indicate that an effective desynchronization and anti-kindlingcan even be achieved by non-invasive, sensory CR neuromodulation. We discuss the concept of sensory CR neuromodulation in the context of neurological disorders.

  11. Immunohistochemical study of the sensory formations in the glabrous skin of the rat.

    Science.gov (United States)

    Vega, J A; Malinovsky, L; del Valle, M E; Hernandez, L C; Dubový, P; Perez-Casas, A

    1990-01-01

    The presence of some cytoskeletal proteins related to the intermediate filaments glial fibrillary acidic protein -GFAP and vimentin) and S-100 protein has been investigated in sensory formations of the glabrous skin of the rat. A positive reaction both for S-100 protein and vimentin was found in the inner core and related cells of glomerular and simple sensory corpuscles; in contrast, no positive reaction was shown for GFAP. The authors discuss these results on the basis of the glial origin of the inner core and related cells in sensory formations.

  12. Sensory feedback, error correction, and remapping in a multiple oscillator model of place cell activity

    Directory of Open Access Journals (Sweden)

    Joseph D. Monaco

    2011-09-01

    Full Text Available Mammals navigate by integrating self-motion signals (‘path integration’ and occasionally fixing on familiar environmental landmarks. The rat hippocampus is a model system of spatial representation in which place cells are thought to integrate both sensory and spatial information from entorhinal cortex. The localized firing fields of hippocampal place cells and entorhinal grid cells demonstrate a phase relationship with the local theta (6–10 Hz rhythm that may be a temporal signature of path integration. However, encoding self-motion in the phase of theta oscillations requires high temporal precision and is susceptible to idiothetic noise, neuronal variability, and a changing environment. We present a model based on oscillatory interference theory, previously studied in the context of grid cells, in which transient temporal synchronization among a pool of path-integrating theta oscillators produces hippocampal-like place fields. We hypothesize that a spatiotemporally extended sensory interaction with external cues modulates feedback to the theta oscillators. We implement a form of this cue-driven feedback and show that it can retrieve fixed points in the phase code of position. A single cue can smoothly reset oscillator phases to correct for both systematic errors and continuous noise in path integration. Further, simulations in which local and global cues are rotated against each other reveal a phase-code mechanism in which conflicting cue arrangements can reproduce experimentally observed distributions of ‘partial remapping’ responses. This abstract model demonstrates that phase-code feedback can provide stability to the temporal coding of position during navigation and may contribute to the context-dependence of hippocampal spatial representations. While the anatomical substrates of these processes have not been fully characterized, our findings suggest several signatures that can be evaluated in future experiments.

  13. The Notch ligand JAG1 is required for sensory progenitor development in the mammalian inner ear.

    Directory of Open Access Journals (Sweden)

    Amy E Kiernan

    2006-01-01

    Full Text Available In mammals, six separate sensory regions in the inner ear are essential for hearing and balance function. Each sensory region is made up of hair cells, which are the sensory cells, and their associated supporting cells, both arising from a common progenitor. Little is known about the molecular mechanisms that govern the development of these sensory organs. Notch signaling plays a pivotal role in the differentiation of hair cells and supporting cells by mediating lateral inhibition via the ligands Delta-like 1 and Jagged (JAG 2. However, another Notch ligand, JAG1, is expressed early in the sensory patches prior to cell differentiation, indicating that there may be an earlier role for Notch signaling in sensory development in the ear. Here, using conditional gene targeting, we show that the Jag1 gene is required for the normal development of all six sensory organs within the inner ear. Cristae are completely lacking in Jag1-conditional knockout (cko mutant inner ears, whereas the cochlea and utricle show partial sensory development. The saccular macula is present but malformed. Using SOX2 and p27kip1 as molecular markers of the prosensory domain, we show that JAG1 is initially expressed in all the prosensory regions of the ear, but becomes down-regulated in the nascent organ of Corti by embryonic day 14.5, when the cells exit the cell cycle and differentiate. We also show that both SOX2 and p27kip1 are down-regulated in Jag1-cko inner ears. Taken together, these data demonstrate that JAG1 is expressed early in the prosensory domains of both the cochlear and vestibular regions, and is required to maintain the normal expression levels of both SOX2 and p27kip1. These data demonstrate that JAG1-mediated Notch signaling is essential during early development for establishing the prosensory regions of the inner ear.

  14. Long-Range Regulatory Synergy Is Required to Allow Control of the TAC1 Locus by MEK/ERK Signalling in Sensory Neurones

    Directory of Open Access Journals (Sweden)

    Lynne Shanley

    2010-12-01

    Full Text Available Changes in the expression of the neuropeptide substance P (SP in different populations of sensory neurones are associated with the progression of chronic inflammatory disease. Thus, understanding the genomic and cellular mechanisms driving the expression of the TAC1 gene, which encodes SP, in sensory neurones is essential to understanding its role in inflammatory disease. We used a novel combination of computational genomics, primary-cell culture and mouse transgenics to determine the genomic and cellular mechanisms that control the expression of TAC1 in sensory neurones. Intriguingly, we demonstrated that the promoter of the TAC1 gene must act in synergy with a remote enhancer, identified using comparative genomics, to respond to MAPK signalling that modulates the expression of TAC1 in sensory neurones. We also reveal that noxious stimulation of sensory neurones triggers this synergy in larger diameter sensory neurones – an expression of SP associated with hyperalgesia. This noxious stimulation of TAC1 enhancer-promotor synergy could be strongly blocked by antagonism of the MEK pathway. This study provides a unique insight into the role of long-range enhancer-promoter synergy and selectivity in the tissue-specific response of promoters to specific signal transduction pathways and suggests a possible new avenue for the development of novel anti-inflammatory therapies.

  15. Sensory Supplementation to Enhance Adaptation Following G-transitions and Traumatic Brain Injury

    Science.gov (United States)

    Wood, Scott; Rupert, Angus

    2013-01-01

    Sensory supplementation can be incorporated as online feedback for improving spatial orientation awareness for manual control tasks (e.g. TSAS, Shuttle ZAG study). Preliminary data with vestibular patients and TBI military population is promising for rehabilitation training. Recommend that sensory supplementation be incorporated as a training component in an integrated countermeasure approach.

  16. Ovarian cancer stem cells are enriched in side population and aldehyde dehydrogenase bright overlapping population.

    Directory of Open Access Journals (Sweden)

    Kazuyo Yasuda

    Full Text Available Cancer stem-like cells (CSCs/cancer-initiaiting cells (CICs are defined as a small population of cancer cells that have self-renewal capacity, differentiation potential and high tumor-initiating ability. CSCs/CICs of ovarian cancer have been isolated by side population (SP analysis, ALDEFLUOR assay and using cell surface markers. However, these approaches are not definitive markers for CSCs/CICs, and it is necessary to refine recent methods for identifying more highly purified CSCs/CICs. In this study, we analyzed SP cells and aldehyde dehydrogenese bright (ALDH(Br cells from ovarian cancer cells. Both SP cells and ALDH(Br cells exhibited higher tumor-initiating ability and higher expression level of a stem cell marker, sex determining region Y-box 2 (SOX2, than those of main population (MP cells and ALDH(Low cells, respectively. We analyzed an SP and ALDH(Br overlapping population (SP/ALDH(Br, and the SP/ALDH(Br population exhibited higher tumor-initiating ability than that of SP cells or ALDH(Br cells, enabling initiation of tumor with as few as 10(2 cells. Furthermore, SP/ADLH(Br population showed higher sphere-forming ability, cisplatin resistance, adipocyte differentiation ability and expression of SOX2 than those of SP/ALDH(Low, MP/ALDH(Br and MP/ALDH(Low cells. Gene knockdown of SOX2 suppressed the tumor-initiation of ovarian cancer cells. An SP/ALDH(Br population was detected in several gynecological cancer cells with ratios of 0.1% for HEC-1 endometrioid adenocarcinoma cells to 1% for MCAS ovary mucinous adenocarcinoma cells. Taken together, use of the SP and ALDH(Br overlapping population is a promising approach to isolate highly purified CSCs/CICs and SOX2 might be a novel functional marker for ovarian CSCs/CICs.

  17. Directional cell movements downstream of Gbx2 and Otx2 control the assembly of sensory placodes

    Directory of Open Access Journals (Sweden)

    Ben Steventon

    2016-11-01

    Full Text Available Cranial placodes contribute to sensory structures including the inner ear, the lens and olfactory epithelium and the neurons of the cranial sensory ganglia. At neurula stages, placode precursors are interspersed in the ectoderm surrounding the anterior neural plate before segregating into distinct placodes by as yet unknown mechanisms. Here, we perform live imaging to follow placode progenitors as they aggregate to form the lens and otic placodes. We find that while placode progenitors move with the same speed as their non-placodal neighbours, they exhibit increased persistence and directionality and these properties are required to assemble morphological placodes. Furthermore, we demonstrate that these factors are components of the transcriptional networks that coordinate placode cell behaviour including their directional movements. Together with previous work, our results support a dual role for Otx and Gbx transcription factors in both the early patterning of the neural plate border and the later segregation of its derivatives into distinct placodes.

  18. Sensory Neuropathy Due to Loss of Bcl-w

    Science.gov (United States)

    Courchesne, Stephanie L.; Karch, Christoph; Pazyra-Murphy, Maria F.; Segal, Rosalind A.

    2010-01-01

    Small fiber sensory neuropathy is a common disorder in which progressive degeneration of small diameter nociceptors causes decreased sensitivity to thermal stimuli and painful sensations in the extremities. In the majority of patients, the cause of small fiber sensory neuropathy is unknown, and treatment options are limited. Here, we show that Bcl-w (Bcl-2l2) is required for the viability of small fiber nociceptive sensory neurons. Bcl-w −/− mice demonstrate an adult-onset progressive decline in thermosensation and a decrease in nociceptor innervation of the epidermis. This denervation occurs without cell body loss, indicating that lack of Bcl-w results in a primary axonopathy. Consistent with this phenotype, we show that Bcl-w, in contrast to the closely related Bcl-2 and Bcl-xL, is enriched in axons of sensory neurons and that Bcl-w prevents the dying back of axons. Bcl-w −/− sensory neurons exhibit mitochondrial abnormalities, including alterations in axonal mitochondrial size, axonal mitochondrial membrane potential, and cellular ATP levels. Collectively, these data establish bcl-w −/− mice as an animal model of small fiber sensory neuropathy, and provide new insight regarding the role of bcl-w and of mitochondria in preventing axonal degeneration. PMID:21289171

  19. Sensory dissociation in chronic low back pain: Two case reports.

    Science.gov (United States)

    Adamczyk, Wacław M; Luedtke, Kerstin; Saulicz, Oskar; Saulicz, Edward

    2018-08-01

    Patients with chronic low back pain often report that they do not perceive their painful back accurately. Previous studies confirmed that sensory dissociation and/or discrepancy between perceived body image and actual size is one of the specific traits of patients with chronic pain. Current approaches for measuring sensory dissociation are limited to two-point-discrimination or rely on pain drawings not allowing for quantitative analysis. This case study reports the sensory dissociation of two cases with chronic low back pain using a recently published test (point-to-point-test (PTP)) and a newly developed test (two-point-estimation (TPE)). Both patients mislocalized tactile stimuli delivered to the painful location compared to non-painful locations (PTP test). In addition, both patients perceived their painful lumbar region differently from non-painful sites above and below and contralateral to the painful site. TPE data showed two distinct clinical patterns of sensory dissociation: one patient perceived the two-point distance in the painful area as expanded, while the other patient perceived it as shrunk. The latter pattern of sensory dissociation (i.e., pattern shrunk) is likely to respond to sensory training. Whether enlarged patterns of sensory dissociation are more resistant to treatment remains unknown but would explain the low effectiveness of previous studies using sensory training in chronic low back pain populations. Subgrouping patients according to their sensory discrimination pattern could contribute to the choice and effectiveness of the treatment approach.

  20. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains.

    Directory of Open Access Journals (Sweden)

    Arno Onken

    2016-11-01

    Full Text Available Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations, in their temporal dimension (temporal neural response variations, or in their combination (temporally coordinated neural population firing. Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together, temporal firing patterns (temporal activation of these groups of neurons and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial. We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine

  1. Structural, compositional, and sensorial properties of United States commercial ice cream products.

    Science.gov (United States)

    Warren, Maya M; Hartel, Richard W

    2014-10-01

    Commercial vanilla ice cream products from the United States (full fat, low fat, and nonfat) were analyzed for their structural, behavioral (i.e., melt rate and drip-through), compositional, and sensorial attributes. Mean size distributions of ice crystals and air cells, drip-through rates, percent partially coalesced fat, percent overrun and total fat, and density were determined. A trained panel carried out sensory analyses in order to determine correlations between ice cream microstructure attributes and sensory properties using a Spectrum(TM) descriptive analysis. Analyses included melt rate, breakdown, size of ice particulates (iciness), denseness, greasiness, and overall creaminess. To determine relationships and interactions, principle component analysis and multivariate pairwise correlation were performed within and between the instrumental and sensorial data. Greasiness and creaminess negatively correlated with drip-through rate and creaminess correlated with percent total fat and percent fat destabilization. Percent fat did not determine the melt rate on a sensorial level. However, drip-through rate at ambient temperatures was predicted by total fat content of the samples. Based on sensory analysis, high-fat products were noted to be creamier than low and nonfat products. Iciness did not correlate with mean ice crystal size and drip-through rate did not predict sensory melt rate. Furthermore, on a sensorial level, greasiness positively correlated with total percent fat destabilization and mean air cell size positively correlated with denseness. These results indicate that commercial ice cream products vary widely in composition, structure, behavior, and sensory properties. There is a wide range of commercial ice creams in the United States market, ranging from full fat to nonfat. In this research we showed that these ice creams vary greatly in their microstructures, behaviors (the melt/drip-though, collapse, and/or stand up properties of ice cream

  2. Phenotype heterogeneity in cancer cell populations

    International Nuclear Information System (INIS)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-01-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  3. Phenotype heterogeneity in cancer cell populations

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luis [CNRS UMR 7598, LJLL, & INRIA MAMBA team, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, luis@ann.jussieu.fr (France); Chisholm, Rebecca [School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia, rebecca.chisholm@gmail.com (Australia); Clairambault, Jean [INRIA MAMBA team & LJLL, UMR 7598, Sorbonne Universités, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, jean.clairambault@inria.fr, Corresponding author (France); Escargueil, Alexandre [INSERM “Cancer Biology and Therapeutics”, Sorbonne Universités, UPMC Univ Paris 06, UMR-S 938, CDR St Antoine, Hôpital St Antoine, 184 Fbg. St Antoine, 75571 Paris cedex 12, France, alexandre.escargueil@upmc.fr (France); Lorenzi, Tommaso [CMLA, ENS Cachan, 61, Av. du Président Wilson, 94230 Cachan cedex & INRIA MAMBA team, & LJLL, UMR 7598, UPMC Univ Paris 06, Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, tommaso.lorenzi@gmail.com (France); Lorz, Alexander [Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598 & INRIA Boîte courrier 187, 4 Pl. Jussieu, 75252 Paris cedex 05, France, alex.lorz@ann.jussieu.fr (France); Trélat, Emmanuel [Institut Universitaire de France, Sorbonne Universités, UPMC Univ Paris 06, LJLL, UMR 7598, Boîte courrier 187, UPMC Univ Paris 06, 4 Pl. Jussieu, 75252 Paris cedex 05, France, emmanuel.trelat@upmc.fr (France)

    2016-06-08

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  4. Phenotype heterogeneity in cancer cell populations

    Science.gov (United States)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  5. HIV Associated Sensory Neuropathy.

    Science.gov (United States)

    G, Amruth; S, Praveen-Kumar; B, Nataraju; Bs, Nagaraja

    2014-07-01

    In the era of highly active antiretroviral therapy, sensory neuropathies have increased in prevalence. We have documented the frequency and profile of the two most common forms of sensory neuropathies associated with Human Immunodeficiency Virus (HIV) infection and looked into clinicoelectrophysiological correlates to differentiate the two entities. The study population comprised of all consecutive patients detected to be HIV positive and attending the Neurology outpatient department (from March 2011 to March 2012) who were aged ≥ 18 years and were able to give informed consent. The data were collected from the patient records (including CD4 counts and treatment details) and questionnaire based interview with each patient. All patients underwent detailed clinical examination and nerve conduction studies (NCSs). Among the total study population of 50 patients, there were 31 men and 19 women. Thirty two patients were in age range of 21 - 40 years and rest were above 40 years. 25 were on antiretroviral therapy (18 on regimen containing zidovudine; seven on regimen containing stavudine). The mean duration of antiretroviral therapy was 16.6±8.4 months. Low CD4 counts ( 40 years. Subclinical neuropathy was common in those on antiretroviral therapy. Axonal neuropathy was the commonest pattern noted in patients who were receiving antiretroviral therapy and demyelinating neuropathy in patients not on antiretroviral therapy. Surprisingly no significant correlation was found between low CD4 counts and symptomatic neuropathy.

  6. Sensory maps in the claustrum of the cat.

    Science.gov (United States)

    Olson, C R; Graybiel, A M

    1980-12-04

    The claustrum is a telencephalic cell group (Fig. 1A, B) possessing widespread reciprocal connections with the neocortex. In this regard, it bears a unique and striking resemblance to the thalamus. We have now examined the anatomical ordering of pathways linking the claustrum with sensory areas of the cat neocortex and, in parallel electrophysiological experiments, have studied the functional organization of claustral sensory zones so identified. Our findings indicate that there are discrete visual and somatosensory subdivisions in the claustrum interconnected with the corresponding primary sensory areas of the neocortex and that the respective zones contain orderly retinotopic and somatotopic maps. A third claustral region receiving fibre projections from the auditory cortex in or near area Ep was found to contain neurones responsive to auditory stimulation. We conclude that loops connecting sensory areas of the neocortex with satellite zones in the claustrum contribute to the early processing of exteroceptive information by the forebrain.

  7. Gene expression heterogeneities in embryonic stem cell populations

    DEFF Research Database (Denmark)

    Martinez Arias, Alfonso; Brickman, Joshua M

    2011-01-01

    Stem and progenitor cells are populations of cells that retain the capacity to populate specific lineages and to transit this capacity through cell division. However, attempts to define markers for stem cells have met with limited success. Here we consider whether this limited success reflects...... an intrinsic requirement for heterogeneity with stem cell populations. We focus on Embryonic Stem (ES) cells, in vitro derived cell lines from the early embryo that are considered both pluripotent (able to generate all the lineages of the future embryo) and indefinitely self renewing. We examine the relevance...... of recently reported heterogeneities in ES cells and whether these heterogeneities themselves are inherent requirements of functional potency and self renewal....

  8. Bridging the Timescales of Single-Cell and Population Dynamics

    Science.gov (United States)

    Jafarpour, Farshid; Wright, Charles S.; Gudjonson, Herman; Riebling, Jedidiah; Dawson, Emma; Lo, Klevin; Fiebig, Aretha; Crosson, Sean; Dinner, Aaron R.; Iyer-Biswas, Srividya

    2018-04-01

    How are granular details of stochastic growth and division of individual cells reflected in smooth deterministic growth of population numbers? We provide an integrated, multiscale perspective of microbial growth dynamics by formulating a data-validated theoretical framework that accounts for observables at both single-cell and population scales. We derive exact analytical complete time-dependent solutions to cell-age distributions and population growth rates as functionals of the underlying interdivision time distributions, for symmetric and asymmetric cell division. These results provide insights into the surprising implications of stochastic single-cell dynamics for population growth. Using our results for asymmetric division, we deduce the time to transition from the reproductively quiescent (swarmer) to the replication-competent (stalked) stage of the Caulobacter crescentus life cycle. Remarkably, population numbers can spontaneously oscillate with time. We elucidate the physics leading to these population oscillations. For C. crescentus cells, we show that a simple measurement of the population growth rate, for a given growth condition, is sufficient to characterize the condition-specific cellular unit of time and, thus, yields the mean (single-cell) growth and division timescales, fluctuations in cell division times, the cell-age distribution, and the quiescence timescale.

  9. Reduced sensory stimulation alters the molecular make-up of glutamatergic hair cell synapses in the developing cochlea.

    Science.gov (United States)

    Barclay, M; Constable, R; James, N R; Thorne, P R; Montgomery, J M

    2016-06-14

    Neural activity during early development is known to alter innervation pathways in the central and peripheral nervous systems. We sought to examine how reduced sound-induced sensory activity in the cochlea affected the consolidation of glutamatergic synapses between inner hair cells (IHC) and the primary auditory neurons as these synapses play a primary role in transmitting sound information to the brain. A unilateral conductive hearing loss was induced prior to the onset of sound-mediated stimulation of the sensory hair cells, by rupturing the tympanic membrane and dislocating the auditory ossicles in the left ear of P11 mice. Auditory brainstem responses at P15 and P21 showed a 40-50-dB increase in thresholds for frequencies 8-32kHz in the dislocated ear relative to the control ear. Immunohistochemistry and confocal microscopy were subsequently used to examine the effect of this attenuation of sound stimulation on the expression of RIBEYE, which comprises the presynaptic ribbons, Shank-1, a postsynaptic scaffolding protein, and the GluA2/3 and 4 subunits of postsynaptic AMPA receptors. Our results show that dislocation did not alter the number of pre- or postsynaptic protein puncta. However, dislocation did increase the size of RIBEYE, GluA4, GluA2/3 and Shank-1 puncta, with postsynaptic changes preceding presynaptic changes. Our data suggest that a reduction in sound stimulation during auditory development induces plasticity in the molecular make-up of IHC glutamatergic synapses, but does not affect the number of these synapses. Up-regulation of synaptic proteins with sound attenuation may facilitate a compensatory increase in synaptic transmission due to the reduced sensory stimulation of the IHC. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Assessment of the sensory and physical limitations imposed by leprosy in a Brazilian Amazon Population

    Directory of Open Access Journals (Sweden)

    Cintia Yolette Urbano Pauxis Aben-Athar

    Full Text Available Abstract INTRODUCTION Leprosy often results in sensory and physical limitations. This study aimed to evaluate these limitations using a quantitative approach in leprosy patients in Belém (Pará, Brazil. METHODS This epidemiological, cross-sectional study measured the sensory impairment of smell and taste through the use of a questionnaire and evaluated activity limitations of daily life imposed by leprosy through the Screening of Activity Limitation and Safety Awareness (SALSA Scale. Data were collected from 84 patients and associations between the degree of disability and clinical and epidemiological characteristics were assessed. RESULTS The majority of patients were men (64.3%, married (52.4%, age 31-40 years old (26.2%, had primary education (50%, and were independent laborers (36.9%. The multibacillary operational classification (81%, borderline clinical form (57.1%, and 0 degrees of physical disability (41.7% were predominant. SALSA scores ranged from 17 to 59 points, and being without limitations was predominant (53.6%. The risk awareness score ranged from 0 to 8, with a score of 0 (no awareness of risk being the most common (56%. Evaluation of smell and taste sensory sensitivities revealed that 70.2% did not experience these sensory changes. Patients with leprosy reactions were 7 times more likely to develop activity limitations, and those who had physical disabilities were approximately four times more likely to develop a clinical picture of activity limitations. CONCLUSIONS Most patients showed no sensory changes, but patients with leprosy reactions were significantly more likely to develop activity limitations. Finally, further studies should be performed, assessing a higher number of patients to confirm the present results.

  11. On interfaces between cell populations with different mobilities

    KAUST Repository

    Lorenzi, Tommaso

    2016-11-18

    Partial differential equations describing the dynamics of cell population densities from a fluid mechanical perspective can model the growth of avascular tumours. In this framework, we consider a system of equations that describes the interaction between a population of dividing cells and a population of non-dividing cells. The two cell populations are characterised by different mobilities. We present the results of numerical simulations displaying two-dimensional spherical waves with sharp interfaces between dividing and non-dividing cells. Furthermore, we numerically observe how different ratios between the mobilities change the morphology of the interfaces, and lead to the emergence of finger-like patterns of invasion above a threshold. Motivated by these simulations, we study the existence of one-dimensional travelling wave solutions.

  12. Patients' views on early sensory relearning following nerve repair-a Q-methodology study.

    Science.gov (United States)

    Vikström, Pernilla; Carlsson, Ingela; Rosén, Birgitta; Björkman, Anders

    2017-09-26

    Descriptive study. Early sensory relearning where the dynamic capacity of the brain is used has been shown to improve sensory outcome after nerve repair. However, no previous studies have examined how patients experience early sensory relearning. To describe patient's views on early sensory relearning. Statements' scores were analyzed by factor analysis. Thirty-seven consecutive adult patients with median and/or ulnar nerve repair who completed early sensory relearning were included. Three factors were identified, explaining 45% of the variance: (1) "Believe sensory relearning is meaningful, manage to get an illusion of touch and complete the sensory relearning"; (2) "Do not get an illusion of touch easily and need support in their sensory relearning" (3) "Are not motivated, manage to get an illusion of touch but do not complete sensory relearning". Many patients succeed in implementing their sensory relearning. However, a substantial part of the patient population need more support, have difficulties to create illusion of touch, and lack motivation to complete the sensory relearning. To enhance motivation and meaningfulness by relating the training clearly to everyday occupations and to the patient's life situation is a suggested way to proceed. The three unique factors indicate motivation and sense of meaningfulness as key components which should be taken into consideration in developing programs for person-centered early sensory relearning. 3. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  13. Peripheral injury of pelvic visceral sensory nerves alters GFRa (GDNF family receptor alpha localization in sensory and autonomic pathways of the sacral spinal cord

    Directory of Open Access Journals (Sweden)

    Shelley Lynne Forrest

    2015-04-01

    Full Text Available GDNF (glial cell line-derived neurotrophic factor, neurturin and artemin use their co-receptors (GFRα1, GFRα2 and GFRα3, respectively and the tyrosine kinase Ret for downstream signalling. In rodent dorsal root ganglia (DRG most of the unmyelinated and some myelinated sensory afferents express at least one GFRα. The adult function of these receptors is not completely elucidated but their activity after peripheral nerve injury can facilitate peripheral and central axonal regeneration, recovery of sensation, and sensory hypersensitivity that contributes to pain. Our previous immunohistochemical studies of spinal cord and sciatic nerve injuries in adult rodents have identified characteristic changes in GFRα1, GFRα2 or GFRα3 in central spinal cord axons of sensory neurons located in dorsal root ganglia. Here we extend and contrast this analysis by studying injuries of the pelvic and hypogastric nerves that contain the majority of sensory axons projecting to the pelvic viscera (e.g., bladder and lower bowel. At 7 d, we detected some effects of pelvic but not hypogastric nerve transection on the ipsilateral spinal cord. In sacral (L6-S1 cord ipsilateral to nerve injury, GFRα1-immunoreactivity (IR was increased in medial dorsal horn and CGRP-IR was decreased in lateral dorsal horn. Pelvic nerve injury also upregulated GFRα1- and GFRα3-IR terminals and GFRα1-IR neuronal cell bodies in the sacral parasympathetic nucleus that provides the spinal parasympathetic preganglionic output to the pelvic nerve. This evidence suggests peripheral axotomy has different effects on somatic and visceral sensory input to the spinal cord, and identifies sensory-autonomic interactions as a possible site of post-injury regulation.

  14. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.

    Science.gov (United States)

    Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen

    2017-11-07

    Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.

  15. Sensory reactivity, empathizing and systemizing in autism spectrum conditions and sensory processing disorder

    Directory of Open Access Journals (Sweden)

    Teresa Tavassoli

    2018-01-01

    Full Text Available Although the DSM-5 added sensory symptoms as a criterion for ASC, there is a group of children who display sensory symptoms but do not have ASC; children with sensory processing disorder (SPD. To be able to differentiate these two disorders, our aim was to evaluate whether children with ASC show more sensory symptomatology and/or different cognitive styles in empathy and systemizing compared to children with SPD and typically developing (TD children. The study included 210 participants: 68 children with ASC, 79 with SPD and 63 TD children. The Sensory Processing Scale Inventory was used to measure sensory symptoms, the Autism Spectrum Quotient (AQ to measure autistic traits, and the Empathy Quotient (EQ and Systemizing Quotient (SQ to measure cognitive styles. Across groups, a greater sensory symptomatology was associated with lower empathy. Further, both the ASC and SPD groups showed more sensory symptoms than TD children. Children with ASC and SPD only differed on sensory under-reactivity. The ASD group did, however, show lower empathy and higher systemizing scores than the SPD group. Together, this suggest that sensory symptoms alone may not be adequate to differentiate children with ASC and SPD but that cognitive style measures could be used for differential diagnosis. Keywords: Autism spectrum conditions, Sensory processing disorder, Sensory symptoms, Empathy, Systemizing

  16. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

    Science.gov (United States)

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4+SNS-Cre/TdTomato+, 2) IB4−SNS-Cre/TdTomato+, and 3) Parv-Cre/TdTomato+ cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. DOI: http://dx.doi.org/10.7554/eLife.04660.001 PMID:25525749

  17. Stimulus-dependent maximum entropy models of neural population codes.

    Directory of Open Access Journals (Sweden)

    Einat Granot-Atedgi

    Full Text Available Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME model-a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population.

  18. Sensory processing and cognitive development of preterm and full term infants

    Directory of Open Access Journals (Sweden)

    Flávia Regina Ribeiro Cavalcanti Buffone

    2016-10-01

    Full Text Available Introduction: Current studies show the repercussion of sensory processing disorder in infant neurodevelopment. Little is known about the influence of these disorders in the infant’s cognitive development, however, it is known that they negatively interfere on daily life activities and remain during life course. Objective:To evaluate the relationship between sensory processing and cognitive development in infants and the association between prematurity and sensory processing in this population. Method: This is a cross-sectional study conducted in the Childcare Outpatient Department of the Hospital das Clínicas, Federal Universidade de Pernambuco, from December 2009 to August 2010. The sample consisted of 182 infants from 8 to 15 months, of which 54 (29.7% were born preterm with the prematurity age correction made to 40 weeks of gestational age. We used the Test of Sensory Functions in Infants (TSFI to evaluate the sensory processing and the Bayley Scales of Infant and Toddler Development III to assess cognitive development. Results: There was a significantly higher frequency of at risk and deficient sensory processing among preterm infants (37% when compared to term infants (21.9%. Cognitive delay was significantly higher (8.3% in infants with at risk and deficient sensory processing when compared to those with normal sensory processing (1.5%. Conclusion: Prematurity was a risk factor for sensory processing disorder, and infants diagnosed with this disorder showed cognitive delay more frequently. Prematurity alone was not associated with cognitive delay.

  19. Probabilistic sensory recoding.

    Science.gov (United States)

    Jazayeri, Mehrdad

    2008-08-01

    A hallmark of higher brain functions is the ability to contemplate the world rather than to respond reflexively to it. To do so, the nervous system makes use of a modular architecture in which sensory representations are dissociated from areas that control actions. This flexibility however necessitates a recoding scheme that would put sensory information to use in the control of behavior. Sensory recoding faces two important challenges. First, recoding must take into account the inherent variability of sensory responses. Second, it must be flexible enough to satisfy the requirements of different perceptual goals. Recent progress in theory, psychophysics, and neurophysiology indicate that cortical circuitry might meet these challenges by evaluating sensory signals probabilistically.

  20. Ascl1 (Mash1) lineage cells contribute to discrete cell populations in CNS architecture.

    Science.gov (United States)

    Kim, Euiseok J; Battiste, James; Nakagawa, Yasushi; Johnson, Jane E

    2008-08-01

    Ascl1 (previously Mash1) is a bHLH transcription factor essential for neuronal differentiation and specification in the nervous system. Although it has been studied for its role in several neural lineages, the full complement of lineages arising from Ascl1 progenitor cells remains unknown. Using an inducible Cre-flox genetic fate-mapping strategy, Ascl1 lineages were determined throughout the brain. Ascl1 is present in proliferating progenitor cells but these cells are actively differentiating as evidenced by rapid migration out of germinal zones. Ascl1 lineage cells contribute to distinct cell types in each major brain division: the forebrain including the cerebral cortex, olfactory bulb, hippocampus, striatum, hypothalamus, and thalamic nuclei, the midbrain including superior and inferior colliculi, and the hindbrain including Purkinje and deep cerebellar nuclei cells and cells in the trigeminal sensory system. Ascl1 progenitor cells at early stages in each CNS region preferentially become neurons, and at late stages they become oligodendrocytes. In conclusion, Ascl1-expressing progenitor cells in the brain give rise to multiple, but not all, neuronal subtypes and oligodendrocytes depending on the temporal and spatial context, consistent with a broad role in neural differentiation with some subtype specification.

  1. Identification of new binding partners of the chemosensory signalling protein Gγ13 expressed in taste and olfactory sensory cells.

    Directory of Open Access Journals (Sweden)

    Zhenhui eLiu

    2012-06-01

    Full Text Available Tastant detection in the oral cavity involves selective receptors localized at the apical extremity of a subset of specialized taste bud cells called taste receptor cells (TRCs. The identification of the genes coding for the taste receptors involved in this process have greatly improved our understanding of the molecular mechanisms underlying detection. However, how these receptors signal in TRCs, and whether the components of the signaling cascades interact with each other or are organized in complexes is mostly unexplored. Here we report on the identification of three new binding partners for the mouse G protein gamma 13 subunit (Gγ13, a component of the bitter taste receptors signalling cascade. For two of these Gγ13 associated proteins, namely GOPC and MPDZ, we describe the expression in taste bud cells for the first time. Furthermore, we demonstrate by means of a yeast two-hybrid interaction assay that the C terminal PDZ binding motif of Gγ13 interacts with selected PDZ domains in these proteins. In the case of the PDZ domain-containing protein zona occludens-1 (ZO-1, a major component of the tight junction defining the boundary between the apical and baso-lateral region of TRCs, we identified the first PDZ domain as the site of strong interaction with Gγ13. This association was further confirmed by co-immunoprecipitation experiments in HEK 293 cells. In addition, we present immunohistological data supporting partial co-localization of GOPC, MPDZ or ZO-1 and Gγ13 in taste buds cells. Finally, we extend this observation to olfactory sensory neurons, another type of chemosensory cells known to express both ZO-1 and Gγ13. Taken together our results implicate these new interaction partners in the sub-cellular distribution of Gγ13 in olfactory and gustatory primary sensory cells.

  2. Three-dimensional Organotypic Cultures of Vestibular and Auditory Sensory Organs.

    Science.gov (United States)

    Gnedeva, Ksenia; Hudspeth, A J; Segil, Neil

    2018-06-01

    The sensory organs of the inner ear are challenging to study in mammals due to their inaccessibility to experimental manipulation and optical observation. Moreover, although existing culture techniques allow biochemical perturbations, these methods do not provide a means to study the effects of mechanical force and tissue stiffness during development of the inner ear sensory organs. Here we describe a method for three-dimensional organotypic culture of the intact murine utricle and cochlea that overcomes these limitations. The technique for adjustment of a three-dimensional matrix stiffness described here permits manipulation of the elastic force opposing tissue growth. This method can therefore be used to study the role of mechanical forces during inner ear development. Additionally, the cultures permit virus-mediated gene delivery, which can be used for gain- and loss-of-function experiments. This culture method preserves innate hair cells and supporting cells and serves as a potentially superior alternative to the traditional two-dimensional culture of vestibular and auditory sensory organs.

  3. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    Science.gov (United States)

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  4. Statin use and peripheral sensory perception: a pilot study.

    Science.gov (United States)

    West, Brenton; Williams, Cylie M; Jilbert, Elise; James, Alicia M; Haines, Terry P

    2014-06-01

    Peripheral sensory neuropathy is a neurological deficit resulting in decreased detection of sensation through the peripheral nervous system. Peripheral sensory neuropathy is commonly diagnosed with the use of a monofilament and either a tuning fork or neurothesiometer. Statins are a widely used medication and there has been some debate of association with their use and peripheral sensory neuropathy. This pilot study aimed to test the sensory perception of participants with long-term statin use and compare these results to their peers who were not taking statins. Thirty participants were recruited and equally divided into a statin and non-statin group. Healthy participants were screened by their medical and medication history, Australian Type 2 Diabetes Risk assessment, and random blood glucose level. An assessor who was blinded to the participant group conducted sensory assessments using a 10 g monofilament and neurothesiometer. There was no difference in monofilament testing results between the groups. The statin group was less sensate at the styloid process (p = 0.031) and medial malleolus (p = 0.003) than the control group. Results at the hallux were not statistically significant (p = 0.183). This result is suggestive of a potential association between long-term statin use and a decrease in peripheral sensory perception. This may be because of peripheral sensory neuropathy. Limitations such as consideration of participant height, participant numbers, and inability to analyze results against statin groups are reported. As statins are a life-saving medication, careful consideration should be applied to these results and further research be conducted to determine if these results are applicable to larger populations.

  5. Clinical Interpretation of Quantitative Sensory Testing as a Measure of Pain Sensitivity in Patients with Sickle Cell Disease

    OpenAIRE

    Brandow, Amanda M.; Panepinto, Julie A.

    2016-01-01

    Patients with sickle cell disease (SCD) display significantly lower mean/median thermal and mechanical pain thresholds compared to controls. This suggests impaired pain sensitivity where stimuli produce exaggerated pain. Despite these mean/median differences, clinicians need to understand if patients meet criteria for impaired pain sensitivity. We defined thresholds for impaired cold, heat, and mechanical pain sensitivity in SCD patients. Using quantitative sensory testing (QST) we assessed c...

  6. Structural and Functional Substitution of Deleted Primary Sensory Neurons by New Growth from Intrinsic Spinal Cord Nerve Cells: An Alternative Concept in Reconstruction of Spinal Cord Circuits

    Directory of Open Access Journals (Sweden)

    Nicholas D. James

    2017-07-01

    Full Text Available In a recent clinical report, return of the tendon stretch reflex was demonstrated after spinal cord surgery in a case of total traumatic brachial plexus avulsion injury. Peripheral nerve grafts had been implanted into the spinal cord to reconnect to the peripheral nerves for motor and sensory function. The dorsal root ganglia (DRG containing the primary sensory nerve cells had been surgically removed in order for secondary or spinal cord sensory neurons to extend into the periphery and replace the deleted DRG neurons. The present experimental study uses a rat injury model first to corroborate the clinical finding of a re-established spinal reflex arch, and second, to elucidate some of the potential mechanisms underlying these findings by means of morphological, immunohistochemical, and electrophysiological assessments. Our findings indicate that, after spinal cord surgery, the central nervous system sensory system could replace the traumatically detached original peripheral sensory connections through new neurite growth from dendrites.

  7. Deconstructing stem cell population heterogeneity: Single-cell analysis and modeling approaches

    Science.gov (United States)

    Wu, Jincheng; Tzanakakis, Emmanuel S.

    2014-01-01

    Isogenic stem cell populations display cell-to-cell variations in a multitude of attributes including gene or protein expression, epigenetic state, morphology, proliferation and proclivity for differentiation. The origins of the observed heterogeneity and its roles in the maintenance of pluripotency and the lineage specification of stem cells remain unclear. Addressing pertinent questions will require the employment of single-cell analysis methods as traditional cell biochemical and biomolecular assays yield mostly population-average data. In addition to time-lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and proteomic profiling are reviewed. The application of multiple displacement amplification, next generation sequencing, mass cytometry and spectrometry to stem cell systems is expected to provide a wealth of information affording unprecedented levels of multiparametric characterization of cell ensembles under defined conditions promoting pluripotency or commitment. Establishing connections between single-cell analysis information and the observed phenotypes will also require suitable mathematical models. Stem cell self-renewal and differentiation are orchestrated by the coordinated regulation of subcellular, intercellular and niche-wide processes spanning multiple time scales. Here, we discuss different modeling approaches and challenges arising from their application to stem cell populations. Integrating single-cell analysis with computational methods will fill gaps in our knowledge about the functions of heterogeneity in stem cell physiology. This combination will also aid the rational design of efficient differentiation and reprogramming strategies as well as bioprocesses for the production of clinically valuable stem cell derivatives. PMID:24035899

  8. Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception.

    Science.gov (United States)

    Chiabrando, Deborah; Castori, Marco; di Rocco, Maja; Ungelenk, Martin; Gießelmann, Sebastian; Di Capua, Matteo; Madeo, Annalisa; Grammatico, Paola; Bartsch, Sophie; Hübner, Christian A; Altruda, Fiorella; Silengo, Lorenzo; Tolosano, Emanuela; Kurth, Ingo

    2016-12-01

    Pain is necessary to alert us to actual or potential tissue damage. Specialized nerve cells in the body periphery, so called nociceptors, are fundamental to mediate pain perception and humans without pain perception are at permanent risk for injuries, burns and mutilations. Pain insensitivity can be caused by sensory neurodegeneration which is a hallmark of hereditary sensory and autonomic neuropathies (HSANs). Although mutations in several genes were previously associated with sensory neurodegeneration, the etiology of many cases remains unknown. Using next generation sequencing in patients with congenital loss of pain perception, we here identify bi-allelic mutations in the FLVCR1 (Feline Leukemia Virus subgroup C Receptor 1) gene, which encodes a broadly expressed heme exporter. Different FLVCR1 isoforms control the size of the cytosolic heme pool required to sustain metabolic activity of different cell types. Mutations in FLVCR1 have previously been linked to vision impairment and posterior column ataxia in humans, but not to HSAN. Using fibroblasts and lymphoblastoid cell lines from patients with sensory neurodegeneration, we here show that the FLVCR1-mutations reduce heme export activity, enhance oxidative stress and increase sensitivity to programmed cell death. Our data link heme metabolism to sensory neuron maintenance and suggest that intracellular heme overload causes early-onset degeneration of pain-sensing neurons in humans.

  9. Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception.

    Directory of Open Access Journals (Sweden)

    Deborah Chiabrando

    2016-12-01

    Full Text Available Pain is necessary to alert us to actual or potential tissue damage. Specialized nerve cells in the body periphery, so called nociceptors, are fundamental to mediate pain perception and humans without pain perception are at permanent risk for injuries, burns and mutilations. Pain insensitivity can be caused by sensory neurodegeneration which is a hallmark of hereditary sensory and autonomic neuropathies (HSANs. Although mutations in several genes were previously associated with sensory neurodegeneration, the etiology of many cases remains unknown. Using next generation sequencing in patients with congenital loss of pain perception, we here identify bi-allelic mutations in the FLVCR1 (Feline Leukemia Virus subgroup C Receptor 1 gene, which encodes a broadly expressed heme exporter. Different FLVCR1 isoforms control the size of the cytosolic heme pool required to sustain metabolic activity of different cell types. Mutations in FLVCR1 have previously been linked to vision impairment and posterior column ataxia in humans, but not to HSAN. Using fibroblasts and lymphoblastoid cell lines from patients with sensory neurodegeneration, we here show that the FLVCR1-mutations reduce heme export activity, enhance oxidative stress and increase sensitivity to programmed cell death. Our data link heme metabolism to sensory neuron maintenance and suggest that intracellular heme overload causes early-onset degeneration of pain-sensing neurons in humans.

  10. Neuropathic sensory symptoms: association with pain and psychological factors

    Directory of Open Access Journals (Sweden)

    Shaygan M

    2014-05-01

    Full Text Available Maryam Shaygan,1 Andreas Böger,2 Birgit Kröner-Herwig11Department of Clinical Psychology and Psychotherapy, University of Göttingen, Germany; 2Pain Management Clinic at the Red Cross Hospital, Kassel, GermanyBackground: A large number of population-based studies of chronic pain have considered neuropathic sensory symptoms to be associated with a high level of pain intensity and negative affectivity. The present study examines the question of whether this association previously found in non-selected samples of chronic pain patients can also be found in chronic pain patients with underlying pathology of neuropathic sensory symptoms.Methods: Neuropathic sensory symptoms in 306 patients with chronic pain diagnosed as typical neuropathic pain, radiculopathy, fibromyalgia, or nociceptive back pain were assessed using the Pain DETECT Questionnaire. Two separate cluster analyses were performed to identify subgroups of patients with different levels of self-reported neuropathic sensory symptoms and, furthermore, to identify subgroups of patients with distinct patterns of neuropathic sensory symptoms (adjusted for individual response bias regarding specific symptoms.Results: ANOVA (analysis of variance results in typical neuropathic pain, radiculopathy, and fibromyalgia showed no significant differences between the three levels of neuropathic sensory symptoms regarding pain intensity, pain chronicity, pain catastrophizing, pain acceptance, and depressive symptoms. However, in nociceptive back pain patients, significant differences were found for all variables except pain chronicity. When controlling for the response bias of patients in ratings of symptoms, none of the patterns of neuropathic sensory symptoms were associated with pain and psychological factors.Conclusion: Neuropathic sensory symptoms are not closely associated with higher levels of pain intensity and cognitive-emotional evaluations in chronic pain patients with underlying pathology of

  11. UNCOMMON SENSORY METHODOLOGIES

    Directory of Open Access Journals (Sweden)

    Vladimír Vietoris

    2015-02-01

    Full Text Available Sensory science is the young but the rapidly developing field of the food industry. Actually, the great emphasis is given to the production of rapid techniques of data collection, the difference between consumers and trained panel is obscured and the role of sensory methodologists is to prepare the ways for evaluation, by which a lay panel (consumers can achieve identical results as a trained panel. Currently, there are several conventional methods of sensory evaluation of food (ISO standards, but more sensory laboratories are developing methodologies that are not strict enough in the selection of evaluators, their mechanism is easily understandable and the results are easily interpretable. This paper deals with mapping of marginal methods used in sensory evaluation of food (new types of profiles, CATA, TDS, napping.

  12. Neural Correlates of Sensory Hyporesponsiveness in Toddlers at High Risk for Autism Spectrum Disorder

    Science.gov (United States)

    Simon, David M.; Damiano, Cara R.; Woynaroski, Tiffany G.; Ibañez, Lisa V.; Murias, Michael; Stone, Wendy L.; Wallace, Mark T.; Cascio, Carissa J.

    2017-01-01

    Altered patterns of sensory responsiveness are a frequently reported feature of Autism Spectrum Disorder (ASD). Younger siblings of individuals with ASD are at a greatly elevated risk of a future diagnosis of ASD, but little is known about the neural basis of sensory responsiveness patterns in this population. Younger siblings (n = 20) of children…

  13. Hey2 functions in parallel with Hes1 and Hes5 for mammalian auditory sensory organ development

    Directory of Open Access Journals (Sweden)

    Chin Michael T

    2008-02-01

    Full Text Available Abstract Background During mouse development, the precursor cells that give rise to the auditory sensory organ, the organ of Corti, are specified prior to embryonic day 14.5 (E14.5. Subsequently, the sensory domain is patterned precisely into one row of inner and three rows of outer sensory hair cells interdigitated with supporting cells. Both the restriction of the sensory domain and the patterning of the sensory mosaic of the organ of Corti involve Notch-mediated lateral inhibition and cellular rearrangement characteristic of convergent extension. This study explores the expression and function of a putative Notch target gene. Results We report that a putative Notch target gene, hairy-related basic helix-loop-helix (bHLH transcriptional factor Hey2, is expressed in the cochlear epithelium prior to terminal differentiation. Its expression is subsequently restricted to supporting cells, overlapping with the expression domains of two known Notch target genes, Hairy and enhancer of split homolog genes Hes1 and Hes5. In combination with the loss of Hes1 or Hes5, genetic inactivation of Hey2 leads to increased numbers of mis-patterned inner or outer hair cells, respectively. Surprisingly, the ectopic hair cells in Hey2 mutants are accompanied by ectopic supporting cells. Furthermore, Hey2-/-;Hes1-/- and Hey2-/-;Hes1+/- mutants show a complete penetrance of early embryonic lethality. Conclusion Our results indicate that Hey2 functions in parallel with Hes1 and Hes5 in patterning the organ of Corti, and interacts genetically with Hes1 for early embryonic development and survival. Our data implicates expansion of the progenitor pool and/or the boundaries of the developing sensory organ to account for patterning defects observed in Hey2 mutants.

