WorldWideScience

Sample records for sensorimotor cortex combined

  1. Functional mapping of the sensorimotor cortex: combined use of magnetoencephalography, functional MRI, and motor evoked potentials

    Energy Technology Data Exchange (ETDEWEB)

    Morioka, T. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fujii, K. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Fukui, M. [Dept. of Neurosurgery, Neurological Inst., Kyshu Univ., Fukuoka (Japan); Mizushima, A. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Matsumoto, S. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Hasuo, K. [Dept. of Radiology, Kyushu Univ. Fukuoka (Japan); Yamamoto, T. [Dept. of Otolaryngology, Kyushu Univ. Fukuoka (Japan); Tobimatsu, S. [Dept. of Clinical Neurophysiology, Neurological Inst., Kyushu Univ., Fukuoka (Japan)

    1995-10-01

    Combined use of magnetoencephalography (MEG), functional magnetic resonance imaging (f-MRI), and motor evoked potentials (MEPs) was carried out on one patient in an attempt to localise precisely a structural lesion to the central sulcus. A small cyst in the right frontoparietal region was thought to be the cause of generalised seizures in an otherwise asymptomatic woman. First the primary sensory cortex was identified with magnetic source imaging (MSI) of somatosensory evoked magnetic fields using MEG and MRI. Second, the motor area of the hand was identified using f-MRI during handsqueezing. Then transcranial magnetic stimulation localised the hand motor area on the scalp, which was mapped onto the MRI. There was a good agreement between MSI, f-MRI and MEP as to the location of the sensorimotor cortex and its relationship to the lesion. Multimodality mapping techniques may thus prove useful in the precise localisation of cortical lesions, and in the preoperative determination of the best treatment for peri-rolandic lesions. (orig.)

  2. Neuroplasticity of the Sensorimotor Cortex during Learning

    Directory of Open Access Journals (Sweden)

    Joseph Thachil Francis

    2011-01-01

    Full Text Available We will discuss some of the current issues in understanding plasticity in the sensorimotor (SM cortices on the behavioral, neurophysiological, and synaptic levels. We will focus our paper on reaching and grasping movements in the rat. In addition, we will discuss our preliminary work utilizing inhibition of protein kinase Mζ (PKMζ, which has recently been shown necessary and sufficient for the maintenance of long-term potentiation (LTP (Ling et al., 2002. With this new knowledge and inhibitors to this system, as well as the ability to overexpress this system, we can start to directly modulate LTP and determine its influence on behavior as well as network level processing dependent at least in part due to this form of LTP. We will also briefly introduce the use of brain machine interface (BMI paradigms to ask questions about sensorimotor plasticity and discuss current analysis techniques that may help in our understanding of neuroplasticity.

  3. Sensorimotor organization in double cortex syndrome.

    Science.gov (United States)

    Jirsch, Jeffrey D; Bernasconi, Neda; Villani, Flavio; Vitali, Paolo; Avanzini, Giuliano; Bernasconi, Andrea

    2006-06-01

    Subcortical band heterotopia is a diffuse malformation of cortical development related to pharmacologically intractable epilepsy. On magnetic resonance imaging (MRI), patients with "double cortex" syndrome (DCS) present with a band of heterotopic gray matter separated from the overlying cortex by a layer of white matter. The function and connectivity of the subcortical heterotopic band in humans is only partially understood. We studied six DCS patients with bilateral subcortical band heterotopias and six healthy controls using functional MRI (fMRI). In controls, simple motor task elicited contralateral activation of the primary motor cortex (M1) and ipsilateral activation of the cerebellum and left supplementary motor area (SMA). All DCS patients showed task-related contralateral activation of both M1 and the underlying heterotopic band. Ipsilateral motor activation was seen in 4/6 DCS patients. Furthermore, there were additional activations of nonprimary normotopic cortical areas. The sensory stimulus resulted in activation of the contralateral primary sensory cortex (SI) and the thalamus in all healthy subjects. The left sensory task also induced a contralateral activation of the insular cortex. Sensory activation of the contralateral SI was seen in all DCS patients and secondary somatosensory areas in 5/6. The heterotopic band beneath SI became activated in 3/6 DCS patients. Activations were also seen in subcortical structures for both paradigms. In DCS, motor and sensory tasks induce an activation of the subcortical heterotopic band. The recruitment of bilateral primary areas and higher-order association normotopic cortices indicates the need for a widespread network to perform simple tasks. Copyright 2005 Wiley-Liss, Inc.

  4. Dreamed movement elicits activation in the sensorimotor cortex.

    Science.gov (United States)

    Dresler, Martin; Koch, Stefan P; Wehrle, Renate; Spoormaker, Victor I; Holsboer, Florian; Steiger, Axel; Sämann, Philipp G; Obrig, Hellmuth; Czisch, Michael

    2011-11-08

    Since the discovery of the close association between rapid eye movement (REM) sleep and dreaming, much effort has been devoted to link physiological signatures of REM sleep to the contents of associated dreams [1-4]. Due to the impossibility of experimentally controlling spontaneous dream activity, however, a direct demonstration of dream contents by neuroimaging methods is lacking. By combining brain imaging with polysomnography and exploiting the state of "lucid dreaming," we show here that a predefined motor task performed during dreaming elicits neuronal activation in the sensorimotor cortex. In lucid dreams, the subject is aware of the dreaming state and capable of performing predefined actions while all standard polysomnographic criteria of REM sleep are fulfilled [5, 6]. Using eye signals as temporal markers, neural activity measured by functional magnetic resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) was related to dreamed hand movements during lucid REM sleep. Though preliminary, we provide first evidence that specific contents of REM-associated dreaming can be visualized by neuroimaging. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Correspondence between altered functional and structural connectivity in the contralesional sensorimotor cortex after unilateral stroke in rats: a combined resting-state functional MRI and manganese-enhanced MRI study

    Science.gov (United States)

    van Meer, Maurits PA; van der Marel, Kajo; Otte, Willem M; Berkelbach van der Sprenkel, Jan Willem; Dijkhuizen, Rick M

    2010-01-01

    This study shows a significant correlation between functional connectivity, as measured with resting-state functional magnetic resonance imaging (MRI), and neuroanatomical connectivity, as measured with manganese-enhanced MRI, in rats at 10 weeks after unilateral stroke and in age-matched controls. Reduced interhemispheric functional connectivity between the contralesional primary motor cortex (M1) and ipsilesional sensorimotor cortical regions was accompanied by a decrease in transcallosal manganese transfer from contralesional M1 to the ipsilesional sensorimotor cortex after a large unilateral stroke. Increased intrahemispheric functional connectivity in the contralesional sensorimotor cortex was associated with locally enhanced neuroanatomical tracer uptake, which underlines the strong link between functional and structural reorganization of neuronal networks after stroke. PMID:20664609

  6. Beta-band activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance.

    Science.gov (United States)

    Chung, Jae W; Ofori, Edward; Misra, Gaurav; Hess, Christopher W; Vaillancourt, David E

    2017-01-01

    Accurate motor performance may depend on the scaling of distinct oscillatory activity within the motor cortex and effective neural communication between the motor cortex and other brain areas. Oscillatory activity within the beta-band (13-30Hz) has been suggested to provide distinct functional roles for attention and sensorimotor control, yet it remains unclear how beta-band and other oscillatory activity within and between cortical regions is coordinated to enhance motor performance. We explore this open issue by simultaneously measuring high-density cortical activity and elbow flexor and extensor neuromuscular activity during ballistic movements, and manipulating error using high and low visual gain across three target distances. Compared with low visual gain, high visual gain decreased movement errors at each distance. Group analyses in 3D source-space revealed increased theta-, alpha-, and beta-band desynchronization of the contralateral motor cortex and medial parietal cortex in high visual gain conditions and this corresponded to reduced movement error. Dynamic causal modeling was used to compute connectivity between motor cortex and parietal cortex. Analyses revealed that gain affected the directionally-specific connectivity across broadband frequencies from parietal to sensorimotor cortex but not from sensorimotor cortex to parietal cortex. These new findings provide support for the interpretation that broad-band oscillations in theta, alpha, and beta frequency bands within sensorimotor and parietal cortex coordinate to facilitate accurate upper limb movement. Our findings establish a link between sensorimotor oscillations in the context of online motor performance in common source space across subjects. Specifically, the extent and distinct role of medial parietal cortex to sensorimotor beta connectivity and local domain broadband activity combine in a time and frequency manner to assist ballistic movements. These findings can serve as a model to examine

  7. Neuronal coding of auditory sensorimotor gating in medial prefrontal cortex.

    Science.gov (United States)

    Tóth, Attila; Petykó, Zoltán; Gálosi, Rita; Szabó, Imre; Karádi, Kázmér; Feldmann, Ádám; Péczely, László; Kállai, Veronika; Karádi, Zoltán; Lénárd, László

    2017-05-30

    The medial prefrontal cortex (mPFC) is thought to be an essential brain region for sensorimotor gating. The exact neuronal mechanisms, however, have not been extensively investigated yet by delicate single unit recording methods Prepulse inhibition (PPI) of the startle response is a broadly used important tool to investigate the inhibitory processes of sensorimotor gating. The present study was designed to examine the neuronal mechanisms of sensorimotor gating in the mPFC in freely moving rats. In these experiments, the animals were subjected to both pulse alone and prepulse+pulse stimulations. Head acceleration and the neuronal activity of the mPFC were simultaneously recorded. To adequately measure the startle reflex, a new headstage with 3D-accelerometer was created. The duration of head acceleration was longer in pulse alone trials than in prepulse+pulse trial conditions, and the amplitude of head movements was significantly larger during the pulse alone than during the prepulse+pulse situations. Single unit activities in the mPFC were recorded by means of chronically implanted tetrodes during acoustic stimulation evoked startle response and PPI. High proportion of medial prefrontal cortical neurons responded to these stimulations by characteristic firing patterns: short duration equal and unequal excitatory, medium duration excitatory, and long duration excitatory and inhibitory responses were recorded. The present findings, first time in the literature, demonstrated the startle and PPI elicited neuronal activity changes of the mPFC, and thus, provided evidence for a key role of this limbic forebrain area in sensorimotor gating process. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Encoding of temporal intervals in the rat hindlimb sensorimotor cortex

    Directory of Open Access Journals (Sweden)

    Eric Bean Knudsen

    2012-09-01

    Full Text Available The gradual buildup of neural activity over experimentally imposed delay periods, termed climbing activity, is well documented and is a potential mechanism by which interval time is encoded by distributed cortico-thalamico-striatal networks in the brain. Additionally, when multiple delay periods are incorporated, this activity has been shown to scale its rate of climbing proportional to the delay period. However, it remains unclear whether these patterns of activity occur within areas of motor cortex dedicated to hindlimb movement. Moreover, the effects of behavioral training (e.g. motor tasks under different reward conditions but with similar behavioral output are not well addressed. To address this, we recorded activity from the hindlimb sensorimotor cortex (HLSMC of two groups of rats performing a skilled hindlimb press task. In one group, rats were trained only to a make a valid press within a finite window after cue presentation for reward (non-interval trained, nIT; n=5, while rats in the second group were given duration-specific cues in which they had to make presses of either short or long duration to receive reward (interval trained, IT; n=6. Using PETH analyses, we show that cells recorded from both groups showed climbing activity during the task in similar proportions (35% IT and 47% nIT, however only climbing activity from IT rats was temporally scaled to press duration. Furthermore, using single trial decoding techniques (Wiener filter, we show that press duration can be inferred using climbing activity from IT animals (R=0.61 significantly better than nIT animals (R=0.507, p<0.01, suggesting IT animals encode press duration through temporally scaled climbing activity. Thus, if temporal intervals are behaviorally relevant then the activity of climbing neurons is temporally scaled to encode the passage of time.

  9. Subthalamic nucleus--sensorimotor cortex functional connectivity in de novo and moderate Parkinson's disease.

    Science.gov (United States)

    Kurani, Ajay S; Seidler, Rachael D; Burciu, Roxana G; Comella, Cynthia L; Corcos, Daniel M; Okun, Michael S; MacKinnon, Colum D; Vaillancourt, David E

    2015-01-01

    Previous research has indicated increased functional connectivity between subthalamic nucleus (STN) and sensorimotor cortex in off-medication Parkinson's disease (PD) compared with control subjects. It is not clear if the increase in functional connectivity between STN and sensorimotor cortex occurs in de novo PD, which is before patients begin dopamine therapy. Resting-state functional magnetic resonance imaging was carried out in 20 de novo (drug naïve) patients with PD (Hoehn and Yahr stage: I-II), 19 patients with moderate PD (Hoehn and Yahr stage: II-III), and 19 healthy controls. The functional connectivity analysis in de novo and moderate PD patients focused on the connectivity of the more affected STN and the sensorimotor cortex. Using resting-state functional connectivity analysis, we provide new evidence that people with de novo PD and off-medicated moderate PD have increased functional connectivity between the more affected STN and different regions within the sensorimotor cortex. The overlapping sensorimotor cortex found in both de novo and moderate PD had functional connectivity values that correlated positively with the Unified Parkinson's Disease Rating Scale part III. This key finding suggests that changes in functional connectivity between STN and sensorimotor cortex occur early in the disease following diagnosis and before dopamine therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Right prefrontal cortex transcranial direct current stimulation enhances multi-day savings in sensorimotor adaptation.

    Science.gov (United States)

    Seidler, Rachael D; Gluskin, Brittany S; Greeley, Brian

    2017-01-01

    We have previously reported that visuospatial working memory performance and magnitude of activation in the right dorsolateral prefrontal cortex predict the rate of visuomotor adaptation. Recent behavioral studies suggest that sensorimotor savings, or faster relearning on second exposure to a task, are due to recall of these early, strategic components of adaptation. In the present study we applied anodal transcranial direct current stimulation to right or left prefrontal cortex or left motor cortex. We found that all groups adapted dart throwing movements while wearing prism lenses at the same rate as subjects receiving sham stimulation on day 1 On test day 2, which was conducted a few days later, the right prefrontal and left motor cortex groups adapted faster than the sham group. Moreover, only the right prefrontal group exhibited greater savings, expressed as a greater difference between day 1 and day 2 errors, compared with sham stimulation. These findings support the hypothesis that the right prefrontal cortex contributes to sensorimotor adaptation and savings. We have previously reported that visuospatial working memory performance and magnitude of activation in the right dorsolateral prefrontal cortex predict the rate of manual visuomotor adaptation. Sensorimotor savings, or faster adaptation to a previously experienced perturbation, has been recently linked to cognitive processes. We show that facilitating the right prefrontal cortex with anodal transcranial direct current stimulation enhances sensorimotor savings compared with sham stimulation. Copyright © 2017 the American Physiological Society.

  11. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training

    DEFF Research Database (Denmark)

    Karabanov, Anke; Jin, Seung-Hyun; Joutsen, Atte

    2012-01-01

    Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC-M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants...... performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group (n = 8) learned by visual and the other (n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC-M1...... are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC-M1 connectivity returns to baseline....

  12. Timing-dependent modulation of the posterior parietal cortex-primary motor cortex pathway by sensorimotor training

    DEFF Research Database (Denmark)

    Karabanov, Anke Ninija; Jin, Seung-Hyun; Joutsen, Atte

    2012-01-01

    Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC-M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants...... performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group (n = 8) learned by visual and the other (n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC-M1...... are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC-M1 connectivity returns to baseline...

  13. Sensorimotor integration for speech motor learning involves the inferior parietal cortex

    Science.gov (United States)

    Shum, Mamie; Shiller, Douglas M.; Baum, Shari R.; Gracco, Vincent L.

    2011-01-01

    Sensorimotor integration is important for motor learning. The inferior parietal lobe (IPL), through its connections with the frontal lobe and cerebellum, has been associated with multisensory integration and sensorimotor adaptation for motor behaviours other than speech. In the present study, the contribution of the inferior parietal cortex to speech motor learning was evaluated using repetitive transcranial magnetic stimulation (rTMS) prior to a speech motor adaptation task. Subjects' auditory feedback was altered in a manner consistent with the auditory consequences of an unintended change in tongue position during speech production and adaptation performance was used to evaluate sensorimotor plasticity and short-term learning. Prior to the feedback alteration, rTMS or sham stimulation was applied over the left supramarginal gyrus (SMG). Subjects who underwent the sham stimulation exhibited a robust adaptive response to the feedback alteration whereas subjects who underwent rTMS exhibited a diminished adaptive response. The results suggest that the inferior parietal region, in and around SMG, plays a role in sensorimotor adaptation for speech. The interconnections of the inferior parietal cortex with inferior frontal cortex, cerebellum and primary sensory areas suggest that this region may be an important component in learning and adapting sensorimotor patterns for speech. PMID:22098364

  14. Sensorimotor integration for speech motor learning involves the inferior parietal cortex.

    Science.gov (United States)

    Shum, Mamie; Shiller, Douglas M; Baum, Shari R; Gracco, Vincent L

    2011-12-01

    Sensorimotor integration is important for motor learning. The inferior parietal lobe, through its connections with the frontal lobe and cerebellum, has been associated with multisensory integration and sensorimotor adaptation for motor behaviors other than speech. In the present study, the contribution of the inferior parietal cortex to speech motor learning was evaluated using repetitive transcranial magnetic stimulation (rTMS) prior to a speech motor adaptation task. Subjects' auditory feedback was altered in a manner consistent with the auditory consequences of an unintended change in tongue position during speech production, and adaptation performance was used to evaluate sensorimotor plasticity and short-term learning. Prior to the feedback alteration, rTMS or sham stimulation was applied over the left supramarginal gyrus (SMG). Subjects who underwent the sham stimulation exhibited a robust adaptive response to the feedback alteration whereas subjects who underwent rTMS exhibited a diminished adaptive response. The results suggest that the inferior parietal region, in and around SMG, plays a role in sensorimotor adaptation for speech. The interconnections of the inferior parietal cortex with inferior frontal cortex, cerebellum and primary sensory areas suggest that this region may be an important component in learning and adapting sensorimotor patterns for speech. © 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  15. The posterior parietal cortex as integrative hub for whisker sensorimotor information.

    Science.gov (United States)

    Mohan, Hemanth; de Haan, Roel; Mansvelder, Huibert D; de Kock, Christiaan P J

    2018-01-01

    Our daily life consists of a continuous interplay between incoming sensory information and outgoing motor plans. Particularly during goal-directed behavior and active exploration of the sensory environment, brain circuits are merging sensory and motor signals. This is referred to as sensorimotor integration and is relevant for locomotion, vision or tactile exploration. The somatosensory (tactile) system is an attractive modality to study sensorimotor integration in health and disease, motivated by the need for revolutionary technology that builds upon conceptual understanding of sensorimotor integration, such as brain-machine-interfaces and neuro-prosthetics. In this perspective, we focus on the rat whisker system and put forward the posterior parietal cortex as a potential circuit where sensorimotor integration could occur during active somatosensation. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  16. Decoding bipedal locomotion from the rat sensorimotor cortex

    Science.gov (United States)

    Rigosa, J.; Panarese, A.; Dominici, N.; Friedli, L.; van den Brand, R.; Carpaneto, J.; DiGiovanna, J.; Courtine, G.; Micera, S.

    2015-10-01

    Objective. Decoding forelimb movements from the firing activity of cortical neurons has been interfaced with robotic and prosthetic systems to replace lost upper limb functions in humans. Despite the potential of this approach to improve locomotion and facilitate gait rehabilitation, decoding lower limb movement from the motor cortex has received comparatively little attention. Here, we performed experiments to identify the type and amount of information that can be decoded from neuronal ensemble activity in the hindlimb area of the rat motor cortex during bipedal locomotor tasks. Approach. Rats were trained to stand, step on a treadmill, walk overground and climb staircases in a bipedal posture. To impose this gait, the rats were secured in a robotic interface that provided support against the direction of gravity and in the mediolateral direction, but behaved transparently in the forward direction. After completion of training, rats were chronically implanted with a micro-wire array spanning the left hindlimb motor cortex to record single and multi-unit activity, and bipolar electrodes into 10 muscles of the right hindlimb to monitor electromyographic signals. Whole-body kinematics, muscle activity, and neural signals were simultaneously recorded during execution of the trained tasks over multiple days of testing. Hindlimb kinematics, muscle activity, gait phases, and locomotor tasks were decoded using offline classification algorithms. Main results. We found that the stance and swing phases of gait and the locomotor tasks were detected with accuracies as robust as 90% in all rats. Decoded hindlimb kinematics and muscle activity exhibited a larger variability across rats and tasks. Significance. Our study shows that the rodent motor cortex contains useful information for lower limb neuroprosthetic development. However, brain-machine interfaces estimating gait phases or locomotor behaviors, instead of continuous variables such as limb joint positions or speeds

  17. Is the Sensorimotor Cortex Relevant for Speech Perception and Understanding? An Integrative Review

    Science.gov (United States)

    Schomers, Malte R.; Pulvermüller, Friedemann

    2016-01-01

    In the neuroscience of language, phonemes are frequently described as multimodal units whose neuronal representations are distributed across perisylvian cortical regions, including auditory and sensorimotor areas. A different position views phonemes primarily as acoustic entities with posterior temporal localization, which are functionally independent from frontoparietal articulatory programs. To address this current controversy, we here discuss experimental results from functional magnetic resonance imaging (fMRI) as well as transcranial magnetic stimulation (TMS) studies. On first glance, a mixed picture emerges, with earlier research documenting neurofunctional distinctions between phonemes in both temporal and frontoparietal sensorimotor systems, but some recent work seemingly failing to replicate the latter. Detailed analysis of methodological differences between studies reveals that the way experiments are set up explains whether sensorimotor cortex maps phonological information during speech perception or not. In particular, acoustic noise during the experiment and ‘motor noise’ caused by button press tasks work against the frontoparietal manifestation of phonemes. We highlight recent studies using sparse imaging and passive speech perception tasks along with multivariate pattern analysis (MVPA) and especially representational similarity analysis (RSA), which succeeded in separating acoustic-phonological from general-acoustic processes and in mapping specific phonological information on temporal and frontoparietal regions. The question about a causal role of sensorimotor cortex on speech perception and understanding is addressed by reviewing recent TMS studies. We conclude that frontoparietal cortices, including ventral motor and somatosensory areas, reflect phonological information during speech perception and exert a causal influence on language understanding. PMID:27708566

  18. Role of the Sensorimotor Cortex in Tourette Syndrome using Multimodal Imaging

    OpenAIRE

    Tinaz, Sule; Belluscio, Beth A.; Malone, Patrick; van der Veen, Jan Willem; Hallett, Mark; Horovitz, Silvina G.

    2014-01-01

    Tourette syndrome (TS) is a neuropsychiatric disorder characterized by motor and vocal tics. Most patients describe uncomfortable premonitory sensations preceding the tics and a subjective experience of increased sensitivity to tactile stimuli. These reports indicate that a sensory processing disturbance is an important component of TS together with motor phenomena. Thus, we focused our investigation on the role of the sensorimotor cortex (SMC) in TS using multimodal neuroimaging techniques. ...

  19. Modulation of sensorimotor cortex by repetitive peripheral magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Eugen eGallasch

    2015-07-01

    Full Text Available This study examines with transcranial magnetic stimulation (TMS and with functional magnetic resonance imaging (fMRI whether 20 min of repetitive peripheral magnetic stimulation (rPMS has a facilitating effect on associated motor controlling regions. Trains of rPMS with a stimulus intensity of 150% of the motor threshold were applied over right hand flexor muscles of healthy volunteers. First, with TMS, 10 Hz versus 25 Hz rPMS was examined and compared to a control group. Single and paired pulse motor evoked potentials (MEPs from flexor carpi radialis (FCR and extensor carpi radialis (ECR muscles were recorded at baseline (T0, post rPMS (T1, 30 min post (T2, 1h post (T3 and 2h post rPMS (T4. Then, with fMRI, 25 Hz rPMS was compared to sham stimulation by utilizing a finger tapping activation paradigm. Changes in BOLD contrast were examined at baseline (PRE, post rPMS (POST1 and 1h post rPMS (POST2. With TMS facilitation was observed in the target muscle (FCR following 25 Hz rPMS: MEP recruitment curves were increased at T1, T2 and T3, and intracortical facilitation was increased at T1 and T2. No effects were observed following 10 Hz rPMS. With fMRI the BOLD contrast at the left sensorimotor area was increased at POST1. Compared to inductions protocols based on transcutaneous electrical stimulation and mechanical stimulation, the rPMS induced effects appeared shorter lasting.

  20. Assessment of reorganization in the sensorimotor cortex after upper limb amputation.

    Science.gov (United States)

    Schwenkreis, P; Witscher, K; Janssen, F; Pleger, B; Dertwinkel, R; Zenz, M; Malin, J P; Tegenthoff, M

    2001-04-01

    We wanted to investigate plastic changes occurring in the motor and somatosensory cortex after upper limb amputation, and their possible relationship to phantom pain. To assess these plastic changes, we used transcranial magnetic stimulation (TMS) and source localization of somatosensory evoked potentials (SEP). Eleven patients with upper limb amputation were investigated. The phantom pain intensity was assessed by visual analogue scaling (VAS). Using TMS mapping, we found a significant lateralization of the amplitude-weighted centre of gravity (Pphantom pain intensity. We conclude that after limb amputation, the relationship between plastic changes occurring in the sensorimotor cortex and phantom pain seems to be more complex than previously believed.

  1. Restricted vision increases sensorimotor cortex involvement in human walking.

    Science.gov (United States)

    Oliveira, Anderson S; Schlink, Bryan R; Hairston, W David; König, Peter; Ferris, Daniel P

    2017-10-01

    This study aimed to determine whether there is electrocortical evidence of augmented participation of sensory brain areas in walking modulation during walking with eyes closed. Healthy subjects (n = 10) walked on a treadmill at 1 m/s while alternating 5 min of walking with the eyes open or closed while we recorded ground reaction forces (GRFs) and high-density scalp electroencephalography (EEG). We applied independent component analysis to parse EEG signals into maximally independent component (IC) processes and then computed equivalent current dipoles for each IC. We clustered cortical source ICs and analyzed event-related spectral perturbations synchronized to gait events. Our results indicated that walking with eyes closed reduced the first peak of the vertical GRFs and induced shorter stride duration. Regarding the EEG, we found that walking with eyes closed induced significantly increased relative theta desynchronization in the frontal and premotor cortex during stance, as well as greater desynchronization from theta to beta bands during transition to single support for both left and right somatosensory cortex. These results suggest a phase-specific increased participation of brain areas dedicated to sensory processing and integration when vision is not available for locomotor guidance. Furthermore, the lack of vision demands higher neural processing related to motor planning and execution. Our findings provide evidence supporting the use of eyes-closed tasks in clinical practice, such as gait rehabilitation and improvements in balance control, as there is higher demand for additional sensory integration for achieving postural control.NEW & NOTEWORTHY We measured electrocortical dynamics in sighted individuals while walking with eyes open and eyes closed to induce the participation of other sensory systems in postural control. Our findings show that walking with visual restriction increases the participation of brain areas dedicated to sensory processing

  2. Intrathecal delivery of IL-6 reactivates the intrinsic growth capacity of pyramidal cells in the sensorimotor cortex after spinal cord injury.

    Science.gov (United States)

    Yang, Ping; Qin, Yu; Bian, Chen; Zhao, Yandong; Zhang, Wen

    2015-01-01

    We have previously demonstrated the growth-promoting effect of intrathecal delivery of recombinant rat IL-6 immediately after corticospinal tract (CST) injury. Our present study aims to further clarify whether intrathecal delivery of IL-6 after CST injury could reactivate the intrinsic growth capacity of pyramidal cells in the sensorimotor cortex which project long axons to the spinal cord. We examined, by ELISA, levels of cyclic adenosine monophosphate (cAMP), adenylyl cyclase (AC, which synthesizes cAMP), phosphodiesterases (PDE, which degrades cAMP), and, by RT-PCR, the expression of regeneration-associated genes in the rat sensorimotor cortex after intrathecal delivery of IL-6 for 7 days, started immediately after CST injury. Furthermore, we injected retrograde neuronal tracer Fluorogold (FG) to the spinal cord to label pyramidal cells in the sensorimotor cortex, layers V and VI, combined with βIII-tubulin immunostaining, then we analyzed by immunohistochemisty and western blot the expression of the co-receptor gp-130 of IL-6 family, and pSTAT3 and mTOR, downstream IL-6/JAK/STAT3 and PI3K/AKT/mTOR signaling pathways respectively. We showed that intrathecal delivery of IL-6 elevated cAMP level and upregulated the expression of regeneration-associated genes including GAP-43, SPRR1A, CAP-23 and JUN-B, and the expression of pSTAT3 and mTOR in pyramidal cells of the sensorimotor cortex. In contrast, AG490, an inhibitor of JAK, partially blocked these effects of IL-6. All these results indicate that intrathecal delivery of IL-6 immediately after spinal cord injury can reactivate the intrinsic growth capacity of pyramidal cells in the sensorimotor cortex and these effects of IL-6 were partially JAK/STAT3-dependent.

  3. Haptic contents of a movie dynamically engage the spectator's sensorimotor cortex.

    Science.gov (United States)

    Lankinen, Kaisu; Smeds, Eero; Tikka, Pia; Pihko, Elina; Hari, Riitta; Koskinen, Miika

    2016-11-01

    Observation of another person's actions and feelings activates brain areas that support similar functions in the observer, thereby facilitating inferences about the other's mental and bodily states. In real life, events eliciting this kind of vicarious brain activations are intermingled with other complex, ever-changing stimuli in the environment. One practical approach to study the neural underpinnings of real-life vicarious perception is to image brain activity during movie viewing. Here the goal was to find out how observed haptic events in a silent movie would affect the spectator's sensorimotor cortex. The functional state of the sensorimotor cortex was monitored by analyzing, in 16 healthy subjects, magnetoencephalographic (MEG) responses to tactile finger stimuli that were presented once per second throughout the session. Using canonical correlation analysis and spatial filtering, consistent single-trial responses across subjects were uncovered, and their waveform changes throughout the movie were quantified. The long-latency (85-175 ms) parts of the responses were modulated in concordance with the participants' average moment-by-moment ratings of own engagement in the haptic content of the movie (correlation r = 0.49; ratings collected after the MEG session). The results, obtained by using novel signal-analysis approaches, demonstrate that the functional state of the human sensorimotor cortex fluctuates in a fine-grained manner even during passive observation of temporally varying haptic events. Hum Brain Mapp 37:4061-4068, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  4. Mirrored, imagined and executed movements differentially activate sensorimotor cortex in amputees with and without phantom limb pain.

    Science.gov (United States)

    Diers, Martin; Christmann, Christoph; Koeppe, Caroline; Ruf, Matthias; Flor, Herta

    2010-05-01

    Extended viewing of movements of the intact hand in a mirror as well as motor imagery has been shown to decrease pain in phantom pain patients. We used functional magnetic resonance imaging to assess the neural correlates of mirrored, imagined and executed hand movements in 14 upper extremity amputees - 7 with phantom limb pain (PLP) and 7 without phantom limb pain (non-PLP) and 9 healthy controls (HC). Executed movement activated the contralateral sensorimotor area in all three groups but ipsilateral cortex was only activated in the non-PLP and HC group. Mirrored movements activated the sensorimotor cortex contralateral to the hand seen in the mirror in the non-PLP and the HC but not in the PLP. Imagined movement activated the supplementary motor area in all groups and the contralateral primary sensorimotor cortex in the non-PLP and HC but not in the PLP. Mirror- and movement-related activation in the bilateral sensorimotor cortex in the mirror movement condition and activation in the sensorimotor cortex ipsilateral to the moved hand in the executed movement condition were significantly negatively correlated with the magnitude of phantom limb pain in the amputee group. Further research must identify the causal mechanisms related to mirror treatment, imagined movements or movements of the other hand and associated changes in pain perception. Copyright 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  5. Resting State fMRI Reveals Increased Subthalamic Nucleus and Sensorimotor Cortex Connectivity in Patients with Parkinson's Disease under Medication.

    Science.gov (United States)

    Shen, Bo; Gao, Yang; Zhang, Wenbin; Lu, Liyu; Zhu, Jun; Pan, Yang; Lan, Wenya; Xiao, Chaoyong; Zhang, Li

    2017-01-01

    Functional connectivity (FC) between the subthalamic nucleus (STN) and the sensorimotor cortex is increased in off-medication patients with Parkinson's disease (PD). However, the status of FC between STN and sensorimotor cortex in on-medication PD patients remains unclear. In this study, resting state functional magnetic resonance imaging was employed on 31 patients with PD under medication and 31 healthy controls. Two-sample t-test was used to study the change in FC pattern of the STN, the FC strength of the bilateral STN was correlated with overall motor symptoms, while unilateral STN was correlated with offside motor symptoms. Both bilateral and right STN showed increased FC with the right sensorimotor cortex, whereas only right STN FC was correlated with left-body rigidity scores in all PD patients. An additional subgroup analysis was performed according to the ratio of mean tremor scores and mean postural instability and gait difficulty (PIGD) scores, only the PIGD subgroup showed the increased FC between right STN and sensorimotor cortex under medication. Increased FC between the STN and the sensorimotor cortex was found, which was related to motor symptom severity in on-medication PD patients. Anti-PD drugs may influence the hyperdirect pathway to alleviate motor symptoms with the more effect on the tremor subtype.

  6. Functional abnormalities in the primary orofacial sensorimotor cortex during speech in Parkinson's disease.

    Science.gov (United States)

    Rektorova, Irena; Barrett, Jennifer; Mikl, Michal; Rektor, Ivan; Paus, Tomas

    2007-10-31

    Parkinson's disease (PD) affects speech, including respiration, phonation, and articulation. We measured the blood oxygen level-dependent (BOLD) response to overt sentence reading in: (1) 9 treated female patients with mild to moderate PD (age; mean 66.0 +/- 11.6 years, mean levodopa equivalent 583.3 +/- 397.9 mg) and (2) 8 age-matched healthy female controls (age; mean 62.2 years +/- 12.3). Speech was recorded in the scanner to assess which brain regions underlie variations in the initiation and paralinguistic aspects (e.g., pitch, loudness, and rate) of speech production in the two groups. There were no differences in paralinguistic aspects of speech except for speech loudness; it was lower in PD patients compared with that in controls, when age was used as a covariate. In both groups, we observed increases in the BOLD response (reading-baseline) in brain regions involved in speech production and perception. In PD patients, as compared with controls, we found significantly higher BOLD signal in the right primary orofacial sensorimotor cortex and more robust correlations between the measured speech parameters and the BOLD response to reading, particularly, in the left primary orofacial sensorimotor cortex. These results might reflect compensatory mechanisms and/or treatment effects that take place in mild to moderately ill PD patients with quality of speech yet comparable with that of age-matched controls. (c) 2007 Movement Disorder Society.

  7. A role for the parietal cortex in sensorimotor adaptation of saccades.

    Science.gov (United States)

    Panouillères, Muriel; Habchi, Ouazna; Gerardin, Peggy; Salemme, Romeo; Urquizar, Christian; Farne, Alessandro; Pélisson, Denis

    2014-02-01

    Sensorimotor adaptation ensures movement accuracy despite continuously changing environment and body. Adaptation of saccadic eye movements is a classical model of sensorimotor adaptation. Beside the well-established role of the brainstem-cerebellum in the adaptation of reactive saccades (RSs), the cerebral cortex has been suggested to be involved in the adaptation of voluntary saccades (VSs). Here, we provide direct evidence for a causal involvement of the parietal cortex in saccadic adaptation. First, the posterior intraparietal sulcus (pIPS) was identified in each subject using functional magnetic resonance imaging (fMRI). Then, a saccadic adaptation paradigm was used to progressively reduce the amplitude of RSs and VSs, while single-pulse transcranial magnetic stimulation (spTMS) was applied over the right pIPS. The perturbations of pIPS resulted in impairment for the adaptation of VSs, selectively when spTMS was applied 60 ms after saccade onset. In contrast, the adaptation of RSs was facilitated by spTMS applied 90 ms after saccade initiation. The differential effect of spTMS relative to saccade types suggests a direct interference with pIPS activity for the VS adaptation and a remote interference with brainstem-cerebellum activity for the RS adaptation. These results support the hypothesis that the adaptation of VSs and RSs involves different neuronal substrates.

  8. Global quantitative analysis of phosphorylation underlying phencyclidine signaling and sensorimotor gating in the prefrontal cortex.

    Science.gov (United States)

    McClatchy, D B; Savas, J N; Martínez-Bartolomé, S; Park, S K; Maher, P; Powell, S B; Yates, J R

    2016-02-01

    Prepulse inhibition (PPI) is an example of sensorimotor gating and deficits in PPI have been demonstrated in schizophrenia patients. Phencyclidine (PCP) suppression of PPI in animals has been studied to elucidate the pathological elements of schizophrenia. However, the molecular mechanisms underlying PCP treatment or PPI in the brain are still poorly understood. In this study, quantitative phosphoproteomic analysis was performed on the prefrontal cortex from rats that were subjected to PPI after being systemically injected with PCP or saline. PCP downregulated phosphorylation events were significantly enriched in proteins associated with long-term potentiation (LTP). Importantly, this data set identifies functionally novel phosphorylation sites on known LTP-associated signaling molecules. In addition, mutagenesis of a significantly altered phosphorylation site on xCT (SLC7A11), the light chain of system xc-, the cystine/glutamate antiporter, suggests that PCP also regulates the activity of this protein. Finally, new insights were also derived on PPI signaling independent of PCP treatment. This is the first quantitative phosphorylation proteomic analysis providing new molecular insights into sensorimotor gating.

  9. Role of the sensorimotor cortex in Tourette syndrome using multimodal imaging.

    Science.gov (United States)

    Tinaz, Sule; Belluscio, Beth A; Malone, Patrick; van der Veen, Jan Willem; Hallett, Mark; Horovitz, Silvina G

    2014-12-01

    Tourette syndrome (TS) is a neuropsychiatric disorder characterized by motor and vocal tics. Most patients describe uncomfortable premonitory sensations preceding the tics and a subjective experience of increased sensitivity to tactile stimuli. These reports indicate that a sensory processing disturbance is an important component of TS together with motor phenomena. Thus, we focused our investigation on the role of the sensorimotor cortex (SMC) in TS using multimodal neuroimaging techniques. We measured the gamma-aminobutyric acid (GABA)+/Creatine (Cre) ratio in the SMC using GABA (1) H magnetic resonance spectroscopy. We recorded the baseline beta activity in the SMC using magnetoencephalography and correlated GABA+/Cre ratio with baseline beta band power. Finally, we examined the resting state functional connectivity (FC) pattern of the SMC using functional magnetic resonance imaging (fMRI). GABA+/Cre ratio in the SMC did not differ between patients and controls. Correlation between the baseline beta band power and GABA+/Cre ratio was abnormal in patients. The anterior insula showed increased FC with the SMC in patients. These findings suggest that altered limbic input to the SMC and abnormal GABA-mediated beta oscillations in the SMC may underpin some of the sensorimotor processing disturbances in TS and contribute to tic generation. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  10. Enhanced reactivity and delayed recovery of sensorimotor cortex in the novelty seeking personality.

    Science.gov (United States)

    Shishida, Kazuhiro; Hashizume, Akira; Onoda, Keiichi; Okamoto, Yasumasa; Yamawaki, Shigeto

    2006-01-01

    The novelty seeking (NS) personality trait is hypothesized to be associated with high cortical reactivity, poor inhibitory control and/or varied dopaminergic neurotransmission in the basal ganglia. After somatosensory stimulation, electrical oscillations in alpha and beta bands generated in the sensorimotor cortex show a short duration decrease (event-related desynchronization) and a subsequent increase (event-related synchronization) that is thought to reflect cortical activation and the inhibitory/recovery process, respectively. These oscillatory changes are also believed to be affected by the status of the basal ganglia and by dopaminergic functions. In the present study, we investigated the association between the NS personality trait and somatosensory oscillatory changes after median nerve stimulation assessed by magnetoencephalography. From 48 healthy subjects, we selected 14 high scorers and 14 age- and sex-matched low scorers on the NS dimension of the Temperament and Character Inventory. Magnetic fields were recorded while subjects received electrical stimulation of either the right or left median nerve with equal probability and with a randomized interstimulus interval. Frequency analysis was performed on the alpha and beta bands. Compared with the low NS group, the high NS group showed larger magnitude of beta event-related desynchronization and larger latencies of the alpha and beta event-related synchronization. These results suggest that individuals with high degrees of the NS trait have greater reactivity and delayed recovery of the sensorimotor cortex in response to simple somatosensory stimulation. This may be significant for the understanding of their exploratory and impulsive behavior. (c) 2006 S. Karger AG, Basel.

  11. Reduction in phencyclidine induced sensorimotor gating deficits in the rat following increased system xc⁻ activity in the medial prefrontal cortex.

    Science.gov (United States)

    Lutgen, Victoria; Qualmann, Krista; Resch, Jon; Kong, Linghai; Choi, Sujean; Baker, David A

    2013-04-01

    Aspects of schizophrenia, including deficits in sensorimotor gating, have been linked to glutamate dysfunction and/or oxidative stress in the prefrontal cortex. System xc(-), a cystine-glutamate antiporter, is a poorly understood mechanism that contributes to both cellular antioxidant capacity and glutamate homeostasis. Our goal was to determine whether increased system xc(-) activity within the prefrontal cortex would normalize a rodent measure of sensorimotor gating. In situ hybridization was used to map messenger RNA (mRNA) expression of xCT, the active subunit of system xc(-), in the prefrontal cortex. Prepulse inhibition was used to measure sensorimotor gating; deficits in prepulse inhibition were produced using phencyclidine (0.3-3 mg/kg, sc). N-Acetylcysteine (10-100 μM) and the system xc(-) inhibitor (S)-4-carboxyphenylglycine (CPG, 0.5 μM) were used to increase and decrease system xc(-) activity, respectively. The uptake of (14)C-cystine into tissue punches obtained from the prefrontal cortex was used to assay system xc(-) activity. The expression of xCT mRNA in the prefrontal cortex was most prominent in a lateral band spanning primarily the prelimbic cortex. Although phencyclidine did not alter the uptake of (14)C-cystine in prefrontal cortical tissue punches, intraprefrontal cortical infusion of N-acetylcysteine (10-100 μM) significantly reduced phencyclidine- (1.5 mg/kg, sc) induced deficits in prepulse inhibition. N-Acetylcysteine was without effect when coinfused with CPG (0.5 μM), indicating an involvement of system xc(-). These results indicate that phencyclidine disrupts sensorimotor gating through system xc(-) independent mechanisms, but that increasing cystine-glutamate exchange in the prefrontal cortex is sufficient to reduce behavioral deficits produced by phencyclidine.

  12. Reduction in Phencyclidine Induced Sensorimotor Gating Deficits in the Rat Following Increased System xc− Activity in the Medial Prefrontal Cortex

    Science.gov (United States)

    Lutgen, Victoria; Qualmann, Krista; Resch, Jon; Kong, Linghai; Choi, SuJean; Baker, David A.

    2012-01-01

    Rationale Aspects of schizophrenia, including deficits in sensorimotor gating, have been linked to glutamate dysfunction and/or oxidative stress in the prefrontal cortex. System xc−, a cystine- glutamate antiporter, is a poorly understood mechanism that contributes to both cellular antioxidant capacity and glutamate homeostasis. Objectives Our goal was to determine whether increased system xc− activity within the prefrontal cortex would normalize a rodent measure of sensorimotor gating. Methods In situ hybridization was used to map mRNA expression of xCT, the active subunit of system xc−, in the prefrontal cortex. Prepulse inhibition was used to measure sensorimotor gating; deficits in prepulse inhibition were produced using phencyclidine (0.3–3 mg/kg, sc). N-acetylcysteine (10–100 μM) and the system xc− inhibitor (S)-4-carboxyphenylglycine (CPG, 0.5 μM) were used to increase and decrease system xc− activity, respectively. The uptake of 14C-cystine into tissue punches obtained from the prefrontal cortex was used to assay system xc− activity. Results The expression of xCT mRNA in the prefrontal cortex was most prominent in a lateral band spanning primarily the prelimbic cortex. Although phencyclidine did not alter the uptake of 14C-cystine in prefrontal cortical tissue punches, intra-prefrontal cortical infusion of N-acetylcysteine (10–100 μM) significantly reduced phencyclidine- (1.5 mg/kg, sc) induced deficits in prepulse inhibition. N-acetylcysteine was without effect when co-infused with CPG (0.5 μM), indicating an involvement of system xc−. Conclusions These results indicate that phencyclidine disrupts sensorimotor gating through system xc− independent mechanisms, but that increasing cystine-glutamate exchange in the prefrontal cortex is sufficient to reduce behavioral deficits produced by phencyclidine. PMID:23192314

  13. Sensorimotor Cortex Injection of Adeno-Associated Viral Vector Mediates Knockout of PTEN in Neurons of the Brain and Spinal Cord of Mice.

    Science.gov (United States)

    Yang, Ping; Qin, Yu; Zhang, Wen; Bian, Zhiqun; Wang, Ruiqi

    2015-12-01

    Cre/loxP-mediated inactivation of phosphatase and tensin homolog (PTEN) is proposed to be a promising therapeutic agent for promoting CNS and PNS regeneration. And adeno-associated virus (AAV) vector has been developed as an attractive gene delivery system with proven safety. In the present study, we investigated Cre/loxP-mediated knockout of PTEN in the sensorimotor cortex, hippocampus, and spinal cord in PTEN floxed mice by immunohistological analysis of PI3K/AKT/mTOR expression in neurons of the sensorimotor cortex, hippocampus, and spinal cord after sensorimotor cortex injection of AAV-Cre. Two weeks after injection of AAV-Cre, the sensorimotor cortex, hippocampus, and spinal cord were dissected and examined the expression of downstream molecules pAKT and pS6 of PI3K/AKT signaling pathway. The results showed that remote delivery of AAV-Cre through sensorimotor cortex injection mediated PTEN knockout in neurons of the sensorimotor cortex, hippocampus, and spinal cord. We propose sensorimotor cortex injection of AAV may provide a potential strategy of gene therapy for the CNS diseases.

  14. Effect of skilled reaching training and enriched environment on generation of oligodendrocytes in the adult sensorimotor cortex and corpus callosum.

    Science.gov (United States)

    Keiner, Silke; Niv, Fanny; Neumann, Susanne; Steinbach, Tanja; Schmeer, Christian; Hornung, Katrin; Schlenker, Yvonne; Förster, Martin; Witte, Otto W; Redecker, Christoph

    2017-03-09

    Increased motor activity or social interactions through enriched environment are strong stimulators of grey and white matter plasticity in the adult rodent brain. In the present study we evaluated whether specific reaching training of the dominant forelimb (RT) and stimulation of unspecific motor activity through enriched environment (EE) influence the generation of distinct oligodendrocyte subpopulations in the sensorimotor cortex and corpus callosum of the adult rat brain. Animals were placed in three different housing conditions: one group was transferred to an EE, a second group received daily RT, whereas a third group remained in the standard cage. Bromodeoxyuridine (BrdU) was applied at days 2-6 after start of experiments and animals were allowed to survive for 10 and 42 days. Enriched environment and daily reaching training of the dominant forelimb significantly increased the number of newly differentiated GSTπ+ oligodendrocytes at day 10 and newly differentiated CNPase+ oligodendrocytes in the sensorimotor cortex at day 42. The myelin level as measured by CNPase expression was increased in the frontal cortex at day 42. Distribution of newly differentiated NG2+ subpopulations changed between 10 and 42 days with an increase of GSTπ+ subtypes and a decrease of NG2+ cells in the sensorimotor cortex and corpus callosum. Analysis of neuronal marker doublecortin (DCX) showed that more than half of NG2+ cells express DCX in the cortex. The number of new DCX+NG2+ cells was reduced by EE at day 10. Our results indicate for the first time that specific and unspecific motor training conditions differentially alter the process of differentiation from oligodendrocyte subpopulations, in particular NG2+DCX+ cells, in the sensorimotor cortex and corpus callosum.

  15. Resting-state oscillatory dynamics in sensorimotor cortex in benign epilepsy with centro-temporal spikes and typical brain development.

    Science.gov (United States)

    Koelewijn, Loes; Hamandi, Khalid; Brindley, Lisa M; Brookes, Matthew J; Routley, Bethany C; Muthukumaraswamy, Suresh D; Williams, Natalie; Thomas, Marie A; Kirby, Amanda; Te Water Naudé, Johann; Gibbon, Frances; Singh, Krish D

    2015-10-01

    Benign Epilepsy with Centro-Temporal Spikes (BECTS) is a common childhood epilepsy associated with deficits in several neurocognitive domains. Neurophysiological studies in BECTS often focus on centro-temporal spikes, but these correlate poorly with morphology and cognitive impairments. To better understand the neural profile of BECTS, we studied background brain oscillations, thought to be integrally involved in neural network communication, in sensorimotor areas. We used independent component analysis of temporally correlated sources on magnetoencephalography recordings to assess sensorimotor resting-state network activity in BECTS patients and typically developing controls. We also investigated the variability of oscillatory characteristics within focal primary motor cortex (M1), localized with a separate finger abduction task. We hypothesized that background oscillations would differ between patients and controls in the sensorimotor network but not elsewhere, especially in the beta band (13-30 Hz) because of its role in network communication and motor processing. The results support our hypothesis: in the sensorimotor network, patients had a greater variability in oscillatory amplitude compared to controls, whereas there was no difference in the visual network. Network measures did not correlate with age. The coefficient of variation of resting M1 peak frequency correlated negatively with age in the beta band only, and was greater than average for a number of patients. Our results point toward a "disorganized" functional sensorimotor network in BECTS, supporting a neurodevelopmental delay in sensorimotor cortex. Our findings further suggest that investigating the variability of oscillatory peak frequency may be a useful tool to investigate deficits of disorganization in neurodevelopmental disorders. © 2015 Wiley Periodicals, Inc.

  16. An EEG study on the somatotopic organisation of sensorimotor cortex activation during action execution and observation in infancy.