  14. Sensory description of marine oils through development of a sensory wheel and vocabulary.

    Science.gov (United States)

    Larssen, W E; Monteleone, E; Hersleth, M

    2018-04-01

    The Omega-3 industry lacks a defined methodology and a vocabulary for evaluating the sensory quality of marine oils. This study was conducted to identify the sensory descriptors of marine oils and organize them in a sensory wheel for use as a tool in quality assessment. Samples of marine oils were collected from six of the largest producers of omega-3 products in Norway. The oils were selected to cover as much variation in sensory characteristics as possible, i.e. oils with different fatty acid content originating from different species. Oils were evaluated by six industry expert panels and one trained sensory panel to build up a vocabulary through a series of language sessions. A total of 184 aroma (odor by nose), flavor, taste and mouthfeel descriptors were generated. A sensory wheel based on 60 selected descriptors grouped together in 21 defined categories was created to form a graphical presentation of the sensory vocabulary. A selection of the oil samples was also evaluated by a trained sensory panel using descriptive analysis. Chemical analysis showed a positive correlation between primary and secondary oxidation products and sensory properties such as rancidity, chemical flavor and process flavor and a negative correlation between primary oxidation products and acidic. This research is a first step towards the broader objective of standardizing the sensory terminology related to marine oils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Ecological aspects of pain in sensory modulation disorder.

    Science.gov (United States)

    Bar-Shalita, T; Deutsch, L; Honigman, L; Weissman-Fogel, I

    2015-01-01

    Sensory Modulation Disorder (SMD) interferes with the daily life participation of otherwise healthy individuals and is characterized by over-, under- or seeking responsiveness to naturally occurring sensory stimuli. Previous laboratory findings indicate pain hyper-sensitivity in SMD individuals suggesting CNS alteration in pain processing and modulation. However, laboratory studies lack ecological validity, and warrant clinical completion in order to elicit a sound understanding of the phenomenon studied. Thus, this study explored the association between sensory modulation and pain in a daily life context in a general population sample. Daily life context of pain and sensations were measured in 250 adults (aged 23-40 years; 49.6% males) using 4 self-report questionnaires: Pain Sensitivity Questionnaire (PSQ) and Pain Catastrophizing Scale (PCS) to evaluate the sensory and cognitive aspects of pain; the Sensory Responsiveness Questionnaire (SRQ) to appraise SMD; and the Short Form - 36 Health Survey, version 2 (SF36) to assess health related Quality of Life (QoL). Thirty two individuals (12.8%) were found with over-responsiveness type of SMD, forming the SOR-SMD group. While no group differences (SOR-SMD vs. Non-SMD) were found, low-to-moderate total sample correlations were demonstrated between the SRQ-Aversive sub-scale and i) PSQ total (r=0.31, pcognitive aspect. This indicates that SMD co-occurs with daily pain sensitivity, thus reducing QoL, but less with the cognitive-catastrophizing manifestation of pain perception. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Sensory nerve endings in the penis in green monkey (Cercopithecus aethiops sabaeus).

    Science.gov (United States)

    Malinovský, L; Sommerová, J

    1977-01-01

    The authors examined the sensory innervation of the skin in the penis in green monkey in four adult individuals both in the light and in the elctron microscope. They found 3 kings of nerve endings. The free nerve endings were the most frequently occurring kind of nerve endings in the superficial layers of the corium--altogether 6,444 in number. The second kind of sensory nerve endings is represented by the glomerular endings out of which 96 per cent were found in the papillae. The typical Meissner's endings were observed in the light microscopy only rarely. Deeper in the corium the authors also found single simple sensory corpuscles and Pacinian corpuscles. Studying the ultrastructure the authors found in the papillae of the corium 4 types of glomerular endings: quite simple glomerular endings with irregularly arranged Schwann cells, larger and more complicated glomerular endings having a thicker capsule, endings with lamellar system around the terminals and typical Meissner's endings. In the epidermis the authors observed naked axons which passed in the spaces among the epidermal cells. They contained an accumulation of mitochondria. In the basal cell layer of the epidermis there was a small amount of Langerhans cells.

  17. Assessment of Sensory Processing Characteristics in Children between 3 and 11 Years Old: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Sara Jorquera-Cabrera

    2017-03-01

    Full Text Available The assessment of sensory perception, discrimination, integration, modulation, praxis, and other motor skills, such as posture, balance, and bilateral motor coordination, is necessary to identify the sensory and motor factors influencing the development of personal autonomy. The aim of this work is to study the assessment tools currently available for identifying different patterns of sensory processing. There are 15 tests available that have psychometric properties, primarily for the US population. Nine of them apply to children in preschool and up to grade 12. The assessment of sensory processing is a process that includes the use of standardized tests, administration of caregiver questionnaires, and clinical observations. The review of different studies using PRISMA criteria or Osteba Critical Appraisal Cards reveals that the most commonly used tools are the Sensory Integration and Praxis Test, the Sensory Processing Measure, and the Sensory Profile.

  18. Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.

    Science.gov (United States)

    Soulika, Marina; Kaushik, Anna-Lila; Mathieu, Benjamin; Lourenço, Raquel; Komisarczuk, Anna Z; Romano, Sebastian Alejo; Jouary, Adrien; Lardennois, Alicia; Tissot, Nicolas; Okada, Shinji; Abe, Keiko; Becker, Thomas S; Kapsimali, Marika

    2016-06-01

    Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the cell behavior underlying the organ assembly is poorly defined. Here, we used time-lapse imaging to observe the formation of taste buds in live zebrafish larvae. We found that tg(fgf8a.dr17)-expressing cells form taste buds and get rearranged within the forming organs. In addition, differentiating cells move from the epithelium to the forming organs and can be displaced between developing organs. During organ formation, tg(fgf8a.dr17) and type II taste bud cells are displaced in random, directed or confined mode relative to the taste bud they join or by which they are maintained. Finally, ascl1a activity in the 5-HT/type III cell is required to direct and maintain tg(fgf8a.dr17)-expressing cells into the taste bud. We propose that diversity in displacement modes of differentiating cells acts as a key mechanism for the highly dynamic process of taste bud assembly. © 2016. Published by The Company of Biologists Ltd.

  19. Sensory Coding by Cerebellar Mossy Fibres through Inhibition-Driven Phase Resetting and Synchronisation

    Science.gov (United States)

    Holtzman, Tahl; Jörntell, Henrik

    2011-01-01

    Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex. PMID:22046297

  20. Sensory coding by cerebellar mossy fibres through inhibition-driven phase resetting and synchronisation.

    Directory of Open Access Journals (Sweden)

    Tahl Holtzman

    Full Text Available Temporal coding of spike-times using oscillatory mechanisms allied to spike-time dependent plasticity could represent a powerful mechanism for neuronal communication. However, it is unclear how temporal coding is constructed at the single neuronal level. Here we investigate a novel class of highly regular, metronome-like neurones in the rat brainstem which form a major source of cerebellar afferents. Stimulation of sensory inputs evoked brief periods of inhibition that interrupted the regular firing of these cells leading to phase-shifted spike-time advancements and delays. Alongside phase-shifting, metronome cells also behaved as band-pass filters during rhythmic sensory stimulation, with maximal spike-stimulus synchronisation at frequencies close to the idiosyncratic firing frequency of each neurone. Phase-shifting and band-pass filtering serve to temporally align ensembles of metronome cells, leading to sustained volleys of near-coincident spike-times, thereby transmitting synchronised sensory information to downstream targets in the cerebellar cortex.

  1. Imbalance between sympathetic and sensory innervation in peritoneal endometriosis.

    Science.gov (United States)

    Arnold, Julia; Barcena de Arellano, Maria L; Rüster, Carola; Vercellino, Giuseppe F; Chiantera, Vito; Schneider, Achim; Mechsner, Sylvia

    2012-01-01

    To investigate possible mechanisms of pain pathophysiology in patients with peritoneal endometriosis, a clinical study on sensory and sympathetic nerve fibre sprouting in endometriosis was performed. Peritoneal lesions (n=40) and healthy peritoneum (n=12) were immunostained and analysed with anti-protein gene product 9.5 (PGP 9.5), anti-substance P (SP) and anti-tyrosine hydroxylase (TH), specific markers for intact nerve fibres, sensory nerve fibres and sympathetic nerve fibres, respectively, to identify the ratio of sympathetic and sensory nerve fibres. In addition, immune cell infiltrates in peritoneal endometriotic lesions were analysed and the nerve growth factor (NGF) and interleukin (IL)-1β expression was correlate with the nerve fibre density. Peritoneal fluids from patients with endometriosis (n=40) and without endometriosis (n=20) were used for the in vitro neuronal growth assay. Cultured chicken dorsal root ganglia (DRG) and sympathetic ganglia were stained with anti-growth associated protein 43 (anti-GAP 43), anti-SP and anti-TH. We could detect an increased sensory and decreased sympathetic nerve fibres density in peritoneal lesions compared to healthy peritoneum. Peritoneal fluids of patients with endometriosis compared to patients without endometriosis induced an increased sprouting of sensory neurites from DRG and decreased neurite outgrowth from sympathetic ganglia. In conclusion, this study demonstrates an imbalance between sympathetic and sensory nerve fibres in peritoneal endometriosis, as well as an altered modulation of peritoneal fluids from patients with endometriosis on sympathetic and sensory innervation which might directly be involved in the maintenance of inflammation and pain. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Mechano- and Chemo-Sensory Polycystins

    Science.gov (United States)

    Patel, Amanda; Delmas, Patrick; Honoré, Eric

    Polycystins belong to the superfamily of transient receptor potential (TRP) channels and comprise five PKD1-like and three PKD2-like (TRPP) subunits. In this chapter, we review the general properties of polycystins and discuss their specific role in both mechanotransduction and chemoreception. The heteromer PKD1/PKD2 expressed at the membrane of the primary cilium of kidney epithelial cells is proposed to form a mechano-sensitive calcium channel that is opened by physiological fluid flow. Dysfunction or loss of PKD1 or PKD2 polycystin genes may be responsible for the inability of epithelial cells to sense mechanical cues, thus provoking autosomal dominant polycystic kidney disease (ADPKD), one of the most prevalent genetic kidney disorders. pkd1 and pkd2 knock-out mice recapitulate the human disease. Similarly, PKD2 may function as a mechanosensory calcium channel in the immotile monocilia of the developing node transducing leftward flow into an increase in calcium and specifying the left-right axis. pkd2, unlike pkd1 knock-out embryos are characterized by right lung isomerism (situs inversus). Mechanical stimuli also induce cleavage and nuclear translocation of the PKD1 C-terminal tail, which enters the nucleus and initiates signaling processes involving the AP-1, STAT6 and P100 pathways. This intraproteolytic mechanism is implicated in the transduction of a change in renal fluid flow to a transcriptional long-term response. The heteromer PKD1L3/PKD2L1 is the basis for acid sensing in specialised sensory cells including the taste bud cells responsible for sour taste. Moreover, PKD1L3/PKD2L1 may be implicated in the chemosensitivity of neurons surrounding the spinal cord canal, sensing protons in the cerebrospinal fluid. These recent results demonstrate that polycystins fulfill a major sensory role in a variety of cells including kidney epithelial cells, taste buds cells and spinal cord neurons. Such mechanisms are involved in short- and long-term physiological

  3. Integration of Plasticity Mechanisms within a Single Sensory Neuron of C. elegans Actuates a Memory.

    Science.gov (United States)

    Hawk, Josh D; Calvo, Ana C; Liu, Ping; Almoril-Porras, Agustin; Aljobeh, Ahmad; Torruella-Suárez, María Luisa; Ren, Ivy; Cook, Nathan; Greenwood, Joel; Luo, Linjiao; Wang, Zhao-Wen; Samuel, Aravinthan D T; Colón-Ramos, Daniel A

    2018-01-17

    Neural plasticity, the ability of neurons to change their properties in response to experiences, underpins the nervous system's capacity to form memories and actuate behaviors. How different plasticity mechanisms act together in vivo and at a cellular level to transform sensory information into behavior is not well understood. We show that in Caenorhabditis elegans two plasticity mechanisms-sensory adaptation and presynaptic plasticity-act within a single cell to encode thermosensory information and actuate a temperature preference memory. Sensory adaptation adjusts the temperature range of the sensory neuron (called AFD) to optimize detection of temperature fluctuations associated with migration. Presynaptic plasticity in AFD is regulated by the conserved kinase nPKCε and transforms thermosensory information into a behavioral preference. Bypassing AFD presynaptic plasticity predictably changes learned behavioral preferences without affecting sensory responses. Our findings indicate that two distinct neuroplasticity mechanisms function together through a single-cell logic system to enact thermotactic behavior. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Relationships among Sensory Responsiveness, Anxiety, and Ritual Behaviors in Children with and without Atypical Sensory Responsiveness.

    Science.gov (United States)

    Bart, Orit; Bar-Shalita, Tami; Mansour, Hanin; Dar, Reuven

    2017-08-01

    To explore relationships between sensory responsiveness, anxiety, and ritual behaviors in boys with typical and atypical sensory responsiveness. Forty-eight boys, ages 5-9 participated in the study (28 boys with atypical sensory responsiveness and 20 controls). Atypical sensory responsiveness was defined as a score of ≤154 on the Short Sensory Profile. Parents completed the Sensory Profile, the Screen for Child Anxiety Related Emotional Disorders, and the Childhood Routines Inventory. Children with atypical sensory responsiveness had significantly higher levels of anxiety and a higher frequency of ritual behaviors than controls. Atypical sensory responsiveness was significantly related to both anxiety and ritual behaviors, with anxiety mediating the relationship between sensory modulation and ritual behaviors. The findings elucidate the potential consequences of atypical sensory responsiveness and could support the notion that ritual behaviors develop as a coping mechanism in response to anxiety stemming from primary difficulty in modulating sensory input.

  5. Loss of Centrobin Enables Daughter Centrioles to Form Sensory Cilia in Drosophila.

    Science.gov (United States)

    Gottardo, Marco; Pollarolo, Giulia; Llamazares, Salud; Reina, Jose; Riparbelli, Maria G; Callaini, Giuliano; Gonzalez, Cayetano

    2015-08-31

    Sensory cilia are organelles that convey information to the cell from the extracellular environment. In vertebrates, ciliary dysfunction results in ciliopathies that in humans comprise a wide spectrum of developmental disorders. In Drosophila, sensory cilia are found only in the neurons of type I sensory organs, but ciliary dysfunction also has dramatic consequences in this organism because it impairs the mechanosensory properties of bristles and chaetae and leads to uncoordination, a crippling condition that causes lethality shortly after eclosion. The cilium is defined by the ciliary membrane, a protrusion of the cell membrane that envelops the core structure known as the axoneme, a microtubule array that extends along the cilium from the basal body. In vertebrates, basal body function requires centriolar distal and subdistal appendages and satellites. Because these structures are acquired through centriole maturation, only mother centrioles can serve as basal bodies. Here, we show that although centriole maturity traits are lacking in Drosophila, basal body fate is reserved to mother centrioles in Drosophila type I neurons. Moreover, we show that depletion of the daughter-centriole-specific protein Centrobin (CNB) enables daughter centrioles to dock on the cell membrane and to template an ectopic axoneme that, although structurally defective, protrudes out of the cell and is enveloped by a ciliary membrane. Conversely, basal body capability is inhibited in mother centrioles modified to carry CNB. These results reveal the crucial role of CNB in regulating basal body function in Drosophila ciliated sensory organs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Identification of the Ulex europaeus agglutinin-I-binding protein as a unique glycoform of the neural cell adhesion molecule in the olfactory sensory axons of adults rats.

    Science.gov (United States)

    Pestean, A; Krizbai, I; Böttcher, H; Párducz, A; Joó, F; Wolff, J R

    1995-08-04

    Histochemical localization of two lectins, Ulex europaeus agglutinin-I (UEA-I) and Tetragonolobus purpureus (TPA), was studied in the olfactory bulb of adult rats. In contrast to TPA, UEA-I detected a fucosylated glycoprotein that is only present in the surface membranes of olfactory sensory cells including the whole course of their neurites up to the final arborization in glomeruli. Immunoblotting revealed that UEA-I binds specifically to a protein of 205 kDa, while TPA stains several other glycoproteins. Affinity chromatography with the use of a UEA-I column identified the 205 kDa protein as a glycoform of neural cell adhesion molecule (N-CAM), specific for the rat olfactory sensory nerves.

  7. Making sense of snapshot data: ergodic principle for clonal cell populations.

    Science.gov (United States)

    Thomas, Philipp

    2017-11-01

    Population growth is often ignored when quantifying gene expression levels across clonal cell populations. We develop a framework for obtaining the molecule number distributions in an exponentially growing cell population taking into account its age structure. In the presence of generation time variability, the average acquired across a population snapshot does not obey the average of a dividing cell over time, apparently contradicting ergodicity between single cells and the population. Instead, we show that the variation observed across snapshots with known cell age is captured by cell histories, a single-cell measure obtained from tracking an arbitrary cell of the population back to the ancestor from which it originated. The correspondence between cells of known age in a population with their histories represents an ergodic principle that provides a new interpretation of population snapshot data. We illustrate the principle using analytical solutions of stochastic gene expression models in cell populations with arbitrary generation time distributions. We further elucidate that the principle breaks down for biochemical reactions that are under selection, such as the expression of genes conveying antibiotic resistance, which gives rise to an experimental criterion with which to probe selection on gene expression fluctuations. © 2017 The Author(s).

  8. Expression analysis of the N-Myc downstream-regulated gene 1 indicates that myelinating Schwann cells are the primary disease target in hereditary motor and sensory neuropathy-Lom.

    Science.gov (United States)

    Berger, Philipp; Sirkowski, Erich E; Scherer, Steven S; Suter, Ueli

    2004-11-01

    Mutations in the gene encoding N-myc downstream-regulated gene-1 (NDRG1) lead to truncations of the encoded protein and are associated with an autosomal recessive demyelinating neuropathy--hereditary motor and sensory neuropathy-Lom. NDRG1 protein is highly expressed in peripheral nerve and is localized in the cytoplasm of myelinating Schwann cells, including the paranodes and Schmidt-Lanterman incisures. In contrast, sensory and motor neurons as well as their axons lack NDRG1. NDRG1 mRNA levels in developing and injured adult sciatic nerves parallel those of myelin-related genes, indicating that the expression of NDRG1 in myelinating Schwann cells is regulated by axonal interactions. Oligodendrocytes also express NDRG1, and the subtle CNS deficits of affected patients may result from a lack of NDRG1 in these cells. Our data predict that the loss of NDRG1 leads to a Schwann cell autonomous phenotype resulting in demyelination, with secondary axonal loss.

  9. Uranium-induced sensory alterations in the zebrafish Danio rerio

    Energy Technology Data Exchange (ETDEWEB)

    Faucher, K., E-mail: kfaucher@hotmail.fr [Laboratoire d' ecotoxicologie des radionucleides (LECO), Institut de Radioprotection et Surete Nucleaire, Centre de Cadarache, Batiment 186, BP3, 13115 Saint Paul lez Durance (France); Floriani, M.; Gilbin, R.; Adam-Guillermin, C. [Laboratoire d' ecotoxicologie des radionucleides (LECO), Institut de Radioprotection et Surete Nucleaire, Centre de Cadarache, Batiment 186, BP3, 13115 Saint Paul lez Durance (France)

    2012-11-15

    The effect of chronic exposure to uranium ions (UO{sub 2}{sup 2+}) on sensory tissues including the olfactory and lateral line systems was investigated in zebrafish (Danio rerio) using scanning electron microscopy. The aim of this study was to determine whether exposure to uranium damaged sensory tissues in fish. The fish were exposed to uranium at the concentration of 250 {mu}g l{sup -1} for 10 days followed by a depuration period of 23 days. Measurements of uranium uptake in different fish organs: olfactory rosettes and bulbs, brain, skin, and muscles, were also determined by ICP-AES and ICP-MS during the entire experimental period. The results showed that uranium displayed a strong affinity for sensory structures in direct contact with the surrounding medium, such as the olfactory and lateral line systems distributed on the skin. A decreasing gradient of uranium concentration was found: olfactory rosettes > olfactory bulbs > skin > muscles > brain. At the end of the experiment, uranium was present in non-negligible quantities in sensory tissues. In parallel, fish exposed to uranium showed severe sensory tissue alterations at the level of the olfactory and lateral line systems. In both sensory systems, the gross morphology was altered and the sensory hair cells were significantly damaged very early after the initiation of exposure (from the 3rd day). At the end of the experiment, after 23 days of depuration, the lateral line system still displayed slight tissue alterations, but approximately 80% of the neuromasts in this system had regenerated. In contrast, the olfactory system took more time to recover, as more than half of the olfactory rosettes observed remained destroyed at the end of the experiment. This study showed, for the first time, that uranium is able to damage fish sensory tissues to such an extent that tissue regeneration is delayed.

  10. [History of hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P)].

    Science.gov (United States)

    Takashima, Hiroshi

    2013-01-01

    We established a new disease autosomal dominant hereditary motor and sensory neuropathy with proximal dominant involvement (HMSNP) in 1997, in Okinawa, Japan. This disease is characterized by proximal dominant neurogenic atrophy with fasciculations, painful muscle cramp, obvious sensory nerve involvement, areflexia, high incidence of elevated creatine kinase levels, hyperlipidemia and hyperglycemia. (MIM %604484). HMSNP is so called or HMSNO (HMSN OKINAWA type),. These clinical features resembled those of Kennedy-Alter-Sung syndrome. Most HMSNP patients have severe muscle atrophy and finally the tracheostomy and artificial ventilation are required. Therefore, we initially thought to classify HMSNP into a subtype of motor neuron disease (MND) like familial amyotrophic lateral sclerosis (FALS) or spinal muscular atrophy (SMA). However, the general consensus for MND was no sensory involvement. Therefore, as the disease showed severe sensory involvement, we categorized HMSNP in subtype of HMSN at that time. We also reported the pathology of HMSNP, showing severely decreased anterior horn cells, decreased posterior horn cells, and loss of posterior funiculus in the spinal cord.

  11. Cross-Excitation in Peripheral Sensory Ganglia Associated with Pain Transmission

    Directory of Open Access Journals (Sweden)

    Katsuhiro Omoto

    2015-08-01

    Full Text Available Despite the absence of synaptic contacts, cross-excitation of neurons in sensory ganglia during signal transmission is considered to be chemically mediated and appears increased in chronic pain states. In this study, we modulated neurotransmitter release in sensory neurons by direct application of type A botulinum neurotoxin (BoNT/A to sensory ganglia in an animal model of neuropathic pain and evaluated the effect of this treatment on nocifensive. Unilateral sciatic nerve entrapment (SNE reduced the ipsilateral hindpaw withdrawal threshold to mechanical stimulation and reduced hindpaw withdrawal latency to thermal stimulation. Direct application of BoNT/A to the ipsilateral L4 dorsal root ganglion (DRG was localized in the cell bodies of the DRG and reversed the SNE-induced decreases in withdrawal thresholds within 2 days of BoNT/A administration. Results from this study suggest that neurotransmitter release within sensory ganglia is involved in the regulation of pain-related signal transmission.

  12. Dependence of regenerated sensory axons on continuous neurotrophin-3 delivery.

    Science.gov (United States)

    Hou, Shaoping; Nicholson, LaShae; van Niekerk, Erna; Motsch, Melanie; Blesch, Armin

    2012-09-19

    Previous studies have shown that injured dorsal column sensory axons extend across a spinal cord lesion site if axons are guided by a gradient of neurotrophin-3 (NT-3) rostral to the lesion. Here we examined whether continuous NT-3 delivery is necessary to sustain regenerated axons in the injured spinal cord. Using tetracycline-regulated (tet-off) lentiviral gene delivery, NT-3 expression was tightly controlled by doxycycline administration. To examine axon growth responses to regulated NT-3 expression, adult rats underwent a C3 dorsal funiculus lesion. The lesion site was filled with bone marrow stromal cells, tet-off-NT-3 virus was injected rostral to the lesion site, and the intrinsic growth capacity of sensory neurons was activated by a conditioning lesion. When NT-3 gene expression was turned on, cholera toxin β-subunit-labeled sensory axons regenerated into and beyond the lesion/graft site. Surprisingly, the number of regenerated axons significantly declined when NT-3 expression was turned off, whereas continued NT-3 expression sustained regenerated axons. Quantification of axon numbers beyond the lesion demonstrated a significant decline of axon growth in animals with transient NT-3 expression, only some axons that had regenerated over longer distance were sustained. Regenerated axons were located in white matter and did not form axodendritic synapses but expressed presynaptic markers when closely associated with NG2-labeled cells. A decline in axon density was also observed within cellular grafts after NT-3 expression was turned off possibly via reduction in L1 and laminin expression in Schwann cells. Thus, multiple mechanisms underlie the inability of transient NT-3 expression to fully sustain regenerated sensory axons.

  13. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons

    Science.gov (United States)

    Gunasekaran, Manojkumar; Chatterjee, Prodyot K.; Shih, Andrew; Imperato, Gavin H.; Addorisio, Meghan; Kumar, Gopal; Lee, Annette; Graf, John F.; Meyer, Dan; Marino, Michael; Puleo, Christopher; Ashe, Jeffrey; Cox, Maureen A.; Mak, Tak W.; Bouton, Chad; Sherry, Barbara; Diamond, Betty; Andersson, Ulf; Coleman, Thomas R.; Metz, Christine N.; Tracey, Kevin J.; Chavan, Sangeeta S.

    2018-01-01

    The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs) of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR), dorsal root ganglion (DRG) sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG) required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO) or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM) into wild-type (WT) mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses. PMID:29755449

  14. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Manojkumar Gunasekaran

    2018-04-01

    Full Text Available The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR, dorsal root ganglion (DRG sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM into wild-type (WT mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses.

  15. Recent Advances in Insect Olfaction, Specifically Regarding the Morphology and Sensory Physiology of Antennal Sensilla of the Female Sphinx Moth Manduca sexta

    Science.gov (United States)

    SHIELDS, VONNIE D.C.; HILDEBRAND, JOHN G.

    2008-01-01

    The antennal flagellum of female Manduca sexta bears eight sensillum types: two trichoid, two basiconic, one auriculate, two coeloconic, and one styliform complex sensilla. The first type of trichoid sensillum averages 34 μm in length and is innervated by two sensory cells. The second type averages 26 μm in length and is innervated by either one or three sensory cells. The first type of basiconic sensillum averages 22 μm in length, while the second type averages 15 μm in length. Both types are innervated by three bipolar sensory cells. The auriculate sensillum averages 4 μm in length and is innervated by two bipolar sensory cells. The coeloconic type-A and type-B both average 2 μm in length. The former type is innervated by five bipolar sensory cells, while the latter type, by three bipolar sensory cells. The styliform complex sensillum occurs singly on each annulus and averages 38-40 μm in length. It is formed by several contiguous sensilla. Each unit is innervated by three bipolar sensory cells. A total of 2,216 sensilla were found on a single annulus (annulus 21) of the flagellum. Electrophysiological responses from type-A trichoid sensilla to a large panel of volatile odorants revealed three different subsets of olfactory receptor cells (ORCs). Two subsets responded strongly to only a narrow range of odorants, while the third responded strongly to a broad range of odorants. Anterograde labeling of ORCs from type-A trichoid sensilla revealed that their axons projected mainly to two large female glomeruli of the antennal lobe. PMID:11754510

  16. Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells.

    Science.gov (United States)

    Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François

    2015-04-20

    During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Concise Review: Stem Cell Population Biology: Insights from Hematopoiesis.

    Science.gov (United States)

    MacLean, Adam L; Lo Celso, Cristina; Stumpf, Michael P H

    2017-01-01

    Stem cells are fundamental to human life and offer great therapeutic potential, yet their biology remains incompletely-or in cases even poorly-understood. The field of stem cell biology has grown substantially in recent years due to a combination of experimental and theoretical contributions: the experimental branch of this work provides data in an ever-increasing number of dimensions, while the theoretical branch seeks to determine suitable models of the fundamental stem cell processes that these data describe. The application of population dynamics to biology is amongst the oldest applications of mathematics to biology, and the population dynamics perspective continues to offer much today. Here we describe the impact that such a perspective has made in the field of stem cell biology. Using hematopoietic stem cells as our model system, we discuss the approaches that have been used to study their key properties, such as capacity for self-renewal, differentiation, and cell fate lineage choice. We will also discuss the relevance of population dynamics in models of stem cells and cancer, where competition naturally emerges as an influential factor on the temporal evolution of cell populations. Stem Cells 2017;35:80-88. © 2016 AlphaMed Press.

  18. Variable sensory perception in autism.

    Science.gov (United States)

    Haigh, Sarah M

    2018-03-01

    Autism is associated with sensory and cognitive abnormalities. Individuals with autism generally show normal or superior early sensory processing abilities compared to healthy controls, but deficits in complex sensory processing. In the current opinion paper, it will be argued that sensory abnormalities impact cognition by limiting the amount of signal that can be used to interpret and interact with environment. There is a growing body of literature showing that individuals with autism exhibit greater trial-to-trial variability in behavioural and cortical sensory responses. If multiple sensory signals that are highly variable are added together to process more complex sensory stimuli, then this might destabilise later perception and impair cognition. Methods to improve sensory processing have shown improvements in more general cognition. Studies that specifically investigate differences in sensory trial-to-trial variability in autism, and the potential changes in variability before and after treatment, could ascertain if trial-to-trial variability is a good mechanism to target for treatment in autism. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. A simple approach to ignoring irrelevant variables by population decoding based on multisensory neurons

    Science.gov (United States)

    Kim, HyungGoo R.; Pitkow, Xaq; Angelaki, Dora E.

    2016-01-01

    Sensory input reflects events that occur in the environment, but multiple events may be confounded in sensory signals. For example, under many natural viewing conditions, retinal image motion reflects some combination of self-motion and movement of objects in the world. To estimate one stimulus event and ignore others, the brain can perform marginalization operations, but the neural bases of these operations are poorly understood. Using computational modeling, we examine how multisensory signals may be processed to estimate the direction of self-motion (i.e., heading) and to marginalize out effects of object motion. Multisensory neurons represent heading based on both visual and vestibular inputs and come in two basic types: “congruent” and “opposite” cells. Congruent cells have matched heading tuning for visual and vestibular cues and have been linked to perceptual benefits of cue integration during heading discrimination. Opposite cells have mismatched visual and vestibular heading preferences and are ill-suited for cue integration. We show that decoding a mixed population of congruent and opposite cells substantially reduces errors in heading estimation caused by object motion. In addition, we present a general formulation of an optimal linear decoding scheme that approximates marginalization and can be implemented biologically by simple reinforcement learning mechanisms. We also show that neural response correlations induced by task-irrelevant variables may greatly exceed intrinsic noise correlations. Overall, our findings suggest a general computational strategy by which neurons with mismatched tuning for two different sensory cues may be decoded to perform marginalization operations that dissociate possible causes of sensory inputs. PMID:27334948

  20. Chapter 22. Cell population kinetics

    International Nuclear Information System (INIS)

    Tubiana, M.

    1975-01-01

    The main contribution of radioisotopes to the development of a new discipline, cell population kinetics, was shown. The aim of this science is to establish, for each tissue of the organism, the life span of its component cells and the mechanisms governing its growth, its differentiation and its homeostasis with respect to outside attacks. Labelling techniques have been used to follow the cells during these various processes. The case of non-dividing cells was considered first, taking as example, the red blood cells of which the lifetime was studied, after which the case of proliferating cells was examined using 14 C- or tritium-labelled thymidine. The methods used to measure the cell cycle parameters were described: labelled-mitosis curve method, double-labelling and continuous labelling methods, proliferation coefficient measurement. Cell kinetics were shown to allow an interpretation of radiobiological data. Finally the practical value of cell kinetics research was shown [fr

  1. Activation of Six1 Expression in Vertebrate Sensory Neurons.

    Directory of Open Access Journals (Sweden)

    Shigeru Sato

    Full Text Available SIX1 homeodomain protein is one of the essential key regulators of sensory organ development. Six1-deficient mice lack the olfactory epithelium, vomeronasal organs, cochlea, vestibule and vestibuloacoustic ganglion, and also show poor neural differentiation in the distal part of the cranial ganglia. Simultaneous loss of both Six1 and Six4 leads to additional abnormalities such as small trigeminal ganglion and abnormal dorsal root ganglia (DRG. The aim of this study was to understand the molecular mechanism that controls Six1 expression in sensory organs, particularly in the trigeminal ganglion and DRG. To this end, we focused on the sensory ganglia-specific Six1 enhancer (Six1-8 conserved between chick and mouse. In vivo reporter assays using both animals identified an important core region comprising binding consensus sequences for several transcription factors including nuclear hormone receptors, TCF/LEF, SMAD, POU homeodomain and basic-helix-loop-helix proteins. The results provided information on upstream factors and signals potentially relevant to Six1 regulation in sensory neurons. We also report the establishment of a new transgenic mouse line (mSix1-8-NLSCre that expresses Cre recombinase under the control of mouse Six1-8. Cre-mediated recombination was detected specifically in ISL1/2-positive sensory neurons of Six1-positive cranial sensory ganglia and DRG. The unique features of the mSix1-8-NLSCre line are the absence of Cre-mediated recombination in SOX10-positive glial cells and central nervous system and ability to induce recombination in a subset of neurons derived from the olfactory placode/epithelium. This mouse model can be potentially used to advance research on sensory development.

  2. Sensory perception: lessons from synesthesia: using synesthesia to inform the understanding of sensory perception.

    Science.gov (United States)

    Harvey, Joshua Paul

    2013-06-01

    Synesthesia, the conscious, idiosyncratic, repeatable, and involuntary sensation of one sensory modality in response to another, is a condition that has puzzled both researchers and philosophers for centuries. Much time has been spent proving the condition's existence as well as investigating its etiology, but what can be learned from synesthesia remains a poorly discussed topic. Here, synaesthesia is presented as a possible answer rather than a question to the current gaps in our understanding of sensory perception. By first appreciating the similarities between normal sensory perception and synesthesia, one can use what is known about synaesthesia, from behavioral and imaging studies, to inform our understanding of "normal" sensory perception. In particular, in considering synesthesia, one can better understand how and where the different sensory modalities interact in the brain, how different sensory modalities can interact without confusion - the binding problem - as well as how sensory perception develops.

  3. Neuromorphic sensory systems.

    Science.gov (United States)

    Liu, Shih-Chii; Delbruck, Tobi

    2010-06-01

    Biology provides examples of efficient machines which greatly outperform conventional technology. Designers in neuromorphic engineering aim to construct electronic systems with the same efficient style of computation. This task requires a melding of novel engineering principles with knowledge gleaned from neuroscience. We discuss recent progress in realizing neuromorphic sensory systems which mimic the biological retina and cochlea, and subsequent sensor processing. The main trends are the increasing number of sensors and sensory systems that communicate through asynchronous digital signals analogous to neural spikes; the improved performance and usability of these sensors; and novel sensory processing methods which capitalize on the timing of spikes from these sensors. Experiments using these sensors can impact how we think the brain processes sensory information. 2010 Elsevier Ltd. All rights reserved.

  4. Prenatal VPA exposure and changes in sensory processing by the superior colliculus

    Directory of Open Access Journals (Sweden)

    Georgia eDendrinos

    2011-10-01

    Full Text Available Disorders involving dysfunctional sensory processing are characterized by an inability to filter sensory information, particularly simultaneously arriving multimodal inputs. We examined the effects of prenatal exposure to valproic acid (VPA, a teratogen linked to sensory dysfunction, on the behavior of juvenile and adult rats, and on the anatomy of the superior colliculus, a critical multisensory integration center in the brain. VPA-exposed rats showed deficits in colliculus-dependent behaviors including startle response, prepulse inhibition and nociceptive responses. Some deficits reversed with age. Stereological analyses revealed that colliculi of VPA-treated rats had significantly fewer parvalbumin-positive neurons, a subset of GABAergic cells. These results suggest that prenatal VPA treatment affects the development of the superior colliculus and leads to persistent anatomical changes evidenced by aberrant behavior in tasks that require sensory processing.

  5. Population-wide distributions of neural activity during perceptual decision-making

    Science.gov (United States)

    Machens, Christian

    2018-01-01

    Cortical activity involves large populations of neurons, even when it is limited to functionally coherent areas. Electrophysiological recordings, on the other hand, involve comparatively small neural ensembles, even when modern-day techniques are used. Here we review results which have started to fill the gap between these two scales of inquiry, by shedding light on the statistical distributions of activity in large populations of cells. We put our main focus on data recorded in awake animals that perform simple decision-making tasks and consider statistical distributions of activity throughout cortex, across sensory, associative, and motor areas. We transversally review the complexity of these distributions, from distributions of firing rates and metrics of spike-train structure, through distributions of tuning to stimuli or actions and of choice signals, and finally the dynamical evolution of neural population activity and the distributions of (pairwise) neural interactions. This approach reveals shared patterns of statistical organization across cortex, including: (i) long-tailed distributions of activity, where quasi-silence seems to be the rule for a majority of neurons; that are barely distinguishable between spontaneous and active states; (ii) distributions of tuning parameters for sensory (and motor) variables, which show an extensive extrapolation and fragmentation of their representations in the periphery; and (iii) population-wide dynamics that reveal rotations of internal representations over time, whose traces can be found both in stimulus-driven and internally generated activity. We discuss how these insights are leading us away from the notion of discrete classes of cells, and are acting as powerful constraints on theories and models of cortical organization and population coding. PMID:23123501

  6. Multiple dendritic cell populations activate CD4+ T cells after viral stimulation.

    Directory of Open Access Journals (Sweden)

    Adele M Mount

    2008-02-01

    Full Text Available Dendritic cells (DC are a heterogeneous cell population that bridge the innate and adaptive immune systems. CD8alpha DC play a prominent, and sometimes exclusive, role in driving amplification of CD8(+ T cells during a viral infection. Whether this reliance on a single subset of DC also applies for CD4(+ T cell activation is unknown. We used a direct ex vivo antigen presentation assay to probe the capacity of flow cytometrically purified DC populations to drive amplification of CD4(+ and CD8(+ T cells following infection with influenza virus by different routes. This study examined the contributions of non-CD8alpha DC populations in the amplification of CD8(+ and CD4(+ T cells in cutaneous and systemic influenza viral infections. We confirmed that in vivo, effective immune responses for CD8(+ T cells are dominated by presentation of antigen by CD8alpha DC but can involve non-CD8alpha DC. In contrast, CD4(+ T cell responses relied more heavily on the contributions of dermal DC migrating from peripheral lymphoid tissues following cutaneous infection, and CD4 DC in the spleen after systemic infection. CD4(+ T cell priming by DC subsets that is dependent upon the route of administration raises the possibility that vaccination approaches could be tailored to prime helper T cell immunity.

  7. Gross and fine dissection of inner ear sensory epithelia in adult zebrafish (Danio rerio).

    Science.gov (United States)

    Liang, Jin; Burgess, Shawn M

    2009-05-08

    Neurosensory epithelia in the inner ear are the crucial structures for hearing and balance functions. Therefore, it is important to understand the cellular and molecular features of the epithelia, which are mainly composed of two types of cells: hair cells (HCs) and supporting cells (SCs). Here we choose to study the inner ear sensory epithelia in adult zebrafish not only because the epithelial structures are highly conserved in all vertebrates studied, but also because the adult zebrafish is able to regenerate HCs, an ability that mammals lose shortly after birth. We use the inner ear of adult zebrafish as a model system to study the mechanisms of inner ear HC regeneration in adult vertebrates that could be helpful for clinical therapy of hearing/balance deficits in human as a result of HC loss. Here we demonstrate how to do gross and fine dissections of inner ear sensory epithelia in adult zebrafish. The gross dissection removes the tissues surrounding the inner ear and is helpful for preparing tissue sections, which allows us to examine the detailed structure of the sensory epithelia. The fine dissection cleans up the non-sensory-epithelial tissues of each individual epithelium and enables us to examine the heterogeneity of the whole epithelium easily in whole-mount epithelial samples.

  8. Mutations in the nervous system--specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II.

    Science.gov (United States)

    Shekarabi, Masoud; Girard, Nathalie; Rivière, Jean-Baptiste; Dion, Patrick; Houle, Martin; Toulouse, André; Lafrenière, Ronald G; Vercauteren, Freya; Hince, Pascale; Laganiere, Janet; Rochefort, Daniel; Faivre, Laurence; Samuels, Mark; Rouleau, Guy A

    2008-07-01

    Hereditary sensory and autonomic neuropathy type II (HSANII) is an early-onset autosomal recessive disorder characterized by loss of perception to pain, touch, and heat due to a loss of peripheral sensory nerves. Mutations in hereditary sensory neuropathy type II (HSN2), a single-exon ORF originally identified in affected families in Quebec and Newfoundland, Canada, were found to cause HSANII. We report here that HSN2 is a nervous system-specific exon of the with-no-lysine(K)-1 (WNK1) gene. WNK1 mutations have previously been reported to cause pseudohypoaldosteronism type II but have not been studied in the nervous system. Given the high degree of conservation of WNK1 between mice and humans, we characterized the structure and expression patterns of this isoform in mice. Immunodetections indicated that this Wnk1/Hsn2 isoform was expressed in sensory components of the peripheral nervous system and CNS associated with relaying sensory and nociceptive signals, including satellite cells, Schwann cells, and sensory neurons. We also demonstrate that the novel protein product of Wnk1/Hsn2 was more abundant in sensory neurons than motor neurons. The characteristics of WNK1/HSN2 point to a possible role for this gene in the peripheral sensory perception deficits characterizing HSANII.

  9. Mutations in the nervous system–specific HSN2 exon of WNK1 cause hereditary sensory neuropathy type II

    Science.gov (United States)

    Shekarabi, Masoud; Girard, Nathalie; Rivière, Jean-Baptiste; Dion, Patrick; Houle, Martin; Toulouse, André; Lafrenière, Ronald G.; Vercauteren, Freya; Hince, Pascale; Laganiere, Janet; Rochefort, Daniel; Faivre, Laurence; Samuels, Mark; Rouleau, Guy A.

    2008-01-01

    Hereditary sensory and autonomic neuropathy type II (HSANII) is an early-onset autosomal recessive disorder characterized by loss of perception to pain, touch, and heat due to a loss of peripheral sensory nerves. Mutations in hereditary sensory neuropathy type II (HSN2), a single-exon ORF originally identified in affected families in Quebec and Newfoundland, Canada, were found to cause HSANII. We report here that HSN2 is a nervous system–specific exon of the with-no-lysine(K)–1 (WNK1) gene. WNK1 mutations have previously been reported to cause pseudohypoaldosteronism type II but have not been studied in the nervous system. Given the high degree of conservation of WNK1 between mice and humans, we characterized the structure and expression patterns of this isoform in mice. Immunodetections indicated that this Wnk1/Hsn2 isoform was expressed in sensory components of the peripheral nervous system and CNS associated with relaying sensory and nociceptive signals, including satellite cells, Schwann cells, and sensory neurons. We also demonstrate that the novel protein product of Wnk1/Hsn2 was more abundant in sensory neurons than motor neurons. The characteristics of WNK1/HSN2 point to a possible role for this gene in the peripheral sensory perception deficits characterizing HSANII. PMID:18521183

  10. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Shima P Damodaran

    Full Text Available To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers and a significant subpopulation of slowly dividing cells (slow-growers. These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  11. Feedforward inhibitory control of sensory information in higher-order thalamic nuclei.

    Science.gov (United States)

    Lavallée, Philippe; Urbain, Nadia; Dufresne, Caroline; Bokor, Hajnalka; Acsády, László; Deschênes, Martin

    2005-08-17

    Sensory stimuli evoke strong responses in thalamic relay cells, which ensure a faithful relay of information to the neocortex. However, relay cells of the posterior thalamic nuclear group in rodents, despite receiving significant trigeminal input, respond poorly to vibrissa deflection. Here we show that sensory transmission in this nucleus is impeded by fast feedforward inhibition mediated by GABAergic neurons of the zona incerta. Intracellular recordings of posterior group neurons revealed that the first synaptic event after whisker deflection is a prominent inhibition. Whisker-evoked EPSPs with fast rise time and longer onset latency are unveiled only after lesioning the zona incerta. Excitation survives barrel cortex lesion, demonstrating its peripheral origin. Electron microscopic data confirm that trigeminal axons make large synaptic terminals on the proximal dendrites of posterior group cells and on the somata of incertal neurons. Thus, the connectivity of the system allows an unusual situation in which inhibition precedes ascending excitation resulting in efficient shunting of the responses. The dominance of inhibition over excitation strongly suggests that the paralemniscal pathway is not designed to relay inputs triggered by passive whisker deflection. Instead, we propose that this pathway operates through disinhibition, and that the posterior group forwards to the cerebral cortex sensory information that is contingent on motor instructions.

  12. Olfactory organ of Octopus vulgaris: morphology, plasticity, turnover and sensory characterization

    Directory of Open Access Journals (Sweden)

    Gianluca Polese

    2016-05-01

    Full Text Available The cephalopod olfactory organ was described for the first time in 1844 by von Kölliker, who was attracted to the pair of small pits of ciliated cells on each side of the head, below the eyes close to the mantle edge, in both octopuses and squids. Several functional studies have been conducted on decapods but very little is known about octopods. The morphology of the octopus olfactory system has been studied, but only to a limited extent on post-hatching specimens, and the only paper on adult octopus gives a minimal description of the olfactory organ. Here, we describe the detailed morphology of young male and female Octopus vulgaris olfactory epithelium, and using a combination of classical morphology and 3D reconstruction techniques, we propose a new classification for O. vulgaris olfactory sensory neurons. Furthermore, using specific markers such as olfactory marker protein (OMP and proliferating cell nuclear antigen (PCNA we have been able to identify and differentially localize both mature olfactory sensory neurons and olfactory sensory neurons involved in epithelium turnover. Taken together, our data suggest that the O. vulgaris olfactory organ is extremely plastic, capable of changing its shape and also proliferating its cells in older specimens.

  13. PROS-1/Prospero Is a Major Regulator of the Glia-Specific Secretome Controlling Sensory-Neuron Shape and Function in C. elegans.

    Science.gov (United States)

    Wallace, Sean W; Singhvi, Aakanksha; Liang, Yupu; Lu, Yun; Shaham, Shai

    2016-04-19

    Sensory neurons are an animal's gateway to the world, and their receptive endings, the sites of sensory signal transduction, are often associated with glia. Although glia are known to promote sensory-neuron functions, the molecular bases of these interactions are poorly explored. Here, we describe a post-developmental glial role for the PROS-1/Prospero/PROX1 homeodomain protein in sensory-neuron function in C. elegans. Using glia expression profiling, we demonstrate that, unlike previously characterized cell fate roles, PROS-1 functions post-embryonically to control sense-organ glia-specific secretome expression. PROS-1 functions cell autonomously to regulate glial secretion and membrane structure, and non-cell autonomously to control the shape and function of the receptive endings of sensory neurons. Known glial genes controlling sensory-neuron function are PROS-1 targets, and we identify additional PROS-1-dependent genes required for neuron attributes. Drosophila Prospero and vertebrate PROX1 are expressed in post-mitotic sense-organ glia and astrocytes, suggesting conserved roles for this class of transcription factors. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Motor-sensory confluence in tactile perception.

    Science.gov (United States)

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  15. Basal cell carcinoma preferentially arises from stem cells within hair follicle and mechanosensory niches.

    Science.gov (United States)

    Peterson, Shelby C; Eberl, Markus; Vagnozzi, Alicia N; Belkadi, Abdelmadjid; Veniaminova, Natalia A; Verhaegen, Monique E; Bichakjian, Christopher K; Ward, Nicole L; Dlugosz, Andrzej A; Wong, Sunny Y

    2015-04-02

    Basal cell carcinoma (BCC) is characterized by frequent loss of PTCH1, leading to constitutive activation of the Hedgehog pathway. Although the requirement for Hedgehog in BCC is well established, the identity of disease-initiating cells and the compartments in which they reside remain controversial. By using several inducible Cre drivers to delete Ptch1 in different cell compartments in mice, we show here that multiple hair follicle stem cell populations readily develop BCC-like tumors. In contrast, stem cells within the interfollicular epidermis do not efficiently form tumors. Notably, we observed that innervated Gli1-expressing progenitors within mechanosensory touch dome epithelia are highly tumorigenic. Sensory nerves activate Hedgehog signaling in normal touch domes, while denervation attenuates touch dome-derived tumors. Together, our studies identify varying tumor susceptibilities among different stem cell populations in the skin, highlight touch dome epithelia as "hot spots" for tumor formation, and implicate cutaneous nerves as mediators of tumorigenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Trail networks formed by populations of immune cells

    International Nuclear Information System (INIS)

    Yang, Taeseok Daniel; Kwon, Tae Goo; Park, Jin-sung; Lee, Kyoung J

    2014-01-01

    Populations of biological cells that communicate with each other can organize themselves to generate large-scale patterns. Examples can be found in diverse systems, ranging from developing embryos, cardiac tissues, chemotaxing ameba and swirling bacteria. The similarity, often shared by the patterns, suggests the existence of some general governing principle. On the other hand, rich diversity and system-specific properties are exhibited, depending on the type of involved cells and the nature of their interactions. The study on the similarity and the diversity constitutes a rapidly growing field of research. Here, we introduce a new class of self-organized patterns of cell populations that we term as ‘cellular trail networks’. They were observed with populations of rat microglia, the immune cells of the brain and the experimental evidence suggested that haptotaxis is the key element responsible for them. The essential features of the observed patterns are well captured by the mathematical model cells that actively crawl and interact with each other through a decomposing but non-diffusing chemical attractant laid down by the cells. Our finding suggests an unusual mechanism of socially cooperative long-range signaling for the crawling immune cells. (paper)

  17. Solitary Chemoreceptor Cell Proliferation in Adult Nasal Epithelium

    OpenAIRE

    Gulbransen, Brian D.; Finger, Thomas E.

    2005-01-01

    Nasal trigeminal chemosensitivity in mice and rats is mediated in part by solitary chemoreceptor cells (SCCs) in the nasal epithelium (Finger et al., 2003). Many nasal SCCs express the G-protein α-gustducin as well as other elements of the bitter-taste signaling cascade including phospholipase Cβ2, TRPM5 and T2R bitter-taste receptors. While some populations of sensory cells are replaced throughout life (taste and olfaction), others are not (hair cells and carotid body chemoreceptors). These ...

  18. Endothelial Progenitor Cell Fraction Contained in Bone Marrow-Derived Mesenchymal Stem Cell Populations Impairs Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Fabian Duttenhoefer

    2015-01-01

    Full Text Available In bone tissue engineering (TE endothelial cell-osteoblast cocultures are known to induce synergies of cell differentiation and activity. Bone marrow mononucleated cells (BMCs are a rich source of mesenchymal stem cells (MSCs able to develop an osteogenic phenotype. Endothelial progenitor cells (EPCs are also present within BMC. In this study we investigate the effect of EPCs present in the BMC population on MSCs osteogenic differentiation. Human BMCs were isolated and separated into two populations. The MSC population was selected through plastic adhesion capacity. EPCs (CD34+ and CD133+ were removed from the BMC population and the resulting population was named depleted MSCs. Both populations were cultured over 28 days in osteogenic medium (Dex+ or medium containing platelet lysate (PL. MSC population grew faster than depleted MSCs in both media, and PL containing medium accelerated the proliferation for both populations. Cell differentiation was much higher in Dex+ medium in both cases. Real-time RT-PCR revealed upregulation of osteogenic marker genes in depleted MSCs. Higher values of ALP activity and matrix mineralization analyses confirmed these results. Our study advocates that absence of EPCs in the MSC population enables higher osteogenic gene expression and matrix mineralization and therefore may lead to advanced bone neoformation necessary for TE constructs.

  19. Mouse V1 population correlates of visual detection rely on heterogeneity within neuronal response patterns

    Science.gov (United States)

    Montijn, Jorrit S; Goltstein, Pieter M; Pennartz, Cyriel MA

    2015-01-01

    Previous studies have demonstrated the importance of the primary sensory cortex for the detection, discrimination, and awareness of visual stimuli, but it is unknown how neuronal populations in this area process detected and undetected stimuli differently. Critical differences may reside in the mean strength of responses to visual stimuli, as reflected in bulk signals detectable in functional magnetic resonance imaging, electro-encephalogram, or magnetoencephalography studies, or may be more subtly composed of differentiated activity of individual sensory neurons. Quantifying single-cell Ca2+ responses to visual stimuli recorded with in vivo two-photon imaging, we found that visual detection correlates more strongly with population response heterogeneity rather than overall response strength. Moreover, neuronal populations showed consistencies in activation patterns across temporally spaced trials in association with hit responses, but not during nondetections. Contrary to models relying on temporally stable networks or bulk signaling, these results suggest that detection depends on transient differentiation in neuronal activity within cortical populations. DOI: http://dx.doi.org/10.7554/eLife.10163.001 PMID:26646184

  20. Sensory modulation disorders in childhood epilepsy.

    Science.gov (United States)

    van Campen, Jolien S; Jansen, Floor E; Kleinrensink, Nienke J; Joëls, Marian; Braun, Kees Pj; Bruining, Hilgo

    2015-01-01

    Altered sensory sensitivity is generally linked to seizure-susceptibility in childhood epilepsy but may also be associated to the highly prevalent problems in behavioral adaptation. This association is further suggested by the frequent overlap of childhood epilepsy with autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), conditions in which altered behavioral responses to sensory stimuli have been firmly established. A continuum of sensory processing defects due to imbalanced neuronal inhibition and excitation across these disorders has been hypothesizedthat may lead to common symptoms of inadequate modulation of behavioral responses to sensory stimuli. Here, we investigated the prevalence of sensory modulation disorders among children with epilepsy and their relation with symptomatology of neurodevelopmental disorders. We used the Sensory Profile questionnaire to assess behavioral responses to sensory stimuli and categorize sensory modulation disorders in children with active epilepsy (aged 4-17 years). We related these outcomes to epilepsy characteristics and tested their association with comorbid symptoms of ASD (Social Responsiveness Scale) and ADHD (Strengths and Difficulties Questionnaire). Sensory modulation disorders were reported in 49 % of the 158 children. Children with epilepsy reported increased behavioral responses associated with sensory "sensitivity," "sensory avoidance," and "poor registration" but not "sensory seeking." Comorbidity of ASD and ADHD was associated with more severe sensory modulation problems, although 27 % of typically developing children with epilepsy also reported a sensory modulation disorder. Sensory modulation disorders are an under-recognized problem in children with epilepsy. The extent of the modulation difficulties indicates a substantial burden on daily functioning and may explain an important part of the behavioral distress associated with childhood epilepsy.

  1. Microbiological, chemical, and sensory changes in irradiated pico de gallo

    International Nuclear Information System (INIS)

    Howard, L.R.; Miller, G.H. Jr.; Wagner, A.B.

    1995-01-01

    The effects of gamma processing (1 kGy) and refrigerated storage (2 degrees C) on microbiological, sensory, and chemical quality of pico de gallo was studied. Color, flavor, texture, odor, and heat sensory attributes were not affected by radiation treatment. The treatment decreased populations of aerobic mesophilic, heterofermentative, and total lactic microflora during storage. L-ascorbic acid content declined 50% in response to gamma processing, but levels were similar in irradiated and non-irradiated samples after 6 wk. Pectin solubility was affected by radiation treatment. Gamma processing caused a reduction in pectin degree of estenfication, and conversion of chelator soluble to dilute alkali soluble and nonextractable pectins

  2. Sensory determinants of the autonomous sensory meridian response (ASMR): Understanding the triggers

    OpenAIRE

    Barratt, EL; Spence, CJ; Davis, NJ

    2017-01-01

    The autonomous sensory meridian response (ASMR) is an atypical sensory phenomenon involving electrostatic-like tingling sensations in response to certain sensory, primarily audio-visual, stimuli. The current study used an online questionnaire, completed by 130 people who self-reported experiencing ASMR. We aimed to extend preliminary investigations into the experience, and establish key multisensory factors contributing to the successful induction of ASMR through online media. Aspects such as...

  3. Could information theory provide an ecological theory of sensory processing?

    Science.gov (United States)

    Atick, Joseph J

    2011-01-01

    The sensory pathways of animals are well adapted to processing a special class of signals, namely stimuli from the animal's environment. An important fact about natural stimuli is that they are typically very redundant and hence the sampled representation of these signals formed by the array of sensory cells is inefficient. One could argue for some animals and pathways, as we do in this review, that efficiency of information representation in the nervous system has several evolutionary advantages. Consequently, one might expect that much of the processing in the early levels of these sensory pathways could be dedicated towards recoding incoming signals into a more efficient form. In this review, we explore the principle of efficiency of information representation as a design principle for sensory processing. We give a preliminary discussion on how this principle could be applied in general to predict neural processing and then discuss concretely some neural systems where it recently has been shown to be successful. In particular, we examine the fly's LMC coding strategy and the mammalian retinal coding in the spatial, temporal and chromatic domains.

  4. A microarray analysis of two distinct lymphatic endothelial cell populations

    Directory of Open Access Journals (Sweden)

    Bernhard Schweighofer

    2015-06-01

    Full Text Available We have recently identified lymphatic endothelial cells (LECs to form two morphologically different populations, exhibiting significantly different surface protein expression levels of podoplanin, a major surface marker for this cell type. In vitro shockwave treatment (IVSWT of LECs resulted in enrichment of the podoplaninhigh cell population and was accompanied by markedly increased cell proliferation, as well as 2D and 3D migration. Gene expression profiles of these distinct populations were established using Affymetrix microarray analyses. Here we provide additional details about our dataset (NCBI GEO accession number GSE62510 and describe how we analyzed the data to identify differently expressed genes in these two LEC populations.

  5. Optogenetically enhanced axon regeneration: motor versus sensory neuron-specific stimulation.

    Science.gov (United States)

    Ward, Patricia J; Clanton, Scott L; English, Arthur W

    2018-02-01

    Brief neuronal activation in injured peripheral nerves is both necessary and sufficient to enhance motor axon regeneration, and this effect is specific to the activated motoneurons. It is less clear whether sensory neurons respond in a similar manner to neuronal activation following peripheral axotomy. Further, it is unknown to what extent enhancement of axon regeneration with increased neuronal activity relies on a reflexive interaction within the spinal circuitry. We used mouse genetics and optical tools to evaluate the precision and selectivity of system-specific neuronal activation to enhance axon regeneration in a mixed nerve. We evaluated sensory and motor axon regeneration in two different mouse models expressing the light-sensitive cation channel, channelrhodopsin (ChR2). We selectively activated either sensory or motor axons using light stimulation combined with transection and repair of the sciatic nerve. Regardless of genotype, the number of ChR2-positive neurons whose axons had regenerated successfully was greater following system-specific optical treatment, with no effect on the number of ChR2-negative neurons (whether motor or sensory neurons). We conclude that acute system-specific neuronal activation is sufficient to enhance both motor and sensory axon regeneration. This regeneration-enhancing effect is likely cell autonomous. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Relating microstructure, sensory and instrumental texture of processed oat

    Directory of Open Access Journals (Sweden)

    M. SALMENKALLIO-MARTTILA

    2008-12-01

    Full Text Available This study is a part of a larger project aiming to produce new, healthy, and tasty food ingredients from oat. Germination and different heating processes can be used to improve the texture and flavour of cereals. In this study effects of germination and wet and dry heating on the microstructure, instrumental structure and sensory properties of two oat varieties were assessed. The microstructure of native, germinated, autoclaved and extruded grains of the hulled cv. Veli and hull-less cv. Lisbeth was examined by light microscopy, the texture was measured by determining the milling energy and hardness of the grains and sensory characteristics were evaluated with descriptive sensory profile analysis. In cv. Veli the cells of the starchy endosperm were smaller than in cv. Lisbeth and ß-glucan was concentrated in the subaleurone layer. In cv. Lisbeth ß-glucan was evenly distributed in the starchy endosperm. The grains of cv. Lisbeth were more extensively modified in the germination process than the grains of cv. Veli, otherwise the effects of processing on the grains of the two cultivars were similar. Germination caused cell wall degradation, autoclaving and extrusion cooking caused starch gelatinization. Autoclaving resulted in the hardest perceived texture in oat. Gelatinization of starch appeared to contribute more to the hardness of oat groats than the cell wall structure. Of the instrumental methods used in this study the milling energy measurement appeared to be the most useful method for the analysis of the effects of processing on grain structure.;

  7. The power of projectomes: genetic mosaic labeling in the larval zebrafish brain reveals organizing principles of sensory circuits.

    Science.gov (United States)

    Robles, Estuardo

    2017-09-01

    In no vertebrate species do we possess an accurate, comprehensive tally of neuron types in the brain. This is in no small part due to the vast diversity of neuronal types that comprise complex vertebrate nervous systems. A fundamental goal of neuroscience is to construct comprehensive catalogs of cell types defined by structure, connectivity, and physiological response properties. This type of information will be invaluable for generating models of how assemblies of neurons encode and distribute sensory information and correspondingly alter behavior. This review summarizes recent efforts in the larval zebrafish to construct sensory projectomes, comprehensive analyses of axonal morphologies in sensory axon tracts. Focusing on the olfactory and optic tract, these studies revealed principles of sensory information processing in the olfactory and visual systems that could not have been directly quantified by other methods. In essence, these studies reconstructed the optic and olfactory tract in a virtual manner, providing insights into patterns of neuronal growth that underlie the formation of sensory axon tracts. Quantitative analysis of neuronal diversity revealed organizing principles that determine information flow through sensory systems in the zebrafish that are likely to be conserved across vertebrate species. The generation of comprehensive cell type classifications based on structural, physiological, and molecular features will lead to testable hypotheses on the functional role of individual sensory neuron subtypes in controlling specific sensory-evoked behaviors.

  8. Affective and Sensory Correlates of Hair Pulling in Pediatric Trichotillomania

    Science.gov (United States)

    Meunier, Suzanne A.; Tolin, David F.; Franklin, Martin

    2009-01-01

    Hair pulling in pediatric populations has not received adequate empirical study. Investigations of the affective and sensory states contributing to the etiology and maintenance of hair pulling may help to elucidate the classification of trichotillomania (TTM) as an impulse control disorder or obsessive-compulsive spectrum disorder. The current…

  9. Sensory profiling: a method for describing the sensory characteristics of virgin olive oil

    Directory of Open Access Journals (Sweden)

    Lyon, David H.

    1994-04-01

    Full Text Available Sensory profiling is an objective, descriptive technique which uses a panel of trained assessors. It was used at Campden to differentiate olive oil which differed in terms of the country of origin, variety, ripeness and extraction techniques. The data were related to similar results from the Netherlands and Italy. The results indicated that all three sensory panels perceived the samples in the same way, however, the differed in the way the oils were described.
    The new European legislation on olive oil is partially concerned with the sensory aspects of the oil. The sensory grading takes into account the 'positive' and 'negative' attributes in the oil before giving an overall quality grade. These attributes do not reflect the consumer requirements, therefore, the grading should be restricted to the assessment of the presence or absence of sensory defects.

  10. [Hereditary motor and sensory Lom-neuropathy--first Hungarian case report].

    Science.gov (United States)

    Szabó, Antal; Siska, Eva; Molnár, Mária Judit

    2007-01-20

    Hereditary motor and sensory neuropathy-Lom is an autosomal recessive disorder of the peripheral nervous system, which occurs only in the european Roma population. The symptoms start in the first decade with slowly progressive gait disturbance, weakness and wasting of distal upper extremity muscles, joint deformities and hearing loss develop later in the second and third decades. This disorder is caused by a homozygous missense mutation of the NDRG1 gene, located in the 8q24 region. The Schwann cell dysfunction is most probably caused by altered lipid metabolism as a consequence of the NDRG1 mutation. Molecular genetic testing can be a first diagnostic step among roma individuals showing a Lom neuropathy phenotype, making evaluation of such patients and also genetic counselling faster and easier. Screening for hereditary neuromuscular disorders in this genetically isolated community may become an important public health issue in the near future.

  11. Expression of stanniocalcin 1 in thyroid side population cells and thyroid cancer cells.

    Science.gov (United States)

    Hayase, Suguru; Sasaki, Yoshihito; Matsubara, Tsutomu; Seo, Daekwan; Miyakoshi, Masaaki; Murata, Tsubasa; Ozaki, Takashi; Kakudo, Kennichi; Kumamoto, Kensuke; Ylaya, Kris; Cheng, Sheue-yann; Thorgeirsson, Snorri S; Hewitt, Stephen M; Ward, Jerrold M; Kimura, Shioko

    2015-04-01

    Mouse thyroid side population (SP) cells consist of a minor population of mouse thyroid cells that may have multipotent thyroid stem cell characteristics. However the nature of thyroid SP cells remains elusive, particularly in relation to thyroid cancer. Stanniocalcin (STC) 1 and 2 are secreted glycoproteins known to regulate serum calcium and phosphate homeostasis. In recent years, the relationship of STC1/2 expression to cancer has been described in various tissues. Microarray analysis was carried out to determine genes up- and down-regulated in thyroid SP cells as compared with non-SP cells. Among genes up-regulated, stanniocalcin 1 (STC1) was chosen for study because of its expression in various thyroid cells by Western blotting and immunohistochemistry. Gene expression analysis revealed that genes known to be highly expressed in cancer cells and/or involved in cancer invasion/metastasis were markedly up-regulated in SP cells from both intact as well as partial thyroidectomized thyroids. Among these genes, expression of STC1 was found in five human thyroid carcinoma-derived cell lines as revealed by analysis of mRNA and protein, and its expression was inversely correlated with the differentiation status of the cells. Immunohistochemical analysis demonstrated higher expression of STC1 in the thyroid tumor cell line and thyroid tumor tissues from humans and mice. These results suggest that SP cells contain a population of cells that express genes also highly expressed in cancer cells including Stc1, which warrants further study on the role of SP cells and/or STC1 expression in thyroid cancer.

  12. The role of sensory perception in the development and targeting of tobacco products.

    Science.gov (United States)

    Carpenter, Carrie M; Wayne, Geoffrey Ferris; Connolly, Gregory N

    2007-01-01

    To examine tobacco industry research on smoking-related sensory effects, including differences in sensory perception across smoker groups, and to determine whether this research informed targeted product development and impacted the development of commercial tobacco products. We searched previously secret internal tobacco industry documents available online through document databases housed at Tobacco Documents Online, the British American Tobacco Document Archive and the Legacy Tobacco Documents Library. We identified relevant documents using a snowball sampling method to first search the databases using an initial set of key words and to then establish further search terms. Sensory research is a priority within the tobacco industry directly impacting commercial markets both in the United States and internationally. Sensory factors contribute to smoker satisfaction and product acceptance, and play an important role in controlling puffing behavior. Cigarette manufacturers have capitalized on distinct sensory preferences across gender, age and ethnic groups by tailoring products for specific populations. Regulation of tobacco products is needed to address product changes that are used to reinforce or contribute to tobacco dependence; for instance, the incorporation of additives that target attributes such as smoothness, harshness and aftertaste. Greater understanding of the role of sensory effects on smoking behavior may also help to inform the development of tobacco treatment options that support long-term tobacco abstinence.

  13. Emergence of cytotoxic resistance in cancer cell populations*

    Directory of Open Access Journals (Sweden)

    Lorenzi Tommaso

    2015-01-01

    Full Text Available We formulate an individual-based model and an integro-differential model of phenotypic evolution, under cytotoxic drugs, in a cancer cell population structured by the expression levels of survival-potential and proliferation-potential. We apply these models to a recently studied experimental system. Our results suggest that mechanisms based on fundamental laws of biology can reversibly push an actively-proliferating, and drug-sensitive, cell population to transition into a weakly-proliferative and drug-tolerant state, which will eventually facilitate the emergence of more potent, proliferating and drug-tolerant cells.

  14. Test-retest Agreement and Reliability of Quantitative Sensory Testing 1 Year After Breast Cancer Surgery

    DEFF Research Database (Denmark)

    Andersen, Kenneth Geving; Kehlet, Henrik; Aasvang, Eske Kvanner

    2015-01-01

    .5 SD) than within-patient variation (0.23 to 3.55 SD). There were no significant differences between pain and pain-free patients. The individual test-retest variability was higher on the operated side compared with the nonoperated side. DISCUSSION: The QST protocol reliability allows for group......OBJECTIVES: Quantitative sensory testing (QST) is used to assess sensory dysfunction and nerve damage by examining psychophysical responses to controlled, graded stimuli such as mechanical and thermal detection and pain thresholds. In the breast cancer population, 4 studies have used QST to examine...... persistent pain after breast cancer treatment, suggesting neuropathic pain being a prominent pain mechanism. However, the agreement and reliability of QST has not been described in the postsurgical breast cancer population, hindering exact interpretation of QST studies in this population. The aim...

  15. Age as a factor in sensory integration function in Taiwanese children

    Directory of Open Access Journals (Sweden)

    Lin CK

    2013-07-01

    Full Text Available Chin-Kai Lin,1 Huey-Min Wu,2 Hsin-Yi Wang,3 Mei-Hui Tseng,4,5 Chung-Hui Lin61Department of Early Childhood Education, National Taichung University of Education, Taichung, Taiwan; 2Research Center for Testing and Assessment, National Academy for Educational Research, New Taipei, Taiwan; 3Department of Special Education, National Taichung University of Education, Taichung, Taiwan; 4School of Occupational Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan; 5Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Taipei, Taiwan; 6School of Occupational Therapy, College of Medical Science and Technology, Chung Shan Medical University, Taichung, TaiwanObjective: Sensory integration progresses along a normal developmental sequence. However, few studies have explored how age difference affects the way sensory integration functions in Taiwanese children as they develop. Therefore, this study aims to pinpoint the role of age in sensory integration.Method: A purposive sampling plan was employed. The study population comprised 1,000 Chinese children aged 36 to 131 months (mean = 74.48 months, standard deviation = 25.69 months. Subjects were scored on seven subsets of the Test of Sensory Integration Function (TSIF. An analysis of variance (ANOVA was used to identify differences between four age groups (ages 3−4, 5−6, 7−8, and 9−10 years, in the categories of the TSIF.Results: ANOVA revealed that age is a significant factor in each of the seven tasks of sensory integration associated with various stages of development. The effect of age was significant in all four groups for the subscale of Bilateral Integration Sequences. The function of sensory integration for the children aged 5−8 years did not produce statistically significant results for the subscale of Postural Movement, Sensory Discrimination, Sensory Seeking, or Attention and Activity. For the subscale of Sensory Modulation and Emotional

  16. Shaping bacterial population behavior through computer-interfaced control of individual cells.

    Science.gov (United States)

    Chait, Remy; Ruess, Jakob; Bergmiller, Tobias; Tkačik, Gašper; Guet, Călin C

    2017-11-16

    Bacteria in groups vary individually, and interact with other bacteria and the environment to produce population-level patterns of gene expression. Investigating such behavior in detail requires measuring and controlling populations at the single-cell level alongside precisely specified interactions and environmental characteristics. Here we present an automated, programmable platform that combines image-based gene expression and growth measurements with on-line optogenetic expression control for hundreds of individual Escherichia coli cells over days, in a dynamically adjustable environment. This integrated platform broadly enables experiments that bridge individual and population behaviors. We demonstrate: (i) population structuring by independent closed-loop control of gene expression in many individual cells, (ii) cell-cell variation control during antibiotic perturbation, (iii) hybrid bio-digital circuits in single cells, and freely specifiable digital communication between individual bacteria. These examples showcase the potential for real-time integration of theoretical models with measurement and control of many individual cells to investigate and engineer microbial population behavior.

  17. Cell mass and cell cycle dynamics of an asynchronous budding yeast population

    DEFF Research Database (Denmark)

    Lencastre Fernandes, Rita; Carlquist, Magnus; Lundin, Luisa

    2013-01-01

    of model predictions for cell property distributions against experimental data is scarce. This study focuses on the experimental and mathematical description of the dynamics of cell size and cell cycle position distributions, of a population of Saccharomyces cerevisiae, in response to the substrate...

  18. Progenitor cell populations in the periodontal ligament of mice

    International Nuclear Information System (INIS)

    McCulloch, C.A.

    1985-01-01

    Stem cells in a variety of renewal tissues exhibit a slow rate of cell proliferation. The periodontal ligament of mouse molars was examined for the presence of slowly cycling progenitor cells to provide evidence for the existence of stem cells in this tissue. A pulse injection of 3 H-thymidine was administered and mice were sacrificed between 1 hour and 14 days after injection. Analysis of radioautographs using percentage of labeled cells and grain counts demonstrated that a population of label-retaining cells within 10 micron of blood vessels traversed the cell cycle more slowly than proliferating cells located greater than 10 micron from blood vessels. These data suggest that there is a slowly dividing population of progenitor cells in paravascular sites in mouse molar periodontal ligament which may be stem cells

  19. Hierarchical differences in population coding within auditory cortex.

    Science.gov (United States)

    Downer, Joshua D; Niwa, Mamiko; Sutter, Mitchell L

    2017-08-01

    Most models of auditory cortical (AC) population coding have focused on primary auditory cortex (A1). Thus our understanding of how neural coding for sounds progresses along the cortical hierarchy remains obscure. To illuminate this, we recorded from two AC fields: A1 and middle lateral belt (ML) of rhesus macaques. We presented amplitude-modulated (AM) noise during both passive listening and while the animals performed an AM detection task ("active" condition). In both fields, neurons exhibit monotonic AM-depth tuning, with A1 neurons mostly exhibiting increasing rate-depth functions and ML neurons approximately evenly distributed between increasing and decreasing functions. We measured noise correlation ( r noise ) between simultaneously recorded neurons and found that whereas engagement decreased average r noise in A1, engagement increased average r noise in ML. This finding surprised us, because attentive states are commonly reported to decrease average r noise We analyzed the effect of r noise on AM coding in both A1 and ML and found that whereas engagement-related shifts in r noise in A1 enhance AM coding, r noise shifts in ML have little effect. These results imply that the effect of r noise differs between sensory areas, based on the distribution of tuning properties among the neurons within each population. A possible explanation of this is that higher areas need to encode nonsensory variables (e.g., attention, choice, and motor preparation), which impart common noise, thus increasing r noise Therefore, the hierarchical emergence of r noise -robust population coding (e.g., as we observed in ML) enhances the ability of sensory cortex to integrate cognitive and sensory information without a loss of sensory fidelity. NEW & NOTEWORTHY Prevailing models of population coding of sensory information are based on a limited subset of neural structures. An important and under-explored question in neuroscience is how distinct areas of sensory cortex differ in their

  20. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles

    Science.gov (United States)

    Verdú, José R.; Cortez, Vieyle; Ortiz, Antonio J.; González-Rodríguez, Estela; Martinez-Pinna, Juan; Lumaret, Jean-Pierre; Lobo, Jorge M.; Numa, Catherine; Sánchez-Piñero, Francisco

    2015-09-01

    Ivermectin is a veterinary pharmaceutical generally used to control the ecto- and endoparasites of livestock, but its use has resulted in adverse effects on coprophilous insects, causing population decline and biodiversity loss. There is currently no information regarding the direct effects of ivermectin on dung beetle physiology and behaviour. Here, based on electroantennography and spontaneous muscle force tests, we show sub-lethal disorders caused by ivermectin in sensory and locomotor systems of Scarabaeus cicatricosus, a key dung beetle species in Mediterranean ecosystems. Our findings show that ivermectin decreases the olfactory and locomotor capacity of dung beetles, preventing them from performing basic biological activities. These effects are observed at concentrations lower than those usually measured in the dung of treated livestock. Taking into account that ivermectin acts on both glutamate-gated and GABA-gated chloride ion channels of nerve and muscle cells, we predict that ivermectin’s effects at the physiological level could influence many members of the dung pat community. The results indicate that the decline of dung beetle populations could be related to the harmful effects of chemical contamination in the dung.

  1. What is Sensory about Multi-Sensory Enhancement of Vision by Sounds?

    Directory of Open Access Journals (Sweden)

    Alexis Pérez-Bellido

    2011-10-01

    Full Text Available Can auditory input influence the sensory processing of visual information? Many studies have reported cross-modal enhancement in visual tasks, but the nature of such gain is still unclear. Some authors argue for ‘high-order’ expectancy or attention effects, whereas others propose ‘low-order’ stimulus-driven multisensory integration. The present study applies a psychophysical analysis of reaction time distributions in order to disentangle sensory changes from other kind of high-order (not sensory-specific effects. Observers performed a speeded simple detection task on Gabor patches of different spatial frequencies and contrasts, with and without accompanying sounds. The data were adjusted using chronometric functions in order to separate changes is sensory evidence from changes in decision or motor times. The results supported the existence of a stimulus unspecific auditory-induced enhancement in RTs across all types of visual stimuli, probably mediated by higher-order effects (eg, reduction of temporal uncertainty. Critically, we also singled out a sensory gain that was selective to low spatial frequency stimuli, highlighting the role of the magno-cellular visual pathway in multisensory integration for fast detection. The present findings help clarify previous mixed findings in the area, and introduce a novel form to evaluate cross-modal enhancement.

  2. Associations between sensory loss and social networks, participation, support, and loneliness: Analysis of the Canadian Longitudinal Study on Aging.

    Science.gov (United States)

    Mick, Paul; Parfyonov, Maksim; Wittich, Walter; Phillips, Natalie; Kathleen Pichora-Fuller, M

    2018-01-01

    To determine if hearing loss, vision loss, and dual sensory loss were associated with social network diversity, social participation, availability of social support, and loneliness, respectively, in a population-based sample of older Canadians and to determine whether age or sex modified the associations. Cross-sectional population-based study. Canada. The sample included 21 241 participants in the Canadian Longitudinal Study on Aging tracking cohort. The sample was nationally representative of English- and French-speaking, non-institutionalized 45- to 89-year-old Canadians who did not live on First Nations reserves and who had normal cognition. Participants with missing data for any of the variables in the multivariable regression models were excluded from analysis. Hearing and vision loss were determined by self-report. Dual sensory loss was defined as reporting both hearing and vision loss. Univariate analyses were performed to assess cross-sectional associations between hearing, vision, and dual sensory loss, and social, demographic, and medical variables. Multivariable regression models were used to analyze cross-sectional associations between each type of sensory loss and social network diversity, social participation, availability of social support, and loneliness. Vision loss (in men) and dual sensory loss (in 65- to 85-year-olds) were independently associated with reduced social network diversity. Vision loss and dual sensory loss (in 65- to 85-year-olds) were each independently associated with reduced social participation. All forms of sensory loss were associated with both low availability of social support and loneliness. Sensory impairment is associated with reduced social function in older Canadians. Interventions and research that address the social needs of older individuals with sensory loss are needed. Copyright© the College of Family Physicians of Canada.

  3. The active electric sense of weakly electric fish: from electric organ discharge to sensory processing and behaviour

    Directory of Open Access Journals (Sweden)

    Krahe Rüdiger

    2016-01-01

    Full Text Available Sensory systems have been shaped by evolution to extract information that is relevant for decision making. In order to understand the mechanisms used by sensory systems for filtering the incoming stream of sensory input, it is important to have a quantitative understanding of the natural sensory scenes that are to be processed. Weakly electric fish lead a rather cryptic nocturnal life in often turbid tropical rainforest streams. They produce electric discharges and sense perturbations of their selfgenerated electric field for prey detection and navigation, and also use their active sense for communication in the context of courtship and aggression. The fact that they produce their electric signals throughout day and night permits the use of electrode arrays to track the movements of multiple individual fish and monitor their communication interactions, thus offering a window into their electrosensory world. This approach yields unprecedented access to information on the biology of these fishes and also on the statistical properties of the sensory scenes that are to be processed by their electrosensory system. The electrosensory system shares many organizational features with other sensory systems, in particular, the use of multiple topographic maps. In fact, the sensory surface (the skin is represented in three parallel maps in the hindbrain, with each map covering the receptor organ array with six different cell types that project to the next higher level of processing. Thus, the electroreceptive body surface is represented a total of 18 times in the hindbrain, with each representation having its specific filter properties and degree of response plasticity. Thus, the access to the sensory world of these fish as well as the manifold filtering of the sensory input makes these fish an excellent model system for exploring the cell-intrinsic and network characteristics underlying the extraction of behaviourally relevant sensory information.

  4. Sensory perception in autism.

    Science.gov (United States)

    Robertson, Caroline E; Baron-Cohen, Simon

    2017-11-01

    Autism is a complex neurodevelopmental condition, and little is known about its neurobiology. Much of autism research has focused on the social, communication and cognitive difficulties associated with the condition. However, the recent revision of the diagnostic criteria for autism has brought another key domain of autistic experience into focus: sensory processing. Here, we review the properties of sensory processing in autism and discuss recent computational and neurobiological insights arising from attention to these behaviours. We argue that sensory traits have important implications for the development of animal and computational models of the condition. Finally, we consider how difficulties in sensory processing may relate to the other domains of behaviour that characterize autism.

  5. Inhibition of TRPA1 channel activity in sensory neurons by the glial cell line-derived neurotrophic factor family member, artemin

    Directory of Open Access Journals (Sweden)

    Wang Shenglan

    2011-05-01

    Full Text Available Abstract Background The transient receptor potential (TRP channel subtype A1 (TRPA1 is known to be expressed on sensory neurons and respond to changes in temperature, pH and local application of certain noxious chemicals such as allyl isothiocyanate (AITC. Artemin is a neuronal survival and differentiation factor and belongs to the glial cell line-derived neurotrophic factor (GDNF family. Both TRPA1 and artemin have been reported to be involved in pathological pain initiation and maintenance. In the present study, using whole-cell patch clamp recording technique, in situ hybridization and behavioral analyses, we examined the functional interaction between TRPA1 and artemin. Results We found that 85.8 ± 1.9% of TRPA1-expressing neurons also expressed GDNF family receptor alpha 3 (GFR α3, and 87.5 ± 4.1% of GFRα3-expressing neurons were TRPA1-positive. In whole-cell patch clamp analysis, a short-term treatment of 100 ng/ml artemin significantly suppressed the AITC-induced TRPA1 currents. A concentration-response curve of AITC resulting from the effect of artemin showed that this inhibition did not change EC50 but did lower the AITC-induced maximum response. In addition, pre-treatment of artemin significantly suppressed the number of paw lifts induced by intraplantar injection of AITC, as well as the formalin-induced pain behaviors. Conclusions These findings that a short-term application of artemin inhibits the TRPA1 channel's activity and the sequential pain behaviors suggest a role of artemin in regulation of sensory neurons.

  6. Cisplatin Ototoxicity Blocks Sensory Regeneration in the Avian Inner Ear

    OpenAIRE

    Slattery, Eric L.; Warchol, Mark E.

    2010-01-01

    Cisplatin is a chemotherapeutic agent that is widely-used in the treatment of solid tumors. Ototoxicity is a common side effect of cisplatin therapy, and often leads to permanent hearing loss. The sensory organs of the avian ear are able to regenerate hair cells after aminoglycoside ototoxicity. This regenerative response is mediated by supporting cells, which serve as precursors to replacement hair cells. Given the antimitotic properties of cisplatin, we examined whether the avian ear was al...

  7. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control.

    Science.gov (United States)

    Teng, Ya-Ling; Chen, Chiung-Ling; Lou, Shu-Zon; Wang, Wei-Tsan; Wu, Jui-Yen; Ma, Hui-Ing; Chen, Vincent Chin-Hung

    2016-01-01

    Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP) postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99); controls (76.53±7.47); t1,59 = -3.28, pmaintain balance compared to the controls.

  8. Attention modulates sensory suppression during back movements.

    Science.gov (United States)

    Van Hulle, Lore; Juravle, Georgiana; Spence, Charles; Crombez, Geert; Van Damme, Stefaan

    2013-06-01

    Tactile perception is often impaired during movement. The present study investigated whether such sensory suppression also occurs during back movements, and whether this would be modulated by attention. In two tactile detection experiments, participants simultaneously engaged in a movement task, in which they executed a back-bending movement, and a perceptual task, consisting of the detection of subtle tactile stimuli administered to their upper or lower back. The focus of participants' attention was manipulated by raising the probability that one of the back locations would be stimulated. The results revealed that tactile detection was suppressed during the execution of the back movements. Furthermore, the results of Experiment 2 revealed that when the stimulus was always presented to the attended location, tactile suppression was substantially reduced, suggesting that sensory suppression can be modulated by top-down attentional processes. The potential of this paradigm for studying tactile information processing in clinical populations is discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    Science.gov (United States)

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  10. Bidirectional communication between sensory neurons and osteoblasts in an in vitro coculture system.

    Science.gov (United States)

    Kodama, Daisuke; Hirai, Takao; Kondo, Hisataka; Hamamura, Kazunori; Togari, Akifumi

    2017-02-01

    Recent studies have revealed that the sensory nervous system is involved in bone metabolism. However, the mechanism of communication between neurons and osteoblasts is yet to be elucidated. In this study, we investigated the signaling pathways between sensory neurons of the dorsal root ganglion (DRG) and the osteoblast-like MC3T3-E1 cells using an in vitro coculture system. Our findings indicate that signal transduction from DRG-derived neurons to MC3T3-E1 cells is suppressed by antagonists of the AMPA receptor and the NK 1 receptor. Conversely, signal transduction from MC3T3-E1 cells to DRG-derived neurons is suppressed by a P2X 7 receptor antagonist. Our results suggest that these cells communicate with each other by exocytosis of glutamate, substance P in the efferent signal, and ATP in the afferent signal. © 2017 Federation of European Biochemical Societies.

  11. Evaluation of Sensory and Motor Skills in Neurosurgery Applicants Using a Virtual Reality Neurosurgical Simulator: The Sensory-Motor Quotient.

    Science.gov (United States)

    Roitberg, Ben Z; Kania, Patrick; Luciano, Cristian; Dharmavaram, Naga; Banerjee, Pat

    2015-01-01

    Manual skill is an important attribute for any surgeon. Current methods to evaluate sensory-motor skills in neurosurgical residency applicants are limited. We aim to develop an objective multifaceted measure of sensory-motor skills using a virtual reality surgical simulator. A set of 3 tests of sensory-motor function was performed using a 3-dimensional surgical simulator with head and arm tracking, collocalization, and haptic feedback. (1) Trajectory planning: virtual reality drilling of a pedicle. Entry point, target point, and trajectory were scored-evaluating spatial memory and orientation. (2) Motor planning: sequence, timing, and precision: hemostasis in a postresection cavity in the brain. (3) Haptic perception: touching virtual spheres to determine which is softest of the group, with progressive difficulty. Results were analyzed individually and for a combined score of all the tasks. The University of Chicago Hospital's tertiary care academic center. A total of 95 consecutive applicants interviewed at a neurosurgery residency program over 2 years were offered anonymous participation in the study; in 2 cohorts, 36 participants in year 1 and 27 participants in year 2 (validation cohort) agreed and completed all the tasks. We also tested 10 first-year medical students and 4 first- and second-year neurosurgery residents. A cumulative score was generated from the 3 tests. The mean score was 14.47 (standard deviation = 4.37), median score was 13.42, best score was 8.41, and worst score was 30.26. Separate analysis of applicants from each of 2 years yielded nearly identical results. Residents tended to cluster on the better performance side, and first-year students were not different from applicants. (1) Our cumulative score measures sensory-motor skills in an objective and reproducible way. (2) Better performance by residents hints at validity for neurosurgery. (3) We were able to demonstrate good psychometric qualities and generate a proposed sensory

  12. The Chemical Background for Sensory Quality

    DEFF Research Database (Denmark)

    Zhang, Shujuan

    compounds and consequently change the sensory quality in wine which provide the useful information of wine quality management to winemakers to as well as knowledge on the behaviour of wine oxidation. Additional, studies focused on understanding the development of volatiles during accelerated cheese ripening......In the food industry, high sensory quality and stability of products are crucial factors for consumer satisfaction and market shares. Sensory quality is normally being evaluated by two major approaches: instrumental (volatile and nonvolatile compounds) approach and sensory approach by trained...... and sensory methods in understanding the pre-fermentation treatment on sensory quality of wine (Study 3). In Study 4, the RATA method was used to provide the intensity of significant sensory descriptors that discriminate the significant differences between chocolate samples. Part three step by step moves...

  13. Sensory processing patterns predict the integration of information held in visual working memory.

    Science.gov (United States)

    Lowe, Matthew X; Stevenson, Ryan A; Wilson, Kristin E; Ouslis, Natasha E; Barense, Morgan D; Cant, Jonathan S; Ferber, Susanne

    2016-02-01

    Given the limited resources of visual working memory, multiple items may be remembered as an averaged group or ensemble. As a result, local information may be ill-defined, but these ensemble representations provide accurate diagnostics of the natural world by combining gist information with item-level information held in visual working memory. Some neurodevelopmental disorders are characterized by sensory processing profiles that predispose individuals to avoid or seek-out sensory stimulation, fundamentally altering their perceptual experience. Here, we report such processing styles will affect the computation of ensemble statistics in the general population. We identified stable adult sensory processing patterns to demonstrate that individuals with low sensory thresholds who show a greater proclivity to engage in active response strategies to prevent sensory overstimulation are less likely to integrate mean size information across a set of similar items and are therefore more likely to be biased away from the mean size representation of an ensemble display. We therefore propose the study of ensemble processing should extend beyond the statistics of the display, and should also consider the statistics of the observer. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  14. Ultrastructure of sensory nerve terminals in the penis in green monkey (Cercopithecus aethiops sabaeus).

    Science.gov (United States)

    Malinovský, L

    1977-01-01

    Tje paper describes the ultrastructure of axons in the endings of various types from the corium in the glans penis in green monkey. In the Meissner's endings the axons are mostly completely enveloped in the plasma of Schwann cells. They contain numerous mitochondria which are partially vacuolated or are quite converted into vacuoles. Next, there are pseudomyelinated figures, light vesicles and further organelles. In the papillar simple glomerular endings with accumulation of Schwann cells there are axons irregular in shape, eccentrically placed in the plasma of Schwann cell, rounded smaller axons either completely or partially surrounded by the plasma of Schwann cell and finally axons with a concentric system of lamellae up to four in number, In the complicated glomerular endings the axons vary in appearance and are enveloped in one to five lamellae of Schwann cells, which is typical of those formations. About some of these systems there is a sign of a capsule formed by an elongated lamella probably of the perineurium. When the axons are not enveloped in the plasma of Schwann cell, they are covered by the basement membrane. In close neighbourhood of the epidermis so-called free endings forming groups were found. The plasma of Schwann cell covers them either partially or completely or it again forms around them a lamellar system amounting up to four layers. It is noticeable that these axons are very poor in organelles. A comparison of the simple sensory corpuscles in the nose skin in hedgehog, the funtional properties of Meissner's endings and the simple corpuscles results in the view that the complexes having a larger amount of lamellae correspond to an extent to the simple sensory corpuscles ant that the Meissner's endings and the complicated glomerules are probably a morphological and functional equivalent of simple sensory corpuscles in the non-primate mammals and that the gloverular endings may also be the first (developmental) stage of the simple sensory

  15. Composition, functional properties and sensory characteristics of Mozzarella cheese manufactured from different somatic cell counts in milk

    Directory of Open Access Journals (Sweden)

    Evelise Andreatta

    2009-10-01

    Full Text Available In the present study, composition, functional properties and sensory characteristics of Mozzarella cheese produced from milk with somatic cell counts (SCC at low (800,000 cells/mL levels were investigated. Three batches of cheese were produced for each SCC category. The cheeses were vacuum packed in plastic bags and analysed after 2, 9, 16, 23 and 30 days of storage at 4ºC. SCC level did not affect the moisture, fat, total protein and ash content, mesophilic and psychrotrophic bacteria, and sensory parameters of Mozzarella cheese. However, meltability increased in cheese manufactured from high SCC milk. Results indicated that raw milk used to produce Mozzarella cheese should not contain high SCC (>800,000 cells/mL in order to avoid changes in the functional properties of the Mozzarella cheese.No presente estudo foram investigadas a composição, as propriedades funcionais e as características sensoriais do queijo Mussarela produzido a partir de leite com contagens de células somáticas (CCS em níveis baixos (800.000 CS/mL. Foram produzidos 3 lotes de queijo para cada CCS. Os queijos foram embalados a vácuo e analisados após 2, 9, 16, 23 e 30 dias de armazenamento a 4ºC. O nível de CS não afetou a umidade, os teores de gordura, proteína total e cinzas, os níveis de bactérias mesófilas e psicrotróficas, e os parâmetros sensoriais do queijo Mussarela. Entretanto, houve aumento da capacidade de derretimento no queijo fabricado com leite de alta CCS. Os resultados indicam que o leite cru utilizado para a produção de queijo Mussarela não deve conter níveis de CS acima de 800.000/mL, para evitar alterações nas propriedades funcionais do queijo Mussarela.

  16. Age-Related Sensory Impairments and Risk of Cognitive Impairment

    Science.gov (United States)

    Fischer, Mary E; Cruickshanks, Karen J.; Schubert, Carla R; Pinto, Alex A; Carlsson, Cynthia M; Klein, Barbara EK; Klein, Ronald; Tweed, Ted S.