    Science.gov (United States)

    de Klerk, Carina C J M; Johnson, Mark H; Southgate, Victoria

    2015-10-01

    Previous studies have shown that sensorimotor cortex activation is somatotopically-organised during action execution and observation in adulthood. Here we aimed to investigate the development of this phenomenon in infancy. We elicited arm and leg actions from 12-month-old infants and presented them, and a control group of adults, with videos of arm and leg actions while we measured their sensorimotor alpha suppression using EEG. Sensorimotor alpha suppression during action execution was somatotopically organised in 12-month-old infants: there was more suppression over the arm areas when infants performed reaching actions, and more suppression over the leg area when they performed kicking actions. Adults also showed somatotopically-organised activation during the observation of reaching and kicking actions. In contrast, infants did not show somatotopically-organised activation during action observation, but instead activated the arm areas when observing both reaching and kicking actions. We suggest that the somatotopic organisation of sensorimotor cortex activation during action observation may depend on infants' understanding of the action goal and their expectations about how this goal will be achieved. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Acupuncture Enhances Effective Connectivity between Cerebellum and Primary Sensorimotor Cortex in Patients with Stable Recovery Stroke

    Directory of Open Access Journals (Sweden)

    Zijing Xie

    2014-01-01

    Full Text Available Recent neuroimaging studies have demonstrated that stimulation of acupuncture at motor-implicated acupoints modulates activities of brain areas relevant to the processing of motor functions. This study aims to investigate acupuncture-induced changes in effective connectivity among motor areas in hemiparetic stroke patients by using the multivariate Granger causal analysis. A total of 9 stable recovery stroke patients and 8 healthy controls were recruited and underwent three runs of fMRI scan: passive finger movements and resting state before and after manual acupuncture stimuli. Stroke patients showed significantly attenuated effective connectivity between cortical and subcortical areas during passive motor task, which indicates inefficient information transmissions between cortical and subcortical motor-related regions. Acupuncture at motor-implicated acupoints showed specific modulations of motor-related network in stroke patients relative to healthy control subjects. This specific modulation enhanced bidirectionally effective connectivity between the cerebellum and primary sensorimotor cortex in stroke patients, which may compensate for the attenuated effective connectivity between cortical and subcortical areas during passive motor task and, consequently, contribute to improvement of movement coordination and motor learning in subacute stroke patients. Our results suggested that further efficacy studies of acupuncture in motor recovery can focus on the improvement of movement coordination and motor learning during motor rehabilitation.

  18. Expressions of multiple neuronal dynamics during sensorimotor learning in the motor cortex of behaving monkeys.

    Directory of Open Access Journals (Sweden)

    Yael Mandelblat-Cerf

    Full Text Available Previous studies support the notion that sensorimotor learning involves multiple processes. We investigated the neuronal basis of these processes by recording single-unit activity in motor cortex of non-human primates (Macaca fascicularis, during adaptation to force-field perturbations. Perturbed trials (reaching to one direction were practiced along with unperturbed trials (to other directions. The number of perturbed trials relative to the unperturbed ones was either low or high, in two separate practice schedules. Unsurprisingly, practice under high-rate resulted in faster learning with more pronounced generalization, as compared to the low-rate practice. However, generalization and retention of behavioral and neuronal effects following practice in high-rate were less stable; namely, the faster learning was forgotten faster. We examined two subgroups of cells and showed that, during learning, the changes in firing-rate in one subgroup depended on the number of practiced trials, but not on time. In contrast, changes in the second subgroup depended on time and practice; the changes in firing-rate, following the same number of perturbed trials, were larger under high-rate than low-rate learning. After learning, the neuronal changes gradually decayed. In the first subgroup, the decay pace did not depend on the practice rate, whereas in the second subgroup, the decay pace was greater following high-rate practice. This group shows neuronal representation that mirrors the behavioral performance, evolving faster but also decaying faster at learning under high-rate, as compared to low-rate. The results suggest that the stability of a new learned skill and its neuronal representation are affected by the acquisition schedule.

  19. Paired Stimulation for Spike-Timing-Dependent Plasticity in Primate Sensorimotor Cortex

    Science.gov (United States)

    Seeman, Stephanie C.

    2017-01-01

    Classic in vitro studies have described spike-timing-dependent plasticity (STDP) at a synapse: the connection from neuron A to neuron B is strengthened (or weakened) when A fires before (or after) B within an optimal time window. Accordingly, more recent in vivo works have demonstrated behavioral effects consistent with an STDP mechanism; however, many relied on single-unit recordings. The ability to modify cortical connections becomes useful in the context of injury, when connectivity and associated behavior are compromised. To avoid the need for long-term, stable isolation of single units, one could control timed activation of two cortical sites with paired electrical stimulation. We tested the hypothesis that STDP could be induced via prolonged paired stimulation as quantified by cortical evoked potentials (EPs) in the sensorimotor cortex of awake, behaving monkeys. Paired simulation between two interconnected sites produced robust effects in EPs consistent with STDP, but only at 2/15 tested pairs. The stimulation protocol often produced increases in global network excitability or depression of the conditioned pair. Together, these results suggest that paired stimulation in vivo is a viable method to induce STDP between cortical populations, but that factors beyond activation timing must be considered to produce conditioning effects. SIGNIFICANCE STATEMENT Plasticity of neural connections is important for development, learning, memory, and recovery from injury. Cellular mechanisms underlying spike-timing-dependent plasticity have been studied extensively in vitro. Recent in vivo work has demonstrated results consistent with the previously defined cellular mechanisms; however, the output measure in these studies was typically an indirect assessment of plasticity at the neural level. Here, we show direct plasticity in recordings of neuronal populations in awake, behaving nonhuman primates induced by paired electrical stimulation. In contrast to in vitro studies

  20. Differential recruitment of the sensorimotor putamen and frontoparietal cortex during motor chunking in humans.

    Science.gov (United States)

    Wymbs, Nicholas F; Bassett, Danielle S; Mucha, Peter J; Porter, Mason A; Grafton, Scott T

    2012-06-07

    Motor chunking facilitates movement production by combining motor elements into integrated units of behavior. Previous research suggests that chunking involves two processes: concatenation, aimed at the formation of motor-motor associations between elements or sets of elements, and segmentation, aimed at the parsing of multiple contiguous elements into shorter action sets. We used fMRI to measure the trial-wise recruitment of brain regions associated with these chunking processes as healthy subjects performed a cued-sequence production task. A dynamic network analysis identified chunking structure for a set of motor sequences acquired during fMRI and collected over 3 days of training. Activity in the bilateral sensorimotor putamen positively correlated with chunk concatenation, whereas a left-hemisphere frontoparietal network was correlated with chunk segmentation. Across subjects, there was an aggregate increase in chunk strength (concatenation) with training, suggesting that subcortical circuits play a direct role in the creation of fluid transitions across chunks. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. A transcranial direct current stimulation over the sensorimotor cortex modulates the itch sensation induced by histamine.

    Science.gov (United States)

    Nakagawa, Kei; Mochizuki, Hideki; Koyama, Soichiro; Tanaka, Satoshi; Sadato, Norihiro; Kakigi, Ryusuke

    2016-01-01

    Itching can be suppressed by scratching. However, scratching may aggravate itch symptoms by damaging the skin. Therefore, identifying an alternative approach to suppress itching is of clinical importance. The aim of the present study was to determine whether a transcranial direct current stimulation (tDCS) was useful for itch relief. The present study was performed on a double-blind, Sham-controlled, and cross-over experimental design. A histamine-induced itch was evoked on the left dorsal forearms of healthy participants, who were asked to report the subjective sensation of itching every 30s for 23 min. tDCS was applied over the sensorimotor cortex (SMC) according to a bi-hemispheric stimulation protocol during the itch stimuli; one electrode was placed over the right SMC, while the other was placed over the left SMC. The peak and lasting sensations of itching were compared between R-A/L-C (anodal electrode placed over the right and cathodal electrode over the left), L-A/R-C (anodal electrode placed over the left and cathodal electrode over the right), and Sham interventions. The peak and lasting itch sensation were significantly suppressed during the R-A/L-C intervention than during the Sham intervention. On the other hand, the L-A/R-C intervention suppressed the peak itch sensation, but the effects did not last for more than a few minutes. These results suggest that a bi-hemispheric tDCS intervention, especially when the anodal electrode was placed over the SMC of the contralateral side, was a potentially useful method for relieving lasting itch sensations. The present study demonstrated that a tDCS intervention may be an alternative approach for suppressing unpleasant itch sensations in healthy participants. Since tDCS has some advantages, namely, its easy application and safety in a clinical setting, it may become a useful method for the treatment of itching. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland

  2. The posterior parietal cortex as integrative hub for whisker sensorimotor information

    NARCIS (Netherlands)

    Mohan, Hemanth; de Haan, Roel; Mansvelder, Huibert D; de Kock, Christiaan P J

    2017-01-01

    Our daily life consists of a continuous interplay between incoming sensory information and outgoing motor plans. Particularly during goal-directed behavior and active exploration of the sensory environment, brain circuits are merging sensory and motor signals. This is referred to as sensorimotor

  3. Plasticity in the sensorimotor cortex induced by Music-supported therapy in stroke patients: A TMS study

    Directory of Open Access Journals (Sweden)

    Jennifer eGrau-Sánchez

    2013-09-01

    Full Text Available Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician’s brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning. Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy.

  4. Plasticity in the sensorimotor cortex induced by Music-supported therapy in stroke patients: a TMS study.

    Science.gov (United States)

    Grau-Sánchez, Jennifer; Amengual, Julià L; Rojo, Nuria; Veciana de Las Heras, Misericordia; Montero, Jordi; Rubio, Francisco; Altenmüller, Eckart; Münte, Thomas F; Rodríguez-Fornells, Antoni

    2013-01-01

    Playing a musical instrument demands the engagement of different neural systems. Recent studies about the musician's brain and musical training highlight that this activity requires the close interaction between motor and somatosensory systems. Moreover, neuroplastic changes have been reported in motor-related areas after short and long-term musical training. Because of its capacity to promote neuroplastic changes, music has been used in the context of stroke neurorehabilitation. The majority of patients suffering from a stroke have motor impairments, preventing them to live independently. Thus, there is an increasing demand for effective restorative interventions for neurological deficits. Music-supported Therapy (MST) has been recently developed to restore motor deficits. We report data of a selected sample of stroke patients who have been enrolled in a MST program (1 month intense music learning). Prior to and after the therapy, patients were evaluated with different behavioral motor tests. Transcranial Magnetic Stimulation (TMS) was applied to evaluate changes in the sensorimotor representations underlying the motor gains observed. Several parameters of excitability of the motor cortex were assessed as well as the cortical somatotopic representation of a muscle in the affected hand. Our results revealed that participants obtained significant motor improvements in the paretic hand and those changes were accompanied by changes in the excitability of the motor cortex. Thus, MST leads to neuroplastic changes in the motor cortex of stroke patients which may explain its efficacy.

  5. Magnetic resonance spectroscopy of current hand amputees reveals evidence for neuronal-level changes in former sensorimotor cortex.

    Science.gov (United States)

    Cirstea, Carmen M; Choi, In-Young; Lee, Phil; Peng, Huiling; Kaufman, Christina L; Frey, Scott H

    2017-04-01

    Deafferentation is accompanied by large-scale functional reorganization of maps in the primary sensory and motor areas of the hemisphere contralateral to injury. Animal models of deafferentation suggest a variety of cellular-level changes including depression of neuronal metabolism and even neuronal death. Whether similar neuronal changes contribute to patterns of reorganization within the contralateral sensorimotor cortex of chronic human amputees is uncertain. We used functional MRI-guided proton magnetic resonance spectroscopy to test the hypothesis that unilateral deafferentation is associated with lower levels of N -acetylaspartate (NAA, a putative marker of neuronal integrity) in the sensorimotor hand territory located contralateral to the missing hand in chronic amputees ( n = 19) compared with the analogous hand territory of age- and sex-matched healthy controls ( n = 28). We also tested whether former amputees [i.e., recipients of replanted ( n = 3) or transplanted ( n = 2) hands] exhibit NAA levels that are indistinguishable from controls, possible evidence for reversal of the effects of deafferentation. As predicted, relative to controls, current amputees exhibited lower levels of NAA that were negatively and significantly correlated with the time after amputation. Contrary to our prediction, NAA levels in both replanted and transplanted patients fell within the range of the current amputees. We suggest that lower levels of NAA in current amputees reflects altered neuronal integrity consequent to chronic deafferentation. Thus local changes in NAA levels may provide a means of assessing neuroplastic changes in deafferented cortex. Results from former amputees suggest that these changes may not be readily reversible through reafferentation. NEW & NOTEWORTHY This study is the first to use functional magnetic resonance-guided magnetic resonance spectroscopy to examine neurochemical mechanisms underlying functional reorganization in the primary somatosensory

  6. MEP Latencies Predict the Neuromodulatory Effect of cTBS Delivered to the Ipsilateral and Contralateral Sensorimotor Cortex.

    Directory of Open Access Journals (Sweden)

    Gan Huang

    Full Text Available Recently, it was shown that the highly variable after-effect of continuous theta-burst stimulation (cTBS of the primary motor cortex (M1 can be predicted by the latency of motor-evoked potentials (MEPs recorded before cTBS. This suggests that at least part of this inter-individual variability is driven by differences in the neuronal populations preferentially activated by transcranial magnetic stimulation (TMS.Here, we recorded MEPs, TMS-evoked brain potentials (TEPs and somatosensory-evoked potentials (SEPs to investigate the effects of cTBS delivered over the primary sensorimotor cortex on both the ipsilateral and contralateral M1, and the ipsilateral and contralateral primary somatosensory cortex (S1.We confirm that the after-effects of cTBS can be predicted by the latency of MEPs recorded before cTBS. Over the hemisphere onto which cTBS was delivered, short-latency MEPs at baseline were associated with an increase of MEP magnitude (i.e. an excitatory effect of cTBS whereas late-latency MEPs were associated with reduced MEPs (i.e. an inhibitory effect of cTBS. This relationship was reversed over the contralateral hemisphere, indicating opposite effects of cTBS on the responsiveness of the ipsilateral and contralateral M1. Baseline MEP latencies also predicted changes in the magnitude of the N100 wave of TEPs elicited by stimulation of the ipsilateral and contralateral hemisphere, indicating that this TEP component is specifically dependent on the state of M1. Finally, there was a reverse relationship between MEP latency and the effects of cTBS on the SEP waveforms (50-130 ms, indicating that after-effects of cTBS on S1 are opposite to those on M1.Taken together, our results confirm that the variable after-effects of cTBS can be explained by differences in the neuronal populations activated by TMS. Furthermore, our results show that this variability also determines remote effects of cTBS in S1 and the contralateral hemisphere, compatible with

  7. Computer-aided training sensorimotor cortex functions in humans before the upper limb transplantation using virtual reality and sensory feedback.

    Science.gov (United States)

    Kurzynski, Marek; Jaskolska, Anna; Marusiak, Jaroslaw; Wolczowski, Andrzej; Bierut, Przemyslaw; Szumowski, Lukasz; Witkowski, Jerzy; Kisiel-Sajewicz, Katarzyna

    2017-08-01

    One of the biggest problems of upper limb transplantation is lack of certainty as to whether a patient will be able to control voluntary movements of transplanted hands. Based on findings of the recent research on brain cortex plasticity, a premise can be drawn that mental training supported with visual and sensory feedback can cause structural and functional reorganization of the sensorimotor cortex, which leads to recovery of function associated with the control of movements performed by the upper limbs. In this study, authors - based on the above observations - propose the computer-aided training (CAT) system, which generating visual and sensory stimuli, should enhance the effectiveness of mental training applied to humans before upper limb transplantation. The basis for the concept of computer-aided training system is a virtual hand whose reaching and grasping movements the trained patient can observe on the VR headset screen (visual feedback) and whose contact with virtual objects the patient can feel as a touch (sensory feedback). The computer training system is composed of three main components: (1) the system generating 3D virtual world in which the patient sees the virtual limb from the perspective as if it were his/her own hand; (2) sensory feedback transforming information about the interaction of the virtual hand with the grasped object into mechanical vibration; (3) the therapist's panel for controlling the training course. Results of the case study demonstrate that mental training supported with visual and sensory stimuli generated by the computer system leads to a beneficial change of the brain activity related to motor control of the reaching in the patient with bilateral upper limb congenital transverse deficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Functional activation of the cerebral cortex related to sensorimotor adaptation of reactive and voluntary saccades.

    Science.gov (United States)

    Gerardin, Peggy; Miquée, Aline; Urquizar, Christian; Pélisson, Denis

    2012-07-16

    Potentially dangerous events in the environment evoke automatic ocular responses, called reactive saccades. Adaptation processes, which maintain saccade accuracy against various events (e.g. growth, aging, neuro-muscular lesions), are to date mostly relayed to cerebellar activity. Here we demonstrate that adaptation of reactive saccades also involves cerebral cortical areas. Moreover, we provide the first identification of the neural substrates of adaptation of voluntary saccades, representing the complement to reactive saccades for the active exploration of our environment. An fMRI approach was designed to isolate adaptation from saccade production: an adaptation condition in which the visual target stepped backward 50 ms after saccade termination was compared to a control condition where the same target backstep occurred 500 ms after saccade termination. Subjects were tested for reactive and voluntary saccades in separate sessions. Multi-voxel pattern analyses of fMRI data from previously-defined regions of interests (ROIs) significantly discriminated between adaptation and control conditions for several ROIs. Some of these areas were revealed for adaptation of both saccade categories (cerebellum, frontal cortex), whereas others were specifically related to reactive saccades (temporo-parietal junction, hMT+/V5) or to voluntary saccades (medial and posterior areas of intra-parietal sulcus). These findings critically extend our knowledge on brain motor plasticity by showing that saccadic adaptation relies on a hitherto unknown contribution of the cerebral cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Source Detection and Functional Connectivity of the Sensorimotor Cortex during Actual and Imaginary Limb Movement: A Preliminary Study on the Implementation of eConnectome in Motor Imagery Protocols

    Directory of Open Access Journals (Sweden)

    Alkinoos Athanasiou

    2012-01-01

    Full Text Available Introduction. Sensorimotor cortex is activated similarly during motor execution and motor imagery. The study of functional connectivity networks (FCNs aims at successfully modeling the dynamics of information flow between cortical areas. Materials and Methods. Seven healthy subjects performed 4 motor tasks (real foot, imaginary foot, real hand, and imaginary hand movements, while electroencephalography was recorded over the sensorimotor cortex. Event-Related Desynchronization/Synchronization (ERD/ERS of the mu-rhythm was used to evaluate MI performance. Source detection and FCNs were studied with eConnectome. Results and Discussion. Four subjects produced similar ERD/ERS patterns between motor execution and imagery during both hand and foot tasks, 2 subjects only during hand tasks, and 1 subject only during foot tasks. All subjects showed the expected brain activation in well-performed MI tasks, facilitating cortical source estimation. Preliminary functional connectivity analysis shows formation of networks on the sensorimotor cortex during motor imagery and execution. Conclusions. Cortex activation maps depict sensorimotor cortex activation, while similar functional connectivity networks are formed in the sensorimotor cortex both during actual and imaginary movements. eConnectome is demonstrated as an effective tool for the study of cortex activation and FCN. The implementation of FCN in motor imagery could induce promising advancements in Brain Computer Interfaces.

  10. Increased low-frequency oscillation amplitude of sensorimotor cortex associated with the severity of structural impairment in cervical myelopathy.

    Directory of Open Access Journals (Sweden)

    Fuqing Zhou

    Full Text Available Decreases in metabolites and increased motor-related, but decreased sensory-related activation of the sensorimotor cortex (SMC have been observed in patients with cervical myelopathy (CM using advanced MRI techniques. However, the nature of intrinsic neuronal activity in the SMC, and the relationship between cerebral function and structural damage of the spinal cord in patients with CM are not fully understood. The purpose of this study was to assess intrinsic neuronal activity by calculating the regional amplitude of low frequency fluctuations (ALFF using resting-state functional MRI (rs-fMRI, and correlations with clinical and imaging indices. Nineteen patients and 19 age- and sex-matched healthy subjects underwent rs-fMRI scans. ALFF measurements were performed in the SMC, a key brain network likely to impaired or reorganized patients with CM. Compared with healthy subjects, increased amplitude of cortical low-frequency oscillations (LFO was observed in the right precentral gyrus, right postcentral gyrus, and left supplementary motor area. Furthermore, increased z-ALFF values in the right precentral gyrus and right postcentral gyrus correlated with decreased fractional anisotropy values at the C2 level, which indicated increased intrinsic neuronal activity in the SMC corresponding to the structural impairment in the spinal cord of patients with CM. These findings suggest a complex and diverging relationship of cortical functional reorganization and distal spinal anatomical compression in patients with CM and, thus, add important information in understanding how spinal cord integrity may be a factor in the intrinsic covariance of spontaneous low-frequency fluctuations of BOLD signals involved in cortical plasticity.

  11. Contribution of the resting-state functional connectivity of the contralesional primary sensorimotor cortex to motor recovery after subcortical stroke.

    Directory of Open Access Journals (Sweden)

    Huijuan Xu

    Full Text Available It remains uncertain if the contralesional primary sensorimotor cortex (CL_PSMC contributes to motor recovery after stroke. Here we investigated longitudinal changes in the resting-state functional connectivity (rsFC of the CL_PSMC and their association with motor recovery. Thirteen patients who had experienced subcortical stroke underwent a series of resting-state fMRI and clinical assessments over a period of 1 year at 5 time points, i.e., within the first week, at 2 weeks, 1 month, 3 months, and 1 year after stroke onset. Thirteen age- and gender-matched healthy subjects were recruited as controls. The CL_PSMC was defined as a region centered at the voxel that had greatest activation during hand motion task. The dynamic changes in the rsFCs of the CL_PSMC within the whole brain were evaluated and correlated with the Motricity Index (MI scores. Compared with healthy controls, the rsFCs of the CL_PSMC with the bilateral PSMC were initially decreased, then gradually increased, and finally restored to the normal level 1 year later. Moreover, the dynamic change in the inter-hemispheric rsFC between the bilateral PSMC in these patients was positively correlated with the MI scores. However, the intra-hemispheric rsFC of the CL_PSMC was not correlated with the MI scores. This study shows dynamic changes in the rsFCs of the CL_PSMC after stroke and suggests that the increased inter-hemispheric rsFC between the bilateral PSMC may facilitate motor recovery in stroke patients. However, generalization of our findings is limited by the small sample size of our study and needs to be confirmed.

  12. Safety and feasibility of transcranial direct current stimulation (tDCS) combined with sensorimotor retraining in chronic low back pain: a protocol for a pilot randomised controlled trial.

    Science.gov (United States)

    Ouellette, Adam Louis; Liston, Matthew B; Chang, Wei-Ju; Walton, David M; Wand, Benedict Martin; Schabrun, Siobhan M

    2017-08-21

    Chronic low back pain (LBP) is a common and costly health problem yet current treatments demonstrate at best, small effects. The concurrent application of treatments with synergistic clinical and mechanistic effects may improve outcomes in chronic LBP. This pilot trial aims to (1) determine the feasibility, safety and perceived patient response to a combined transcranial direct current stimulation (tDCS) and sensorimotor retraining intervention in chronic LBP and (2) provide data to support a sample size calculation for a fully powered trial should trends of effectiveness be present. A pilot randomised, assessor and participant-blind, sham-controlled trial will be conducted. Eighty participants with chronic LBP will be randomly allocated to receive either (1) active tDCS + sensorimotor retraining or (2) sham tDCS + sensorimotor retraining. tDCS (active or sham) will be applied to the primary motor cortex for 20 min immediately prior to 60 min of supervised sensorimotor retraining twice per week for 10 weeks. Participants in both groups will complete home exercises three times per week. Feasibility, safety, pain, disability and pain system function will be assessed immediately before and after the 10-week intervention. Analysis of feasibility and safety will be performed using descriptive statistics. Statistical analyses will be conducted based on intention-to-treat and per protocol and will be used to determine trends for effectiveness. Ethical approval has been gained from the institutional human research ethics committee (H10184). Written informed consent will be provided by all participants. Results from this pilot study will be submitted for publication in peer-reviewed journals. ACTRN12616000624482. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Recurrent Moderate Hypoglycemia Suppresses Brain-Derived Neurotrophic Factor Expression in the Prefrontal Cortex and Impairs Sensorimotor Gating in the Posthypoglycemic Period in Young Rats.

    Science.gov (United States)

    Rao, Raghavendra; Ennis, Kathleen; Mitchell, Eugena P; Tran, Phu V; Gewirtz, Jonathan C

    2016-01-01

    Recurrent hypoglycemia is common in infants and children. In developing rat models, recurrent moderate hypoglycemia leads to neuronal injury in the medial prefrontal cortex. To understand the effects beyond neuronal injury, 3-week-old male rats were subjected to 5 episodes of moderate hypoglycemia (blood glucose concentration, approx. 30 mg/dl for 90 min) once daily from postnatal day 24 to 28. Neuronal injury was determined using Fluoro-Jade B histochemistry on postnatal day 29. The effects on brain-derived neurotrophic factor (BDNF) and its cognate receptor, tyrosine kinase receptor B (TrkB) expression, which is critical for prefrontal cortex development, were determined on postnatal day 29 and at adulthood. The effects on prefrontal cortex-mediated function were determined by assessing the prepulse inhibition of the acoustic startle reflex on postnatal day 29 and 2 weeks later, and by testing for fear-potentiated startle at adulthood. Recurrent hypoglycemia led to neuronal injury confined primarily to the medial prefrontal cortex. BDNF/TrkB expression in the prefrontal cortex was suppressed on postnatal day 29 and was accompanied by lower prepulse inhibition, suggesting impaired sensorimotor gating. Following the cessation of recurrent hypoglycemia, the prepulse inhibition had recovered at 2 weeks. BDNF/TrkB expression in the prefrontal cortex had normalized and fear-potentiated startle was intact at adulthood. Recurrent moderate hypoglycemia during development has significant adverse effects on the prefrontal cortex in the posthypoglycemic period. © 2016 S. Karger AG, Basel.

  14. The effect of lesions of the sensorimotor cortex and the capsular pathways on servo responses from the human long thumb flexor.

    Science.gov (United States)

    Marsden, C D; Merton, P A; Morton, H B; Adam, J

    1977-09-01

    Lesions of the sensorimotor cortex, or of the capsular pathways beneath it, caused (with one exception out of 14 cases) diminution "r loss of the servo responses in the thumb, which are based on the long-latency stretch reflex. When not absent the long-latency stretch reflex tended to be late in onset. When absent it was often replaced by a large early reflex response at spinal latency. In general the results are consistent with the transcortical theory of the long-latency stretch reflex for the thumb, but, in detail, they indicate that the theory will require elaboration.

  15. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil.

    Directory of Open Access Journals (Sweden)

    Lukas Scheef

    Full Text Available Functional magnetic resonance imaging (fMRI in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD responses in sensorimotor cortex (SMC. Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level.Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL. Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR was performed on the whole brain and the SMC, and was compared to data acquired with an 'adult' 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p < 0.05, whole-brain FWE-corrected.Using a custom-designed neonatal MR-coil, we found significant positive BOLD responses in contralateral SMC after unilateral passive sensorimotor stimulation in all neonates (analyses restricted to artifact-free data sets = 8/13. Improved imaging characteristics of the neonatal MR-coil were evidenced by additional phantom and in vivo tSNR measurements: phantom studies revealed a 240% global increase in tSNR; in vivo studies revealed a 73% global and a 55% local (SMC increase in tSNR, as compared to the 'adult' MR-coil.Our findings strengthen the

  16. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil.

    Science.gov (United States)

    Scheef, Lukas; Nordmeyer-Massner, Jurek A; Smith-Collins, Adam Pr; Müller, Nicole; Stegmann-Woessner, Gaby; Jankowski, Jacob; Gieseke, Jürgen; Born, Mark; Seitz, Hermann; Bartmann, Peter; Schild, Hans H; Pruessmann, Klaas P; Heep, Axel; Boecker, Henning

    2017-01-01

    Functional magnetic resonance imaging (fMRI) in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD) responses in sensorimotor cortex (SMC). Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level. Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL). Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR) was performed on the whole brain and the SMC, and was compared to data acquired with an 'adult' 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p sensorimotor stimulation in all neonates (analyses restricted to artifact-free data sets = 8/13). Improved imaging characteristics of the neonatal MR-coil were evidenced by additional phantom and in vivo tSNR measurements: phantom studies revealed a 240% global increase in tSNR; in vivo studies revealed a 73% global and a 55% local (SMC) increase in tSNR, as compared to the 'adult' MR-coil. Our findings strengthen the importance of using optimized coil settings for neonatal fMRI, yielding robust and reproducible SMC activation at the single subject level. We conclude that functional lateralization

  17. Type-2 diabetes mellitus reduces cortical thickness and decreases oxidative metabolism in sensorimotor regions after stroke.

    Science.gov (United States)

    Ferris, Jennifer K; Peters, Sue; Brown, Katlyn E; Tourigny, Katherine; Boyd, Lara A

    2017-01-01

    Individuals with type-2 diabetes mellitus experience poor motor outcomes after ischemic stroke. Recent research suggests that type-2 diabetes adversely impacts neuronal integrity and function, yet little work has considered how these neuronal changes affect sensorimotor outcomes after stroke. Here, we considered how type-2 diabetes impacted the structural and metabolic function of the sensorimotor cortex after stroke using volumetric magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). We hypothesized that the combination of chronic stroke and type-2 diabetes would negatively impact the integrity of sensorimotor cortex as compared to individuals with chronic stroke alone. Compared to stroke alone, individuals with stroke and diabetes had lower cortical thickness bilaterally in the primary somatosensory cortex, and primary and secondary motor cortices. Individuals with stroke and diabetes also showed reduced creatine levels bilaterally in the sensorimotor cortex. Contralesional primary and secondary motor cortex thicknesses were negatively related to sensorimotor outcomes in the paretic upper-limb in the stroke and diabetes group such that those with thinner primary and secondary motor cortices had better motor function. These data suggest that type-2 diabetes alters cerebral energy metabolism, and is associated with thinning of sensorimotor cortex after stroke. These factors may influence motor outcomes after stroke.

  18. [Correlations of activity of neurons of sensorimotor cortex of the right and left brain hemispheres of rabbits during defensive dominant and "animal hypnosis"].

    Science.gov (United States)

    Bogdanov, A V; Galashina, A G; Karamysheva, N N

    2009-01-01

    A hidden excitation focus of the rhythmic nature (a rhythmic defensive dominant focus) was produced in the rabbit's CNS. The focus was formed by means of threshold electrodermal stimulation of the left forelimb by series of pulses consisting of 15-20 stimuli with 2 s intervals between the pulses. Correlated activity of cells in the sensorimotor cortex of the right and left brain hemispheres was analyzed. In cases when crosscorrelation histograms were constructed by the results of the analysis of discharges of the left-side cortical of neurons regarding high- and middle-amplitude pulses in a right hemisphere, 15 and 23 % of correlated neural pairs, respectively, revealed the prevalence of the rhythm identical or close to the initial rhythm of stimulation that formed the hidden excitation focus. In contrast, in cases when the same analysis was applied to the right-side cortical neurons regarding high- and middle-amplitude discharges in the left hemisphere, prevalence of the dominant 2-second rhythm was revealed in correlated activity of only 3 and 10% of neural pairs, respectively. After the exposure to "animal hypnosis" procedure, the distinctions between the brain in this parameter were eliminated.

  19. Sensorimotor cortex as a critical component of an 'extended' mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring?

    Directory of Open Access Journals (Sweden)

    Pineda Jaime A

    2008-10-01

    ?" In this review, we argue from an anatomical, physiological, modeling, and functional perspectives that a critical component of the human mirror neuron system is sensorimotor cortex. Not only are sensorimotor transformations necessary for computing the patterns of muscle activation and kinematics during action observation but they provide potential answers to the development, correspondence and control problems.

  20. Sensorimotor cortex as a critical component of an 'extended' mirror neuron system: Does it solve the development, correspondence, and control problems in mirroring?

    Science.gov (United States)

    Pineda, Jaime A

    2008-10-18

    from an anatomical, physiological, modeling, and functional perspectives that a critical component of the human mirror neuron system is sensorimotor cortex. Not only are sensorimotor transformations necessary for computing the patterns of muscle activation and kinematics during action observation but they provide potential answers to the development, correspondence and control problems.

  1. Diagnostic benefits of presurgical fMRI in patients with brain tumours in the primary sensorimotor cortex

    Energy Technology Data Exchange (ETDEWEB)

    Wengenroth, Martina; Blatow, M.; Guenther, J. [University of Heidelberg Medical School, Department of Neuroradiology, Heidelberg (Germany); Akbar, M. [University of Heidelberg Medical School, Department of Orthopaedics, Heidelberg (Germany); Tronnier, V.M. [University of Schleswig-Holstein, Department of Neurosurgery, Luebeck (Germany); Stippich, C. [University Hospital Basle, Department of Diagnostic and Interventional Neuroradiology, Basle (Switzerland)

    2011-07-15

    Reliable imaging of eloquent tumour-adjacent brain areas is necessary for planning function-preserving neurosurgery. This study evaluates the potential diagnostic benefits of presurgical functional magnetic resonance imaging (fMRI) in comparison to a detailed analysis of morphological MRI data. Standardised preoperative functional and structural neuroimaging was performed on 77 patients with rolandic mass lesions at 1.5 Tesla. The central region of both hemispheres was allocated using six morphological and three functional landmarks. fMRI enabled localisation of the motor hand area in 76/77 patients, which was significantly superior to analysis of structural MRI (confident localisation of motor hand area in 66/77 patients; p < 0.002). FMRI provided additional diagnostic information in 96% (tongue representation) and 97% (foot representation) of patients. FMRI-based presurgical risk assessment correlated in 88% with a positive postoperative clinical outcome. Routine presurgical FMRI allows for superior assessment of the spatial relationship between brain tumour and motor cortex compared with a very detailed analysis of structural 3D MRI, thus significantly facilitating the preoperative risk-benefit assessment and function-preserving surgery. The additional imaging time seems justified. FMRI has the potential to reduce postoperative morbidity and therefore hospitalisation time. (orig.)

  2. Hypoactivation of the primary sensorimotor cortex in de novo Parkinson's disease. A motor fMRI study under controlled conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tessa, Carlo; Vignali, Claudio [Versilia Hospital, AUSL Versilia, Division of Radiology, Camaiore (Italy); Lucetti, Claudio [Versilia Hospital, AUSL Versilia, Division of Neurology, Camaiore (Italy); Diciotti, Stefano; Paoli, Lorenzo; Ginestroni, Andrea; Mascalchi, Mario [University of Florence, Radiodiagnostic Section, Department of Clinical Physiopathology, Florence (Italy); Cecchi, Paolo; Baldacci, Filippo [University of Pisa, Department of Neuroscience, Pisa (Italy); Giannelli, Marco [Azienda Ospedaliero-Universitaria Pisana, Unit of Medical Physics, Pisa (Italy); Bonuccelli, Ubaldo [Versilia Hospital, AUSL Versilia, Division of Neurology, Camaiore (Italy); University of Pisa, Department of Neuroscience, Pisa (Italy)

    2012-03-15

    Nuclear medicine studies in Parkinson's disease (PD) indicate that nigrostriatal damage causes a widespread cortical hypoactivity assumed to be due to reduced excitatory thalamic outflow. However, so far, functional MRI (fMRI) studies have provided controversial data about this ''functional deafferentation'' phenomenon. To further clarify this issue, we assessed, with fMRI, de novo drug-naive PD patients using a relatively complex motor task under strictly controlled conditions. Nineteen de novo PD patients with right-predominant or bilateral symptoms and 13 age-matched healthy volunteers performed continuous writing of ''8'' figures with the right-dominant hand using a MR-compatible device that enables identification of incorrectly performed tasks and measures the size and the frequency of the ''8''s. The data were analyzed with FSL software and correlated with the clinical severity rated according to the Hoehn and Yahr (HY) staging system. Fifteen (89%) of 19 PD patients and 12 (92%) of 13 controls correctly executed the task. PD patients showed significant hypoactivation of the left primary sensorimotor cortex (SM1) and cerebellum and no hyperactive areas as compared to controls. However, activation in SM1 and supplementary motor area bilaterally, in left supramarginal, parietal inferior, parietal superior and frontal superior gyri as well as in right parietal superior and angular gyri paralleled increasing disease severity as assessed with the HY stage. In line with the ''deafferentation hypothesis'', fMRI demonstrates hypoactivation of the SM1 in the early clinical stage of PD. (orig.)

  3. Identification and prediction of diabetic sensorimotor polyneuropathy using individual and simple combinations of nerve conduction study parameters.

    Directory of Open Access Journals (Sweden)

    Alanna Weisman

    Full Text Available OBJECTIVE: Evaluation of diabetic sensorimotor polyneuropathy (DSP is hindered by the need for complex nerve conduction study (NCS protocols and lack of predictive biomarkers. We aimed to determine the performance of single and simple combinations of NCS parameters for identification and future prediction of DSP. MATERIALS AND METHODS: 406 participants (61 with type 1 diabetes and 345 with type 2 diabetes with a broad spectrum of neuropathy, from none to severe, underwent NCS to determine presence or absence of DSP for cross-sectional (concurrent validity analysis. The 109 participants without baseline DSP were re-evaluated for its future onset (predictive validity. Performance of NCS parameters was compared by area under the receiver operating characteristic curve (AROC. RESULTS: At baseline there were 246 (60% Prevalent Cases. After 3.9 years mean follow-up, 25 (23% of the 109 Prevalent Controls that were followed became Incident DSP Cases. Threshold values for peroneal conduction velocity and sural amplitude potential best identified Prevalent Cases (AROC 0.90 and 0.83, sensitivity 80 and 83%, specificity 89 and 72%, respectively. Baseline tibial F-wave latency, peroneal conduction velocity and the sum of three lower limb nerve conduction velocities (sural, peroneal, and tibial best predicted 4-year incidence (AROC 0.79, 0.79, and 0.85; sensitivity 79, 70, and 81%; specificity 63, 74 and 77%, respectively. DISCUSSION: Individual NCS parameters or their simple combinations are valid measures for identification and future prediction of DSP. Further research into the predictive roles of tibial F-wave latencies, peroneal conduction velocity, and sum of conduction velocities as markers of incipient nerve injury is needed to risk-stratify individuals for clinical and research protocols.

  4. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study.

    Science.gov (United States)

    Boussida, Salem; Traoré, Amidou S; Durif, Franck

    2017-01-01

    Blood Oxygenation Level Dependent functional MRI (BOLD fMRI) during electrical paw stimulation has been widely used in studies aimed at the understanding of the somatosensory network in rats. However, despite the well-established anatomical connections between cortical and subcortical structures of the sensorimotor system, most of these functional studies have been concentrated on the cortical effects of sensory electrical stimulation. BOLD fMRI study of the integration of a sensorimotor input across the sensorimotor network requires an appropriate methodology to elicit functional activation in cortical and subcortical areas owing to the regional differences in both neuronal and vascular architectures between these brain regions. Here, using a combination of low level anesthesia, long pulse duration of the electrical stimulation along with improved spatial and temporal signal to noise ratios, we provide a functional description of the main cortical and subcortical structures of the sensorimotor rat brain. With this calibrated fMRI protocol, unilateral non-noxious sensorimotor electrical hindpaw stimulation resulted in robust positive activations in the contralateral sensorimotor cortex and bilaterally in the sensorimotor thalamus nuclei, whereas negative activations were observed bilaterally in the dorsolateral caudate-putamen. These results demonstrate that, once the experimental setup allowing necessary spatial and temporal signal to noise ratios is reached, hemodynamic changes related to neuronal activity, as preserved by the combination of a soft anesthesia with a soft muscle relaxation, can be measured within the sensorimotor network. Moreover, the observed responses suggest that increasing pulse duration of the electrical stimulus adds a proprioceptive component to the sensory input that activates sensorimotor network in the brain, and that these activation patterns are similar to those induced by digits paw's movements. These findings may find application in

  5. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study.

    Directory of Open Access Journals (Sweden)

    Salem Boussida

    Full Text Available Blood Oxygenation Level Dependent functional MRI (BOLD fMRI during electrical paw stimulation has been widely used in studies aimed at the understanding of the somatosensory network in rats. However, despite the well-established anatomical connections between cortical and subcortical structures of the sensorimotor system, most of these functional studies have been concentrated on the cortical effects of sensory electrical stimulation. BOLD fMRI study of the integration of a sensorimotor input across the sensorimotor network requires an appropriate methodology to elicit functional activation in cortical and subcortical areas owing to the regional differences in both neuronal and vascular architectures between these brain regions. Here, using a combination of low level anesthesia, long pulse duration of the electrical stimulation along with improved spatial and temporal signal to noise ratios, we provide a functional description of the main cortical and subcortical structures of the sensorimotor rat brain. With this calibrated fMRI protocol, unilateral non-noxious sensorimotor electrical hindpaw stimulation resulted in robust positive activations in the contralateral sensorimotor cortex and bilaterally in the sensorimotor thalamus nuclei, whereas negative activations were observed bilaterally in the dorsolateral caudate-putamen. These results demonstrate that, once the experimental setup allowing necessary spatial and temporal signal to noise ratios is reached, hemodynamic changes related to neuronal activity, as preserved by the combination of a soft anesthesia with a soft muscle relaxation, can be measured within the sensorimotor network. Moreover, the observed responses suggest that increasing pulse duration of the electrical stimulus adds a proprioceptive component to the sensory input that activates sensorimotor network in the brain, and that these activation patterns are similar to those induced by digits paw's movements. These findings may

  6. Temporal Dynamics of Sensorimotor Networks in Effort-Based Cost-Benefit Valuation: Early Emergence and Late Net Value Integration.

    Science.gov (United States)

    Harris, Alison; Lim, Seung-Lark

    2016-07-06

    Although physical effort can impose significant costs on decision-making, when and how effort cost information is incorporated into choice remains contested, reflecting a larger debate over the role of sensorimotor networks in specifying behavior. Serial information processing models, in which motor circuits simply implement the output of cognitive systems, hypothesize that effort cost factors into decisions relatively late, via integration with stimulus values into net (combined) value signals in dorsomedial frontal cortex (dmFC). In contrast, ethology-inspired approaches suggest a more active role for the dorsal sensorimotor stream, with effort cost signals emerging rapidly after stimulus onset. Here we investigated the time course of effort cost integration using event-related potentials in hungry human subjects while they made decisions about expending physical effort for appetitive foods. Consistent with the ethological perspective, we found that effort cost was represented from as early as 100-250 ms after stimulus onset, localized to dorsal sensorimotor regions including middle cingulate, somatosensory, and motor/premotor cortices. However, examining the same data time-locked to motor output revealed net value signals combining stimulus value and effort cost approximately -400 ms before response, originating from sensorimotor areas including dmFC, precuneus, and posterior parietal cortex. Granger causal connectivity analysis of the motor effector signal in the time leading to response showed interactions between these sensorimotor regions and ventrolateral prefrontal cortex, a structure associated with adjusting behavior-response mappings. These results suggest that rapid activation of sensorimotor regions interacts with cognitive valuation systems, producing a net value signal reflecting both physical effort and reward contingencies. Although physical effort imposes a cost on choice, when and how effort cost influences neural correlates of decision

  7. EFFECTIVENESS OF A MOTOR CONTROL THERAPEUTIC EXERCISE PROGRAM COMBINED WITH MOTOR IMAGERY ON THE SENSORIMOTOR FUNCTION OF THE CERVICAL SPINE: A RANDOMIZED CONTROLLED TRIAL.

    Science.gov (United States)

    Hidalgo-Peréz, Amanda; Fernández-García, Ángela; López-de-Uralde-Villanueva, Ibai; Gil-Martínez, Alfonso; Paris-Alemany, Alba; Fernández-Carnero, Josué; La Touche, Roy

    2015-11-01

    Motor control therapeutic exercise (MCTE) for the neck is a motor relearning program that emphasizes the coordination and contraction of specific neck flexor, extensor, and shoulder girdle muscles. Because motor imagery (MI) improves sensorimotor function and it improves several motor aspects, such as motor learning, neuromotor control, and acquisition of motor skills, the authors hypothesized that a combination of MCTE and MI would improve the sensorimotor function of the cervical spine more effectively than a MCTE program alone. The purpose of this study was to investigate the influence of MI combined with a MCTE program on sensorimotor function of the craniocervical region in asymptomatic subjects. This study was a single-blinded randomized controlled trial. Forty asymptomatic subjects were assigned to a MCTE group or a MCTE+MI group. Both groups received the same MCTE program for the cervical region (60 minutes), but the MCTE+MI group received an additional intervention based on MI (15 minutes). The primary outcomes assessed were craniocervical neuromotor control (activation pressure value and highest pressure value), cervical kinesthetic sense (joint position error [JPE]), and the subjective perception of fatigue after effort. Intra-group significant differences were obtained between pre- and post interventions for all evaluated variables (pfatigue after effort in the MCTE group. In the MCTE+MI group a large effect size was found for craniocervical neuromotor control (d between -0.94 and -1.41), cervical kinesthetic sense (d between 0.97 and 2.14), neck flexor muscle endurance test (d = -1.50), and subjective perception of fatigue after effort (d = 0.79). There were significant inter-group differences for the highest pressure value, joint position error (JPE) extension, JPE left rotation, and subjective perception of fatigue after effort. The combined MI and MCTE intervention produced statistically significant changes in sensorimotor function variables

  8. Sensorimotor integration in movement disorders.

    Science.gov (United States)

    Abbruzzese, Giovanni; Berardelli, Alfredo

    2003-03-01

    Although current knowledge attributes movement disorders to a dysfunction of the basal ganglia-motor cortex circuits, abnormalities in the peripheral afferent inputs or in their central processing may interfere with motor program execution. We review the abnormalities of sensorimotor integration described in the various types of movement disorders. Several observations, including those of parkinsonian patients' excessive reliance on ongoing visual information during movement tasks, suggest that proprioception is defective in Parkinson's disease (PD). The disturbance of proprioceptive regulation, possibly related to the occurrence of abnormal muscle-stretch reflexes, might be important for generating hypometric or bradykinetic movements. Studies with somatosensory evoked potentials (SEPs), prepulse inhibition, and event-related potentials support the hypothesis of central abnormalities of sensorimotor integration in PD. In Huntington's disease (HD), changes in SEPs and long-latency stretch reflexes suggest that a defective gating of peripheral afferent input to the brain might impair sensorimotor integration in cortical motor areas, thus interfering with the processing of motor programs. Defective motor programming might contribute to some features of motor impairment in HD. Sensory symptoms are frequent in focal dystonia and sensory manipulation can modify the dystonic movements. In addition, specific sensory functions (kinaesthesia, spatial-temporal discrimination) can be impaired in patients with focal hand dystonia, thus leading to a "sensory overflow." Sensory input may be abnormal and trigger focal dystonia, or defective "gating" may cause an input-output mismatch in specific motor programs. Altogether, several observations strongly support the idea that sensorimotor integration is impaired in focal dystonia. Although elemental sensation is normal in patients with tics, tics can be associated with sensory phenomena. Some neurophysiological studies suggest that

  9. Effect of tDCS stimulation of motor cortex and cerebellum on EEG classification of motor imagery and sensorimotor band power.

    Science.gov (United States)

    Angulo-Sherman, Irma N; Rodríguez-Ugarte, Marisol; Sciacca, Nadia; Iáñez, Eduardo; Azorín, José M

    2017-04-19

    Transcranial direct current stimulation (tDCS) is a technique for brain modulation that has potential to be used in motor neurorehabilitation. Considering that the cerebellum and motor cortex exert influence on the motor network, their stimulation could enhance motor functions, such as motor imagery, and be utilized for brain-computer interfaces (BCIs) during motor neurorehabilitation. A new tDCS montage that influences cerebellum and either right-hand or feet motor area is proposed and validated with a simulation of electric field. The effect of current density (0, 0.02, 0.04 or 0.06 mA/cm2) on electroencephalographic (EEG) classification into rest or right-hand/feet motor imagery was evaluated on 5 healthy volunteers for different stimulation modalities: 1) 10-minutes anodal tDCS before EEG acquisition over right-hand or 2) feet motor cortical area, and 3) 4-seconds anodal tDCS during EEG acquisition either on right-hand or feet cortical areas before each time right-hand or feet motor imagery is performed. For each subject and tDCS modality, analysis of variance and Tukey-Kramer multiple comparisons tests (p stimulation. The proposed montage improved the classification of right-hand motor imagery for 4 out of 5 subjects when the highest current was applied for 10 minutes over the right-hand motor area. Although EEG band power changes could not be related directly to classification improvement, tDCS appears to affect variably different motor areas on μ and/or β band. The proposed montage seems capable of enhancing right-hand motor imagery detection when the right-hand motor area is stimulated. Future research should be focused on applying higher currents over the feet motor cortex, which is deeper in the brain compared to the hand motor cortex, since it may allow observation of effects due to tDCS. Also, strategies for improving analysis of EEG respect to accuracy changes should be implemented.

  10. Cortico-cerebellar Networks Drive Sensorimotor Learning in Speech.

    Science.gov (United States)

    Lametti, Daniel R; Smith, Harriet J; Freidin, Phoebe; Watkins, Kate E

    2017-12-06

    The motor cortex and cerebellum are thought to be critical for learning and maintaining motor behaviors. Here we use transcranial direct current stimulation (tDCS) to test the role of the motor cortex and cerebellum in sensorimotor learning in speech. During productions of "head," "bed," and "dead," the first formant of the vowel sound was altered in real time toward the first formant of the vowel sound in "had," "bad," and "dad." Compensatory changes in first and second formant production were used as a measure of motor adaptation. tDCS to either the motor cortex or the cerebellum improved sensorimotor learning in speech compared with sham stimulation. However, in the case of cerebellar tDCS, production changes were restricted to the source of the acoustical error (i.e., the first formant). Motor cortex tDCS drove production changes that offset errors in the first formant, but unlike cerebellar tDCS, adaptive changes in the second formant also occurred. The results suggest that motor cortex and cerebellar tDCS have both shared and dissociable effects on motor adaptation. The study provides initial causal evidence in speech production that the motor cortex and the cerebellum support different aspects of sensorimotor learning. We propose that motor cortex tDCS drives sensorimotor learning toward previously learned patterns of movement, whereas cerebellar tDCS focuses sensorimotor learning on error correction.