    2016-01-01

    Background/Objectives To evaluate the associations of sensory impairments with the 10-year risk of cognitive impairment. Previous work has primarily focused on the relationship between a single sensory system and cognition. Design The Epidemiology of Hearing Loss Study (EHLS) is a longitudinal, population-based study of aging in the Beaver Dam, WI community. Baseline examinations were conducted in 1993 and follow-up exams have been conducted every 5 years. Setting General community Participants EHLS members without cognitive impairment at EHLS-2 (1998–2000). There were 1,884 participants (mean age = 66.7 years) with complete EHLS-2 sensory data and follow-up information. Measurements Cognitive impairment was a Mini-Mental State Examination score of impairment was a pure-tone average of hearing thresholds (0.5, 1, 2 and 4 kHz) of > 25 decibel Hearing Level in either ear. Visual impairment was Pelli-Robson contrast sensitivity of impairment was a San Diego Odor Identification Test score of impairment were independently associated with cognitive impairment risk [Hearing: Hazard Ratio (HR) = 1.90, 95% Confidence Interval (C.I.) = 1.11, 3.26; Vision: HR = 2.05, 95% C.I. = 1.24, 3.38; Olfaction: HR = 3.92, 95% C.I. = 2.45, 6.26]. However, 85% with hearing impairment, 81% with visual impairment, and 76% with olfactory impairment did not develop cognitive impairment during follow-up. Conclusion The relationship between sensory impairment and cognitive impairment was not unique to one sensory system suggesting sensorineural health may be a marker of brain aging. The development of a combined sensorineurocognitive measure may be useful in uncovering mechanisms of healthy brain aging. PMID:27611845

  17. Influence of Cell-Cell Interactions on the Population Growth Rate in a Tumor

    Science.gov (United States)

    Chen, Yong

    2017-12-01

    The understanding of the macroscopic phenomenological models of the population growth at a microscopic level is important to predict the population behaviors emerged from the interactions between the individuals. In this work, we consider the influence of the population growth rate R on the cell-cell interaction in a tumor system and show that, in most cases especially small proliferative probabilities, the regulative role of the interaction will be strengthened with the decline of the intrinsic proliferative probabilities. For the high replication rates of an individual and the cooperative interactions, the proliferative probability almost has no effect. We compute the dependences of R on the interactions between the cells under the approximation of the nearest neighbor in the rim of an avascular tumor. Our results are helpful to qualitatively understand the influence of the interactions between the individuals on the growth rate in population systems. Supported by the National Natural Science Foundation of China under Grant Nos. 11675008 and 21434001

  18. Genetics of the Charcot-Marie-Tooth disease in the Spanish Gypsy population: the hereditary motor and sensory neuropathy-Russe in depth.

    Science.gov (United States)

    Sevilla, T; Martínez-Rubio, D; Márquez, C; Paradas, C; Colomer, J; Jaijo, T; Millán, J M; Palau, F; Espinós, C

    2013-06-01

    Four private mutations responsible for three forms demyelinating of Charcot-Marie-Tooth (CMT) or hereditary motor and sensory neuropathy (HMSN) have been associated with the Gypsy population: the NDRG1 p.R148X in CMT type 4D (CMT4D/HMSN-Lom); p.C737_P738delinsX and p.R1109X mutations in the SH3TC2 gene (CMT4C); and a G>C change in a novel alternative untranslated exon in the HK1 gene causative of CMT4G (CMT4G/HMSN-Russe). Here we address the findings of a genetic study of 29 Gypsy Spanish families with autosomal recessive demyelinating CMT. The most frequent form is CMT4C (57.14%), followed by HMSN-Russe (25%) and HMSN-Lom (17.86%). The relevant frequency of HMSN-Russe has allowed us to investigate in depth the genetics and the associated clinical symptoms of this CMT form. HMSN-Russe probands share the same haplotype confirming that the HK1 g.9712G>C is a founder mutation, which arrived in Spain around the end of the 18th century. The clinical picture of HMSN-Russe is a progressive CMT disorder leading to severe weakness of the lower limbs and prominent distal sensory loss. Motor nerve conduction velocity was in the demyelinating or intermediate range. © 2012 John Wiley & Sons A/S.

  19. Evaluating Sensory Processing in Fragile X Syndrome: Psychometric Analysis of the Brain Body Center Sensory Scales (BBCSS).

    Science.gov (United States)

    Kolacz, Jacek; Raspa, Melissa; Heilman, Keri J; Porges, Stephen W

    2018-06-01

    Individuals with fragile X syndrome (FXS), especially those co-diagnosed with autism spectrum disorder (ASD), face many sensory processing challenges. However, sensory processing measures informed by neurophysiology are lacking. This paper describes the development and psychometric properties of a parent/caregiver report, the Brain-Body Center Sensory Scales (BBCSS), based on Polyvagal Theory. Parents/guardians reported on 333 individuals with FXS, 41% with ASD features. Factor structure using a split-sample exploratory-confirmatory design conformed to neurophysiological predictions. Internal consistency, test-retest, and inter-rater reliability were good to excellent. BBCSS subscales converged with the Sensory Profile and Sensory Experiences Questionnaire. However, data also suggest that BBCSS subscales reflect unique features related to sensory processing. Individuals with FXS and ASD features displayed more sensory challenges on most subscales.

  20. Sensory impacts of food-packaging interactions.

    Science.gov (United States)

    Duncan, Susan E; Webster, Janet B

    2009-01-01

    Sensory changes in food products result from intentional or unintentional interactions with packaging materials and from failure of materials to protect product integrity or quality. Resolving sensory issues related to plastic food packaging involves knowledge provided by sensory scientists, materials scientists, packaging manufacturers, food processors, and consumers. Effective communication among scientists and engineers from different disciplines and industries can help scientists understand package-product interactions. Very limited published literature describes sensory perceptions associated with food-package interactions. This article discusses sensory impacts, with emphasis on oxidation reactions, associated with the interaction of food and materials, including taints, scalping, changes in food quality as a function of packaging, and examples of material innovations for smart packaging that can improve sensory quality of foods and beverages. Sensory evaluation is an important tool for improved package selection and development of new materials.

  1. Why do unusual novel foods like insects lack sensory appeal? Investigating the underlying sensory perceptions

    NARCIS (Netherlands)

    Tan Hui Shan, Grace; Tibboel, Claudia Joyce; Stieger, Markus

    2017-01-01

    Unusual novel foods like insects generally hold little sensory appeal for consumers, but little is known about the underlying sensory perceptions and how the properties of the food contribute to acceptance. This study examined the sensory perceptions of 3 unusual novel foods (lamb brain, frog

  2. The Presence of Migraines and Its Association with Sensory Hyperreactivity and Anxiety Symptomatology in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Sullivan, Jillian C.; Miller, Lucy J.; Nielsen, Darcy M.; Schoen, Sarah A.

    2014-01-01

    Migraine headaches are associated with sensory hyperreactivity and anxiety in the general population, but it is unknown whether this is also the case in autism spectrum disorders. This pilot study asked parents of 81 children (aged 7-17 years) with autism spectrum disorders to report their child's migraine occurrence, sensory hyperreactivity…

  3. A comparison of the mechanical and sensory properties of baked and extruded confectionery products

    Science.gov (United States)

    Butt, Saba; Charalambides, Maria; Mohammed, Idris K.; Powell, Hugh

    2017-10-01

    Traditional baking is the most common way of producing confectionery wafers, however over the past few decades, the extrusion process has become an increasingly important food manufacturing method and is commonly used in the manufacturing of breakfast cereals and filled snack products. This study aims to characterise products made via each of these manufacturing processes in order to understand the important parameters involved in the resulting texture of confectionery products such as wafers. Both of the named processes result in brittle, cellular foams comprising of cell walls and cell pores which may contain some of the confectionery filling. The mechanical response of the cell wall material and the geometry of the products influence the consumer perception and preference. X-Ray micro tomography (XRT) was used to generate geometry of the microstructure which was then fed to Finite Element (FE) for numerical analysis on both products. The FE models were used to determine properties such as solid modulus of the cell walls, Young's modulus of the entire foam and to investigate and compare the microstructural damage of baked wafers and extruded products. A sensory analysis study was performed on both products by a qualified sensory panel. The results of this study were then used to draw links between the mechanical behaviour and sensory perception of a consumer. The extruded product was found to be made up of a stiffer solid material and had a higher compressive modulus and fracture stress when compared to the baked wafer. The sensory panel observed textural differences between the baked and extruded products which were also found in the differences of the mechanical properties of the two products.

  4. Making Sense of G Proteins: Genetic analysis of sensory G protein signaling in the nematode C. elegans

    NARCIS (Netherlands)

    H. Lans (Hannes)

    2005-01-01

    textabstractAmong the key molecules involved in sensory perception are G proteins, which act in every cell to activate a cascade of signaling molecules in response to certain environmental cues. In this thesis, several studies on the role of G proteins in the sensory system of C. elegans are

  5. Functional heterogeneity and heritability in CHO cell populations.

    Science.gov (United States)

    Davies, Sarah L; Lovelady, Clare S; Grainger, Rhian K; Racher, Andrew J; Young, Robert J; James, David C

    2013-01-01

    In this study, we address the hypothesis that it is possible to exploit genetic/functional variation in parental Chinese hamster ovary (CHO) cell populations to isolate clonal derivatives that exhibit superior, heritable attributes for biomanufacturing--new parental cell lines which are inherently more "fit for purpose." One-hundred and ninety-nine CHOK1SV clones were isolated from a donor CHOK1SV parental population by limiting dilution cloning and microplate image analysis, followed by primary analysis of variation in cell-specific proliferation rate during extended deep-well microplate suspension culture of individual clones to accelerate genetic drift in isolated cultures. A subset of 100 clones were comparatively evaluated for transient production of a recombinant monoclonal antibody (Mab) and green fluorescent protein following transfection of a plasmid vector encoding both genes. The heritability of both cell-specific proliferation rate and Mab production was further assessed using a subset of 23 clones varying in functional capability that were subjected to cell culture regimes involving both cryopreservation and extended sub-culture. These data showed that whilst differences in transient Mab production capability were not heritable per se, clones exhibiting heritable variation in specific proliferation rate, endocytotic transfectability and N-glycan processing were identified. Finally, for clonal populations most "evolved" by extended sub-culture in vitro we investigated the relationship between cellular protein biomass content, specific proliferation rate and cell surface N-glycosylation. Rapid-specific proliferation rate was inversely correlated to CHO cell size and protein content, and positively correlated to cell surface glycan content, although substantial clone-specific variation in ability to accumulate cell biomass was evident. Taken together, our data reveal the dynamic nature of the CHO cell functional genome and the potential to evolve and

  6. Tic Modulation Using Sensory Tricks

    Directory of Open Access Journals (Sweden)

    Rebecca W. Gilbert

    2013-04-01

    Full Text Available Background: A sensory trick, or geste antagoniste, is defined as a physical gesture (such as a touch on a particular body part that mitigates the production of an involuntary movement. This phenomenon is most commonly described as a feature of dystonia. Here we present a case of successful modulation of tics using sensory tricks.Case Report:: A case report and video are presented. The case and video demonstrate a 19-year-old male who successfully controlled his tics with various sensory tricks.Discussion: It is underappreciated by movement disorder physicians that sensory tricks can play a role in tics. Introducing this concept to patients could potentially help in tic control. In addition, understanding the pathophysiological underpinnings of sensory tricks could help in the understanding of the pathophysiology of tics.

  7. Characterizing human vestibular sensory epithelia for experimental studies: new hair bundles on old tissue and implications for therapeutic interventions in ageing.

    Science.gov (United States)

    Taylor, Ruth R; Jagger, Daniel J; Saeed, Shakeel R; Axon, Patrick; Donnelly, Neil; Tysome, James; Moffatt, David; Irving, Richard; Monksfield, Peter; Coulson, Chris; Freeman, Simon R; Lloyd, Simon K; Forge, Andrew

    2015-06-01

    Balance disequilibrium is a significant contributor to falls in the elderly. The most common cause of balance dysfunction is loss of sensory cells from the vestibular sensory epithelia of the inner ear. However, inaccessibility of inner ear tissue in humans severely restricts possibilities for experimental manipulation to develop therapies to ameliorate this loss. We provide a structural and functional analysis of human vestibular sensory epithelia harvested at trans-labyrinthine surgery. We demonstrate the viability of the tissue and labeling with specific markers of hair cell function and of ion homeostasis in the epithelium. Samples obtained from the oldest patients revealed a significant loss of hair cells across the tissue surface, but we found immature hair bundles present in epithelia harvested from patients >60 years of age. These results suggest that the environment of the human vestibular sensory epithelium could be responsive to stimulation of developmental pathways to enhance hair cell regeneration, as has been demonstrated successfully in the vestibular organs of adult mice. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Association Between Sensory Impairment and Dementia in Older Adults: Evidence from China.

    Science.gov (United States)

    Luo, Yanan; He, Ping; Guo, Chao; Chen, Gong; Li, Ning; Zheng, Xiaoying

    2018-03-01

    To determine the association between sensory impairment and dementia in Chinese older adults. Cross-sectional. Older adults in 31 provinces of China. Individuals aged 65 and older (N = 250,752). Psychiatrists ascertained dementia based on the International Classification of Diseases, 10th Revision. Sensory impairment was measured as only hearing impairment, only vision impairment, and combined sensory impairment (combined hearing and vision impairment). Hearing impairment was defined as greater than 40 dB loss in the better ear according to the standard of the World Health Organization (WHO) Prevention of Deafness and Hearing Impairment (PDH) standard 97.3. Ophthalmologists assessed vision impairment according to the WHO best-corrected visual acuity (BCVA) criteria (low vision: 0.05≤BCVA ≤0.29; blindness: no light perception ≤ BCVA without sensory impairment, 0.83% (95% CI = 0.70-0.99%) with only visual impairment, 0.61 (95% CI = 0.53-0.71%) with only hearing impairment, and 1.27% (95% CI = 1.00-1.61%) with combined sensory impairments. After adjusting for sociodemographic characteristics, vision impairment (odds ratio (OR) = 1.58, 95% CI = 1.28-1.96) and combined sensory impairments (OR = 1.64, 95% CI = 1.23-2.20) were associated with greater risk of severe to extremely severe dementia. Hearing impairment was not significantly associated with dementia. Sensory impairments are associated with greater risk of dementia in Chinese older adults. Studies are needed to further explore the pathway of this association in Chinese elderly adults and to provide suggestions to improve health status for this population. © 2018, Copyright the Authors Journal compilation © 2018, The American Geriatrics Society.

  9. Postural Stability of Patients with Schizophrenia during Challenging Sensory Conditions: Implication of Sensory Integration for Postural Control.

    Directory of Open Access Journals (Sweden)

    Ya-Ling Teng

    Full Text Available Postural dysfunctions are prevalent in patients with schizophrenia and affect their daily life and ability to work. In addition, sensory functions and sensory integration that are crucial for postural control are also compromised. This study intended to examine how patients with schizophrenia coordinate multiple sensory systems to maintain postural stability in dynamic sensory conditions. Twenty-nine patients with schizophrenia and 32 control subjects were recruited. Postural stability of the participants was examined in six sensory conditions of different level of congruency of multiple sensory information, which was based on combinations of correct, removed, or conflicting sensory inputs from visual, somatosensory, and vestibular systems. The excursion of the center of pressure was measured by posturography. Equilibrium scores were derived to indicate the range of anterior-posterior (AP postural sway, and sensory ratios were calculated to explore ability to use sensory information to maintain balance. The overall AP postural sway was significantly larger for patients with schizophrenia compared to the controls [patients (69.62±8.99; controls (76.53±7.47; t1,59 = -3.28, p<0.001]. The results of mixed-model ANOVAs showed a significant interaction between the group and sensory conditions [F5,295 = 5.55, p<0.001]. Further analysis indicated that AP postural sway was significantly larger for patients compared to the controls in conditions containing unreliable somatosensory information either with visual deprivation or with conflicting visual information. Sensory ratios were not significantly different between groups, although small and non-significant difference in inefficiency to utilize vestibular information was also noted. No significant correlations were found between postural stability and clinical characteristics. To sum up, patients with schizophrenia showed increased postural sway and a higher rate of falls during challenging sensory

  10. Tlx-1 and Tlx-3 homeobox gene expression in cranial sensory ganglia and hindbrain of the chick embryo: markers of patterned connectivity.

    Science.gov (United States)

    Logan, C; Wingate, R J; McKay, I J; Lumsden, A

    1998-07-15

    Recent evidence suggests that in vertebrates the formation of distinct neuronal cell types is controlled by specific families of homeodomain transcription factors. Furthermore, the expression domains of a number of these genes correlates with functionally integrated neuronal populations. We have isolated two members of the divergent T-cell leukemia translocation (HOX11/Tlx) homeobox gene family from chick, Tlx-1 and Tlx-3, and show that they are expressed in differentiating neurons of both the peripheral and central nervous systems. In the peripheral nervous system, Tlx-1 and Tlx-3 are expressed in overlapping domains within the placodally derived components of a number of cranial sensory ganglia. Tlx-3, unlike Tlx-1, is also expressed in neural crest-derived dorsal root and sympathetic ganglia. In the CNS, both genes are expressed in longitudinal columns of neurons at specific dorsoventral levels of the hindbrain. Each column has distinct anterior and/or posterior limits that respect inter-rhombomeric boundaries. Tlx-3 is also expressed in D2 and D3 neurons of the spinal cord. Tlx-1 and Tlx-3 expression patterns within the peripheral and central nervous systems suggest that Tlx proteins may be involved not only in the differentiation and/or survival of specific neuronal populations but also in the establishment of neuronal circuitry. Furthermore, by analogy with the LIM genes, Tlx family members potentially define sensory columns early within the developing hindbrain in a combinatorial manner.

  11. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study.

    Science.gov (United States)

    Amyotte, Beatrice; Bowen, Amy J; Banks, Travis; Rajcan, Istvan; Somers, Daryl J

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants.

  12. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study

    Science.gov (United States)

    Amyotte, Beatrice; Bowen, Amy J.; Banks, Travis; Rajcan, Istvan; Somers, Daryl J.

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants. PMID:28231290

  13. Structure and development of the saccular sensory epithelium in ...

    African Journals Online (AJOL)

    Structure and development of the saccular sensory epithelium in relation to otolith growth in the perch Perca fluviatilis (Telostei) ... Electron microscopy indicated: 1) The apical surface of each hair cell is covered with a ciliary bundle which varies in length in different epithelial regions. Each bundle is formed from a long ...

  14. CD34 defines an osteoprogenitor cell population in mouse bone marrow stromal cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Al-Shammary, Asma; Skagen, Peter

    2015-01-01

    Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) and their progenitors have been identified based on retrospective functional criteria. CD markers are employed to define cell populations with distinct functional characteristics. However, defining and pro...

  15. Age-associated variation in sensory perception of iron in drinking water and the potential for overexposure in the human population.

    Science.gov (United States)

    Mirlohi, Susan; Dietrich, Andrea M; Duncan, Susan E

    2011-08-01

    Humans interact with their environment through the five senses, but little is known about population variability in the ability to assess contaminants. Sensory thresholds and biochemical indicators of metallic flavor perception in humans were evaluated for ferrous (Fe(2+)) iron in drinking water; subjects aged 19-84 years participated. Metallic flavor thresholds for individuals and subpopulations based on age were determined. Oral lipid oxidation and oral pH were measured in saliva as potential biochemical indicators. Individual thresholds were 0.007-14.14 mg/L Fe(2+) and the overall population threshold was 0.17 mg/L Fe(2+) in reagent water. Average thresholds for individuals younger and older than 50 years of age (grouped by the daily recommended nutritional guidelines for iron intake) were significantly different (p = 0.013); the population thresholds for each group were 0.045 mg/L Fe(2+) and 0.498 mg/L Fe(2+), respectively. Many subjects >50 and a few subjects <50 years were insensitive to metallic flavor. There was no correlation between age, oral lipid oxidation, and oral pH. Standardized olfactory assessment found poor sensitivity for Fe(2+) corresponded with conditions of mild, moderate, and total anosmia. The findings demonstrate an age-dependent sensitivity to iron indicating as people age they are less sensitive to metallic perception.

  16. Sensory characteristics of different cod products

    DEFF Research Database (Denmark)

    Sveinsdottir, K.; Martinsdottir, E.; Hyldig, Grethe

    2010-01-01

    atmosphere) were evaluated with quantitative descriptive analysis by a trained sensory panel. Signal-to-noise analysis, p*MSE (discrimination and repeatability) and line plots proved to be very useful in studying panelists' performance. Most sensory attributes described significant differences between...... the products, and principal component analysis provided an overview of the differences and similarities between the products with regard to sensory characteristics. Farmed cod had different sensory characteristics compared with wild cod, such as more meat flavor, and rubbery and meaty texture. Different...... storage methods had minor influence on sensory characteristics of cod fillets after short storage time, but after extended storage, the groups were different with regard to most attributes. PRACTICAL APPLICATIONS This paper presents different ways of analyzing sensory data. The process of analysis...

  17. Accessibility and sensory experiences

    DEFF Research Database (Denmark)

    Ryhl, Camilla

    2010-01-01

    and accessibility. Sensory accessibility accommodates aspects of a sensory disability and describes architectural design requirements needed to ensure access to architectural experiences. In the context of architecture accessibility has become a design concept of its own. It is generally described as ensuring...... physical access to the built environment by accommodating physical disabilities. While the existing concept of accessibility ensures the physical access of everyone to a given space, sensory accessibility ensures the choice of everyone to stay and be able to participate and experience....

  18. touché is required for touch evoked generator potentials within vertebrate sensory neurons

    Science.gov (United States)

    Low, Sean E.; Ryan, Joel; Sprague, Shawn M.; Hirata, Hiromi; Cui, Wilson W.; Zhou, Weibin; Hume, Richard I.; Kuwada, John Y.; Saint-Amant, Louis

    2010-01-01

    The process by which light-touch in vertebrates is transformed into an electrical response in cutaneous mechanosensitive neurons is a largely unresolved question. To address this question we undertook a forward genetic screen in zebrafish (Danio rerio) to identify mutants exhibiting abnormal touch-evoked behaviors, despite the presence of sensory neurons and peripheral neurites. One family, subsequently named touché, was found to harbor a recessive mutation which produced offspring that were unresponsive to light-touch, but responded to a variety of other sensory stimuli. The optogenetic activation of motor behaviors by touché mutant sensory neurons expressing ChannelRhodopsin-2 suggested that the synaptic output of sensory neurons was intact, consistent with a defect in sensory neuron activation. To explore sensory neuron activation we developed an in vivo preparation permitting the precise placement of a combined electrical and tactile stimulating probe upon eGFP positive peripheral neurites. In wild type larva electrical and tactile stimulation of peripheral neurites produced action potentials detectable within the cell body. In a subset of these sensory neurons an underlying generator potential could be observed in response to subthreshold tactile stimuli. A closer examination revealed that the amplitude of the generator potential was proportional to the stimulus amplitude. When assayed touché mutant sensory neurons also responded to electrical stimulation of peripheral neurites similar to wild type larvae, however tactile stimulation of these neurites failed to uncover a subset of sensory neurons possessing generator potentials. These findings suggest that touché is required for generator potentials, and that generator potentials underlie responsiveness to light-touch in zebrafish. PMID:20631165

  19. The Sensory Perception Quotient (SPQ): development and validation of a new sensory questionnaire for adults with and without autism.

    Science.gov (United States)

    Tavassoli, Teresa; Hoekstra, Rosa A; Baron-Cohen, Simon

    2014-01-01

    Questionnaire-based studies suggest atypical sensory perception in over 90% of individuals with autism spectrum conditions (ASC). Sensory questionnaire-based studies in ASC mainly record parental reports of their child's sensory experience; less is known about sensory reactivity in adults with ASC. Given the DSM-5 criteria for ASC now include sensory reactivity, there is a need for an adult questionnaire investigating basic sensory functioning. We aimed to develop and validate the Sensory Perception Quotient (SPQ), which assesses basic sensory hyper- and hyposensitivity across all five modalities. A total of 359 adults with (n = 196) and without (n = 163) ASC were asked to fill in the SPQ, the Sensory Over-Responsivity Inventory (SensOR) and the Autism-Spectrum Quotient (AQ) online. Adults with ASC reported more sensory hypersensitivity on the SPQ compared to controls (P sensory hypersensitivity. The SPQ showed high internal consistency for both the total SPQ (Cronbach's alpha = .92) and the reduced 35-item version (alpha = .93). The SPQ was significantly correlated with the SensOR across groups (r = -.46) and within the ASC (r = -.49) and control group (r = -.21). The SPQ shows good internal consistency and concurrent validity and differentiates between adults with and without ASC. Adults with ASC report more sensitivity to sensory stimuli on the SPQ. Finally, greater sensory sensitivity is associated with more autistic traits. The SPQ provides a new tool to measure individual differences on this dimension.

  20. Clinical neurophysiology and quantitative sensory testing in the investigation of orofacial pain and sensory function.

    Science.gov (United States)

    Jääskeläinen, Satu K

    2004-01-01

    Chronic orofacial pain represents a diagnostic and treatment challenge for the clinician. Some conditions, such as atypical facial pain, still lack proper diagnostic criteria, and their etiology is not known. The recent development of neurophysiological methods and quantitative sensory testing for the examination of the trigeminal somatosensory system offers several tools for diagnostic and etiological investigation of orofacial pain. This review presents some of these techniques and the results of their application in studies on orofacial pain and sensory dysfunction. Clinical neurophysiological investigation has greater diagnostic accuracy and sensitivity than clinical examination in the detection of the neurogenic abnormalities of either peripheral or central origin that may underlie symptoms of orofacial pain and sensory dysfunction. Neurophysiological testing may also reveal trigeminal pathology when magnetic resonance imaging has failed to detect it, so these methods should be considered complementary to each other in the investigation of orofacial pain patients. The blink reflex, corneal reflex, jaw jerk, sensory neurography of the inferior alveolar nerve, and the recording of trigeminal somatosensory-evoked potentials with near-nerve stimulation have all proved to be sensitive and reliable in the detection of dysfunction of the myelinated sensory fibers of the trigeminal nerve or its central connections within the brainstem. With appropriately small thermodes, thermal quantitative sensory testing is useful for the detection of trigeminal small-fiber dysfunction (Adelta and C). In neuropathic conditions, it is most sensitive to lesions causing axonal injury. By combining different techniques for investigation of the trigeminal system, an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. Neurophysiological and quantitative sensory tests have already highlighted some similarities among various orofacial pain conditions

  1. The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception.

    Science.gov (United States)

    Nagy, Vanja; Cole, Tiffany; Van Campenhout, Claude; Khoung, Thang M; Leung, Calvin; Vermeiren, Simon; Novatchkova, Maria; Wenzel, Daniel; Cikes, Domagoj; Polyansky, Anton A; Kozieradzki, Ivona; Meixner, Arabella; Bellefroid, Eric J; Neely, G Gregory; Penninger, Josef M

    2015-01-01

    PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception.

  2. Heterogeneous sensory innervation and extensive intrabulbar connections of olfactory necklace glomeruli.

    Directory of Open Access Journals (Sweden)

    Renee E Cockerham

    Full Text Available The mammalian nose employs several olfactory subsystems to recognize and transduce diverse chemosensory stimuli. These subsystems differ in their anatomical position within the nasal cavity, their targets in the olfactory forebrain, and the transduction mechanisms they employ. Here we report that they can also differ in the strategies they use for stimulus coding. Necklace glomeruli are the sole main olfactory bulb (MOB targets of an olfactory sensory neuron (OSN subpopulation distinguished by its expression of the receptor guanylyl cyclase GC-D and the phosphodiesterase PDE2, and by its chemosensitivity to the natriuretic peptides uroguanylin and guanylin and the gas CO(2. In stark contrast to the homogeneous sensory innervation of canonical MOB glomeruli from OSNs expressing the same odorant receptor (OR, we find that each necklace glomerulus of the mouse receives heterogeneous innervation from at least two distinct sensory neuron populations: one expressing GC-D and PDE2, the other expressing olfactory marker protein. In the main olfactory system it is thought that odor identity is encoded by a combinatorial strategy and represented in the MOB by a pattern of glomerular activation. This combinatorial coding scheme requires functionally homogeneous sensory inputs to individual glomeruli by OSNs expressing the same OR and displaying uniform stimulus selectivity; thus, activity in each glomerulus reflects the stimulation of a single OSN type. The heterogeneous sensory innervation of individual necklace glomeruli by multiple, functionally distinct, OSN subtypes precludes a similar combinatorial coding strategy in this olfactory subsystem.

  3. Sensorimotor Representations in Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially Organized, and Non-temporally Patterned.

    Science.gov (United States)

    Knogler, Laura D; Markov, Daniil A; Dragomir, Elena I; Štih, Vilim; Portugues, Ruben

    2017-05-08

    A fundamental question in neurobiology is how animals integrate external sensory information from their environment with self-generated motor and sensory signals in order to guide motor behavior and adaptation. The cerebellum is a vertebrate hindbrain region where all of these signals converge and that has been implicated in the acquisition, coordination, and calibration of motor activity. Theories of cerebellar function postulate that granule cells encode a variety of sensorimotor signals in the cerebellar input layer. These models suggest that representations should be high-dimensional, sparse, and temporally patterned. However, in vivo physiological recordings addressing these points have been limited and in particular have been unable to measure the spatiotemporal dynamics of population-wide activity. In this study, we use both calcium imaging and electrophysiology in the awake larval zebrafish to investigate how cerebellar granule cells encode three types of sensory stimuli as well as stimulus-evoked motor behaviors. We find that a large fraction of all granule cells are active in response to these stimuli, such that representations are not sparse at the population level. We find instead that most responses belong to only one of a small number of distinct activity profiles, which are temporally homogeneous and anatomically clustered. We furthermore identify granule cells that are active during swimming behaviors and others that are multimodal for sensory and motor variables. When we pharmacologically change the threshold of a stimulus-evoked behavior, we observe correlated changes in these representations. Finally, electrophysiological data show no evidence for temporal patterning in the coding of different stimulus durations. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. How the cerebellum may monitor sensory information for spatial representation

    Science.gov (United States)

    Rondi-Reig, Laure; Paradis, Anne-Lise; Lefort, Julie M.; Babayan, Benedicte M.; Tobin, Christine

    2014-01-01

    The cerebellum has already been shown to participate in the navigation function. We propose here that this structure is involved in maintaining a sense of direction and location during self-motion by monitoring sensory information and interacting with navigation circuits to update the mental representation of space. To better understand the processing performed by the cerebellum in the navigation function, we have reviewed: the anatomical pathways that convey self-motion information to the cerebellum; the computational algorithm(s) thought to be performed by the cerebellum from these multi-source inputs; the cerebellar outputs directed toward navigation circuits and the influence of self-motion information on space-modulated cells receiving cerebellar outputs. This review highlights that the cerebellum is adequately wired to combine the diversity of sensory signals to be monitored during self-motion and fuel the navigation circuits. The direct anatomical projections of the cerebellum toward the head-direction cell system and the parietal cortex make those structures possible relays of the cerebellum influence on the hippocampal spatial map. We describe computational models of the cerebellar function showing that the cerebellum can filter out the components of the sensory signals that are predictable, and provides a novelty output. We finally speculate that this novelty output is taken into account by the navigation structures, which implement an update over time of position and stabilize perception during navigation. PMID:25408638

  5. An inversion disrupting FAM134B is associated with sensory neuropathy in the Border Collie dog breed

    OpenAIRE

    Forman, Oliver P.; Hitti, Rebekkah J.; Pettitt, Louise; Jenkins, Christopher A.; O'Brien, Dennis P.; Shelton, G. Diane; De Risio, Luisa; Gutierrez Quintana, Rodrigo; Beltran, Elsa; Mellersh, Cathryn

    2016-01-01

    Sensory neuropathy in the Border Collie is a severe neurological disorder caused by the degeneration of sensory and, to a lesser extent, motor nerve cells with clinical signs starting between 2 and 7 months of age. Using a genome-wide association study approach with three cases and 170 breed matched controls, a suggestive locus for sensory neuropathy was identified that was followed up using a genome sequencing approach. An inversion disrupting the candidate gene FAM134B was identified. Genot...

  6. Sensory Innervation of the Nonspecialized Connective Tissues in the Low Back of the Rat

    Science.gov (United States)

    Corey, Sarah M.; Vizzard, Margaret A.; Badger, Gary J.; Langevin, Helene M.

    2011-01-01

    Chronic musculoskeletal pain, including low back pain, is a worldwide debilitating condition; however, the mechanisms that underlie its development remain poorly understood. Pathological neuroplastic changes in the sensory innervation of connective tissue may contribute to the development of nonspecific chronic low back pain. Progress in understanding such potentially important abnormalities is hampered by limited knowledge of connective tissue's normal sensory innervation. The goal of this study was to evaluate and quantify the sensory nerve fibers terminating within the nonspecialized connective tissues in the low back of the rat. With 3-dimensional reconstructions of thick (30–80 μm) tissue sections we have for the first time conclusively identified sensory nerve fiber terminations within the collagen matrix of connective tissue in the low back. Using dye labeling techniques with Fast Blue, presumptive dorsal root ganglia cells that innervate the low back were identified. Of the Fast Blue-labeled cells, 60–88% also expressed calcitonin gene-related peptide (CGRP) immunoreactivity. Based on the immunolabeling with CGRP and the approximate size of these nerve fibers (≤2 μm) we hypothesize that they are Aδ or C fibers and thus may play a role in the development of chronic pain. PMID:21411968

  7. Encoding of Naturalistic Optic Flow by a Population of Blowfly Motion-Sensitive Neurons

    NARCIS (Netherlands)

    Karmeier, K.; Hateren, J.H. van; Kern, R.; Egelhaaf, M.

    In sensory systems information is encoded by the activity of populations of neurons. To analyze the coding properties of neuronal populations sensory stimuli have usually been used that were much simpler than those encountered in real life. It has been possible only recently to stimulate visual

  8. What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast.

    Directory of Open Access Journals (Sweden)

    Artémis Llamosi

    2016-02-01

    Full Text Available Significant cell-to-cell heterogeneity is ubiquitously observed in isogenic cell populations. Consequently, parameters of models of intracellular processes, usually fitted to population-averaged data, should rather be fitted to individual cells to obtain a population of models of similar but non-identical individuals. Here, we propose a quantitative modeling framework that attributes specific parameter values to single cells for a standard model of gene expression. We combine high quality single-cell measurements of the response of yeast cells to repeated hyperosmotic shocks and state-of-the-art statistical inference approaches for mixed-effects models to infer multidimensional parameter distributions describing the population, and then derive specific parameters for individual cells. The analysis of single-cell parameters shows that single-cell identity (e.g. gene expression dynamics, cell size, growth rate, mother-daughter relationships is, at least partially, captured by the parameter values of gene expression models (e.g. rates of transcription, translation and degradation. Our approach shows how to use the rich information contained into longitudinal single-cell data to infer parameters that can faithfully represent single-cell identity.

  9. Psychophysical sensory examination in individuals with a history of methylmercury exposure

    International Nuclear Information System (INIS)

    Takaoka, Shigeru; Fujino, Tadashi; Sekikawa, Tomoko; Miyaoka, Tetsu

    2004-01-01

    Paresthesias are the first symptom that people report following toxic doses of methylmercury. The authors conducted a psychophysical study of tactile sensation to evaluate the somatosensory abilities of subjects living in a methylmercury-polluted area around Minamata City, Japan. The authors examined control subjects and methylmercury-exposed subjects with and without numbness. A history of methylmercury exposure was taken and a neurological examination performed. Aluminum-oxide abrasive papers were used as stimuli in a psychophysical sensory examination of fine-surface-texture discrimination. Difference thresholds from 3 μm were calculated by the two-alternative, forced-choice technique. Difference thresholds in control subjects were also calculated for comparison. The difference threshold was 6.3 μm in exposed subjects with sensory symptoms, 4.9 μm in exposed subjects without sensory symptoms, and 2.7 μm in control subjects. Acuity of fine-surface-texture discrimination was disturbed not only in subjects with clinical complaints of hand numbness, but also in subjects without hand numbness who lived in the district where methylmercury exposure occurred. Sensory testing using a psychophysical test of fine-surface-texture discrimination in this population suggests that the number of individuals affected by methylmercury exposure in the polluted area was greater than previously reported

  10. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells.

    Science.gov (United States)

    Bargaje, Rhishikesh; Trachana, Kalliopi; Shelton, Martin N; McGinnis, Christopher S; Zhou, Joseph X; Chadick, Cora; Cook, Savannah; Cavanaugh, Christopher; Huang, Sui; Hood, Leroy

    2017-02-28

    Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or "tipping point" at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the tipping point indicates transcription factors that drive the state transition toward each alternative cell fate and their relationships with specific phenotypic readouts. The latter helps us to facilitate small molecule screening for differentiation efficiency. To this end, we set up an analysis of cell population structure at the tipping point after systematic variation of the protocol to bias the differentiation toward mesodermal or endodermal cell lineage. We were able to predict the proportion of cardiomyocytes many days before cells manifest the differentiated phenotype. The analysis of cell populations undergoing a critical state transition thus affords a tool to forecast cell fate outcomes and can be used to optimize differentiation protocols to obtain desired cell populations.

  11. Diagnostic value of the near-nerve needle sensory nerve conduction in sensory inflammatory demyelinating polyneuropathy.

    Science.gov (United States)

    Odabasi, Zeki; Oh, Shin J

    2018-03-01

    In this study we report the diagnostic value of the near-nerve needle sensory nerve conduction study (NNN-SNCS) in sensory inflammatory demyelinating polyneuropathy (IDP) in which the routine nerve conduction study was normal or non-diagnostic. The NNN-SNCS was performed to identify demyelination in the plantar nerves in 14 patients and in the median or ulnar nerve in 2 patients with sensory IDP. In 16 patients with sensory IDP, routine NCSs were either normal or non-diagnostic for demyelination. Demyelination was identified by NNN-SNCS by dispersion and/or slow nerve conduction velocity (NCV) below the demyelination marker. Immunotherapy was initiated in 11 patients, 10 of whom improved or remained stable. NNN-SNCS played an essential role in identifying demyelinaton in 16 patients with sensory IDP, leading to proper treatment. Muscle Nerve 57: 414-418, 2018. © 2017 Wiley Periodicals, Inc.

  12. Publisher Correction: Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex.

    Science.gov (United States)

    Hrvatin, Sinisa; Hochbaum, Daniel R; Nagy, M Aurel; Cicconet, Marcelo; Robertson, Keiramarie; Cheadle, Lucas; Zilionis, Rapolas; Ratner, Alex; Borges-Monroy, Rebeca; Klein, Allon M; Sabatini, Bernardo L; Greenberg, Michael E

    2018-05-11

    In the version of this article initially published, the x-axis labels in Fig. 3c read Vglut, Gad1/2, Aldh1l1 and Pecam1; they should have read Vglut + , Gad1/2 + , Aldh1l1 + and Pecam1 + . In Fig. 4, the range values were missing from the color scales; they are, from left to right, 4-15, 0-15, 4-15 and 0-15 in Fig. 4a and 4-15, 4-15 and 4-8 in Fig. 4h. In the third paragraph of the main text, the phrase reading "Previous approaches have analyzed a limited number of inhibitory cell types, thus masking the full diversity of excitatory populations" should have read "Previous approaches have analyzed a limited number of inhibitory cell types and masked the full diversity of excitatory populations." In the second paragraph of Results section "Diversity of experience-regulated ERGs," the phrase reading "thus suggesting considerable divergence within the gene expression program responding to early stimuli" should have read "thus suggesting considerable divergence within the early stimulus-responsive gene expression program." In the fourth paragraph of Results section "Excitatory neuronal LRGs," the sentence reading "The anatomical organization of these cell types into sublayers, coupled with divergent transcriptional responses to a sensory stimulus, suggested previously unappreciated functional subdivisions located within the laminae of the mouse visual cortex and resembling the cytoarchitecture in higher mammals" should have read "The anatomical organization of these cell types into sublayers, coupled with divergent transcriptional responses to a sensory stimulus, suggests previously unappreciated functional subdivisions located within the laminae of the mouse visual cortex, resembling the cytoarchitecture in higher mammals." In the last sentence of the Results, "sensory-responsive genes" should have read "sensory-stimulus-responsive genes." The errors have been corrected in the HTML and PDF versions of the article.

  13. Involvement of sensory neurons in bone defect repair in rats

    International Nuclear Information System (INIS)

    Henmi, Akiko; Nakamura, Megumi; Echigo, Seishi; Sasano, Yasuyuki

    2011-01-01

    We investigated bone repair in sensory-denervated rats, compared with controls, to elucidate the involvement of sensory neurons. Nine-week-old male Wistar rats received subcutaneous injections of capsaicin to denervate sensory neurons. Rats treated with the same amount of vehicle served as controls. A standardized bone defect was created on the parietal bone. We measured the amount of repaired bone with quantitative radiographic analysis and the mRNA expressions of osteocalcin and cathepsin K with real-time polymerase chain reaction (PCR). Quantitative radiographic analysis showed that the standard deviations and coefficients of variation for the amount of repaired bone were much higher in the capsaicin-treated group than in the control group at any time point, which means that larger individual differences in the amount of repaired bone were found in capsaicin-treated rats than controls. Furthermore, radiographs showed radiolucency in pre-existing bone surrounding the standardized defect only in the capsaicin-treated group, and histological observation demonstrated some multinuclear cells corresponding to the radiolucent area. Real-time PCR indicated that there was no significant difference in the mRNA expression levels of osteocalcin and cathepsin K between the control group and the capsaicin-treated group. These results suggest that capsaicin-induced sensory denervation affects the bone defect repair. (author)

  14. Problems identified by dual sensory impaired older adults in long-term care when using a self-management program : A qualitative study

    NARCIS (Netherlands)

    Roets-Merken, Lieve; Zuidema, Sytse; Vernooij-Dassen, Myrra; Dees, Marianne; Hermsen, Pieter; Kempen, Gertrudis; Graff, Maud

    2017-01-01

    OBJECTIVE: To gain insights into the problems of dual sensory impaired older adults in long-term care. Insights into these problems are essential for developing adequate policies which address the needs of the increasing population of dual sensory impaired older adults in long-term care. METHODS: A

  15. Problems identified by dual sensory impaired older adults in long-term care when using a self-management program : A qualitative study

    NARCIS (Netherlands)

    Roets-Merken, Lieve; Zuidema, Sytse; Vernooij-Dassen, Myrra; Dees, Marianne; Hermsen, Pieter; Kempen, Gertrudis; Graff, Maud

    2017-01-01

    Objective To gain insights into the problems of dual sensory impaired older adults in long-term care. Insights into these problems are essential for developing adequate policies which address the needs of the increasing population of dual sensory impaired older adults in long-term care. Methods A

  16. A stem cell medium containing neural stimulating factor induces a pancreatic cancer stem-like cell-enriched population

    Science.gov (United States)

    WATANABE, YUSAKU; YOSHIMURA, KIYOSHI; YOSHIKAWA, KOICHI; TSUNEDOMI, RYOICHI; SHINDO, YOSHITARO; MATSUKUMA, SOU; MAEDA, NORIKO; KANEKIYO, SHINSUKE; SUZUKI, NOBUAKI; KURAMASU, ATSUO; SONODA, KOUHEI; TAMADA, KOJI; KOBAYASHI, SEI; SAYA, HIDEYUKI; HAZAMA, SHOICHI; OKA, MASAAKI

    2014-01-01

    Cancer stem cells (CSCs) have been studied for their self-renewal capacity and pluripotency, as well as their resistance to anticancer therapy and their ability to metastasize to distant organs. CSCs are difficult to study because their population is quite low in tumor specimens. To overcome this problem, we established a culture method to induce a pancreatic cancer stem-like cell (P-CSLC)-enriched population from human pancreatic cancer cell lines. Human pancreatic cancer cell lines established at our department were cultured in CSC-inducing media containing epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), leukemia inhibitory factor (LIF), neural cell survivor factor-1 (NSF-1), and N-acetylcysteine. Sphere cells were obtained and then transferred to a laminin-coated dish and cultured for approximately two months. The surface markers, gene expression, aldehyde dehydrogenase (ALDH) activity, cell cycle, and tumorigenicity of these induced cells were examined for their stem cell-like characteristics. The population of these induced cells expanded within a few months. The ratio of CD24high, CD44high, epithelial specific antigen (ESA) high, and CD44variant (CD44v) high cells in the induced cells was greatly enriched. The induced cells stayed in the G0/G1 phase and demonstrated mesenchymal and stemness properties. The induced cells had high tumorigenic potential. Thus, we established a culture method to induce a P-CSLCenriched population from human pancreatic cancer cell lines. The CSLC population was enriched approximately 100-fold with this method. Our culture method may contribute to the precise analysis of CSCs and thus support the establishment of CSC-targeting therapy. PMID:25118635

  17. Sensory Substitution and Multimodal Mental Imagery.

    Science.gov (United States)

    Nanay, Bence

    2017-09-01

    Many philosophers use findings about sensory substitution devices in the grand debate about how we should individuate the senses. The big question is this: Is "vision" assisted by (tactile) sensory substitution really vision? Or is it tactile perception? Or some sui generis novel form of perception? My claim is that sensory substitution assisted "vision" is neither vision nor tactile perception, because it is not perception at all. It is mental imagery: visual mental imagery triggered by tactile sensory stimulation. But it is a special form of mental imagery that is triggered by corresponding sensory stimulation in a different sense modality, which I call "multimodal mental imagery."

  18. Population dynamics in vasopressin cells.

    Science.gov (United States)

    Leng, Gareth; Brown, Colin; Sabatier, Nancy; Scott, Victoria

    2008-01-01

    Most neurons sense and code change, and when presented with a constant stimulus they adapt, so as to be able to detect a fresh change. However, for some things it is important to know their absolute level; to encode such information, neurons must sustain their response to an unchanging stimulus while remaining able to respond to a change in that stimulus. One system that encodes the absolute level of a stimulus is the vasopressin system, which generates a hormonal signal that is proportional to plasma osmolality. Vasopressin cells sense plasma osmolality and secrete appropriate levels of vasopressin from the neurohypophysis as needed to control water excretion; this requires sustained secretion under basal conditions and the ability to increase (or decrease) secretion should plasma osmolality change. Here we explore the mechanisms that enable vasopressin cells to fulfill this function, and consider how coordination between the cells might distribute the secretory load across the population of vasopressin cells. 2008 S. Karger AG, Basel.

  19. The effect of ultraviolet light on arrested human diploid cell populations

    International Nuclear Information System (INIS)

    Kantor, G.J.; Warner, C.; Hull, D.R.

    1977-01-01

    The results of the experiments to determine an effect of UV (254 nm) on human diploid fibroblasts (HDF) arrested with respect to division by using 0.5% fetal calf serum in the culture medium are reported. A fraction of cells from irradiated arrested populations, maintained in the arrested state post-irradiation, was lost from the populations. The extent of cell loss was fluence-dependent and cell strain specific. A Xeroderma pigmentosum cell strain was more sensitive to UV than were normal HDF. No difference in sensitivity were observed when arrested populations established from normal HDF populations of various in vitro ages were used. The length of the pre-irradiation arrested period affected the sensitivity of normal HDF, which appeared more resistant at longer arrested periods, but not the sensitivity of arrested Xeroderma populations. These results suggest that DNA repair processes play a role in maintaining irradiated cells in the arrested state. The suggestion is made that the lethal event caused by UV is an effect on transcription leading to an inhibition of required protein synthesis. (author)

  20. ADAM10 and gamma-secretase regulate sensory regeneration in the avian vestibular organs

    OpenAIRE

    Warchol, M. E.; Stone, J.; Barton, M.; Ku, J.; Veile, R.; Daudet, N.; Lovett, M.

    2017-01-01

    The loss of sensory hair cells from the inner ear is a leading cause of hearing and balance disorders. The mammalian ear has a very limited ability to replace lost hair cells, but the inner ears of non-mammalian vertebrates can spontaneously regenerate hair cells after injury. Prior studies have shown that replacement hair cells are derived from epithelial supporting cells and that the differentiation of new hair cells is regulated by the Notch signaling pathway. The present study examined mo...

  1. Imbalance of placental regulatory T cell and Th17 cell population dynamics in the FIV-infected pregnant cat

    Directory of Open Access Journals (Sweden)

    Boudreaux Crystal E

    2012-05-01

    Full Text Available Abstract Background An appropriate balance in placental regulatory T cells (Tregs, an immunosuppressive cell population, and Th17 cells, a pro-inflammatory cell population, is essential in allowing tolerance of the semi-allogeneic fetus. TGF-β and IL-6 are cytokines that promote differentiation of Tregs and Th17 cells from a common progenitor; aberrant expression of the cytokines may perturb the balance in the two cell populations. We previously reported a pro-inflammatory placental environment with decreased levels of FoxP3, a Treg marker, and increased levels of IL-6 in the placentas of FIV-infected cats at early pregnancy. Thus, we hypothesized that FIV infection in the pregnant cat causes altered placental Treg and Th17 cell populations, possibly resulting in placental inflammation. Methods We examined the effect of FIV infection on Treg and Th17 populations in placentas at early pregnancy using quantitative confocal microscopy to measure FoxP3 or RORγ, a Th17 marker, and qPCR to quantify expression of the key cytokines TGF-β and IL-6. Results FoxP3 and RORγ were positively correlated in FIV-infected placentas at early pregnancy, but not placentas from normal cats, indicating virus-induced alteration in the balance of these cell populations. In control cats the expression of IL-6 and RORγ was positively correlated as predicted, but this relationship was disrupted in infected animals. TGF-β was reduced in infected queens, an occurrence that could dysregulate both Treg and Th17 cell populations. Co-expression analyses revealed a highly significant positive correlation between IL-6 and TGF-β expression in control animals that did not occur in infected animals. Conclusion Collectively, these data point toward potential disruption in the balance of Treg and Th17 cell populations that may contribute to FIV-induced inflammation in the feline placenta.

  2. Esophageal motor and sensory disorders: presentation, evaluation, and treatment.

    Science.gov (United States)

    Massey, Benson T

    2007-09-01

    Esophageal motor and sensory disorders are relatively rare conditions in the general population and afflicted patients are often initially misdiagnosed as having gastroesophageal reflux disease. Tests for these disorders have imperfect gold standards and are adjuncts to sound diagnostic reasoning. Treatments are palliative and have not been rigorously evaluated for some disorders. Symptoms and complications from disease progression and relapse are common, so that patients need continued follow-up.

  3. Sensory analysis of pet foods.

    Science.gov (United States)

    Koppel, Kadri

    2014-08-01

    Pet food palatability depends first and foremost on the pet and is related to the pet food sensory properties such as aroma, texture and flavor. Sensory analysis of pet foods may be conducted by humans via descriptive or hedonic analysis, pets via acceptance or preference tests, and through a number of instrumental analysis methods. Sensory analysis of pet foods provides additional information on reasons behind palatable and unpalatable foods as pets lack linguistic capabilities. Furthermore, sensory analysis may be combined with other types of information such as personality and environment factors to increase understanding of acceptable pet foods. Most pet food flavor research is proprietary and, thus, there are a limited number of publications available. Funding opportunities for pet food studies would increase research and publications and this would help raise public awareness of pet food related issues. This mini-review addresses current pet food sensory analysis literature and discusses future challenges and possibilities. © 2014 Society of Chemical Industry.

  4. Late post-irradiation phenomena in mammalain cell populations. Pt. 2. Intraclonal recovery in sublines isolated from X-irradiated L5178Y-S cell populations

    International Nuclear Information System (INIS)

    Beer, J.Z.

    1975-01-01

    Clonal analysis of L5178Y-S cell populations irradiated with 300 rads of X-rays indicates occurence of cell sublines with considerably prolonged mean doubling times up to 22 h as compared to 10-11 h for control. Subsequent observations of growth of the handicapped sublines derived from single cells showed capability of all more than 100 studied sublines to recover normal proliferative activity. This process of intraclonal recovery required in many cases longer periods of time, corresponding to many tens, sometimes more than 200, generations. Late intraclonal recovery was further analysed by subcloning. It was found that although cytochemically assayed viability of the handicapped sublines was normal, cloning efficiency strongly depended on the stage of the recovery process. The recovery processes occuring in clones isolated from irradiated cell populations were compared with analogous processes occuring in slowly growing sublines isolated from non-irradiated cell cultures. Marked differences in kinetics of these processes show that either they are different in sublines derived from irradiated and non-irradiated cell populations or that the mechanisms of the late intraclonal recovery are affected by radiation. The results presented allow to conclude that gradual post-irradiation recovery of growth depends primarily on formation, in the developing populations, of cells with higher proliferative activities. Possible nature of the recovery processes is discussed in the light of available information on mammalian somatic cell variants with altered drug or temperature sensitivity, or with nutritional requirements. A sequence is proposed of changes leading from radiation-induced disturbance of the normably existing equilibrium between three basic cell subpopulations to ultimate restoration of this equilibrium. (author)

  5. Epac activation sensitizes rat sensory neurons via activation of Ras

    Science.gov (United States)

    Shariati, Behzad; Thompson, Eric L.; Nicol, Grant D.; Vasko, Michael R.

    2015-01-01

    Guanine nucleotide exchange factors directly activated by cAMP (Epacs) have emerged as important signaling molecules mediating persistent hypersensitivity in animal models of inflammation, by augmenting the excitability of sensory neurons. Although Epacs activate numerous downstream signaling cascades, the intracellular signaling which mediates Epac-induced sensitization of capsaicin-sensitive sensory neurons remains unknown. Here, we demonstrate that selective activation of Epacs with 8-CPT-2′-O-Me-cAMP-AM (8CPT-AM) increases the number of action potentials (APs) generated by a ramp of depolarizing current and augments the evoked release of calcitonin gene-related peptide (CGRP) from isolated rat sensory neurons. Internal perfusion of capsaicin-sensitive sensory neurons with GDP-βS, substituted for GTP, blocks the ability of 8CPT-AM to increase AP firing, demonstrating that Epac-induced sensitization is G-protein dependent. Treatment with 8CPT-AM activates the small G-proteins Rap1 and Ras in cultures of sensory neurons. Inhibition of Rap1, by internal perfusion of a Rap1-neutralizing antibody or through a reduction in the expression of the protein using shRNA does not alter the Epac-induced enhancement of AP generation or CGRP release, despite the fact that in most other cell types, Epacs act as Rap-GEFs. In contrast, inhibition of Ras through expression of a dominant negative Ras (DN-Ras) or through internal perfusion of a Ras-neutralizing antibody blocks the increase in AP firing and attenuates the increase in the evoked release of CGRP induced by Epac activation. Thus, in this subpopulation of nociceptive sensory neurons, it is the novel interplay between Epacs and Ras, rather than the canonical Epacs and Rap1 pathway, that is critical for mediating Epac-induced sensitization. PMID:26596174

  6. Epac activation sensitizes rat sensory neurons through activation of Ras.

    Science.gov (United States)

    Shariati, Behzad; Thompson, Eric L; Nicol, Grant D; Vasko, Michael R

    2016-01-01

    Guanine nucleotide exchange factors directly activated by cAMP (Epacs) have emerged as important signaling molecules mediating persistent hypersensitivity in animal models of inflammation, by augmenting the excitability of sensory neurons. Although Epacs activate numerous downstream signaling cascades, the intracellular signaling which mediates Epac-induced sensitization of capsaicin-sensitive sensory neurons remains unknown. Here, we demonstrate that selective activation of Epacs with 8-CPT-2'-O-Me-cAMP-AM (8CPT-AM) increases the number of action potentials (APs) generated by a ramp of depolarizing current and augments the evoked release of calcitonin gene-related peptide (CGRP) from isolated rat sensory neurons. Internal perfusion of capsaicin-sensitive sensory neurons with GDP-βS, substituted for GTP, blocks the ability of 8CPT-AM to increase AP firing, demonstrating that Epac-induced sensitization is G-protein dependent. Treatment with 8CPT-AM activates the small G-proteins Rap1 and Ras in cultures of sensory neurons. Inhibition of Rap1, by internal perfusion of a Rap1-neutralizing antibody or through a reduction in the expression of the protein using shRNA does not alter the Epac-induced enhancement of AP generation or CGRP release, despite the fact that in most other cell types, Epacs act as Rap-GEFs. In contrast, inhibition of Ras through expression of a dominant negative Ras (DN-Ras) or through internal perfusion of a Ras-neutralizing antibody blocks the increase in AP firing and attenuates the increase in the evoked release of CGRP induced by Epac activation. Thus, in this subpopulation of nociceptive sensory neurons, it is the novel interplay between Epacs and Ras, rather than the canonical Epacs and Rap1 pathway, that is critical for mediating Epac-induced sensitization. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. 38 CFR 17.149 - Sensori-neural aids.

    Science.gov (United States)

    2010-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2010-07-01 2010-07-01 false Sensori-neural aids. 17... Prosthetic, Sensory, and Rehabilitative Aids § 17.149 Sensori-neural aids. (a) Notwithstanding any other provision of this part, VA will furnish needed sensori-neural aids (i.e., eyeglasses, contact lenses...

  8. Sensory feedback in upper limb prosthetics.

    Science.gov (United States)

    Antfolk, Christian; D'Alonzo, Marco; Rosén, Birgitta; Lundborg, Göran; Sebelius, Fredrik; Cipriani, Christian

    2013-01-01

    One of the challenges facing prosthetic designers and engineers is to restore the missing sensory function inherit to hand amputation. Several different techniques can be employed to provide amputees with sensory feedback: sensory substitution methods where the recorded stimulus is not only transferred to the amputee, but also translated to a different modality (modality-matched feedback), which transfers the stimulus without translation and direct neural stimulation, which interacts directly with peripheral afferent nerves. This paper presents an overview of the principal works and devices employed to provide upper limb amputees with sensory feedback. The focus is on sensory substitution and modality matched feedback; the principal features, advantages and disadvantages of the different methods are presented.

  9. Experimental depletion of different renal interstitial cell populations

    International Nuclear Information System (INIS)

    Bohman, S.O.; Sundelin, B.; Forsum, U.; Tribukait, B.

    1988-01-01

    To define different populations of renal interstitial cells and investigate some aspects of their function, we studied the kidneys of normal rats and rats with hereditary diabetes insipidus (DI, Brattleboro) after experimental manipulations expected to alter the number of interstitial cells. DI rats showed an almost complete loss of interstitial cells in their renal papillae after treatment with a high dose of vasopressin. In spite of the lack of interstitial cells, the animals concentrated their urine to the same extent as vasopressin-treated normal rats, indicating that the renomedullary interstitial cells do not have an important function in concentrating the urine. The interstitial cells returned nearly to normal within 1 week off vasopressin treatment, suggesting a rapid turnover rate of these cells. To further distinguish different populations of interstitial cells, we studied the distribution of class II MHC antigen expression in the kidneys of normal and bone-marrow depleted Wistar rats. Normal rats had abundant class II antigen-positive interstitial cells in the renal cortex and outer medulla, but not in the inner medulla (papilla). Six days after 1000 rad whole body irradiation, the stainable cells were almost completely lost, but electron microscopic morphometry showed a virtually unchanged volume density of interstitial cells in the cortex and outer medulla, as well as the inner medulla. Thus, irradiation abolished the expression of the class II antigen but caused no significant depletion of interstitial cells

  10. Nonequilibrium population dynamics of phenotype conversion of cancer cells.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

  11. The significance of memory in sensory cortex

    OpenAIRE

    Muckli, Lars; Petro, Lucy S.

    2017-01-01

    Early sensory cortex is typically investigated in response to sensory stimulation, masking the contribution of internal signals. Recently, van Kerkoerle and colleagues reported that attention and memory signals segregate from sensory signals within specific layers of primary visual cortex, providing insight into the role of internal signals in sensory processing.

  12. Modeling population dynamics of mitochondria in mammalian cells

    Science.gov (United States)

    Kornick, Kellianne; Das, Moumita

    Mitochondria are organelles located inside eukaryotic cells and are essential for several key cellular processes such as energy (ATP) production, cell signaling, differentiation, and apoptosis. All organisms are believed to have low levels of variation in mitochondrial DNA (mtDNA), and alterations in mtDNA are connected to a range of human health conditions, including epilepsy, heart failure, Parkinsons disease, diabetes, and multiple sclerosis. Therefore, understanding how changes in mtDNA accumulate over time and are correlated to changes in mitochondrial function and cell properties can have a profound impact on our understanding of cell physiology and the origins of some diseases. Motivated by this, we develop and study a mathematical model to determine which cellular parameters have the largest impact on mtDNA population dynamics. The model consists of coupled ODEs to describe subpopulations of healthy and dysfunctional mitochondria subject to mitochondrial fission, fusion, autophagy, and mutation. We study the time evolution and stability of each sub-population under specific selection biases and pressures by tuning specific terms in our model. Our results may provide insights into how sub-populations of mitochondria survive and evolve under different selection pressures. This work was supported by a Grant from the Moore Foundation.

  13. Modularity in Sensory Auditory Memory

    OpenAIRE

    Clement, Sylvain; Moroni, Christine; Samson, Séverine

    2004-01-01

    The goal of this paper was to review various experimental and neuropsychological studies that support the modular conception of auditory sensory memory or auditory short-term memory. Based on initial findings demonstrating that verbal sensory memory system can be dissociated from a general auditory memory store at the functional and anatomical levels. we reported a series of studies that provided evidence in favor of multiple auditory sensory stores specialized in retaining eit...

  14. A probabilistic model for cell population phenotyping using HCS data.

    Directory of Open Access Journals (Sweden)

    Edouard Pauwels

    Full Text Available High Content Screening (HCS platforms allow screening living cells under a wide range of experimental conditions and give access to a whole panel of cellular responses to a specific treatment. The outcome is a series of cell population images. Within these images, the heterogeneity of cellular response to the same treatment leads to a whole range of observed values for the recorded cellular features. Consequently, it is difficult to compare and interpret experiments. Moreover, the definition of phenotypic classes at a cell population level remains an open question, although this would ease experiments analyses. In the present work, we tackle these two questions. The input of the method is a series of cell population images for which segmentation and cellular phenotype classification has already been performed. We propose a probabilistic model to represent and later compare cell populations. The model is able to fully exploit the HCS-specific information: "dependence structure of population descriptors" and "within-population variability". The experiments we carried out illustrate how our model accounts for this specific information, as well as the fact that the model benefits from considering them. We underline that these features allow richer HCS data analysis than simpler methods based on single cellular feature values averaged over each well. We validate an HCS data analysis method based on control experiments. It accounts for HCS specificities that were not taken into account by previous methods but have a sound biological meaning. Biological validation of previously unknown outputs of the method constitutes a future line of work.

  15. Highly localized interactions between sensory neurons and sprouting sympathetic fibers observed in a transgenic tyrosine hydroxylase reporter mouse

    Directory of Open Access Journals (Sweden)

    Zhang Jun-Ming

    2011-07-01

    Full Text Available Abstract Background Sprouting of sympathetic fibers into sensory ganglia occurs in many preclinical pain models, providing a possible anatomical substrate for sympathetically enhanced pain. However, the functional consequences of this sprouting have been controversial. We used a transgenic mouse in which sympathetic fibers expressed green fluorescent protein, observable in live tissue. Medium and large diameter lumbar sensory neurons with and without nearby sympathetic fibers were recorded in whole ganglion preparations using microelectrodes. Results After spinal nerve ligation, sympathetic sprouting was extensive by 3 days. Abnormal spontaneous activity increased to 15% and rheobase was reduced. Spontaneously active cells had Aαβ conduction velocities but were clustered near the medium/large cell boundary. Neurons with sympathetic basket formations had a dramatically higher incidence of spontaneous activity (71% and had lower rheobase than cells with no sympathetic fibers nearby. Cells with lower density nearby fibers had intermediate phenotypes. Immunohistochemistry of sectioned ganglia showed that cells surrounded by sympathetic fibers were enriched in nociceptive markers TrkA, substance P, or CGRP. Spontaneous activity began before sympathetic sprouting was observed, but blocking sympathetic sprouting on day 3 by cutting the dorsal ramus in addition to the ventral ramus of the spinal nerve greatly reduced abnormal spontaneous activity. Conclusions The data suggest that early sympathetic sprouting into the sensory ganglia may have highly localized, excitatory effects. Quantitatively, neurons with sympathetic basket formations may account for more than half of the observed spontaneous activity, despite being relatively rare. Spontaneous activity in sensory neurons and sympathetic sprouting may be mutually re-enforcing.

  16. Crocodylians evolved scattered multi-sensory micro-organs

    Science.gov (United States)

    2013-01-01

    Background During their evolution towards a complete life cycle on land, stem reptiles developed both an impermeable multi-layered keratinized epidermis and skin appendages (scales) providing mechanical, thermal, and chemical protection. Previous studies have demonstrated that, despite the presence of a particularly armored skin, crocodylians have exquisite mechanosensory abilities thanks to the presence of small integumentary sensory organs (ISOs) distributed on postcranial and/or cranial scales. Results Here, we analyze and compare the structure, innervation, embryonic morphogenesis and sensory functions of postcranial, cranial, and lingual sensory organs of the Nile crocodile (Crocodylus niloticus) and the spectacled caiman (Caiman crocodilus). Our molecular analyses indicate that sensory neurons of crocodylian ISOs express a large repertoire of transduction channels involved in mechano-, thermo-, and chemosensory functions, and our electrophysiological analyses confirm that each ISO exhibits a combined sensitivity to mechanical, thermal and pH stimuli (but not hyper-osmotic salinity), making them remarkable multi-sensorial micro-organs with no equivalent in the sensory systems of other vertebrate lineages. We also show that ISOs all exhibit similar morphologies and modes of development, despite forming at different stages of scale morphogenesis across the body. Conclusions The ancestral vertebrate diffused sensory system of the skin was transformed in the crocodylian lineages into an array of discrete multi-sensory micro-organs innervated by multiple pools of sensory neurons. This discretization of skin sensory expression sites is unique among vertebrates and allowed crocodylians to develop a highly-armored, but very sensitive, skin. PMID:23819918

  17. Hebbian plasticity realigns grid cell activity with external sensory cues in continuous attractor models

    Directory of Open Access Journals (Sweden)

    Marcello eMulas

    2016-02-01

    Full Text Available After the discovery of grid cells, which are an essential component to understand how the mammalian brain encodes spatial information, three main classes of computational models were proposed in order to explain their working principles. Amongst them, the one based on continuous attractor networks (CAN, is promising in terms of biological plausibility and suitable for robotic applications. However, in its current formulation, it is unable to reproduce important electrophysiological findings and cannot be used to perform path integration for long periods of time. In fact, in absence of an appropriate resetting mechanism, the accumulation of errors overtime due to the noise intrinsic in velocity estimation and neural computation prevents CAN models to reproduce stable spatial grid patterns. In this paper, we propose an extension of the CAN model using Hebbian plasticity to anchor grid cell activity to environmental landmarks. To validate our approach we used as input to the neural simulations both artificial data and real data recorded from a robotic setup. The additional neural mechanism can not only anchor grid patterns to external sensory cues but also recall grid patterns generated in previously explored environments. These results might be instrumental for next generation bio-inspired robotic navigation algorithms that take advantage of neural computation in order to cope with complex and dynamic environments.

  18. Quantitative sensory testing of temperature, pain, and touch in adults with Down syndrome.

    Science.gov (United States)

    de Knegt, Nanda; Defrin, Ruth; Schuengel, Carlo; Lobbezoo, Frank; Evenhuis, Heleen; Scherder, Erik

    2015-12-01

    The spinothalamic pathway mediates sensations of temperature, pain, and touch. These functions seem impaired in children with Down syndrome (DS), but have not been extensively examined in adults. The objective of the present study was to compare the spinothalamic-mediated sensory functions between adults with DS and adults from the general population and to examine in the DS group the relationship between the sensory functions and level of intellectual functioning. Quantitative sensory testing (QST) was performed in 188 adults with DS (mean age 37.5 years) and 142 age-matched control participants (median age 40.5 years). Temperature, pain, and touch were evaluated with tests for cold-warm discrimination, sharp-dull discrimination (pinprick), and tactile threshold, respectively. Level of intellectual functioning was estimated with the Social Functioning Scale for Intellectual Disability (intellectual disability level) and the Wechsler Preschool and Primary Scale of Intelligence--Revised (intelligence level). Overall, the difference in spinothalamic-mediated sensory functions between the DS and control groups was not statistically significant. However, DS participants with a lower intelligence level had a statistically significant lower performance on the sharp-dull discrimination test than DS participants with higher intelligence level (adjusted p=.006) and control participants (adjusted p=.017). It was concluded that intellectual functioning level is an important factor to take into account for the assessment of spinothalamic-mediated sensory functioning in adults with DS: a lower level could coincide with impaired sensory functioning, but could also hamper QST assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The Significance of Memory in Sensory Cortex.

    Science.gov (United States)

    Muckli, Lars; Petro, Lucy S

    2017-05-01

    Early sensory cortex is typically investigated in response to sensory stimulation, masking the contribution of internal signals. Recently, van Kerkoerle and colleagues reported that attention and memory signals segregate from sensory signals within specific layers of primary visual cortex, providing insight into the role of internal signals in sensory processing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Active inference, sensory attenuation and illusions.

    Science.gov (United States)

    Brown, Harriet; Adams, Rick A; Parees, Isabel; Edwards, Mark; Friston, Karl

    2013-11-01

    Active inference provides a simple and neurobiologically plausible account of how action and perception are coupled in producing (Bayes) optimal behaviour. This can be seen most easily as minimising prediction error: we can either change our predictions to explain sensory input through perception. Alternatively, we can actively change sensory input to fulfil our predictions. In active inference, this action is mediated by classical reflex arcs that minimise proprioceptive prediction error created by descending proprioceptive predictions. However, this creates a conflict between action and perception; in that, self-generated movements require predictions to override the sensory evidence that one is not actually moving. However, ignoring sensory evidence means that externally generated sensations will not be perceived. Conversely, attending to (proprioceptive and somatosensory) sensations enables the detection of externally generated events but precludes generation of actions. This conflict can be resolved by attenuating the precision of sensory evidence during movement or, equivalently, attending away from the consequences of self-made acts. We propose that this Bayes optimal withdrawal of precise sensory evidence during movement is the cause of psychophysical sensory attenuation. Furthermore, it explains the force-matching illusion and reproduces empirical results almost exactly. Finally, if attenuation is removed, the force-matching illusion disappears and false (delusional) inferences about agency emerge. This is important, given the negative correlation between sensory attenuation and delusional beliefs in normal subjects--and the reduction in the magnitude of the illusion in schizophrenia. Active inference therefore links the neuromodulatory optimisation of precision to sensory attenuation and illusory phenomena during the attribution of agency in normal subjects. It also provides a functional account of deficits in syndromes characterised by false inference

  1. The effect of raw milk microbial flora on the sensory characteristics of Salers-type cheeses.

    Science.gov (United States)

    Callon, C; Berdagué, J L; Dufour, E; Montel, M C

    2005-11-01

    The sensory characteristics of Salers Protected Denomination of Origin raw-milk cheeses are linked to the biochemical composition of the raw material (milk) and to the resultant microbial community. To evaluate the influence of the microbial community on sensory characteristics, Salers-type cheeses were manufactured with the same pasteurized milk, reinoculated with 3 different microbial communities from 3 different filtrates from microfiltered milks. Each cheese was subjected to microbial counts (on selective media), biochemical tests, and volatile and sensory component analyses at different times of ripening. Adding different microbial communities to specimens of the same (biochemically identical) pasteurized milk lead to different sensory characteristics of the cheeses. Cheeses with fresh cream, hazelnut, and caramel attributes were opposed to those with fermented cream, chemical, and garlic flavors. The aromatic compounds identified (esters, acids, alcohols, and aldehydes) in these cheeses were quite similar. Nevertheless, one milk was distinguished by a higher content of acetoin, and lower 2-butanone and 3-methylpentanone concentrations. Over the production period of 1 mo, the different cheeses were characterized by the same balance of the microbial population assessed by microbial counts on different media. This was associated with the stability of some sensory attributes describing these cheeses. Nevertheless, there was no linear correlation between microbial flora data and sensory characteristics as measured in this study.

  2. Characterizing human vestibular sensory epithelia for experimental studies: new hair bundles on old tissue and implications for therapeutic interventions in ageing

    OpenAIRE

    Taylor, Ruth R.; Jagger, Daniel J.; Saeed, Shakeel R.; Axon, Patrick; Donnelly, Neil; Tysome, James; Moffatt, David; Irving, Richard; Monksfield, Peter; Coulson, Chris; Freeman, Simon R.; Lloyd, Simon K.; Forge, Andrew

    2015-01-01

    Balance disequilibrium is a significant contributor to falls in the elderly. The most common cause of balance dysfunction is loss of sensory cells from the vestibular sensory epithelia of the inner ear. However, inaccessibility of inner ear tissue in humans severely restricts possibilities for experimental manipulation to develop therapies to ameliorate this loss. We provide a structural and functional analysis of human vestibular sensory epithelia harvested at trans-labyrinthine surgery. We ...

  3. A test of the critical assumption of the sensory bias model for the evolution of female mating preference using neural networks.

    Science.gov (United States)

    Fuller, Rebecca C

    2009-07-01

    The sensory bias model for the evolution of mating preferences states that mating preferences evolve as correlated responses to selection on nonmating behaviors sharing a common sensory system. The critical assumption is that pleiotropy creates genetic correlations that affect the response to selection. I simulated selection on populations of neural networks to test this. First, I selected for various combinations of foraging and mating preferences. Sensory bias predicts that populations with preferences for like-colored objects (red food and red mates) should evolve more readily than preferences for differently colored objects (red food and blue mates). Here, I found no evidence for sensory bias. The responses to selection on foraging and mating preferences were independent of one another. Second, I selected on foraging preferences alone and asked whether there were correlated responses for increased mating preferences for like-colored mates. Here, I found modest evidence for sensory bias. Selection for a particular foraging preference resulted in increased mating preference for similarly colored mates. However, the correlated responses were small and inconsistent. Selection on foraging preferences alone may affect initial levels of mating preferences, but these correlations did not constrain the joint evolution of foraging and mating preferences in these simulations.

  4. Use of Multicolor Flow Cytometry for Isolation of Specific Cell Populations Deriving from Differentiated Human Embryonic Stem Cells

    NARCIS (Netherlands)

    Mengarelli, Isabella; Fryga, Andrew; Barberi, Tiziano

    2016-01-01

    Flow Cytometry-Sorting (FCM-Sorting) is a technique commonly used to identify and isolate specific types of cells from a heterogeneous population of live cells. Here we describe a multicolor flow cytometry technique that uses five distinct cell surface antigens to isolate four live populations with

  5. The design, calibration, and use of a water microjet for stimulating hair cell sensory hair bundles.

    Science.gov (United States)

    Saunders, J C; Szymko, Y M

    1989-11-01

    The design, calibration, and use of a noninvasive, noncontact device for stimulating hair cell hair bundles in vitro are described. This device employed a piezoelectric crystal, driven at high frequencies, to generate sinusoidal pressure in a contained fluid volume. The pressure was propagated to the tip of a glass micropipette and the oscillating water jet stimulus produced at the tip was used to stimulate sensory hair bundles. The movements of glass microbeads, caught in the oscillating pressure field of the water jet, provided a means of calibrating this stimulus. The linearity of the jet, its waveform and frequency response, the influence of pipette shape and tip diameter, as well as models to explain the operation of the water jet, are described. The use of this stimulus for measuring hair bundle micromechanics at high frequencies is then demonstrated.

  6. Rapid and Complete Reversal of Sensory Ataxia by Gene Therapy in a Novel Model of Friedreich Ataxia.

    Science.gov (United States)

    Piguet, Françoise; de Montigny, Charline; Vaucamps, Nadège; Reutenauer, Laurence; Eisenmann, Aurélie; Puccio, Hélène

    2018-05-28

    Friedreich ataxia (FA) is a rare mitochondrial disease characterized by sensory and spinocerebellar ataxia, hypertrophic cardiomyopathy, and diabetes, for which there is no treatment. FA is caused by reduced levels of frataxin (FXN), an essential mitochondrial protein involved in the biosynthesis of iron-sulfur (Fe-S) clusters. Despite significant progress in recent years, to date, there are no good models to explore and test therapeutic approaches to stop or reverse the ganglionopathy and the sensory neuropathy associated to frataxin deficiency. Here, we report a new conditional mouse model with complete frataxin deletion in parvalbumin-positive cells that recapitulate the sensory ataxia and neuropathy associated to FA, albeit with a more rapid and severe course. Interestingly, although fully dysfunctional, proprioceptive neurons can survive for many weeks without frataxin. Furthermore, we demonstrate that post-symptomatic delivery of frataxin-expressing AAV allows for rapid and complete rescue of the sensory neuropathy associated with frataxin deficiency, thus establishing the pre-clinical proof of concept for the potential of gene therapy in treating FA neuropathy. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  7. IN VITRO EXAMINATION OF ONTOGENESIS OF DEVELOPING NEURONAL CELLS IN VAGAL NUCLEI IN MEDULLA OBLONGATA IN NEWBORNS

    Science.gov (United States)

    Islami, Hilmi; Shabani, Ragip; Bexheti, Sadi; Behluli, Ibrahim; Šukalo, Aziz; Raka, Denis; Koliqi, Rozafa; Haliti, Naim; Dauti, Hilmi; Krasniqi, Shaip; Disha, Mentor

    2008-01-01

    The development of neuron cells in vagal nerve nuclei in medulla oblongata was studied in vitro in live newborns and stillborns from different cases. Morphological changes were studied in respiratory nuclei of dorsal motor centre (DMNV) and nucleus tractus solitarius (NTS) in medulla oblongata. The material from medulla oblongata was fixated in 10μ buffered formalin solution. Fixated material was cut in series of 10μ thickness, with starting point from obex in ± 4 mm thickness. Special histochemical and histoenzymatic methods for central nervous system were used: cresyl echt violet coloring, tolyidin blue, Sevier-Munger modification and Grimelius coloring. In immature newborns (abortions and immature) in dorsal motor nucleus of the vagus (DMNV) population stages S1, S2, S3 are dominant. In neuron population in vagal sensory nuclei (NTS) stages S1, S2 are dominant. In more advanced stages of development of newborns (premature), in DMNV stages S3 and S4 are seen and in NTS stages S2 and S3 are dominant. In mature phase of newborns (maturity) in vagal nucleus DMNV stages S5 and S6 are dominant, while in sensory nucleus NTS stages S4 and S5 are dominant. These data suggest that neuron population in dorsal motor nucleus of the vagus (DMNV) are more advanced in neuronal maturity in comparison with sensory neuron population of vagal sensory nucleus NTS. This occurrence shows that phylogenetic development of motor complex is more advanced than the sensory one, which is expected to take new information’s from the extra uterine life after birth (extra uterine vagal phenotype) PMID:19125713

  8. Tumourigenic canine osteosarcoma cell lines associated with frizzled-6 up-regulation and enhanced side population cell frequency.

    Science.gov (United States)

    de Sá Rodrigues, L C; Holmes, K E; Thompson, V; Newton, M A; Stein, T J

    2017-03-01

    An increased serum alkaline phosphatase concentration is known to be associated with a negative prognosis in canine and human osteosarcoma. To expand upon previous studies regarding the biological relevance of increased serum alkaline phosphatase as a negative prognostic factor, xenogeneic heterotopic transplants were performed using six canine primary osteosarcoma cell lines generated from patients with differing serum alkaline phosphatase concentrations (three normal and three increased). Three of the six cell lines were capable of generating tumours and tumour formation was independent of the serum alkaline phosphatase status of the cell line. Microarray analysis identified 379 genes as being differentially expressed between the tumourigenic and non-tumourigenic cell lines. Frizzled-6 was upregulated to the greatest extent (7.78-fold) in tumourigenic cell lines compared with non-tumourigenic cell lines. Frizzled-6, a co-receptor for Wnt ligands has been associated with enhanced tumour-initiating cells and poor prognosis for other tumours. The increased expression of frizzled-6 was confirmed by quantitative reverse transcription polymerase chain reaction (QPCR) and Western blot analysis. Additionally, the tumourigenic cell lines also had an increase in the percentage of side population cells compared with non-tumourigenic cell lines (5.89% versus 1.58%, respectively). There were no differences in tumourigenicity, frizzled-6 or percentage of side population cells noted between osteosarcoma cell lines generated from patients of differing serum alkaline phosphatase concentration. However, to our knowledge this is the first study to identified frizzled-6 as a possible marker of osteosarcoma cell populations with enhanced tumourigenicity and side population cells. Future work will focus on defining the role of frizzled-6 in osteosarcoma tumourigenesis and tumour-initiating cells. © 2015 John Wiley & Sons Ltd.

  9. Targeting population heterogeneity for optimal cell factories

    DEFF Research Database (Denmark)

    Heins, Anna-Lena; Carlqvist, Magnus; Helmark, S.

    the heterogeneity level of the population. To further investigate these phenomena and gain a deeper understanding of population heterogeneity, Saccharomyces cerevisiae growth reporter strains based on the expression of green fluorescent protein (GFP) were constructed which enabled us to perform single cell level...... analysis, and thereby created the possibility to map population heterogeneity. A factorial design with pH, glucose concentration and oxygen level was performed in batch cultivations using the growth reporter strains to evaluate the effect of those environmental factors on heterogeneity level and amount......To achieve an efficient production process, it is essential to optimize both the strain and the cultivation conditions. Traditionally, a microbial population has been considered homogeneous in optimization studies of fermentation processes. However, research has shown that a typical microbial...

  10. Cracking the Neural Code for Sensory Perception by Combining Statistics, Intervention, and Behavior.

    Science.gov (United States)

    Panzeri, Stefano; Harvey, Christopher D; Piasini, Eugenio; Latham, Peter E; Fellin, Tommaso

    2017-02-08

    The two basic processes underlying perceptual decisions-how neural responses encode stimuli, and how they inform behavioral choices-have mainly been studied separately. Thus, although many spatiotemporal features of neural population activity, or "neural codes," have been shown to carry sensory information, it is often unknown whether the brain uses these features for perception. To address this issue, we propose a new framework centered on redefining the neural code as the neural features that carry sensory information used by the animal to drive appropriate behavior; that is, the features that have an intersection between sensory and choice information. We show how this framework leads to a new statistical analysis of neural activity recorded during behavior that can identify such neural codes, and we discuss how to combine intersection-based analysis of neural recordings with intervention on neural activity to determine definitively whether specific neural activity features are involved in a task. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Evolutionary diversification of secondary mechanoreceptor cells in tunicata.

    Science.gov (United States)

    Rigon, Francesca; Stach, Thomas; Caicci, Federico; Gasparini, Fabio; Burighel, Paolo; Manni, Lucia

    2013-06-04

    Hair cells are vertebrate secondary sensory cells located in the ear and in the lateral line organ. Until recently, these cells were considered to be mechanoreceptors exclusively found in vertebrates that evolved within this group. Evidence of secondary mechanoreceptors in some tunicates, the proposed sister group of vertebrates, has recently led to the hypothesis that vertebrate and tunicate secondary sensory cells share a common origin. Secondary sensory cells were described in detail in two tunicate groups, ascidians and thaliaceans, in which they constitute an oral sensory structure called the coronal organ. Among thaliaceans, the organ is absent in salps and it has been hypothesised that this condition is due to a different feeding system adopted by this group of animals. No information is available as to whether a comparable structure exists in the third group of tunicates, the appendicularians, although different sensory structures are known to be present in these animals. We studied the detailed morphology of appendicularian oral mechanoreceptors. Using light and electron microscopy we could demonstrate that the mechanosensory organ called the circumoral ring is composed of secondary sensory cells. We described the ultrastructure of the circumoral organ in two appendicularian species, Oikopleura dioica and Oikopleura albicans, and thus taxonomically completed the data collection of tunicate secondary sensory cells. To understand the evolution of secondary sensory cells in tunicates, we performed a cladistic analysis using morphological data. We constructed a matrix consisting of 19 characters derived from detailed ultrastructural studies in 16 tunicate species and used a cephalochordate and three vertebrate species as outgroups. Our study clearly shows that the circumoral ring is the appendicularian homologue of the coronal organ of other tunicate taxa. The cladistic analysis enabled us to reconstruct the features of the putative ancestral hair cell in

  12. HCN channels are not required for mechanotransduction in sensory hair cells of the mouse inner ear.

    Directory of Open Access Journals (Sweden)

    Geoffrey C Horwitz

    Full Text Available The molecular composition of the hair cell transduction channel has not been identified. Here we explore the novel hypothesis that hair cell transduction channels include HCN subunits. The HCN family of ion channels includes four members, HCN1-4. They were originally identified as the molecular correlates of the hyperpolarization-activated, cyclic nucleotide gated ion channels that carry currents known as If, IQ or Ih. However, based on recent evidence it has been suggested that HCN subunits may also be components of the elusive hair cell transduction channel. To investigate this hypothesis we examined expression of mRNA that encodes HCN1-4 in sensory epithelia of the mouse inner ear, immunolocalization of HCN subunits 1, 2 and 4, uptake of the transduction channel permeable dye, FM1-43 and electrophysiological measurement of mechanotransduction current. Dye uptake and transduction current were assayed in cochlear and vestibular hair cells of wildtype mice exposed to HCN channel blockers or a dominant-negative form of HCN2 that contained a pore mutation and in mutant mice that lacked HCN1, HCN2 or both. We found robust expression of HCNs 1, 2 and 4 but little evidence that localized HCN subunits in hair bundles, the site of mechanotransduction. Although high concentrations of the HCN antagonist, ZD7288, blocked 50-70% of the transduction current, we found no reduction of transduction current in either cochlear or vestibular hair cells of HCN1- or HCN2- deficient mice relative to wild-type mice. Furthermore, mice that lacked both HCN1 and HCN2 also had normal transduction currents. Lastly, we found that mice exposed to the dominant-negative mutant form of HCN2 had normal transduction currents as well. Taken together, the evidence suggests that HCN subunits are not required for mechanotransduction in hair cells of the mouse inner ear.

  13. The sensory side of post-stroke motor rehabilitation.

    Science.gov (United States)

    Bolognini, Nadia; Russo, Cristina; Edwards, Dylan J

    2016-04-11

    Contemporary strategies to promote motor recovery following stroke focus on repetitive voluntary movements. Although successful movement relies on efficient sensorimotor integration, functional outcomes often bias motor therapy toward motor-related impairments such as weakness, spasticity and synergies; sensory therapy and reintegration is implied, but seldom targeted. However, the planning and execution of voluntary movement requires that the brain extracts sensory information regarding body position and predicts future positions, by integrating a variety of sensory inputs with ongoing and planned motor activity. Neurological patients who have lost one or more of their senses may show profoundly affected motor functions, even if muscle strength remains unaffected. Following stroke, motor recovery can be dictated by the degree of sensory disruption. Consequently, a thorough account of sensory function might be both prognostic and prescriptive in neurorehabilitation. This review outlines the key sensory components of human voluntary movement, describes how sensory disruption can influence prognosis and expected outcomes in stroke patients, reports on current sensory-based approaches in post-stroke motor rehabilitation, and makes recommendations for optimizing rehabilitation programs based on sensory stimulation.

  14. Analysing the Influence of the Spontaneous Aneuploidy Frequency on the Cell Population System Cultivation

    Directory of Open Access Journals (Sweden)

    G. A. Nefedov

    2015-01-01

    Full Text Available The paper provides a qualitative analysis of M.S. Vinogradova's nonlinear model for dynamics of the cell population system. This system describes the stem cells cultivation in vitro under resource constraints. The system consists of two populations, namely: population of normal cells and population of abnormal cells. Resource constraints are considered as linear dependences of mitosis parameters on the normalized densities of each population.One of the key parameters that effects on the realization of the system evolution scenarios is a parameter that determines a share of the normal cells, which pass, when dividing, into population of the abnormal cells. The paper analyses both the existence conditions of the rest points and the changes of the evolution scenarios of population system with changing abovementioned parameter and other system parameters held fixed. It is shown that there is a saddle-node bifurcation in the system; the bifurcation value of the parameter is found. The paper shows the interval of parameter values in which the favorable scenarios of population system evolution are implemented. It also presents results of mathematical modeling.

  15. A sub-population of circulating porcine gammadelta T cells can act as professional antigen presenting cells.

    Science.gov (United States)

    Takamatsu, H-H; Denyer, M S; Wileman, T E

    2002-09-10

    A sub-population of circulating porcine gammadelta T cells express cell surface antigens associated with antigen presenting cells (APCs), and are able to take up soluble antigen very effectively. Functional antigen presentation by gammadelta T cells to memory helper T cells was studied by inbred pig lymphocytes immunised with ovalbumin (OVA). After removing all conventional APCs from the peripheral blood of immunised pigs, the remaining lymphocytes still proliferated when stimulated with OVA. When gammadelta T cells were further depleted, OVA specific proliferation was abolished, but reconstitution with gammadelta T cells restored proliferation. The proliferation was blocked by monoclonal antibodies (mAb) against MHC class II or CD4, and by pre-treatment of gammadelta T cells with chloroquine. These results indicate that a sub-population of circulating porcine gammadelta T cells act as APCs and present antigen via MHC class II.

  16. Quantitation of DNA repair in brain cell cultures: implications for autoradiographic analysis of mixed cell populations

    International Nuclear Information System (INIS)

    Dambergs, R.; Kidson, C.

    1979-01-01

    Quantitation of DNA repair in the mixed cell population of mouse embryo brain cultures has been assessed by autoradiographic analysis of unscheduled DNA synthesis following UV-irradiation. The proportion of labelled neurons and the grain density over neuronal nuclei were both less than the corresponding values for glial cells. The nuclear geometries of these two classes of cell are very different. Partial correction for the different geometries by relating grain density to nuclear area brought estimates of neuronal and glial DNA repair synthesis more closely in line. These findings have general implications for autoradiographic measurement of DNA repair in mixed cell populations and in differentiated versus dividing cells. (author)

  17. Sensory profile of eleven peach cultivars Perfil sensorial de onze cultivares de pêssegos

    Directory of Open Access Journals (Sweden)

    Francine Lorena Cuquel

    2012-03-01

    Full Text Available The goal of this study was to evaluate the sensory profile of eleven peach cultivars grown in an experimental orchard located in the city of Lapa (PR, Brazil in two seasons. The peach cultivars analyzed were Aurora I, Chimarrita, Chiripá, Coral, Eldorado, Granada, Leonense, Maciel, Marli, Premier, and Vanguarda. The sensory analysis was performed by previously trained panelists; 20 of them in the first season and 10 in the second season. The sensory evaluation was performed using Quantitative Descriptive Analysis, in which the following attributes were measured: appearance, aroma, flesh color, flesh firmness, flavor, and juiciness. The results showed preference for sweet, soft, and juicy fruits. Chimarrita, Chiripá, and Coral fruits showed better sensorial performance than the other peach cultivars. It was also verified that the analysis of the attributes aroma, flesh firmness, and flavor is enough for performing the sensory profile of peach fruits for in natura consumption.Este trabalho teve como objetivo avaliar o perfil sensorial de onze cultivares de pêssego produzidos em duas safras em um pomar experimental implantado na Lapa (PR, Brasil. Os cultivares analisados foram Aurora I, Chimarrita, Chiripá, Coral, Eldorado, Granada, Leonense, Maciel, Marli, Premier e Vanguarda. As análises sensoriais foram realizadas por julgadores previamente treinados, sendo 20 julgadores na primeira safra e 10 na segunda. O método de avaliação empregado foi a Análise Descritiva Quantitativa na qual foram mensurados os atributos aparência, aroma, cor de polpa, firmeza de polpa, sabor e suculência dos frutos. Os resultados obtidos demonstraram a preferência por frutos de sabor adocicado, com polpa macia e suculenta. Os cultivares Chimarrita, Chiripá e Coral obtiveram o melhor desempenho nas análises sensoriais. Foi verificado ainda que os atributos aroma, firmeza de polpa e sabor são considerados suficientes para a avaliação do perfil sensorial de

  18. Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line.

    Science.gov (United States)

    Genç, Barış; Lagrimas, Amiko Krisa Bunag; Kuru, Pınar; Hess, Robert; Tu, Michael William; Menichella, Daniela Maria; Miller, Richard J; Paller, Amy S; Özdinler, P Hande

    2015-01-01

    Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

  19. Sensory matched filters.

    Science.gov (United States)

    Warrant, Eric J

    2016-10-24

    As animals move through their environments they are subjected to an endless barrage of sensory signals. Of these, some will be of utmost importance, such as the tell-tale aroma of a potential mate, the distinctive appearance of a vital food source or the unmistakable sound of an approaching predator. Others will be less important. Indeed some will not be important at all. There are, for instance, wide realms of the sensory world that remain entirely undetected, simply because an animal lacks the physiological capacity to detect and analyse the signals that characterise this realm. Take ourselves for example: we are completely insensitive to the Earth's magnetic field, a sensory cue of vital importance as a compass for steering the long distance migration of animals as varied as birds, lobsters and sea turtles. We are also totally oblivious to the rich palette of ultraviolet colours that exist all around us, colours seen by insects, crustaceans, birds, fish and lizards (in fact perhaps by most animals). Nor can we hear the ultrasonic sonar pulses emitted by bats in hot pursuit of flying insect prey. The simple reason for these apparent deficiencies is that we either lack the sensory capacity entirely (as in the case of magnetoreception) or that our existing senses are incapable of detecting specific ranges of the stimulus (such as the ultraviolet wavelength range of light). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Locomotor sensory organization test: a novel paradigm for the assessment of sensory contributions in gait.