  11. Where does TMS Stimulate the Motor Cortex? Combining Electrophysiological Measurements and Realistic Field Estimates to Reveal the Affected Cortex Position

    DEFF Research Database (Denmark)

    Bungert, Andreas; Antunes, André; Espenhahn, Svenja

    2016-01-01

    of functionally and histologically distinct subareas, this also renders the hypotheses on the physiological TMS effects uncertain. We use the finite element method (FEM) and magnetic resonance image-based individual head models to get realistic estimates of the electric field induced by TMS. The field changes...... in different subparts of the motor cortex are compared with electrophysiological threshold changes of 2 hand muscles when systematically varying the coil orientation in measurements. We demonstrate that TMS stimulates the region around the gyral crown and that the maximal electric field strength in this region......Much of our knowledge on the physiological mechanisms of transcranial magnetic stimulation (TMS) stems from studies which targeted the human motor cortex. However, it is still unclear which part of the motor cortex is predominantly affected by TMS. Considering that the motor cortex consists...

  12. Countermeasures to Enhance Sensorimotor Adaptability

    Science.gov (United States)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. C.; Miller, C. A.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The goal of our current project is to develop a sensorimotor adaptability (SA) training program to facilitate rapid adaptation to novel gravitational environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene that provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. We have conducted a series of studies that have shown: Training using a combination of modified visual flow and support surface motion during treadmill walking enhances locomotor adaptability to a novel sensorimotor environment. Trained individuals become more proficient at performing multiple competing tasks while walking during adaptation to novel discordant sensorimotor conditions. Trained subjects can retain their increased level of adaptability over a six months period. SA training is effective in producing increased adaptability in a more complex over-ground ambulatory task on an obstacle course. This confirms that for a complex task like walking, treadmill training contains enough of the critical features of overground walking to be an effective training modality. The structure of individual training sessions can be optimized to promote fast/strategic motor learning. Training sessions that each contain short-duration exposures to multiple perturbation stimuli allows subjects to acquire a greater ability to rapidly reorganize appropriate response strategies when encountering a novel sensory environment. Individual sensory biases (i.e. increased visual dependency) can predict adaptive responses to novel sensory environments suggesting that customized training prescriptions can be developed to enhance

  13. The Computational Sensorimotor Systems Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Computational Sensorimotor Systems Lab focuses on the exploration, analysis, modeling and implementation of biological sensorimotor systems for both scientific...

  14. Assessment of sensorimotor cortical representation asymmetries and motor skills in violin players.

    Science.gov (United States)

    Schwenkreis, Peter; El Tom, Susan; Ragert, Patrick; Pleger, Burkhard; Tegenthoff, Martin; Dinse, Hubert R

    2007-12-01

    As a model for use-dependent plasticity, the brains of professional musicians have been extensively studied to examine structural and functional adaptation to unique requirements of skilled performance. Here we provide a combination of data on motor performance and hand representation in the primary motor and somatosensory cortex of professional violin players, with the aim of assessing possible behavioural consequences of sensorimotor cortical asymmetries. We studied 15 healthy right-handed professional violin players and 35 healthy nonmusician controls. Motor and somatosensory cortex asymmetry was assessed by recording the motor output map after transcranial magnetic stimulation from a small hand muscle, and by dipole source localization of somatosensory evoked potentials after electrical stimulation of the median and ulnar nerves. Motor performance was examined using a series of standardized motor tasks covering different aspects of hand function. Violin players showed a significant right-larger-than-left asymmetry of the motor and somatosensory cortex, whereas nonmusician controls showed no significant interhemispheric difference. The amount of asymmetry in the motor and somatosensory cortices of musicians was significantly correlated. At the behavioural level, motor performance did not significantly differ between musicians and nonmusicians. The results support a use-dependent enlargement of the left hand representation in the sensorimotor cortex of violin players. However, these cortical asymmetries were not paralleled by accompanying altered asymmetries at a behavioural level, suggesting that the reorganisation might be task-specific and does not lead to improved motor abilities in general.

  15. Combined Social and Spatial Coding in a Descending Projection from the Prefrontal Cortex.

    Science.gov (United States)

    Murugan, Malavika; Jang, Hee Jae; Park, Michelle; Miller, Ellia M; Cox, Julia; Taliaferro, Joshua P; Parker, Nathan F; Bhave, Varun; Hur, Hong; Liang, Yupu; Nectow, Alexander R; Pillow, Jonathan W; Witten, Ilana B

    2017-12-14

    Social behaviors are crucial to all mammals. Although the prelimbic cortex (PL, part of medial prefrontal cortex) has been implicated in social behavior, it is not clear which neurons are relevant or how they contribute. We found that PL contains anatomically and molecularly distinct subpopulations that target three downstream regions that have been implicated in social behavior: the nucleus accumbens (NAc), amygdala, and ventral tegmental area. Activation of NAc-projecting PL neurons (PL-NAc), but not the other subpopulations, decreased the preference for a social target. To determine what information PL-NAc neurons convey, we selectively recorded from them and found that individual neurons were active during social investigation, but only in specific spatial locations. Spatially specific manipulation of these neurons bidirectionally regulated the formation of a social-spatial association. Thus, the unexpected combination of social and spatial information within the PL-NAc may contribute to social behavior by supporting social-spatial learning. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Retention and relearning of spatial delayed alternation in rats after combined or sequential lesions of the prefrontal and parietal cortex

    DEFF Research Database (Denmark)

    Wörtwein, Gitta; Mogensen, Jesper; Divac, Ivan

    1993-01-01

    Neurobiologi, præfrontal cortex, delayed alternation, rotte, parietal cortex, funktionel genopretning......Neurobiologi, præfrontal cortex, delayed alternation, rotte, parietal cortex, funktionel genopretning...

  17. Effect of tactile stimulation on primary motor cortex excitability during action observation combined with motor imagery.

    Science.gov (United States)

    Tanaka, Megumi; Kubota, Shinji; Onmyoji, Yusuke; Hirano, Masato; Uehara, Kazumasa; Morishita, Takuya; Funase, Kozo

    2015-07-23

    We aimed to investigate the effects of the tactile stimulation to an observer's fingertips at the moment that they saw an object being pinched by another person on the excitability of observer's primary motor cortex (M1) using transcranial magnetic stimulation (TMS). In addition, the above effects were also examined during action observation combined with the motor imagery. Motor evoked potentials (MEP) were evoked from the subjects' right first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles. Electrical stimulation (ES) inducing tactile sensation was delivered to the subjects' first and second fingertips at the moment of pinching action performed by another person. Although neither the ES nor action observation alone had significant effects on the MEP amplitude of the FDI or ADM, the FDI MEP amplitude which acts as the prime mover during pinching was reduced when ES and action observation were combined; however, no such changes were seen in the ADM. Conversely, that reduced FDI MEP amplitude was increased during the motor imagery. These results indicated that the M1 excitability during the action observation of pinching action combined with motor imagery could be enhanced by the tactile stimulation delivered to the observer's fingertips at the moment corresponding to the pinching being observed. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Unique approach to sensorimotor training with a new device combining air cushion with stochastic translations-A prospective randomized controlled clinical trial.

    Science.gov (United States)

    Mittermaier, Christian; Schindler, Maximilian; Loader, Benjamin; Waldhoer, Thomas; Ambrozy, Clemens; Crevenna, Richard; Pieber, Karin

    2017-02-01

    Sensorimotor training with a wide variety of available devices represents an important component in rehabilitation and prevention of different sports injuries and chronic diseases. The purpose of this study was to evaluate the effects of a sensorimotor training with a newly developed device, which consists of an instable platform moving on an air cushion, providing dynamic balance training by tilting and unanticipated stochastic translations on postural control. Seventy-two healthy young subjects were included in this prospective, randomized, controlled, and observer-blinded study. Balance was objectively assessed by posturography and Functional Reach Test (FRT). Additionally we evaluated the subjective rating of balance. After randomization the sensorimotor training group performed a training program on the new device over a 5-6 week study period. After this time improvement in objective and subjective measurements as a result of training became evident. A significant difference in challenging posturographic parameters (Sensory Organization Test 5: training group 5.32±5.25 vs. control group 1.78±5.05, p=0.006 and Head Shake Sensory Organization Test 5: training group 11.94±8.97 vs. control group 5.41±10.17, p=0.01) as well as a significant difference in the FRT (training group 3.34±3.35cm vs. control group 0.01±2.97cm, p=0.0001) was found. Subjective assessment revealed a significant improvement in the participants' rating of balance and alteration of balance. Subjects showed a high satisfaction with the new training device. Our findings suggest that the newly developed device could be a promising option for sensorimotor training to improve postural control. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Induced sensorimotor brain plasticity controls pain in phantom limb patients

    Science.gov (United States)

    Yanagisawa, Takufumi; Fukuma, Ryohei; Seymour, Ben; Hosomi, Koichi; Kishima, Haruhiko; Shimizu, Takeshi; Yokoi, Hiroshi; Hirata, Masayuki; Yoshimine, Toshiki; Kamitani, Yukiyasu; Saitoh, Youichi

    2016-01-01

    The cause of pain in a phantom limb after partial or complete deafferentation is an important problem. A popular but increasingly controversial theory is that it results from maladaptive reorganization of the sensorimotor cortex, suggesting that experimental induction of further reorganization should affect the pain, especially if it results in functional restoration. Here we use a brain–machine interface (BMI) based on real-time magnetoencephalography signals to reconstruct affected hand movements with a robotic hand. BMI training induces significant plasticity in the sensorimotor cortex, manifested as improved discriminability of movement information and enhanced prosthetic control. Contrary to our expectation that functional restoration would reduce pain, the BMI training with the phantom hand intensifies the pain. In contrast, BMI training designed to dissociate the prosthetic and phantom hands actually reduces pain. These results reveal a functional relevance between sensorimotor cortical plasticity and pain, and may provide a novel treatment with BMI neurofeedback. PMID:27807349

  20. Induced sensorimotor brain plasticity controls pain in phantom limb patients.

    Science.gov (United States)

    Yanagisawa, Takufumi; Fukuma, Ryohei; Seymour, Ben; Hosomi, Koichi; Kishima, Haruhiko; Shimizu, Takeshi; Yokoi, Hiroshi; Hirata, Masayuki; Yoshimine, Toshiki; Kamitani, Yukiyasu; Saitoh, Youichi

    2016-10-27

    The cause of pain in a phantom limb after partial or complete deafferentation is an important problem. A popular but increasingly controversial theory is that it results from maladaptive reorganization of the sensorimotor cortex, suggesting that experimental induction of further reorganization should affect the pain, especially if it results in functional restoration. Here we use a brain-machine interface (BMI) based on real-time magnetoencephalography signals to reconstruct affected hand movements with a robotic hand. BMI training induces significant plasticity in the sensorimotor cortex, manifested as improved discriminability of movement information and enhanced prosthetic control. Contrary to our expectation that functional restoration would reduce pain, the BMI training with the phantom hand intensifies the pain. In contrast, BMI training designed to dissociate the prosthetic and phantom hands actually reduces pain. These results reveal a functional relevance between sensorimotor cortical plasticity and pain, and may provide a novel treatment with BMI neurofeedback.

  1. A combined analysis of genome-wide expression profiling of bipolar disorder in human prefrontal cortex.

    Science.gov (United States)

    Wang, Jinglu; Qu, Susu; Wang, Weixiao; Guo, Liyuan; Zhang, Kunlin; Chang, Suhua; Wang, Jing

    2016-11-01

    Numbers of gene expression profiling studies of bipolar disorder have been published. Besides different array chips and tissues, variety of the data processes in different cohorts aggravated the inconsistency of results of these genome-wide gene expression profiling studies. By searching the gene expression databases, we obtained six data sets for prefrontal cortex (PFC) of bipolar disorder with raw data and combinable platforms. We used standardized pre-processing and quality control procedures to analyze each data set separately and then combined them into a large gene expression matrix with 101 bipolar disorder subjects and 106 controls. A standard linear mixed-effects model was used to calculate the differentially expressed genes (DEGs). Multiple levels of sensitivity analyses and cross validation with genetic data were conducted. Functional and network analyses were carried out on basis of the DEGs. In the result, we identified 198 unique differentially expressed genes in the PFC of bipolar disorder and control. Among them, 115 DEGs were robust to at least three leave-one-out tests or different pre-processing methods; 51 DEGs were validated with genetic association signals. Pathway enrichment analysis showed these DEGs were related with regulation of neurological system, cell death and apoptosis, and several basic binding processes. Protein-protein interaction network further identified one key hub gene. We have contributed the most comprehensive integrated analysis of bipolar disorder expression profiling studies in PFC to date. The DEGs, especially those with multiple validations, may denote a common signature of bipolar disorder and contribute to the pathogenesis of disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Coherence potentials encode simple human sensorimotor behavior.

    Directory of Open Access Journals (Sweden)

    Dhanya Parameshwaran

    Full Text Available Recent work has shown that large amplitude negative periods in the local field potential (nLFPs are able to spread in saltatory manner across large distances in the cortex without distortion in their temporal structure forming 'coherence potentials'. Here we analysed subdural electrocorticographic (ECoG signals recorded at 59 sites in the sensorimotor cortex in the left hemisphere of a human subject performing a simple visuomotor task (fist clenching and foot dorsiflexion to understand how coherence potentials arising in the recordings relate to sensorimotor behavior. In all behaviors we found a particular coherence potential (i.e. a cascade of a particular nLFP wave pattern arose consistently across all trials with temporal specificity. During contrateral fist clenching, but not the foot dorsiflexion or ipsilateral fist clenching, the coherence potential most frequently originated in the hand representation area in the somatosensory cortex during the anticipation and planning periods of the trial, moving to other regions during the actual motor behavior. While these 'expert' sites participated more consistently, other sites participated only a small fraction of the time. Furthermore, the timing of the coherence potential at the hand representation area after onset of the cue predicted the timing of motor behavior. We present the hypothesis that coherence potentials encode information relevant for behavior and are generated by the 'expert' sites that subsequently broadcast to other sites as a means of 'sharing knowledge'.

  3. A novel dual-site transcranial magnetic stimulation paradigm to probe fast facilitatory inputs from ipsilateral dorsal premotor cortex to primary motor cortex

    DEFF Research Database (Denmark)

    Groppa, Sergiu; Werner-Petroll, Nicole; Münchau, Alexander

    2012-01-01

    The dorsal premotor cortex (PMd) plays an import role in action control, sensorimotor integration and motor recovery. Animal studies and human data have demonstrated direct connections between ipsilateral PMd and primary motor cortex hand area (M1(HAND)). In this study we adopted a multimodal...... approach combining highly focal dual-site TMS (dsTMS) and diffusion tensor imaging (DTI) to probe ipsilateral effective and structural connectivity between PMd and M1(HAND) in humans. A suprathreshold test stimulus (TS) was applied to left M1(HAND) producing a motor evoked potential (MEP) and a subsequent...

  4. Contemporary sensorimotor theory

    CERN Document Server

    Martin, Andrew

    2014-01-01

    This book analyzes the philosophical foundations of sensorimotor theory and discusses the most recent applications of sensorimotor theory to human computer interaction, child’s play, virtual reality, robotics, and linguistics. Why does a circle look curved and not angular? Why does red not sound like a bell? Why, as I interact with the world, is there something it is like to be me? An analytic philosopher might suggest: ``if we ponder the concept of circle we find that it is the essence of a circle to be round’’. However, where does this definition come from? Was it set in stone by the Gods, in other words by divine arbiters of circleness, redness and consciousness? Particularly, with regard to visual consciousness, a first attempt to explain why our conscious experience of the world appears as it does has been attributed to Kevin O’Regan and Alva Noe, who published their sensorimotor account of vision and visual consciousness in 2001. Starting with a chapter by Kevin O’Regan, Contemporary Sensorimo...

  5. Effects of blood flow to the prefrontal cortex on high-intensity exercise combined with high-decibel music.

    Science.gov (United States)

    Chang, Hyukki; Kim, Kyungae; Jung, Yu-Jin; Ahn, Na-Ri; So, Wi-Young; Kato, Morimasa

    2013-12-01

    We studied the effects of high-intensity exercise (70-75% of VO2 max) combined with high-decibel music (100 dB) on cognitive function (measured by the Stroop test) and related blood flow changes to the prefrontal cortex (measured by Oxy-hemoglobin (Hb), Deoxy-Hb, tissue oxygen index (TOI), and normalized tissue hemoglobin index (nTHI)). The subjects of the study were 28 healthy female university students in their early 20s. Subjects were categorized into control group (CG), music group (MG), exercise group (Ex), and music and exercise group (MnEx). A crossover design was implemented so that all subjects participated in all test groups. We found no significant difference in reaction time between CG and MG for the neutral and incongruent tasks of Stroop test. However, there were significant improvements in the neutral and incongruent tasks for both the Ex (p prefrontal cortex of the brain supported the Stroop test data. We found no difference between Ex and MnEx in the TOI; however, there was a significant decrease (p music could negatively affect prefrontal cortex activation of the brain during exercise.

  6. Analyzing prefrontal cortex hemoglobin concentration exchange spectrum in patients with major depressive disorder combined with anxiety and obsession through near-infrared spectroscopy

    Institute of Scientific and Technical Information of China (English)

    刘晓敏

    2014-01-01

    Objective Exploring the characteristics of prefrontal cortex activation in patients of major depressive disorder(MDD)combined with anxiety and obsession through functional near-infrared spectroscopy(fN IRS).Methods Prefrontal cortex hemoglobin concentration exchange of30 MDD patients combined with anxiety and obsession was detected by fN IRS under voice fluency task(VFT),then psychological assessment was made using Hanmilton Depression Scale(HAMD),Hamilton Anxiety Scale

  7. Downregulation of GNA13-ERK network in prefrontal cortex of schizophrenia brain identified by combined focused and targeted quantitative proteomics.

    Science.gov (United States)

    Hirayama-Kurogi, Mio; Takizawa, Yohei; Kunii, Yasuto; Matsumoto, Junya; Wada, Akira; Hino, Mizuki; Akatsu, Hiroyasu; Hashizume, Yoshio; Yamamoto, Sakon; Kondo, Takeshi; Ito, Shingo; Tachikawa, Masanori; Niwa, Shin-Ichi; Yabe, Hirooki; Terasaki, Tetsuya; Setou, Mitsutoshi; Ohtsuki, Sumio

    2017-03-31

    Schizophrenia is a disabling mental illness associated with dysfunction of the prefrontal cortex, which affects cognition and emotion. The purpose of the present study was to identify altered molecular networks in the prefrontal cortex of schizophrenia patients by comparing protein expression levels in autopsied brains of patients and controls, using a combination of targeted and focused quantitative proteomics. We selected 125 molecules possibly related to schizophrenia for quantification by knowledge-based targeted proteomics. Among the quantified molecules, GRIK4 and MAO-B were significantly decreased in plasma membrane and cytosolic fractions, respectively, of prefrontal cortex. Focused quantitative proteomics identified 15 increased and 39 decreased proteins. Network analysis identified "GNA13-ERK1-eIF4G2 signaling" as a downregulated network, and proteins involved in this network were significantly decreased. Furthermore, searching downstream of eIF4G2 revealed that eIF4A1/2 and CYFIP1 were decreased, suggesting that downregulation of the network suppresses expression of CYFIP1, which regulates actin remodeling and is involved in axon outgrowth and spine formation. Downregulation of this signaling seems likely to impair axon formation and synapse plasticity of neuronal cells, and could be associated with development of cognitive impairment in the pathology of schizophrenia. The present study compared the proteome of the prefrontal cortex between schizophrenia patients and healthy controls by means of targeted proteomics and global quantitative proteomics. Targeted proteomics revealed that GRIK4 and MAOB were significantly decreased among 125 putatively schizophrenia-related proteins in prefrontal cortex of schizophrenia patients. Global quantitative proteomics identified 54 differentially expressed proteins in schizophrenia brains. The protein profile indicates attenuation of "GNA13-ERK signaling" in schizophrenia brain. In particular, EIF4G2 and CYFIP1

  8. Combined rTMS treatment targeting the Anterior Cingulate and the Temporal Cortex for the Treatment of Chronic Tinnitus

    Science.gov (United States)

    Kreuzer, Peter M.; Lehner, Astrid; Schlee, Winfried; Vielsmeier, Veronika; Schecklmann, Martin; Poeppl, Timm B.; Landgrebe, Michael; Rupprecht, Rainer; Langguth, Berthold

    2015-01-01

    Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a tinnitus treatment option. Promising results have been obtained by consecutive stimulation of lateral frontal and auditory brain regions. We investigated a combined stimulation paradigm targeting the anterior cingulate cortex (ACC) with double cone coil rTMS, followed by stimulation of the temporo-parietal junction area with a figure-of-eight coil. The study was conducted as a randomized, double-blind pilot trial in 40 patients suffering from chronic tinnitus. We compared mediofrontal stimulation with double-cone-coil, (2000 stimuli, 10 Hz) followed by left temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz) to left dorsolateral-prefrontal-cortex stimulation with figure-of-eight-coil (2000 stimuli, 10 Hz) followed by temporo-parietal stimulation with figure-of-eight-coil (2000 stimuli, 1 Hz). The stimulation was feasible with comparable dropout rates in both study arms; no severe adverse events were registered. Responder rates did not differ in both study arms. There was a significant main effect of time for the change in the TQ score, but no significant time x group interaction. This pilot study demonstrated the feasibility of combined mediofrontal/temporoparietal-rTMS-stimulation with double cone coil in tinnitus patients but failed to show better outcome compared to an actively rTMS treated control group. PMID:26667790

  9. Neurochemical changes in the pericalcarine cortex in congenital blindness attributable to bilateral anophthalmia.

    Science.gov (United States)

    Coullon, Gaelle S L; Emir, Uzay E; Fine, Ione; Watkins, Kate E; Bridge, Holly

    2015-09-01

    Congenital blindness leads to large-scale functional and structural reorganization in the occipital cortex, but relatively little is known about the neurochemical changes underlying this cross-modal plasticity. To investigate the effect of complete and early visual deafferentation on the concentration of metabolites in the pericalcarine cortex, (1)H magnetic resonance spectroscopy was performed in 14 sighted subjects and 5 subjects with bilateral anophthalmia, a condition in which both eyes fail to develop. In the pericalcarine cortex, where primary visual cortex is normally located, the proportion of gray matter was significantly greater, and levels of choline, glutamate, glutamine, myo-inositol, and total creatine were elevated in anophthalmic relative to sighted subjects. Anophthalmia had no effect on the structure or neurochemistry of a sensorimotor cortex control region. More gray matter, combined with high levels of choline and myo-inositol, resembles the profile of the cortex at birth and suggests that the lack of visual input from the eyes might have delayed or arrested the maturation of this cortical region. High levels of choline and glutamate/glutamine are consistent with enhanced excitatory circuits in the anophthalmic occipital cortex, which could reflect a shift toward enhanced plasticity or sensitivity that could in turn mediate or unmask cross-modal responses. Finally, it is possible that the change in function of the occipital cortex results in biochemical profiles that resemble those of auditory, language, or somatosensory cortex. Copyright © 2015 the American Physiological Society.

  10. Induced sensorimotor brain plasticity controls pain in phantom limb patients

    OpenAIRE

    Yanagisawa, Takufumi; Fukuma, Ryohei; Seymour, Ben; Hosomi, Koichi; Kishima, Haruhiko; Shimizu, Takeshi; Yokoi, Hiroshi; Hirata, Masayuki; Yoshimine, Toshiki; Kamitani, Yukiyasu; Saitoh, Youichi

    2016-01-01

    The cause of pain in a phantom limb after partial or complete deafferentation is an important problem. A popular but increasingly controversial theory is that it results from maladaptive reorganization of the sensorimotor cortex, suggesting that experimental induction of further reorganization should affect the pain, especially if it results in functional restoration. Here we use a brain-machine interface (BMI) based on real-time magnetoencephalography signals to reconstruct affected hand mov...

  11. Computational Model of Primary Visual Cortex Combining Visual Attention for Action Recognition.

    Directory of Open Access Journals (Sweden)

    Na Shu

    Full Text Available Humans can easily understand other people's actions through visual systems, while computers cannot. Therefore, a new bio-inspired computational model is proposed in this paper aiming for automatic action recognition. The model focuses on dynamic properties of neurons and neural networks in the primary visual cortex (V1, and simulates the procedure of information processing in V1, which consists of visual perception, visual attention and representation of human action. In our model, a family of the three-dimensional spatial-temporal correlative Gabor filters is used to model the dynamic properties of the classical receptive field of V1 simple cell tuned to different speeds and orientations in time for detection of spatiotemporal information from video sequences. Based on the inhibitory effect of stimuli outside the classical receptive field caused by lateral connections of spiking neuron networks in V1, we propose surround suppressive operator to further process spatiotemporal information. Visual attention model based on perceptual grouping is integrated into our model to filter and group different regions. Moreover, in order to represent the human action, we consider the characteristic of the neural code: mean motion map based on analysis of spike trains generated by spiking neurons. The experimental evaluation on some publicly available action datasets and comparison with the state-of-the-art approaches demonstrate the superior performance of the proposed model.

  12. Towards a sensorimotor aesthetics of performing art.

    Science.gov (United States)

    Calvo-Merino, B; Jola, C; Glaser, D E; Haggard, P

    2008-09-01

    The field of neuroaesthetics attempts to identify the brain processes underlying aesthetic experience, including but not limited to beauty. Previous neuroaesthetic studies have focussed largely on paintings and music, while performing arts such as dance have been less studied. Nevertheless, increasing knowledge of the neural mechanisms that represent the bodies and actions of others, and which contribute to empathy, make a neuroaesthetics of dance timely. Here, we present the first neuroscientific study of aesthetic perception in the context of the performing arts. We investigated brain areas whose activity during passive viewing of dance stimuli was related to later, independent aesthetic evaluation of the same stimuli. Brain activity of six naïve male subjects was measured using fMRI, while they watched 24 dance movements, and performed an irrelevant task. In a later session, participants rated each movement along a set of established aesthetic dimensions. The ratings were used to identify brain regions that were more active when viewing moves that received high average ratings than moves that received low average ratings. This contrast revealed bilateral activity in the occipital cortices and in right premotor cortex. Our results suggest a possible role of visual and sensorimotor brain areas in an automatic aesthetic response to dance. This sensorimotor response may explain why dance is widely appreciated in so many human cultures.

  13. Synergistic dopamine increase in the rat prefrontal cortex with the combination of quetiapine and fluvoxamine

    NARCIS (Netherlands)

    Denys, Damiaan; Klompmakers, André A.; Westenberg, Herman G. M.

    2004-01-01

    RATIONALE: The combination of atypical antipsychotic drugs in addition to serotonin reuptake inhibitors has recently proven to be beneficial in a number of neuropsychiatric disorders, such as major depression, schizophrenia, and obsessive-compulsive disorder. OBJECTIVES: To investigate the effects

  14. Rectal sensorimotor dysfunction in constipation

    NARCIS (Netherlands)

    Scott, S. M.; van den Berg, M. M.; Benninga, M. A.

    2011-01-01

    The pathophysiological mechanisms underlying chronic constipation in both adults and children remain to be unravelled. This is a not inconsiderable challenge, but is fundamental to improving management of such patients. Rectal sensorimotor function, which encompasses both sensation and motility, as

  15. Decoding intention at sensorimotor timescales.

    Directory of Open Access Journals (Sweden)

    Mathew Salvaris

    Full Text Available The ability to decode an individual's intentions in real time has long been a 'holy grail' of research on human volition. For example, a reliable method could be used to improve scientific study of voluntary action by allowing external probe stimuli to be delivered at different moments during development of intention and action. Several Brain Computer Interface applications have used motor imagery of repetitive actions to achieve this goal. These systems are relatively successful, but only if the intention is sustained over a period of several seconds; much longer than the timescales identified in psychophysiological studies for normal preparation for voluntary action. We have used a combination of sensorimotor rhythms and motor imagery training to decode intentions in a single-trial cued-response paradigm similar to those used in human and non-human primate motor control research. Decoding accuracy of over 0.83 was achieved with twelve participants. With this approach, we could decode intentions to move the left or right hand at sub-second timescales, both for instructed choices instructed by an external stimulus and for free choices generated intentionally by the participant. The implications for volition are considered.

  16. Sensorimotor development in neonatal progesterone receptor knockout mice.

    Science.gov (United States)

    Willing, Jari; Wagner, Christine K

    2014-01-01

    Early exposure to steroid hormones can permanently and dramatically alter neural development. This is best understood in the organizational effects of hormones during development of brain regions involved in reproductive behaviors or neuroendocrine function. However, recent evidence strongly suggests that steroid hormones play a vital role in shaping brain regions involved in cognitive behavior such as the cerebral cortex. The most abundantly expressed steroid hormone receptor in the developing rodent cortex is the progesterone receptor (PR). In the rat, PR is initially expressed in the developmentally-critical subplate at E18, and subsequently in laminas V and II/III through the first three postnatal weeks (Quadros et al. [2007] J Comp Neurol 504:42-56; Lopez & Wagner [2009]: J Comp Neurol 512:124-139), coinciding with significant periods of dendritic maturation, the arrival of afferents and synaptogenesis. In the present study, we investigated PR expression in the neonatal mouse somatosensory cortex. Additionally, to investigate the potential role of PR in developing cortex, we examined sensorimotor function in the first two postnatal weeks in PR knockout mice and their wildtype (WT) and heterozygous (HZ) counterparts. While the three genotypes were similar in most regards, PRKO and HZ mice lost the rooting reflex 2-3 days earlier than WT mice. These studies represent the first developmental behavioral assessment of PRKO mice and suggest PR expression may play an important role in the maturation of cortical connectivity and sensorimotor integration. Copyright © 2013 Wiley Periodicals, Inc.

  17. Motor cortex neuroplasticity following brachial plexus transfer.

    Science.gov (United States)

    Dimou, Stefan; Biggs, Michael; Tonkin, Michael; Hickie, Ian B; Lagopoulos, Jim

    2013-01-01

    In the past decade, research has demonstrated that cortical plasticity, once thought only to exist in the early stages of life, does indeed continue on into adulthood. Brain plasticity is now acknowledged as a core principle of brain function and describes the ability of the central nervous system to adapt and modify its structural organization and function as an adaptive response to functional demand. In this clinical case study we describe how we used neuroimaging techniques to observe the functional topographical expansion of a patch of cortex along the sensorimotor cortex of a 27-year-old woman following brachial plexus transfer surgery to re-innervate her left arm. We found bilateral activations present in the thalamus, caudate, insula as well as across the sensorimotor cortex during an elbow flex motor task. In contrast we found less activity in the sensorimotor cortex for a finger tap motor task in addition to activations lateralized to the left inferior frontal gyrus and thalamus and bilaterally for the insula. From a pain perspective the patient who had experienced extensive phantom limb pain (PLP) before surgery found these sensations were markedly reduced following transfer of the right brachial plexus to the intact left arm. Within the context of this clinical case the results suggest that functional improvements in limb mobility are associated with increased activation in the sensorimotor cortex as well as reduced PLP.

  18. Motor cortex neuroplasticity following brachial plexus transfer

    Directory of Open Access Journals (Sweden)

    Stefan eDimou

    2013-08-01

    Full Text Available In the past decade, research has demonstrated that cortical plasticity, once thought only to exist in the early stages of life, does indeed continue on into adulthood. Brain plasticity is now acknowledged as a core principle of brain function and describes the ability of the central nervous system to adapt and modify its structural organization and function as an adaptive response to functional demand. In this clinical case study we describe how we used neuroimaging techniques to observe the functional topographical expansion of a patch of cortex along the sensorimotor cortex of a 27 year-old woman following brachial plexus transfer surgery to re-innervate her left arm. We found bilateral activations present in the thalamus, caudate, insula as well as across the sensorimotor cortex during an elbow flex motor task. In contrast we found less activity in the sensorimotor cortex for a finger tap motor task in addition to activations lateralised to the left inferior frontal gyrus and thalamus and bilaterally for the insula. From a pain perspective the patient who had experienced extensive phantom limb pain before surgery found these sensations were markedly reduced following transfer of the right brachial plexus to the intact left arm. Within the context of this clinical case the results suggest that functional improvements in limb mobility are associated with increased activation in the sensorimotor cortex as well as reduced phantom limb pain.

  19. Training Modalities to Increase Sensorimotor Adaptability

    Science.gov (United States)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Brady, R.; Audas, C.; Cohen, H. S.

    2009-01-01

    During the acute phase of adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform required mission tasks. The goal of our current series of studies is develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The project has conducted a series of studies investigating the efficacy of treadmill training combined with a variety of sensory challenges (incongruent visual input, support surface instability) designed to increase adaptability. SA training using a treadmill combined with exposure to altered visual input was effective in producing increased adaptability in a more complex over-ground ambulatory task on an obstacle course. This confirms that for a complex task like walking, treadmill training contains enough of the critical features of overground walking to be an effective training modality. SA training can be optimized by using a periodized training schedule. Test sessions that each contain short-duration exposures to multiple perturbation stimuli allows subjects to acquire a greater ability to rapidly reorganize appropriate response strategies when encountering a novel sensory environment. Using a treadmill mounted on top of a six degree-of-freedom motion base platform we investigated locomotor training responses produced by subjects introduced to a dynamic walking surface combined with alterations in visual flow. Subjects who received this training had improved locomotor performance and faster reaction times when exposed to the novel sensory stimuli compared to control subjects. Results also demonstrate that individual sensory biases (i.e. increased visual dependency) can predict adaptive responses to novel sensory environments suggesting that individual training prescription can be developed to enhance adaptability. These data indicate that SA

  20. Figure and Ground in the Visual Cortex: V2 Combines Stereoscopic Cues with Gestalt Rules

    Science.gov (United States)

    Qiu, Fangtu T.; von der Heydt, Rüdiger

    2006-01-01

    Figure-ground organization is a process by which the visual system identifies some image regions as foreground and others as background, inferring three-dimensional (3D) layout from 2D displays. A recent study reported that edge responses of neurons in area V2 are selective for side-of-figure, suggesting that figure-ground organization is encoded in the contour signals (border-ownership coding). Here we show that area V2 combines two strategies of computation, one that exploits binocular stereoscopic information for the definition of local depth order, and another that exploits the global configuration of contours (gestalt factors). These are combined in single neurons so that the ‘near’ side of the preferred 3D edge generally coincides with the preferred side-of-figure in 2D displays. Thus, area V2 represents the borders of 2D figures as edges of surfaces, as if the figures were objects in 3D space. Even in 3D displays gestalt factors influence the responses and can enhance or null the stereoscopic depth information. PMID:15996555

  1. Thinking in spatial terms: decoupling spatial representation from sensorimotor control in monkey posterior parietal areas 7a and LIP

    Science.gov (United States)

    Chafee, Matthew V.; Crowe, David A.

    2013-01-01

    Perhaps the simplest and most complete description of the cerebral cortex is that it is a sensorimotor controller whose primary purpose is to represent stimuli and movements, and adaptively control the mapping between them. However, in order to think, the cerebral cortex has to generate patterns of neuronal activity that encode abstract, generalized information independently of ongoing sensorimotor events. A critical question confronting cognitive systems neuroscience at present therefore is how neural signals encoding abstract information emerge within the sensorimotor control networks of the brain. In this review, we approach that question in the context of the neural representation of space in posterior parietal cortex of non-human primates. We describe evidence indicating that parietal cortex generates a hierarchy of spatial representations with three basic levels: including (1) sensorimotor signals that are tightly coupled to stimuli or movements, (2) sensorimotor signals modified in strength or timing to mediate cognition (examples include attention, working memory, and decision-processing), as well as (3) signals that encode frankly abstract spatial information (such as spatial relationships or categories) generalizing across a wide diversity of specific stimulus conditions. Here we summarize the evidence for this hierarchy, and consider data showing that signals at higher levels derive from signals at lower levels. That in turn could help characterize neural mechanisms that derive a capacity for abstraction from sensorimotor experience. PMID:23355813

  2. Impairments of cingulated cortex in the generalized tonic-clonic seizure epilepsy by combining morphological and functional connectivity magnetic resonance imaging.

    Science.gov (United States)

    Ke, Ming; Jin, Bixia; Liu, Guangyao; Yang, Xiaoping

    2017-01-01

    Previous studies suggested that the patients with generalized tonic-clonic seizure had structural abnormalities in the thalamus, cingulated cortex and some other specific brain regions. Concurrently, the abnormality in thalamocortical network and basal ganglia network has been found in idiopathic generalized epilepsy. The cingulated cortex, a nexus of information processing and regulation in human brain, is implicated in the propagation of generalized spike in IGE and the previous studies have suggested that the structural features and functional connectivity of the cingulated cortex have been changed. The aim of this study was to demonstrate the alterations in the cingulated cortex in generalized tonic-clonic seizure by combining morphological and functional connectivity magnetic resonance imaging. 19 patients with generalized tonic-clonic seizure and 19 age-and gender-matched healthy controls were involved in the study. The three-dimensional high-resolution T1-weighted magnetic resonance imaging data were acquired for voxel-based morphometry analysis, two-sample t-test run on the T1-weighted structural images revealed clusters exhibiting significant decreases in grey-matter volume in the generalized tonic-clonic seizure group, located within the cingulated cortex, thalamus, frontal lobe, temporal lobe, and cerebellum. The decreased gray matter volume in the cingulated cortex indicating that the cingulated cortex has structural impairments in generalized tonic-clonic seizure patients. The bilateral cingulated cortex, as detected with decreased gray matter volume in patients with generalized tonic-clonic seizure through voxel-based morphometry analysis, was selected as seed regions for functional connectivity analysis. Compared with controls, we found decreased functional connectivity to left anterior cingulated cortex (ROI1) in the cuneus, frontal lobe and precentral gyrus. There was no significant result when seeding at the right anterior cingulum gyrus (ROI2

  3. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.

    Science.gov (United States)

    Song, Weiguo; Amer, Alzahraa; Ryan, Daniel; Martin, John H

    2016-03-01

    An important strategy for promoting voluntary movements after motor system injury is to harness activity-dependent corticospinal tract (CST) plasticity. We combine forelimb motor cortex (M1) activation with co-activation of its cervical spinal targets in rats to promote CST sprouting and skilled limb movement after pyramidal tract lesion (PTX). We used a two-step experimental design in which we first established the optimal combined stimulation protocol in intact rats and then used the optimal protocol in injured animals to promote CST repair and motor recovery. M1 was activated epidurally using an electrical analog of intermittent theta burst stimulation (iTBS). The cervical spinal cord was co-activated by trans-spinal direct current stimulation (tsDCS) that was targeted to the cervical enlargement, simulated from finite element method. In intact rats, forelimb motor evoked potentials (MEPs) were strongly facilitated during iTBS and for 10 min after cessation of stimulation. Cathodal, not anodal, tsDCS alone facilitated MEPs and also produced a facilitatory aftereffect that peaked at 10 min. Combined iTBS and cathodal tsDCS (c-tsDCS) produced further MEP enhancement during stimulation, but without further aftereffect enhancement. Correlations between forelimb M1 local field potentials and forelimb electromyogram (EMG) during locomotion increased after electrical iTBS alone and further increased with combined stimulation (iTBS+c-tsDCS). This optimized combined stimulation was then used to promote function after PTX because it enhanced functional connections between M1 and spinal circuits and greater M1 engagement in muscle contraction than either stimulation alone. Daily application of combined M1 iTBS on the intact side and c-tsDCS after PTX (10 days, 27 min/day) significantly restored skilled movements during horizontal ladder walking. Stimulation produced a 5.4-fold increase in spared ipsilateral CST terminations. Combined neuromodulation achieves optimal motor

  4. Detection of the onset of upper-limb movements based on the combined analysis of changes in the sensorimotor rhythms and slow cortical potentials

    Science.gov (United States)

    Ibáñez, J.; Serrano, J. I.; del Castillo, M. D.; Monge-Pereira, E.; Molina-Rueda, F.; Alguacil-Diego, I.; Pons, J. L.

    2014-10-01

    Objective. Characterizing the intention to move by means of electroencephalographic activity can be used in rehabilitation protocols with patients’ cortical activity taking an active role during the intervention. In such applications, the reliability of the intention estimation is critical both in terms of specificity ‘number of misclassifications’ and temporal accuracy. Here, a detector of the onset of voluntary upper-limb reaching movements based on the cortical rhythms and the slow cortical potentials is proposed. The improvement in detections due to the combination of these two cortical patterns is also studied. Approach. Upper-limb movements and cortical activity were recorded in healthy subjects and stroke patients performing self-paced reaching movements. A logistic regression combined the output of two classifiers: (i) a naïve Bayes classifier trained to detect the event-related desynchronization preceding the movement onset and (ii) a matched filter detecting the bereitschaftspotential. The proposed detector was compared with the detectors by using each one of these cortical patterns separately. In addition, differences between the patients and healthy subjects were analysed. Main results. On average, 74.5 ± 13.8% and 82.2 ± 10.4% of the movements were detected with 1.32 ± 0.87 and 1.50 ± 1.09 false detections generated per minute in the healthy subjects and the patients, respectively. A significantly better performance was achieved by the combined detector (as compared to the detectors of the two cortical patterns separately) in terms of true detections (p = 0.099) and false positives (p = 0.0083). Significance. A rationale is provided for combining information from cortical rhythms and slow cortical potentials to detect the onsets of voluntary upper-limb movements. It is demonstrated that the two cortical processes supply complementary information that can be summed up to boost the performance of the detector. Successful results have been also

  5. Sensorimotor training alters action understanding.

    Science.gov (United States)

    Catmur, Caroline; Thompson, Emma L; Bairaktari, Orianna; Lind, Frida; Bird, Geoffrey

    2017-11-02

    The discovery of 'mirror' neurons stimulated intense interest in the role of motor processes in social interaction. A popular assumption is that observation-related motor activation, exemplified by mirror neurons' matching properties, evolved to subserve the 'understanding' of others' actions. Alternatively, such motor activation may result from sensorimotor learning. Sensorimotor training alters observation-related motor activation, but studies demonstrating training-dependent changes in motor activation have not addressed the functional role of such activation. We therefore tested whether sensorimotor learning alters action understanding. Participants completed an action understanding task, judging the weight of boxes lifted by another person, before and after 'counter-mirror' sensorimotor training. During this training they lifted heavy boxes while observing light boxes being lifted, and vice-versa. Compared to a control group, this training significantly reduced participants' action understanding ability. Performance on a duration judgement task was unaffected by training. These data suggest the ability to understand others' actions results from sensorimotor learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Sensorimotor transformation via sparse coding

    Science.gov (United States)

    Takiyama, Ken

    2015-01-01

    Sensorimotor transformation is indispensable to the accurate motion of the human body in daily life. For instance, when we grasp an object, the distance from our hands to an object needs to be calculated by integrating multisensory inputs, and our motor system needs to appropriately activate the arm and hand muscles to minimize the distance. The sensorimotor transformation is implemented in our neural systems, and recent advances in measurement techniques have revealed an important property of neural systems: a small percentage of neurons exhibits extensive activity while a large percentage shows little activity, i.e., sparse coding. However, we do not yet know the functional role of sparse coding in sensorimotor transformation. In this paper, I show that sparse coding enables complete and robust learning in sensorimotor transformation. In general, if a neural network is trained to maximize the performance on training data, the network shows poor performance on test data. Nevertheless, sparse coding renders compatible the performance of the network on both training and test data. Furthermore, sparse coding can reproduce reported neural activities. Thus, I conclude that sparse coding is necessary and a biologically plausible factor in sensorimotor transformation. PMID:25923980

  7. Sensorimotor Integration During Motor Learning: Transcranial Magnetic Stimulation Studies.

    Science.gov (United States)

    Matur, Zeliha; Öge, A Emre

    2017-12-01

    The effect of sensory signals coming from skin and muscle afferents on the sensorimotor cortical networks is entitled as sensory-motor integration (SMI). SMI can be studied electrophysiologically by the motor cortex excitability changes in response to peripheral sensory stimulation. These changes include the periods of short afferent inhibition (SAI), afferent facilitation (AF), and late afferent inhibition (LAI). During the early period of motor skill acquisition, motor cortex excitability increases and changes occur in the area covered by the relevant zone of the motor cortex. In the late period, these give place to the morphological changes, such as synaptogenesis. SAI decreases during learning the motor skills, while LAI increases during motor activity. In this review, the role of SMI in the process of motor learning and transcranial magnetic stimulation techniques performed for studying SMI is summarized.

  8. Enhancing Functional Performance using Sensorimotor Adaptability Training Programs

    Science.gov (United States)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Brady, R.; Audas, C.; Ruttley, T. M.; Cohen, H. S.

    2009-01-01

    During the acute phase of adaptation to novel gravitational environments, sensorimotor disturbances have the potential to disrupt the ability of astronauts to perform functional tasks. The goal of this project is to develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The project conducted a series of studies that investigated the efficacy of treadmill training combined with a variety of sensory challenges designed to increase adaptability including alterations in visual flow, body loading, and support surface stability.

  9. Sensorimotor event: an approach to the dynamic, embodied, and embedded nature of sensorimotor cognition

    OpenAIRE

    Oscar eVilarroya

    2014-01-01

    In this paper, I explore the notion of sensorimotor event as the building block of sensorimotor cognition. A sensorimotor event is presented here as a neurally controlled event that recruits those processes and elements that are necessary to address the demands of the situation in which the individual is involved. The notion of sensorimotor event is intended to subsume the dynamic, embodied, and embedded nature of sensorimotor cognition, in agreement with the satisficing and bricoleur approac...

  10. Enhancing Astronaut Performance using Sensorimotor Adaptability Training

    Directory of Open Access Journals (Sweden)

    Jacob J Bloomberg

    2015-09-01

    Full Text Available Astronauts experience disturbances in balance and gait function when they return to Earth. The highly plastic human brain enables individuals to modify their behavior to match the prevailing environment. Subjects participating in specially designed variable sensory challenge training programs can enhance their ability to rapidly adapt to novel sensory situations. This is useful in our application because we aim to train astronauts to rapidly formulate effective strategies to cope with the balance and locomotor challenges associated with new gravitational environments - enhancing their ability to learn to learn. We do this by coupling various combinations of sensorimotor challenges with treadmill walking. A unique training system has been developed that is comprised of a treadmill mounted on a motion base to produce movement of the support surface during walking. This system provides challenges to gait stability. Additional sensory variation and challenge are imposed with a virtual visual scene that presents subjects with various combinations of discordant visual information during treadmill walking. This experience allows them to practice resolving challenging and conflicting novel sensory information to improve their ability to adapt rapidly. Information obtained from this work will inform the design of the next generation of sensorimotor countermeasures for astronauts.

  11. Sensorimotor modulation by botulinum toxin A in post-stroke arm spasticity: Passive hand movement.

    Science.gov (United States)

    Veverka, Tomáš; Hluštík, Petr; Hok, Pavel; Otruba, Pavel; Zapletalová, Jana; Tüdös, Zbyněk; Krobot, Alois; Kaňovský, Petr

    2016-03-15

    In post-stroke spasticity, functional imaging may uncover modulation in the central sensorimotor networks associated with botulinum toxin type A (BoNT) therapy. Investigations were performed to localize brain activation changes in stroke patients treated with BoNT for upper limb spasticity using functional magnetic resonance imaging (fMRI). Seven ischemic stroke patients (4 females; mean age 58.86) with severe hand paralysis and notable spasticity were studied. Spasticity was scored according to the modified Ashworth scale (MAS). fMRI examination was performed 3 times: before (W0) and 4 (W4) and 11weeks (W11) after BoNT. The whole-brain fMRI data were acquired during paced repetitive passive movements of the plegic hand (flexion/extension at the wrist) alternating with rest. Voxel-by-voxel statistical analysis using the General Linear Model (GLM) implemented in FSL (v6.00)/FEAT yielded group session-wise statistical maps and paired between-session contrasts, thresholded at the corrected cluster-wise significance level of psensorimotor cortex (M1, S1, and SMA) dominated. At W4, additional clusters transiently emerged bilaterally in the cerebellum, in the contralesional sensorimotor cortex, and in the contralesional occipital cortex. Paired contrasts demonstrated significant differences W4>W0 (bilateral cerebellum and contralesional occipital cortex) and W4>W11 (ipsilesional cerebellum and SMA). The remaining paired contrast (W0>W11) showed activation decreases mainly in the ipsilesional sensorimotor cortex (M1, S1, and SMA). The present study confirms the feasibility of using passive hand movements to map the cerebral sensorimotor networks in patients with post-stroke arm spasticity and demonstrates that BoNT-induced spasticity relief is associated with changes in task-induced central sensorimotor activation, likely mediated by an altered afferent drive from the spasticity-affected muscles. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A dynamical systems account of sensorimotor contingencies.

    Science.gov (United States)

    Buhrmann, Thomas; Di Paolo, Ezequiel Alejandro; Barandiaran, Xabier

    2013-01-01

    According to the sensorimotor approach, perception is a form of embodied know-how, constituted by lawful regularities in the sensorimotor flow or in sensorimotor contingencies (SMCs) in an active and situated agent. Despite the attention that this approach has attracted, there have been few attempts to define its core concepts formally. In this paper, we examine the idea of SMCs and argue that its use involves notions that need to be distinguished. We introduce four distinct kinds of SMCs, which we define operationally. These are the notions of sensorimotor environment (open-loop motor-induced sensory variations), sensorimotor habitat (closed-loop sensorimotor trajectories), sensorimotor coordination (reliable sensorimotor patterns playing a functional role), and sensorimotor strategy (normative organization of sensorimotor coordinations). We make use of a minimal dynamical model of visually guided categorization to test the explanatory value of the different kinds of SMCs. Finally, we discuss the impact of our definitions on the conceptual development and empirical as well as model-based testing of the claims of the sensorimotor approach.

  13. 210 Human Sensorimotor Electrocorticography: Spectral Dynamics and Network Connectivity During a Simple Motor Task.