    Science.gov (United States)

    Chien, Jung Hung; Eikema, Diderik-Jan Anthony; Mukherjee, Mukul; Stergiou, Nicholas

    2014-12-01

    Feedback based balance control requires the integration of visual, proprioceptive and vestibular input to detect the body's movement within the environment. When the accuracy of sensory signals is compromised, the system reorganizes the relative contributions through a process of sensory recalibration, for upright postural stability to be maintained. Whereas this process has been studied extensively in standing using the Sensory Organization Test (SOT), less is known about these processes in more dynamic tasks such as locomotion. In the present study, ten healthy young adults performed the six conditions of the traditional SOT to quantify standing postural control when exposed to sensory conflict. The same subjects performed these six conditions using a novel experimental paradigm, the Locomotor SOT (LSOT), to study dynamic postural control during walking under similar types of sensory conflict. To quantify postural control during walking, the net Center of Pressure sway variability was used. This corresponds to the Performance Index of the center of pressure trajectory, which is used to quantify postural control during standing. Our results indicate that dynamic balance control during locomotion in healthy individuals is affected by the systematic manipulation of multisensory inputs. The sway variability patterns observed during locomotion reflect similar balance performance with standing posture, indicating that similar feedback processes may be involved. However, the contribution of visual input is significantly increased during locomotion, compared to standing in similar sensory conflict conditions. The increased visual gain in the LSOT conditions reflects the importance of visual input for the control of locomotion. Since balance perturbations tend to occur in dynamic tasks and in response to environmental constraints not present during the SOT, the LSOT may provide additional information for clinical evaluation on healthy and deficient sensory processing.

  1. Sensory determinants of the autonomous sensory meridian response (ASMR): understanding the triggers.

    Science.gov (United States)

    Barratt, Emma L; Spence, Charles; Davis, Nick J

    2017-01-01

    The autonomous sensory meridian response (ASMR) is an atypical sensory phenomenon involving electrostatic-like tingling sensations in response to certain sensory, primarily audio-visual, stimuli. The current study used an online questionnaire, completed by 130 people who self-reported experiencing ASMR. We aimed to extend preliminary investigations into the experience, and establish key multisensory factors contributing to the successful induction of ASMR through online media. Aspects such as timing and trigger load, atmosphere, and characteristics of ASMR content, ideal spatial distance from various types of stimuli, visual characteristics, context and use of ASMR triggers, and audio preferences are explored. Lower-pitched, complex sounds were found to be especially effective triggers, as were slow-paced, detail-focused videos. Conversely, background music inhibited the sensation for many respondents. These results will help in designing media for ASMR induction.

  2. Sensory determinants of the autonomous sensory meridian response (ASMR: understanding the triggers

    Directory of Open Access Journals (Sweden)

    Emma L. Barratt

    2017-10-01

    Full Text Available The autonomous sensory meridian response (ASMR is an atypical sensory phenomenon involving electrostatic-like tingling sensations in response to certain sensory, primarily audio-visual, stimuli. The current study used an online questionnaire, completed by 130 people who self-reported experiencing ASMR. We aimed to extend preliminary investigations into the experience, and establish key multisensory factors contributing to the successful induction of ASMR through online media. Aspects such as timing and trigger load, atmosphere, and characteristics of ASMR content, ideal spatial distance from various types of stimuli, visual characteristics, context and use of ASMR triggers, and audio preferences are explored. Lower-pitched, complex sounds were found to be especially effective triggers, as were slow-paced, detail-focused videos. Conversely, background music inhibited the sensation for many respondents. These results will help in designing media for ASMR induction.

  3. Diversity of Internal Sensory Neuron Axon Projection Patterns Is Controlled by the POU-Domain Protein Pdm3 in Drosophila Larvae.

    Science.gov (United States)

    Qian, Cheng Sam; Kaplow, Margarita; Lee, Jennifer K; Grueber, Wesley B

    2018-02-21

    Internal sensory neurons innervate body organs and provide information about internal state to the CNS to maintain physiological homeostasis. Despite their conservation across species, the anatomy, circuitry, and development of internal sensory systems are still relatively poorly understood. A largely unstudied population of larval Drosophila sensory neurons, termed tracheal dendrite (td) neurons, innervate internal respiratory organs and may serve as a model for understanding the sensing of internal states. Here, we characterize the peripheral anatomy, central axon projection, and diversity of td sensory neurons. We provide evidence for prominent expression of specific gustatory receptor genes in distinct populations of td neurons, suggesting novel chemosensory functions. We identify two anatomically distinct classes of td neurons. The axons of one class project to the subesophageal zone (SEZ) in the brain, whereas the other terminates in the ventral nerve cord (VNC). We identify expression and a developmental role of the POU-homeodomain transcription factor Pdm3 in regulating the axon extension and terminal targeting of SEZ-projecting td neurons. Remarkably, ectopic Pdm3 expression is alone sufficient to switch VNC-targeting axons to SEZ targets, and to induce the formation of putative synapses in these ectopic target zones. Our data thus define distinct classes of td neurons, and identify a molecular factor that contributes to diversification of axon targeting. These results introduce a tractable model to elucidate molecular and circuit mechanisms underlying sensory processing of internal body status and physiological homeostasis. SIGNIFICANCE STATEMENT How interoceptive sensory circuits develop, including how sensory neurons diversify and target distinct central regions, is still poorly understood, despite the importance of these sensory systems for maintaining physiological homeostasis. Here, we characterize classes of Drosophila internal sensory neurons (td

  4. Comparison of the fastest regenerating motor and sensory myelinated axons in the same peripheral nerve

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Sørensen, Jesper; Krarup, Christian

    2006-01-01

    Functional outcome after peripheral nerve regeneration is often poor, particularly involving nerve injuries far from their targets. Comparison of sensory and motor axon regeneration before target reinnervation is not possible in the clinical setting, and previous experimental studies addressing...... the question of differences in growth rates of different nerve fibre populations led to conflicting results. We developed an animal model to compare growth and maturation of the fastest growing sensory and motor fibres within the same mixed nerve after Wallerian degeneration. Regeneration of cat tibial nerve...... after crush (n = 13) and section (n = 7) was monitored for up to 140 days, using implanted cuff electrodes placed around the sciatic and tibial nerves and wire electrodes at plantar muscles. To distinguish between sensory and motor fibres, recordings were carried out from L6-S2 spinal roots using cuff...

  5. Central representation of sensory inputs from the cardio-renal system in Aplysia depilans.

    Science.gov (United States)

    Rózsa, K S; Salánki, J; Véró, M; Kovacević, N; Konjevic, D

    1980-01-01

    Studying the central representation of sensory inputs originating from the heart in Aplysia depilans, it was found that: 1. Neurons responding to heart stimulation can be found in the abdominal, pedal and pleural ganglia alike. 2. The representation of heart input signals was more abundant in the left hemisphere of the abdominal ganglion and in the left pedal and pleural ganglia. 3. The giant neurons of Aplysia depilans can be compared to the homologous cells of Aplysia californica. Two motoneurons (RBHE, LDHI) and one interneuron (L10) proved to be identical in the two subspecies. 4. Sensory inputs originating from the heart may modify the pattern of both heart regulatory motoneurons and interneurons. 5. Nine giant and 19 small neurons of the abdominal ganglion, 3--3 neurons of the right and left pleural ganglion, 6 neurons of the left pedal ganglion responded to heart stimulation. 6. The bursting patterns of cells R15 and L4 were modified to tonic discharge in response to heart stimulation. 7. The representation of sensory inputs originating from the heart is scattered throughout the CNS of Aplysia depilans and heart regulation is based on a feedback mechanism similar to that found in other gastropod species.

  6. Analysis of in vitro secretion profiles from adipose-derived cell populations

    Directory of Open Access Journals (Sweden)

    Blaber Sinead P

    2012-08-01

    Full Text Available Abstract Background Adipose tissue is an attractive source of cells for therapeutic purposes because of the ease of harvest and the high frequency of mesenchymal stem cells (MSCs. Whilst it is clear that MSCs have significant therapeutic potential via their ability to secrete immuno-modulatory and trophic cytokines, the therapeutic use of mixed cell populations from the adipose stromal vascular fraction (SVF is becoming increasingly common. Methods In this study we have measured a panel of 27 cytokines and growth factors secreted by various combinations of human adipose-derived cell populations. These were 1. co-culture of freshly isolated SVF with adipocytes, 2. freshly isolated SVF cultured alone, 3. freshly isolated adipocytes alone and 4. adherent adipose-derived mesenchymal stem cells (ADSCs at passage 2. In addition, we produced an ‘in silico’ dataset by combining the individual secretion profiles obtained from culturing the SVF with that of the adipocytes. This was compared to the secretion profile of co-cultured SVF and adipocytes. Two-tailed t-tests were performed on the secretion profiles obtained from the SVF, adipocytes, ADSCs and the ‘in silico’ dataset and compared to the secretion profiles obtained from the co-culture of the SVF with adipocytes. A p-value of  Results A co-culture of SVF and adipocytes results in a distinct secretion profile when compared to all other adipose-derived cell populations studied. This illustrates that cellular crosstalk during co-culture of the SVF with adipocytes modulates the production of cytokines by one or more cell types. No biologically relevant differences were detected in the proteomes of SVF cultured alone or co-cultured with adipocytes. Conclusions The use of mixed adipose cell populations does not appear to induce cellular stress and results in enhanced secretion profiles. Given the importance of secreted cytokines in cell therapy, the use of a mixed cell population such as the

  7. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates.

    Science.gov (United States)

    Kaneko, Takuya; Ye, Bing

    2015-09-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and postsynaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography.

  8. Sensory profile of eleven peach cultivars

    Directory of Open Access Journals (Sweden)

    Francine Lorena Cuquel

    2012-03-01

    Full Text Available The goal of this study was to evaluate the sensory profile of eleven peach cultivars grown in an experimental orchard located in the city of Lapa (PR, Brazil in two seasons. The peach cultivars analyzed were Aurora I, Chimarrita, Chiripá, Coral, Eldorado, Granada, Leonense, Maciel, Marli, Premier, and Vanguarda. The sensory analysis was performed by previously trained panelists; 20 of them in the first season and 10 in the second season. The sensory evaluation was performed using Quantitative Descriptive Analysis, in which the following attributes were measured: appearance, aroma, flesh color, flesh firmness, flavor, and juiciness. The results showed preference for sweet, soft, and juicy fruits. Chimarrita, Chiripá, and Coral fruits showed better sensorial performance than the other peach cultivars. It was also verified that the analysis of the attributes aroma, flesh firmness, and flavor is enough for performing the sensory profile of peach fruits for in natura consumption.

  9. Experienced Sensory Modalities in Dream Recall

    OpenAIRE

    岡田, 斉

    2000-01-01

    The purpose of the present study is to survey the frequency of visual, auditory, kinaesthetic, cutaneous, organic, gustatory, and olfactory experience in dream recall. A total of 1267 undergraduate students completed a dream recall frequency questionnaire, which contained a question about dream recall frequency and about recall frequency of seven sensory modalities. Results showed that seven sensory modalities were divided into two groups; normally perceived sensory modalities in dreaming, wh...

  10. Sensory overload: A concept analysis.

    Science.gov (United States)

    Scheydt, Stefan; Müller Staub, Maria; Frauenfelder, Fritz; Nielsen, Gunnar H; Behrens, Johann; Needham, Ian

    2017-04-01

    In the context of mental disorders sensory overload is a widely described phenomenon used in conjunction with psychiatric interventions such as removal from stimuli. However, the theoretical foundation of sensory overload as addressed in the literature can be described as insufficient and fragmentary. To date, the concept of sensory overload has not yet been sufficiently specified or analyzed. The aim of the study was to analyze the concept of sensory overload in mental health care. A literature search was undertaken using specific electronic databases, specific journals and websites, hand searches, specific library catalogues, and electronic publishing databases. Walker and Avant's method of concept analysis was used to analyze the sources included in the analysis. All aspects of the method of Walker and Avant were covered in this concept analysis. The conceptual understanding has become more focused, the defining attributes, influencing factors and consequences are described and empirical referents identified. The concept analysis is a first step in the development of a middle-range descriptive theory of sensory overload based on social scientific and stress-theoretical approaches. This specification may serve as a fundament for further research, for the development of a nursing diagnosis or for guidelines. © 2017 Australian College of Mental Health Nurses Inc.

  11. Segmental distribution and morphometric features of primary sensory neurons projecting to the tibial periosteum in the rat.

    Directory of Open Access Journals (Sweden)

    Tadeusz Cichocki

    2004-07-01

    Full Text Available Previous reports have demonstrated very rich innervation pattern in the periosteum. Most of the periosteal fibers were found to be sensory in nature. The aim of this study was to identify the primary sensory neurons that innervate the tibial periosteum in the adult rat and to describe the morphometric features of their perikarya. To this end, an axonal fluorescent carbocyanine tracer, DiI, was injected into the periosteum on the medial surface of the tibia. The perikarya of the sensory fibers were traced back in the dorsal root ganglia (DRG L1-L6 by means of fluorescent microscopy on cryosections. DiI-containing neurons were counted in each section and their segmental distribution was determined. Using PC-assisted image analysis system, the size and shape of the traced perikarya were analyzed. DiI-labeled sensory neurons innervating the periosteum of the tibia were located in the DRG ipsilateral to the injection site, with the highest distribution in L3 and L4 (57% and 23%, respectively. The majority of the traced neurons were of small size (area < 850 microm2, which is consistent with the size distribution of CGRP- and SP-containing cells, regarded as primary sensory neurons responsible for perception of pain and temperature. A small proportion of labeled cells had large perikarya and probably supplied corpuscular sense receptors observed in the periosteum. No differences were found in the shape distribution of neurons belonging to different size classes.

  12. National Survey of Sensory Features in Children with ASD: Factor Structure of the Sensory Experience Questionnaire (3.0)

    Science.gov (United States)

    Ausderau, Karla; Sideris, John; Furlong, Melissa; Little, Lauren M.; Bulluck, John; Baranek, Grace T.

    2014-01-01

    This national online survey study characterized sensory features in 1,307 children with autism spectrum disorder (ASD) ages 2-12 years using the Sensory Experiences Questionnaire Version 3.0 (SEQ-3.0). Using the SEQ-3.0, a confirmatory factor analytic model with four substantive factors of hypothesized sensory response patterns (i.e.,…

  13. Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay.

    Directory of Open Access Journals (Sweden)

    Kaoru Miyazaki

    Full Text Available Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a woman's reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that human endometrial side population cells (ESP, but not endometrial main population cells (EMP, exhibit stem cell-like properties, including in vivo reconstitution of endometrium-like tissues when xenotransplanted into immunodeficient mice. The reconstitution efficiency, however, was low presumably because ESP cells alone could not provide a sufficient microenvironment (niche to support their stem cell activity. The objective of this study was to establish a novel in vivo endometrial stem cell assay employing cell tracking and tissue reconstitution systems and to examine the stem cell properties of ESP through use of this assay.ESP and EMP cells isolated from whole endometrial cells were infected with lentivirus to express tandem Tomato (TdTom, a red fluorescent protein. They were mixed with unlabeled whole endometrial cells and then transplanted under the kidney capsule of ovariectomized immunodeficient mice. These mice were treated with estradiol and progesterone for eight weeks and nephrectomized. All of the grafts reconstituted endometrium-like tissues under the kidney capsules. Immunofluorescence revealed that TdTom-positive cells were significantly more abundant in the glandular, stromal, and endothelial cells of the reconstituted endometrium in mice transplanted with TdTom-labeled ESP cells than those with TdTom-labeled EMP cells.We have established a novel in vivo endometrial stem cell assay in which multi-potential differentiation can be identified through cell tracking during in vivo endometrial tissue reconstitution. Using this assay, we demonstrated that ESP

  14. Distinct timescales of population coding across cortex.

    Science.gov (United States)

    Runyan, Caroline A; Piasini, Eugenio; Panzeri, Stefano; Harvey, Christopher D

    2017-08-03

    The cortex represents information across widely varying timescales. For instance, sensory cortex encodes stimuli that fluctuate over few tens of milliseconds, whereas in association cortex behavioural choices can require the maintenance of information over seconds. However, it remains poorly understood whether diverse timescales result mostly from features intrinsic to individual neurons or from neuronal population activity. This question remains unanswered, because the timescales of coding in populations of neurons have not been studied extensively, and population codes have not been compared systematically across cortical regions. Here we show that population codes can be essential to achieve long coding timescales. Furthermore, we find that the properties of population codes differ between sensory and association cortices. We compared coding for sensory stimuli and behavioural choices in auditory cortex and posterior parietal cortex as mice performed a sound localization task. Auditory stimulus information was stronger in auditory cortex than in posterior parietal cortex, and both regions contained choice information. Although auditory cortex and posterior parietal cortex coded information by tiling in time neurons that were transiently informative for approximately 200 milliseconds, the areas had major differences in functional coupling between neurons, measured as activity correlations that could not be explained by task events. Coupling among posterior parietal cortex neurons was strong and extended over long time lags, whereas coupling among auditory cortex neurons was weak and short-lived. Stronger coupling in posterior parietal cortex led to a population code with long timescales and a representation of choice that remained consistent for approximately 1 second. In contrast, auditory cortex had a code with rapid fluctuations in stimulus and choice information over hundreds of milliseconds. Our results reveal that population codes differ across cortex

  15. Cutaneous TRPM8-expressing sensory afferents are a small population of neurons with unique firing properties.

    Science.gov (United States)

    Jankowski, Michael P; Rau, Kristofer K; Koerber, H Richard

    2017-04-01

    It has been well documented that the transient receptor potential melastatin 8 (TRPM8) receptor is involved in environmental cold detection. The role that this receptor plays in nociception however, has been somewhat controversial since conflicting reports have shown different neurochemical identities and responsiveness of TRPM8 neurons. In order to functionally characterize cutaneous TRMP8 fibers, we used two ex vivo somatosensory recording preparations to functionally characterize TRPM8 neurons that innervate the hairy skin in mice genetically engineered to express GFP from the TRPM8 locus. We found several types of cold-sensitive neurons that innervate the hairy skin of the mouse but the TRPM8-expressing neurons were found to be of two specific populations that responded with rapid firing to cool temperatures. The first group was mechanically insensitive but the other did respond to high threshold mechanical deformation of the skin. None of these fibers were found to contain calcitonin gene-related peptide, transient receptor potential vanilloid type 1 or bind isolectin B4. These results taken together with other reports suggest that TRPM8 containing sensory neurons are environmental cooling detectors that may be nociceptive or non-nociceptive depending on the sensitivity of individual fibers to different combinations of stimulus modalities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Effects of the modified atmosphere and irradiation on the microbiological, physical-chemical and sensory characteristics of the 'minas frescal' cheese

    International Nuclear Information System (INIS)

    Rosa, Vanessa Pires da

    2004-01-01

    The experiment was divided into two parts. Initially, it was studied the 'Minas Frescal' cheeses packed under atmospheric air, modified atmosphere of 70% CO2 and 30% N2 (ATM) and vacuum. Second the cheeses packed under these three treatments had been radiated by doses of 2 KGy. In the two parts of the experiment, it was analyzed the microbial evolution and, the sensory and physical-chemical characteristics of the cheeses under the different treatments during a 4 deg C-storage. In the first phase of the experiment it was verified that the ATM and the vacuum decreased the intensity of the total population growth of aerobic mesophilic and psychotropic and had reduced the population of Staphylococcus positive coagulase, but they had not been efficient controlling the total coliforms and Escherichia coli, while in control all the populations had continuously grown, according to the sensory characteristics of the cheeses, color, odor and appearance. These characteristics were kept the same during the 40 days of storage, and the control decreased the acceptability levels gradually, being rejected in the 17 th day. In the second part of the experiment, it was observed that a 2KGy-irradiation over the 'Minas Frescal' cheeses reduced the populations of aerobic mesophilic, aerobic and anaerobic psychotropic, Staphylococcus positive coagulase, total coliforms and Escherichia coli. The ATM and vacuum treatments were very efficient therefore they prevented the growth of these microorganisms during the storage, while in control, the aerobic mesophilic and psychotropic population grew during the storage. According to sensory aspects, the ATM treatment was the most efficient one, because it kept the appearance, texture and flavor for more than 43 days while the vacuum kept for 36 days and the control for only 8 days. The use of the irradiation with modified atmosphere and low temperatures of storage increased the shelf life of the cheeses, hindering the growth of the microbial

  17. Bioinspired sensory systems for local flow characterization

    Science.gov (United States)

    Colvert, Brendan; Chen, Kevin; Kanso, Eva

    2016-11-01

    Empirical evidence suggests that many aquatic organisms sense differential hydrodynamic signals.This sensory information is decoded to extract relevant flow properties. This task is challenging because it relies on local and partial measurements, whereas classical flow characterization methods depend on an external observer to reconstruct global flow fields. Here, we introduce a mathematical model in which a bioinspired sensory array measuring differences in local flow velocities characterizes the flow type and intensity. We linearize the flow field around the sensory array and express the velocity gradient tensor in terms of frame-independent parameters. We develop decoding algorithms that allow the sensory system to characterize the local flow and discuss the conditions under which this is possible. We apply this framework to the canonical problem of a circular cylinder in uniform flow, finding excellent agreement between sensed and actual properties. Our results imply that combining suitable velocity sensors with physics-based methods for decoding sensory measurements leads to a powerful approach for understanding and developing underwater sensory systems.

  18. Multivariate analysis of data in sensory science

    CERN Document Server

    Naes, T; Risvik, E

    1996-01-01

    The state-of-the-art of multivariate analysis in sensory science is described in this volume. Both methods for aggregated and individual sensory profiles are discussed. Processes and results are presented in such a way that they can be understood not only by statisticians but also by experienced sensory panel leaders and users of sensory analysis. The techniques presented are focused on examples and interpretation rather than on the technical aspects, with an emphasis on new and important methods which are possibly not so well known to scientists in the field. Important features of the book are discussions on the relationship among the methods with a strong accent on the connection between problems and methods. All procedures presented are described in relation to sensory data and not as completely general statistical techniques. Sensory scientists, applied statisticians, chemometricians, those working in consumer science, food scientists and agronomers will find this book of value.

  19. Cognitive mechanisms associated with auditory sensory gating

    Science.gov (United States)

    Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.

    2016-01-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  20. The use of sensory perception indicators for improving the characterization and modelling of total petroleum hydrocarbon (TPH) grade in soils.

    Science.gov (United States)

    Roxo, Sónia; de Almeida, José António; Matias, Filipa Vieira; Mata-Lima, Herlander; Barbosa, Sofia

    2016-03-01

    This paper proposes a multistep approach for creating a 3D stochastic model of total petroleum hydrocarbon (TPH) grade in potentially polluted soils of a deactivated oil storage site by using chemical analysis results as primary or hard data and classes of sensory perception variables as secondary or soft data. First, the statistical relationship between the sensory perception variables (e.g. colour, odour and oil-water reaction) and TPH grade is analysed, after which the sensory perception variable exhibiting the highest correlation is selected (oil-water reaction in this case study). The probabilities of cells belonging to classes of oil-water reaction are then estimated for the entire soil volume using indicator kriging. Next, local histograms of TPH grade for each grid cell are computed, combining the probabilities of belonging to a specific sensory perception indicator class and conditional to the simulated values of TPH grade. Finally, simulated images of TPH grade are generated by using the P-field simulation algorithm, utilising the local histograms of TPH grade for each grid cell. The set of simulated TPH values allows several calculations to be performed, such as average values, local uncertainties and the probability of the TPH grade of the soil exceeding a specific threshold value.

  1. Programming strategy for efficient modeling of dynamics in a population of heterogeneous cells

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Hendriksen, Morten; Sørensen, Preben Graae

    2013-01-01

    Heterogeneity is a ubiquitous property of biological systems. Even in a genetically identical population of a single cell type, cell-to-cell differences are observed. Although the functional behavior of a given population is generally robust, the consequences of heterogeneity are fairly unpredict...

  2. Merkel cells are long-lived cells whose production is stimulated by skin injury✰

    Science.gov (United States)

    Wright, Margaret C.; Logan, Gregory J.; Bolock, Alexa M.; Kubicki, Adam C.; Hemphill, Julie A.; Sanders, Timothy A.; Maricich, Stephen M.

    2017-01-01

    Mechanosensitive Merkel cells are thought to have finite lifespans, but controversy surrounds the frequency of their replacement and which precursor cells maintain the population. We found by embryonic EdU administration that Merkel cells undergo terminal cell division in late embryogenesis and survive long into adulthood. We also found that new Merkel cells are produced infrequently during normal skin homeostasis and that their numbers do not change during natural or induced hair cycles. In contrast, live imaging and EdU experiments showed that mild mechanical injury produced by skin shaving dramatically increases Merkel cell production. We confirmed with genetic cell ablation and fate-mapping experiments that new touch dome Merkel cells in adult mice arise from touch dome keratinocytes. Together, these independent lines of evidence show that Merkel cells in adult mice are long-lived, are replaced rarely during normal adult skin homeostasis, and that their production can be induced by repeated shaving. These results have profound implications for understanding sensory neurobiology and human diseases such as Merkel cell carcinoma. PMID:27998808

  3. Merkel cells are long-lived cells whose production is stimulated by skin injury.

    Science.gov (United States)

    Wright, Margaret C; Logan, Gregory J; Bolock, Alexa M; Kubicki, Adam C; Hemphill, Julie A; Sanders, Timothy A; Maricich, Stephen M

    2017-02-01

    Mechanosensitive Merkel cells are thought to have finite lifespans, but controversy surrounds the frequency of their replacement and which precursor cells maintain the population. We found by embryonic EdU administration that Merkel cells undergo terminal cell division in late embryogenesis and survive long into adulthood. We also found that new Merkel cells are produced infrequently during normal skin homeostasis and that their numbers do not change during natural or induced hair cycles. In contrast, live imaging and EdU experiments showed that mild mechanical injury produced by skin shaving dramatically increases Merkel cell production. We confirmed with genetic cell ablation and fate-mapping experiments that new touch dome Merkel cells in adult mice arise from touch dome keratinocytes. Together, these independent lines of evidence show that Merkel cells in adult mice are long-lived, are replaced rarely during normal adult skin homeostasis, and that their production can be induced by repeated shaving. These results have profound implications for understanding sensory neurobiology and human diseases such as Merkel cell carcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. A Community-Based Sensory Training Program Leads to Improved Experience at a Local Zoo for Children with Sensory Challenges

    Directory of Open Access Journals (Sweden)

    Michele Kong

    2017-09-01

    Full Text Available Sensory processing difficulties are common among many special needs children, especially those with autism spectrum disorder (ASD. The sensory sensitivities often result in interference of daily functioning and can lead to social isolation for both the individual and family unit. A quality improvement (QI project was undertaken within a local zoo to systematically implement a sensory training program targeted at helping special needs individuals with sensory challenges, including those with ASD, Down’s syndrome, attention-deficit/hyperactivity disorder, and speech delay. We piloted the program over a 2-year period. The program consisted of staff training, provision of sensory bags and specific social stories, as well as creation of quiet zones. Two hundred family units were surveyed before and after implementation of the sensory training program. In this pilot QI study, families reported increased visitation to the zoo, improved interactions with staff members, and the overall quality of their experience. In conclusion, we are able to demonstrate that a sensory training program within the community zoo is feasible, impactful, and has the potential to decrease social isolation for special needs individuals and their families.

  5. Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells.

    Science.gov (United States)

    Koehler, Karl R; Nie, Jing; Longworth-Mills, Emma; Liu, Xiao-Ping; Lee, Jiyoon; Holt, Jeffrey R; Hashino, Eri

    2017-06-01

    The derivation of human inner ear tissue from pluripotent stem cells would enable in vitro screening of drug candidates for the treatment of hearing and balance dysfunction and may provide a source of cells for cell-based therapies of the inner ear. Here we report a method for differentiating human pluripotent stem cells to inner ear organoids that harbor functional hair cells. Using a three-dimensional culture system, we modulate TGF, BMP, FGF, and WNT signaling to generate multiple otic-vesicle-like structures from a single stem-cell aggregate. Over 2 months, the vesicles develop into inner ear organoids with sensory epithelia that are innervated by sensory neurons. Additionally, using CRISPR-Cas9, we generate an ATOH1-2A-eGFP cell line to detect hair cell induction and demonstrate that derived hair cells exhibit electrophysiological properties similar to those of native sensory hair cells. Our culture system should facilitate the study of human inner ear development and research on therapies for diseases of the inner ear.

  6. Thalamic control of sensory selection in divided attention.

    Science.gov (United States)

    Wimmer, Ralf D; Schmitt, L Ian; Davidson, Thomas J; Nakajima, Miho; Deisseroth, Karl; Halassa, Michael M

    2015-10-29

    How the brain selects appropriate sensory inputs and suppresses distractors is unknown. Given the well-established role of the prefrontal cortex (PFC) in executive function, its interactions with sensory cortical areas during attention have been hypothesized to control sensory selection. To test this idea and, more generally, dissect the circuits underlying sensory selection, we developed a cross-modal divided-attention task in mice that allowed genetic access to this cognitive process. By optogenetically perturbing PFC function in a temporally precise window, the ability of mice to select appropriately between conflicting visual and auditory stimuli was diminished. Equivalent sensory thalamocortical manipulations showed that behaviour was causally dependent on PFC interactions with the sensory thalamus, not sensory cortex. Consistent with this notion, we found neurons of the visual thalamic reticular nucleus (visTRN) to exhibit PFC-dependent changes in firing rate predictive of the modality selected. visTRN activity was causal to performance as confirmed by bidirectional optogenetic manipulations of this subnetwork. Using a combination of electrophysiology and intracellular chloride photometry, we demonstrated that visTRN dynamically controls visual thalamic gain through feedforward inhibition. Our experiments introduce a new subcortical model of sensory selection, in which the PFC biases thalamic reticular subnetworks to control thalamic sensory gain, selecting appropriate inputs for further processing.

  7. Sensory quality criteria for five fish species

    DEFF Research Database (Denmark)

    Warm, Karin; Nielsen, Jette; Hyldig, Grethe

    2000-01-01

    Sensory profiling has been used to develop one sensory vocabulary for five fish species: cod (Gadus morhua), saithe (Pollachius virens), rainbow trout (Salmo gardineri), herring (Clupea harengus) and flounder (Platichthys flessus). A nine- member trained panel assessed 18 samples with variation i...... variation and by presenting references, panel discussions and interpreting plots from multivariate data analysis. The developed profile can be used as a sensory wheel for these species, and with minor changes it may be adapted to similar species......Sensory profiling has been used to develop one sensory vocabulary for five fish species: cod (Gadus morhua), saithe (Pollachius virens), rainbow trout (Salmo gardineri), herring (Clupea harengus) and flounder (Platichthys flessus). A nine- member trained panel assessed 18 samples with variation...

  8. ASIC3 channels in multimodal sensory perception.

    Science.gov (United States)

    Li, Wei-Guang; Xu, Tian-Le

    2011-01-19

    Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy.

  9. Modelling cell population growth with applications to cancer therapy in human tumour cell lines.

    Science.gov (United States)

    Basse, Britta; Baguley, Bruce C; Marshall, Elaine S; Wake, Graeme C; Wall, David J N

    2004-01-01

    In this paper we present an overview of the work undertaken to model a population of cells and the effects of cancer therapy. We began with a theoretical one compartment size structured cell population model and investigated its asymptotic steady size distributions (SSDs) (On a cell growth model for plankton, MMB JIMA 21 (2004) 49). However these size distributions are not similar to the DNA (size) distributions obtained experimentally via the flow cytometric analysis of human tumour cell lines (data obtained from the Auckland Cancer Society Research Centre, New Zealand). In our one compartment model, size was a generic term, but in order to obtain realistic steady size distributions we chose size to be DNA content and devised a multi-compartment mathematical model for the cell division cycle where each compartment corresponds to a distinct phase of the cell cycle (J. Math. Biol. 47 (2003) 295). We then incorporated another compartment describing the possible induction of apoptosis (cell death) from mitosis phase (Modelling cell death in human tumour cell lines exposed to anticancer drug paclitaxel, J. Math. Biol. 2004, in press). This enabled us to compare our model to flow cytometric data of a melanoma cell line where the anticancer drug, paclitaxel, had been added. The model gives a dynamic picture of the effects of paclitaxel on the cell cycle. We hope to use the model to describe the effects of other cancer therapies on a number of different cell lines. Copyright 2004 Elsevier Ltd.

  10. Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses.

    Science.gov (United States)

    Vaughan, Cheryl H; Bartness, Timothy J

    2012-05-01

    Brown adipose tissue (BAT) thermogenic activity and growth are controlled by its sympathetic nervous system (SNS) innervation, but nerve fibers containing sensory-associated neuropeptides [substance P, calcitonin gene-related peptide (CGRP)] also suggest sensory innervation. The central nervous system (CNS) projections of BAT afferents are unknown. Therefore, we used the H129 strain of the herpes simplex virus-1 (HSV-1), an anterograde transneuronal viral tract tracer used to delineate sensory nerve circuits, to define these projections. HSV-1 was injected into interscapular BAT (IBAT) of Siberian hamsters and HSV-1 immunoreactivity (ir) was assessed 24, 48, 72, 96, and 114 h postinjection. The 96- and 114-h groups had the most HSV-1-ir neurons with marked infections in the hypothalamic paraventricular nucleus, periaqueductal gray, olivary areas, parabrachial nuclei, raphe nuclei, and reticular areas. These sites also are involved in sympathetic outflow to BAT suggesting possible BAT sensory-SNS thermogenesis feedback circuits. We tested the functional contribution of IBAT sensory innervation on thermogenic responses to an acute (24 h) cold exposure test by injecting the specific sensory nerve toxin capsaicin directly into IBAT pads and then measuring core (T(c)) and IBAT (T(IBAT)) temperature responses. CGRP content was significantly decreased in capsaicin-treated IBAT demonstrating successful sensory nerve destruction. T(IBAT) and T(c) were significantly decreased in capsaicin-treated hamsters compared with the saline controls at 2 h of cold exposure. Thus the central sensory circuits from IBAT have been delineated for the first time, and impairment of sensory feedback from BAT appears necessary for the appropriate, initial thermogenic response to acute cold exposure.

  11. Co-cultures provide a new tool to probe communication between adult sensory neurons and urothelium.

    Science.gov (United States)

    O'Mullane, Lauren M; Keast, Janet R; Osborne, Peregrine B

    2013-08-01

    Recent evidence suggests that the urothelium functions as a sensory transducer of chemical, mechanical or thermal stimuli and signals to nerve terminals and other cells in the bladder wall. The cellular and molecular basis of neuro-urothelial communication is not easily studied in the intact bladder. This led us to establish a method of co-culturing dorsal root ganglion sensory neurons and bladder urothelial cells. Sensory neurons and urothelial cells obtained from dorsal root ganglia and bladders dissected from adult female Sprague-Dawley® rats were isolated by enzyme treatment and mechanical dissociation. They were plated together or separately on collagen coated substrate and cultured in keratinocyte medium for 48 to 72 hours. Retrograde tracer labeling was performed to identify bladder afferents used for functional testing. Neurite growth and complexity in neurons co-cultured with urothelial cells was increased relative to that in neuronal monocultures. The growth promoting effect of urothelial cells was reduced by the tyrosine kinase inhibitor K252a but upstream inhibition of nerve growth factor signaling with TrkA-Fc had no effect. Fura-2 calcium imaging of urothelial cells showed responses to adenosine triphosphate (100 μM) and activation of TRPV4 (4α-PDD, 10 μM) but not TRPV1 (capsaicin, 1 μM), TRPV3 (farnesyl pyrophosphate, 1 μM) or TRPA1 (mustard oil, 100 μM). In contrast, co-cultured neurons were activated by all agonists except farnesyl pyrophosphate. Co-culturing provides a new methodology for investigating neuro-urothelial interactions in animal models of urological conditions. Results suggest that neuronal properties are maintained in the presence of urothelium and neurite growth is potentiated by a nerve growth factor independent mechanism. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  12. Six1 is essential for differentiation and patterning of the mammalian auditory sensory epithelium.

    Directory of Open Access Journals (Sweden)

    Ting Zhang

    2017-09-01

    Full Text Available The organ of Corti in the cochlea is a two-cell layered epithelium: one cell layer of mechanosensory hair cells that align into one row of inner and three rows of outer hair cells interdigitated with one cell layer of underlying supporting cells along the entire length of the cochlear spiral. These two types of epithelial cells are derived from common precursors in the four- to five-cell layered primordium and acquire functionally important shapes during terminal differentiation through the thinning process and convergent extension. Here, we have examined the role of Six1 in the establishment of the auditory sensory epithelium. Our data show that prior to terminal differentiation of the precursor cells, deletion of Six1 leads to formation of only a few hair cells and defective patterning of the sensory epithelium. Previous studies have suggested that downregulation of Sox2 expression in differentiating hair cells must occur after Atoh1 mRNA activation in order to allow Atoh1 protein accumulation due to antagonistic effects between Atoh1 and Sox2. Our analysis indicates that downregulation of Sox2 in the differentiating hair cells depends on Six1 activity. Furthermore, we found that Six1 is required for the maintenance of Fgf8 expression and dynamic distribution of N-cadherin and E-cadherin in the organ of Corti during differentiation. Together, our analyses uncover essential roles of Six1 in hair cell differentiation and formation of the organ of Corti in the mammalian cochlea.

  13. Niche-dependent development of functional neuronal networks from embryonic stem cell-derived neural populations

    Directory of Open Access Journals (Sweden)

    Siebler Mario

    2009-08-01

    Full Text Available Abstract Background The present work was performed to investigate the ability of two different embryonic stem (ES cell-derived neural precursor populations to generate functional neuronal networks in vitro. The first ES cell-derived neural precursor population was cultivated as free-floating neural aggregates which are known to form a developmental niche comprising different types of neural cells, including neural precursor cells (NPCs, progenitor cells and even further matured cells. This niche provides by itself a variety of different growth factors and extracellular matrix proteins that influence the proliferation and differentiation of neural precursor and progenitor cells. The second population was cultivated adherently in monolayer cultures to control most stringently the extracellular environment. This population comprises highly homogeneous NPCs which are supposed to represent an attractive way to provide well-defined neuronal progeny. However, the ability of these different ES cell-derived immature neural cell populations to generate functional neuronal networks has not been assessed so far. Results While both precursor populations were shown to differentiate into sufficient quantities of mature NeuN+ neurons that also express GABA or vesicular-glutamate-transporter-2 (vGlut2, only aggregate-derived neuronal populations exhibited a synchronously oscillating network activity 2–4 weeks after initiating the differentiation as detected by the microelectrode array technology. Neurons derived from homogeneous NPCs within monolayer cultures did merely show uncorrelated spiking activity even when differentiated for up to 12 weeks. We demonstrated that these neurons exhibited sparsely ramified neurites and an embryonic vGlut2 distribution suggesting an inhibited terminal neuronal maturation. In comparison, neurons derived from heterogeneous populations within neural aggregates appeared as fully mature with a dense neurite network and punctuated

  14. Role of motoneuron-derived neurotrophin 3 in survival and axonal projection of sensory neurons during neural circuit formation.

    Science.gov (United States)

    Usui, Noriyoshi; Watanabe, Keisuke; Ono, Katsuhiko; Tomita, Koichi; Tamamaki, Nobuaki; Ikenaka, Kazuhiro; Takebayashi, Hirohide

    2012-03-01

    Sensory neurons possess the central and peripheral branches and they form unique spinal neural circuits with motoneurons during development. Peripheral branches of sensory axons fasciculate with the motor axons that extend toward the peripheral muscles from the central nervous system (CNS), whereas the central branches of proprioceptive sensory neurons directly innervate motoneurons. Although anatomically well documented, the molecular mechanism underlying sensory-motor interaction during neural circuit formation is not fully understood. To investigate the role of motoneuron on sensory neuron development, we analyzed sensory neuron phenotypes in the dorsal root ganglia (DRG) of Olig2 knockout (KO) mouse embryos, which lack motoneurons. We found an increased number of apoptotic cells in the DRG of Olig2 KO embryos at embryonic day (E) 10.5. Furthermore, abnormal axonal projections of sensory neurons were observed in both the peripheral branches at E10.5 and central branches at E15.5. To understand the motoneuron-derived factor that regulates sensory neuron development, we focused on neurotrophin 3 (Ntf3; NT-3), because Ntf3 and its receptors (Trk) are strongly expressed in motoneurons and sensory neurons, respectively. The significance of motoneuron-derived Ntf3 was analyzed using Ntf3 conditional knockout (cKO) embryos, in which we observed increased apoptosis and abnormal projection of the central branch innervating motoneuron, the phenotypes being apparently comparable with that of Olig2 KO embryos. Taken together, we show that the motoneuron is a functional source of Ntf3 and motoneuron-derived Ntf3 is an essential pre-target neurotrophin for survival and axonal projection of sensory neurons.

  15. ADAM10 and γ-secretase regulate sensory regeneration in the avian vestibular organs.

    Science.gov (United States)

    Warchol, Mark E; Stone, Jennifer; Barton, Matthew; Ku, Jeffrey; Veile, Rose; Daudet, Nicolas; Lovett, Michael

    2017-08-01

    The loss of sensory hair cells from the inner ear is a leading cause of hearing and balance disorders. The mammalian ear has a very limited ability to replace lost hair cells, but the inner ears of non-mammalian vertebrates can spontaneously regenerate hair cells after injury. Prior studies have shown that replacement hair cells are derived from epithelial supporting cells and that the differentiation of new hair cells is regulated by the Notch signaling pathway. The present study examined molecular influences on regeneration in the avian utricle, which has a particularly robust regenerative ability. Chicken utricles were placed in organotypic culture and hair cells were lesioned by application of the ototoxic antibiotic streptomycin. Cultures were then allowed to regenerate in vitro for seven days. Some specimens were treated with small molecule inhibitors of γ-secretase or ADAM10, proteases which are essential for transmission of Notch signaling. As expected, treatment with both inhibitors led to increased numbers of replacement hair cells. However, we also found that inhibition of both proteases resulted in increased regenerative proliferation. Subsequent experiments showed that inhibition of γ-secretase or ADAM10 could also trigger proliferation in undamaged utricles. To better understand these phenomena, we used RNA-Seq profiling to characterize changes in gene expression following γ-secretase inhibition. We observed expression patterns that were consistent with Notch pathway inhibition, but we also found that the utricular sensory epithelium contains numerous γ-secretase substrates that might regulate cell cycle entry and possibly supporting cell-to-hair cell conversion. Together, our data suggest multiple roles for γ-secretase and ADAM10 in vestibular hair cell regeneration. Copyright © 2017. Published by Elsevier Inc.

  16. Vascularization of the dorsal root ganglia and peripheral nerve of the mouse: Implications for chemical-induced peripheral sensory neuropathies

    Directory of Open Access Journals (Sweden)

    Melemedjian Ohannes K

    2008-03-01

    Full Text Available Abstract Although a variety of industrial chemicals, as well as several chemotherapeutic agents used to treat cancer or HIV, preferentially induce a peripheral sensory neuropathy what remains unclear is why these agents induce a sensory vs. a motor or mixed neuropathy. Previous studies have shown that the endothelial cells that vascularize the dorsal root ganglion (DRG, which houses the primary afferent sensory neurons, are unique in that they have large fenestrations and are permeable to a variety of low and high molecular weight agents. In the present report we used whole-mount preparations, immunohistochemistry, and confocal laser scanning microscopy to show that the cell body-rich area of the L4 mouse DRG has a 7 fold higher density of CD31+ capillaries than cell fiber rich area of the DRG or the distal or proximal aspect of the sciatic nerve. This dense vascularization, coupled with the high permeability of these capillaries, may synergistically contribute, and in part explain, why many potentially neurotoxic agents preferentially accumulate and injure cells within the DRG. Currently, cancer survivors and HIV patients constitute the largest and most rapidly expanding groups that have chemically induced peripheral sensory neuropathy. Understanding the unique aspects of the vascularization of the DRG and closing the endothelial fenestrations of the rich vascular bed of capillaries that vascularize the DRG before intravenous administration of anti-neoplastic or anti-HIV therapies, may offer a mechanism based approach to attenuate these chemically induced peripheral neuropathies in these patients.

  17. Establishment of reference CD4+ T cell values for adult Indian population

    Directory of Open Access Journals (Sweden)

    Ray Krishnangshu

    2011-10-01

    Full Text Available Abstract Background CD4+ T lymphocyte counts are the most important indicator of disease progression and success of antiretroviral treatment in HIV infection in resource limited settings. The nationwide reference range of CD4+ T lymphocytes was not available in India. This study was conducted to determine reference values of absolute CD4+ T cell counts and percentages for adult Indian population. Methods A multicentric study was conducted involving eight sites across the country. A total of 1206 (approximately 150 per/centre healthy participants were enrolled in the study. The ratio of male (N = 645 to female (N = 561 of 1.14:1. The healthy status of the participants was assessed by a pre-decided questionnaire. At all centers the CD4+ T cell count, percentages and absolute CD3+ T cell count and percentages were estimated using a single platform strategy and lyse no wash technique. The data was analyzed using the Statistical Package for the Social Scientist (SPSS, version 15 and Prism software version 5. Results The absolute CD4+ T cell counts and percentages in female participants were significantly higher than the values obtained in male participants indicating the true difference in the CD4+ T cell subsets. The reference range for absolute CD4 count for Indian male population was 381-1565 cells/μL and for female population was 447-1846 cells/μL. The reference range for CD4% was 25-49% for male and 27-54% for female population. The reference values for CD3 counts were 776-2785 cells/μL for Indian male population and 826-2997 cells/μL for female population. Conclusion The study used stringent procedures for controlling the technical variation in the CD4 counts across the sites and thus could establish the robust national reference ranges for CD4 counts and percentages. These ranges will be helpful in staging the disease progression and monitoring antiretroviral therapy in HIV infection in India.

  18. RAW CHICKEN LEG AND BREAST SENSORY EVALUATION

    Directory of Open Access Journals (Sweden)

    Octavian Baston

    2010-01-01

    Full Text Available In the paper we presented a method of sensorial evaluation for chicken meat (red and white. This is a descriptive method of analysis. It was perform with trained assessors for chicken refrigerated raw meat organoleptical evaluation. The sensorial attributes considered were: external aspect of anatomical part of chicken analyzed by slime, the surface odor, the skin and muscle color and muscular elasticity. Color was determined for the skin and white and red muscles. Our scale of analysis is formed by three values that characterize each quality attribute. The trained assessor appreciated the sensorial quality of raw anatomical part of chicken as excellent, acceptable and unacceptable. The objectives were: to establish the sensorial attributes to be analyzed for each type of muscular fiber, to describe the quality of each considered attribute and to realize a sensorial scale of quantification for the considered sensorial attributes. Our purpose was to determine the quality of the red and white refrigerated raw chicken anatomical parts (respectively for legs and breasts after one week of storage.

  19. Sensory subtypes in children with autism spectrum disorder: latent profile transition analysis using a national survey of sensory features.

    Science.gov (United States)

    Ausderau, Karla K; Furlong, Melissa; Sideris, John; Bulluck, John; Little, Lauren M; Watson, Linda R; Boyd, Brian A; Belger, Aysenil; Dickie, Virginia A; Baranek, Grace T

    2014-08-01

    Sensory features are highly prevalent and heterogeneous among children with ASD. There is a need to identify homogenous groups of children with ASD based on sensory features (i.e., sensory subtypes) to inform research and treatment. Sensory subtypes and their stability over 1 year were identified through latent profile transition analysis (LPTA) among a national sample of children with ASD. Data were collected from caregivers of children with ASD ages 2-12 years at two time points (Time 1 N = 1294; Time 2 N = 884). Four sensory subtypes (Mild; Sensitive-Distressed; Attenuated-Preoccupied; Extreme-Mixed) were identified, which were supported by fit indices from the LPTA as well as current theoretical models that inform clinical practice. The Mild and Extreme-Mixed subtypes reflected quantitatively different sensory profiles, while the Sensitive-Distressed and Attenuated-Preoccupied subtypes reflected qualitatively different profiles. Further, subtypes reflected differential child (i.e., gender, developmental age, chronological age, autism severity) and family (i.e., income, mother's education) characteristics. Ninety-one percent of participants remained stable in their subtypes over 1 year. Characterizing the nature of homogenous sensory subtypes may facilitate assessment and intervention, as well as potentially inform biological mechanisms. © 2014 The Authors. Journal of Child Psychology and Psychiatry. © 2014 Association for Child and Adolescent Mental Health.

  20. Error-based analysis of optimal tuning functions explains phenomena observed in sensory neurons

    Directory of Open Access Journals (Sweden)

    Steve Yaeli

    2010-10-01

    Full Text Available Biological systems display impressive capabilities in effectively responding to environmental signals in real time. There is increasing evidence that organisms may indeed be employing near optimal Bayesian calculations in their decision-making. An intriguing question relates to the properties of optimal encoding methods, namely determining the properties of neural populations in sensory layers that optimize performance, subject to physiological constraints. Within an ecological theory of neural encoding/decoding, we show that optimal Bayesian performance requires neural adaptation which reflects environmental changes. Specifically, we predict that neuronal tuning functions possess an optimal width, which increases with prior uncertainty and environmental noise, and decreases with the decoding time window. Furthermore, even for static stimuli, we demonstrate that dynamic sensory tuning functions, acting at relatively short time scales, lead to improved performance. Interestingly, the narrowing of tuning functions as a function of time was recently observed in several biological systems. Such results set the stage for a functional theory which may explain the high reliability of sensory systems, and the utility of neuronal adaptation occurring at multiple time scales.

  1. Error-based analysis of optimal tuning functions explains phenomena observed in sensory neurons.

    Science.gov (United States)

    Yaeli, Steve; Meir, Ron

    2010-01-01

    Biological systems display impressive capabilities in effectively responding to environmental signals in real time. There is increasing evidence that organisms may indeed be employing near optimal Bayesian calculations in their decision-making. An intriguing question relates to the properties of optimal encoding methods, namely determining the properties of neural populations in sensory layers that optimize performance, subject to physiological constraints. Within an ecological theory of neural encoding/decoding, we show that optimal Bayesian performance requires neural adaptation which reflects environmental changes. Specifically, we predict that neuronal tuning functions possess an optimal width, which increases with prior uncertainty and environmental noise, and decreases with the decoding time window. Furthermore, even for static stimuli, we demonstrate that dynamic sensory tuning functions, acting at relatively short time scales, lead to improved performance. Interestingly, the narrowing of tuning functions as a function of time was recently observed in several biological systems. Such results set the stage for a functional theory which may explain the high reliability of sensory systems, and the utility of neuronal adaptation occurring at multiple time scales.

  2. Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration

    Directory of Open Access Journals (Sweden)

    Rahul Mittal

    2017-07-01

    Full Text Available Neurosensory responses of hearing and balance are mediated by receptors in specialized neuroepithelial sensory cells. Any disruption of the biochemical and molecular pathways that facilitate these responses can result in severe deficits, including hearing loss and vestibular dysfunction. Hearing is affected by both environmental and genetic factors, with impairment of auditory function being the most common neurosensory disorder affecting 1 in 500 newborns, as well as having an impact on the majority of elderly population. Damage to auditory sensory cells is not reversible, and if sufficient damage and cell death have taken place, the resultant deficit may lead to permanent deafness. Cochlear implants are considered to be one of the most successful and consistent treatments for deaf patients, but only offer limited recovery at the expense of loss of residual hearing. Recently there has been an increased interest in the auditory research community to explore the regeneration of mammalian auditory hair cells and restoration of their function. In this review article, we examine a variety of recent therapies, including genetic, stem cell and molecular therapies as well as discussing progress being made in genome editing strategies as applied to the restoration of hearing function.

  3. Cellular population dynamics control the robustness of the stem cell niche

    Directory of Open Access Journals (Sweden)

    Adam L. MacLean

    2015-11-01

    Full Text Available Within populations of cells, fate decisions are controlled by an indeterminate combination of cell-intrinsic and cell-extrinsic factors. In the case of stem cells, the stem cell niche is believed to maintain ‘stemness’ through communication and interactions between the stem cells and one or more other cell-types that contribute to the niche conditions. To investigate the robustness of cell fate decisions in the stem cell hierarchy and the role that the niche plays, we introduce simple mathematical models of stem and progenitor cells, their progeny and their interplay in the niche. These models capture the fundamental processes of proliferation and differentiation and allow us to consider alternative possibilities regarding how niche-mediated signalling feedback regulates the niche dynamics. Generalised stability analysis of these stem cell niche systems enables us to describe the stability properties of each model. We find that although the number of feasible states depends on the model, their probabilities of stability in general do not: stem cell–niche models are stable across a wide range of parameters. We demonstrate that niche-mediated feedback increases the number of stable steady states, and show how distinct cell states have distinct branching characteristics. The ecological feedback and interactions mediated by the stem cell niche thus lend (surprisingly high levels of robustness to the stem and progenitor cell population dynamics. Furthermore, cell–cell interactions are sufficient for populations of stem cells and their progeny to achieve stability and maintain homeostasis. We show that the robustness of the niche – and hence of the stem cell pool in the niche – depends only weakly, if at all, on the complexity of the niche make-up: simple as well as complicated niche systems are capable of supporting robust and stable stem cell dynamics.

  4. Genetics Home Reference: hereditary sensory neuropathy type IA

    Science.gov (United States)

    ... sensory neuropathy type IA Hereditary sensory neuropathy type IA Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Hereditary sensory neuropathy type IA is a condition characterized by nerve abnormalities in ...

  5. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S.; Tanaka, J.; Okada, S.; Isobe, T.; Yamamoto, G.; Yasuhara, R.; Irie, T.; Akiyama, C.; Kohno, Y.; Tachikawa, T.; Mishima, K., E-mail: mishima-k@dent.showa-u.ac.jp

    2013-05-01

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment - Highlights: ► Lin28a is a SP cell-specific factor in oral squamous cell carcinoma (OSCC) cells. ► SP cells in OSCC cells show cancer stem cell-like properties. ► Lin28a regulates OSCC proliferative and invasive activities.

  6. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Hayashi, S.; Tanaka, J.; Okada, S.; Isobe, T.; Yamamoto, G.; Yasuhara, R.; Irie, T.; Akiyama, C.; Kohno, Y.; Tachikawa, T.; Mishima, K.

    2013-01-01

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment - Highlights: ► Lin28a is a SP cell-specific factor in oral squamous cell carcinoma (OSCC) cells. ► SP cells in OSCC cells show cancer stem cell-like properties. ► Lin28a regulates OSCC proliferative and invasive activities

  7. Management of postural sensory conflict and dynamic balance control in late-stage Parkinson's disease.

    Science.gov (United States)

    Colnat-Coulbois, S; Gauchard, G C; Maillard, L; Barroche, G; Vespignani, H; Auque, J; Perrin, P P

    2011-10-13

    Parkinson's disease (PD) is known to affect postural control, especially in situations needing a change in balance strategy or when a concurrent task is simultaneously performed. However, few studies assessing postural control in patients with PD included homogeneous population in late stage of the disease. Thus, this study aimed to analyse postural control and strategies in a homogeneous population of patients with idiopathic advanced (late-stage) PD, and to determine the contribution of peripheral inputs in simple and more complex postural tasks, such as sensory conflicting and dynamic tasks. Twenty-four subjects with advanced PD (duration: median (M)=11.0 years, interquartile range (IQR)=4.3 years; Unified Parkinson's Disease Rating Scale (UPDRS): M "on-dopa"=13.5, IQR=7.8; UPDRS: M "off-dopa"=48.5, IQR=16.8; Hoehn and Yahr stage IV in all patients) and 48 age-matched healthy controls underwent static (SPT) and dynamic posturographic (DPT) tests and a sensory organization test (SOT). In SPT, patients with PD showed reduced postural control precision with increased oscillations in both anterior-posterior and medial-lateral planes. In SOT, patients with PD displayed reduced postural performances especially in situations in which visual and vestibular cues became predominant to organize balance control, as was the ability to manage balance in situations for which visual or proprioceptive inputs are disrupted. In DPT, postural restabilization strategies were often inefficient to maintain equilibrium resulting in falls. Postural strategies were often precarious, postural regulation involving more hip joint than ankle joint in patients with advanced PD than in controls. Difficulties in managing complex postural situations, such as sensory conflicting and dynamic situations might reflect an inadequate sensory organization suggesting impairment in central information processing. Copyright © 2011. Published by Elsevier Ltd.

  8. Proficiency testing for sensory profile panels : measuring panel performance

    NARCIS (Netherlands)

    Mcewan, J.A.; Hunter, E.A.; Gemert, L.J. van; Lea, P.

    2002-01-01

    Proficiency testing in sensory analysis is an important step towards demonstrating that results from one sensory panel are consistent with the results of other sensory panels. The uniqueness of sensory analysis poses some specific problems for measuring the proficiency of the human instrument

  9. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations

    DEFF Research Database (Denmark)

    Harkness, Linda; Zaher, Walid; Ditzel, Nicholas

    2016-01-01

    BACKGROUND: Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous hMSC...... population. METHODS: Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high...... and adipocytes on the basis of gene expression and protein production of lineage-specific markers. In vivo, hMSC-CD146(+) and hMSC-CD146(-) cells formed bone and bone marrow organ when implanted subcutaneously in immune-deficient mice. Bone was enriched in hMSC-CD146(-) cells (12.6 % versus 8.1 %) and bone...

  10. Opening of pannexin and connexin based-channels increases the excitability of nodose ganglion sensory neurons.

    Directory of Open Access Journals (Sweden)

    Mauricio Antonio Retamal

    2014-06-01

    Full Text Available Satellite glial cells (SGCs are the main glia in sensory ganglia. They surround neuronal bodies and form a cap that prevents the formation of chemical or electrical synapses between neighboring neurons. SGCs have been suggested to establish bidirectional paracrine communication with sensory neurons. However, the molecular mechanism involved in this cellular communication is unknown. In the central nervous system, astrocytes present connexin43 (Cx43 hemichannels and pannexin1 (Panx1 channels, and their opening allows the release of signal molecules, such as ATP and glutamate. We propose that these channels could play a role in the glia-neuron communication in sensory ganglia. Therefore, we studied the expression and function of Cx43 and Panx1 in rat and mouse nodose-petrosal-jugular complex (NPJc by confocal immunofluorescence, molecular and electrophysiological techniques. Cx43 and Panx1 were detected in SGCs and sensory neurons, respectively. In the rat and mouse, the electrical activity of vagal nerve increased significantly after nodose neurons were exposed to Ca2+/ Mg2+-free solution, a condition that increases the open probability of Cx hemichannels. This response was partially mimicked by a cell-permeable peptide corresponding to the last 10 amino acids of Cx43 (TAT-Cx43CT. Enhanced neuronal activity was reduced by Cx hemichannel, Panx1 channel and P2X7 receptor blockers. Moreover, the role of Panx1 was confirmed in NPJc, because Panx1 knockout mouse showed a reduced increase of neuronal activity induced by Ca2+/Mg2+-free extracellular conditions. Data suggest that Cx hemichannels and Panx channels serve as paracrine communication pathways between SGCs and neurons by modulating the excitability of sensory neurons.

  11. HOX and TALE signatures specify human stromal stem cell populations from different sources.

    Science.gov (United States)

    Picchi, Jacopo; Trombi, Luisa; Spugnesi, Laura; Barachini, Serena; Maroni, Giorgia; Brodano, Giovanni Barbanti; Boriani, Stefano; Valtieri, Mauro; Petrini, Mario; Magli, Maria Cristina

    2013-04-01

    Human stromal stem cell populations reside in different tissues and anatomical sites, however a critical question related to their efficient use in regenerative medicine is whether they exhibit equivalent biological properties. Here, we compared cellular and molecular characteristics of stromal stem cells derived from the bone marrow, at different body sites (iliac crest, sternum, and vertebrae) and other tissues (dental pulp and colon). In particular, we investigated whether homeobox genes of the HOX and TALE subfamilies might provide suitable markers to identify distinct stromal cell populations, as HOX proteins control cell positional identity and, together with their co-factors TALE, are involved in orchestrating differentiation of adult tissues. Our results show that stromal populations from different sources, although immunophenotypically similar, display distinct HOX and TALE signatures, as well as different growth and differentiation abilities. Stromal stem cells from different tissues are characterized by specific HOX profiles, differing in the number and type of active genes, as well as in their level of expression. Conversely, bone marrow-derived cell populations can be essentially distinguished for the expression levels of specific HOX members, strongly suggesting that quantitative differences in HOX activity may be crucial. Taken together, our data indicate that the HOX and TALE profiles provide positional, embryological and hierarchical identity of human stromal stem cells. Furthermore, our data suggest that cell populations derived from different body sites may not represent equivalent cell sources for cell-based therapeutical strategies for regeneration and repair of specific tissues. Copyright © 2012 Wiley Periodicals, Inc.

  12. Relations between rheological properties, saliva-induced structure breakdown and sensory texture attributes of custards

    NARCIS (Netherlands)

    Janssen, A.M.; Terpstra, M.E.J.; Wijk, R.A.de; Prinz, J.F.

    2007-01-01

    The relevance of initial rheological properties and mechanical and enzymatic structure breakdown in determining selected sensory texture attributes of custards was studied. The so-called structure breakdown cell was used to characterize saliva-induced breakdown, i.e., by monitoring digestion of

  13. Neural correlates supporting sensory discrimination after left hemisphere stroke

    Science.gov (United States)

    Borstad, Alexandra; Schmalbrock, Petra; Choi, Seongjin; Nichols-Larsen, Deborah S.

    2012-01-01

    Background Nearly half of stroke patients have impaired sensory discrimination, however, the neural structures that support post-stroke sensory function have not been described. Objectives 1) To evaluate the role of the primary somatosensory (S1) cortex in post-stroke sensory discrimination and 2) To determine the relationship between post-stroke sensory discrimination and structural integrity of the sensory component of the superior thalamic radiation (sSTR). Methods 10 healthy adults and 10 individuals with left hemisphere stroke participated. Stroke participants completed sensory discrimination testing. An fMRI was conducted during right, impaired hand sensory discrimination. Fractional anisotropy and volume of the sSTR were quantified using diffusion tensor tractography. Results Sensory discrimination was impaired in 60% of participants with left stroke. Peak activation in the left (S1) did not correlate with sensory discrimination ability, rather a more distributed pattern of activation was evident in post-stroke subjects with a positive correlation between peak activation in the parietal cortex and discrimination ability (r=.70, p=.023). The only brain region in which stroke participants had significantly different cortical activation than control participants was the precuneus. Region of interest analysis of the precuneus across stroke participants revealed a positive correlation between peak activation and sensory discrimination ability (r=.77, p=.008). The L/R ratio of sSTR fractional anisotropy also correlated with right hand sensory discrimination (r=.69, p=.027). Conclusions Precuneus cortex, distributed parietal lobe activity, and microstructure of the sSTR support sensory discrimination after left hemisphere stroke. PMID:22592076

  14. Gross and Fine Dissection of Inner Ear Sensory Epithelia in Adult Zebrafish (Danio rerio)

    OpenAIRE

    Liang, Jin; Burgess, Shawn M.

    2009-01-01

    Neurosensory epithelia in the inner ear are the crucial structures for hearing and balance functions. Therefore, it is important to understand the cellular and molecular features of the epithelia, which are mainly composed of two types of cells: hair cells (HCs) and supporting cells (SCs). Here we choose to study the inner ear sensory epithelia in adult zebrafish not only because the epithelial structures are highly conserved in all vertebrates studied, but also because the adult zebrafish is...

  15. Receptors for sensory neuropeptides in human inflammatory diseases: Implications for the effector role of sensory neurons

    International Nuclear Information System (INIS)

    Mantyh, P.W.; Catton, M.D.; Boehmer, C.G.; Welton, M.L.; Passaro, E.P. Jr.; Maggio, J.E.; Vigna, S.R.

    1989-01-01

    Glutamate and several neuropeptides are synthesized and released by subpopulations of primary afferent neurons. These sensory neurons play a role in regulating the inflammatory and immune responses in peripheral tissues. Using quantitative receptor autoradiography we have explored what changes occur in the location and concentration of receptor binding sites for sensory neurotransmitters in the colon in two human inflammatory diseases, ulcerative colitis and Crohn's disease. The sensory neurotransmitter receptors examined included bombesin, calcitonin gene related peptide-alpha, cholecystokinin, galanin, glutamate, somatostatin, neurokinin A (substance K), substance P, and vasoactive intestinal polypeptide. Of the nine receptor binding sites examined only substance P binding sites associated with arterioles, venules and lymph nodules were dramatically up-regulated in the inflamed tissue. These data suggest that substance P is involved in regulating the inflammatory and immune responses in human inflammatory diseases and indicate a specificity of efferent action for each sensory neurotransmitter in peripheral tissues

  16. Cellular and circuit mechanisms maintain low spike co-variability and enhance population coding in somatosensory cortex

    Directory of Open Access Journals (Sweden)

    Cheng eLy

    2012-03-01

    Full Text Available The responses of cortical neurons are highly variable across repeated presentations of a stimulus. Understanding this variability is critical for theories of both sensory and motor processing, since response variance affects the accuracy of neural codes. Despite this influence, the cellular and circuit mechanisms that shape the trial-to-trial variability of population responses remain poorly understood. We used a combination of experimental and computational techniques to uncover the mechanisms underlying response variability of populations of pyramidal (E cells in layer 2/3 of rat whisker barrel cortex. Spike trains recorded from pairs of E-cells during either spontaneous activity or whisker deflected responses show similarly low levels of spiking co-variability, despite large differences in network activation between the two states. We developed network models that show how spike threshold nonlinearities dilutes E-cell spiking co-variability during spontaneous activity and low velocity whisker deflections. In contrast, during high velocity whisker deflections, cancelation mechanisms mediated by feedforward inhibition maintain low E-cell pairwise co-variability. Thus, the combination of these two mechanisms ensure low E-cell population variability over a wide range of whisker deflection velocities. Finally, we show how this active decorrelation of population variability leads to a drastic increase in the population information about whisker velocity. The canonical cellular and circuit components of our study suggest that low network variability over a broad range of neural states may generalize across the nervous system.

  17. The Drosophila T-box transcription factor Midline functions within the Notch–Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc

    Science.gov (United States)

    Das, Sudeshna; Chen, Q. Brent; Saucier, Joseph D.; Drescher, Brandon; Zong, Yan; Morgan, Sarah; Forstall, John; Meriwether, Andrew; Toranzo, Randy; Leal, Sandra M.

    2014-01-01

    We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch–Delta signaling pathway essential for specifying the fates of sensory organ precursor cells. This complements an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in diverse neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch–Delta signaling hierarchy and is essential for maintaining cell viability within by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis. PMID:23962751

  18. Embodied thermal environments: an examination of older-people's sensory experiences in a variety of residential types

    International Nuclear Information System (INIS)

    Henshaw, Victoria; Guy, Simon

    2015-01-01

    Thermal sensations of space, namely temperature, humidity and the movement of air, can be difficult to separate from other sensory information such as the sound of fans or ventilation equipment, or the smell of damp or cool fresh air. Despite this factor, efforts to reduce the consumption of energy through the installation of low-carbon technologies including sealed whole-building systems frequently isolate the thermal environment and fail to recognise and respond to the influence of other sensory information on personal preferences and behaviours. Older people represent an increasing proportion of the UK's population, can be faced with a range of physiological challenges associated with ageing, and sometimes have long-established personal preferences. Drawing from data collected across the Conditioning Demand Project, this paper explores the embodied nature of older people's experiences of low-carbon and more traditional thermal technologies in private residences, extra-care housing and residential care-homes, focussing specifically upon auditory and olfactory stimulus. Exploring the management of the sensory experience across these settings, we analyse each case to inform the development of new design and policy approaches to tackling housing for older people. In doing so, we further build connections between energy research and debates around sensory urbanism. -- Highlights: •Some thermal technologies present particular sensory issues and problems for older people. •Older people use a range of sensory stimuli in evaluating and controlling thermal environments. •Older people use non-thermal sensory information when selecting between thermal technologies. •Sensory information plays an important role in thermal technology maintenance

  19. Electromagnetic Characterization Of Metallic Sensory Alloy

    Science.gov (United States)

    Wincheski, Russell A.; Simpson, John; Wallace, Terryl A.; Newman, John A.; Leser, Paul; Lahue, Rob

    2012-01-01

    Ferromagnetic shape-memory alloy (FSMA) particles undergo changes in both electromagnetic properties and crystallographic structure when strained. When embedded in a structural material, these attributes can provide sensory output of the strain state of the structure. In this work, a detailed characterization of the electromagnetic properties of a FSMA under development for sensory applications is performed. In addition, a new eddy current probe is used to interrogate the electromagnetic properties of individual FSMA particles embedded in the sensory alloy during controlled fatigue tests on the multifunctional material.

  20. Neurophysiological bases of exponential sensory decay and top-down memory retrieval: a model.

    Science.gov (United States)

    Zylberberg, Ariel; Dehaene, Stanislas; Mindlin, Gabriel B; Sigman, Mariano

    2009-01-01

    Behavioral observations suggest that multiple sensory elements can be maintained for a short time, forming a perceptual buffer which fades after a few hundred milliseconds. Only a subset of this perceptual buffer can be accessed under top-down control and broadcasted to working memory and consciousness. In turn, single-cell studies in awake-behaving monkeys have identified two distinct waves of response to a sensory stimulus: a first transient response largely determined by stimulus properties and a second wave dependent on behavioral relevance, context and learning. Here we propose a simple biophysical scheme which bridges these observations and establishes concrete predictions for neurophsyiological experiments in which the temporal interval between stimulus presentation and top-down allocation is controlled experimentally. Inspired in single-cell observations, the model involves a first transient response and a second stage of amplification and retrieval, which are implemented biophysically by distinct operational modes of the same circuit, regulated by external currents. We explicitly investigated the neuronal dynamics, the memory trace of a presented stimulus and the probability of correct retrieval, when these two stages were bracketed by a temporal gap. The model predicts correctly the dependence of performance with response times in interference experiments suggesting that sensory buffering does not require a specific dedicated mechanism and establishing a direct link between biophysical manipulations and behavioral observations leading to concrete predictions.

  1. Neurophysiological bases of exponential sensory decay and top-down memory retrieval: a model

    Directory of Open Access Journals (Sweden)

    Ariel Zylberberg

    2009-03-01

    Full Text Available Behavioral observations suggest that multiple sensory elements can be maintained for a short time, forming a perceptual buffer which fades after a few hundred milliseconds. Only a subset of this perceptual buffer can be accessed under top-down control and broadcasted to working memory and consciousness. In turn, single-cell studies in awake-behaving monkeys have identified two distinct waves of response to a sensory stimulus: a first transient response largely determined by stimulus properties and a second wave dependent on behavioral relevance, context and learning. Here we propose a simple biophysical scheme which bridges these observations and establishes concrete predictions for neurophsyiological experiments in which the temporal interval between stimulus presentation and top-down allocation is controlled experimentally. Inspired in single-cell observations, the model involves a first transient response and a second stage of amplification and retrieval, which are implemented biophysically by distinct operational modes of the same circuit, regulated by external currents. We explicitly investigated the neuronal dynamics, the memory trace of a presented stimulus and the probability of correct retrieval, when these two stages were bracketed by a temporal gap. The model predicts correctly the dependence of performance with response times in interference experiments suggesting that sensory buffering does not require a specific dedicated mechanism and establishing a direct link between biophysical manipulations and behavioral observations leading to concrete predictions.

  2. A dual-trace model for visual sensory memory.

    Science.gov (United States)

    Cappiello, Marcus; Zhang, Weiwei

    2016-11-01

    Visual sensory memory refers to a transient memory lingering briefly after the stimulus offset. Although previous literature suggests that visual sensory memory is supported by a fine-grained trace for continuous representation and a coarse-grained trace of categorical information, simultaneous separation and assessment of these traces can be difficult without a quantitative model. The present study used a continuous estimation procedure to test a novel mathematical model of the dual-trace hypothesis of visual sensory memory according to which visual sensory memory could be modeled as a mixture of 2 von Mises (2VM) distributions differing in standard deviation. When visual sensory memory and working memory (WM) for colors were distinguished using different experimental manipulations in the first 3 experiments, the 2VM model outperformed Zhang and Luck (2008) standard mixture model (SM) representing a mixture of a single memory trace and random guesses, even though SM outperformed 2VM for WM. Experiment 4 generalized 2VM's advantages of fitting visual sensory memory data over SM from color to orientation. Furthermore, a single trace model and 4 other alternative models were ruled out, suggesting the necessity and sufficiency of dual traces for visual sensory memory. Together these results support the dual-trace model of visual sensory memory and provide a preliminary inquiry into the nature of information loss from visual sensory memory to WM. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. Thermodynamic limits to information harvesting by sensory systems

    International Nuclear Information System (INIS)

    Bo, Stefano; Giudice, Marco Del; Celani, Antonio

    2015-01-01

    In view of the relation between information and thermodynamics we investigate how much information about an external protocol can be stored in the memory of a stochastic measurement device given an energy budget. We consider a layered device with a memory component storing information about the external environment by monitoring the history of a sensory part coupled to the environment. We derive an integral fluctuation theorem for the entropy production and a measure of the information accumulated in the memory device. Its most immediate consequence is that the amount of information is bounded by the average thermodynamic entropy produced by the process. At equilibrium no entropy is produced and therefore the memory device does not add any information about the environment to the sensory component. Consequently, if the system operates at equilibrium the addition of a memory component is superfluous. Such a device can be used to model the sensing process of a cell measuring the external concentration of a chemical compound and encoding the measurement in the amount of phosphorylated cytoplasmic proteins. (paper)

  4. Believing and perceiving: authorship belief modulates sensory attenuation.

    Directory of Open Access Journals (Sweden)

    Andrea Desantis

    Full Text Available Sensory attenuation refers to the observation that self-generated stimuli are attenuated, both in terms of their phenomenology and their cortical response compared to the same stimuli when generated externally. Accordingly, it has been assumed that sensory attenuation might help individuals to determine whether a sensory event was caused by themselves or not. In the present study, we investigated whether this dependency is reciprocal, namely whether sensory attenuation is modulated by prior beliefs of authorship. Participants had to judge the loudness of auditory effects that they believed were either self-generated or triggered by another person. However, in reality, the sounds were always triggered by the participants' actions. Participants perceived the tones' loudness attenuated when they believed that the sounds were self-generated compared to when they believed that they were generated by another person. Sensory attenuation is considered to contribute to the emergence of people's belief of authorship. Our results suggest that sensory attenuation is also a consequence of prior belief about the causal link between an action and a sensory change in the environment.

  5. Upper gastrointestinal sensory-motor dysfunction in diabetes mellitus

    Science.gov (United States)

    Zhao, Jing-Bo; Frøkjær, Jens Brøndum; Drewes, Asbjørn Mohr; Ejskjaer, Niels

    2006-01-01

    Gastrointestinal (GI) sensory-motor abnormalities are common in patients with diabetes mellitus and may involve any part of the GI tract. Abnormalities are frequently sub-clinical, and fortunately only rarely do severe and life-threatening problems occur. The pathogenesis of abnormal upper GI sensory-motor function in diabetes is incompletely understood and is most likely multi-factorial of origin. Diabetic autonomic neuropathy as well as acute suboptimal control of diabetes has been shown to impair GI motor and sensory function. Morphological and biomechanical remodeling of the GI wall develops during the duration of diabetes, and may contribute to motor and sensory dysfunction. In this review sensory and motility disorders of the upper GI tract in diabetes is discussed; and the morphological changes and biomechanical remodeling related to the sensory-motor dysfunction is also addressed. PMID:16718808

  6. Encapsulated sensory corpuscle in the mucosa of human vocal cord: an electron microscope study.

    Science.gov (United States)

    Nagai, T

    1982-05-01

    Encapsulated sensory corpuscles of the Krause type were found in the mucosa of surgically removed human vocal cords. The corpuscles were ellipsoidal structures of about 30 to 50 micrometers and were located beneath the free edge in the mid-region along the intermembranous part. They contained a number of varicose nerve endings and lamellar cells. The lamellar cells had thin cytoplasmic lamellae which contained numerous cytoplasmic filaments and were interposed between the nerve endings. Attachment devices were frequently noted between the cytoplasmic lamellae and between the lamellae and nerve endings. Half-desmosomes were also noted along the plasma membrane of the lamellar cells. The intercellular space was filled with amorphous electron lucent material and contained a few collagen fibrils. Ladder-like filamentous structures were frequently encountered in the intercellular space. The location of the corpuscles at the free edge of the vocal cords suggests that the endings may receive the bilateral touch of the vibrating part of the cords in order to give sensory information for the control of the movement of the cords in phonation.

  7. On interfaces between cell populations with different mobilities

    KAUST Repository

    Lorenzi, Tommaso; Lorz, Alexander; Perthame, Benoit

    2016-01-01

    Partial differential equations describing the dynamics of cell population densities from a fluid mechanical perspective can model the growth of avascular tumours. In this framework, we consider a system of equations that describes the interaction

  8. The effects of gamma irradiation on the microbiological, physical and sensory qualities of diced tomatoes

    International Nuclear Information System (INIS)

    Prakash, Anuradha; Manley, Jacqueline; DeCosta, Suresh; Caporaso, Fred; Foley, Denise

    2002-01-01

    Diced Roma tomatoes were treated with gamma irradiation and evaluated for changes in microbial, physical, chemical and sensory properties. Dosages for Trial 1 were 0.0, 0.39, 0.56 and 1.82 kGy and in Trial 2, 0.0, 0.50, 1.24 and 3.70 kGy. Irradiation at 3.70 kGy resulted in no aerobic populations through day 12 and significantly fewer colonies through day 15 whereas yeast and mold populations experienced a 2 log reduction through day 12. Color, titratable acidity, and deg. Brix were not significantly affected by irradiation. Tissue firmness decreased with increasing dose but not with storage time. Treatment with 3.7 kGy decreased firmness by 50% and 20% with 0.5 kGy, however, the reduced firmness induced by 0.50 kGy was undetected by a 9 member trained sensory panel. A significant (p≤0.05) inverse correlation between changes in texture and water-soluble pectin (WSP) was determined while total pectin remained relatively constant and oxalate soluble pectin content decreased slightly with irradiation dose. The significant inverse correlation between the loss of firmness and WSP indicates that the changes in WSP play an important role in the tissue softening of tomatoes, This study indicates that irradiation at 0.5 kGy can reduce microbial counts substantially to improve microbial shelf life without adverse effects on sensory qualities

  9. A distinct hematopoietic stem cell population for rapid multilineage engraftment in nonhuman primates.

    Science.gov (United States)

    Radtke, Stefan; Adair, Jennifer E; Giese, Morgan A; Chan, Yan-Yi; Norgaard, Zachary K; Enstrom, Mark; Haworth, Kevin G; Schefter, Lauren E; Kiem, Hans-Peter

    2017-11-01

    Hematopoietic reconstitution after bone marrow transplantation is thought to be driven by committed multipotent progenitor cells followed by long-term engrafting hematopoietic stem cells (HSCs). We observed a population of early-engrafting cells displaying HSC-like behavior, which persisted long-term in vivo in an autologous myeloablative transplant model in nonhuman primates. To identify this population, we characterized the phenotype and function of defined nonhuman primate hematopoietic stem and progenitor cell (HSPC) subsets and compared these to human HSPCs. We demonstrated that the CD34 + CD45RA - CD90 + cell phenotype is highly enriched for HSCs. This population fully supported rapid short-term recovery and robust multilineage hematopoiesis in the nonhuman primate transplant model and quantitatively predicted transplant success and time to neutrophil and platelet recovery. Application of this cell population has potential in the setting of HSC transplantation and gene therapy/editing approaches. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Predicting Psychotic-Like Experiences during Sensory Deprivation

    Science.gov (United States)

    Daniel, Christina; Mason, Oliver J.

    2015-01-01

    Aims. This study aimed to establish the contribution of hallucination proneness, anxiety, suggestibility, and fantasy proneness to psychotic-like experiences (PLEs) reported during brief sensory deprivation. Method. Twenty-four high and 22 low hallucination-prone participants reported on PLEs occurring during brief sensory deprivation and at baseline. State/trait anxiety, suggestibility, and fantasy proneness were also measured. Results. Both groups experienced a significant increase in PLEs in sensory deprivation. The high hallucination prone group reported more PLEs both at baseline and in sensory deprivation. They also scored significantly higher on measures of state/trait anxiety, suggestibility, and fantasy proneness, though these did not explain the effects of group or condition. Regression analysis found hallucination proneness to be the best predictor of the increase in PLEs, with state anxiety also being a significant predictor. Fantasy proneness and suggestibility were not significant predictors. Conclusion. This study suggests the increase in PLEs reported during sensory deprivation reflects a genuine aberration in perceptual experience, as opposed to increased tendency to make false reports due to suggestibility of fantasy proneness. The study provides further support for the use of sensory deprivation as a safe and effective nonpharmacological model of psychosis. PMID:25811027

  11. Predicting Psychotic-Like Experiences during Sensory Deprivation

    Directory of Open Access Journals (Sweden)

    Christina Daniel

    2015-01-01

    Full Text Available Aims. This study aimed to establish the contribution of hallucination proneness, anxiety, suggestibility, and fantasy proneness to psychotic-like experiences (PLEs reported during brief sensory deprivation. Method. Twenty-four high and 22 low hallucination-prone participants reported on PLEs occurring during brief sensory deprivation and at baseline. State/trait anxiety, suggestibility, and fantasy proneness were also measured. Results. Both groups experienced a significant increase in PLEs in sensory deprivation. The high hallucination prone group reported more PLEs both at baseline and in sensory deprivation. They also scored significantly higher on measures of state/trait anxiety, suggestibility, and fantasy proneness, though these did not explain the effects of group or condition. Regression analysis found hallucination proneness to be the best predictor of the increase in PLEs, with state anxiety also being a significant predictor. Fantasy proneness and suggestibility were not significant predictors. Conclusion. This study suggests the increase in PLEs reported during sensory deprivation reflects a genuine aberration in perceptual experience, as opposed to increased tendency to make false reports due to suggestibility of fantasy proneness. The study provides further support for the use of sensory deprivation as a safe and effective nonpharmacological model of psychosis.

  12. Novel microchip-based tools facilitating live cell imaging and assessment of functional heterogeneity within NK cell populations

    Directory of Open Access Journals (Sweden)

    Elin eForslund

    2012-10-01

    Full Text Available Each individual has a heterogeneous pool of NK cells consisting of cells that may be specialized towards specific functional responses such as secretion of cytokines or killing of tumor cells. Many conventional methods are not fit to characterize heterogeneous populations as they measure the average response of all cells. Thus, there is a need for experimental platforms that provide single cell resolution. In addition, there are also transient and stochastic variations in functional responses at the single cell level, calling for methods that allow studies of many events over extended times. This paper presents a versatile microchip platform enabling long-term microscopic studies of individual NK cells interacting with target cells. Each microchip contains an array of microwells, optimized for medium or high-resolution time-lapse imaging of single or multiple NK and target cells, or for screening of thousands of isolated NK-target cell interactions. Individual NK cells confined with target cells in small microwells is a suitable setup for high-content screening and rapid assessment of heterogeneity within populations, while microwells of larger dimensions are appropriate for studies of NK cell migration and sequential interactions with multiple target cells. By combining the chip technology with ultrasonic manipulation, NK and target cells can be forced to interact and positioned with high spatial accuracy within individual microwells. This setup effectively and synchronously creates NK-target conjugates at hundreds of parallel positions in the microchip. Thus, this facilitates assessment of temporal aspects of NK-target cell interactions, e.g. conjugation, immune synapse formation and cytotoxic events. The microchip platform presented here can be used to effectively address questions related to fundamental functions of NK cells that can lead to better understanding of how the behavior of individual cells add up to give a functional response at

  13. Reduced satellite cell population may lead to contractures in children with cerebral palsy.

    Science.gov (United States)

    Smith, Lucas R; Chambers, Henry G; Lieber, Richard L

    2013-03-01

    Satellite cells are the stem cells residing in muscle responsible for skeletal muscle growth and repair. Skeletal muscle in cerebral palsy (CP) has impaired longitudinal growth that results in muscle contractures. We hypothesized that the satellite cell population would be reduced in contractured muscle. We compared the satellite cell populations in hamstring muscles from participants with CP contracture (n=8; six males, two females; age range 6-15y; Gross Motor Function Classification System [GMFCS] levels II-V; 4 with hemiplegia, 4 with diplegia) and from typically developing participants (n=8; six males, two females, age range 15-18y). Muscle biopsies were extracted from the gracilis and semitendinosus muscles and mononuclear cells were isolated. Cell surface markers were stained with fluorescently conjugated antibodies to label satellite cells (neural cell adhesion molecule) and inflammatory and endothelial cells (CD34 and CD4 respectively). Cells were analyzed using flow cytometry to determine cell populations. After gating for intact cells a mean of 12.8% (SD 2.8%) were determined to be satellite cells in typically developing children, but only 5.3% (SD 2.3%; p0.05) suggesting the isolation procedure was valid. A reduced satellite cell population may account for the decreased longitudinal growth of muscles in CP that develop into fixed contractures or the decreased ability to strengthen muscle in CP. This suggests a unique musculoskeletal disease mechanism and provides a potential therapeutic target for debilitating muscle contractures. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  14. Static Posturography and Falls According to Pyramidal, Sensory and Cerebellar Functional Systems in People with Multiple Sclerosis

    Science.gov (United States)

    Kalron, Alon; Givon, Uri; Frid, Lior; Dolev, Mark; Achiron, Anat

    2016-01-01

    Balance impairment is common in people with multiple sclerosis (PwMS) and frequently impacts quality of life by decreasing mobility and increasing the risk of falling. However, there are only scarce data examining the contribution of specific neurological functional systems on balance measures in MS. Therefore, the primary aim of our study was to examine the differences in posturography parameters and fall incidence according to the pyramidal, cerebellar and sensory systems functional systems in PwMS. The study included 342 PwMS, 211 women and mean disease duration of 8.2 (S.D = 8.3) years. The study sample was divided into six groups according to the pyramidal, cerebellar and sensory functional system scores, derived from the Expanded Disability Status Scale (EDSS) data. Static postural control parameters were obtained from the Zebris FDM-T Treadmill (zebris® Medical GmbH, Germany). Participants were defined as "fallers" and "non-fallers" based on their fall history. Our findings revealed a trend that PwMS affected solely in the pyramidal system, have reduced stability compared to patients with cerebellar and sensory dysfunctions. Moreover, the addition of sensory impairments to pyramidal dysfunction does not exacerbate postural control. The patients in the pure sensory group demonstrated increased stability compared to each of the three combined groups; pyramidal-cerebellar, pyramidal-sensory and pyramidal-cerebellar-sensory groups. As for fall status, the percentage of fallers in the pure pyramidal, cerebellar and sensory groups were 44.3%, 33.3% and 19.5%, respectively. As for the combined functional system groups, the percentage of fallers in the pyramidal-cerebellar, pyramidal-sensory and pyramidal-cerebellar-sensory groups were 59.7%, 40.7% and 65%, respectively. This study confirms that disorders in neurological functional systems generate different effects on postural control and incidence of falls in the MS population. From a clinical standpoint, the

  15. Static Posturography and Falls According to Pyramidal, Sensory and Cerebellar Functional Systems in People with Multiple Sclerosis.

    Science.gov (United States)

    Kalron, Alon; Givon, Uri; Frid, Lior; Dolev, Mark; Achiron, Anat

    2016-01-01

    Balance impairment is common in people with multiple sclerosis (PwMS) and frequently impacts quality of life by decreasing mobility and increasing the risk of falling. However, there are only scarce data examining the contribution of specific neurological functional systems on balance measures in MS. Therefore, the primary aim of our study was to examine the differences in posturography parameters and fall incidence according to the pyramidal, cerebellar and sensory systems functional systems in PwMS. The study included 342 PwMS, 211 women and mean disease duration of 8.2 (S.D = 8.3) years. The study sample was divided into six groups according to the pyramidal, cerebellar and sensory functional system scores, derived from the Expanded Disability Status Scale (EDSS) data. Static postural control parameters were obtained from the Zebris FDM-T Treadmill (zebris® Medical GmbH, Germany). Participants were defined as "fallers" and "non-fallers" based on their fall history. Our findings revealed a trend that PwMS affected solely in the pyramidal system, have reduced stability compared to patients with cerebellar and sensory dysfunctions. Moreover, the addition of sensory impairments to pyramidal dysfunction does not exacerbate postural control. The patients in the pure sensory group demonstrated increased stability compared to each of the three combined groups; pyramidal-cerebellar, pyramidal-sensory and pyramidal-cerebellar-sensory groups. As for fall status, the percentage of fallers in the pure pyramidal, cerebellar and sensory groups were 44.3%, 33.3% and 19.5%, respectively. As for the combined functional system groups, the percentage of fallers in the pyramidal-cerebellar, pyramidal-sensory and pyramidal-cerebellar-sensory groups were 59.7%, 40.7% and 65%, respectively. This study confirms that disorders in neurological functional systems generate different effects on postural control and incidence of falls in the MS population. From a clinical standpoint, the

  16. The sensory substrate of multimodal communication in brown-headed cowbirds: are females sensory 'specialists' or 'generalists'?

    Science.gov (United States)

    Ronald, Kelly L; Sesterhenn, Timothy M; Fernandez-Juricic, Esteban; Lucas, Jeffrey R

    2017-11-01

    Many animals communicate with multimodal signals. While we have an understanding of multimodal signal production, we know relatively less about receiver filtering of multimodal signals and whether filtering capacity in one modality influences filtering in a second modality. Most multimodal signals contain a temporal element, such as change in frequency over time or a dynamic visual display. We examined the relationship in temporal resolution across two modalities to test whether females are (1) sensory 'specialists', where a trade-off exists between the sensory modalities, (2) sensory 'generalists', where a positive relationship exists between the modalities, or (3) whether no relationship exists between modalities. We used female brown-headed cowbirds (Molothrus ater) to investigate this question as males court females with an audiovisual display. We found a significant positive relationship between female visual and auditory temporal resolution, suggesting that females are sensory 'generalists'. Females appear to resolve information well across multiple modalities, which may select for males that signal their quality similarly across modalities.

  17. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    Science.gov (United States)

    2016-01-01

    Myers AC, Kajekar R, Undem BJ. Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways. Am J...induced neuro- peptide production in rapidly adapting afferent nerves in guinea pig airways. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L775–L781...co-localization of transient receptor po- tential vanilloid (trpv)1 and sensory neuropeptides in the guinea - pig respiratory system. Neuroscience

  18. Creativity and sensory gating indexed by the P50: selective versus leaky sensory gating in divergent thinkers and creative achievers.

    Science.gov (United States)

    Zabelina, Darya L; O'Leary, Daniel; Pornpattananangkul, Narun; Nusslock, Robin; Beeman, Mark

    2015-03-01

    Creativity has previously been linked with atypical attention, but it is not clear what aspects of attention, or what types of creativity are associated. Here we investigated specific neural markers of a very early form of attention, namely sensory gating, indexed by the P50 ERP, and how it relates to two measures of creativity: divergent thinking and real-world creative achievement. Data from 84 participants revealed that divergent thinking (assessed with the Torrance Test of Creative Thinking) was associated with selective sensory gating, whereas real-world creative achievement was associated with "leaky" sensory gating, both in zero-order correlations and when controlling for academic test scores in a regression. Thus both creativity measures related to sensory gating, but in opposite directions. Additionally, divergent thinking and real-world creative achievement did not interact in predicting P50 sensory gating, suggesting that these two creativity measures orthogonally relate to P50 sensory gating. Finally, the ERP effect was specific to the P50 - neither divergent thinking nor creative achievement were related to later components, such as the N100 and P200. Overall results suggest that leaky sensory gating may help people integrate ideas that are outside of focus of attention, leading to creativity in the real world; whereas divergent thinking, measured by divergent thinking tests which emphasize numerous responses within a limited time, may require selective sensory processing more than previously thought. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Taxonomic separation of hippocampal networks: principal cell populations and adult neurogenesis

    Directory of Open Access Journals (Sweden)

    Roelof Maarten evan Dijk

    2016-03-01

    Full Text Available While many differences in hippocampal anatomy have been described between species, it is typically not clear if they are specific to a particular species and related to functional requirements or if they are shared by species of larger taxonomic units. Without such information, it is difficult to infer how anatomical differences may impact on hippocampal function, because multiple taxonomic levels need to be considered to associate behavioral and anatomical changes. To provide information on anatomical changes within and across taxonomic ranks, we present a quantitative assessment of hippocampal principal cell populations in 20 species or strain groups, with emphasis on rodents, the taxonomic group that provides most animals used in laboratory research. Of special interest is the importance of adult hippocampal neurogenesis in species-specific adaptations relative to other cell populations. Correspondence analysis of cell numbers shows that across taxonomic units, phylogenetically related species cluster together, sharing similar proportions of principal cell populations. CA3 and hilus are strong separators that place rodent species into a tight cluster based on their relatively large CA3 and small hilus while non-rodent species (including humans and non-human primates are placed on the opposite side of the spectrum. Hilus and CA3 are also separators within rodents, with a very large CA3 and rather small hilar cell populations separating mole-rats from other rodents that, in turn, are separated from each other by smaller changes in the proportions of CA1 and granule cells. When adult neurogenesis is included, the relatively small populations of young neurons, proliferating cells and hilar neurons become main drivers of taxonomic separation within rodents. The observations provide challenges to the computational modeling of hippocampal function, suggest differences in the organization of hippocampal information streams in rodent and non

  20. Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Vijayalakshmi; Tripathi, Preeti [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Sharma, Sunil [Department of Radiation Oncology, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Moros, Eduardo G. [Department of Radiation Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida (United States); Zheng, Junying [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Hauer-Jensen, Martin [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States); Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas (United States); Boerma, Marjan, E-mail: mboerma@uams.edu [Department of Pharmaceutical Sciences, Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas (United States)

    2014-01-01

    Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy. During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity.

  1. Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart

    International Nuclear Information System (INIS)

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Sharma, Sunil; Moros, Eduardo G.; Zheng, Junying; Hauer-Jensen, Martin; Boerma, Marjan

    2014-01-01

    Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy. During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity

  2. A systematic review of the mismatch negativity as an index for auditory sensory memory: From basic research to clinical and developmental perspectives.