    Science.gov (United States)

    Buch, Vivek; Burke, John Frederick; Ramayya, Ashwin G; Brandon, Cameron; Hudgins, Eric; Richardson, Andrew; Lucas, Timothy H

    2016-08-01

    The "human connectome" is increasingly becoming critical in advancing our understanding of the neural mechanisms underlying human behavior. The nature and characterization of these interconnected networks remains largely unknown. Using electrocorticography (ECoG) we explore the spectral dynamics and network connectivity of sensorimotor cortical regions during a motor task. 9 refractory epilepsy patients undergoing phase III monitoring. Task: (1) A cue appears designating a delay period known as the "wait" epoch; followed by (2) an instructions cue to subsequently move their right hand, left hand, or mouth and tongue known as the "instruct" epoch; and (3) a movement cue commencing the "move" epoch. We analyzed the cue-triggered power spectral density across all frequencies from 3 different nodes in the sensorimotor network (premotor, primary motor, and primary sensory cortex). We then explored the cue-triggered changes in connectivity (phase-locking value [PLV]) between these nodes. Spectral dynamics: We find that sensorimotor cortical nodes have preferential activation in high gamma band (70-100 Hz) during a motor task, with an anatomically guided cue-triggered response. In particular, instruction cue-triggered power is increased in premotor areas, while movement cue-triggered power is increased in peri-rolandic cortex. Network connectivity: The sensorimotor cortical network displays strongest phase locking in high gamma. This connectivity is consistent throughout the task and thus not affected by cue stimulus type (wait/instruct/move). However, there is a dichotomous cue-triggered response in sensorimotor network connectivity in theta band (4-8 Hz). Theta connectivity is decreased after the "wait" cue and increased after the "move" cue. These results provide evidence of cue-triggered electrocorticographic signal modulation occurring within and between sensorimotor network nodes. By analyzing ECoG spectral dynamics and sensorimotor connectomics during a motor task

  14. The effect of action experience on sensorimotor EEG rhythms during action observation.

    Science.gov (United States)

    Quandt, Lorna C; Marshall, Peter J

    2014-04-01

    A recent line of inquiry has examined how an observer׳s experience with action changes the neural processing of similar actions when they are subsequently observed. The current study used electroencephalography (EEG) to test the hypothesis that giving participants different types and amounts of experience with specific objects would lead to differential patterns of sensorimotor rhythms during the observation of similar actions on those objects. While EEG was recorded, three groups of participants (n=20 in each group; mean age=22.0 years, SD=2.7) watched video clips of an actor reaching, grasping, and lifting two objects. Participants then received information about differences in weight between the two objects. One group gained this information through extended sensorimotor experience with the objects, a second group received much briefer sensorimotor experience with the objects, and the third group read written information about the objects׳ weights. Participants then viewed the action sequences again. For participants who had sensorimotor experience with the objects, the EEG response to viewing the actions was differentially sensitive to the anticipated weight of the objects. We conclude that this sensitivity was based on the participant׳s prior sensorimotor experience with the objects. The participants who only received semantic information about the objects showed no such effects. The primary conclusion is that even brief experience with actions affects sensorimotor cortex activity during the subsequent observation of similar actions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Spaceflight Sensorimotor Analogs: Simulating Acute and Adaptive Effects

    Science.gov (United States)

    Taylor, Laura C.; Harm, Deborah L.; Kozlovskaya, Inessa; Reschke, Millard F.; Wood, Scott J.

    2009-01-01

    reviewed. DISCUSSION. A true ground-based flight analog for sensorimotor function is not feasible. A combination of flight analogs; however, can be used to selectively mimic different aspects of the spaceflight-induced sensorimotor performance decrements.

  16. New insights into Alzheimer's disease progression: a combined TMS and structural MRI study.

    Directory of Open Access Journals (Sweden)

    Eini Niskanen

    Full Text Available BACKGROUND: Combination of structural and functional data of the human brain can provide detailed information of neurodegenerative diseases and the influence of the disease on various local cortical areas. METHODOLOGY AND PRINCIPAL FINDINGS: To examine the relationship between structure and function of the brain the cortical thickness based on structural magnetic resonance images and motor cortex excitability assessed with transcranial magnetic stimulation were correlated in Alzheimer's disease (AD and mild cognitive impairment (MCI patients as well as in age-matched healthy controls. Motor cortex excitability correlated negatively with cortical thickness on the sensorimotor cortex, the precuneus and the cuneus but the strength of the correlation varied between the study groups. On the sensorimotor cortex the correlation was significant only in MCI subjects. On the precuneus and cuneus the correlation was significant both in AD and MCI subjects. In healthy controls the motor cortex excitability did not correlate with the cortical thickness. CONCLUSIONS: In healthy subjects the motor cortex excitability is not dependent on the cortical thickness, whereas in neurodegenerative diseases the cortical thinning is related to weaker cortical excitability, especially on the precuneus and cuneus. However, in AD subjects there seems to be a protective mechanism of hyperexcitability on the sensorimotor cortex counteracting the prominent loss of cortical volume since the motor cortex excitability did not correlate with the cortical thickness. Such protective mechanism was not found on the precuneus or cuneus nor in the MCI subjects. Therefore, our results indicate that the progression of the disease proceeds with different dynamics in the structure and function of neuronal circuits from normal conditions via MCI to AD.

  17. Constraint-Induced Movement Therapy Combined with Transcranial Direct Current Stimulation over Premotor Cortex Improves Motor Function in Severe Stroke: A Pilot Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Suellen M. Andrade

    2017-01-01

    Full Text Available Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex combined with constraint-induced movement therapy for treatment of stroke patients. Design. Sixty patients were randomly distributed into 3 groups: Group A, anodal stimulation on premotor cortex and constraint-induced movement therapy; Group B, anodal stimulation on primary motor cortex and constraint-induced movement therapy; Group C, sham stimulation and constraint-induced movement therapy. Evaluations involved analysis of functional independence, motor recovery, spasticity, gross motor function, and muscle strength. Results. A significant improvement in primary outcome (functional independence after treatment in the premotor group followed by primary motor group and sham group was observed. The same pattern of improvement was highlighted among all secondary outcome measures regarding the superior performance of the premotor group over primary motor and sham groups. Conclusions. Premotor cortex can contribute to motor function in patients with severe functional disabilities in early stages of stroke. This study was registered in ClinicalTrials.gov database (NCT 02628561.

  18. Eye muscle proprioception is represented bilaterally in the sensorimotor cortex

    DEFF Research Database (Denmark)

    Balslev, Daniela; Albert, Neil B; Miall, Chris

    2011-01-01

    eye after a virtual lesion with rTMS over the left somatosensory area. However, it is possible that the proprioceptive representation of the EOM extends to other brain sites, which were not examined in these previous studies. The aim of this fMRI study was to sample the whole brain to identify...... the proprioceptive representation for the left and the right eye separately. Data were acquired while passive eye movement was used to stimulate EOM proprioceptors in the absence of a motor command. We also controlled for the tactile stimulation of the eyelid by removing from the analysis voxels activated by eyelid......The cortical representation of eye position is still uncertain. In the monkey a proprioceptive representation of the extraocular muscles (EOM) of an eye were recently found within the contralateral central sulcus. In humans, we have previously shown a change in the perceived position of the right...

  19. Projection from the prefrontal cortex to histaminergic cell groups in the posterior hypothalamic region of the rat. Anterograde tracing with Phaseolus vulgaris leucoagglutinin combined with immunocytochemistry of histidine decarboxylase

    NARCIS (Netherlands)

    Wouterlood, F.G.; Steinbusch, H.W.M.; Luiten, P.G.M.; Bol, J.G.J.M.

    1987-01-01

    We investigated the projection from the infralimbic division of the prefrontal cortex (area 25) to histaminergic neurons in the posterior hypothalamic area. Phaseolus vulgaris-leucoagglutinin (PHA-L) was injected in the prefrontal cortex of rats. Frozen brain sections were subjected to combined

  20. Neural correlates of auditory temporal predictions during sensorimotor synchronization

    Directory of Open Access Journals (Sweden)

    Nadine ePecenka

    2013-08-01

    Full Text Available Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by cross-correlations between tap timing and pacing events and that the degree of such prediction influences the accuracy of sensorimotor synchronization (SMS and interpersonal coordination in dyadic tapping tasks. The current functional magnetic resonance imaging study investigated the neural correlates of auditory temporal predictions during SMS in a within-subject design. Hemodynamic responses were recorded from 18 musicians while they tapped in synchrony with auditory sequences containing gradual tempo changes under conditions of varying cognitive load (achieved by a simultaneous visual n-back working-memory task comprising three levels of difficulty: observation only, 1-back, and 2-back object comparisons. Prediction ability during SMS decreased with increasing cognitive load. Results of a parametric analysis revealed that the generation of auditory temporal predictions during SMS recruits (1 a distributed network in cortico-cerebellar motor-related brain areas (left dorsal premotor and motor cortex, right lateral cerebellum, SMA proper and bilateral inferior parietal cortex and (2 medial cortical areas (medial prefrontal cortex, posterior cingulate cortex. While the first network is presumably involved in basic sensory prediction, sensorimotor integration, motor timing, and temporal adaptation, activation in the second set of areas may be related to higher-level social-cognitive processes elicited during action coordination with auditory signals that resemble music performed by human agents.

  1. Neural correlates of auditory temporal predictions during sensorimotor synchronization.

    Science.gov (United States)

    Pecenka, Nadine; Engel, Annerose; Keller, Peter E

    2013-01-01

    Musical ensemble performance requires temporally precise interpersonal action coordination. To play in synchrony, ensemble musicians presumably rely on anticipatory mechanisms that enable them to predict the timing of sounds produced by co-performers. Previous studies have shown that individuals differ in their ability to predict upcoming tempo changes in paced finger-tapping tasks (indexed by cross-correlations between tap timing and pacing events) and that the degree of such prediction influences the accuracy of sensorimotor synchronization (SMS) and interpersonal coordination in dyadic tapping tasks. The current functional magnetic resonance imaging study investigated the neural correlates of auditory temporal predictions during SMS in a within-subject design. Hemodynamic responses were recorded from 18 musicians while they tapped in synchrony with auditory sequences containing gradual tempo changes under conditions of varying cognitive load (achieved by a simultaneous visual n-back working-memory task comprising three levels of difficulty: observation only, 1-back, and 2-back object comparisons). Prediction ability during SMS decreased with increasing cognitive load. Results of a parametric analysis revealed that the generation of auditory temporal predictions during SMS recruits (1) a distributed network of cortico-cerebellar motor-related brain areas (left dorsal premotor and motor cortex, right lateral cerebellum, SMA proper and bilateral inferior parietal cortex) and (2) medial cortical areas (medial prefrontal cortex, posterior cingulate cortex). While the first network is presumably involved in basic sensory prediction, sensorimotor integration, motor timing, and temporal adaptation, activation in the second set of areas may be related to higher-level social-cognitive processes elicited during action coordination with auditory signals that resemble music performed by human agents.

  2. Regaining motor control in musician's dystonia by restoring sensorimotor organization.

    Science.gov (United States)

    Rosenkranz, Karin; Butler, Katherine; Williamon, Aaron; Rothwell, John C

    2009-11-18

    Professional musicians are an excellent model of long-term motor learning effects on structure and function of the sensorimotor system. However, intensive motor skill training has been associated with task-specific deficiency in hand motor control, which has a higher prevalence among musicians (musician's dystonia) than in the general population. Using a transcranial magnetic stimulation paradigm, we previously found an expanded spatial integration of proprioceptive input into the hand motor cortex [sensorimotor organization (SMO)] in healthy musicians. In musician's dystonia, however, this expansion was even larger. Whereas motor skills of musicians are likely to be supported by a spatially expanded SMO, we hypothesized that in musician's dystonia this might have developed too far and now disrupts rather than assists task-specific motor control. If so, motor control should be regained by reversing the excessive reorganization in musician's dystonia. Here, we test this hypothesis and show that a 15 min intervention with proprioceptive input (proprioceptive training) restored SMO in pianists with musician's dystonia to the pattern seen in healthy pianists. Crucially, task-specific motor control improved significantly and objectively as measured with a MIDI (musical instrument digital interface) piano, and the amount of behavioral improvement was significantly correlated to the degree of sensorimotor reorganization. In healthy pianists and nonmusicians, the SMO and motor performance remained essentially unchanged. These findings suggest that the differentiation of SMO in the hand motor cortex and the degree of motor control of intensively practiced tasks are significantly linked and finely balanced. Proprioceptive training restored this balance in musician's dystonia to the behaviorally beneficial level of healthy musicians.

  3. Alteration of Resting-State Brain Sensorimotor Connectivity following Spinal Cord Injury: A Resting-State Functional Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Min, Yu-Sun; Park, Jang Woo; Jin, Seong Uk; Jang, Kyung Eun; Nam, Hyun Uk; Lee, Yang-Soo; Jung, Tae-Du; Chang, Yongmin

    2015-09-15

    Motor and sensory deficits after spinal cord injury (SCI) result in functional reorganization of the sensorimotor network. While several task-evoked functional magnetic resonance imaging (fMRI) studies demonstrated functional alteration of the sensorimotor network in SCI, there has been no study of the possible alteration of resting-state functional connectivity using resting-state fMRI. The aim of this study was to investigate the changes of brain functional connectivity in the sensorimotor cortex of patients with SCI. We evaluated the functional connectivity scores between brain areas within the sensorimotor network in 18 patients with SCI and 18 controls. Our findings demonstrated that, compared with control subjects, patients with SCI showed increased functional connectivity between primary motor cortex and other motor areas, such as the supplementary motor area and basal ganglia. However, decreased functional connectivity between primary somatosensory cortex and secondary somatosensory cortex also was found in patients with SCI, compared with controls. These findings therefore demonstrated alteration of the resting-state sensorimotor network in patients with SCI, who showed increased connectivity between motor components, and decreased connectivity between sensory components, within the sensorimotor network, suggesting that motor components within the motor network increased in functional connectivity in order to compensate for motor deficits, whereas the sensory network did not show any such increases or compensation for sensory deficits.

  4. Sensorimotor coupling in music and the psychology of the groove.

    Science.gov (United States)

    Janata, Petr; Tomic, Stefan T; Haberman, Jason M

    2012-02-01

    The urge to move in response to music, combined with the positive affect associated with the coupling of sensory and motor processes while engaging with music (referred to as sensorimotor coupling) in a seemingly effortless way, is commonly described as the feeling of being in the groove. Here, we systematically explore this compelling phenomenon in a population of young adults. We utilize multiple levels of analysis, comprising phenomenological, behavioral, and computational techniques. Specifically, we show (a) that the concept of the groove is widely appreciated and understood in terms of a pleasurable drive toward action, (b) that a broad range of musical excerpts can be appraised reliably for the degree of perceived groove, (c) that the degree of experienced groove is inversely related to experienced difficulty of bimanual sensorimotor coupling under tapping regimes with varying levels of expressive constraint, (d) that high-groove stimuli elicit spontaneous rhythmic movements, and (e) that quantifiable measures of the quality of sensorimotor coupling predict the degree of experienced groove. Our results complement traditional discourse regarding the groove, which has tended to take the psychological phenomenon for granted and has focused instead on the musical and especially the rhythmic qualities of particular genres of music that lead to the perception of groove. We conclude that groove can be treated as a psychological construct and model system that allows for experimental exploration of the relationship between sensorimotor coupling with music and emotion.

  5. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.

    Science.gov (United States)

    Marsh, Brandi T; Tarigoppula, Venkata S Aditya; Chen, Chen; Francis, Joseph T

    2015-05-13

    For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimotor cortex. Reward modulation of the primary sensorimotor cortex has yet to be characterized at the level of neural units. Here we demonstrate that single units/multiunits and local field potentials in the primary motor (M1) cortex of nonhuman primates (Macaca radiata) are modulated by reward expectation during reaching movements and that this modulation is present even while subjects passively view cursor motions that are predictive of either reward or nonreward. After establishing this reward modulation, we set out to determine whether we could correctly classify rewarding versus nonrewarding trials, on a moment-to-moment basis. This reward information could then be used in collaboration with reinforcement learning principles toward an autonomous brain-machine interface. The autonomous brain-machine interface would use M1 for both decoding movement intention and extraction of reward expectation information as evaluative feedback, which would then update the decoding algorithm as necessary. In the work presented here, we show that this, in theory, is possible. Copyright © 2015 the authors 0270-6474/15/357374-14$15.00/0.

  6. Effects of the combination of metyrapone and oxazepam on cocaine-induced increases in corticosterone in the medial prefrontal cortex and nucleus accumbens.

    Science.gov (United States)

    Keller, Courtney M; Breaux, Kelly N; Goeders, Nicholas E

    2017-03-01

    We have previously demonstrated that a combination of drugs (i.e., metyrapone and oxazepam) known to attenuate HPA-axis activity effectively decreases cocaine self-administration and cue reactivity in rats. However, we did not find changes in plasma corticosterone that matched the behavioral effects we observed, indicating that a different mechanism of action must be involved. Therefore, we hypothesized that the combination of metyrapone and oxazepam attenuates cocaine taking and seeking by decreasing cocaine-induced increases in corticosterone in the brain. Male rats were implanted with guide cannulae targeting the medial prefrontal cortex or nucleus accumbens. After the rats recovered from surgery, the microdialysis session was conducted. Rats were housed in the experimental chamber and the dialysis probes inserted into the guide cannulae the night before the session. The following day, dialysate samples were collected over a five-hour session. Baseline samples were collected for the first two hours, every 20min. Samples were then collected following administration of cocaine (15mg/kg, ip). Before injections of cocaine, rats were pretreated with either vehicle or the combination of metyrapone (50mg/kg, ip) and oxazepam (10mg/kg, ip). The administration of cocaine resulted in an increase in corticosterone in the medial prefrontal cortex following vehicle pretreatment, which was not observed in the nucleus accumbens. This cocaine-induced increase in corticosterone was attenuated by metyrapone/oxazepam. Reducing cocaine-induced increases in corticosterone in the medial prefrontal cortex might represent a novel mechanism through which the combination of metyrapone/oxazepam produces its behavioral effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Dynamic sensorimotor interactions in locomotion.

    Science.gov (United States)

    Rossignol, Serge; Dubuc, Réjean; Gossard, Jean-Pierre

    2006-01-01

    Locomotion results from intricate dynamic interactions between a central program and feedback mechanisms. The central program relies fundamentally on a genetically determined spinal circuitry (central pattern generator) capable of generating the basic locomotor pattern and on various descending pathways that can trigger, stop, and steer locomotion. The feedback originates from muscles and skin afferents as well as from special senses (vision, audition, vestibular) and dynamically adapts the locomotor pattern to the requirements of the environment. The dynamic interactions are ensured by modulating transmission in locomotor pathways in a state- and phase-dependent manner. For instance, proprioceptive inputs from extensors can, during stance, adjust the timing and amplitude of muscle activities of the limbs to the speed of locomotion but be silenced during the opposite phase of the cycle. Similarly, skin afferents participate predominantly in the correction of limb and foot placement during stance on uneven terrain, but skin stimuli can evoke different types of responses depending on when they occur within the step cycle. Similarly, stimulation of descending pathways may affect the locomotor pattern in only certain phases of the step cycle. Section ii reviews dynamic sensorimotor interactions mainly through spinal pathways. Section iii describes how similar sensory inputs from the spinal or supraspinal levels can modify locomotion through descending pathways. The sensorimotor interactions occur obviously at several levels of the nervous system. Section iv summarizes presynaptic, interneuronal, and motoneuronal mechanisms that are common at these various levels. Together these mechanisms contribute to the continuous dynamic adjustment of sensorimotor interactions, ensuring that the central program and feedback mechanisms are congruous during locomotion.

  8. Effects of Increasing Neuromuscular Electrical Stimulation Current Intensity on Cortical Sensorimotor Network Activation: A Time Domain fNIRS Study.

    Directory of Open Access Journals (Sweden)

    Makii Muthalib

    Full Text Available Neuroimaging studies have shown neuromuscular electrical stimulation (NMES-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC, premotor cortex (PMC, supplementary motor area (SMA, and secondary somatosensory area (S2, as well as regions of the prefrontal cortex (PFC known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI, and with reference to voluntary (VOL wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb and deoxygenated (HHb hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2. However, the level and area of contralateral sensorimotor network (including PFC activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.

  9. Altered sensorimotor activation patterns in idiopathic dystonia-an activation likelihood estimation meta-analysis of functional brain imaging studies

    DEFF Research Database (Denmark)

    Løkkegaard, Annemette; Herz, Damian M; Haagensen, Brian Numelin

    2016-01-01

    using a range of sensorimotor tasks. Patients with dystonia showed bilateral increases in task-related activation in the parietal operculum and ventral postcentral gyrus as well as right middle temporal gyrus. Decreases in task-related activation converged in left supplementary motor area and left...... postcentral gyrus, right superior temporal gyrus and dorsal midbrain. Apart from the midbrain cluster, all between-group differences in task-related activity were retrieved in a sub-analysis including only the 14 studies on patients with focal dystonia. For focal dystonia, an additional cluster of increased...... sensorimotor activation emerged in the caudal cingulate motor zone. The results show that dystonia is consistently associated with abnormal somatosensory processing in the primary and secondary somatosensory cortex along with abnormal sensorimotor activation of mesial premotor and right lateral temporal cortex...

  10. Non-concomitant cortical structural and functional alterations in sensorimotor areas following incomplete spinal cord injury.

    Science.gov (United States)

    Pan, Yu; Dou, Wei-Bei; Wang, Yue-Heng; Luo, Hui-Wen; Ge, Yun-Xiang; Yan, Shu-Yu; Xu, Quan; Tu, Yuan-Yuan; Xiao, Yan-Qing; Wu, Qiong; Zheng, Zhuo-Zhao; Zhao, Hong-Liang

    2017-12-01

    Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal cord injury (SCI). The correlation between brain anatomical changes and functional reorganization after SCI is unclear. This study aimed to explore whether alterations of cortical structure and network function are concomitant in sensorimotor areas after incomplete SCI. Eighteen patients with incomplete SCI (mean age 40.94 ± 14.10 years old; male:female, 7:11) and 18 healthy subjects (37.33 ± 11.79 years old; male:female, 7:11) were studied by resting state functional magnetic resonance imaging. Gray matter volume (GMV) and functional connectivity were used to evaluate cortical structure and network function, respectively. There was no significant alteration of GMV in sensorimotor areas in patients with incomplete SCI compared with healthy subjects. Intra-hemispheric functional connectivity between left primary somatosensory cortex (BA1) and left primary motor cortex (BA4), and left BA1 and left somatosensory association cortex (BA5) was decreased, as well as inter-hemispheric functional connectivity between left BA1 and right BA4, left BA1 and right BA5, and left BA4 and right BA5 in patients with SCI. Functional connectivity between both BA4 areas was also decreased. The decreased functional connectivity between the left BA1 and the right BA4 positively correlated with American Spinal Injury Association sensory score in SCI patients. The results indicate that alterations of cortical anatomical structure and network functional connectivity in sensorimotor areas were non-concomitant in patients with incomplete SCI, indicating the network functional changes in sensorimotor areas may not be dependent on anatomic structure. The strength of functional connectivity within sensorimotor areas could serve as a potential imaging biomarker for assessment and prediction of sensory function in patients with incomplete SCI. This trial

  11. Inferring visuomotor priors for sensorimotor learning.

    Directory of Open Access Journals (Sweden)

    Edward J A Turnham

    2011-03-01

    Full Text Available Sensorimotor learning has been shown to depend on both prior expectations and sensory evidence in a way that is consistent with Bayesian integration. Thus, prior beliefs play a key role during the learning process, especially when only ambiguous sensory information is available. Here we develop a novel technique to estimate the covariance structure of the prior over visuomotor transformations--the mapping between actual and visual location of the hand--during a learning task. Subjects performed reaching movements under multiple visuomotor transformations in which they received visual feedback of their hand position only at the end of the movement. After experiencing a particular transformation for one reach, subjects have insufficient information to determine the exact transformation, and so their second reach reflects a combination of their prior over visuomotor transformations and the sensory evidence from the first reach. We developed a Bayesian observer model in order to infer the covariance structure of the subjects' prior, which was found to give high probability to parameter settings consistent with visuomotor rotations. Therefore, although the set of visuomotor transformations experienced had little structure, the subjects had a strong tendency to interpret ambiguous sensory evidence as arising from rotation-like transformations. We then exposed the same subjects to a highly-structured set of visuomotor transformations, designed to be very different from the set of visuomotor rotations. During this exposure the prior was found to have changed significantly to have a covariance structure that no longer favored rotation-like transformations. In summary, we have developed a technique which can estimate the full covariance structure of a prior in a sensorimotor task and have shown that the prior over visuomotor transformations favor a rotation-like structure. Moreover, through experience of a novel task structure, participants can

  12. Improvement of sensorimotor functions in old age by passive sensory stimulation

    Directory of Open Access Journals (Sweden)

    Tobias Kalisch

    2008-12-01

    Full Text Available Tobias Kalisch1, Martin Tegenthoff2, Hubert R Dinse11Department of Theoretical Biology, Institute for Neuroinformatics; 2Department of Neurology, BG-Kliniken Bergmannsheil, Ruhr-University Bochum, Bochum, GermanyAbstract: Sensorimotor functions decrease in old age. The well-documented loss of tactile acuity in elderly is accompanied by deterioration of haptic performance and fine manipulative movements. Physical training and exercise can maintain sensorimotor fitness into high age. However, regular schedules of training require discipline and physical fitness. We here present an alternative interventional paradigm to enhance tactile, haptic, and fine motor performance based on passive, sensory stimulation by means of tactile coactivation. This approach is based on patterned, synchronous tactile stimulation applied to the fingertips for 3 hours. The stimulation drives plastic reorganizational changes in somatosensory cortex that affect perception and behavior: We demonstrate that following 3 hours of coactivation tactile acuity as well as haptic object exploration and fine motor performance are improved for at least 96 hours. Because this kind of intervention does not require active participation or attention of the subjects, we anticipate that coactivation is a prime candidate for future therapeutic interventions in patients with impaired sensorimotor abilities. It can be assumed that the maintenance and restoration of sensorimotor functions can ensure and preserve independence of daily living. Further optimizing of the stimulation protocol can be assumed to strengthen both the range and durability of its efficacy.Keywords: aging, tactile acuity, coactivation, cortical plasticity, intervention, sensorimotor performance

  13. Wilder Penfield in the age of YouTube: visualizing the sequential activation of sensorimotor areas across neocortex.

    Science.gov (United States)

    Kleinfeld, David; Waters, Jack

    2007-12-06

    Flow of electrical activity across neocortex is essential for many sensorimotor tasks. Whether this flow is localized or spreads widely is unknown. Ferezou et al., imaging activity across the cortical mantle in awake mice, show in this issue of Neuron that touch by a single vibrissa leads to a rapid depolarization of primary sensory and motor areas that subsequently spreads across most of cortex.

  14. Sensorimotor gating deficits in multiple system atrophy

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Biernat, Heidi Bryde; Nikolic, Miki

    2014-01-01

    Prepulse inhibition (PPI) of the auditory blink reflex is a measure of sensorimotor gating, which reflects an organism's ability to filter out irrelevant sensory information. PPI has never been studied in patients with multiple system atrophy (MSA), although sensorimotor deficits are frequently...

  15. [Dual organization of sensorimotor activity].

    Science.gov (United States)

    Adams, A E

    1983-05-01

    An anatomical symmetry of the bilateral organism and the functional assignment of brain hemispheres each to one side of the body are preconditions for sensorimotor brain localization. The invariant system elements necessary for this consist of "modules". These are associations of about 2 500 cortical cells in each case. When we refer to duality, we do not mean dualistically separated, but mutually assigned or mutually coordinated half-systems. The mainly decussated sensory and nervous systems of the vertebrates probably give rise to their rhythmic gait coordinated in relation to the axis of the body. Compared to such vital movements, human motor activity varies between voluntary action and involuntary expression. Cortical projection duplicates in the form of secondary or supplementary sensorimotor areas are ascribed hypothetically to an identifiable somatosensory sensation. A development leading to man is likely to have commenced as the brain halves of a pithecanthropus gained asymmetric degrees of freedom in relation to their somatotopic binding to the body. This phylogenetic differentiation led to a dual disjunction of the cerebral hemispheres which enabled a side-different "either/or" in human actions. Speech and thought as transitive order forms are also based on functional asymmetries of the human cerebrum.

  16. Temporal Ventriloquism in Sensorimotor Synchronization

    Science.gov (United States)

    Parker, Melody Kay

    Perception of time is multisensory and therefore requires integration of the auditory and visual systems. Temporal ventriloquism is a phenomenon in which discrepant temporal aspects of multisensory stimuli are resolved through auditory dominance. Numerous prior experiments have demonstrated temporal ventriloquism using simple flash and click stimuli. The experiment presented herein employed a sensorimotor synchronization task to examine the effect of visual stimulus type across a range of stimulus onset asynchronies (SOA). This study compared sensorimotor response to three visual stimuli: a flash, a baton swinging, and a mallet striking a block. The results of the experiment indicated that the influence of SOA was greatly dependent on stimulus type. In contrast with the transient flash stimulus, the oscillatory visual stimuli provided more spatiotemporal information. This could explain the significantly reduced effect of temporal ventriloquism observed in response to the baton and mallet relative to the flash. Multisensory integration did not absolutely bias the auditory system; predictive visual dynamics proved useful in the unified perception of temporal occurrence.

  17. 2014 Sensorimotor Risk Standing Review Panel

    Science.gov (United States)

    Steinberg, Susan

    2014-01-01

    The Sensorimotor Risk Standing Review Panel (from here on referred to as the SRP) met on December 17 - 18, 2014 in Houston, TX to review the current status of the Risk of Impaired Control of Spacecraft, Associated Systems and Immediate Vehicle Egress due to Vestibular/Sensorimotor Alteration Associated with Space Flight (Sensorimotor Risk) in the Integrated Research Plan (IRP). During the meeting, the SRP received an in-depth briefing of the current status of the Sensorimotor Risk from Dr. Jacob Bloomberg, the Human Research Program (HRP) Sensorimotor Discipline Lead Scientist and Dr. Millard Reschke, the Chief Scientist of the Neuroscience Laboratories at the NASA Johnson Space Center (JSC). The SRP was impressed with the information that Dr. Bloomberg and Dr. Reschke presented and think that the in-person meeting (instead of WebEx/teleconference) allowed for more interactive and thoughtful conversations.

  18. Effects of Dopamine D2/D3 Blockade on Human Sensory and Sensorimotor Gating in Initially Antipsychotic-Naive, First-Episode Schizophrenia Patients

    DEFF Research Database (Denmark)

    Düring, Signe; Glenthøj, Birte Y; Andersen, Gitte Saltoft

    2014-01-01

    It has been suggested that psychophysiological measures of sensory and sensorimotor gating, P50 gating and prepulse inhibition of the startle reflex (PPI), underlie core features of schizophrenia and are linked to dopaminergic pathways in the striatum and prefrontal cortex. In the present study......, habituation, and sensitization. Treatment with amisulpride showed no effects on these measures, either at 2 or 6 weeks of follow-up. This is the first study investigating the effects of monotherapy with a relatively selective dopamine D2/D3 receptor antagonist (amisulpride) on sensory and sensorimotor gating...... be involved in symptomatology of patients with schizophrenia, but not in their sensorimotor gating deficits....

  19. Preservation of hand movement representation in the sensorimotor areas of amputees.

    Science.gov (United States)

    Bruurmijn, Mark L C M; Pereboom, Isabelle P L; Vansteensel, Mariska J; Raemaekers, Mathijs A H; Ramsey, Nick F

    2017-12-01

    Denervation due to amputation is known to induce cortical reorganization in the sensorimotor cortex. Although there is evidence that reorganization does not lead to a complete loss of the representation of the phantom limb, it is unclear to what extent detailed, finger-specific activation patterns are preserved in motor cortex, an issue that is also relevant for development of brain-computer interface solutions for paralysed people. We applied machine learning to obtain a quantitative measure for the functional organization within the motor and adjacent cortices in amputees, using high resolution functional MRI and attempted hand gestures. Subjects with above-elbow arm amputation (n = 8) and non-amputated controls (n = 9) made several gestures with either their right or left hand. Amputees attempted to make gestures with their amputated hand. Images were acquired using 7 T functional MRI. The sensorimotor cortex was divided into four regions, and activity patterns were classified in individual subjects using a support vector machine. Classification scores were significantly above chance for all subjects and all hands, and were highly similar between amputees and controls in most regions. Decodability of phantom movements from primary motor cortex reached the levels of right hand movements in controls. Attempted movements were successfully decoded from primary sensory cortex in amputees, albeit lower than in controls but well above chance level despite absence of somatosensory feedback. There was no significant correlation between decodability and years since amputation, or age. The ability to decode attempted gestures demonstrates that the detailed hand representation is preserved in motor cortex and adjacent regions after denervation. This encourages targeting sensorimotor activity patterns for development of brain-computer interfaces. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For

  20. A Combined Metabonomic and Proteomic Approach Identifies Frontal Cortex Changes in a Chronic Phencyclidine Rat Model in Relation to Human Schizophrenia Brain Pathology

    Science.gov (United States)

    Wesseling, Hendrik; Chan, Man K; Tsang, T M; Ernst, Agnes; Peters, Fabian; Guest, Paul C; Holmes, Elaine; Bahn, Sabine

    2013-01-01

    Current schizophrenia (SCZ) treatments fail to treat the broad range of manifestations associated with this devastating disorder. Thus, new translational models that reproduce the core pathological features are urgently needed to facilitate novel drug discovery efforts. Here, we report findings from the first comprehensive label-free liquid-mass spectrometry proteomic- and proton nuclear magnetic resonance-based metabonomic profiling of the rat frontal cortex after chronic phencyclidine (PCP) intervention, which induces SCZ-like symptoms. The findings were compared with results from a proteomic profiling of post-mortem prefrontal cortex from SCZ patients and with relevant findings in the literature. Through this approach, we identified proteomic alterations in glutamate-mediated Ca2+ signaling (Ca2+/calmodulin-dependent protein kinase II, PPP3CA, and VISL1), mitochondrial function (GOT2 and PKLR), and cytoskeletal remodeling (ARP3). Metabonomic profiling revealed changes in the levels of glutamate, glutamine, glycine, pyruvate, and the Ca2+ regulator taurine. Effects on similar pathways were also identified in the prefrontal cortex tissue from human SCZ subjects. The discovery of similar but not identical proteomic and metabonomic alterations in the chronic PCP rat model and human brain indicates that this model recapitulates only some of the molecular alterations of the disease. This knowledge may be helpful in understanding mechanisms underlying psychosis, which, in turn, can facilitate improved therapy and drug discovery for SCZ and other psychiatric diseases. Most importantly, these molecular findings suggest that the combined use of multiple models may be required for more effective translation to studies of human SCZ. PMID:23942359

  1. Decoding hand gestures from primary somatosensory cortex using high-density ECoG

    NARCIS (Netherlands)

    Branco, Mariana P|info:eu-repo/dai/nl/413968731; Freudenburg, Zachary V.; Aarnoutse, Erik J.|info:eu-repo/dai/nl/340372362; Bleichner, Martin G.; Vansteensel, Mariska J.; Ramsey, Nick F.|info:eu-repo/dai/nl/07313774X

    2017-01-01

    Electrocorticography (ECoG) based Brain-Computer Interfaces (BCIs) have been proposed as a way to restore and replace motor function or communication in severely paralyzed people. To date, most motor-based BCIs have either focused on the sensorimotor cortex as a whole or on the primary motor cortex

  2. Vestibular contributions to high-level sensorimotor functions.

    Science.gov (United States)

    Medendorp, W Pieter; Selen, Luc J P

    2017-10-01

    The vestibular system, which detects motion and orientation of the head in space, is known to be important in controlling gaze to stabilize vision, to ensure postural stability and to provide our sense of self-motion. While the brain's computations underlying these functions are extensively studied, the role of the vestibular system in higher level sensorimotor functions is less clear. This review covers new research on the vestibular influence on perceptual judgments, motor decisions, and the ability to learn multiple motor actions. Guided by concepts such as optimization, inference, estimation and control, we focus on how the brain determines causal relationships between memorized and visual representations in the updating of visual space, and how vestibular, visual and efferent motor information are integrated in the estimation of body motion. We also discuss evidence that these computations involve multiple coordinate representations, some of which can be probed in parietal cortex using neuronal oscillations derived from EEG. In addition, we describe work on decision making during self-motion, showing a clear modulation of bottom-up acceleration signals on decisions in the saccadic system. Finally, we consider the importance of vestibular signals as contextual cues in motor learning and recall. Taken together, these results emphasize the impact of vestibular information on high-level sensorimotor functions, and identify future directions for theoretical, behavioral, and neurophysiological investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. FMRI supports the sensorimotor theory of motor resonance.

    Directory of Open Access Journals (Sweden)

    Claire Landmann

    Full Text Available The neural mechanisms mediating the activation of the motor system during action observation, also known as motor resonance, are of major interest to the field of motor control. It has been proposed that motor resonance develops in infants through Hebbian plasticity of pathways connecting sensory and motor regions that fire simultaneously during imitation or self movement observation. A fundamental problem when testing this theory in adults is that most experimental paradigms involve actions that have been overpracticed throughout life. Here, we directly tested the sensorimotor theory of motor resonance by creating new visuomotor representations using abstract stimuli (motor symbols and identifying the neural networks recruited through fMRI. We predicted that the network recruited during action observation and execution would overlap with that recruited during observation of new motor symbols. Our results indicate that a network consisting of premotor and posterior parietal cortex, the supplementary motor area, the inferior frontal gyrus and cerebellum was activated both by new motor symbols and by direct observation of the corresponding action. This tight spatial overlap underscores the importance of sensorimotor learning for motor resonance and further indicates that the physical characteristics of the perceived stimulus are irrelevant to the evoked response in the observer.

  4. Towards a BCI for sensorimotor training: initial results from simultaneous fNIRS and biosignal recordings.

    Science.gov (United States)

    Zimmermann, Raphael; Marchal-Crespo, Laura; Lambercy, Olivier; Fluet, Marie-Christine; Riener, Robert; Wolf, Martin; Gassert, Roger

    2011-01-01

    This paper presents the concept and initial results of a novel approach for robot assisted sensorimotor training in stroke rehabilitation. It is based on a brain-body-robot interface (B(2)RI), combining both neural and physiological recordings, that detects the intention to perform a motor task. By directly including the injured brain into the therapy, we ultimately aim at providing a new method for severely impaired patients to engage in active movement therapy. In the present study, seven healthy subjects performed an isometric finger pinching task while functional near-infrared spectroscopy (fNIRS) signals from motor cortical areas and biosignals were recorded simultaneously. Results showed an insignificant increase in the blood pressure during the preparation period prior to motor execution. During the execution period, significant changes in oxy-and deoxyhemoglobin were found in the primary motor cortex, accompanied by an increase in blood pressure, respiration rate and galvanic skin response (GSR). Cortical measurements of premotor areas and heart rate revealed significant changes at the subject level with large inter-subject variability. The results presented here will serve as priors for the design of further studies to test the efficacy of the concept with stroke patients, and the found effects will provide a basis for the development of a classifier for a future B(2)RI.

  5. Instrument specific brain activation in sensorimotor and auditory representation in musicians.

    Science.gov (United States)

    Gebel, B; Braun, Ch; Kaza, E; Altenmüller, E; Lotze, M

    2013-07-01

    Musicians show a remarkable ability to interconnect motor patterns and sensory processing in the somatosensory and auditory domains. Many of these processes are specific for the instrument used. We were interested in the cerebral and cerebellar representations of these instrument-specific changes and therefore applied functional magnetic resonance imaging (fMRI) in two groups of instrumentalists with different instrumental training for comparable periods (approximately 15 years). The first group (trumpet players) uses tight finger and lip interaction; the second (pianists as control group) uses only the extremities for performance. fMRI tasks were balanced for instructions (piano and trumpet notes), sensory feedback (keypad and trumpet), and hand-lip interaction on the trumpet. During fMRI, both groups switched between different devices (trumpet or keypad) and performance was combined with or without auditory feedback. Playing the trumpet without any tone emission or using the mouthpiece showed an instrument training-specific activation increase in trumpet players. This was evident for the posterior-superior cerebellar hemisphere, the dominant primary sensorimotor cortex, and the left Heschl's gyrus. Additionally, trumpet players showed increased activity in the bilateral Heschl's gyrus during actual trumpet playing, although they showed significantly decreased loudness while playing with the mouthpiece in the scanner compared to pianists. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Sensorimotor learning in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Lalonde, R; Strazielle, C

    2011-04-15

    Homozygous Dab1(scm) mouse mutants with cell ectopias in cerebellar cortex and neocortex were compared with non-ataxic controls on two tests of motor coordination: rotorod and grid climbing. Even at the minimal speed of 4 rpm and unlike controls, none of the Dab1(scm) mutants reached criterion on the constant speed rotorod. In contrast, Dab1(scm) mutants improved their performances on the vertical grid over the course of the same number of trials. Thus, despite massive cerebellar degeneration, sensorimotor learning for equilibrium is still possible, indicating the potential usefulness of the grid-climbing test in determining residual functions in mice with massive cerebellar damage. Copyright © 2010. Published by Elsevier B.V.

  7. Evidence of impaired brain activity balance after passive sensorimotor stimulation in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Nikolaos Petsas

    Full Text Available OBJECTIVES: Examination of sensorimotor activation alone in multiple sclerosis (MS patients may not yield a comprehensive view of cerebral response to task stimulation. Additional information may be obtained by examining the negative BOLD response (deactivation. Aim of this work was to characterize activation and deactivation patterns during passive hand movements in MS patients. METHODS: 13 relapsing remitting-MS patients (RRMS, 18 secondary progressive-MS patients (SPMS and 15 healthy controls (HC underwent an fMRI study during passive right-hand movements. Activation and deactivation contrasts in the three groups were entered into ANOVA, age and gender corrected. Post-hoc analysis was performed with one-sample and two-sample t-tests. For each patient we obtained lesion volume (LV from both T1- and T2-weighted images. RESULTS: Activations showed a progressive extension to the ipsilateral brain hemisphere according to the group and the clinical form (HCsensorimotor areas was reduced in both patient groups with respect to HC. Deactivation of posterior cortical areas belonging to the default mode network (DMN, was increased in RRMS, but not in SPMS, with respect to HC. The amount of activation in the contralateral sensorimotor cortex was significantly correlated with that of deactivation in the DMN in HC and RRMS, but not in SPMS. Both increased activation and decreased deactivation patterns correlated with LV. CONCLUSION: In RRMS patients, increased cortical activation was associated with increased deactivation of the posterior cortex suggesting a greater resting-state activity in the DMN, probably aimed at facilitating sensorimotor circuit engagement during task performance. In SPMS the coupling between increased sensorimotor activation/increased DMN deactivation was not observed suggesting disorganization between anticorrelated functional networks as a consequence of a higher

  8. Sensorimotor event: an approach to the dynamic, embodied, and embedded nature of sensorimotor cognition.

    Science.gov (United States)

    Vilarroya, Oscar

    2014-01-01

    In this paper, I explore the notion of sensorimotor event as the building block of sensorimotor cognition. A sensorimotor event is presented here as a neurally controlled event that recruits those processes and elements that are necessary to address the demands of the situation in which the individual is involved. The notion of sensorimotor event is intended to subsume the dynamic, embodied, and embedded nature of sensorimotor cognition, in agreement with the satisficing and bricoleur approach to sensorimotor cognition presented elsewhere (Vilarroya, 2012). In particular, the notion of sensorimotor event encompasses those relevant neural processes, but also those bodily and environmental elements, that are necessary to deal with the situation in which the individual is involved. This continuum of neural processes as well as bodily and environmental elements can be characterized, and this characterization is considered the basis for the identification of the particular sensorimotor event. Among other consequences, the notion of sensorimotor event suggests a different approach to the classical account of sensory-input mapping onto a motor output. Instead of characterizing how a neural system responds to an external input, the idea defended here is to characterize how system-in-an-environment responds to its antecedent situation.

  9. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats

    Science.gov (United States)

    Díaz, Alfonso; Treviño, Samuel; Guevara, Jorge; Muñoz-Arenas, Guadalupe; Brambila, Eduardo; Espinosa, Blanca; Moreno-Rodríguez, Albino; Lopez-Lopez, Gustavo; Peña-Rosas, Ulises; Venegas, Berenice; Handal-Silva, Anabella; Morán-Perales, José Luis; Flores, Gonzalo; Aguilar-Alonso, Patricia

    2016-01-01

    Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats. PMID:27069534

  10. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats

    Directory of Open Access Journals (Sweden)

    Alfonso Díaz

    2016-01-01

    Full Text Available Energy drinks (EDs are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx and hippocampus (Hp of adult rats (90 days old. Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats.

  11. The reorganization of sensorimotor function in children after hemispherectomy. A functional MRI and somatosensory evoked potential study.

    Science.gov (United States)

    Holloway, V; Gadian, D G; Vargha-Khadem, F; Porter, D A; Boyd, S G; Connelly, A

    2000-12-01

    Children who have suffered extensive unilateral brain injury early in life may show a remarkable degree of residual sensorimotor function. It is generally believed that this reflects the high capacity of the immature brain for cerebral reorganization. In this study, we investigated 17 patients who had undergone hemispherectomy for relief from seizures; eight of the patients had congenital brain damage and nine had sustained their initial insult at the age of 1 year or older. Sensorimotor functions of the hand were investigated using functional MRI (fMRI) during a passive movement task, somatosensory evoked potentials (SEPs) arising from electrical and vibration stimulation, and behavioural tests including grip strength, double simultaneous stimulation and joint position sense. On fMRI, two of the eight patients studied with this technique (one with congenital damage and one with damage acquired at the age of 3 years) showed activation in the sensorimotor cortex of the remaining hemisphere with passive movement of the hemiplegic hand. The location of the ipsilateral brain activation was similar to that found on movement of the normal contralateral hand, although the latter was greater in spatial extent. In one of these patients, a greater role was demonstrated for the ipsilateral secondary sensorimotor area (compared with the ipsilateral primary sensorimotor area) for movement of the hemiplegic hand than for movement of the normal hand. Median nerve stimulation of the hemiplegic hand showed reproducible early-latency ipsilateral SEP components in the remaining sensorimotor cortex in 10 of the 17 patients (five with congenital and five with acquired disease). Five of the patients who demonstrated ipsilateral electrical SEPs also showed ipsilateral vibration SEPs (two with congenital and three with acquired disease). The behavioural tests revealed residual sensorimotor function in 14 of the patients; however, not all of the patients who exhibited ipsilateral SEP or f

  12. Sensorimotor Training in Virtual Reality: A Review

    OpenAIRE

    Adamovich, Sergei V.; Fluet, Gerard G; Tunik, Eugene; Merians, Alma S

    2009-01-01

    Recent experimental evidence suggests that rapid advancement of virtual reality (VR) technologies has great potential for the development of novel strategies for sensorimotor training in neurorehabilitation. We discuss what the adaptive and engaging virtual environments can provide for massive and intensive sensorimotor stimulation needed to induce brain reorganization. Second, discrepancies between the veridical and virtual feedback can be introduced in VR to facilitate activation of targete...

  13. Sensorimotor impairment of speech auditory feedback processing in aphasia.

    Science.gov (United States)

    Behroozmand, Roozbeh; Phillip, Lorelei; Johari, Karim; Bonilha, Leonardo; Rorden, Chris; Hickok, Gregory; Fridriksson, Julius

    2018-01-15

    We investigated the brain network involved in speech sensorimotor processing by studying patients with post-stroke aphasia using an altered auditory feedback (AAF) paradigm. We combined lesion-symptom-mapping analysis and behavioral testing to examine the pervasiveness of speech sensorimotor deficits and their relationship with cortical damage. Sixteen participants with aphasia and sixteen neurologically intact individuals completed a speech task under AAF. The task involved producing speech vowel sounds under the real-time pitch-shifted auditory feedback alteration. This task provided an objective measure for each individual's ability to compensate for mismatch (error) in speech auditory feedback. Results indicated that compensatory speech responses to AAF were significantly diminished in participants with aphasia compared with control. We observed that within the aphasic group, subjects with lower scores on the speech repetition task exhibited greater degree of diminished responses. Lesion-symptom-mapping analysis revealed that the onset phase (50-150 ms) of diminished AAF responses were predicted by damage to auditory cortical regions within the superior and middle temporal gyrus, whereas the rising phase (150-250 ms) and the peak (250-350 ms) of diminished AAF responses were predicted with damage to the inferior frontal gyrus and supramarginal gyrus areas, respectively. These findings suggest that damage to the auditory, motor, and auditory-motor integration networks are associated with impaired sensorimotor function for speech error processing. We suggest that a sensorimotor integration network, as revealed by brain regions related to temporal specific components of AAF responses, is related to speech processing and specific aspects of speech impairment, notably repetition deficits, in individuals with aphasia. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Sensorimotor integration in human postural control

    Science.gov (United States)

    Peterka, R. J.