    Science.gov (United States)

    Bartha-Doering, Lisa; Deuster, Dirk; Giordano, Vito; am Zehnhoff-Dinnesen, Antoinette; Dobel, Christian

    2015-09-01

    Auditory sensory memory is an important ability for successful language acquisition and processing. The mismatch negativity (MMN) in response to auditory stimuli has been proposed as an objective tool to measure the existence of auditory sensory memory traces. By increasing interstimulus intervals, attenuation of MMN peak amplitude and increased MMN peak latency have been suggested to reflect duration and decay of sensory memory traces. The aim of the present study is to conduct a systematic review of studies investigating sensory memory duration with MMN. Searches of electronic databases yielded 743 articles. Of these, 37 studies met final eligibility criteria. Results point to maturational changes in the time span of auditory sensory memory from birth on with a peak in young adulthood, as well as to a decrease of sensory memory duration in healthy aging. Furthermore, this review suggests that sensory memory decline is related to diverse neurological, psychiatric, and pediatric diseases, including Alzheimer's disease, alcohol abuse, schizophrenia, and language disorders. This review underlines that the MMN provides a unique window to the cognitive processes of auditory sensory memory. However, further studies combining electrophysiological and behavioral data, and further studies in clinical populations are needed, also on individual levels, to validate the MMN as a clinical tool for the assessment of sensory memory duration. © 2015 Society for Psychophysiological Research.

  3. Biophysics of Hair Cell Sensory Systems

    NARCIS (Netherlands)

    Duifhuis, Hendrikus; Horst, Johannes; van Dijk, Pim; van Netten, Sietse

    1993-01-01

    The last decade revealed to auditory researchers that hair cells can not only detect and process mechanical energy, but are also able to produce it. Thanks to the active hair cell, ears can produce otoacoustic emissions. This book gives the newest insights into the biophysics and physiology of

  4. Sensory aspects in myasthenia gravis: A translational approach.

    Science.gov (United States)

    Leon-Sarmiento, Fidias E; Leon-Ariza, Juan S; Prada, Diddier; Leon-Ariza, Daniel S; Rizzo-Sierra, Carlos V

    2016-09-15

    Myasthenia gravis is a paradigmatic muscle disorder characterized by abnormal fatigue and muscle weakness that worsens with activities and improves with rest. Clinical and research studies done on nicotinic acetylcholine receptors have advanced our knowledge of the muscle involvement in myasthenia. Current views still state that sensory deficits are not "features of myasthenia gravis". This article discusses the gap that exists on sensory neural transmission in myasthenia that has remained after >300years of research in this neurological disorder. We outline the neurobiological characteristics of sensory and motor synapses, reinterpret the nanocholinergic commonalities that exist in both sensory and motor pathways, discuss the clinical findings on altered sensory pathways in myasthenia, and propose a novel way to score anomalies resulting from multineuronal inability associated sensory troubles due to eugenic nanocholinergic instability and autoimmunity. This medicine-based evidence could serve as a template to further identify novel targets for studying new medications that may offer a better therapeutic benefit in both sensory and motor dysfunction for patients. Importantly, this review may help to re-orient current practices in myasthenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The synaptic pharmacology underlying sensory processing in the superior colliculus.

    Science.gov (United States)

    Binns, K E

    1999-10-01

    The superior colliculus (SC) is one of the most ancient regions of the vertebrate central sensory system. In this hub afferents from several sensory pathways converge, and an extensive range of neural circuits enable primary sensory processing, multi-sensory integration and the generation of motor commands for orientation behaviours. The SC has a laminar structure and is usually considered in two parts; the superficial visual layers and the deep multi-modal/motor layers. Neurones in the superficial layers integrate visual information from the retina, cortex and other sources, while the deep layers draw together data from many cortical and sub-cortical sensory areas, including the superficial layers, to generate motor commands. Functional studies in anaesthetized subjects and in slice preparations have used pharmacological tools to probe some of the SC's interacting circuits. The studies reviewed here reveal important roles for ionotropic glutamate receptors in the mediation of sensory inputs to the SC and in transmission between the superficial and deep layers. N-methyl-D-aspartate receptors appear to have special responsibility for the temporal matching of retinal and cortical activity in the superficial layers and for the integration of multiple sensory data-streams in the deep layers. Sensory responses are shaped by intrinsic inhibitory mechanisms mediated by GABA(A) and GABA(B) receptors and influenced by nicotinic acetylcholine receptors. These sensory and motor-command activities of SC neurones are modulated by levels of arousal through extrinsic connections containing GABA, serotonin and other transmitters. It is possible to naturally stimulate many of the SC's sensory and non-sensory inputs either independently or simultaneously and this brain area is an ideal location in which to study: (a) interactions between inputs from the same sensory system; (b) the integration of inputs from several sensory systems; and (c) the influence of non-sensory systems on

  6. Irradiation of lettuce (Lactuca sativa. L.): microbiological and sensory aspects

    International Nuclear Information System (INIS)

    Tsuhako, Vanessa Provenzano

    2005-01-01

    The increasing demand for fresh foods have stimulated the marketing of minimally processed vegetables. However, these products maintain most of their natural microbiota even after being sanitized, including pathogenic microorganisms. Refrigerated storage allows the growth of psychotropic microorganisms and among them the pathogen Listeria monocytogenes. The ingestion of food contaminated with L. monocytogenes may represent a risk to pregnant women and their fetuses and to immunocompromised people. Non-thermal alternative processes for food preservation, such as irradiation, can reduce pathogenic and spoilage microorganism populations without impairing substantial changes in sensory, physical or chemical attributes. The aims of this research were to evaluate the effect of gamma radiation on L. monocytogenes artificially inoculated on minimally processed lettuce, to evaluate its effect on lettuce leaves through acceptance sensory test and to determine the irradiated vegetable shelf life through sensory and microbiological tests. A mixture of 4 types of lettuce (Iceberg, Boston, Loose-leaf and Red loose-leaf) were artificially inoculated with L. monocytogenes (7 log UFC/g lettuce) and then exposed to 0.3; 0.6; 0.9 and 1.2 kGy, under refrigeration. The DlO values for L. monocytogenes varied fram 0.18 to 0.21 kGy. Sensory and microbiological tests indicated that the shelf life of Iceberg lettuce stored at 7 deg C was 5 and 7 days for the irradiated and non-irradiated samples, respectively, and for the irradiated and non-irradiated Loose-leaf lettuce samples were 10 days. For the non-irradiated Boston sample, the shelf life was 3 days and for the Irradiated 7 days. Red loose-leaf showed 5 and 4 days of shelf lives for the irradiated and non-irradiated, respectively. Irradiated samples presented better microbiological quality than non-irradiated ones. The irradiation is feasible process to improve quality and safety of lettuce leaves. (author)

  7. Sensory Alterations in Patients with Isolated Idiopathic Dystonia: An Exploratory Quantitative Sensory Testing Analysis.

    Science.gov (United States)

    Paracka, Lejla; Wegner, Florian; Blahak, Christian; Abdallat, Mahmoud; Saryyeva, Assel; Dressler, Dirk; Karst, Matthias; Krauss, Joachim K

    2017-01-01

    Abnormalities in the somatosensory system are increasingly being recognized in patients with dystonia. The aim of this study was to investigate whether sensory abnormalities are confined to the dystonic body segments or whether there is a wider involvement in patients with idiopathic dystonia. For this purpose, we recruited 20 patients, 8 had generalized, 5 had segmental dystonia with upper extremity involvement, and 7 had cervical dystonia. In total, there were 13 patients with upper extremity involvement. We used Quantitative Sensory Testing (QST) at the back of the hand in all patients and at the shoulder in patients with cervical dystonia. The main finding on the hand QST was impaired cold detection threshold (CDT), dynamic mechanical allodynia (DMA), and thermal sensory limen (TSL). The alterations were present on both hands, but more pronounced on the side more affected with dystonia. Patients with cervical dystonia showed a reduced CDT and hot detection threshold (HDT), enhanced TSL and DMA at the back of the hand, whereas the shoulder QST only revealed increased cold pain threshold and DMA. In summary, QST clearly shows distinct sensory abnormalities in patients with idiopathic dystonia, which may also manifest in body regions without evident dystonia. Further studies with larger groups of dystonia patients are needed to prove the consistency of these findings.

  8. An effective assay for high cellular resolution time-lapse imaging of sensory placode formation and morphogenesis

    Directory of Open Access Journals (Sweden)

    Das Raman M

    2011-05-01

    Full Text Available Abstract Background The vertebrate peripheral nervous system contains sensory neurons that arise from ectodermal placodes. Placodal cells ingress to move inside the head to form sensory neurons of the cranial ganglia. To date, however, the process of placodal cell ingression and underlying cellular behavior are poorly understood as studies have relied upon static analyses on fixed tissues. Visualizing placodal cell behavior requires an ability to distinguish the surface ectoderm from the underlying mesenchyme. This necessitates high resolution imaging along the z-plane which is difficult to accomplish in whole embryos. To address this issue, we have developed an imaging system using cranial slices that allows direct visualization of placode formation. Results We demonstrate an effective imaging assay for capturing placode development at single cell resolution using chick embryonic tissue ex vivo. This provides the first time-lapse imaging of mitoses in the trigeminal placodal ectoderm, ingression, and intercellular contacts of placodal cells. Cell divisions with varied orientations were found in the placodal ectoderm all along the apical-basal axis. Placodal cells initially have short cytoplasmic processes during ingression as young neurons and mature over time to elaborate long axonal processes in the mesenchyme. Interestingly, the time-lapse imaging data reveal that these delaminating placodal neurons begin ingression early on from within the ectoderm, where they start to move and continue on to exit as individual or strings of neurons through common openings on the basal side of the epithelium. Furthermore, dynamic intercellular contacts are abundant among the delaminating placodal neurons, between these and the already delaminated cells, as well as among cells in the forming ganglion. Conclusions This new imaging assay provides a powerful method to analyze directly development of placode-derived sensory neurons and subsequent ganglia

  9. Mechanism of derivation of radioresistance in HeLa cell population after repeated x-irradiation

    International Nuclear Information System (INIS)

    Kubo, Kihei; Koiwai, Soichiro; Morita, Kazuo

    1982-01-01

    The Radioresistant strain (X-8-5) was obtained from HeLa-SC population X-irradiated repeatedly for five times with 800 rad. The mean lethal dose (D 0 ) was 196 rad for X-8-5 cells, while it was 166 rad for control HeLa-SC cells. The fraction of cells containing an unusually long acrocentric chromosome (LA 2) exclusively increased with increasing number of irradiation of HeLa-SC population. A clonal strain with LA 2 marker was isolated from X-8-5 population and named RC-355. Since the RC-355 cells were more resistant (D 0 = 220 rad)than parental X-8-5 cells (D 0 = 196 rad), it was suggested that the cells with LA 2 were responsible for the radioresistance of X-8-5 population. The RC-355 cells were further subjected to the analysis of Q-banded karyotypes and it was observed that 18 types of specific markers (rm 1-17 and LA 2) were included in RC-355 cells in addition to 12 types of markers observed in most of HeLa-SC cells. Since the analysis of Q-banded karyotypes of RC-355 cells showed that RC-355 specific markers were not produced by radiation-induced rearrangements of HeLa-SC chromosomes, because twelve kinds of HeLa-SC markers were presented in RC-355 cells without any change, it was concluded that a small number of cells with LA 2 marker were originally presented in the control population and the relative fraction of them occupied increased after irradiation. (author)

  10. Breach of sensory integration in children and youth

    Directory of Open Access Journals (Sweden)

    Radziyevska Mariya.

    2012-04-01

    Full Text Available From the first moments of life, the child acquires the experience of being in the world around him through the senses such as touch, balance, proprioception, taste, sight, hearing and smell. The development of sensory integration of individual processes helps to effectively carry out every activity and function in society. Changes in the quality and quantity of sensory information may lead to sensory integration disorder child, which is immediately reflected in his behavior. In this paper we have presented information on the levels of sensory integration and testing of samples with a simple touch of activities that can be done without special equipment, both at home and in child care. Dissemination of knowledge about the processes of sensory integration, both among doctors, teachers, physiotherapists, occupational therapists and psychology as well as parents can contribute to early diagnosis of problems in children sensory-social development, further impeding the normal functioning of the child in society.

  11. Heterogenous populations of cytotoxic cells in the peritoneal cavity of BALB/c mice immunized with allogeneic EL4 leukemia cells

    International Nuclear Information System (INIS)

    Zighelboim, J.; Bonavida, B.; Fahey, J.L.

    1974-01-01

    Adherent cells, presumably macrophages, obtained from the peritoneal cavity shortly after rejection of the allogeneic leukemia EL4, produced effective cell-mediated cytotoxicity (CMC) in vitro. These cytotoxic cells were sensitive to anti-macrophage serum and resistant to anti-thymocyte serum and 10,000 roentgen irradiation. In contrast, a second population of specifically cytotoxic cells were nonadherent, sensitive to x-rays and anti-thymocyte serum, but not to anti-macrophage serum. The two cell populations had a cooperative cytotoxic effect in vitro against allogeneic tumor cells

  12. Characterization of Sensory Differences in Mixing and Premium Rums Through the Use of Descriptive Sensory Analysis.

    Science.gov (United States)

    Ickes, Chelsea M; Cadwallader, Keith R

    2017-11-01

    This study identified and quantitated perceived sensory differences between 7 premium rums and 2 mixing rums using a hybrid of the Quantitative Descriptive Analysis and Spectrum methods. In addition, the results of this study validated the previously developed rum flavor wheel created from web-based materials. Results showed that the use of the rum flavor wheel aided in sensory term generation, as 17 additional terms were generated after the wheel was provided to panelists. Thirty-eight sensory terms encompassing aroma, aroma-by-mouth, mouthfeel, taste and aftertaste modalities, were generated and evaluated by the panel. Of the finalized terms, only 5 did not exist previously on the rum flavor wheel. Twenty attributes were found to be significantly different among rums. The majority of rums showed similar aroma profiles with the exception of 2 rums, which were characterized by higher perceived intensities of brown sugar, caramel, vanilla, and chocolate aroma, caramel, maple, and vanilla aroma-by-mouth and caramel aftertaste. These results demonstrate the previously developed rum flavor wheel can be used to adequately describe the flavor profile of rum. Additionally, results of this study document the sensory differences among premium rums and may be used to correlate with analytical data to better understand how changes in chemical composition of the product affect sensory perception. © 2017 Institute of Food Technologists®.

  13. Recovery of the Erythropoietin-Sensitive Stem-Cell Population following Total-Body X-Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Byron, J. W. [Paterson Laboratories, Christie Hospital and Holt Radium Institute, Manchester (United Kingdom)

    1968-08-15

    Erythropoietin acts upon haemopoietic stem cells to initiate their differentiation into the erythroid series. This effect may be used in polycythaemic mice to estimate changes in the erythropoietin-sensitive stem-cell population following total-body irradiation (TBR). Generally, single doses of erythropoietin, less than that needed for maximum stem-cell response, are used to estimate changes in the stem-cell population. The validity of results using this test is based upon accepting several assumptions regarding erythropoietin kinetics. These are: (a) the contribution of endogenous erythropoietin is always negligible; (b) the origin of the dose-response curve to erythropoietin alters only because of changes in stem-cell numbers; (c) the proportion of stem cells responding to a given concentration of erythropoietin is independent of stem-cell numbers; (d) the slope of the dose-response curve does not alter; and (e) competition between erythropoietin and other factors for the stem cells remains unchanged. The studies to be reported indicate that some of these assumptions m a y not always be valid. Following 150 rad TBR, changes in erythropoietin dose-response curves were not always due to changes in the size of the stem-cell population, but also due to changes in erythropoietin kinetics. Changes in erythropoietin kinetics could be corrected for by using doses of erythropoietin which at any particular time after TBR gave maximum stem-cell response; through full dose-response studies, the nature of changes in erythropoietin kinetics following TBR could be established. These studies appear to explain discrepancies in results obtained in different laboratories using the erythropoietin test. The effect of 150 rad TBR on the erythropoietin-sensitive stem-cell population is an initial depression within 30 min to 20% of normal followed by a second depression (post-irradiation dip) at about 12 h. Twenty-four hours after TBR there is a recovery to the initial depression. This

  14. Effect of gamma irradiation on microbiological, chemical and sensory characteristics of aniseed (pimpinella anisum)

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    2007-01-01

    Seeds of anise (pimpinella anisum) were exposed to doses of 0, 5, 10, 15 and 20 kGy in a 60 Co package irradiator. Irradiated and unirradiated samples were stored at room temperature. Microbial population on seeds, total and inorganic soluble solids in water extract and sensory properties of the latter were evaluated after 0, 6 and 12 months of storage. The results indicated that gamma irradiation reduced the aerobic plate counts of aniseed. Immediately after irradiation, the total soluble solids in an extract of irradiated seeds were greater than those of unirradiated ones. The total soluble solids in an extract of irradiated and un-irradiated seeds increased after 6 and 12 months of storage. There were no significant differences (p>0.05) in inorganic soluble solids between the water extract of irradiated and unirradiated aniseeds. Sensory evaluation indicated that gamma irradiation improved sensory characteristics of aniseed water extract tested immediately after irradiation. However, after 12 months of storage, no significant differences (P>0.05) were found in color, taste or flavor between extract of irradiated and unirradiated seeds. (author)

  15. Effect of gamma irradiation on microbiological, chemical and sensory characteristics of aniseed (anisum vulgare)

    International Nuclear Information System (INIS)

    Al-Bachir, M.

    2002-09-01

    Seeds of ansium were exposed to doses of 0, 5, 10, 15 and 20 kGy in a 60 Co package irradiator, Irradiated and unirradiated samples were stored at room temperature. Microbial population on seeds, dissolved organic and inorganic solids in extract and sensory properties of extract were evaluated after 0, 6 and 12 months of storage. The results indicated that gamma irradiation reduced the aerobic plate counts. Immediately after irradiation, the dissolved organic solids in extract of irradiated seeds were higher than those of non-irradiated ones. The dissolved organic matter in extract of irradiated and un-irradiated ansium seeds increased. After 6 and 12 months of storage. There were no significant differences in dissolved solids between the extract of irradiated and non-irradiated ansium seeds. Sensory evaluation indicated that gamma irradiation improved sensory characteristics of ansium seed extract tested immediately after irradiation; however, after 12 months of storage, no significant differences (P>0.05) were found in color, taste or odor between extract of irradiated and unirradiated ansium seeds. (author)

  16. A Review of Gene Delivery and Stem Cell Based Therapies for Regenerating Inner Ear Hair Cells

    OpenAIRE

    Michael S. Detamore; Keerthana Devarajan; Hinrich Staecker

    2011-01-01

    Sensory neural hearing loss and vestibular dysfunction have become the most common forms of sensory defects, affecting millions of people worldwide. Developing effective therapies to restore hearing loss is challenging, owing to the limited regenerative capacity of the inner ear hair cells. With recent advances in understanding the developmental biology of mammalian and non-mammalian hair cells a variety of strategies have emerged to restore lost hair cells are being developed. Two predominan...

  17. Sensory Impairment and Health-Related Quality of Life

    Science.gov (United States)

    KWON, Hye-Jin; KIM, Ji-su; KIM, Yoon-jung; KWON, Su-jin; YU, Jin-Na

    2015-01-01

    Background: Sensory impairment is a common condition that exerts negative effects on health-related quality of life (HRQoL) in the elderly. This study aimed to determine the relationship between sensory impairment and HRQoL and identify sensory-specific differences in the HRQoL of elderly. Methods: This study used data from the Korean National Health and Nutrition Examination Survey V (2010–2012), analyzing 5,260 subjects over 60 years of age who completed ophthalmic and otologic examinations. Vision and hearing impairment were measured and classified. HRQoL was determined according to the European QoL five dimension test (EQ-5D). Multivariate logistic regression analysis and analysis of covariance were performed to identify relationships between sensory impairment and HRQoL dimensions as well as differences in HRQoL scores. Results: In the final adjusted multivariate model, there was a statistically higher proportion of those with dual sensory impairment who reported problems with mobility (adjusted odds ratio [aOR] 2.30, 95% confidence interval [CI] 1.45–5.03), usual activities (aOR 2.32, 95% CI 1.16–4.64), and pain/discomfort among EQ-5D subcategories (aOR 1.79, 95% CI 1.07–2.97). In the EQ-5D dimensions, the means and standard deviations of vision impairment (0.86 [0.01]) and dual sensory impairment (0.84 [0.02]) appeared meaningfully lower than those for no sensory impairment (0.88 [0.00]) or hearing impairment (0.88 [0.01]); P = .02). Conclusion: Sensory impairment reduces HRQoL in the elderly. Improvement of HRQoL in the elderly thus requires regular screening and appropriate management of sensory impairment. PMID:26258089

  18. Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective

    Science.gov (United States)

    Bayramoglu, Bihter; Toubiana, David; van Vliet, Simon; Inglis, R. Fredrik; Shnerb, Nadav; Gillor, Osnat

    2017-02-01

    Production of public goods in biological systems is often a collaborative effort that may be detrimental to the producers. It is therefore sustainable only if a small fraction of the population shoulders the cost while the majority reap the benefits. We modelled this scenario using Escherichia coli populations producing colicins, an antibiotic that kills producer cells’ close relatives. Colicin expression is a costly trait, and it has been proposed that only a small fraction of the population actively expresses the antibiotic. Colicinogenic populations were followed at the single-cell level using time-lapse microscopy, and showed two distinct, albeit dynamic, subpopulations: the majority silenced colicin expression, while a small fraction of elongated, slow-growing cells formed colicin-expressing hotspots, placing a significant burden on expressers. Moreover, monitoring lineages of individual colicinogenic cells showed stochastic switching between expressers and non-expressers. Hence, colicin expressers may be engaged in risk-reducing strategies—or bet-hedging—as they balance the cost of colicin production with the need to repel competitors. To test the bet-hedging strategy in colicin-mediated interactions, competitions between colicin-sensitive and producer cells were simulated using a numerical model, demonstrating a finely balanced expression range that is essential to sustaining the colicinogenic population.

  19. Learning from sensory and reward prediction errors during motor adaptation.

    Science.gov (United States)

    Izawa, Jun; Shadmehr, Reza

    2011-03-01

    Voluntary motor commands produce two kinds of consequences. Initially, a sensory consequence is observed in terms of activity in our primary sensory organs (e.g., vision, proprioception). Subsequently, the brain evaluates the sensory feedback and produces a subjective measure of utility or usefulness of the motor commands (e.g., reward). As a result, comparisons between predicted and observed consequences of motor commands produce two forms of prediction error. How do these errors contribute to changes in motor commands? Here, we considered a reach adaptation protocol and found that when high quality sensory feedback was available, adaptation of motor commands was driven almost exclusively by sensory prediction errors. This form of learning had a distinct signature: as motor commands adapted, the subjects altered their predictions regarding sensory consequences of motor commands, and generalized this learning broadly to neighboring motor commands. In contrast, as the quality of the sensory feedback degraded, adaptation of motor commands became more dependent on reward prediction errors. Reward prediction errors produced comparable changes in the motor commands, but produced no change in the predicted sensory consequences of motor commands, and generalized only locally. Because we found that there was a within subject correlation between generalization patterns and sensory remapping, it is plausible that during adaptation an individual's relative reliance on sensory vs. reward prediction errors could be inferred. We suggest that while motor commands change because of sensory and reward prediction errors, only sensory prediction errors produce a change in the neural system that predicts sensory consequences of motor commands.

  20. Destruction of radiation-resistant cell populations by hyperthermia

    International Nuclear Information System (INIS)

    Roettinger, E.M.; Gerweck, L.E.

    1979-01-01

    Animal experiments with local hyperthermia have shown that the radiauion dose necessary for the local control of 50% of the tumours examined was essentially reduced by heating to 42,5 0 C. In-vitro experients indicated selective destruction of relatively radiation-resistent cell populations by the combination of hyperthermie and reduced hydrogen ion concentration. Experiments with glioblastoma cells confirmed these results qualitatively, but showed quantitatively considerably lower sensitivity towards hyperthermia. (orig.) 891 MG/orig. 892 RDG [de

  1. Just do it: action-dependent learning allows sensory prediction.

    Directory of Open Access Journals (Sweden)

    Itai Novick

    Full Text Available Sensory-motor learning is commonly considered as a mapping process, whereby sensory information is transformed into the motor commands that drive actions. However, this directional mapping, from inputs to outputs, is part of a loop; sensory stimuli cause actions and vice versa. Here, we explore whether actions affect the understanding of the sensory input that they cause. Using a visuo-motor task in humans, we demonstrate two types of learning-related behavioral effects. Stimulus-dependent effects reflect stimulus-response learning, while action-dependent effects reflect a distinct learning component, allowing the brain to predict the forthcoming sensory outcome of actions. Together, the stimulus-dependent and the action-dependent learning components allow the brain to construct a complete internal representation of the sensory-motor loop.

  2. A flight sensory-motor to olfactory processing circuit in the moth Manduca sexta

    Directory of Open Access Journals (Sweden)

    Samual P Bradley

    2016-02-01

    Full Text Available Neural circuits projecting information from motor pathways to sensory pathways are common across sensory domains. These circuits typically modify sensory function as a result of motor pattern activation; this is particularly so in cases where the resultant behavior affects the sensory experience or its processing. However, such circuits have not been observed projecting to an olfactory pathway in any species despite well characterized active sampling behaviors that produce reafferent mechanical stimuli, such as sniffing in mammals and wing beating in the moth Manduca sexta. In this study we characterize a circuit that connects a flight sensory-motor center to an olfactory center in Manduca. This circuit consists of a single pair of histamine immunoreactive (HA-ir neurons that project from the mesothoracic ganglion to innervate a subset of ventral antennal lobe (AL glomeruli. Furthermore, within the AL we show that the Manduca sexta histamine B receptor (MsHisClB is exclusively expressed by a subset of GABAergic and peptidergic LNs, which broadly project to all olfactory glomeruli. Finally, the HA-ir cell pair is present in fifth stage instar larvae; however, the absence of MsHisClB-ir in the larval antennal center (LAC indicates that the circuit is incomplete prior to metamorphosis and importantly prior to the expression of flight behavior. Although the functional consequences of this circuit remain unknown, these results provide the first detailed description of a circuit that interconnects an olfactory system with motor centers driving flight behaviors including odor-guided flight.

  3. The Drosophila T-box transcription factor Midline functions within the Notch-Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc.

    Science.gov (United States)

    Das, Sudeshna; Chen, Q Brent; Saucier, Joseph D; Drescher, Brandon; Zong, Yan; Morgan, Sarah; Forstall, John; Meriwether, Andrew; Toranzo, Randy; Leal, Sandra M

    2013-01-01

    We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Complete functional characterization of sensory neurons by system identification.

    Science.gov (United States)

    Wu, Michael C-K; David, Stephen V; Gallant, Jack L

    2006-01-01

    System identification is a growing approach to sensory neurophysiology that facilitates the development of quantitative functional models of sensory processing. This approach provides a clear set of guidelines for combining experimental data with other knowledge about sensory function to obtain a description that optimally predicts the way that neurons process sensory information. This prediction paradigm provides an objective method for evaluating and comparing computational models. In this chapter we review many of the system identification algorithms that have been used in sensory neurophysiology, and we show how they can be viewed as variants of a single statistical inference problem. We then review many of the practical issues that arise when applying these methods to neurophysiological experiments: stimulus selection, behavioral control, model visualization, and validation. Finally we discuss several problems to which system identification has been applied recently, including one important long-term goal of sensory neuroscience: developing models of sensory systems that accurately predict neuronal responses under completely natural conditions.

  5. Validity of Sensory Systems as Distinct Constructs

    OpenAIRE

    Su, Chia-Ting; Parham, L. Diane

    2014-01-01

    Confirmatory factor analysis testing whether sensory questionnaire items represented distinct sensory system constructs found, using data from two age groups, that such constructs can be measured validly using questionnaire data.

  6. Analyzing sensory data with R

    CERN Document Server

    Le, Sebastien

    2014-01-01

    Quantitative Descriptive Approaches When panelists rate products according to one single list of attributes Data, sensory issues, notations In practice For experienced users: Measuring the impact of the experimental design on the perception of the products? When products are rated according to one single list of attributesData, sensory issues, notations In practice For experienced users: Adding supplementary information to the product space When products are rated according to several lists

  7. Sensory Over-Responsiveness among Healthy Subjects is Associated with a Pronociceptive State.

    Science.gov (United States)

    Weissman-Fogel, Irit; Granovsky, Yelena; Bar-Shalita, Tami

    2018-04-01

    Chronic pain patients show hypersensitivity to sensory nonpainful stimuli. Sensory over-responsiveness (SOR) to innocuous daily stimuli, experienced as painful, is prevalent in 10% of the healthy population. This altered sensory processing may be an expression of overfacilitation, or a less efficient pain-inhibitory process in the pain pathways. We therefore aimed to investigate specifically the pain-inhibitory system of subjects with SOR who are otherwise healthy, not studied as of yet. Thirty healthy subjects, divided into an SOR group (n = 14) and a non-SOR group (n = 16) based on responses to the Sensory Responsiveness Questionnaire, were psychophysically tested in order to evaluate (1) hyperalgesic responses; (2) adaptation/sensitization to 14 phasic heat stimuli; (3) habituation; (4) 6-minute after-sensations; and (5) conditioned pain modulation (CPM) (ie, phasic heat stimuli applied with and without hand immersion in a hot water bath). The SOR group differed from the non-SOR group in (1) a steeper escalation in NPS ratings to temperature increase (P = 0.003), indicating hyperalgesia; (2) increased sensitization (P < 0.001); (3) habituation responses (P < 0.001); (4) enhanced pain ratings during the after-sensation (P = 0.006); and (5) no group difference was found in CPM. SOR is associated with a pronociceptive state, expressed by amplification of experimental pain, yet with sufficient inhibitory processes. Our results support previous findings of enhanced facilitation of pain-transmitting pathways but also reveal preserved inhibitory mechanisms, although they were slower to react. © 2017 World Institute of Pain.

  8. A preliminary study measuring the number of T-cell receptor-rearrangement excision circles (TRECs) in peripheral blood T-cell populations of A-bomb survivors and control populations

    International Nuclear Information System (INIS)

    Kubo, Yoshiko; Yamaoka, Mika; Kusunoki, Yoichiro

    2006-01-01

    More than a half century after damage of the immune systems by the radiation from A-bomb, we can still observe significant decreases in the percentages of naieve CD4 and CD8 T cells among the survivors. To investigate whether the observed decreases in the naieve T-cell populations may have resulted from reduction in thymic T-cell production ability of survivors, we established a real-time polymerase chain reaction (PCR) method to examine the number of T-cell receptor-rearrangement excision circles (TRECs) in peripheral blood CD4 and CD8 T-cell populations. The real-time PCR quantitatively detected TREC sequences with a good reproducibility in human laboratory controls. In the 445 survivors so far been examined, multiple regression analysis indicated that the number of TRECs in the CD4 T-cell fraction was significantly higher in females than in males and decreased significantly with age in both males and females. This analysis also suggested a possible dose-dependent decrease in the number of TRECs in the CD4 T-cell fraction of the survivors who were less than 20 years of age at the time of bombing (p=0.09). A similar statistically significant trend for gender difference or age was observed in the CD8 T-cell fraction of the survivors. However, there was no effect of radiation exposure on the number of TRECs in the CD8-T cell fraction. The results indicate the possibility that A-bomb radiation exposure may have induced a long-term impairment in thymic CD4 T-cell production. Further investigations in a larger study population are necessary to test this hypothesis. (author)

  9. The influence of multiple sensory impairments on functional balance and difficulty with falls among U.S. adults.

    Science.gov (United States)

    Wilson, Samuel J; Garner, John C; Loprinzi, Paul D

    2016-06-01

    Studies have looked at the individual associations of sensory impairment on balance, but no population-based studies have examined their combined association on balance and difficulty with falls. Thus, the purpose of this study was to examine both the independent associations and combined associations of visual impairment, peripheral neuropathy, and self-reported hearing loss with the odds of reporting difficulty with falls and functional balance. Data from the 2003-2004 National Health and Nutrition Examination Survey were used. Vision and peripheral neuropathy were objectively measured, and hearing was self-reported. Balance testing consisted of a modified Romberg test. After exclusions, 1662 (40-85years of age) participants provided complete data on the study variables. Sensory impairment was associated with perceived difficulty of falls and functional balance. Participants who presented a single sensory impairment had 29% reduced odds of having functional balance (95% CI=0.54-0.93, p=0.01) and increased odds of reporting difficulty with falls by 61% (95% CI=0.99-2.60, p=0.05). Moreover, our multisensory models showed some evidence of a dose-response relationship, in that sensory impairment of multiple sensory systems was associated with worse balance (OR =0.59, CI=0.35-1.00, p=0.05) and perceived difficulty of falls (OR =5.02, 95% CI=1.99-12.66, p=0.002) when compared to those with less sensory impairment. Multiple sensory impairment is associated with significantly higher odds of both reporting difficulty with falls and balance dysfunction, which may lead to a subsequent fall, ultimately compromising the individual's health. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Sensory Synergy as Environmental Input Integration

    Directory of Open Access Journals (Sweden)

    Fady eAlnajjar

    2015-01-01

    Full Text Available The development of a method to feed proper environmental inputs back to the central nervous system (CNS remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with 9 healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis’ sensory system to make the controller simpler

  11. Sensory synergy as environmental input integration.

    Science.gov (United States)

    Alnajjar, Fady; Itkonen, Matti; Berenz, Vincent; Tournier, Maxime; Nagai, Chikara; Shimoda, Shingo

    2014-01-01

    The development of a method to feed proper environmental inputs back to the central nervous system (CNS) remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with nine healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis' sensory system to make the controller simpler.

  12. Single Cell Dynamics Causes Pareto-Like Effect in Stimulated T Cell Populations.

    Science.gov (United States)

    Cosette, Jérémie; Moussy, Alice; Onodi, Fanny; Auffret-Cariou, Adrien; Neildez-Nguyen, Thi My Anh; Paldi, Andras; Stockholm, Daniel

    2015-12-09

    Cell fate choice during the process of differentiation may obey to deterministic or stochastic rules. In order to discriminate between these two strategies we used time-lapse microscopy of individual murine CD4 + T cells that allows investigating the dynamics of proliferation and fate commitment. We observed highly heterogeneous division and death rates between individual clones resulting in a Pareto-like dominance of a few clones at the end of the experiment. Commitment to the Treg fate was monitored using the expression of a GFP reporter gene under the control of the endogenous Foxp3 promoter. All possible combinations of proliferation and differentiation were observed and resulted in exclusively GFP-, GFP+ or mixed phenotype clones of very different population sizes. We simulated the process of proliferation and differentiation using a simple mathematical model of stochastic decision-making based on the experimentally observed parameters. The simulations show that a stochastic scenario is fully compatible with the observed Pareto-like imbalance in the final population.

  13. Superior short-term learning effect of visual and sensory organisation ability when sensory information is unreliable in adolescent rhythmic gymnasts.

    Science.gov (United States)

    Chen, Hui-Ya; Chang, Hsiao-Yun; Ju, Yan-Ying; Tsao, Hung-Ting

    2017-06-01

    Rhythmic gymnasts specialise in dynamic balance under sensory conditions of numerous somatosensory, visual, and vestibular stimulations. This study investigated whether adolescent rhythmic gymnasts are superior to peers in Sensory Organisation test (SOT) performance, which quantifies the ability to maintain standing balance in six sensory conditions, and explored whether they plateaued faster during familiarisation with the SOT. Three and six sessions of SOTs were administered to 15 female rhythmic gymnasts (15.0 ± 1.8 years) and matched peers (15.1 ± 2.1 years), respectively. The gymnasts were superior to their peers in terms of fitness measures, and their performance was better in the SOT equilibrium score when visual information was unreliable. The SOT learning effects were shown in more challenging sensory conditions between Sessions 1 and 2 and were equivalent in both groups; however, over time, the gymnasts gained marginally significant better visual ability and relied less on visual sense when unreliable. In conclusion, adolescent rhythmic gymnasts have generally the same sensory organisation ability and learning rates as their peers. However, when visual information is unreliable, they have superior sensory organisation ability and learn faster to rely less on visual sense.

  14. Emerging Role of Sensory Perception in Aging and Metabolism.

    Science.gov (United States)

    Riera, Celine E; Dillin, Andrew

    2016-05-01

    Sensory perception comprises gustatory (taste) and olfactory (smell) modalities as well as somatosensory (pain, heat, and tactile mechanosensory) inputs, which are detected by a multitude of sensory receptors. These sensory receptors are contained in specialized ciliated neurons where they detect changes in environmental conditions and participate in behavioral decisions ranging from food choice to avoiding harmful conditions, thus insuring basic survival in metazoans. Recent genetic studies, however, indicate that sensory perception plays additional physiological functions, notably influencing energy homeostatic processes and longevity through neuronal circuits originating from sensory tissues. Here we review how these findings are redefining metabolic signaling and establish a prominent role of sensory neuroendocrine processes in controlling health span and lifespan, with a goal of translating this knowledge towards managing age-associated diseases. Copyright © 2016. Published by Elsevier Ltd.

  15. Identification of Biomarkers of Impaired Sensory Profiles among Autistic Patients

    Science.gov (United States)

    El-Ansary, Afaf; Hassan, Wail M.; Qasem, Hanan; Das, Undurti N.

    2016-01-01

    separate autistic from healthy control subjects, demonstarting the possibility to accurately predict the severity of autism using the selected biomarkers. The effectiveness of the identified libraries lied in the fact that they were helpful in correctly assigning the study population as control or autistic patients and in classifying autistic patients with different degree of sensory profile impairment. PMID:27824861

  16. Microelectromechanical System-Based Sensing Arrays for Comparative in Vitro Nanotoxicity Assessment at Single Cell and Small Cell-Population Using Electrochemical Impedance Spectroscopy.

    Science.gov (United States)

    Shah, Pratikkumar; Zhu, Xuena; Zhang, Xueji; He, Jin; Li, Chen-zhong

    2016-03-09

    The traditional in vitro nanotoxicity assessment approaches are conducted on a monolayer of cell culture. However, to study a cell response without interference from the neighbor cells, a single cell study is necessary; especially in cases of neuronal, cancerous, and stem cells, wherein an individual cell's fate is often not explained by the whole cell population. Nonetheless, a single cell does not mimic the actual in vivo environment and lacks important information regarding cell communication with its microenvironment. Both a single cell and a cell population provide important and complementary information about cells' behaviors. In this research, we explored nanotoxicity assessment on a single cell and a small cell population using electrochemical impedance spectroscopy and a microelectromechanical system (MEMS) device. We demonstrated a controlled capture of PC12 cells in different-sized microwells (to capture a different number of cells) using a combined method of surface functionalization and dielectrophoresis. The present approach provides a rapid nanotoxicity response as compared to other conventional approaches. This is the first study, to our knowledge, which demonstrates a comparative response of a single cell and small cell colonies on the same MEMS platform, when exposed to metaloxide nanoparticles. We demonstrated that the microenvironment of a cell is also accountable for cells' behaviors and their responses to nanomaterials. The results of this experimental study open up a new hypothesis to be tested for identifying the role of cell communication in spreading toxicity in a cell population.

  17. A THEORY OF MAXIMIZING SENSORY INFORMATION

    NARCIS (Netherlands)

    Hateren, J.H. van

    1992-01-01

    A theory is developed on the assumption that early sensory processing aims at maximizing the information rate in the channels connecting the sensory system to more central parts of the brain, where it is assumed that these channels are noisy and have a limited dynamic range. Given a stimulus power

  18. In Vivo Interplay between p27Kip1, GATA3, ATOH1, and POU4F3 Converts Non-sensory Cells to Hair Cells in Adult Mice

    Directory of Open Access Journals (Sweden)

    Bradley J. Walters

    2017-04-01

    Full Text Available Summary: Hearing loss is widespread and persistent because mature mammalian auditory hair cells (HCs are nonregenerative. In mice, the ability to regenerate HCs from surrounding supporting cells (SCs declines abruptly after postnatal maturation. We find that combining p27Kip1 deletion with ectopic ATOH1 expression surmounts this age-related decline, leading to conversion of SCs to HCs in mature mouse cochleae and after noise damage. p27Kip1 deletion, independent of canonical effects on Rb-family proteins, upregulated GATA3, a co-factor for ATOH1 that is lost from SCs with age. Co-activation of GATA3 or POU4F3 and ATOH1 promoted conversion of SCs to HCs in adult mice. Activation of POU4F3 alone also converted mature SCs to HCs in vivo. These data illuminate a genetic pathway that initiates auditory HC regeneration and suggest p27Kip1, GATA3, and POU4F3 as additional therapeutic targets for ATOH1-mediated HC regeneration. : Auditory hair cells are nonregenerative, resulting in persistent hearing loss upon damage. Walters et al. find that manipulating two genes, p27Kip1 and Atoh1, induces the conversion of nonsensory cells to hair cells in adult mice. This effect is mediated by GATA3 and POU4F3, where POU4F3 alone was found to convert nonsensory cells. Keywords: regeneration, aging, differentiation, proliferation, development, cancer, sensory, cochlea, hearing

  19. Lipid droplet organelle distribution in populations of dividing cells studied by simulation

    International Nuclear Information System (INIS)

    Dalhaimer, Paul

    2013-01-01

    One of the key questions in cell biology is how organelles are passed from parent to daughter cells. To help address this question, I used Brownian dynamics to simulate lipid droplets as model organelles in populations of dividing cells. Lipid droplets are dynamic bodies that can form both de novo and by fission, they can also be depleted. The quantitative interplay among these three events is unknown but would seem crucial for controlling droplet distribution in populations of dividing cells. Surprisingly, of the three main events studied: biogenesis, fission, and depletion, the third played the key role in maintaining droplet organelle number—and to a lesser extent volume—in populations of dividing cells where formation events would have seemed paramount. In the case of lipid droplets, this provides computational evidence that they must be sustained, most likely through contacts with the endoplasmic reticulum. The findings also agree with video microscopy experiments over much shorter timescales where droplet depletion in fission yeast cells was not observed. In general, this work shows that organelle maintenance is invaluable and lack thereof cannot necessarily be compensated for by organelle formation. This study provides a time-accurate, physical-based template for long-term cell division studies. (paper)

  20. Lipid droplet organelle distribution in populations of dividing cells studied by simulation

    Science.gov (United States)

    Dalhaimer, Paul

    2013-06-01

    One of the key questions in cell biology is how organelles are passed from parent to daughter cells. To help address this question, I used Brownian dynamics to simulate lipid droplets as model organelles in populations of dividing cells. Lipid droplets are dynamic bodies that can form both de novo and by fission, they can also be depleted. The quantitative interplay among these three events is unknown but would seem crucial for controlling droplet distribution in populations of dividing cells. Surprisingly, of the three main events studied: biogenesis, fission, and depletion, the third played the key role in maintaining droplet organelle number—and to a lesser extent volume—in populations of dividing cells where formation events would have seemed paramount. In the case of lipid droplets, this provides computational evidence that they must be sustained, most likely through contacts with the endoplasmic reticulum. The findings also agree with video microscopy experiments over much shorter timescales where droplet depletion in fission yeast cells was not observed. In general, this work shows that organelle maintenance is invaluable and lack thereof cannot necessarily be compensated for by organelle formation. This study provides a time-accurate, physical-based template for long-term cell division studies.

  1. Sensory evaluation techniques

    National Research Council Canada - National Science Library

    Meilgaard, Morten; Civille, Gail Vance; Carr, B. Thomas

    1991-01-01

    ..., #2 as a textbook for courses at the academic level, it aims to provide just enough theoretical background to enable the student to understand which sensory methods are best suited to particular...

  2. Sensory Dissonance Using Memory Model

    DEFF Research Database (Denmark)

    Jensen, Karl Kristoffer

    2015-01-01

    Music may occur concurrently or in temporal sequences. Current machine-based methods for the estimation of qualities of the music are unable to take into account the influence of temporal context. A method for calculating dissonance from audio, called sensory dissonance is improved by the use of ...... of a memory model. This approach is validated here by the comparison of the sensory dissonance using memory model to data obtained using human subjects....

  3. CHEMICAL, SENSORY AND MICROBIOLOGICAL CHANGES OF ...

    African Journals Online (AJOL)

    Dr Adesola Osibona

    Presently, there are numerous problems facing the field of fisheries, some of which are related to the keeping ... The two main methods of assessing fish quality are sensory and non-sensory ... MATERIALS AND METHODS. Sample ..... The initial lag phase of micro-organisms in the stored fish was followed by an increase in ...

  4. Sensory influences on food intake control: moving beyond palatability.

    Science.gov (United States)

    McCrickerd, K; Forde, C G

    2016-01-01

    The sensory experience of eating is an important determinant of food intake control, often attributed to the positive hedonic response associated with certain sensory cues. However, palatability is just one aspect of the sensory experience. Sensory cues based on a food's sight, smell, taste and texture are operational before, during and after an eating event. The focus of this review is to look beyond palatability and highlight recent advances in our understanding of how certain sensory characteristics can be used to promote better energy intake control. We consider the role of visual and odour cues in identifying food in the near environment, guiding food choice and memory for eating, and highlight the ways in which tastes and textures influence meal size and the development of satiety after consumption. Considering sensory characteristics as a functional feature of the foods and beverages we consume provides the opportunity for research to identify how sensory enhancements might be combined with energy reduction in otherwise palatable foods to optimize short-term energy intake regulation in the current food environment. Moving forward, the challenge for sensory nutritional science will be to assess the longer-term impact of these principles on weight management. © 2015 World Obesity.

  5. Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: an event-related potential and dipole-model analysis.

    Science.gov (United States)

    Giard, M H; Lavikahen, J; Reinikainen, K; Perrin, F; Bertrand, O; Pernier, J; Näätänen, R

    1995-01-01

    Abstract The present study analyzed the neural correlates of acoustic stimulus representation in echoic sensory memory. The neural traces of auditory sensory memory were indirectly studied by using the mismatch negativity (MMN), an event-related potential component elicited by a change in a repetitive sound. The MMN is assumed to reflect change detection in a comparison process between the sensory input from a deviant stimulus and the neural representation of repetitive stimuli in echoic memory. The scalp topographies of the MMNs elicited by pure tones deviating from standard tones by either frequency, intensity, or duration varied according to the type of stimulus deviance, indicating that the MMNs for different attributes originate, at least in part, from distinct neural populations in the auditory cortex. This result was supported by dipole-model analysis. If the MMN generator process occurs where the stimulus information is stored, these findings strongly suggest that the frequency, intensity, and duration of acoustic stimuli have a separate neural representation in sensory memory.

  6. Femtosecond Laser Ablation Reveals Antagonistic Sensory and Neuroendocrine Signaling that Underlie C. elegans Behavior and Development

    Directory of Open Access Journals (Sweden)

    Samuel H. Chung

    2013-07-01

    Full Text Available The specific roles of neuronal subcellular components in