    2002-01-01

    It is generally accepted that human bipedal upright stance is achieved by feedback mechanisms that generate an appropriate corrective torque based on body-sway motion detected primarily by visual, vestibular, and proprioceptive sensory systems. Because orientation information from the various senses is not always available (eyes closed) or accurate (compliant support surface), the postural control system must somehow adjust to maintain stance in a wide variety of environmental conditions. This is the sensorimotor integration problem that we investigated by evoking anterior-posterior (AP) body sway using pseudorandom rotation of the visual surround and/or support surface (amplitudes 0.5-8 degrees ) in both normal subjects and subjects with severe bilateral vestibular loss (VL). AP rotation of body center-of-mass (COM) was measured in response to six conditions offering different combinations of available sensory information. Stimulus-response data were analyzed using spectral analysis to compute transfer functions and coherence functions over a frequency range from 0.017 to 2.23 Hz. Stimulus-response data were quite linear for any given condition and amplitude. However, overall behavior in normal subjects was nonlinear because gain decreased and phase functions sometimes changed with increasing stimulus amplitude. "Sensory channel reweighting" could account for this nonlinear behavior with subjects showing increasing reliance on vestibular cues as stimulus amplitudes increased. VL subjects could not perform this reweighting, and their stimulus-response behavior remained quite linear. Transfer function curve fits based on a simple feedback control model provided estimates of postural stiffness, damping, and feedback time delay. There were only small changes in these parameters with increasing visual stimulus amplitude. However, stiffness increased as much as 60% with increasing support surface amplitude. To maintain postural stability and avoid resonant behavior, an

  15. Late emergence of the vibrissa direction selectivity map in the rat barrel cortex.

    Science.gov (United States)

    Kremer, Yves; Léger, Jean-François; Goodman, Dan; Brette, Romain; Bourdieu, Laurent

    2011-07-20

    In the neocortex, neuronal selectivities for multiple sensorimotor modalities are often distributed in topographical maps thought to emerge during a restricted period in early postnatal development. Rodent barrel cortex contains a somatotopic map for vibrissa identity, but the existence of maps representing other tactile features has not been clearly demonstrated. We addressed the issue of the existence in the rat cortex of an intrabarrel map for vibrissa movement direction using in vivo two-photon imaging. We discovered that the emergence of a direction map in rat barrel cortex occurs long after all known critical periods in the somatosensory system. This map is remarkably specific, taking a pinwheel-like form centered near the barrel center and aligned to the barrel cortex somatotopy. We suggest that this map may arise from intracortical mechanisms and demonstrate by simulation that the combination of spike-timing-dependent plasticity at synapses between layer 4 and layer 2/3 and realistic pad stimulation is sufficient to produce such a map. Its late emergence long after other classical maps suggests that experience-dependent map formation and refinement continue throughout adult life.

  16. Effects of sensorimotor training volume on recovery of sensorimotor function in patients following lower limb arthroplasty.

    Science.gov (United States)

    Pohl, Torsten; Brauner, Torsten; Wearing, Scott; Stamer, Knut; Horstmann, Thomas

    2015-08-19

    Sensorimotor function is degraded in patients after lower limb arthroplasty. Sensorimotor training is thought to improve sensorimotor skills, however, the optimal training stimulus with regard to volume, frequency, duration, and intensity is still unknown. The aim of this study, therefore, was to firstly quantify the progression of sensorimotor function after total hip (THA) or knee (TKA) arthroplasty and, as second step, to evaluate effects of different sensorimotor training volumes. 58 in-patients during their rehabilitation after THA or TKA participated in this prospective cohort study. Sensorimotor function was assessed using a test battery including measures of stabilization capacity, static balance, proprioception, and gait, along with a self-reported pain and function. All participants were randomly assigned to one of three intervention groups performing sensorimotor training two, four, or six times per week. Outcome measures were taken at three instances, at baseline (pre), after 1.5 weeks (mid) and at the conclusion of the 3 week program (post). All measurements showed significant improvements over time, with the exception of proprioception and static balance during quiet bipedal stance which showed no significant main effects for time or intervention. There was no significant effect of sensorimotor training volume on any of the outcome measures. We were able to quantify improvements in measures of dynamic, but not static, sensorimotor function during the initial three weeks of rehabilitation following TKA/THA. Although sensorimotor improvements were independent of the training volume applied in the current study, long-term effects of sensorimotor training volume need to be investigated to optimize training stimulus recommendations. Clinical trial registration number: DRKS00007894.

  17. Shutting down sensorimotor interference unblocks the networks for stimulus processing: an SMR neurofeedback training study.

    Science.gov (United States)

    Kober, Silvia Erika; Witte, Matthias; Stangl, Matthias; Väljamäe, Aleksander; Neuper, Christa; Wood, Guilherme

    2015-01-01

    In the present study, we investigated how the electrical activity in the sensorimotor cortex contributes to improved cognitive processing capabilities and how SMR (sensorimotor rhythm, 12-15Hz) neurofeedback training modulates it. Previous evidence indicates that higher levels of SMR activity reduce sensorimotor interference and thereby promote cognitive processing. Participants were randomly assigned to two groups, one experimental (N=10) group receiving SMR neurofeedback training, in which they learned to voluntarily increase SMR, and one control group (N=10) receiving sham feedback. Multiple cognitive functions and electrophysiological correlates of cognitive processing were assessed before and after 10 neurofeedback training sessions. The experimental group but not the control group showed linear increases in SMR power over training runs, which was associated with behavioural improvements in memory and attentional performance. Additionally, increasing SMR led to a more salient stimulus processing as indicated by increased N1 and P3 event-related potential amplitudes after the training as compared to the pre-test. Finally, functional brain connectivity between motor areas and visual processing areas was reduced after SMR training indicating reduced sensorimotor interference. These results indicate that SMR neurofeedback improves stimulus processing capabilities and consequently leads to improvements in cognitive performance. The present findings contribute to a better understanding of the mechanisms underlying SMR neurofeedback training and cognitive processing and implicate that SMR neurofeedback might be an effective cognitive training tool. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Suppressing sensorimotor activity modulates the discrimination of auditory emotions but not speaker identity.

    Science.gov (United States)

    Banissy, Michael J; Sauter, Disa Anna; Ward, Jamie; Warren, Jane E; Walsh, Vincent; Scott, Sophie K

    2010-10-13

    Our ability to recognize the emotions of others is a crucial feature of human social cognition. Functional neuroimaging studies indicate that activity in sensorimotor cortices is evoked during the perception of emotion. In the visual domain, right somatosensory cortex activity has been shown to be critical for facial emotion recognition. However, the importance of sensorimotor representations in modalities outside of vision remains unknown. Here we use continuous theta-burst transcranial magnetic stimulation (cTBS) to investigate whether neural activity in the right postcentral gyrus (rPoG) and right lateral premotor cortex (rPM) is involved in nonverbal auditory emotion recognition. Three groups of participants completed same-different tasks on auditory stimuli, discriminating between the emotion expressed and the speakers' identities, before and following cTBS targeted at rPoG, rPM, or the vertex (control site). A task-selective deficit in auditory emotion discrimination was observed. Stimulation to rPoG and rPM resulted in a disruption of participants' abilities to discriminate emotion, but not identity, from vocal signals. These findings suggest that sensorimotor activity may be a modality-independent mechanism which aids emotion discrimination.

  19. Conserved DNA methylation combined with differential frontal cortex and cerebellar expression distinguishes C9orf72-associated and sporadic ALS, and implicates SERPINA1 in disease.

    Science.gov (United States)

    Ebbert, Mark T W; Ross, Christian A; Pregent, Luc J; Lank, Rebecca J; Zhang, Cheng; Katzman, Rebecca B; Jansen-West, Karen; Song, Yuping; da Rocha, Edroaldo Lummertz; Palmucci, Carla; Desaro, Pamela; Robertson, Amelia E; Caputo, Ana M; Dickson, Dennis W; Boylan, Kevin B; Rademakers, Rosa; Ordog, Tamas; Li, Hu; Belzil, Veronique V

    2017-11-01

    We previously found C9orf72-associated (c9ALS) and sporadic amyotrophic lateral sclerosis (sALS) brain transcriptomes comprise thousands of defects, among which, some are likely key contributors to ALS pathogenesis. We have now generated complementary methylome data and combine these two data sets to perform a comprehensive "multi-omic" analysis to clarify the molecular mechanisms initiating RNA misregulation in ALS. We found that c9ALS and sALS patients have generally distinct but overlapping methylome profiles, and that the c9ALS- and sALS-affected genes and pathways have similar biological functions, indicating conserved pathobiology in disease. Our results strongly implicate SERPINA1 in both C9orf72 repeat expansion carriers and non-carriers, where expression levels are greatly increased in both patient groups across the frontal cortex and cerebellum. SERPINA1 expression is particularly pronounced in C9orf72 repeat expansion carriers for both brain regions, where SERPINA1 levels are strictly down regulated across most human tissues, including the brain, except liver and blood, and are not measurable in E18 mouse brain. The altered biological networks we identified contain critical molecular players known to contribute to ALS pathology, which also interact with SERPINA1. Our comprehensive combined methylation and transcription study identifies new genes and highlights that direct genetic and epigenetic changes contribute to c9ALS and sALS pathogenesis.

  20. Developing Personalized Sensorimotor Adaptability Countermeasures for Spaceflight

    Science.gov (United States)

    Mulavara, A. P.; Seidler, R. D.; Peters, B.; Cohen, H. S.; Wood, S.; Bloomberg, J. J.

    2016-01-01

    Astronauts experience sensorimotor disturbances during their initial exposure to microgravity and during the re-adaptation phase following a return to an Earth-gravitational environment. Interestingly, astronauts who return from spaceflight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts would be affected would improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. In this paper we will be presenting results from our ground-based study that show how behavioral, brain imaging and genomic data may be used to predict individual differences in sensorimotor adaptability to novel sensorimotor environments. This approach will allow us to better design and implement sensorimotor adaptability training countermeasures against decrements in post-mission adaptive capability that are customized for each crewmember's sensory biases, adaptive capacity, brain structure, functional capacities, and genetic predispositions. The ability to customize adaptability training will allow more efficient use of crew time during training and will optimize training prescriptions for astronauts to ensure expected outcomes.

  1. Syntactic Structures as Descriptions of Sensorimotor Processes

    Directory of Open Access Journals (Sweden)

    Alistair Knott

    2014-02-01

    Full Text Available In this paper I propose a hypothesis linking elements of a model of theoretical syntax with neural mechanisms in the domain of sensorimotor processing. The syntactic framework I adopt to express this linking hypothesis is Chomsky’s Minimalism: I propose that the language-independent ’Logical Form’ (LF of a sentence reporting a concrete episode in the world can be interpreted as a detailed description of the sensorimotor processes involved in apprehending that episode. The hypothesis is motivated by a detailed study of one particular episode, in which an agent grasps a target object. There are striking similarities between the LF structure of transitive sentences describing this episode and the structure of the sensorimotor processes through which it is apprehended by an observer. The neural interpretation of Minimalist LF structure allows it to incorporate insights from empiricist accounts of syntax, relating to sentence processing and to the learning of syntactic constructions.

  2. Movement-Related Sensorimotor High-Gamma Activity Mainly Represents Somatosensory Feedback

    Directory of Open Access Journals (Sweden)

    Seokyun Ryun

    2017-07-01

    Full Text Available Somatosensation plays pivotal roles in the everyday motor control of humans. During active movement, there exists a prominent high-gamma (HG >50 Hz power increase in the primary somatosensory cortex (S1, and this provides an important feature in relation to the decoding of movement in a brain-machine interface (BMI. However, one concern of BMI researchers is the inflation of the decoding performance due to the activation of somatosensory feedback, which is not elicited in patients who have lost their sensorimotor function. In fact, it is unclear as to how much the HG component activated in S1 contributes to the overall sensorimotor HG power during voluntary movement. With regard to other functional roles of HG in S1, recent findings have reported that these HG power levels increase before the onset of actual movement, which implies neural activation for top-down movement preparation or sensorimotor interaction, i.e., an efference copy. These results are promising for BMI applications but remain inconclusive. Here, we found using electrocorticography (ECoG from eight patients that HG activation in S1 is stronger and more informative than it is in the primary motor cortex (M1 regardless of the type of movement. We also demonstrate by means of electromyography (EMG that the onset timing of the HG power in S1 is later (49 ms than that of the actual movement. Interestingly, we show that the HG power fluctuations in S1 are closely related to subtle muscle contractions, even during the pre-movement period. These results suggest the following: (1 movement-related HG activity in S1 strongly affects the overall sensorimotor HG power, and (2 HG activity in S1 during voluntary movement mainly represents cortical neural processing for somatosensory feedback.

  3. Sensorimotor changes and functional performance in patients with knee osteoarthritis

    OpenAIRE

    Hurley, Michael V.; Scott, David L; Rees, Joanne; Newham, Di J.

    1997-01-01

    OBJECTIVE: Muscles are essential components of our sensorimotor system that help maintain balance and perform a smooth gait, but it is unclear whether arthritic damage adversely affects muscle sensorimotor function. Quadriceps sensorimotor function in patients with knee osteoarthritis (OA) was investigated, and whether these changes were associated with impairment of functional performance. METHODS: Quadriceps strength, voluntary activation, and proprioceptive acuity (joint position sense acu...

  4. Drawing and writing: An ALE meta-analysis of sensorimotor activations.

    Science.gov (United States)

    Yuan, Ye; Brown, Steven

    2015-08-01

    Drawing and writing are the two major means of creating what are referred to as "images", namely visual patterns on flat surfaces. They share many sensorimotor processes related to visual guidance of hand movement, resulting in the formation of visual shapes associated with pictures and words. However, while the human capacity to draw is tens of thousands of years old, the capacity for writing is only a few thousand years old, and widespread literacy is quite recent. In order to compare the neural activations for drawing and writing, we conducted two activation likelihood estimation (ALE) meta-analyses for these two bodies of neuroimaging literature. The results showed strong overlap in the activation profiles, especially in motor areas (motor cortex, frontal eye fields, supplementary motor area, cerebellum, putamen) and several parts of the posterior parietal cortex. A distinction was found in the left posterior parietal cortex, with drawing showing a preference for a ventral region and writing a dorsal region. These results demonstrate that drawing and writing employ the same basic sensorimotor networks but that some differences exist in parietal areas involved in spatial processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Motor training and the combination of action observation and peripheral nerve stimulation reciprocally interfere with the plastic changes induced in primary motor cortex excitability.

    Science.gov (United States)

    Bisio, Ambra; Avanzino, Laura; Biggio, Monica; Ruggeri, Piero; Bove, Marco

    2017-04-21

    AO-PNS is a stimulation protocol combining action observation (AO) and peripheral nerve stimulation (PNS) to induce plasticity in the primary motor cortex (M1) (increased excitability). Another method to increase M1 excitability is motor training. The combination of two protocols, which individually induce long-term potentiation (LTP)-like plasticity in overlapping neural circuits, results in a transitory occlusion or reverse of this phenomenon. This study aimed to understand the neurophysiological mechanisms underlying AO-PNS by testing whether AO-PNS and motor training induced LTP-like plasticity in, at least partially, overlapping neural networks. One group of participants practiced a motor training (finger opposition movements) followed by AO-PNS, whereas another group performed the two protocols in reverse order. Motor performance was evaluated by means of a sensor-engineered glove and transcranial magnetic stimulation was used to assess M1 excitability before and after each conditioning protocol. Motor training increased movement frequency, suggesting the occurrence of motor learning in both groups. When applied on first, both motor training and AO-PNS significantly increased the motor-evoked potential (MEP), but occluded the increase of cortical excitability expected after the following protocol, leading to a significant decrease of MEP amplitude. These results suggest that motor training and AO-PNS act on partially overlapping neuronal networks, which include M1, and that AO-PNS might be able to induce LTP-like plasticity in a similar way to overt movement execution. This candidates AO-PNS as methodology potentially useful when planning rehabilitative interventions on patients who cannot voluntarily move. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Influence of High Blood Pressure on Microcirculation in Cerebral Cortex of Young Rats.

    Science.gov (United States)

    Sokolova, I B; Sergeev, I V; Dvoretskii, D P

    2016-01-01

    We studied the density and structure of the microvascular network of the pia mater, the blood flow rate and oxygen saturation in the sensorimotor cortex of young spontaneously hypertensive rats (SHR). The density of the microvascular network in hypertensive animals was by ~1.4 times lower than in normotensive Wistar-Kyoto rats (control) and arteriolar bed density was lower by ~1.9 times. The blood flow rate in tissue and oxygen saturation in the sensorimotor cortex in SHR rats were significantly lower than in control animals.

  7. Sensorimotor responsiveness and resolution in the giraffe.

    Science.gov (United States)

    More, Heather L; O'Connor, Shawn M; Brøndum, Emil; Wang, Tobias; Bertelsen, Mads F; Grøndahl, Carsten; Kastberg, Karin; Hørlyck, Arne; Funder, Jonas; Donelan, J Maxwell

    2013-03-15

    The ability of an animal to detect and respond to changes in the environment is crucial to its survival. However, two elements of sensorimotor control - the time required to respond to a stimulus (responsiveness) and the precision of stimulus detection and response production (resolution) - are inherently limited by a competition for space in peripheral nerves and muscles. These limitations only become more acute as animal size increases. In this paper, we investigated whether the physiology of giraffes has found unique solutions for maintaining sensorimotor performance in order to compensate for their extreme size. To examine responsiveness, we quantified three major sources of delay: nerve conduction delay, muscle electromechanical delay and force generation delay. To examine resolution, we quantified the number and size distribution of nerve fibers in the sciatic nerve. Rather than possessing a particularly unique sensorimotor system, we found that our measurements in giraffes were broadly comparable to size-dependent trends seen across other terrestrial mammals. Consequently, both giraffes and other large animals must contend with greater sensorimotor delays and lower innervation density in comparison to smaller animals. Because of their unconventional leg length, giraffes may experience even longer delays compared with other animals of the same mass when sensing distal stimuli. While there are certainly advantages to being tall, there appear to be challenges as well - our results suggest that giraffes are less able to precisely and accurately sense and respond to stimuli using feedback alone, particularly when moving quickly.

  8. The integration of probabilistic information during sensorimotor estimation is unimpaired in children with Cerebral Palsy.

    Science.gov (United States)

    Chambers, Claire; Sokhey, Taegh; Gaebler-Spira, Deborah; Kording, Konrad P

    2017-01-01

    It is important to understand the motor deficits of children with Cerebral Palsy (CP). Our understanding of this motor disorder can be enriched by computational models of motor control. One crucial stage in generating movement involves combining uncertain information from different sources, and deficits in this process could contribute to reduced motor function in children with CP. Healthy adults can integrate previously-learned information (prior) with incoming sensory information (likelihood) in a close-to-optimal way when estimating object location, consistent with the use of Bayesian statistics. However, there are few studies investigating how children with CP perform sensorimotor integration. We compare sensorimotor estimation in children with CP and age-matched controls using a model-based analysis to understand the process. We examined Bayesian sensorimotor integration in children with CP, aged between 5 and 12 years old, with Gross Motor Function Classification System (GMFCS) levels 1-3 and compared their estimation behavior with age-matched typically-developing (TD) children. We used a simple sensorimotor estimation task which requires participants to combine probabilistic information from different sources: a likelihood distribution (current sensory information) with a prior distribution (learned target information). In order to examine sensorimotor integration, we quantified how participants weighed statistical information from the two sources (prior and likelihood) and compared this to the statistical optimal weighting. We found that the weighing of statistical information in children with CP was as statistically efficient as that of TD children. We conclude that Bayesian sensorimotor integration is not impaired in children with CP and therefore, does not contribute to their motor deficits. Future research has the potential to enrich our understanding of motor disorders by investigating the stages of motor processing set out by computational models

  9. Sensorimotor incongruence alters limb perception and movement.

    Science.gov (United States)

    Osumi, Michihiro; Nobusako, Satoshi; Zama, Takuro; Taniguchi, Megumi; Shimada, Sotaro; Morioka, Shu

    2017-09-21

    Altered limb ownership or heaviness has been observed in patients with hemiplegia, chronic pain, and several other conditions. Although these sensations are thought to be caused by sensorimotor incongruence, few studies have systematically verified this relationship. In addition, it remains unclear whether these subjective sensations affect movement execution. In a psychophysical experiment, we systematically investigated the relationships between sensorimotor integration and subjective limb perception, such as sense of ownership/heaviness, and verified the relationship between subjective limb perception and movement execution. Thirty-nine healthy participants were enrolled, and a visual feedback delay system was used to systematically evoke sensorimotor incongruence. Participants periodically flexed and extended their wrist while seeing a delayed image of their hand under five delay conditions (0, 150, 250, 350, 600ms). During wrist movement, electromyography (EMG) activity in flexor carpi radialis (FCR) was recorded. Also, to analyze the change in muscle activity and movement speed, the values of integral and peak frequency were calculated. To record changes in the subjective limb perception of the altered limb ownership and heaviness, we used a 7-point Likert scale for each participant. We found that altered ownership and heaviness increased with increasing feedback delay. Also, muscle activity and movement speed decreased with visual feedback delay. There was no significant correlation between subjective altered limb perception (i.e., altered limb ownership and heaviness) and muscle activity or movement speed. We systematically demonstrated that limb ownership, heaviness, muscle activation and movement speed were altered by sensorimotor incongruence. However, our study did not reveal the relationships between these factors. These results indicate the existence of different mechanisms governing subjective limb perception and movement execution. In the future, we

  10. Functional expansion of sensorimotor representation and structural reorganization of callosal connections in lower limb amputees.

    Science.gov (United States)

    Simões, Elington L; Bramati, Ivanei; Rodrigues, Erika; Franzoi, Ana; Moll, Jorge; Lent, Roberto; Tovar-Moll, Fernanda

    2012-02-29

    Previous studies have indicated that amputation or deafferentation of a limb induces functional changes in sensory (S1) and motor (M1) cortices, related to phantom limb pain. However, the extent of cortical reorganization after lower limb amputation in patients with nonpainful phantom phenomena remains uncertain. In this study, we combined functional magnetic resonance (fMRI) and diffusion tensor imaging (DTI) to investigate the existence and extent of cortical and callosal plasticity in these subjects. Nine "painless" patients with lower limb amputation and nine control subjects (sex- and age-matched) underwent a 3-T MRI protocol, including fMRI with somatosensory stimulation. In amputees, we observed an expansion of activation maps of the stump in S1 and M1 of the deafferented hemisphere, spreading to neighboring regions that represent the trunk and upper limbs. We also observed that tactile stimulation of the intact foot in amputees induced a greater activation of ipsilateral S1, when compared with controls. These results demonstrate a functional remapping of S1 in lower limb amputees. However, in contrast to previous studies, these neuroplastic changes do not appear to be dependent on phantom pain but do also occur in those who reported only the presence of phantom sensation without pain. In addition, our findings indicate that amputation of a limb also induces changes in the cortical representation of the intact limb. Finally, DTI analysis showed structural changes in the corpus callosum of amputees, compatible with the hypothesis that phantom sensations may depend on inhibitory release in the sensorimotor cortex.

  11. Processing of Multi-dimensional Sensorimotor Information in the Spinal and Cerebellar Neuronal Circuitry: A New Hypothesis

    Science.gov (United States)

    Spanne, Anton; Jörntell, Henrik

    2013-01-01

    Why are sensory signals and motor command signals combined in the neurons of origin of the spinocerebellar pathways and why are the granule cells that receive this input thresholded with respect to their spike output? In this paper, we synthesize a number of findings into a new hypothesis for how the spinocerebellar systems and the cerebellar cortex can interact to support coordination of our multi-segmented limbs and bodies. A central idea is that recombination of the signals available to the spinocerebellar neurons can be used to approximate a wide array of functions including the spatial and temporal dependencies between limb segments, i.e. information that is necessary in order to achieve coordination. We find that random recombination of sensory and motor signals is not a good strategy since, surprisingly, the number of granule cells severely limits the number of recombinations that can be represented within the cerebellum. Instead, we propose that the spinal circuitry provides useful recombinations, which can be described as linear projections through aspects of the multi-dimensional sensorimotor input space. Granule cells, potentially with the aid of differentiated thresholding from Golgi cells, enhance the utility of these projections by allowing the Purkinje cell to establish piecewise-linear approximations of non-linear functions. Our hypothesis provides a novel view on the function of the spinal circuitry and cerebellar granule layer, illustrating how the coordinating functions of the cerebellum can be crucially supported by the recombinations performed by the neurons of the spinocerebellar systems. PMID:23516353

  12. JWH-018 impairs sensorimotor functions in mice.

    Science.gov (United States)

    Ossato, A; Vigolo, A; Trapella, C; Seri, C; Rimondo, C; Serpelloni, G; Marti, M

    2015-08-06

    Naphthalen-1-yl-(1-pentylindol-3-yl)methanone (JWH-018) is a synthetic cannabinoid agonist illegally marketed in "Spice" and "herbal blend" for its psychoactive effect greater than those produced by cannabis. In rodents JWH-018 reproduces typical effects of (-)-Δ(9)-THC or Dronabinol® (Δ(9)-THC) such as hypothermia, analgesia, hypolocomotion and akinesia, while its effects on sensorimotor functions are still unknown. Therefore, the aim of the present study is to investigate the effect of acute administration of JWH-018 (0.01-6mg/kg i.p.) on sensorimotor functions in male CD-1 mice and to compare its effects with those caused by the administration of Δ(9)-THC (0.01-6mg/kg i.p.). A specific battery of behavioral tests were adopted to investigate effects of cannabinoid agonists on sensorimotor functions (visual, auditory, tactile) and neurological changes (convulsion, myoclonia, hyperreflexia) while video-tracking analysis was used to study spontaneous locomotion. JWH-018 administration inhibited sensorimotor responses at lower doses (0.01-0.1mg/kg), reduced spontaneous locomotion at intermediate/high doses (1-6mg/kg) and induced convulsions, myoclonia and hyperreflexia at high doses (6mg/kg). Similarly, administration of Δ(9)-THC reduced sensorimotor responses in mice but it did not inhibit spontaneous locomotion and it did not induce neurological alterations. All behavioral effects and neurological alterations were prevented by the administration of the selective CB1 receptor antagonist/inverse agonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(piperidin-1-yl)-1H-pyrazole-3-carboxamide (AM 251). For the first time these data demonstrate that JWH-018 impairs sensorimotor responses in mice. This aspect should be carefully evaluated to better understand the potential danger that JWH-018 may pose to public health, with particular reference to decreased performance in driving and hazardous works. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights

  13. Reinforcement learning of self-regulated sensorimotor β-oscillations improves motor performance.

    Science.gov (United States)

    Naros, G; Naros, I; Grimm, F; Ziemann, U; Gharabaghi, A

    2016-07-01

    Self-regulation of sensorimotor oscillations is currently researched in neurorehabilitation, e.g. for priming subsequent physiotherapy in stroke patients, and may be modulated by neurofeedback or transcranial brain stimulation. It has still to be demonstrated, however, whether and under which training conditions such brain self-regulation could also result in motor gains. Thirty-two right-handed, healthy subjects participated in a three-day intervention during which they performed 462 trials of kinesthetic motor-imagery while a brain-robot interface (BRI) turned event-related β-band desynchronization of the left sensorimotor cortex into the opening of the right hand by a robotic orthosis. Different training conditions were compared in a parallel-group design: (i) adaptive classifier thresholding and contingent feedback, (ii) adaptive classifier thresholding and non-contingent feedback, (iii) non-adaptive classifier thresholding and contingent feedback, and (iv) non-adaptive classifier thresholding and non-contingent feedback. We studied the task-related cortical physiology with electroencephalography and the behavioral performance in a subsequent isometric motor task. Contingent neurofeedback and adaptive classifier thresholding were critical for learning brain self-regulation which, in turn, led to behavioral gains after the intervention. The acquired skill for sustained sensorimotor β-desynchronization correlated significantly with subsequent motor improvement. Operant learning of brain self-regulation with a BRI may offer a therapeutic perspective for severely affected stroke patients lacking residual hand function. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Structure Learning in Bayesian Sensorimotor Integration.

    Directory of Open Access Journals (Sweden)

    Tim Genewein

    2015-08-01

    Full Text Available Previous studies have shown that sensorimotor processing can often be described by Bayesian learning, in particular the integration of prior and feedback information depending on its degree of reliability. Here we test the hypothesis that the integration process itself can be tuned to the statistical structure of the environment. We exposed human participants to a reaching task in a three-dimensional virtual reality environment where we could displace the visual feedback of their hand position in a two dimensional plane. When introducing statistical structure between the two dimensions of the displacement, we found that over the course of several days participants adapted their feedback integration process in order to exploit this structure for performance improvement. In control experiments we found that this adaptation process critically depended on performance feedback and could not be induced by verbal instructions. Our results suggest that structural learning is an important meta-learning component of Bayesian sensorimotor integration.

  15. Sensorimotor Assessment and Rehabilitative Apparatus

    Science.gov (United States)

    2017-10-01

    otolaryngology , rehabilitation, and neurology). We will collect age-matched healthy control subjects at the Johns Hopkins site. The duration of the study is...Association for Research in Otolaryngology (February 2017) Aim I We have developed the Vertical Alignment Nulling and Torsional Alignment Nulling...interest In the last year, we present three abstracts to relevant communities of interest – d. Association for Research in Otolaryngology and Combined

  16. Sensorimotor training in virtual reality: a review.

    Science.gov (United States)

    Adamovich, Sergei V; Fluet, Gerard G; Tunik, Eugene; Merians, Alma S

    2009-01-01

    Recent experimental evidence suggests that rapid advancement of virtual reality (VR) technologies has great potential for the development of novel strategies for sensorimotor training in neurorehabilitation. We discuss what the adaptive and engaging virtual environments can provide for massive and intensive sensorimotor stimulation needed to induce brain reorganization.Second, discrepancies between the veridical and virtual feedback can be introduced in VR to facilitate activation of targeted brain networks, which in turn can potentially speed up the recovery process. Here we review the existing experimental evidence regarding the beneficial effects of training in virtual environments on the recovery of function in the areas of gait,upper extremity function and balance, in various patient populations. We also discuss possible mechanisms underlying these effects. We feel that future research in the area of virtual rehabilitation should follow several important paths. Imaging studies to evaluate the effects of sensory manipulation on brain activation patterns and the effect of various training parameters on long term changes in brain function are needed to guide future clinical inquiry. Larger clinical studies are also needed to establish the efficacy of sensorimotor rehabilitation using VR in various clinical populations and most importantly, to identify VR training parameters that are associated with optimal transfer to real-world functional improvements.

  17. Mapping information flow in sensorimotor networks.

    Directory of Open Access Journals (Sweden)

    Max Lungarella

    2006-10-01

    Full Text Available Biological organisms continuously select and sample information used by their neural structures for perception and action, and for creating coherent cognitive states guiding their autonomous behavior. Information processing, however, is not solely an internal function of the nervous system. Here we show, instead, how sensorimotor interaction and body morphology can induce statistical regularities and information structure in sensory inputs and within the neural control architecture, and how the flow of information between sensors, neural units, and effectors is actively shaped by the interaction with the environment. We analyze sensory and motor data collected from real and simulated robots and reveal the presence of information structure and directed information flow induced by dynamically coupled sensorimotor activity, including effects of motor outputs on sensory inputs. We find that information structure and information flow in sensorimotor networks (a is spatially and temporally specific; (b can be affected by learning, and (c can be affected by changes in body morphology. Our results suggest a fundamental link between physical embeddedness and information, highlighting the effects of embodied interactions on internal (neural information processing, and illuminating the role of various system components on the generation of behavior.

  18. Long-term subthalamic nucleus stimulation improves sensorimotor integration and proprioception.

    Science.gov (United States)

    Wagle Shukla, Aparna; Moro, Elena; Gunraj, Carolyn; Lozano, Andres; Hodaie, Mojgan; Lang, Anthony; Chen, Robert

    2013-09-01

    Sensorimotor integration is impaired in patients with Parkinson's disease (PD). Short latency afferent inhibition (SAI) and long latency afferent inhibition (LAI) measured with transcranial magnetic stimulation (TMS) can be used to measure sensorimotor integration. Subthalamic nucleus (STN) deep brain stimulation (DBS) has been found to restore these abnormalities, but the time course of these changes is not known. We prospectively evaluated the short-term and long-term effects of STN DBS on SAI, LAI and proprioception. We hypothesised plasticity changes induced by chronic stimulation are necessary to normalise sensorimotor integration and proprioception. Patients with PD were studied preoperatively, at 1 month and more than 6 months postoperatively. SAI was tested with median nerve stimulation to the wrist preceding TMS pulse to motor cortex by ~20 ms and LAI by 200 ms. Proprioception (distance and spatial errors) in the arm was quantitatively assessed. For postoperative assessments, patients were studied in the medication-off/stimulator-off, medication-off/stimulator-on, medication-on/stimulator-off and medication-on/stimulator-on conditions. 11 patients with PD and 10 controls were enrolled. Preoperatively, SAI and proprioception was abnormal during the medication-on conditions and LAI was reduced regardless of the medication status. STN DBS had no significant effect on SAI, LAI and proprioception at 1 month. However, at 6 months SAI, LAI and distance errors were normalised in the medication-on/stimulator-on condition. Spatial error was normalised with DBS on and off. Chronic STN DBS in PD normalises sensorimotor integration and proprioception, likely through long-term plastic changes in the basal ganglia thalamocortical circuit.

  19. Signs of timing in motor cortex during movement preparation and cue anticipation.

    Science.gov (United States)

    Kilavik, Bjørg Elisabeth; Confais, Joachim; Riehle, Alexa

    2014-01-01

    The capacity to accurately anticipate the timing of predictable events is essential for sensorimotor behavior. Motor cortex holds an established role in movement preparation and execution. In this chapter we review the different ways in which motor cortical activity is modulated by event timing in sensorimotor delay tasks. During movement preparation, both single neuron and population responses reflect the temporal constraints of the task. Anticipatory modulations prior to sensory cues are also observed in motor cortex when the cue timing is predictable. We propose that the motor cortical activity during cue anticipation and movement preparation is embedded in a timing network that facilitates sensorimotor processing. In this context, the pre-cue and post-cue activity may reflect a presetting mechanism, complementing processing during movement execution, while prohibiting premature responses in situations requiring delayed motor output.

  20. Combination of blood oxygen level–dependent functional magnetic resonance imaging and visual evoked potential recordings for abnormal visual cortex in two types of amblyopia

    Science.gov (United States)

    Wang, Xinmei; Cui, Dongmei; Zheng, Ling; Yang, Xiao; Yang, Hui

    2012-01-01

    Purpose To elucidate the different neuromechanisms of subjects with strabismic and anisometropic amblyopia compared with normal vision subjects using blood oxygen level–dependent functional magnetic resonance imaging (BOLD-fMRI) and pattern-reversal visual evoked potential (PR-VEP). Methods Fifty-three subjects, age range seven to 12 years, diagnosed with strabismic amblyopia (17 cases), anisometropic amblyopia (20 cases), and normal vision (16 cases), were examined using the BOLD-fMRI and PR-VEP of UTAS-E3000 techniques. Cortical activation by binocular viewing of reversal checkerboard patterns was examined in terms of the calcarine region of interest (ROI)-based and spatial frequency–dependent analysis. The correlation of cortical activation in fMRI and the P100 amplitude in VEP were analyzed using the SPSS 12.0 software package. Results In the BOLD-fMRI procedure, reduced areas and decreased activation levels were found in Brodmann area (BA) 17 and other extrastriate areas in subjects with amblyopia compared with the normal vision group. In general, the reduced areas mainly resided in the striate visual cortex in subjects with anisometropic amblyopia. In subjects with strabismic amblyopia, a more significant cortical impairment was found in bilateral BA 18 and BA 19 than that in subjects with anisometropic amblyopia. The activation by high-spatial-frequency stimuli was reduced in bilateral BA 18 and 19 as well as BA 17 in subjects with anisometropic amblyopia, whereas the activation was mainly reduced in BA 18 and BA 19 in subjects with strabismic amblyopia. These findings were further confirmed by the ROI-based analysis of BA 17. During spatial frequency–dependent VEP detection, subjects with anisometropic amblyopia had reduced sensitivity for high spatial frequency compared to subjects with strabismic amblyopia. The cortical activation in fMRI with the calcarine ROI-based analysis of BA 17 was significantly correlated with the P100 amplitude in VEP

  1. Improving Sensorimotor Function Using Stochastic Vestibular Stimulation

    Science.gov (United States)

    Galvan, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Mulavara, A. P.; Oman, C. M.

    2014-01-01

    Astronauts experience sensorimotor changes during spaceflight, particularly during G-transition phases. Post flight sensorimotor changes may include postural and gait instability, spatial disorientation, and visual performance decrements, all of which can degrade operational capabilities of the astronauts and endanger the crew. Crewmember safety would be improved if these detrimental effects of spaceflight could be mitigated by a sensorimotor countermeasure and even further if adaptation to baseline could be facilitated. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor performance through stochastic resonance (SR). The SR phenomenon occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. Two studies have been initiated to investigate the beneficial effects and potential practical usage of SVS. In both studies, electrical vestibular stimulation is applied via electrodes on the mastoid processes using a constant current stimulator. The first study aims to determine the repeatability of the effect of vestibular stimulation on sensorimotor performance and perception in order to better understand the practical use of SVS. The beneficial effect of low levels of SVS on balance performance has been shown in the past. This research uses the same balance task repeated multiple times within a day and across days to study the repeatability of the stimulation effects. The balance test consists of 50 sec trials in which the subject stands with his or her feet together, arms crossed, and eyes closed on compliant foam. Varying levels of SVS, ranging from 0-700 micro A, are applied across different trials. The subject-specific optimal SVS level is that which results in the best balance performance as measured by inertial

  2. Motor Cortex Stimulation in Patients Suffering from Chronic Neuropathic Pain : Summary of Expert Meeting and Premeeting Questionnaire, Combined with Literature Review

    NARCIS (Netherlands)

    Kurt, Erkan; Henssen, Dylan J. H. A.; Steegers, Monique; Staal, Michiel; Beese, Ulrich; Maarrawi, Joseph; Pirotte, Benoit; Garcia-Larrea, Luis; Rasche, Dirk; Vesper, Jan; Holsheimer, Jan; Duyvendak, Wim; Herregodts, Patrick; van Dongen, Robert; Moens, Maarten

    2017-01-01

    BACKGROUND: Motor cortex stimulation (MCS) was introduced in the early 1990s by Tsubokawa and his group for patients diagnosed with drug-resistant, central neuropathic pain. Inconsistencies concerning the details of this therapy and its outcomes and poor methodology of most clinical essays divide

  3. Uncovering a context-specific connectional fingerprint of human dorsal premotor cortex

    DEFF Research Database (Denmark)

    Moisa, Marius; Siebner, Hartwig R; Pohmann, Rolf

    2012-01-01

    Primate electrophysiological and lesion studies indicate a prominent role of the left dorsal premotor cortex (PMd) in action selection based on learned sensorimotor associations. Here we applied transcranial magnetic stimulation (TMS) to human left PMd at low or high intensity while right-handed ...

  4. Neural representation of the sensorimotor speech-action-repository

    OpenAIRE

    Eckers, Cornelia; Kröger, Bernd J.; Sass, Katharina; Heim, Stefan

    2013-01-01

    A speech–action-repository (SAR) or “mental syllabary” has been proposed as a central module for sensorimotor processing of syllables. In this approach, syllables occurring frequently within language are assumed to be stored as holistic sensorimotor patterns, while non-frequent syllables need to be assembled from sub-syllabic units. Thus, frequent syllables are processed efficiently and quickly during production or perception by a direct activation of their sensorimotor patterns. Whereas seve...

  5. Self-learning and adaptation in a sensorimotor framework

    OpenAIRE

    Ghadirzadeh, Ali; Bütepage, Judith; Kragic, Danica; Björkman, Mårten

    2016-01-01

    We present a general framework to autonomously achieve a task, where autonomy is acquired by learning sensorimotor patterns of a robot, while it is interacting with its environment. To accomplish the task, using the learned sensorimotor contingencies, our approach predicts a sequence of actions that will lead to the desirable observations. Gaussian processes (GP) with automatic relevance determination is used to learn the sensorimotor mapping. In this way, relevant sensory and motor component...

  6. Progress in sensorimotor rehabilitative physical therapy programs for stroke patients.

    Science.gov (United States)

    Chen, Jia-Ching; Shaw, Fu-Zen

    2014-08-16

    Impaired motor and functional activity following stroke often has negative impacts on the patient, the family and society. The available rehabilitation programs for stroke patients are reviewed. Conventional rehabilitation strategies (Bobath, Brunnstrom, proprioception neuromuscular facilitation, motor relearning and function-based principles) are the mainstream tactics in clinical practices. Numerous advanced strategies for sensory-motor functional enhancement, including electrical stimulation, electromyographic biofeedback, constraint-induced movement therapy, robotics-aided systems, virtual reality, intermittent compression, partial body weight supported treadmill training and thermal stimulation, are being developed and incorporated into conventional rehabilitation programs. The concept of combining valuable rehabilitative procedures into "a training package", based on the patient's functional status during different recovery phases after stroke is proposed. Integrated sensorimotor rehabilitation programs with appropriate temporal arrangements might provide great functional benefits for stroke patients.

  7. Progress in sensorimotor rehabilitative physical therapy programs for stroke patients

    Science.gov (United States)

    Chen, Jia-Ching; Shaw, Fu-Zen

    2014-01-01

    Impaired motor and functional activity following stroke often has negative impacts on the patient, the family and society. The available rehabilitation programs for stroke patients are reviewed. Conventional rehabilitation strategies (Bobath, Brunnstrom, proprioception neuromuscular facilitation, motor relearning and function-based principles) are the mainstream tactics in clinical practices. Numerous advanced strategies for sensory-motor functional enhancement, including electrical stimulation, electromyographic biofeedback, constraint-induced movement therapy, robotics-aided systems, virtual reality, intermittent compression, partial body weight supported treadmill training and thermal stimulation, are being developed and incorporated into conventional rehabilitation programs. The concept of combining valuable rehabilitative procedures into “a training package”, based on the patient’s functional status during different recovery phases after stroke is proposed. Integrated sensorimotor rehabilitation programs with appropriate temporal arrangements might provide great functional benefits for stroke patients. PMID:25133141

  8. Biologically inspired computation and learning in Sensorimotor Systems

    Science.gov (United States)

    Lee, Daniel D.; Seung, H. S.

    2001-11-01

    Networking systems presently lack the ability to intelligently process the rich multimedia content of the data traffic they carry. Endowing artificial systems with the ability to adapt to changing conditions requires algorithms that can rapidly learn from examples. We demonstrate the application of such learning algorithms on an inexpensive quadruped robot constructed to perform simple sensorimotor tasks. The robot learns to track a particular object by discovering the salient visual and auditory cues unique to that object. The system uses a convolutional neural network that automatically combines color, luminance, motion, and auditory information. The weights of the networks are adjusted using feedback from a teacher to reflect the reliability of the various input channels in the surrounding environment. Additionally, the robot is able to compensate for its own motion by adapting the parameters of a vestibular ocular reflex system.

  9. Differential developmental trajectories for CB1 cannabinoid receptor expression in limbic/associative and sensorimotor cortical areas.

    Science.gov (United States)

    Heng, Lijun; Beverley, Joel A; Steiner, Heinz; Tseng, Kuei Y

    2011-04-01

    Cannabis use during adolescence is associated with an increased risk for schizophrenia and other disorders. The neuronal basis is unclear, but prefrontal cortical mechanisms have been implicated. Here, we investigated developmental changes in the endocannabinoid system by assessing expression and function of the CB1 cannabinoid receptor in prefrontal and other cortical areas in juvenile (postnatal day 25, P25), adolescent (P40), and adult (P70) rats. Overall, the expression of CB1 receptors in the cortex is highest in juveniles and drops thereafter toward adult levels. However, CB1 receptor expression follows distinct developmental trajectories in different cortical areas. The most pronounced and progressive decrease in CB1 expression was observed in medial prefrontal and other limbic/associative regions. In contrast, major changes in sensorimotor cortices occurred only after P40. We also assessed electrophysiological measures of CB1 receptor function and found that CB1-dependent inhibition of synaptic transmission in the prefrontal cortex follows the same developmental trajectory as observed for receptor expression. Together, these findings indicate that CB1 receptor-mediated signaling decreases during development but is differentially regulated in limbic/associative vs. sensorimotor systems. Therefore, cannabis use during adolescence likely differentially affects limbic/associative and sensorimotor cortical circuits. Copyright © 2010 Wiley-Liss, Inc.

  10. Normalization of sensorimotor integration by repetitive transcranial magnetic stimulation in cervical dystonia

    NARCIS (Netherlands)

    Zittel, S.; Helmich, R.C.G.; Demiralay, C.; Munchau, A.; Baumer, T.

    2015-01-01

    Previous studies indicated that sensorimotor integration and plasticity of the sensorimotor system are impaired in dystonia patients. We investigated motor evoked potential amplitudes and short latency afferent inhibition to examine corticospinal excitability and cortical sensorimotor integration,

  11. Adults with sensorimotor disorders: enhanced physiological and psychological development following specific sensorimotor training.

    Science.gov (United States)

    Niklasson, Mats; Rasmussen, Peder; Niklasson, Irene; Norlander, Torsten

    2015-01-01

    The aim of the study was to investigate, for the first time, if it is possible to integrate primary reflexes in adults with sensorimotor disorders through sensorimotor therapy (SMT). Participants consisted of 14 adults, one man and 13 women, with an average age of 35 years who completed a SMT program over 3 years. They were compared with a reference group of 100 youngsters spanning from 11 to 17 years. Procedures were the same for both youngsters and adults including regular visits to a therapist and training ~15 min each day at home throughout therapy. Assessments of sensorimotor abilities were made before and after the therapy. Results showed significant improvements on all measurements with regard to treatment for both age groups and the main picture indicated small differences between age groups. After therapy adults were better on balance and orientation tests while the youngsters performed better on sports related gross motor movements, processing of speech sounds and had acquired a better relation between visual skills and vestibular function. Conclusions were that motor problems do not disappear with age and that the same diagnostic instruments and treatment methods can be used for both children and adults with sensorimotor difficulties.

  12. Spontaneous sensorimotor coupling with multipart music.

    Science.gov (United States)

    Hurley, Brian K; Martens, Peter A; Janata, Petr

    2014-08-01

    Music often evokes spontaneous movements in listeners that are synchronized with the music, a phenomenon that has been characterized as being in "the groove." However, the musical factors that contribute to listeners' initiation of stimulus-coupled action remain unclear. Evidence suggests that newly appearing objects in auditory scenes orient listeners' attention, and that in multipart music, newly appearing instrument or voice parts can engage listeners' attention and elicit arousal. We posit that attentional engagement with music can influence listeners' spontaneous stimulus-coupled movement. Here, 2 experiments-involving participants with and without musical training-tested the effect of staggering instrument entrances across time and varying the number of concurrent instrument parts within novel multipart music on listeners' engagement with the music, as assessed by spontaneous sensorimotor behavior and self-reports. Experiment 1 assessed listeners' moment-to-moment ratings of perceived groove, and Experiment 2 examined their spontaneous tapping and head movements. We found that, for both musically trained and untrained participants, music with more instruments led to higher ratings of perceived groove, and that music with staggered instrument entrances elicited both increased sensorimotor coupling and increased reports of perceived groove. Although untrained participants were more likely to rate music as higher in groove, trained participants showed greater propensity for tapping along, and they did so more accurately. The quality of synchronization of head movements with the music, however, did not differ as a function of training. Our results shed new light on the relationship between complex musical scenes, attention, and spontaneous sensorimotor behavior.

  13. Jaw sensorimotor control in healthy adults and effects of ageing.

    Science.gov (United States)

    Avivi-Arber, L; Sessle, B J

    2018-01-01

    The oro-facial sensorimotor system is a unique system significantly distinguished from the spinal sensorimotor system. The jaw muscles are involved in mastication, swallowing and articulatory speech movements and their integration with respiration. These sensorimotor functions are vital for sustaining life and necessitate complex neuromuscular processing to provide for exquisite sensorimotor control of numerous oro-facial muscles. The function of the jaw muscles in relation to sensorimotor control of these movements may be subject to ageing-related declines. This review will focus on peripheral, brainstem and higher brain centre mechanisms involved in reflex regulation and sensorimotor coordination and control of jaw muscles in healthy adults. It will outline the limited literature bearing on age-related declines in jaw sensorimotor functions and control including reduced biting forces and increased risk of impaired chewing, speaking and swallowing. The mechanisms underlying these alterations include age-related degenerative changes within the peripheral neuromuscular system and in brain regions involved in the generation and control of jaw movements. In the light of the vital role of jaw sensorimotor functions in sustaining life, normal ageing involves compensatory mechanisms that utilise the neuroplastic capacity of the brain and the recruitment of additional brain regions involved in sensorimotor performance and closely associated functions (e.g. cognition and memory). However, these regions are themselves susceptible to detrimental age-related changes. Thus, better understanding of the peripheral and central mechanisms underlying age-related sensorimotor impairment is crucial for developing improved treatment approaches to prevent or cure impaired jaw sensorimotor functions and to thereby improve health and quality of life. © 2017 John Wiley & Sons Ltd.

  14. Closing the sensorimotor loop: haptic feedback facilitates decoding of motor imagery

    Science.gov (United States)

    Gomez-Rodriguez, M.; Peters, J.; Hill, J.; Schölkopf, B.; Gharabaghi, A.; Grosse-Wentrup, M.

    2011-06-01

    The combination of brain-computer interfaces (BCIs) with robot-assisted physical therapy constitutes a promising approach to neurorehabilitation of patients with severe hemiparetic syndromes caused by cerebrovascular brain damage (e.g. stroke) and other neurological conditions. In such a scenario, a key aspect is how to reestablish the disrupted sensorimotor feedback loop. However, to date it is an open question how artificially closing the sensorimotor feedback loop influences the decoding performance of a BCI. In this paper, we answer this issue by studying six healthy subjects and two stroke patients. We present empirical evidence that haptic feedback, provided by a seven degrees of freedom robotic arm, facilitates online decoding of arm movement intention. The results support the feasibility of future rehabilitative treatments based on the combination of robot-assisted physical therapy with BCIs.

  15. Valproic acid (VPA) reduces sensorimotor gating deficits and HDAC2 overexpression in the MAM animal model of schizophrenia.

    Science.gov (United States)

    Bator, Ewelina; Latusz, Joachim; Radaszkiewicz, Aleksandra; Wędzony, Krzysztof; Maćkowiak, Marzena

    2015-12-01

    Evidence indicates that the disruption of epigenetic processes might play an important role in the development of schizophrenia symptoms. The present study investigated the role of histone acetylation in the development of sensorimotor gating deficits in a neurodevelopmental model of schizophrenia based on prenatal administration of methylazoxymethanol (MAM) at embryonic day 17. Valproic acid (VPA), an inhibitor of class I histone deacetylases, was administered (250 mg/kg, twice a day for 7 consecutive days) in early adolescence (23rd-29th day) or early adulthood (63rd-69th day) to rats. The effect of VPA treatment on the sensorimotor gating deficits induced by prenatal MAM administration was analyzed in adult rats at postnatal day 70 (P70). In addition, the effects of VPA administration (at the same doses) on MAM-induced changes in the levels of histone H3 acetylation at lysine 9 (H3K9ac) and histone deacetylase 2 (HDAC2) in the medial prefrontal cortex (mPFC) were determined at P70 using Western blot. VPA administration in either adolescence or early adulthood prevented the sensorimotor gating deficits induced by MAM. However, VPA administration in early adolescence or early adulthood did not alter H3K9ac levels induced by MAM. In contrast, VPA administration in either adolescence or adulthood prevented the increase in HDAC2 level evoked by MAM. Prenatal MAM administration impaired histone acetylation in the mPFC, which might be involved in the development of some of the neurobehavioral deficits (i.e., sensorimotor gating deficits) associated with schizophrenia. Blockade of HDAC2 might prevent the disruption of sensorimotor gating in adulthood. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  16. Addressing Anger Using Sensorimotor Psychotherapy and Cognitive Behaviour Therapy

    Science.gov (United States)

    Flynn, Sarah M.

    2010-01-01

    A young woman initiated counselling services at a community agency to address her explosive anger that was a remnant of childhood physical and emotional abuse. Sensorimotor psychotherapy was used to help this client learn how to monitor and regulate her sensorimotor processes. In conjunction with this approach, Cognitive behavioural therapy was…

  17. Age-Related Changes in Sensorimotor Temporal Binding.

    Science.gov (United States)

    Vercillo, Tiziana; Carrasco, Carlos; Jiang, Fang

    2017-01-01

    The causal relationship between a voluntary movement and a sensory event is crucial for experiencing agency. Sensory events must occur within a certain delay from a voluntary movement to be perceived as self-generated. Therefore, temporal sensitivity, i.e., the ability to discriminate temporal asynchronies between motor and sensory events, is important for sensorimotor binding. Moreover, differences in the physical propagation of external stimuli can sometimes challenge sensorimotor binding, generating illusory asynchrony. To overcome this problem, the brain adjusts the perceptual timing of sensory and motor events. This mechanism, named sensorimotor recalibration, helps keeping causality judgments accurate. As humans age, the broad decline in sensory and motor processing may reduce temporal sensitivity, and compromise sensorimotor recalibration. In the current study, we investigated the effect of aging on sensorimotor temporal binding by measuring changes in both temporal sensitivity and recalibration. Young and elderly adults were exposed to a prolonged physical delay between a voluntary movement (a keypress) and its perceptual consequence (a visual stimulus). Before and after this exposure, participants performed a sensorimotor temporal order judgment (TOJ) task. As expected, elderly adults showed reduced sensorimotor recalibration and sensitivity as compared to young adults, suggesting that aging affects sensorimotor temporal binding.

  18. Sensorimotor Piano System for People with Disabilities

    Directory of Open Access Journals (Sweden)

    Tobias Blumenstein

    2016-01-01

    Full Text Available A sensorimotor training system that facilitates learning to play piano was developed and tested. The system consists of three communicating units. The first unit comprises two pianos: an E-piano with a MIDI output for the teacher and an acoustic or an E-piano for the pupil. The pupil’s piano is supplied with an LED bar that illuminates the key to be struck. The second unit is a controller providing the interface between the teacher’s piano and the LED bar. The third unit consists of two pairs of gloves: one for the teacher and one for the pupil. The teacher gloves have integrated pressure sensors at every fingertip. The pupil’s gloves have vibration motors and LEDs at every finger. The pressure sensed on the teacher’s glove is transmitted to the corresponding finger on the pupil’s glove via the vibration motors and LEDs, such that the pupil knows which finger should strike which key. Additionally, two OLED displays showing the notation of the note played by the teacher can be attached to the left and right pupil’s gloves. Initially developed for people with cerebral palsy the sensorimotor system can support the learning also to all those with sensory, cognitive, and space perception impairments.

  19. EEG sensorimotor correlates of translating sounds into actions

    Directory of Open Access Journals (Sweden)

    Jaime A. Pineda

    2013-12-01

    Full Text Available Understanding the actions of others is a necessary foundational cornerstone for effective and affective social interactions. Such understanding may result from a mapping of observed actions as well as heard sounds onto one’s own motor representations of those events. To examine the electrophysiological basis of action-related sounds, EEG data were collected in two studies from adults who were exposed to auditory events in one of three categories: action (either hand- or mouth-based sounds, non-action (environmental sounds, and control sounds (scrambled versions of action sounds. In both studies, triplets of sounds of the same category were typically presented, although occasionally, to insure an attentive state, trials containing a sound from a different category were presented within the triplet and participants were asked to respond to this oddball event either covertly in one study or overtly in another. Additionally, participants in both studies were asked to mimic hand- and mouth-based motor actions associated with the sounds (motor task. Action sounds elicited larger EEG mu rhythm (8-13 Hz suppression, relative to control sounds, primarily over left hemisphere, while non-action sounds showed larger mu suppression primarily over right hemisphere. Furthermore, hand-based sounds elicited greater mu suppression over the hand area in sensorimotor cortex compared to mouth-based sounds. These patterns of mu suppression across cortical regions to different categories of sounds and to effector-specific sounds suggest differential engagement of a mirroring system in the human brain when processing sounds.

  20. Peripheral nerve injury induces glial activation in primary motor cortex

    Directory of Open Access Journals (Sweden)

    Julieta Troncoso

    2015-02-01

    Full Text Available Preliminary evidence suggests that peripheral facial nerve injuries are associated with sensorimotor cortex reorganization. We have characterized facial nerve lesion-induced structural changes in primary motor cortex layer 5 pyramidal neurons and their relationship with glial cell density using a rodent facial paralysis model. First, we used adult transgenic mice expressing green fluorescent protein in microglia and yellow fluorescent protein in pyramidal neurons which were subjected to either unilateral lesion of the facial nerve or sham surgery. Two-photon excitation microscopy was then used for evaluating both layer 5 pyramidal neurons and microglia in vibrissal primary motor cortex (vM1. It was found that facial nerve lesion induced long-lasting changes in dendritic morphology of vM1 layer 5 pyramidal neurons and in their surrounding microglia. Pyramidal cells’ dendritic arborization underwent overall shrinkage and transient spine pruning. Moreover, microglial cell density surrounding vM1 layer 5 pyramidal neurons was significantly increased with morphological bias towards the activated phenotype. Additionally, we induced facial nerve lesion in Wistar rats to evaluate the degree and extension of facial nerve lesion-induced reorganization processes in central nervous system using neuronal and glial markers. Immunoreactivity to NeuN (neuronal nuclei antigen, GAP-43 (growth-associated protein 43, GFAP (glial fibrillary acidic protein, and Iba 1 (Ionized calcium binding adaptor molecule 1 were evaluated 1, 3, 7, 14, 28 and 35 days after either unilateral facial nerve lesion or sham surgery. Patches of decreased NeuN immunoreactivity were found bilaterally in vM1 as well as in primary somatosensory cortex (CxS1. Significantly increased GAP-43 immunoreactivity was found bilaterally after the lesion in hippocampus, striatum, and sensorimotor cortex. One day after lesion GFAP immunoreactivity increased bilaterally in hippocampus, subcortical white

  1. The frequency of spontaneous seizures in rats correlates with alterations in sensorimotor gating, spatial working memory, and parvalbumin expression throughout limbic regions.

    Science.gov (United States)

    Wolf, D C; Bueno-Júnior, L S; Lopes-Aguiar, C; Do Val Da Silva, R A; Kandratavicius, L; Leite, J P

    2016-01-15

    Cognitive deficits and psychotic symptoms are highly prevalent in patients with temporal lobe epilepsy (TLE). Imaging studies in humans have suggested that these comorbidities are associated with atrophy in temporal lobe structures and other limbic regions. It remains to be clarified whether TLE comorbidities are due to the frequency of spontaneous seizures or to limbic structural damage per se. Here, we used the pilocarpine model of chronic spontaneous seizures to evaluate the possible association of seizure frequency with sensorimotor gating, spatial working memory, and neuropathology throughout limbic regions. For TLE modeling, we induced a 2-h status epilepticus by the systemic administration of lithium-pilocarpine. Once spontaneous seizures were established, we tested the locomotor activity (open field), spatial working memory (eight-arm radial maze), and sensorimotor gating (prepulse inhibition of acoustic startle). After behavioral testing, the brains were sectioned for hematoxylin-eosin staining (cell density) and parvalbumin immunohistochemistry (GABAergic neuropil) in the prefrontal cortex, nucleus accumbens, thalamus, amygdala, hippocampus, and entorhinal cortex. The animal groups analyzed included chronic epileptic rats, their controls, and rats that received lithium-pilocarpine but eventually failed to express status epilepticus or spontaneous seizures. Epileptic rats showed deficits in sensorimotor gating that negatively correlated with the radial maze performance, and impairments in both behavioral tests correlated with seizure frequency. In addition to neuronal loss at several sites, we found increased parvalbumin immunostaining in the prefrontal cortex (infralimbic area), thalamus (midline and reticular nuclei), amygdala, Ammon's horn, dentate gyrus, and entorhinal cortex. These tissue changes correlated with seizure frequency and impairments in sensorimotor gating. Our work indicates that chronic seizures might impact the inhibitory

  2. Modulation of the motor cortex during singing-voice perception.

    Science.gov (United States)

    Lévêque, Yohana; Schön, Daniele

    2015-04-01

    Several studies on action observation have shown that the biological dimension of movement modulates sensorimotor interactions in perception. In the present fMRI study, we tested the hypothesis that the biological dimension of sound modulates the involvement of the motor system in human auditory perception, using musical tasks. We first localized the vocal motor cortex in each participant. Then we compared the BOLD response to vocal, semi-vocal and non-vocal melody perception, and found greater activity for voice perception in the right sensorimotor cortex. We additionally ran a psychophysiological interaction analysis with the right sensorimotor as a seed, showing that the vocal dimension of the stimuli enhanced the connectivity between the seed region and other important nodes of the auditory dorsal stream. Finally, the participants' vocal ability was negatively correlated to the voice effect in the Inferior Parietal Lobule. These results suggest that the biological dimension of singing-voice impacts the activity within the auditory dorsal stream, probably via a facilitated matching between the perceived sound and the participant motor representations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Sensorimotor adaptation is influenced by background music.

    Science.gov (United States)

    Bock, Otmar

    2010-06-01

    It is well established that listening to music can modify subjects' cognitive performance. The present study evaluates whether this so-called Mozart Effect extends beyond cognitive tasks and includes sensorimotor adaptation. Three subject groups listened to musical pieces that in the author's judgment were serene, neutral, or sad, respectively. This judgment was confirmed by the subjects' introspective reports. While listening to music, subjects engaged in a pointing task that required them to adapt to rotated visual feedback. All three groups adapted successfully, but the speed and magnitude of adaptive improvement was more pronounced with serene music than with the other two music types. In contrast, aftereffects upon restoration of normal feedback were independent of music type. These findings support the existence of a "Mozart effect" for strategic movement control, but not for adaptive recalibration. Possibly, listening to music modifies neural activity in an intertwined cognitive-emotional network.

  4. Adaptive and Energy Efficient Walking in a Hexapod Robot under Neuromechanical Control and Sensorimotor Learning

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Wörgötter, Florentin; Manoonpong, Poramate

    2016-01-01

    energy efficient walking, compared to other small legged robots. In addition, this paper also shows that the tight combination of neural control with tunable muscle-like functions, guided by sensory feedback and coupled with sensorimotor learning, is a way forward to better understand and solve adaptive......The control of multilegged animal walking is a neuromechanical process, and to achieve this in an adaptive and energy efficient way is a difficult and challenging problem. This is due to the fact that this process needs in real time: 1) to coordinate very many degrees of freedom of jointed legs; 2......) to generate the proper leg stiffness (i.e., compliance); and 3) to determine joint angles that give rise to particular positions at the endpoints of the legs. To tackle this problem for a robotic application, here we present a neuromechanical controller coupled with sensorimotor learning. The controller...

  5. Electrodermal Recording and fMRI to Inform Sensorimotor Recovery in Stroke Patients

    Science.gov (United States)

    MacIntosh, Bradley J.; McIlroy, William E.; Mraz, Richard; Staines, W. Richard; Black, Sandra E.; Graham, Simon J.

    2016-01-01

    Background Functional magnetic resonance imaging (fMRI) appears to be useful for investigating motor recovery after stroke. Some of the potential confounders of brain activation studies, however, could be mitigated through complementary physiological monitoring. Objective To investigate a sensorimotor fMRI battery that included simultaneous measurement of electrodermal activity in subjects with hemiparetic stroke to provide a measure related to the sense of effort during motor performance. Methods Bilateral hand and ankle tasks were performed by 6 patients with stroke (2 subacute, 4 chronic) during imaging with blood oxygen level-dependent (BOLD) fMRI using an event-related design. BOLD percent changes, peak activation, and laterality index values were calculated in the sensorimotor cortex. Electrodermal recordings were made concurrently and used as a regressor. Results Sensorimotor BOLD time series and percent change values provided evidence of an intact motor network in each of these well-recovered patients. During tasks involving the hemiparetic limb, electrodermal activity changes were variable in amplitude, and electrodermal activity time-series data showed significant correlations with fMRI in 3 of 6 patients. No such correlations were observed for control tasks involving the unaffected lower limb. Conclusions Electrodermal activity activation maps implicated the contralesional over the ipsilesional hemisphere, supporting the notion that stroke patients may require higher order motor processing to perform simple tasks. Electrodermal activity recordings may be useful as a physiological marker of differences in effort required during movements of a subject’s hemiparetic compared with the unaffected limb during fMRI studies. PMID:18784267

  6. Sensorimotor Mismapping in Poor-pitch Singing.

    Science.gov (United States)

    He, Hao; Zhang, Wei-Dong

    2017-09-01

    This study proposes that there are two types of sensorimotor mismapping in poor-pitch singing: erroneous mapping and no mapping. We created operational definitions for the two types of mismapping based on the precision of pitch-matching and predicted that in the two types of mismapping, phonation differs in terms of accuracy and the dependence on the articulation consistency between the target and the intended vocal action. The study aimed to test this hypothesis by examining the reliability and criterion-related validity of the operational definitions. A within-subject design was used in this study. Thirty-two participants identified as poor-pitch singers were instructed to vocally imitate pure tones and to imitate their own vocal recordings with the same articulation as self-targets and with different articulation from self-targets. Definitions of the types of mismapping were demonstrated to be reliable with the split-half approach and to have good criterion-related validity with findings that pitch-matching with no mapping was less accurate and more dependent on the articulation consistency between the target and the intended vocal action than pitch-matching with erroneous mapping was. Furthermore, the precision of pitch-matching was positively associated with its accuracy and its dependence on articulation consistency when mismapping was analyzed on a continuum. Additionally, the data indicated that the self-imitation advantage was a function of articulation consistency. Types of sensorimotor mismapping lead to pitch-matching that differs in accuracy and its dependence on the articulation consistency between the target and the intended vocal action. Additionally, articulation consistency produces the self-advantage. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  7. Sensorimotor synchronization with tempo-changing auditory sequences: Modeling temporal adaptation and anticipation.

    Science.gov (United States)

    van der Steen, M C Marieke; Jacoby, Nori; Fairhurst, Merle T; Keller, Peter E

    2015-11-11

    The current study investigated the human ability to synchronize movements with event sequences containing continuous tempo changes. This capacity is evident, for example, in ensemble musicians who maintain precise interpersonal coordination while modulating the performance tempo for expressive purposes. Here we tested an ADaptation and Anticipation Model (ADAM) that was developed to account for such behavior by combining error correction processes (adaptation) with a predictive temporal extrapolation process (anticipation). While previous computational models of synchronization incorporate error correction, they do not account for prediction during tempo-changing behavior. The fit between behavioral data and computer simulations based on four versions of ADAM was assessed. These versions included a model with adaptation only, one in which adaptation and anticipation act in combination (error correction is applied on the basis of predicted tempo changes), and two models in which adaptation and anticipation were linked in a joint module that corrects for predicted discrepancies between the outcomes of adaptive and anticipatory processes. The behavioral experiment required participants to tap their finger in time with three auditory pacing sequences containing tempo changes that differed in the rate of change and the number of turning points. Behavioral results indicated that sensorimotor synchronization accuracy and precision, while generally high, decreased with increases in the rate of tempo change and number of turning points. Simulations and model-based parameter estimates showed that adaptation mechanisms alone could not fully explain the observed precision of sensorimotor synchronization. Including anticipation in the model increased the precision of simulated sensorimotor synchronization and improved the fit of model to behavioral data, especially when adaptation and anticipation mechanisms were linked via a joint module based on the notion of joint internal

  8. Circuit changes in motor cortex during motor skill learning.

    Science.gov (United States)

    Papale, Andrew E; Hooks, Bryan M

    2018-01-01

    Motor cortex is important for motor skill learning, particularly the dexterous skills necessary for our favorite sports and careers. We are especially interested in understanding how plasticity in motor cortex contributes to skill learning. Although human studies have been helpful in understanding the importance of motor cortex in learning skilled tasks, animal models are necessary for achieving a detailed understanding of the circuitry underlying these behaviors and the changes that occur during training. We review data from these models to try to identify sites of plasticity in motor cortex, focusing on rodents asa model system. Rodent neocortex contains well-differentiated motor and sensory regions, as well as neurons expressing similar genetic markers to many of the same circuit components in human cortex. Furthermore, rodents have circuit mapping tools for labeling, targeting, and manipulating these cell types as circuit nodes. Crucially, the projection from rodent primary somatosensory cortex to primary motor cortex is a well-studied corticocortical projection and a model of sensorimotor integration. We first summarize some of the descending pathways involved in making dexterous movements, including reaching. We then describe local and long-range circuitry in mouse motor cortex, summarizing structural and functional changes associated with motor skill acquisition. We then address which specific connections might be responsible for plasticity. For insight into the range of plasticity mechanisms employed by cortex, we review plasticity in sensory systems. The similarities and differences between motor cortex plasticity and critical periods of plasticity in sensory systems are discussed. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Characteristics of sensori-motor interaction in the primary and secondary somatosensory cortices in humans: a magnetoencephalography study.

    Science.gov (United States)

    Wasaka, T; Kida, T; Nakata, H; Akatsuka, K; Kakigi, R

    2007-10-26

    We studied sensori-motor interaction in the primary (SI) and secondary somatosensory cortex (SII) using magnetoencephalography. Since SII in both hemispheres was activated following unilateral stimulation, we analyzed SIIc (contralateral to stimulation) as well as SIIi (ipsilateral to stimulation). Four tasks were performed in human subjects in which a voluntary thumb movement of the left or right hand was combined with electrical stimulation applied to the index finger of the left or right hand: L(M)-L(S) (movement of the left thumb triggered stimulation to the left finger), L(M)-R(S) (movement of the left thumb triggered electrical stimulation to the right finger), R(M)-R(S) (movement of the right thumb triggered electrical stimulation to the right finger), and R(M)-L(S) (movement of the right thumb triggered electrical stimulation to the left finger). Stimulation to the index finger only (S condition) was also recorded. In SI, the amplitude of N20m and P35m was significantly attenuated in the R(M)-R(S) and L(M)-L(S) tasks compared with the S condition, but that for other tasks showed no change, corresponding to a conventional gating phenomenon. In SII, the R(M)-L(S) task significantly enhanced the amplitude of SIIc but reduced that of SIIi compared with the S condition. The L(M)-L(S) and R(M)-R(S) tasks caused a significant enhancement only in SIIi. The L(M)-R(S) task enhanced the amplitude only in SIIc. The laterality index showed that SII modulation with voluntary movement was more dominant in the hemisphere ipsilateral to movement but was not affected by the side of stimulation. These results provided the characteristics of activities in somatosensory cortices, a simple inhibition in SI but complicated changes in SII depending on the side of movement and stimulation, which may indicate the higher cognitive processing in SII.

  10. Epidermal growth factor and erythropoietin infusion accelerate functional recovery in combination with rehabilitation.

    Science.gov (United States)

    Jeffers, Matthew S; Hoyles, Amy; Morshead, Cindi; Corbett, Dale

    2014-06-01

    Rehabilitation is the only treatment option for chronic stroke deficits, but unfortunately, it often provides incomplete recovery. In this study, a novel combination of growth factor administration and rehabilitation therapy was used to facilitate functional recovery in a rat model of cortical stroke. Ischemia was induced via injection of endothelin-1 into the sensorimotor cortex. This was followed by either a 2-week infusion of epidermal growth factor and erythropoietin or artificial cerebrospinal fluid into the ipsilateral lateral ventricle. Two weeks after ischemia, animals began an 8-week enriched rehabilitation program. Functional recovery was assessed after ischemia using the Montoya staircase-reaching task, beam-traversing, and cylinder test of forelimb asymmetry. The combination of growth factor infusion and rehabilitation led to a significant acceleration in recovery in the staircase task. When compared with controls, animals receiving the combination treatment attained significant recovery of function at 4 weeks after stroke, whereas those receiving rehabilitation alone did not recover until 10 weeks. Significant recovery was also observed on the beam-traversing and cylinder tasks. Combining behavioral rehabilitation with growth factor infusion accelerates motor recovery. These data suggest a promising new avenue of combination therapies that may have the potential to reduce the rehabilitation time necessary to recover from sensorimotor deficits arising from stroke. © 2014 American Heart Association, Inc.

  11. Binge ethanol prior to traumatic brain injury worsens sensorimotor functional recovery in rats.

    Science.gov (United States)

    Vaagenes, Ian C; Tsai, Shih-Yen; Ton, Son T; Husak, Vicki A; McGuire, Susan O; O'Brien, Timothy E; Kartje, Gwendolyn L

    2015-01-01

    A significant number of patients suffering from traumatic brain injury (TBI) have a high blood alcohol level at the time of injury. Furthermore, drinking alcohol in a binge-like pattern is now recognized as a national problem, leading to a greater likelihood of being injured. Our objective was to determine the consequences of a binge paradigm of alcohol intoxication at the time of TBI on long-term functional outcome using a sensitive test of sensorimotor function. We trained adult, male, Sprague Dawley rats on the skilled forelimb reaching task and then administered a single binge dose of ethanol (2 g/kg, i.p.) or saline for three consecutive days (for a total of 3 doses). One hour after the final ethanol dose, rats underwent a TBI to the sensorimotor cortex corresponding to the preferred reaching forelimb. Animals were then tested for seven weeks on the skilled forelimb reaching task to assess the profile of recovery. We found that the group given ethanol prior to TBI displayed a slower recovery curve with a lower recovery plateau as compared to the control group. Therefore, even a relatively short (3 day) episode of binge alcohol exposure can negatively impact long-term recovery from a TBI, underscoring this significant public health problem.

  12. Sensorimotor modulation of mood and depression: In search of an optimal mode of stimulation

    Directory of Open Access Journals (Sweden)

    RESIT eCANBEYLI

    2013-07-01

    Full Text Available Depression involves a dysfunction in an affective fronto-limbic circuitry including the prefrontal cortices, several limbic structures including the cingulate cortex, the amygdala and the hippocampus as well as the basal ganglia. A major emphasis of research on the etiology and treatment of mood disorders has been to assess the impact of centrally generated (top-down processes impacting the affective fronto-limbic circuitry. The present review shows that peripheral (bottom-up unipolar stimulation via the visual and the auditory modalities as well as by physical exercise modulates mood and depressive symptoms in humans and animals and activates the same central affective neurocircuitry involved in depression. It is proposed that the amygdala serves as a gateway by articulating the mood regulatory sensorimotor stimulation with the central affective circuitry by emotionally labeling and mediating the storage of such emotional events in long-term memory. Since both amelioration and aggravation of mood is shown to be possible by unipolar stimulation, the review suggests that a psychophysical assessment of mood modulation by multi-modal stimulation may uncover mood ameliorative synergisms and serve as adjunctive treatment for depression. Thus, the integrative review not only emphasizes the relevance of investigating the optimal levels of mood regulatory sensorimotor stimulation, but also provides a conceptual springboard for related future research.

  13. Deontological Dilemma Response Tendencies and Sensorimotor Representations of Harm to Others

    Directory of Open Access Journals (Sweden)

    Leonardo Christov-Moore

    2017-12-01

    Full Text Available The dual process model of moral decision-making suggests that decisions to reject causing harm on moral dilemmas (where causing harm saves lives reflect concern for others. Recently, some theorists have suggested such decisions actually reflect self-focused concern about causing harm, rather than witnessing others suffering. We examined brain activity while participants witnessed needles pierce another person’s hand, versus similar non-painful stimuli. More than a month later, participants completed moral dilemmas where causing harm either did or did not maximize outcomes. We employed process dissociation to independently assess harm-rejection (deontological and outcome-maximization (utilitarian response tendencies. Activity in the posterior inferior frontal cortex (pIFC while participants witnessed others in pain predicted deontological, but not utilitarian, response tendencies. Previous brain stimulation studies have shown that the pIFC seems crucial for sensorimotor representations of observed harm. Hence, these findings suggest that deontological response tendencies reflect genuine other-oriented concern grounded in sensorimotor representations of harm.

  14. Brain-Computer Interfaces Using Sensorimotor Rhythms: Current State and Future Perspectives

    Science.gov (United States)

    Yuan, Han; He, Bin

    2014-01-01

    Many studies over the past two decades have shown that people can use brain signals to convey their intent to a computer using brain-computer interfaces (BCIs). BCI systems extract specific features of brain activity and translate them into control signals that drive an output. Recently, a category of BCIs that are built on the rhythmic activity recorded over the sensorimotor cortex, i.e. the sensorimotor rhythm (SMR), has attracted considerable attention among the BCIs that use noninvasive neural recordings, e.g. electroencephalography (EEG), and have demonstrated the capability of multi-dimensional prosthesis control. This article reviews the current state and future perspectives of SMR-based BCI and its clinical applications, in particular focusing on the EEG SMR. The characteristic features of SMR from the human brain are described and their underlying neural sources are discussed. The functional components of SMR-based BCI, together with its current clinical applications are reviewed. Lastly, limitations of SMR-BCIs and future outlooks are also discussed. PMID:24759276

  15. Binge ethanol prior to traumatic brain injury worsens sensorimotor functional recovery in rats.

    Directory of Open Access Journals (Sweden)

    Ian C Vaagenes

    Full Text Available A significant number of patients suffering from traumatic brain injury (TBI have a high blood alcohol level at the time of injury. Furthermore, drinking alcohol in a binge-like pattern is now recognized as a national problem, leading to a greater likelihood of being injured. Our objective was to determine the consequences of a binge paradigm of alcohol intoxication at the time of TBI on long-term functional outcome using a sensitive test of sensorimotor function. We trained adult, male, Sprague Dawley rats on the skilled forelimb reaching task and then administered a single binge dose of ethanol (2 g/kg, i.p. or saline for three consecutive days (for a total of 3 doses. One hour after the final ethanol dose, rats underwent a TBI to the sensorimotor cortex corresponding to the preferred reaching forelimb. Animals were then tested for seven weeks on the skilled forelimb reaching task to assess the profile of recovery. We found that the group given ethanol prior to TBI displayed a slower recovery curve with a lower recovery plateau as compared to the control group. Therefore, even a relatively short (3 day episode of binge alcohol exposure can negatively impact long-term recovery from a TBI, underscoring this significant public health problem.

  16. Functional network interactions during sensorimotor synchronization in musicians and non-musicians.

    Science.gov (United States)

    Krause, Vanessa; Schnitzler, Alfons; Pollok, Bettina

    2010-08-01

    Precise timing as determined by sensorimotor synchronization is crucial for a wide variety of activities. Although it is well-established that musicians show superior timing as compared to non-musicians, the neurophysiological foundations - in particular the underlying functional brain network - remain to be characterized. To this end, drummers, professional pianists and non-musicians performed an auditory synchronization task while neuromagnetic activity was measured using a 122-channel whole-head magnetoencephalography (MEG) system. The underlying functional brain network was determined using the beamformer approach Dynamic Imaging of Coherent Sources (DICS). Behaviorally, drummers performed less variably than non-musicians. Neuromagnetic analysis revealed a cerebello-thalamo-cortical network in all subjects comprising bilateral primary sensorimotor cortices (S1/M1), contralateral supplementary motor and premotor regions (SMA and PMC), thalamus, posterior parietal cortex (PPC), ipsilateral cerebellum and bilateral auditory cortices. Stronger PMC-thalamus and PPC-thalamus interactions at alpha and beta frequencies were evident in drummers as compared to non-musicians. In professional pianists stronger PMC-thalamus interaction as compared to non-musicians at beta frequency occurred. The present data suggest that precise timing is associated with increased functional interaction within a PMC-thalamus-PPC network. The PMC-thalamus connectivity at beta frequency might be related to musical expertise, whereas the PPC-thalamus interaction might have specific relevance for precise timing. Copyright 2010 Elsevier Inc. All rights reserved.

  17. The ADaptation and Anticipation Model (ADAM) of sensorimotor synchronization.

    Science.gov (United States)

    van der Steen, M C Marieke; Keller, Peter E

    2013-01-01

    A constantly changing environment requires precise yet flexible timing of movements. Sensorimotor synchronization (SMS)-the temporal coordination of an action with events in a predictable external rhythm-is a fundamental human skill that contributes to optimal sensory-motor control in daily life. A large body of research related to SMS has focused on adaptive error correction mechanisms that support the synchronization of periodic movements (e.g., finger taps) with events in regular pacing sequences. The results of recent studies additionally highlight the importance of anticipatory mechanisms that support temporal prediction in the context of SMS with sequences that contain tempo changes. To investigate the role of adaptation and anticipatory mechanisms in SMS we introduce ADAM: an ADaptation and Anticipation Model. ADAM combines reactive error correction processes (adaptation) with predictive temporal extrapolation processes (anticipation) inspired by the computational neuroscience concept of internal models. The combination of simulations and experimental manipulations based on ADAM creates a novel and promising approach for exploring adaptation and anticipation in SMS. The current paper describes the conceptual basis and architecture of ADAM.

  18. The ADaptation and Anticipation Model (ADAM of sensorimotor synchronization

    Directory of Open Access Journals (Sweden)

    Maria Christine Van Der Steen

    2013-06-01

    Full Text Available A constantly changing environment requires precise yet flexible timing of movements. Sensorimotor synchronization (SMS —the temporal coordination of an action with events in a predictable external rhythm— is a fundamental human skill that contributes to optimal sensory-motor control in daily life. A large body of research related to SMS has focused on adaptive error correction mechanisms that support the synchronization of periodic movements (e.g., finger taps with events in regular pacing sequences. The results of recent studies additionally highlight the importance of anticipatory mechanisms that support temporal prediction in the context of SMS with sequences that contain tempo changes. To investigate the role of adaptation and anticipatory mechanisms in SMS we introduce ADAM: an ADaptation and Anticipation Model. ADAM combines reactive error correction processes (adaptation with predictive temporal extrapolation processes (anticipation inspired by the computational neuroscience concept of internal models. The combination of simulations and experimental manipulations based on ADAM creates a novel and promising approach for exploring adaptation and anticipation in SMS. The current paper describes the conceptual basis and architecture of ADAM.

  19. The ADaptation and Anticipation Model (ADAM) of sensorimotor synchronization

    Science.gov (United States)

    van der Steen, M. C. (Marieke); Keller, Peter E.

    2013-01-01

    A constantly changing environment requires precise yet flexible timing of movements. Sensorimotor synchronization (SMS)—the temporal coordination of an action with events in a predictable external rhythm—is a fundamental human skill that contributes to optimal sensory-motor control in daily life. A large body of research related to SMS has focused on adaptive error correction mechanisms that support the synchronization of periodic movements (e.g., finger taps) with events in regular pacing sequences. The results of recent studies additionally highlight the importance of anticipatory mechanisms that support temporal prediction in the context of SMS with sequences that contain tempo changes. To investigate the role of adaptation and anticipatory mechanisms in SMS we introduce ADAM: an ADaptation and Anticipation Model. ADAM combines reactive error correction processes (adaptation) with predictive temporal extrapolation processes (anticipation) inspired by the computational neuroscience concept of internal models. The combination of simulations and experimental manipulations based on ADAM creates a novel and promising approach for exploring adaptation and anticipation in SMS. The current paper describes the conceptual basis and architecture of ADAM. PMID:23772211

  20. Environmental enrichment aides in functional recovery following unilateral controlled cortical impact of the forelimb sensorimotor area however intranasal administration of nerve growth factor does not.

    Science.gov (United States)

    Young, Jennica; Pionk, Timothy; Hiatt, Ivy; Geeck, Katalin; Smith, Jeffrey S

    2015-06-01

    An injury to the forelimb sensorimotor cortex results in the impairment of motor function in animals. Recent research has suggested that intranasal administration of nerve growth factor (NGF), a protein naturally found in the brain, and placement into enriched environments (EE) improves motor and cognitive function after traumatic brain injury (TBI). The purpose of this study was to determine whether NGF, EE, or the combination of both was beneficial in the recovery of motor function following TBI. Uninjured animals had fewer foot faults than injured animals, displaying a lesion effect. Injured animals housed in EE were shown to have fewer foot faults whether or not they received NGF. Injured animals also displayed an increased reliance on the non-impaired limb further validating a lesion effect. EE is an effective treatment on the recovery of motor function after a TBI. Intranasal administration of NGF was found to not be an effective treatment for functional motor recovery after a TBI. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Sensorimotor interventions and assessments for the hand and wrist: a scoping review.

    Science.gov (United States)

    Valdes, Kristin; Naughton, Nancy; Algar, Lori

    2014-01-01

    Scoping review. Sensorimotor deficits can impair function and may be present in individuals with common upper extremity conditions. To provide clinicians with an understanding of the usefulness of the assessments to evaluate sensorimotor function and the interventions reported in the literature to effect positive change in our patients with sensorimotor deficits affecting the hand and wrist. A systematic search produced seventeen studies involving sensorimotor retraining and assessment of sensorimotor performance for the upper extremity. Sensorimotor interventions and assessments found in the literature vary in regards to their effectiveness in restoring sensorimotor function in subjects with a number of conditions that affect hand and wrist function. There is a potential value of sensorimotor interventions for individuals with specific upper extremity conditions. There is a need for further studies to improve treatment of sensorimotor deficits and understanding of sensorimotor interventions. Copyright © 2014 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  2. Combined motor point associative stimulation (MPAS) and transcranial direct current stimulation (tDCS) improves plateaued manual dexterity performance.

    Science.gov (United States)

    Hoseini, Najmeh; Munoz-Rubke, Felipe; Wan, Hsuan-Yu; Block, Hannah J

    2016-10-28

    Motor point associative stimulation (MPAS) in hand muscles is known to modify motor cortex excitability and improve learning rate, but not plateau of performance, in manual dexterity tasks. Central stimulation of motor cortex, such as transcranial direct current stimulation (tDCS), can have similar effects if accompanied by motor practice, which can be difficult and tiring for patients. Here we asked whether adding tDCS to MPAS could improve manual dexterity in healthy individuals who are already performing at their plateau, with no motor practice during stimulation. We hypothesized that MPAS could provide enough coordinated muscle activity to make motor practice unnecessary, and that this combination of stimulation techniques could yield improvements even in subjects at or near their peak. If so, this approach could have a substantial effect on patients with impaired dexterity, who are far from their peak. MPAS was applied for 30min to two right hand muscles important for manual dexterity. tDCS was simultaneously applied over left sensorimotor cortex. The motor cortex input/output (I/O) curve was assessed with transcranial magnetic stimulation (TMS), and manual dexterity was assessed with the Purdue Pegboard Test. Compared to sham or cathodal tDCS combined with MPAS, anodal tDCS combined with MPAS significantly increased the plateau of manual dexterity. This result suggests that MPAS has the potential to substitute for motor practice in mediating a beneficial effect of tDCS on manual dexterity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Sensorimotor synchronization: A review of recent research (2006–2012)

    National Research Council Canada - National Science Library

    Repp, Bruno H; Su, Yi-Huang

    2013-01-01

    Sensorimotor synchronization (SMS) is the coordination of rhythmic movement with an external rhythm, ranging from finger tapping in time with a metronome to musical ensemble performance. An earlier review (Repp, 2005...

  4. Modality-specific organization in the representation of sensorimotor sequences

    Directory of Open Access Journals (Sweden)

    Arnaud eBoutin

    2013-12-01

    Full Text Available Sensorimotor representations of movement sequences are hierarchically organized. Here we test the effects of different stimulus modalities on such organizations. In the visual group, participants responded to a repeated sequence of visually presented stimuli by depressing spatially compatible keys on a response pad. In the auditory group, learners were required to respond to auditorily presented stimuli, which had no direct spatial correspondence with the response keys: the lowest pitch corresponded to the leftmost key and the highest pitch to the rightmost key. We demonstrate that hierarchically and auto-organised sensorimotor representations are developed through practice, which are specific both to individuals and stimulus modalities. These findings highlight the dynamic and sensory-specific modulation of chunk processing during sensorimotor learning – sensorimotor chunking – and provide evidence that modality-specific mechanisms underlie the hierarchical organization of sequence representations.

  5. Modality-specific organization in the representation of sensorimotor sequences

    Science.gov (United States)

    Boutin, Arnaud; Massen, Cristina; Heuer, Herbert

    2013-01-01

    Sensorimotor representations of movement sequences are hierarchically organized. Here we test the effects of different stimulus modalities on such organizations. In the visual group, participants responded to a repeated sequence of visually presented stimuli by depressing spatially compatible keys on a response pad. In the auditory group, learners were required to respond to auditorily presented stimuli, which had no direct spatial correspondence with the response keys: the lowest pitch corresponded to the leftmost key and the highest pitch to the rightmost key. We demonstrate that hierarchically and auto-organized sensorimotor representations are developed through practice, which are specific both to individuals and stimulus modalities. These findings highlight the dynamic and sensory-specific modulation of chunk processing during sensorimotor learning – sensorimotor chunking – and provide evidence that modality-specific mechanisms underlie the hierarchical organization of sequence representations. PMID:24376432

  6. Unveiling neural coupling within the sensorimotor system : directionality and nonlinearity

    NARCIS (Netherlands)

    Yang, Y.; Dewald, J.P.A.; van der Helm, F.C.T.; Schouten, A.C.

    2017-01-01

    Neural coupling between the central nervous system and the periphery is essential for the neural control of movement. Corticomuscular coherence is a popular linear technique to assess synchronised oscillatory activity in the sensorimotor system. This oscillatory coupling originates from ascending

  7. Customizing Countermeasure Prescriptions using Predictive Measures of Sensorimotor Adaptability

    Science.gov (United States)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Miller, C. A.; Batson, C. D.; Wood, S. J.; Guined, J. R.; Cohen, H. S.; Buccello-Stout, R.; DeDios, Y. E.; hide

    2014-01-01

    Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the readapation phase following a return to a gravitational environment. These alterations may lead to disruption in the ability to perform mission critical functional tasks during and after these gravitational transitions. Astronauts show significant inter-subject variation in adaptive capability following gravitational transitions. The ability to predict the manner and degree to which each individual astronaut will be affected would improve the effectiveness of a countermeasure comprised of a training program designed to enhance sensorimotor adaptability. Due to this inherent individual variability we need to develop predictive measures of sensorimotor adaptability that will allow us to predict, before actual space flight, which crewmember will experience challenges in adaptive capacity. Thus, obtaining this information will allow us to design and implement better sensorimotor adaptability training countermeasures that will be customized for each crewmember's unique adaptive capabilities. Therefore the goals of this project are to: 1) develop a set of predictive measures capable of identifying individual differences in sensorimotor adaptability, and 2) use this information to design sensorimotor adaptability training countermeasures that are customized for each crewmember's individual sensorimotor adaptive characteristics. To achieve these goals we are currently pursuing the following specific aims: Aim 1: Determine whether behavioral metrics of individual sensory bias predict sensorimotor adaptability. For this aim, subjects perform tests that delineate individual sensory biases in tests of visual, vestibular, and proprioceptive function. Aim 2: Determine if individual capability for strategic and plastic-adaptive responses predicts sensorimotor adaptability. For this aim, each subject's strategic and plastic-adaptive motor learning abilities are assessed using

  8. Too Little and Too Much: Hypoactivation and Disinhibition of Medial Prefrontal Cortex Cause Attentional Deficits

    Science.gov (United States)

    McGarrity, Stephanie; Mason, Rob; Fone, Kevin C.

    2014-01-01

    Attentional deficits are core symptoms of schizophrenia, contributing strongly to disability. Prefrontal dysfunction has emerged as a candidate mechanism, with clinical evidence for prefrontal hypoactivation and disinhibition (reduced GABAergic inhibition), possibly reflecting different patient subpopulations. Here, we tested in rats whether imbalanced prefrontal neural activity impairs attention. To induce prefrontal hypoactivation or disinhibition, we microinfused the GABA-A receptor agonist muscimol (C4H6N2O2; 62.5, 125, 250 ng/side) or antagonist picrotoxin (C30H34O13; 75, 150, 300 ng/side), respectively, into the medial prefrontal cortex. Using the five-choice serial reaction time (5CSRT) test, we showed that both muscimol and picrotoxin impaired attention (reduced accuracy, increased omissions). Muscimol also impaired response control (increased premature responses). In addition, muscimol dose dependently reduced open-field locomotor activity, whereas 300 ng of picrotoxin caused locomotor hyperactivity; sensorimotor gating (startle prepulse inhibition) was unaffected. Therefore, infusion effects on the 5CSRT test can be dissociated from sensorimotor effects. Combining microinfusions with in vivo electrophysiology, we showed that muscimol inhibited prefrontal firing, whereas picrotoxin increased firing, mainly within bursts. Muscimol reduced and picrotoxin enhanced bursting and both drugs changed the temporal pattern of bursting. Picrotoxin also markedly enhanced prefrontal LFP power. Therefore, prefrontal hypoactivation and disinhibition both cause attentional deficits. Considering the electrophysiological findings, this suggests that attention requires appropriately tuned prefrontal activity. Apart from attentional deficits, prefrontal disinhibition caused additional neurobehavioral changes that may be relevant to schizophrenia pathophysiology, including enhanced prefrontal bursting and locomotor hyperactivity, which have been linked to psychosis

  9. A rapid sound-action association effect in human insular cortex.

    Directory of Open Access Journals (Sweden)

    Isabella Mutschler

    Full Text Available BACKGROUND: Learning to play a musical piece is a prime example of complex sensorimotor learning in humans. Recent studies using electroencephalography (EEG and transcranial magnetic stimulation (TMS indicate that passive listening to melodies previously rehearsed by subjects on a musical instrument evokes differential brain activation as compared with unrehearsed melodies. These changes were already evident after 20-30 minutes of training. The exact brain regions involved in these differential brain responses have not yet been delineated. METHODOLOGY/PRINCIPAL FINDING: Using functional mri (fmri, we investigated subjects who passively listened to simple piano melodies from two conditions: in the 'actively learned melodies' condition subjects learned to play a piece on the piano during a short training session of a maximum of 30 minutes before the fMRI experiment, and in the 'passively learned melodies' condition subjects listened passively to and were thus familiarized with the piece. We found increased fMRI responses to actively compared with passively learned melodies in the left anterior insula, extending to the left fronto-opercular cortex. The area of significant activation overlapped the insular sensorimotor hand area as determined by our meta-analysis of previous functional imaging studies. CONCLUSIONS/SIGNIFICANCE: Our results provide evidence for differential brain responses to action-related sounds after short periods of learning in the human insular cortex. As the hand sensorimotor area of the insular cortex appears to be involved in these responses, re-activation of movement representations stored in the insular sensorimotor cortex may have contributed to the observed effect. The insular cortex may therefore play a role in the initial learning phase of action-perception associations.

  10. Dissociating error-based and reinforcement-based loss functions during sensorimotor learning.

    Science.gov (United States)

    Cashaback, Joshua G A; McGregor, Heather R; Mohatarem, Ayman; Gribble, Paul L

    2017-07-01

    It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback.

  11. Thalamo-Sensorimotor Functional Connectivity Correlates with World Ranking of Olympic, Elite, and High Performance Athletes

    Directory of Open Access Journals (Sweden)

    Zirui Huang

    2017-01-01

    Full Text Available Brain plasticity studies have shown functional reorganization in participants with outstanding motor expertise. Little is known about neural plasticity associated with exceptionally long motor training or of its predictive value for motor performance excellence. The present study utilised resting-state functional magnetic resonance imaging (rs-fMRI in a unique sample of world-class athletes: Olympic, elite, and internationally ranked swimmers (n=30. Their world ranking ranged from 1st to 250th: each had prepared for participation in the Olympic Games. Combining rs-fMRI graph-theoretical and seed-based functional connectivity analyses, it was discovered that the thalamus has its strongest connections with the sensorimotor network in elite swimmers with the highest world rankings (career best rank: 1–35. Strikingly, thalamo-sensorimotor functional connections were highly correlated with the swimmers’ motor performance excellence, that is, accounting for 41% of the individual variance in best world ranking. Our findings shed light on neural correlates of long-term athletic performance involving thalamo-sensorimotor functional circuits.

  12. Afferent electrical stimulation during cycling improves spinal processing of sensorimotor function after incomplete spinal cord injury.

    Science.gov (United States)

    Piazza, Stefano; Serrano-Muñoz, Diego; Gómez-Soriano, Julio; Torricelli, Diego; Segura-Fragosa, Antonio; Pons, José Luis; Taylor, Julian

    2017-01-01

    Appropriate afferent feedback delivery during the execution of motor tasks is important for rehabilitation after incomplete spinal cord injury (iSCI). However, during leg-cycling therapy, the plantar afferent feedback is minimal. We hypothesize that the augmentation of sensory input by combining cycling with a locomotor-like stimulation of plantar cutaneous innervations (ES-cycling), might help to restore proper spinal processing of sensorimotor function. Thirteen non-injured subjects and 10 subjects with iSCI performed 10 minutes of cycling and, on another session, of ES-cycling. To assess spinal processing of sensorimotor function, soleus H-reflex response was tested following a conditioning plantar electrical stimulation applied at 25-100 ms inter-stimulus intervals (ISI's), measured before and after the execution of the tasks. Before tasks execution, the conditioned H-reflex response was modulated in non-injured subjects, and absent in subjects with iSCI; after cycling, modulation profiles were unchanged. However, after ES-cycling a significant increase in H-reflex excitability was observed in the non-injured group at 100 ms ISI (p spinal processing of sensorimotor function. Reflex modulation recovery after ES-cycling may indicate the partial reactivation of these mechanisms.

  13. Dissociating error-based and reinforcement-based loss functions during sensorimotor learning

    Science.gov (United States)

    McGregor, Heather R.; Mohatarem, Ayman

    2017-01-01

    It has been proposed that the sensorimotor system uses a loss (cost) function to evaluate potential movements in the presence of random noise. Here we test this idea in the context of both error-based and reinforcement-based learning. In a reaching task, we laterally shifted a cursor relative to true hand position using a skewed probability distribution. This skewed probability distribution had its mean and mode separated, allowing us to dissociate the optimal predictions of an error-based loss function (corresponding to the mean of the lateral shifts) and a reinforcement-based loss function (corresponding to the mode). We then examined how the sensorimotor system uses error feedback and reinforcement feedback, in isolation and combination, when deciding where to aim the hand during a reach. We found that participants compensated differently to the same skewed lateral shift distribution depending on the form of feedback they received. When provided with error feedback, participants compensated based on the mean of the skewed noise. When provided with reinforcement feedback, participants compensated based on the mode. Participants receiving both error and reinforcement feedback continued to compensate based on the mean while repeatedly missing the target, despite receiving auditory, visual and monetary reinforcement feedback that rewarded hitting the target. Our work shows that reinforcement-based and error-based learning are separable and can occur independently. Further, when error and reinforcement feedback are in conflict, the sensorimotor system heavily weights error feedback over reinforcement feedback. PMID:28753634

  14. Adaptive and Energy Efficient Walking in a Hexapod Robot Under Neuromechanical Control and Sensorimotor Learning.

    Science.gov (United States)

    Xiong, Xiaofeng; Worgotter, Florentin; Manoonpong, Poramate

    2016-11-01

    The control of multilegged animal walking is a neuromechanical process, and to achieve this in an adaptive and energy efficient way is a difficult and challenging problem. This is due to the fact that this process needs in real time: 1) to coordinate very many degrees of freedom of jointed legs; 2) to generate the proper leg stiffness (i.e., compliance); and 3) to determine joint angles that give rise to particular positions at the endpoints of the legs. To tackle this problem for a robotic application, here we present a neuromechanical controller coupled with sensorimotor learning. The controller consists of a modular neural network for coordinating 18 joints and several virtual agonist-antagonist muscle mechanisms (VAAMs) for variable compliant joint motions. In addition, sensorimotor learning, including forward models and dual-rate learning processes, is introduced for predicting foot force feedback and for online tuning the VAAMs' stiffness parameters. The control and learning mechanisms enable the hexapod robot advanced mobility sensor driven-walking device (AMOS) to achieve variable compliant walking that accommodates different gaits and surfaces. As a consequence, AMOS can perform more energy efficient walking, compared to other small legged robots. In addition, this paper also shows that the tight combination of neural control with tunable muscle-like functions, guided by sensory feedback and coupled with sensorimotor learning, is a way forward to better understand and solve adaptive coordination problems in multilegged locomotion.

  15. A Phenomenological Account of Sensorimotor Difficulties in Autism: Intentionality, Movement, and Proprioception.

    Science.gov (United States)

    Grohmann, Till D A

    2017-11-18

    During the last decades, the focus in autism research has been progressively extended. Today it offers a large amount of material on sensorimotor disturbances as well as perceptive-cognitive preferences of people with autism. However, there are more and more critical voices against an intellectualist perspective in the cognitive sciences. The "enactive approach" as well as a new "movement perspective" to autism challenge the view of autism as a mere "cognitive" disturbance. They criticize the conception of a cognizing subject which is only interested in the world in as much as she/he can extract knowledge and organize it rationally. The present paper discusses fundamental insights from this critical sensorimotor perspective to autism from a phenomenological standpoint. Several important papers have already proven the fruitful combination of phenomenology with sensorimotor-focused research in the field of autism. However, these writings generally concentrate on problems of embodied intersubjectivity as an alternative approach to leading "theory of mind" paradigms. The present article reflects on the role and dimension of sensorimotor problems in themselves and not primarily in the intersubjective encounter. The notion of body intentionality will turn out to be a central heuristic device in order to understand the subject's relationship to the world within a holistic framework, in which the person's way to move, feel, and perceive are manners of understanding his/her own world. Empirical findings on difficulties in proactive and anticipatory control of movement as well as research outcome on proprioception and kinesthetic feedback will provide suitable material for discussing the transformation of body intentionality in autism. Phenomenology will provide the theoretical foundation in order to understand atypical movement patterns as alternative ways for producing alternative meanings. © 2017 S. Karger AG, Basel.

  16. Grounding the Meanings in Sensorimotor Behavior using Reinforcement Learning.

    Science.gov (United States)

    Farkaš, Igor; Malík, Tomáš; Rebrová, Kristína

    2012-01-01

    The recent outburst of interest in cognitive developmental robotics is fueled by the ambition to propose ecologically plausible mechanisms of how, among other things, a learning agent/robot could ground linguistic meanings in its sensorimotor behavior. Along this stream, we propose a model that allows the simulated iCub robot to learn the meanings of actions (point, touch, and push) oriented toward objects in robot's peripersonal space. In our experiments, the iCub learns to execute motor actions and comment on them. Architecturally, the model is composed of three neural-network-based modules that are trained in different ways. The first module, a two-layer perceptron, is trained by back-propagation to attend to the target position in the visual scene, given the low-level visual information and the feature-based target information. The second module, having the form of an actor-critic architecture, is the most distinguishing part of our model, and is trained by a continuous version of reinforcement learning to execute actions as sequences, based on a linguistic command. The third module, an echo-state network, is trained to provide the linguistic description of the executed actions. The trained model generalizes well in case of novel action-target combinations with randomized initial arm positions. It can also promptly adapt its behavior if the action/target suddenly changes during motor execution.

  17. Cerebellar physiology: links between microcircuitry properties and sensorimotor functions.

    Science.gov (United States)

    Jörntell, Henrik

    2017-01-01

    Existing knowledge of the cerebellar microcircuitry structure and physiology allows a rather detailed description of what it in itself can and cannot do. Combined with a known mapping of different cerebellar regions to afferent systems and motor output target structures, there are several constraints that can be used to describe how specific components of the cerebellar microcircuitry may work during sensorimotor control. In fact, as described in this review, the major factor that hampers further progress in understanding cerebellar function is the limited insights into the circuitry-level function of the targeted motor output systems and the nature of the information in the mossy fiber afferents. The cerebellar circuitry in itself is here summarized as a gigantic associative memory element, primarily consisting of the parallel fiber synapses, whereas most other circuitry components, including the climbing fiber system, primarily has the role of maintaining activity balance in the intracerebellar and extracerebellar circuitry. The review explores the consistency of this novel interpretational framework with multiple diverse observations at the synaptic and microcircuitry level within the cerebellum. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  18. Grounding the meanings in sensorimotor behavior using reinforcement learning

    Directory of Open Access Journals (Sweden)

    Igor eFarkaš

    2012-02-01

    Full Text Available The recent outburst of interest in cognitive developmental robotics is fueled by the ambition to propose ecologically plausible mechanisms of how, among other things, a learning agent/robot could ground linguistic meanings in its sensorimotor behaviour. Along this stream, we propose a model that allows the simulated iCub robot to learn the meanings of actions (point, touch and push oriented towards objects in robot's peripersonal space. In our experiments, the iCub learns to execute motor actions and comment on them. Architecturally, the model is composed of three neural-network-based modules that are trained in different ways. The first module, a two-layer perceptron, is trained by back-propagation to attend to the target position in the visual scene, given the low-level visual information and the feature-based target information. The second module, having the form of an actor-critic architecture, is the most distinguishing part of our model, and is trained by a continuous version of reinforcement learning to execute actions as sequences, based on a linguistic command. The third module, an echo-state network, is trained to provide the linguistic description of the executed actions. The trained model generalises well in case of novel action-target combinations with randomised initial arm positions. It can also promptly adapt its behavior if the action/target suddenly changes during motor execution.

  19. Sensorimotor influences on speech perception in infancy.

    Science.gov (United States)

    Bruderer, Alison G; Danielson, D Kyle; Kandhadai, Padmapriya; Werker, Janet F

    2015-11-03

    The influence of speech production on speech perception is well established in adults. However, because adults have a long history of both perceiving and producing speech, the extent to which the perception-production linkage is due to experience is unknown. We addressed this issue by asking whether articulatory configurations can influence infants' speech perception performance. To eliminate influences from specific linguistic experience, we studied preverbal, 6-mo-old infants and tested the discrimination of a nonnative, and hence never-before-experienced, speech sound distinction. In three experimental studies, we used teething toys to control the position and movement of the tongue tip while the infants listened to the speech sounds. Using ultrasound imaging technology, we verified that the teething toys consistently and effectively constrained the movement and positioning of infants' tongues. With a looking-time procedure, we found that temporarily restraining infants' articulators impeded their discrimination of a nonnative consonant contrast but only when the relevant articulator was selectively restrained to prevent the movements associated with producing those sounds. Our results provide striking evidence that even before infants speak their first words and without specific listening experience, sensorimotor information from the articulators influences speech perception. These results transform theories of speech perception by suggesting that even at the initial stages of development, oral-motor movements influence speech sound discrimination. Moreover, an experimentally induced "impairment" in articulator movement can compromise speech perception performance, raising the question of whether long-term oral-motor impairments may impact perceptual development.

  20. Is one motor cortex enough for two hands?

    Science.gov (United States)

    Fiori, Simona; Staudt, Martin; Pannek, Kerstin; Borghetti, Davide; Biagi, Laura; Scelfo, Danilo; Rose, Stephen E; Tosetti, Michela; Cioni, Giovanni; Guzzetta, Andrea

    2015-10-01

    We report on a patient with mirror movements sustained by a mono-hemispheric fast control of bilateral hand muscles and normal hand function. Transcranial magnetic stimulation of the right motor cortex evoked contractions of muscles in both hands while no responses were observed from the left hemisphere. Somatosensory-evoked potentials, functional magnetic resonance, and diffusion tractography showed evidence of sensorimotor dissociation and asymmetry of corticospinal projections, suggestive of reorganization after early unilateral left brain lesion. This is the first evidence that, in certain rare conditions, good hand function is possible with ipsilateral corticospinal reorganization, supporting the role of unexplored mechanisms of motor recovery. © 2015 Mac Keith Press.

  1. I can't reach it! Focus on theta sensorimotor rhythm toward a better understanding of impaired action-perception coupling.

    Science.gov (United States)

    Daviaux, Yannick; Cremoux, Sylvain; Tallet, Jessica; Amarantini, David; Cornu, Christophe; Deschamps, Thibault

    2016-12-17

    It is known that anxiety (ANX) impairs action-perception coupling. This study tests whether this impairment could be associated with an alteration of the sensorimotor function. To this aim, the cortical activities underlying the sensorimotor function were recorded in twelve volunteers in a reach-to-grasp paradigm, in which the level of ANX and the position of a glass were manipulated. The experimental manipulation of the ANX-related somatosensory state was expected to prompt participants to underestimate their reaching-to-grasp capabilities while the sensorimotor-related oscillatory brain activities around the 6-Hz (θ) frequency over motor-related and parietal regions were expected to be modulated. We also investigated the oscillatory brain dynamics around the 11.5-Hz (fast-α) frequency as a neural hallmark of ANX manipulation induced by the breath-restriction. Results indeed showed that participants underestimated their reaching-to-grasp maximal performance. Concomittantly, θ-EEG synchronization over the motor cortex contralateral to the dominant hand was higher during glass presentation under breath-restriction condition (+20.1%; paction-perception coupling co-modulates with theta-sensorimotor rhythm. This finding is discussed as an altered "readiness state" in the reaching-related cortical network, while individuals are anxious. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Reassessing cortical reorganization in the primary sensorimotor cortex following arm amputation.

    Science.gov (United States)

    Makin, Tamar R; Scholz, Jan; Henderson Slater, David; Johansen-Berg, Heidi; Tracey, Irene

    2015-08-01

    The role of cortical activity in generating and abolishing chronic pain is increasingly emphasized in the clinical community. Perhaps the most striking example of this is the maladaptive plasticity theory, according to which phantom pain arises from remapping of cortically neighbouring representations (lower face) into the territory of the missing hand following amputation. This theory has been extended to a wide range of chronic pain conditions, such as complex regional pain syndrome. Yet, despite its growing popularity, the evidence to support the maladaptive plasticity theory is largely based on correlations between pain ratings and oftentimes crude measurements of cortical reorganization, with little consideration of potential contributions of other clinical factors, such as adaptive behaviour, in driving the identified brain plasticity. Here, we used a physiologically meaningful measurement of cortical reorganization to reassess its relationship to phantom pain in upper limb amputees. We identified small yet consistent shifts in lip representation contralateral to the missing hand towards, but not invading, the hand area. However, we were unable to identify any statistical relationship between cortical reorganization and phantom sensations or pain either with this measurement or with the traditional Euclidian distance measurement. Instead, we demonstrate that other factors may contribute to the observed remapping. Further research that reassesses more broadly the relationship between cortical reorganization and chronic pain is warranted. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  3. Individual somatotopy of primary sensorimotor cortex revealed by intermodal matching of MEG, PET, and MRI.

    Science.gov (United States)

    Walter, H; Kristeva, R; Knorr, U; Schlaug, G; Huang, Y; Steinmetz, H; Nebeling, B; Herzog, H; Seitz, R J

    1992-01-01

    A method for comparing estimated magnetoencephalographic (MEG) dipole localizations with regional cerebral blood flow (rCBF) activation areas is presented. This approach utilizes individual intermodal matching of MEG data, of rCBF measurements with [15O]-butanol and positron emission tomography (PET), and of anatomical information obtained from magnetic resonance (MR) images. The MEG data and the rCBF measurements were recorded in a healthy subject during right-sided simple voluntary movements of the foot, thumb, index finger, and mouth. High resolution 3D-FLASH MR images of the brain consisting of 128 contiguous sagittal slices of 1.17-mm thickness were used. MEG/MR integration was performed by superimposing the 3D head coordinate system constructed during the MEG measurement onto the MR image data using identical anatomical landmarks as references. PET/MR integration was achieved by a phantom-validated iterative front-to-back-projection algorithm resulting in one integrated MEG/PET/MR image. The estimated dipole locations followed the somatotopic organisation of the task-specific rCBF increases as evident from PET, although they did not match point-to-point. Our results demonstrate that intermodal matching of MEG, PET and MR data provides a tool for relating estimated neuromagnetic field locations to task-specific rCBF changes in individual subjects. Our method offers the perspective of refined dipole modelling.

  4. Haptic contents of a movie dynamically engage the spectator's sensorimotor cortex

    OpenAIRE

    Lankinen, Kaisu; Smeds, Eero; Tikka, Pia; Pihko, Elina; Hari, Riitta; Koskinen, Miika

    2016-01-01

    Abstract Observation of another person's actions and feelings activates brain areas that support similar functions in the observer, thereby facilitating inferences about the other's mental and bodily states. In real life, events eliciting this kind of vicarious brain activations are intermingled with other complex, ever?changing stimuli in the environment. One practical approach to study the neural underpinnings of real?life vicarious perception is to image brain activity during movie viewing...

  5. [Phantom limb pain originates from dysfunction of the primary motor cortex].

    Science.gov (United States)

    Sumitani, Masahiko; Miyauchi, Satoru; Uematsu, Hironobu; Yozu, Arito; Otake, Yuko; Yamada, Yoshitsugu

    2010-11-01

    Accumulated knowledge indicates that phantom limb pain is a phenomenon of the central nervous system that is related to plastic changes at several levels of the nervous systems. Especially, reports using patients with neuropathic pain clearly indicate the sensorimotor cortex as underlying mechanisms of phantom limb and its pain. Here, we focus the notion that limb amputation or deafferentation results in plasticity of connections between the brain and the body, and that the cortical motor representation of the missing or deafferented limb seemingly disappears. Meanwhile, the sensory representation of the limb does not disappear and thereby patients feel phantom limbs. We propose that dissociation between motor and sensory representations in the primary motor cortex induces pathologic pain and reconcile of sensorimotor integration of the limb would alleviate pain, on the basis of our neurorehabilitation approaches and artificial neuromodulation strategies.

  6. [Functional asymmetry of electric processes in the rabbit brain cortex at formation of the hunger dominant].

    Science.gov (United States)

    Rusinova, E V

    2011-01-01

    The motivational condition of hunger and formation of the hunger dominant after daily food deprivation was studied in the conditions of chronic experiments on rabbits. It was shown, that the hunger condition was accompanied by left sided interhemispher asymmetry on indicators of spectral capacity of EEG frontal and right-hand asymmetry sensorimotor areas of the cortex. A hunger dominant was accompanied by falling of spectral capacity of EEG of areas of both hemispheres. The condition of hunger and a hunger dominant were characterized by right-hand asymmetry on average level of EEG coherence of frontal and sensorimotor areas. At transition of a condition of hunger in a hunger dominant there was an average level of EEG coherence decrease in areas of the right hemisphere. Electric processes of the cortex of the brain at a motivational condition of hunger and a hunger dominant were different.

  7. Sensorimotor influences on speech perception in infancy

    Science.gov (United States)

    Bruderer, Alison G.; Danielson, D. Kyle; Kandhadai, Padmapriya; Werker, Janet F.

    2015-01-01

    The influence of speech production on speech perception is well established in adults. However, because adults have a long history of both perceiving and producing speech, the extent to which the perception–production linkage is due to experience is unknown. We addressed this issue by asking whether articulatory configurations can influence infants’ speech perception performance. To eliminate influences from specific linguistic experience, we studied preverbal, 6-mo-old infants and tested the discrimination of a nonnative, and hence never-before-experienced, speech sound distinction. In three experimental studies, we used teething toys to control the position and movement of the tongue tip while the infants listened to the speech sounds. Using ultrasound imaging technology, we verified that the teething toys consistently and effectively constrained the movement and positioning of infants’ tongues. With a looking-time procedure, we found that temporarily restraining infants’ articulators impeded their discrimination of a nonnative consonant contrast but only when the relevant articulator was selectively restrained to prevent the movements associated with producing those sounds. Our results provide striking evidence that even before infants speak their first words and without specific listening experience, sensorimotor information from the articulators influences speech perception. These results transform theories of speech perception by suggesting that even at the initial stages of development, oral–motor movements influence speech sound discrimination. Moreover, an experimentally induced “impairment” in articulator movement can compromise speech perception performance, raising the question of whether long-term oral–motor impairments may impact perceptual development. PMID:26460030

  8. Sensorimotor control: computing the immediate future from the delayed present.

    Science.gov (United States)

    Sargolzaei, Arman; Abdelghani, Mohamed; Yen, Kang K; Sargolzaei, Saman

    2016-07-25

    The predictive nature of the primate sensorimotor systems, for example the smooth pursuit system and their ability to compensate for long delays have been proven by many physiological experiments. However, few theoretical models have tried to explain these facts comprehensively. Here, we propose a sensorimotor learning and control model that can be used to (1) predict the dynamics of variable time delays and current and future sensory states from delayed sensory information; (2) learn new sensorimotor realities; and (3) control a motor system in real time. This paper proposed a new time-delay estimation method and developed a computational model for a predictive control solution of a sensorimotor control system under time delay. Simulation experiments are used to demonstrate how the proposed model can explain a sensorimotor system's ability to compensate for delays during online learning and control. To further illustrate the benefits of the proposed time-delay estimation method and predictive control in sensorimotor systems a simulation of the horizontal Vestibulo-Ocular Reflex (hVOR) system is presented. Without the proposed time-delay estimation and prediction, the hVOR can be unstable and could be affected by high frequency oscillations. These oscillations are reminiscent of a fast correction mechanism, e.g., a saccade to compensate for the hVOR delays. Comparing results of the proposed model with those in literature, it is clear that the hVOR system with impaired time-delay estimation or impaired sensory state predictor can mimic certain outcomes of sensorimotor diseases. Even more, if the control of hVOR is augmented with the proposed time-delay estimator and the predictor for eye position relative to the head, then hVOR control system can be stabilized. Three claims with varying degrees of experimental support are proposed in this paper. Firstly, the brain or any sensorimotor system has time-delay estimation circuits for the various sensorimotor control

  9. Sensorimotor integration is enhanced in dancers and musicians.

    Science.gov (United States)

    Karpati, Falisha J; Giacosa, Chiara; Foster, Nicholas E V; Penhune, Virginia B; Hyde, Krista L

    2016-03-01

    Studying individuals with specialized training, such as dancers and musicians, provides an opportunity to investigate how intensive practice of sensorimotor skills affects behavioural performance across various domains. While several studies have found that musicians have improved motor, perceptual and sensorimotor integration skills compared to untrained controls, fewer studies have examined the effect of dance training on such skills. Moreover, no study has specifically compared the effects of dance versus music training on perceptual or sensorimotor performance. To this aim, in the present study, expert dancers, expert musicians and untrained controls were tested on a range of perceptual and sensorimotor tasks designed to discriminate performance profiles across groups. Dancers performed better than musicians and controls on a dance imitation task (involving whole-body movement), but musicians performed better than dancers and controls on a musical melody discrimination task as well as on a rhythm synchronization task (involving finger tapping). These results indicate that long-term intensive dance and music training are associated with distinct enhancements in sensorimotor skills. This novel work advances knowledge of the effects of long-term dance versus music training and has potential applications in therapies for motor disorders.

  10. Brain Activity during Mental Imagery of Gait Versus Gait-Like Plantar Stimulation: A Novel Combined Functional MRI Paradigm to Better Understand Cerebral Gait Control.

    Science.gov (United States)

    Labriffe, Matthieu; Annweiler, Cédric; Amirova, Liubov E; Gauquelin-Koch, Guillemette; Ter Minassian, Aram; Leiber, Louis-Marie; Beauchet, Olivier; Custaud, Marc-Antoine; Dinomais, Mickaël

    2017-01-01

    Human locomotion is a complex sensorimotor behavior whose central control remains difficult to explore using neuroimaging method due to technical constraints, notably the impossibility to walk with a scanner on the head and/or to walk for real inside current scanners. The aim of this functional Magnetic Resonance Imaging (fMRI) study was to analyze interactions between two paradigms to investigate the brain gait control network: (1) mental imagery of gait, and (2) passive mechanical stimulation of the plantar surface of the foot with the Korvit boots. The Korvit stimulator was used through two different modes, namely an organized ("gait like") sequence and a destructured (chaotic) pattern. Eighteen right-handed young healthy volunteers were recruited (mean age, 27 ± 4.7 years). Mental imagery activated a broad neuronal network including the supplementary motor area-proper (SMA-proper), pre-SMA, the dorsal premotor cortex, ventrolateral prefrontal cortex, anterior insula, and precuneus/superior parietal areas. The mechanical plantar stimulation activated the primary sensorimotor cortex and secondary somatosensory cortex bilaterally. The paradigms generated statistically common areas of activity, notably bilateral SMA-proper and right pre-SMA, highlighting the potential key role of SMA in gait control. There was no difference between the organized and chaotic Korvit sequences, highlighting the difficulty of developing a walking-specific plantar stimulation paradigm. In conclusion, this combined-fMRI paradigm combining mental imagery and gait-like plantar stimulation provides complementary information regarding gait-related brain activity and appears useful for the assessment of high-level gait control.

  11. Mirror therapy in lower limb amputees. A look beyond primary motor cortex reorganization

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, S.; Essmeister, M.; Sycha, T.; Auff, E. [Vienna Medical Univ. (Austria). Dept. of Neurology; Kasprian, G.; Furtner, J.; Schoepf, V.; Prayer, D. [Vienna Medical Univ. (Austria). Dept. of Neuroradiology

    2011-11-15

    Phantom pain in upper limb amputees is associated with the extent of reorganization in the primary sensorimotor cortex. Mirror visual feedback therapy has been shown to improve phantom pain. We investigated the extent of cortical reorganization in lower limb amputees and changes in neural activity induced by mirror therapy. Eight lower limb amputees underwent 12 sessions of MVFT and functional magnetic resonance imaging (fMRI) of the brain before the first and after the last MVFT session. FMRI sessions consisted of two runs in which subjects were instructed to perform repetitive movement of the healthy and phantom ankle. Before MVFT, the mean phantom pain intensity was 4.6 {+-} 3.1 on a visual analog scale and decreased to 1.8 {+-} 1.7 (p = 0.04). We did not observe a consistent pattern of cortical activation in primary sensorimotor areas during phantom limb movements. Following MVFT, increased activity was obtained in the right orbitofrontal cortex during phantom ankle movements. Comparison of cortical activity during movements of the phantom ankle and the intact ankle showed significantly higher activity in the left inferior frontal cortex (pars triangularis). These results question the known association between phantom pain and primary sensorimotor reorganization and propose reorganizational changes involving multiple cortical areas in lower limb amputees. Finally, reduction of phantom pain after mirror visual feedback therapy was associated with increased prefrontal cortical activity during phantom ankle movements. (orig.)

  12. Action-dependent perceptual invariants: from ecological to sensorimotor approaches.

    Science.gov (United States)

    Mossio, Matteo; Taraborelli, Dario

    2008-12-01

    Ecological and sensorimotor theories of perception build on the notion of action-dependent invariants as the basic structures underlying perceptual capacities. In this paper we contrast the assumptions these theories make on the nature of perceptual information modulated by action. By focusing on the question, how movement specifies perceptual information, we show that ecological and sensorimotor theories endorse substantially different views about the role of action in perception. In particular we argue that ecological invariants are characterized with reference to transformations produced in the sensory array by movement: such invariants are transformation-specific but do not imply motor-specificity. In contrast, sensorimotor theories assume that perceptual invariants are intrinsically tied to specific movements. We show that this difference leads to different empirical predictions and we submit that the distinction between motor equivalence and motor-specificity needs further clarification in order to provide a more constrained account of action/perception relations.

  13. Improvement and Neuroplasticity after Combined Rehabilitation to Forced Grasping

    Directory of Open Access Journals (Sweden)

    Michiko Arima

    2017-01-01

    Full Text Available The grasp reflex is a distressing symptom but the need to treat or suppress it has rarely been discussed in the literature. We report the case of a 17-year-old man who had suffered cerebral infarction of the right putamen and temporal lobe 10 years previously. Forced grasping of the hemiparetic left upper limb was improved after a unique combined treatment. Botulinum toxin type A (BTX-A was first injected into the left biceps, wrist flexor muscles, and finger flexor muscles. Forced grasping was reduced along with spasticity of the upper limb. In addition, repetitive facilitative exercise and object-related training were performed under low-amplitude continuous neuromuscular electrical stimulation. Since this 2-week treatment improved upper limb function, we compared brain activities, as measured by near-infrared spectroscopy during finger pinching, before and after the combined treatment. Brain activities in the ipsilesional sensorimotor cortex (SMC and medial frontal cortex (MFC during pinching under electrical stimulation after treatment were greater than those before. The results suggest that training under electrical stimulation after BTX-A treatment may modulate the activities of the ipsilesional SMC and MFC and lead to functional improvement of the affected upper limb with forced grasping.

  14. Different roles of alpha and beta band oscillations in sensorimotor gating

    Directory of Open Access Journals (Sweden)

    Verena Nadine Buchholz

    2014-06-01

    Full Text Available Alpha (8-12Hz and beta band (18-30Hz oscillations have been implicated in sensory anticipation and motor preparation. Here, using magneto-encephalography, we tested whether they have distinct functional roles in a saccade task that induces a remapping between sensory and motor reference frames. With a crossed hands posture, subjects had to saccade as fast and accurate as possible toward a tactile stimulus delivered to one of two non-visible index fingers, located to the left or right of gaze. Previous studies have shown that this task, in which the somatotopic stimulus must be remapped to activate oculomotor system in the opposing hemisphere, is occasionally preceded by intrahemispheric remapping, driving a premature saccade into the wrong direction. To test whether the brain could anticipate the remapping, we provided auditory predictive cues (80% validity, which indicated which finger is most likely to be stimulated. Both frequency bands showed different lateralization profiles at central versus posterior sensors, indicating anticipation of somatosensory and oculomotor processing. Furthermore, beta band power in somatosensory cortex correlated positively with saccade reaction time (SRT, with correlation values that were significantly higher with contralateral versus ipsilateral activation. In contrast, alpha band power in parietal cortex correlated negatively with SRT, with correlation values that were significantly more negative with ipsilateral than contralateral activation. These results suggest distinct functional roles of beta and alpha band activity: 1 somatosensory gating by beta oscillations, increasing excitability in contralateral somatosensory cortex (positive correlation and 2 oculomotor gating by posterior alpha oscillations, inhibiting gaze-centered oculomotor regions involved in generating the saccade to the wrong direction (negative correlation. Our results show that low frequency rhythms gate upcoming sensorimotor

  15. Coherence between Rat Sensorimotor System and Hippocampus Is Enhanced during Tactile Discrimination.

    Directory of Open Access Journals (Sweden)

    Natalia Grion

    2016-02-01

    Full Text Available Rhythms with time scales of multiple cycles per second permeate the mammalian brain, yet neuroscientists are not certain of their functional roles. One leading idea is that coherent oscillation between two brain regions facilitates the exchange of information between them. In rats, the hippocampus and the vibrissal sensorimotor system both are characterized by rhythmic oscillation in the theta range, 5-12 Hz. Previous work has been divided as to whether the two rhythms are independent or coherent. To resolve this question, we acquired three measures from rats--whisker motion, hippocampal local field potential (LFP, and barrel cortex unit firing--during a whisker-mediated texture discrimination task and during control conditions (not engaged in a whisker-mediated memory task. Compared to control conditions, the theta band of hippocampal LFP showed a marked increase in power as the rats approached and then palpated the texture. Phase synchronization between whisking and hippocampal LFP increased by almost 50% during approach and texture palpation. In addition, a greater proportion of barrel cortex neurons showed firing that was phase-locked to hippocampal theta while rats were engaged in the discrimination task. Consistent with a behavioral consequence of phase synchronization, the rats identified the texture more rapidly and with lower error likelihood on trials in which there was an increase in theta-whisking coherence at the moment of texture palpation. These results suggest that coherence between the whisking rhythm, barrel cortex firing, and hippocampal LFP is augmented selectively during epochs in which the rat collects sensory information and that such coherence enhances the efficiency of integration of stimulus information into memory and decision-making centers.

  16. Effective Connectivity Hierarchically Links Temporoparietal and Frontal Areas of the Auditory Dorsal Stream with the Motor Cortex Lip Area during Speech Perception

    Science.gov (United States)

    Murakami, Takenobu; Restle, Julia; Ziemann, Ulf

    2012-01-01

    A left-hemispheric cortico-cortical network involving areas of the temporoparietal junction (Tpj) and the posterior inferior frontal gyrus (pIFG) is thought to support sensorimotor integration of speech perception into articulatory motor activation, but how this network links with the lip area of the primary motor cortex (M1) during speech…

  17. Adaptive Laplacian filtering for sensorimotor rhythm-based brain-computer interfaces

    Science.gov (United States)

    Lu, Jun; McFarland, Dennis J.; Wolpaw, Jonathan R.

    2013-02-01

    Objective. Sensorimotor rhythms (SMRs) are 8-30 Hz oscillations in the electroencephalogram (EEG) recorded from the scalp over sensorimotor cortex that change with movement and/or movement imagery. Many brain-computer interface (BCI) studies have shown that people can learn to control SMR amplitudes and can use that control to move cursors and other objects in one, two or three dimensions. At the same time, if SMR-based BCIs are to be useful for people with neuromuscular disabilities, their accuracy and reliability must be improved substantially. These BCIs often use spatial filtering methods such as common average reference (CAR), Laplacian (LAP) filter or common spatial pattern (CSP) filter to enhance the signal-to-noise ratio of EEG. Here, we test the hypothesis that a new filter design, called an ‘adaptive Laplacian (ALAP) filter’, can provide better performance for SMR-based BCIs. Approach. An ALAP filter employs a Gaussian kernel to construct a smooth spatial gradient of channel weights and then simultaneously seeks the optimal kernel radius of this spatial filter and the regularization parameter of linear ridge regression. This optimization is based on minimizing the leave-one-out cross-validation error through a gradient descent method and is computationally feasible. Main results. Using a variety of kinds of BCI data from a total of 22 individuals, we compare the performances of ALAP filter to CAR, small LAP, large LAP and CSP filters. With a large number of channels and limited data, ALAP performs significantly better than CSP, CAR, small LAP and large LAP both in classification accuracy and in mean-squared error. Using fewer channels restricted to motor areas, ALAP is still superior to CAR, small LAP and large LAP, but equally matched to CSP. Significance. Thus, ALAP may help to improve the accuracy and robustness of SMR-based BCIs.

  18. Learning with slight forgetting optimizes sensorimotor transformation in redundant motor systems.

    Directory of Open Access Journals (Sweden)

    Masaya Hirashima

    Full Text Available Recent theoretical studies have proposed that the redundant motor system in humans achieves well-organized stereotypical movements by minimizing motor effort cost and motor error. However, it is unclear how this optimization process is implemented in the brain, presumably because conventional schemes have assumed a priori that the brain somehow constructs the optimal motor command, and largely ignored the underlying trial-by-trial learning process. In contrast, recent studies focusing on the trial-by-trial modification of motor commands based on error information suggested that forgetting (i.e., memory decay, which is usually considered as an inconvenient factor in motor learning, plays an important role in minimizing the motor effort cost. Here, we examine whether trial-by-trial error-feedback learning with slight forgetting could minimize the motor effort and error in a highly redundant neural network for sensorimotor transformation and whether it could predict the stereotypical activation patterns observed in primary motor cortex (M1 neurons. First, using a simple linear neural network model, we theoretically demonstrated that: 1 this algorithm consistently leads the neural network to converge at a unique optimal state; 2 the biomechanical properties of the musculoskeletal system necessarily determine the distribution of the preferred directions (PD; the direction in which the neuron is maximally active of M1 neurons; and 3 the bias of the PDs is steadily formed during the minimization of the motor effort. Furthermore, using a non-linear network model with realistic musculoskeletal data, we demonstrated numerically that this algorithm could consistently reproduce the PD distribution observed in various motor tasks, including two-dimensional isometric torque production, two-dimensional reaching, and even three-dimensional reaching tasks. These results may suggest that slight forgetting in the sensorimotor transformation network is responsible

  19. Altered affective, executive and sensorimotor resting state networks in patients with pediatric mania.

    Science.gov (United States)

    Wu, Minjie; Lu, Lisa H; Passarotti, Alessandra M; Wegbreit, Ezra; Fitzgerald, Jacklynn; Pavuluri, Mani N

    2013-07-01

    The aim of the present study was to map the pathophysiology of resting state functional connectivity accompanying structural and functional abnormalities in children with bipolar disorder. Children with bipolar disorder and demographically matched healthy controls underwent resting-state functional magnetic resonance imaging. A model-free independent component analysis was performed to identify intrinsically interconnected networks. We included 34 children with bipolar disorder and 40 controls in our analysis. Three distinct resting state networks corresponding to affective, executive and sensorimotor functions emerged as being significantly different between the pediatric bipolar disorder (PBD) and control groups. All 3 networks showed hyperconnectivity in the PBD relative to the control group. Specifically, the connectivity of the dorsal anterior cingulate cortex (ACC) differentiated the PBD from the control group in both the affective and the executive networks. Exploratory analysis suggests that greater connectivity of the right amygdala within the affective network is associated with better executive function in children with bipolar disorder, but not in controls. Unique clinical characteristics of the study sample allowed us to evaluate the pathophysiology of resting state connectivity at an early state of PBD, which led to the lack of generalizability in terms of comorbid disorders existing in a typical PBD population. Abnormally engaged resting state affective, executive and sensorimotor networks observed in children with bipolar disorder may reflect a biological context in which abnormal task-based brain activity can occur. Dual engagement of the dorsal ACC in affective and executive networks supports the neuroanatomical interface of these networks, and the amygdala's engagement in moderating executive function illustrates the intricate interplay of these neural operations at rest.

  20. Associations between Measures of Structural Morphometry and Sensorimotor Performance in Individuals with Nonspecific Low Back Pain.

    Science.gov (United States)

    Caeyenberghs, K; Pijnenburg, M; Goossens, N; Janssens, L; Brumagne, S

    2017-01-01

    To date, most structural brain imaging studies in individuals with nonspecific low back pain have evaluated volumetric changes. These alterations are particularly found in sensorimotor-related areas. Although it is suggested that specific measures, such as cortical surface area and cortical thickness, reflect different underlying neural architectures, the literature regarding these different measures in individuals with nonspecific low back pain is limited. Therefore, the current study was designed to investigate the association between the performance on a sensorimotor task, more specifically the sit-to-stand-to-sit task, and cortical surface area and cortical thickness in individuals with nonspecific low back pain and healthy controls. Seventeen individuals with nonspecific low back pain and 17 healthy controls were instructed to perform 5 consecutive sit-to-stand-to-sit movements as fast as possible. In addition, T1-weighted anatomic scans of the brain were acquired and analyzed with FreeSurfer. Compared with healthy controls, individuals with nonspecific low back pain needed significantly more time to perform 5 sit-to-stand-to-sit movements (P low back pain compared with controls. Furthermore, decreased cortical thickness of the rostral anterior cingulate cortex was associated with lower sit-to-stand-to-sit performance on an unstable support surface in individuals with nonspecific low back pain and healthy controls (r = -0.47, P pain intensity and cortical thickness of the superior frontal gyrus (r = 0.70, P pain intensity in individuals with nonspecific low back pain. No associations were found between cortical surface area and the pain characteristics in this group. The current study suggests that cortical thickness may contribute to different aspects of sit-to-stand-to-sit performance and perceived pain intensity in individuals with nonspecific low back pain. © 2017 by American Journal of Neuroradiology.

  1. Cognitive-behavioral therapy induces sensorimotor and specific electrocortical changes in chronic tic and Tourette's disorder.

    Science.gov (United States)

    Morand-Beaulieu, Simon; O'Connor, Kieron P; Sauvé, Geneviève; Blanchet, Pierre J; Lavoie, Marc E

    2015-12-01

    Tic disorders, such as the Gilles de la Tourette syndrome and persistent tic disorder, are neurodevelopmental movement disorders involving impaired motor control. Hence, patients show repetitive unwanted muscular contractions in one or more parts of the body. A cognitive-behavioral therapy, with a particular emphasis on the psychophysiology of tic expression and sensorimotor activation, can reduce the frequency and intensity of tics. However, its impact on motor activation and inhibition is not fully understood. To study the effects of a cognitive-behavioral therapy on electrocortical activation, we recorded the event-related potentials (ERP) and lateralized readiness potentials (LRP), before and after treatment, of 20 patients with tic disorders and 20 healthy control participants (matched on age, sex and intelligence), during a stimulus-response compatibility inhibition task. The cognitive-behavioral therapy included informational, awareness training, relaxation, muscle discrimination, cognitive restructuration and relapse prevention strategies. Our results revealed that prior to treatment; tic patients had delayed stimulus-locked LRP onset latency, larger response-locked LRP peak amplitude, and a frontal overactivation during stimulus inhibition processing. Both stimulus-locked LRP onset latency and response-locked LRP peak amplitude normalized after the cognitive behavioral therapy completion. However, the frontal overactivation related to inhibition remained unchanged following therapy. Our results showed that P300 and reaction times are sensitive to stimulus-response compatibility, but are not related to tic symptoms. Secondly, overactivity of the frontal LPC and impulsivity in TD patients were not affected by treatment. Finally, CBT had normalizing effects on the activation of the pre-motor and motor cortex in TD patients. These results imply specific modifications of motor processes following therapy, while inhibition processes remained unchanged. Given

  2. Temporal dynamics of sensorimotor integration in speech perception and production: Independent component analysis of EEG data

    Directory of Open Access Journals (Sweden)

    David eJenson

    2014-07-01

    Full Text Available Activity in premotor and sensorimotor cortices is found in speech production and some perception tasks. Yet, how sensorimotor integration supports these functions is unclear due to a lack of data examining the timing of activity from these regions. Beta (~20Hz and alpha (~10Hz spectral power within the EEG µ rhythm are considered indices of motor and somatosensory activity, respectively. In the current study, perception conditions required discrimination (same/different of syllables pairs (/ba/ and /da/ in quiet and noisy conditions. Production conditions required covert and overt syllable productions and overt word production. Independent component analysis was performed on EEG data obtained during these conditions to 1 identify clusters of µ components common to all conditions and 2 examine real-time event-related spectral perturbations (ERSP within alpha and beta bands. 17 and 15 out of 20 participants produced left and right µ-components, respectively, localized to precentral gyri. Discrimination conditions were characterized by significant (pFDR<.05 early alpha event-related synchronization (ERS prior to and during stimulus presentation and later alpha event-related desynchronization (ERD following stimulus offset. Beta ERD began early and gained strength across time. Differences were found between quiet and noisy discrimination conditions. Both overt syllable and word productions yielded similar alpha/beta ERD that began prior to production and was strongest during muscle activity. Findings during covert production were weaker than during overt production. One explanation for these findings is that µ-beta ERD indexes early predictive coding (e.g., internal modeling and/or overt and covert attentional / motor processes. µ-alpha ERS may index inhibitory input to the premotor cortex from sensory regions prior to and during discrimination, while µ-alpha ERD may index re-afferent sensory feedback during speech rehearsal and production.

  3. Family Studies of Sensorimotor and Neurocognitive Heterogeneity in Autism Spectrum Disorders

    Science.gov (United States)

    2014-11-01

    AWARD NUMBER: W81XWH-11-1-0738 TITLE: Family Studies of Sensorimotor and Neurocognitive Heterogeneity in Autism Spectrum Disorders PRINCIPAL...DATES COVERED 1 Sep 2011 – 31 Aug 2014 4. TITLE AND SUBTITLE Family Studies of Sensorimotor and Neurocognitive Heterogeneity in Autism Spectrum...etiopathological heterogeneity. 15. SUBJECT TERMS sensorimotor control; autism spectrum disorder; eye movements; grip force; familiality 16

  4. Coupling brain-machine interfaces with cortical stimulation for brain-state dependent stimulation: enhancing motor cortex excitability for neurorehabilitation

    Directory of Open Access Journals (Sweden)

    Alireza eGharabaghi

    2014-03-01

    Full Text Available Motor recovery after stroke is an unsolved challenge despite intensive rehabilitation training programs. Brain stimulation techniques have been explored in addition to traditional rehabilitation training to increase the excitability of the stimulated motor cortex. This modulation of cortical excitability augments the response to afferent input during motor exercises, thereby enhancing skilled motor learning by long-term potentiation-like plasticity. Recent approaches examined brain stimulation applied concurrently with voluntary movements to induce more specific use-dependent neural plasticity during motor training for neurorehabilitation. Unfortunately, such approaches are not applicable for the many severely affected stroke patients lacking residual hand function. These patients require novel activity-dependent stimulation paradigms based on intrinsic brain activity. Here, we report on such brain state-dependent stimulation (BSDS combined with haptic feedback provided by a robotic hand orthosis. Transcranial magnetic stimulation of the motor cortex and haptic feedback to the hand were controlled by sensorimotor desynchronization during motor-imagery and applied within a brain-machine interface environment in one healthy subject and one patient with severe hand paresis in the chronic phase after stroke. BSDS significantly increased the excitability of the stimulated motor cortex in both healthy and post-stroke conditions, an effect not observed in non-BSDS protocols. This feasibility study suggests that closing the loop between intrinsic brain state, cortical stimulation and haptic feedback provides a novel neurorehabilitation strategy for stroke patients lacking residual hand function, a proposal that warrants further investigation in a larger cohort of stroke patients.

  5. Sensorimotor adaptations to microgravity in humans

    Science.gov (United States)

    Edgerton, V. R.; McCall, G. E.; Hodgson, J. A.; Gotto, J.; Goulet, C.; Fleischmann, K.; Roy, R. R.

    2001-01-01

    Motor function is altered by microgravity, but little detail is available as to what these changes are and how changes in the individual components of the sensorimotor system affect the control of movement. Further, there is little information on whether the changes in motor performance reflect immediate or chronic adaptations to changing gravitational environments. To determine the effects of microgravity on the neural control properties of selected motor pools, four male astronauts from the NASA STS-78 mission performed motor tasks requiring the maintenance of either ankle dorsiflexor or plantarflexor torque. Torques of 10 or 50% of a maximal voluntary contraction (MVC) were requested of the subjects during 10 degrees peak-to-peak sinusoidal movements at 0.5 Hz. When 10% MVC of the plantarflexors was requested, the actual torques generated in-flight were similar to pre-flight values. Post-flight torques were higher than pre- and in-flight torques. The actual torques when 50% MVC was requested were higher in- and post-flight than pre-flight. Soleus (Sol) electromyographic (EMG) amplitudes during plantarflexion were higher in-flight than pre- or post-flight for both the 10 and 50% MVC tasks. No differences in medial gastrocnemius (MG) EMG amplitudes were observed for either the 10 or 50% MVC tasks. The EMG amplitudes of the tibialis anterior (TA), an antagonist to plantarflexion, were higher in- and post-flight than pre-flight for the 50% MVC task. During the dorsiflexion tasks, the torques generated in both the 10 and 50% MVC tasks did not differ pre-, in- and post-flight. TA EMG amplitudes were significantly higher in- than pre-flight for both the 10 or 50% MVC tasks, and remained elevated post-flight for the 50% MVC test. Both the Sol and MG EMG amplitudes were significantly higher in-flight than either pre- or post-flight for both the 10 and 50% MVC tests. These data suggest that the most consistent response to space flight was an elevation in the level of

  6. Effective Connectivity of Cortical Sensorimotor Networks During Finger Movement Tasks: A Simultaneous fNIRS, fMRI, EEG Study.

    Science.gov (United States)

    Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman

    2016-09-01

    Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a

  7. ENHANCE: Enhancing Brain Plasticity for Sensorimotor Recovery in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ENHANCE: Enhancing Brain Plasticity for Sensorimotor Recovery in Spastic Hemiparesis. Often, people who have had a stroke experience problems recovering the use of their arms, and the issue may persist for a long time. This research will test new ways to boost recovery using non-painful brain stimulation and ...

  8. The role of sensorimotor difficulties in autism spectrum conditions

    Directory of Open Access Journals (Sweden)

    Penelope Hannant

    2016-08-01

    Full Text Available AbstractIn addition to difficulties in social communication, current diagnostic criteria for autism spectrum conditions (ASC also incorporate sensorimotor difficulties; repetitive motor movements and atypical reactivity to sensory input (APA, 2013. This paper explores whether sensorimotor difficulties are associated with the development and maintenance of symptoms in ASC. Firstly, studies have shown difficulties coordinating sensory input into planning and executing movement effectively in ASC. Secondly, studies have shown associations between sensory reactivity and motor coordination with core ASC symptoms, suggesting these areas each strongly influence the development of social and communication skills. Thirdly, studies have begun to demonstrate that sensorimotor difficulties in ASC could account for reduced social attention early in development, with a cascading effect on later social, communicative and emotional development. These results suggest that sensorimotor difficulties not only contribute to non-social difficulties such as narrow circumscribed interests, but also to the development of social behaviours such as effectively coordinating eye contact with speech and gesture, interpreting others’ behaviour and responding appropriately. Further research is needed to explore the link between sensory and motor difficulties in ASC, and their contribution to the development and maintenance of ASC.

  9. Sensorimotor peripheral nerve function and physical activity in older men

    DEFF Research Database (Denmark)

    Lange-Maia, B. S.; Cauley, J A; Newman, Anne B

    2016-01-01

    We determined whether sensorimotor peripheral nerve (PN) function was associated with physical activity (PA) in older men. The Osteoporotic Fractures in Men Study Pittsburgh, PA, site (n = 328, age 78.8 ± 4.7 years) conducted PN testing, including: peroneal motor and sural sensory nerve conduction...

  10. The Sensorimotor Contributions to Implicit Memory, Familiarity, and Recollection

    Science.gov (United States)

    Topolinski, Sascha

    2012-01-01

    The sensorimotor contributions to memory for prior occurrence were investigated. Previous research has shown that both implicit memory and familiarity draw on gains in stimulus-related processing fluency for old, compared with novel, stimuli, but recollection does not. Recently, it has been demonstrated that processing fluency itself resides in…

  11. Development of an Integrated Sensorimotor Countermeasure Suite for Spaceflight Operations

    Science.gov (United States)

    Bloomberg, J. J.; Batson, C. D.; Caldwell, E. E. (Inventor); Feiveson, A. H.; Kreutzberg, G. A.; Miller, C. A.; Mulavara, A. P.; Oddsson, L. I. E.; Peters, B. T.; Ploutz-Synder, L. L.; hide

    2017-01-01

    Astronauts experience Postflight disturbances in postural and locomotor control due to sensorimotor adaptation to the unique environment of spaceflight. These alterations might have adverse consequences if a rapid egress were required following a Mars landing or on return to Earth after a water landing. Currently, no operational countermeasure is targeted to mitigate Postflight balance and locomotor dysfunction.

  12. Workspace and sensorimotor theories : Complementary approaches to experience

    NARCIS (Netherlands)

    Degenaar, J.; Keijzer, F.

    A serious difficulty for theories of consciousness is to go beyond mere correlation between physical processes and experience. Currently, neural workspace and sensorimotor contingency theories are two of the most promising approaches to make any headway here. This paper explores the relation between

  13. Sensorimotor changes and functional performance in patients with knee osteoarthritis.

    Science.gov (United States)

    Hurley, M V; Scott, D L; Rees, J; Newham, D J

    1997-11-01

    Muscles are essential components of our sensorimotor system that help maintain balance and perform a smooth gait, but it is unclear whether arthritic damage adversely affects muscle sensorimotor function. Quadriceps sensorimotor function in patients with knee osteoarthritis (OA) was investigated, and whether these changes were associated with impairment of functional performance. Quadriceps strength, voluntary activation, and proprioceptive acuity (joint position sense acuity) were assessed in 103 patients with knee OA and compared with 25 healthy control subjects. In addition, their postural stability, objective functional performance (the aggregate time for four activities of daily living), and disabilities (lequesne index) were also investigated. Compared with the control subjects, the patients with knee OA had weaker quadriceps (differences between group mean 100N, CI 136, 63N), poorer voluntary activation (20% CI 13, 25%) that was associated with quadriceps weakness, and impaired acuity of knee joint position sense (1.28 degrees, CI 0.84, 1.73 degrees). As a group the patients were more unstable (p = 0.0017), disabled (10, CI 7, 11), and had poorer functional performance (19.6 seconds, CI 14.3, 24.9 seconds). The most important predictors of disability were objective functional performance and quadriceps strength. In patients with knee OA, articular damage may reduce quadriceps motoneurone excitability, which decreases voluntary quadriceps activation thus contributing to quadriceps weakness, and diminishes proprioceptive acuity. The arthrogenic impairment in quadriceps sensorimotor function and decreased postural stability was associated with reduced functional performance of the patients.

  14. The Role of Sensorimotor Difficulties in Autism Spectrum Conditions

    Science.gov (United States)

    Hannant, Penelope; Tavassoli, Teresa; Cassidy, Sarah

    2016-01-01

    In addition to difficulties in social communication, current diagnostic criteria for autism spectrum conditions (ASC) also incorporate sensorimotor difficulties, repetitive motor movements, and atypical reactivity to sensory input (1). This paper explores whether sensorimotor difficulties are associated with the development and maintenance of symptoms in ASC. First, studies have shown difficulties coordinating sensory input into planning and executing movement effectively in ASC. Second, studies have shown associations between sensory reactivity and motor coordination with core ASC symptoms, suggesting these areas each strongly influence the development of social and communication skills. Third, studies have begun to demonstrate that sensorimotor difficulties in ASC could account for reduced social attention early in development, with a cascading effect on later social, communicative and emotional development. These results suggest that sensorimotor difficulties not only contribute to non-social difficulties such as narrow circumscribed interests, but also to the development of social behaviors such as effectively coordinating eye contact with speech and gesture, interpreting others’ behavior, and responding appropriately. Further research is needed to explore the link between sensory and motor difficulties in ASC and their contribution to the development and maintenance of ASC. PMID:27559329

  15. Increased connectivity between sensorimotor and attentional areas in Parkinson's disease.

    Science.gov (United States)

    Onu, Mihaela; Badea, Liviu; Roceanu, Adina; Tivarus, Madalina; Bajenaru, Ovidiu

    2015-09-01

    Our study is using Independent Component Analysis (ICA) to evaluate functional connectivity changes in Parkinson's disease (PD) in an unbiased manner. Resting-state functional magnetic resonance imaging (rs-fMRI) data was collected for 27 PD patients and 16 healthy subjects. Differences for intra- and inter-network connectivity between healthy subjects and patients were investigated using FMRIB Software Library (FSL) tools (Melodic ICA, dual regression, FSLNets). Twenty-three ICA maps were identified as components of neuronal origin. For intra-network connectivity changes, eight components showed a significant connectivity increase in patients (p < 0.05); these were correlated with clinical scores and were largest for (sensori)motor networks. For inter-network connectivity changes, we found higher connectivity between the sensorimotor network and the spatial attention network (p = 0.0098) and lower connectivity between anterior and posterior default mode networks (DMN) (p =  0.024), anterior DMN and visual recognition networks (p = 0.026), as well as between visual attention and main dorsal attention networks (p = 0.03), for patients as compared to healthy subjects. The area under the Receiver Operating Characteristics (ROC) curve for the best predictor (partial correlation between sensorimotor and spatial attention networks) was 0.772. These functional alterations were not associated with any gray or white matter structural changes. Our results show higher connectivity between sensorimotor and spatial attention areas in patients that may be related to the reduced movement automaticity in PD.

  16. Sensorimotor Incongruence in People with Musculoskeletal Pain: A Systematic Review

    NARCIS (Netherlands)

    M. de Kooning; Jo Nijs; Dr. L.P. Voogt; S. Don; M. Meeus

    2017-01-01

    Musculoskeletal pain has major public health implications, but the theoretical framework remains unclear. It is hypothesized that sensorimotor incongruence (SMI) might be a cause of long-lasting pain sensations in people with chronic musculoskeletal pain. Research data about experimental SMI

  17. Exposure to HIV-1 Tat in brain impairs sensorimotor gating and activates microglia in limbic and extralimbic brain regions of male mice.

    Science.gov (United States)

    Paris, Jason J; Singh, Harminder D; Carey, Amanda N; McLaughlin, Jay P

    2015-09-15

    Human immunodeficiency virus (HIV) infection is associated with mood disorders and behavioral disinhibition. Impairments in sensorimotor gating and associated neurocognitive disorders are reported, but the HIV-proteins and mechanisms involved are not known. The regulatory HIV-1 protein, Tat, is neurotoxic and its expression in animal models increases anxiety-like behavior concurrent with neuroinflammation and structural changes in limbic and extra-limbic brain regions. We hypothesized that conditional expression of HIV-1 Tat1-86 in the GT-tg bigenic mouse model would impair sensorimotor gating and increase microglial reactivity in limbic and extralimbic brain regions. Conditional Tat induction via doxycycline (Dox) treatment (0-125 mg/kg, i.p., for 1-14 days) significantly potentiated the acoustic startle reflex (ASR) of GT-tg mice and impaired prepulse inhibition (PPI) of this response in a dose-dependent manner when Dox (100mg/kg) was administered for brief (1 day) or prolonged (daily for 7 days) intervals. A greater proportion of active/reactive Iba1-labeled microglia was seen in the anterior cingulate cortex (ACC), dentate gyrus, and nucleus accumbens core when Tat protein was induced under either brief or prolonged expression conditions. Other subregions of the medial prefrontal cortex, amygdala, hippocampal formation, ventral tegmental area, and ventral pallidum also displayed Tat-induced microglial activation, but only the activation observed in the ACC recapitulated the pattern of ASR and PPI behaviors. Tat exposure also increased frontal cortex GFAP. Pretreatment with indomethacin attenuated the behavioral effects of brief (but not prolonged) Tat-exposure. Overall, exposure to HIV-1 Tat protein induced sensorimotor deficits associated with acute and persistent neuroinflammation in limbic/extralimbic brain regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Sensorimotor Learning Enhances Expectations During Auditory Perception.

    Science.gov (United States)

    Mathias, Brian; Palmer, Caroline; Perrin, Fabien; Tillmann, Barbara

    2015-08-01

    Sounds that have been produced with one's own motor system tend to be remembered better than sounds that have only been perceived, suggesting a role of motor information in memory for auditory stimuli. To address potential contributions of the motor network to the recognition of previously produced sounds, we used event-related potential, electric current density, and behavioral measures to investigate memory for produced and perceived melodies. Musicians performed or listened to novel melodies, and then heard the melodies either in their original version or with single pitch alterations. Production learning enhanced subsequent recognition accuracy and increased amplitudes of N200, P300, and N400 responses to pitch alterations. Premotor and supplementary motor regions showed greater current density during the initial detection of alterations in previously produced melodies than in previously perceived melodies, associated with the N200. Primary motor cortex was more strongly engaged by alterations in previously produced melodies within the P300 and N400 timeframes. Motor memory traces may therefore interface with auditory pitch percepts in premotor regions as early as 200 ms following perceived pitch onsets. Outcomes suggest that auditory-motor interactions contribute to memory benefits conferred by production experience, and support a role of motor prediction mechanisms in the production effect. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Sensorimotor Functional and Structural Networks after Intracerebral Stem Cell Grafts in the Ischemic Mouse Brain.

    Science.gov (United States)

    Green, Claudia; Minassian, Anuka; Vogel, Stefanie; Diedenhofen, Michael; Beyrau, Andreas; Wiedermann, Dirk; Hoehn, Mathias

    2018-02-14

    Past investigations on stem cell-mediated recovery after stroke have limited their focus on the extent and morphological development of the ischemic lesion itself over time or on the integration capacity of the stem cell graft ex vivo However, an assessment of the long-term functional and structural improvement in vivo is essential to reliably quantify the regenerative capacity of cell implantation after stroke. We induced ischemic stroke in nude mice and implanted human neural stem cells (H9 derived) into the ipsilateral cortex in the acute phase. Functional and structural connectivity changes of the sensorimotor network were noninvasively monitored using magnetic resonance imaging for 3 months after stem cell implantation. A sharp decrease of the functional sensorimotor network extended even to the contralateral hemisphere, persisting for the whole 12 weeks of observation. In mice with stem cell implantation, functional networks were stabilized early on, pointing to a paracrine effect as an early supportive mechanism of the graft. This stabilization required the persistent vitality of the stem cells, monitored by bioluminescence imaging. Thus, we also observed deterioration of the early network stabilization upon vitality loss of the graft after a few weeks. Structural connectivity analysis showed fiber-density increases between the cortex and white matter regions occurring predominantly on the ischemic hemisphere. These fiber-density changes were nearly the same for both study groups. This motivated us to hypothesize that the stem cells can influence, via early paracrine effect, the functional networks, while observed structural changes are mainly stimulated by the ischemic event. SIGNIFICANCE STATEMENT In recent years, research on strokes has made a shift away from a focus on immediate ischemic effects and towards an emphasis on the long-range effects of the lesion on the whole brain. Outcome improvements in stem cell therapies also require the understanding of

  20. Walking reduces sensorimotor network connectivity compared to standing

    Science.gov (United States)

    2014-01-01

    Background Considerable effort has been devoted to mapping the functional and effective connectivity of the human brain, but these efforts have largely been limited to tasks involving stationary subjects. Recent advances with high-density electroencephalography (EEG) and Independent Components Analysis (ICA) have enabled study of electrocortical activity during human locomotion. The goal of this work was to measure the effective connectivity of cortical activity during human standing and walking. Methods We recorded 248-channels of EEG as eight young healthy subjects stood and walked on a treadmill both while performing a visual oddball discrimination task and not performing the task. ICA parsed underlying electrocortical, electromyographic, and artifact sources from the EEG signals. Inverse source modeling methods and clustering algorithms localized posterior, anterior, prefrontal, left sensorimotor, and right sensorimotor clusters of electrocortical sources across subjects. We applied a directional measure of connectivity, conditional Granger causality, to determine the effective connectivity between electrocortical sources. Results Connections involving sensorimotor clusters were weaker for walking than standing regardless of whether the subject was performing the simultaneous cognitive task or not. This finding supports the idea that cortical involvement during standing is greater than during walking, possibly because spinal neural networks play a greater role in locomotor control than standing control. Conversely, effective connectivity involving non-sensorimotor areas was stronger for walking than standing when subjects were engaged in the simultaneous cognitive task. Conclusions Our results suggest that standing results in greater functional connectivity between sensorimotor cortical areas than walking does. Greater cognitive attention to standing posture than to walking control could be one interpretation of that finding. These techniques could be applied

  1. Incremental learning of Bayesian sensorimotor models: from low-level behaviours to large-scale structure of the environment

    Science.gov (United States)

    Diard, Julien; Gilet, Estelle; Simonin, Éva; Bessière, Pierre

    2010-12-01

    This paper concerns the incremental learning of hierarchies of representations of space in artificial or natural cognitive systems. We propose a mathematical formalism for defining space representations (Bayesian Maps) and modelling their interaction in hierarchies of representations (sensorimotor interaction operator). We illustrate our formalism with a robotic experiment. Starting from a model based on the proximity to obstacles, we learn a new one related to the direction of the light source. It provides new behaviours, like phototaxis and photophobia. We then combine these two maps so as to identify parts of the environment where the way the two modalities interact is recognisable. This classification is a basis for learning a higher level of abstraction map that describes the large-scale structure of the environment. In the final model, the perception-action cycle is modelled by a hierarchy of sensorimotor models of increasing time and space scales, which provide navigation strategies of increasing complexities.

  2. High frequency somatosensory stimulation increases sensori-motor inhibition and leads to perceptual improvement in healthy subjects.

    Science.gov (United States)

    Rocchi, Lorenzo; Erro, Roberto; Antelmi, Elena; Berardelli, Alfredo; Tinazzi, Michele; Liguori, Rocco; Bhatia, Kailash; Rothwell, John

    2017-06-01

    High frequency repetitive somatosensory stimulation (HF-RSS), which is a patterned electric stimulation applied to the skin through surface electrodes, improves two-point discrimination, somatosensory temporal discrimination threshold (STDT) and motor performance in humans. However, the mechanisms which underlie these changes are still unknown. In particular, we hypothesize that refinement of inhibition might be responsible for the improvement in spatial and temporal perception. Fifteen healthy subjects underwent 45min of HF-RSS. Before and after the intervention several measures of inhibition in the primary somatosensory area (S1), such as paired-pulse somatosensory evoked potentials (pp-SEP), high-frequency oscillations (HFO), and STDT were tested, as well as tactile spatial acuity and short intracortical inhibition (SICI). HF-RSS increased inhibition in S1 tested by pp-SEP and HFO; these changes were correlated with improvement in STDT. HF-RSS also enhanced bumps detection, while there was no change in grating orientation test. Finally there was an increase in SICI, suggesting widespread changes in cortical sensorimotor interactions. These findings suggest that HF-RSS can improve spatial and temporal tactile abilities by increasing the effectiveness of inhibitory interactions in the somatosensory system. Moreover, HF-RSS induces changes in cortical sensorimotor interaction. HF-RSS is a repetitive electric stimulation technique able to modify the effectiveness of inhibitory circuitry in the somatosensory system and primary motor cortex. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.

  3. The effects of hemorrhagic parenchymal infarction on the establishment of sensori-motor structural and functional connectivity in early infancy

    Energy Technology Data Exchange (ETDEWEB)

    Arichi, T.; Edwards, A.D. [Kings College London, St Thomas' Hospital, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Imperial College London, Department of Bioengineering, London (United Kingdom); Counsell, S.J.; Mondi, V.; Tusor, N.; Merchant, N. [Kings College London, St Thomas' Hospital, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Allievi, A.G.; Burdet, E. [Imperial College London, Department of Bioengineering, London (United Kingdom); Chew, A.T. [Kings College London, St Thomas' Hospital, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom); Imperial College Healthcare NHS Trust, Department of Paediatrics, London (United Kingdom); Martinez-Biarge, M.; Cowan, F.M. [Imperial College Healthcare NHS Trust, Department of Paediatrics, London (United Kingdom)

    2014-11-15

    The objective of the study was to characterize alterations of structural and functional connectivity within the developing sensori-motor system in infants with focal perinatal brain injury and at high risk of cerebral palsy. Functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) data were used to study the developing functional and structural connectivity framework in six infants born prematurely at term equivalent age. This was first characterised in three infants without focal pathology, which was then compared to that derived from three infants with unilateral haemorrhagic parenchymal infarction and a subsequent focal periventricular white matter lesion who developed later haemiparesis. Functional responses to passive hand movement were in the contralateral perirolandic cortex, regardless of focal pathology. In infants with unilateral periventricular injury, afferent thalamo-cortical tracts appeared to have developed compensatory trajectories which circumvented areas of damage. In contrast, efferent corticospinal tracts showed marked asymmetry at term equivalent age following focal brain injury. Sensori-motor network analysis suggested that inter-hemispheric functional connectivity is largely preserved despite pathology and that impairment may be associated with adverse neurodevelopmental outcome. Following focal perinatal brain injury, altered structural and functional connectivity is already present and can be characterized with MRI at term equivalent age. The results of this small case series suggest that these techniques may provide valuable new information about prognosis and the pathophysiology underlying cerebral palsy. (orig.)

  4. Altered power spectral density in the resting-state sensorimotor network in patients with myotonic dystrophy type 1.

    Science.gov (United States)

    Park, Jin-Sung; Seo, Jeehye; Cha, Hyunsil; Song, Hui-Jin; Lee, Sang-Hoon; Jang, Kyung Eun; Lee, Hui Joong; Park, Juyoung; Lee, Ho-Won; Chang, Yongmin

    2018-01-17

    Myotonic dystrophy type 1 (DM1) is a multisystemic disease that involves the brain with several neurological symptoms. Although there were few imaging studies on DM1, no studies have investigated functional alterations in the sensorimotor network at rest in patients with DM1. In the current study, a power spectral density (PSD) analysis of resting-state fMRI data was performed to assess possible alteration in spontaneous neural activity of the sensorimotor network in patients with DM1. Compared to healthy controls, patients with DM1 showed higher PSD responses in the orbitofrontal cortex, parahippocampus and basal ganglia (corrected P < 0.05). Patients with DM1 showed higher PSD responses in white matter structures associated with motor function (corrected P < 0.05). Furthermore, correlation analysis indicated that the brain regions showing PSD differences were correlated with measures of motor performance (P < 0.05). In gray matter, our findings suggest that motor disability in DM1 is not an isolated deterioration of the motor power but a multimodal dysfunction that also involves the visual system. In addition, the widespread PSD alteration in white matter structures suggest that motor deficits in DM1 involve motor movement structures as well as structures important for its coordination and regulation.

  5. Pivotal role of anterior cingulate cortex in working memory after traumatic brain injury in youth

    Directory of Open Access Journals (Sweden)

    Fabienne eCazalis

    2011-01-01

    Full Text Available In this fMRI study, the functions of the Anterior Cingulate Cortex were studied in a group of adolescents who had sustained a moderate to severe Traumatic Brain Injury. A spatial working memory task with varying working memory loads, representing experimental conditions of increasing difficulty, was administered.In a cross-sectional comparison between the patients and a matched control group, patients performed worse than Controls, showing longer reaction times and lower response accuracy on the spatial working memory task. Brain imaging findings suggest a possible double-dissociation: activity of the Anterior Cingulate Cortex in the Traumatic Brain Injury group, but not in the Control group, was associated with task difficulty; conversely, activity of the left Sensorimotor Cortex in the Control group, but not in the TBI group, was correlated with task difficulty.In addition to the main cross-sectional study, a longitudinal study of a group of adolescent patients with moderate to severe Traumatic Brain Injury was done using fMRI and the same spatial working memory task. The patient group was studied at two time points: one time point during the post-acute phase and one time point 12 months later, during the chronic phase. Results indicated that patients' behavioral performance improved over time, suggesting cognitive recovery. Brain imaging findings suggest that, over this 12 month period, patients recruited less of the Anterior Cingulate Cortex and more of the left Sensorimotor Cortex in response to increasing task difficulty.The role of Anterior Cingulate Cortex in executive functions following a moderate to severe brain injury in adolescence is discussed within the context of conflicting models of the Anterior Cingulate Cortex functions in the existing literature.

  6. Dirty deeds and dirty bodies: Embodiment of the Macbeth effect is mapped topographically onto the somatosensory cortex.

    Science.gov (United States)

    Schaefer, Michael; Rotte, Michael; Heinze, Hans-Jochen; Denke, Claudia

    2015-12-21

    The theory of embodied cognition claims that knowledge is represented in modal systems derived from perception. Recent behavioral studies found evidence for this hypothesis, for example, by linking moral purity with physical cleansing (the Macbeth effect). Neurophysiological approaches provided further support by showing an involvement of sensorimotor cortices for embodied metaphors. However, the exact role of this brain region for embodied cognitions remains to be cleared. Here we demonstrate that the involvement of the sensorimotor cortex for the embodied metaphor of moral-purity is somatotopically organized. Participants enacted in scenarios where they had to perform immoral or moral acts either with their mouths or their hands. Results showed that mouthwash products were particularly desirable after lying in a voice mail and hand wash products were particularly desirable after writing a lie, thus demonstrating that the moral-purity metaphor is specific to the sensorimotor modality involved in earlier immoral behavior. FMRI results of this interaction showed activation in sensorimotor cortices during the evaluation phase that was somatotopically organized with respect to preceding lying in a voice mail (mouth-area) or in a written note (hand-area). Thus, the results provide evidence for a central role of the sensorimotor cortices for embodied metaphors.

  7. Please say what this word is-Vowel-extrinsic normalization in the sensorimotor control of speech.

    Science.gov (United States)

    Bourguignon, Nicolas J; Baum, Shari R; Shiller, Douglas M

    2016-07-01

    The extent to which the adaptive nature of speech perception influences the acoustic targets underlying speech production is not well understood. For example, listeners can rapidly accommodate to talker-dependent phonetic properties-a process known as vowel-extrinsic normalization-without altering their speech output. Recent evidence, however, shows that reinforcement-based learning in vowel perception alters the processing of speech auditory feedback, impacting sensorimotor control during vowel production. This suggests that more automatic and ubiquitous forms of perceptual plasticity, such as those characterizing perceptual talker normalization, may also impact the sensorimotor control of speech. To test this hypothesis, we set out to examine the possible effects of vowel-extrinsic normalization on experimental subjects' interpretation of their own speech outcomes. By combining a well-known manipulation of vowel-extrinsic normalization with speech auditory-motor adaptation, we show that exposure to different vowel spectral properties subsequently alters auditory feedback processing during speech production, thereby influencing speech motor adaptation. These findings extend the scope of perceptual normalization processes to include auditory feedback and support the idea that naturally occurring adaptations found in speech perception impact speech production. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  8. Neural correlates of sensorimotor gating: A metabolic positron emission tomography study in awake rats

    Directory of Open Access Journals (Sweden)

    Cathrin eRohleder

    2014-05-01

    Full Text Available Impaired sensorimotor gating occurs in neuropsychiatric disorders such as schizophrenia and can be measured using the prepulse inhibition (PPI paradigm of the acoustic startle response. This assay is frequently used to validate animal models of neuropsychiatric disorders and to explore the therapeutic potential of new drugs. The underlying neural network of PPI has been extensively studied with invasive methods and genetic modifications. However, its relevance for healthy untreated animals and the functional interplay between startle- and PPI-related areas during a PPI session is so far unknown. Therefore, we studied awake rats in a PPI paradigm, startle control and background noise control, combined with behavioral [18F]fluoro-2-deoxyglucose positron emission tomography (FDG-PET. Subtractive analyses between conditions were used to identify brain regions involved in startle and PPI processing in well-hearing Black hooded rats. For correlative analysis with regard to the amount of PPI we also included hearing-impaired Lister hooded rats that startled more often, because their hearing threshold was just below the lowest prepulses. Metabolic imaging showed that the brain areas proposed for startle and PPI mediation are active during PPI paradigms in healthy untreated rats. More importantly, we show for the first time that the whole PPI modulation network is active during passive PPI sessions, where no selective attention to prepulse or startle stimulus is required. We conclude that this reflects ongoing monitoring of stimulus significance and constant adjustment of sensorimotor gating.

  9. Intrinsic functional plasticity of the sensorimotor network in relapsing-remitting multiple sclerosis: evidence from a centrality analysis.

    Science.gov (United States)

    Zhuang, Ying; Zhou, Fuqing; Gong, Honghan

    2015-01-01

    Advanced MRI studies have revealed regional alterations in the sensorimotor cortex of patients with relapsing-remitting multiple sclerosis (RRMS). However, the organizational features underlying the relapsing phase and the subsequent remitting phase have not been directly shown at the functional network or the connectome level. Therefore, this study aimed to characterize MS-related centrality disturbances of the sensorimotor network (SMN) and to assess network integrity and connectedness. Thirty-four patients with clinically definite RRMS and well-matched healthy controls participated in the study. Twenty-three patients in the remitting phase underwent one resting-state functional MRI, and 11 patients in the relapsing-remitting phase underwent two different MRIs. We measured voxel-wise centrality metrics to determine direct (degree centrality, DC) and global (eigenvector centrality, EC) functional relationships across the entire SMN. In the relapsing phase, DC was significantly decreased in the bilateral primary motor and somatosensory cortex (M1/S1), left dorsal premotor (PMd), and operculum-integrated regions. However, DC was increased in the peripheral SMN areas. The decrease in DC in the bilateral M1/S1 was associated with the expanded disability status scale (EDSS) and total white matter lesion loads (TWMLLs), suggesting that this adaptive response is related to the extent of brain damage in the rapid-onset attack stage. During the remission process, these alterations in centrality were restored in the bilateral M1/S1 and peripheral SMN areas. In the remitting phase, DC was reduced in the premotor, supplementary motor, and operculum-integrated regions, reflecting an adaptive response due to brain atrophy. However, DC was enhanced in the right M1 and left parietal-integrated regions, indicating chronic reorganization. In both the relapsing and remitting phases, the changes in EC and DC were similar. The alterations in centrality within the SMN indicate rapid

  10. Intrinsic functional plasticity of the sensorimotor network in relapsing-remitting multiple sclerosis: evidence from a centrality analysis.

    Directory of Open Access Journals (Sweden)

    Ying Zhuang

    Full Text Available Advanced MRI studies have revealed regional alterations in the sensorimotor cortex of patients with relapsing-remitting multiple sclerosis (RRMS. However, the organizational features underlying the relapsing phase and the subsequent remitting phase have not been directly shown at the functional network or the connectome level. Therefore, this study aimed to characterize MS-related centrality disturbances of the sensorimotor network (SMN and to assess network integrity and connectedness.Thirty-four patients with clinically definite RRMS and well-matched healthy controls participated in the study. Twenty-three patients in the remitting phase underwent one resting-state functional MRI, and 11 patients in the relapsing-remitting phase underwent two different MRIs. We measured voxel-wise centrality metrics to determine direct (degree centrality, DC and global (eigenvector centrality, EC functional relationships across the entire SMN.In the relapsing phase, DC was significantly decreased in the bilateral primary motor and somatosensory cortex (M1/S1, left dorsal premotor (PMd, and operculum-integrated regions. However, DC was increased in the peripheral SMN areas. The decrease in DC in the bilateral M1/S1 was associated with the expanded disability status scale (EDSS and total white matter lesion loads (TWMLLs, suggesting that this adaptive response is related to the extent of brain damage in the rapid-onset attack stage. During the remission process, these alterations in centrality were restored in the bilateral M1/S1 and peripheral SMN areas. In the remitting phase, DC was reduced in the premotor, supplementary motor, and operculum-integrated regions, reflecting an adaptive response due to brain atrophy. However, DC was enhanced in the right M1 and left parietal-integrated regions, indicating chronic reorganization. In both the relapsing and remitting phases, the changes in EC and DC were similar.The alterations in centrality within the SMN indicate

  11. Sensorimotor integration for functional recovery and the Bobath approach.

    Science.gov (United States)

    Levin, Mindy F; Panturin, Elia

    2011-04-01

    Bobath therapy is used to treat patients with neurological disorders. Bobath practitioners use hands-on approaches to elicit and reestablish typical movement patterns through therapist-controlled sensorimotor experiences within the context of task accomplishment. One aspect of Bobath practice, the recovery of sensorimotor function, is reviewed within the framework of current motor control theories. We focus on the role of sensory information in movement production, the relationship between posture and movement and concepts related to motor recovery and compensation with respect to this therapeutic approach. We suggest that a major barrier to the evaluation of the therapeutic effectiveness of the Bobath concept is the lack of a unified framework for both experimental identification and treatment of neurological motor deficits. More conclusive analysis of therapeutic effectiveness requires the development of specific outcomes that measure movement quality.

  12. Fashioning the Face: Sensorimotor Simulation Contributes to Facial Expression Recognition.

    Science.gov (United States)

    Wood, Adrienne; Rychlowska, Magdalena; Korb, Sebastian; Niedenthal, Paula

    2016-03-01

    When we observe a facial expression of emotion, we often mimic it. This automatic mimicry reflects underlying sensorimotor simulation that supports accurate emotion recognition. Why this is so is becoming more obvious: emotions are patterns of expressive, behavioral, physiological, and subjective feeling responses. Activation of one component can therefore automatically activate other components. When people simulate a perceived facial expression, they partially activate the corresponding emotional state in themselves, which provides a basis for inferring the underlying emotion of the expresser. We integrate recent evidence in favor of a role for sensorimotor simulation in emotion recognition. We then connect this account to a domain-general understanding of how sensory information from multiple modalities is integrated to generate perceptual predictions in the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Major remaining gaps in models of sensorimotor systems.

    Science.gov (United States)

    Loeb, Gerald E; Tsianos, George A

    2015-01-01

    Experimental descriptions of the anatomy and physiology of individual components of sensorimotor systems have revealed substantial complexity, making it difficult to intuit how complete systems might work. This has led to increasing efforts to develop and employ mathematical models to study the emergent properties of such systems. Conversely, the development of such models tends to reveal shortcomings in the experimental database upon which models must be constructed and validated. In both cases models are most useful when they point up discrepancies between what we think we know and possibilities that we may have overlooked. This overview considers those components of complete sensorimotor systems that currently appear to be potentially important but poorly understood. These are generally omitted completely from modeled systems or buried in implicit assumptions that underlie the design of the model.

  14. Dynamical states in the sensorimotor loop of a rolling robot

    Science.gov (United States)

    Sándor, Bulcsú; Jahn, Tim; Martin, Laura; Echeveste, Rodrigo; Gros, Claudius

    We investigate the closed sensorimotor loop of a simple rolling robot as a dynamical system. Using the LpzRobots simulation package, we construct robots with cylindrical body, controlled by a single proprioceptual neuron with a time dependent threshold. Despite its simplicity, we obtain a rich set of rolling modes, as a result of the self-organizing processes arising through the feedback within the sensorimotor loop. These rolling modes are robust against environmental noise, since they correspond to stable limit cycle attractors. However, for certain parameters they also allow for explorative behavior via internal noise induced switching. Furthermore, we also find a region of parameters in which the motion is fully embodied, where, in engineering terms, the engine powering the motion of the robot is turned on dynamically through the feedback of its very motion.

  15. Sensorimotor Integration in Speech Processing: Computational Basis and Neural Organization

    Science.gov (United States)

    Hickok, Gregory; Houde, John; Rong, Feng

    2011-01-01

    Sensorimotor integration is an active domain of speech research and is characterized by two main ideas, that the auditory system is critically involved in speech production, and that the motor system is critically involved in speech perception. Despite the complementarity of these ideas, there is little crosstalk between these literatures. We propose an integrative model of the speech-related “dorsal stream” in which sensorimotor interaction primarily supports speech production, in the form of a state feedback control architecture. A critical component of this control system is forward sensory prediction, which affords a natural mechanism for limited motor influence on perception, as recent perceptual research has suggested. Evidence shows that this influence is modulatory but not necessary for speech perception. The neuroanatomy of the proposed circuit is discussed as well as some probable clinical correlates including conduction aphasia, stuttering, and aspects of schizophrenia. PMID:21315253

  16. Recent advances in laryngeal sensorimotor control for voice, speech and swallowing.

    Science.gov (United States)

    Ludlow, Christy L

    2004-06-01

    This article reviews advances in knowledge on laryngeal sensorimotor control affecting the assessment, understanding, and treatment of laryngeal motor control disorders in voice, speech, and swallowing. Three topics are covered: new knowledge on laryngeal innervation and central nervous system control from basic research studies, the role of laryngeal sensation in normal swallowing and dysphagia in patients, and new approaches to the restoration of laryngeal motor control after recurrent laryngeal nerve disorders. A significant advance this year was tracing the efferent pathways from the cortex to the brainstem in monkeys. This provided new information on subcortical and brainstem connections in the laryngeal efferent pathways. Laryngeal sensory feedback continued to receive attention, and the role of sensory feedback in the control of the pharyngeal phase of swallowing is now well established. Further developments in neuromotor monitoring of the recurrent laryngeal nerve during thyroidectomy were seen, and a large case series recommended that these techniques become standard practice for surgery for thyroid benign recurrence or malignancy. Finally, the first tissue engineering papers in the field of vocal fold tissue and nerve restoration were published this year, beginning an exciting new approach to restoration of laryngeal motor control. Considerable attention has been given to laryngeal muscle physiology, denervation, and sensation in neurolaryngology. Relatively limited understanding is available regarding the central nervous system integrative control of laryngeal function for speech, respiration, and swallowing.

  17. THE QUESTION SENSORIMOTOR REACTIONS TYPING IN ATHLETES

    OpenAIRE

    Romanchuk A.P.

    2007-01-01

    At research of 149 sportsmen, engaged in the different types of sport, with the use of KID-3 there are features of ranging set 25 parameters of sensomotor function. The non-parametric analysis of combinations of levels of the sensomotor regulation allowed to set 12 types of sensomotor function, that will give possibility of their use in practice of the medical-pedagogical looking after sportsmen.

  18. Two Mechanisms of Sensorimotor Set Adaptation to Inclined Stance

    Directory of Open Access Journals (Sweden)

    Kyoung-Hyun Lee

    2017-10-01

    Full Text Available Orientation of posture relative to the environment depends on the contributions from the somatosensory, vestibular, and visual systems mixed in varying proportions to produce a sensorimotor set. Here, we probed the sensorimotor set composition using a postural adaptation task in which healthy adults stood on an inclined surface for 3 min. Upon returning to a horizontal surface, participants displayed a range of postural orientations – from an aftereffect that consisted of a large forward postural lean to an upright stance with little or no aftereffect. It has been hypothesized that the post-incline postural change depends on each individual’s sensorimotor set: whether the set was dominated by the somatosensory or vestibular system: Somatosensory dominance would cause the lean aftereffect whereas vestibular dominance should steer stance posture toward upright orientation. We investigated the individuals who displayed somatosensory dominance by manipulating their attention to spatial orientation. We introduced a distraction condition in which subjects concurrently performed a difficult arithmetic subtraction task. This manipulation altered the time course of their post-incline aftereffect. When not distracted, participants returned to upright stance within the 3-min period. However, they continued leaning forward when distracted. These results suggest that the mechanism of sensorimotor set adaptation to inclined stance comprises at least two components. The first component reflects the dominant contribution from the somatosensory system. Since the postural lean was observed among these subjects even when they were not distracted, it suggests that the aftereffect is difficult to overcome. The second component includes a covert attentional component which manifests as the dissipation of the aftereffect and the return of posture to upright orientation.

  19. Virtual Reality Training: "Cybersickness" and Effects on Sensorimotor Functions

    Science.gov (United States)

    Harm, Deborah L.; Taylor, Laura C.

    2003-01-01

    The overall goal of this study is to examine the extent to which exposure to virtual reality (VR) systems produces motion sickness and disrupts sensorimotor functions. Two of the major problems in using VRs are: 1) potential "cybersickness", a form of motion sickness, and 2) maladaptive sensorimotor coordination following virtual environment (VE) training. It is likely that users will eventually adapt to any unpleasant perceptual experiences in a virtual environment. However the most critical problem for training applications is that sensorimotor coordination strategies learned in the VE may not be similar to the responses required in the real environment. This study will evaluate and compare responses to the two types of VR delivery systems (head-mounted display [HMD] and a dome-projection system [DOME]), two exposure duration periods (30 minutes or 60 minutes), and repeated exposures (3 sessions). Specific responses that we will examine include cybersickness severity and symptom patterns, and several sensorimotor functions (eye-hea.d and eye-head-hand coordination, and postural equilibrium). To date, all hardware and software acquisition, development, integration and testing has been completed. A database has been developed and tested for the input, management and storage of all questionnaire data. All data analysis scripts have been developed and tested. Data was collected from 20 subjects in a pilot study that was conducted to determine the amount of training necessary to achieve a stable performance level. Seven subjects are currently enrolled in the study designed to examine the effects of exposure to VE systems on postural control. Data has been collected from two subjects, and it is expected that the results from ten subjects will be presented.

  20. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling

    Science.gov (United States)

    Aguilera, Miguel; Bedia, Manuel G.; Barandiaran, Xabier E.

    2016-01-01

    The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of “internalist neuroscience.” A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We

  1. ROBUSTNESS OF GUIDED SELF-ORGANIZATION AGAINST SENSORIMOTOR DISRUPTIONS

    OpenAIRE

    GEORG MARTIUS

    2013-01-01

    Self-organizing processes are crucial for the development of living beings. Practical applications in robots may benefit from the self-organization of behavior, e.g., to increase fault tolerance and enhance flexibility, provided that external goals can also be achieved. We present results on the guidance of self-organizing control by visual target stimuli and show a remarkable robustness to sensorimotor disruptions. In a proof of concept study an autonomous wheeled robot is learning an object...

  2. Bodily skill and internal representation in sensorimotor perception

    OpenAIRE

    Silverman, David

    2017-01-01

    The sensorimotor theory of perceptual experience claims that perception is constituted by bodily interaction with the environment, drawing on practical knowledge of the systematic ways that sensory inputs are disposed to change as a result of movement. Despite the theory’s associations with enactivism, it is sometimes claimed that the appeal to ‘knowledge’ means that the theory is committed to giving an essential theoretical role to internal representation, and therefore to a form of orthodox...

  3. Modeling habits as self-sustaining patterns of sensorimotor behavior

    Science.gov (United States)

    Egbert, Matthew D.; Barandiaran, Xabier E.

    2014-01-01

    In the recent history of psychology and cognitive neuroscience, the notion of habit has been reduced to a stimulus-triggered response probability correlation. In this paper we use a computational model to present an alternative theoretical view (with some philosophical implications), where habits are seen as self-maintaining patterns of behavior that share properties in common with self-maintaining biological processes, and that inhabit a complex ecological context, including the presence and influence of other habits. Far from mechanical automatisms, this organismic and self-organizing concept of habit can overcome the dominating atomistic and statistical conceptions, and the high temporal resolution effects of situatedness, embodiment and sensorimotor loops emerge as playing a more central, subtle and complex role in the organization of behavior. The model is based on a novel “iterant deformable sensorimotor medium (IDSM),” designed such that trajectories taken through sensorimotor-space increase the likelihood that in the future, similar trajectories will be taken. We couple the IDSM to sensors and motors of a simulated robot, and show that under certain conditions, the IDSM conditions, the IDSM forms self-maintaining patterns of activity that operate across the IDSM, the robot's body, and the environment. We present various environments and the resulting habits that form in them. The model acts as an abstraction of habits at a much needed sensorimotor “meso-scale” between microscopic neuron-based models and macroscopic descriptions of behavior. Finally, we discuss how this model and extensions of it can help us understand aspects of behavioral self-organization, historicity and autonomy that remain out of the scope of contemporary representationalist frameworks. PMID:25152724

  4. Sensorimotor Adaptability Training Improves Motor and Dual-Task Performance

    Science.gov (United States)

    Bloomberg, J.J.; Peters, B.T.; Mulavara, A.P.; Brady, R.; Batson, C.; Cohen, H.S.

    2009-01-01

    The overall objective of our project is to develop a sensorimotor adaptability (SA) training program designed to facilitate recovery of functional capabilities when astronauts transition to different gravitational environments. The goal of our current study was to determine if SA training using variation in visual flow and support surface motion produces improved performance in a novel sensory environment and demonstrate the retention characteristics of SA training.

  5. Two Mechanisms of Sensorimotor Set Adaptation to Inclined Stance.

    Science.gov (United States)

    Lee, Kyoung-Hyun; Baksh, Asheeba; Bryant, Alyssa; McGowan, Mollie; McMillan, Ryan; Chong, Raymond K

    2017-01-01

    Orientation of posture relative to the environment depends on the contributions from the somatosensory, vestibular, and visual systems mixed in varying proportions to produce a sensorimotor set. Here, we probed the sensorimotor set composition using a postural adaptation task in which healthy adults stood on an inclined surface for 3 min. Upon returning to a horizontal surface, participants displayed a range of postural orientations - from an aftereffect that consisted of a large forward postural lean to an upright stance with little or no aftereffect. It has been hypothesized that the post-incline postural change depends on each individual's sensorimotor set: whether the set was dominated by the somatosensory or vestibular system: Somatosensory dominance would cause the lean aftereffect whereas vestibular dominance should steer stance posture toward upright orientation. We investigated the individuals who displayed somatosensory dominance by manipulating their attention to spatial orientation. We introduced a distraction condition in which subjects concurrently performed a difficult arithmetic subtraction task. This manipulation altered the time course of their post-incline aftereffect. When not distracted, participants returned to upright stance within the 3-min period. However, they continued leaning forward when distracted. These results suggest that the mechanism of sensorimotor set adaptation to inclined stance comprises at least two components. The first component reflects the dominant contribution from the somatosensory system. Since the postural lean was observed among these subjects even when they were not distracted, it suggests that the aftereffect is difficult to overcome. The second component includes a covert attentional component which manifests as the dissipation of the aftereffect and the return of posture to upright orientation.

  6. Principles of minimal cognition: Casting cognition as sensorimotor coordination

    OpenAIRE

    van Duijn, Marc; Keijzer, F.A.; Franken, Daan

    2006-01-01

    Within the cognitive sciences, cognition tends to be interpreted from an anthropocentric perspective, involving a stringent set of human capabilities. Instead, we suggest that cognition is better explicated as a much more general biological phenomenon, allowing the lower bound of cognition to extend much further down the phylogenetic scale. We argue that elementary forms of cognition can already be witnessed in prokaryotes possessing a functional sensorimotor analogue of the nervous system. B...

  7. Stochastic Bayesian Computation for Autonomous Robot Sensorimotor System

    OpenAIRE

    Faix, Marvin; Lobo, Jorge; Laurent, Raphael; Vaufreydaz, Dominique; Mazer, Emmanuel

    2015-01-01

    International audience; This paper presents a stochastic computing implementationof a Bayesian sensorimotor system that performsobstacle avoidance for an autonomous robot. In a previouswork we have shown that we are able to automatically design aprobabilistic machine which computes inferences on a Bayesianmodel using stochastic arithmetic. We start from a high levelBayesian model description, then our compiler generates anelectronic circuit, corresponding to the probabilistic inference,operat...

  8. Neural representation of the sensorimotor speech-action-repository

    Directory of Open Access Journals (Sweden)

    Cornelia eEckers

    2013-04-01

    Full Text Available A speech-action-repository (SAR or mental syllabary has been proposed as a central module for sensorimotor processing of syllables. In this approach, syllables occurring frequently within language are assumed to be stored as holistic sensorimotor patterns, while non-frequent syllables need to be assembled from sub-syllabic units. Thus, frequent syllables are processed efficiently and quickly during production or perception by a direct activation of their sensorimotor patterns. Whereas several behavioral psycholinguistic studies provided evidence in support of the existence of a syllabary, fMRI studies have failed to demonstrate its neural reality. In the present fMRI study a reaction paradigm using homogeneous vs. heterogeneous syllable blocks are used during overt vs. covert speech production and auditory vs. visual presentation modes. Two complementary data analyses were performed: (1 in a logical conjunction, activation for syllable processing independent of input modality and response mode was assessed, in order to support the assumption of existence of a supramodal hub within a SAR. (2 In addition priming effects in the BOLD response in homogeneous vs. heterogeneous blocks were measured in order to identify brain regions, which indicate reduced activity during multiple production/perception repetitions of a specific syllable in order to determine state maps. Auditory-visual conjunction analysis revealed an activation network comprising bilateral precentral gyrus and left inferior frontal gyrus (area 44. These results are compatible with the notion of a supramodal hub within the SAR. The main effect of homogeneity priming revealed an activation pattern of areas within frontal, temporal, and parietal lobe. These findings are taken to represent sensorimotor state maps of the SAR. In conclusion, the present study provided preliminary evidence for a SAR.

  9. Saccades and pursuit: two outcomes of a single sensorimotor process

    OpenAIRE

    Orban de Xivry, Jean-Jacques; Lefèvre, Philippe

    2007-01-01

    Saccades and smooth pursuit eye movements are two different modes of oculomotor control. Saccades are primarily directed toward stationary targets whereas smooth pursuit is elicited to track moving targets. In recent years, behavioural and neurophysiological data demonstrated that both types of eye movements work in synergy for visual tracking. This suggests that saccades and pursuit are two outcomes of a single sensorimotor process that aims at orienting the visual axis.

  10. Affective and sensorimotor components of emotional prosody generation.

    Science.gov (United States)

    Pichon, Swann; Kell, Christian A

    2013-01-23

    Although advances have been made regarding how the brain perceives emotional prosody, the neural bases involved in the generation of affective prosody remain unclear and debated. Two models have been forged on the basis of clinical observations: a first model proposes that the right hemisphere sustains production and comprehension of emotional prosody, while a second model proposes that emotional prosody relies heavily on basal ganglia. Here, we tested their predictions in two functional magnetic resonance imaging experiments that used a cue-target paradigm, which allows distinguishing affective from sensorimotor aspects of emotional prosody generation. Both experiments show that when participants prepare for emotional prosody, bilateral ventral striatum is specifically activated and connected to temporal poles and anterior insula, regions in which lesions frequently cause dysprosody. The bilateral dorsal striatum is more sensitive to cognitive and motor aspects of emotional prosody preparation and production and is more strongly connected to the sensorimotor speech network compared with the ventral striatum. Right lateralization during increased prosodic processing is confined to the posterior superior temporal sulcus, a region previously associated with perception of emotional prosody. Our data thus provide physiological evidence supporting both models and suggest that bilateral basal ganglia are involved in modulating motor behavior as a function of affective state. Right lateralization of cortical regions mobilized for prosody control could point to efficient processing of slowly changing acoustic speech parameters in the ventral stream and thus identify sensorimotor processing as an important factor contributing to right lateralization of prosody.

  11. Comparative study between bone marrow mononuclear fraction and mesenchymal stem cells treatment in sensorimotor recovery after focal cortical ablation in rats

    Directory of Open Access Journals (Sweden)

    de Freitas Helder

    2012-12-01

    Full Text Available Abstract Background Different models of cortical lesion lead to different effects on plasticity of connections and loss of function. In opposition to ischemia, cortical lesion made by ablation does not induce significant adaptive plasticity of corticocortical and corticostriatal projections and leads to functional alterations other than those observed after ischemia. We have demonstrated sensorimotor recovery after treatment with bone marrow-derived mesenchymal stem cells (MSCs or bone marrow mononuclear cells (BMMCs in a model of focal cortical ischemia. Here, we extended this analysis evaluating the effect of these cells on sensorimotor recovery after focal cortical ablation, reproducing the same size and location of previous ischemic lesion. Findings Focal cerebral aspiration of the six cortical layers in left frontoparietal cortex was performed in male Wistar rats. One day later, MSCs or BMMCs were administrated (i.v. in the ablated animals. Vehicle was administrated in the control group. Sensorimotor tests were performed before and after injury followed by i.v. injection. The monitoring of functional recovery was performed weekly during three post-ablation months. The results showed significant sensorimotor recovery with both treatments, whereas control groups had no recovery. Moreover, both cell types induced the same level of recovery. Conclusions Bone marrow cells showed therapeutic efficacy in a model of brain injury known to promote low structural plasticity. Thus, the results support the idea of BMMCs as better candidates to treat acute CNS injuries than MSCs, since they have the same therapeutic potential, but its obtainment for autologous transplantation has been shown to be faster and easier.

  12. Models of basal ganglia and cerebellum for sensorimotor integration and predictive control

    Science.gov (United States)

    Jabri, Marwan A.; Huang, Jerry; Coenen, Olivier J. D.; Sejnowski, Terrence J.

    2000-10-01

    This paper presents a sensorimotor architecture integrating computational models of a cerebellum and a basal ganglia and operating on a microrobot. The computational models enable a microrobot to learn to track a moving object and anticipate future positions using a CCD camera. The architecture features pre-processing modules for coordinate transformation and instantaneous orientation extraction. Learning of motor control is implemented using predictive Hebbian reinforcement-learning algorithm in the basal ganglia model. Learning of sensory predictions makes use of a combination of long-term depression (LTD) and long-term potentiation (LTP) adaptation rules within the cerebellum model. The basal ganglia model uses the visual inputs to develop sensorimotor mapping for motor control, while the cerebellum module uses robot orientation and world- coordinate transformed inputs to predict the location of the moving object in a robot centered coordinate system. We propose several hypotheses about the functional role of cell populations in the cerebellum and argue that mossy fiber projections to the deep cerebellar nucleus (DCN) could play a coordinate transformation role and act as gain fields. We propose that such transformation could be learnt early in the brain development stages and could be guided by the activity of the climbing fibers. Proprioceptor mossy fibers projecting to the DCN and providing robot orientation with respect to a reference system could be involved in this case. Other mossy fibers carrying visual sensory input provide visual patterns to the granule cells. The combined activities of the granule and the Purkinje cells store spatial representations of the target patterns. The combinations of mossy and Purkinje projections to the DCN provide a prediction of the location of the moving target taking into consideration the robot orientation. Results of lesion simulations based on our model show degradations similar to those reported in cerebellar lesion

  13. Etude du cortex sensori-moteur en Imagerie par Résonance Magnétique Fonctionnelle : du sujet sain à l'enfant avec paralysie cérébrale

    OpenAIRE

    Dinomais, Mickael

    2013-01-01

    Cerebral palsy (CP) is a non-progressive injury to the developing central nervous system resulting in permanent disorders of the development of movement and posture, causing activity limitation. Therefore physical and rehabilitation medicine has a particular interest in the study of organization and reorganization of the sensorimotor cortex following early brain injury in order to propose new methods for motor rehabilitation. We first showed that motor cortex could be analyzed in functional m...

  14. Changes in neural resting state activity in primary and higher-order motor areas induced by a short sensorimotor intervention based on the Feldenkrais method.

    Science.gov (United States)

    Verrel, Julius; Almagor, Eilat; Schumann, Frank; Lindenberger, Ulman; Kühn, Simone

    2015-01-01

    We use functional magnetic resonance imaging to investigate short-term neural effects of a brief sensorimotor intervention adapted from the Feldenkrais method, a movement-based learning method. Twenty-one participants (10 men, 19-30 years) took part in the study. Participants were in a supine position in the scanner with extended legs while an experienced Feldenkrais practitioner used a planar board to touch and apply minimal force to different parts of the sole and toes of their left foot under two experimental conditions. In the local condition, the practitioner explored movement within foot and ankle. In the global condition, the practitioner focused on the connection and support from the foot to the rest of the body. Before (baseline) and after each intervention (post-local, post-global), we measured brain activity during intermittent pushing/releasing with the left leg and during resting state. Independent localizer tasks were used to identify regions of interest (ROI). Brain activity during left-foot pushing did not significantly differ between conditions in sensorimotor areas. Resting state activity (regional homogeneity, ReHo) increased from baseline to post-local in medial right motor cortex, and from baseline to post-global in the left supplementary/cingulate motor area. Contrasting post-global to post-local showed higher ReHo in right lateral motor cortex. ROI analyses showed significant increases in ReHo in pushing-related areas from baseline to both post-local and post-global, and this increase tended to be more pronounced post-local. The results of this exploratory study show that a short, non-intrusive sensorimotor intervention can have short-term effects on spontaneous cortical activity in functionally related brain regions. Increased resting state activity in higher-order motor areas supports the hypothesis that the global intervention engages action-related neural processes.

  15. Changes in neural resting state activity in primary and higher-order motor areas induced by a short sensorimotor intervention based on the Feldenkrais method

    Directory of Open Access Journals (Sweden)

    Julius eVerrel

    2015-04-01

    Full Text Available We use functional magnetic resonance imaging to investigate short-term neural effects of a brief sensorimotor intervention adapted from the Feldenkrais method, a movement-based learning method. Twenty-one participants (10 men, 19-30 years took part in the study. Participants were in a supine position in the scanner with extended legs while an experienced Feldenkrais practitioner used a planar board to touch and apply minimal force to different parts of the sole and toes of their left foot under two experimental conditions. In the local condition, the practitioner explored movement within foot and ankle. In the global condition, the practitioner focused on the connection and support from the foot to the rest of the body. Before (baseline and after each intervention (post-local, post-global, we measured brain activity during intermittent pushing/releasing with the left leg and during resting state. Independent localizer tasks were used to identify regions of interest (ROI.Brain activity during left-foot pushing did not significantly differ between conditions in sensorimotor areas. Resting state activity (regional homogeneity, ReHo increased from baseline to post-local in medial right motor cortex, and from baseline to post-global in the left supplementary/cingulate motor area. Contrasting post-global to post-local showed higher ReHo in right lateral motor cortex. ROI analyses showed significant increases in ReHo in pushing-related areas from baseline to both post-local and post-global, and this increase tended to be more pronounced post-local. The results of this exploratory study show that a short, non-intrusive sensorimotor intervention can have short-term effects on spontaneous cortical activity in functionally related brain regions. Increased resting state activity in higher-order motor areas supports the hypothesis that the global intervention engages action-related neural processes.

  16. A Protocol for Evaluation and Rehabilitation of Distal Radius Fractures Using Sensorimotor Input: A Case Series.

    Science.gov (United States)

    Wollstein, Ronit; Michael, Dafna; Harel, Hani

    2017-06-01

    Proprioception and sensorimotor input are used to treat neurological and joint injuries. Following distal radius fractures (DRF) there is a temporary loss of proprioception that should be addressed. We created a protocol for evaluation, and a treatment plan following wrist surgery that is based on proprioceptive and sensorimotor input. We describe a series of patients undergoing surgery for DRF that were evaluated and treated with these protocols. Both evaluation and treatment protocols included comprehensive sensorimotor procedures performed with eyes open and closed. These included Semmes- Weinstein, static and moving 2-point discrimination, vibration, temperature testing, Moberg pick-up- test, stereognosis and proprioception. A series of twelve patients was evaluated and treated with the protocol following surgical treatment for DRF. Patients demonstrated significant sensorimotor deficits, which improved utilizing the comprehensive sensorimotor treatment protocol. Further study is necessary to validate the results of this pilot series. Use of proprioception and sensorimotor input may improve outcomes of rehabilitation following DRF.

  17. Dynamics of Bayesian non-Gaussian sensorimotor learning with multiple time scales

    Science.gov (United States)

    Zhou, Baohua; Hofmann, David; Sober, Samuel; Nemenman, Ilya

    Various theoretical and experimental studies have suggested that sensorimotor learning in animals happens on multiple time scales. In such models, animals can respond to perturbations quickly but keep memories for a long period of time. However, those previous models only focus on average learning behaviors. Here, we propose a model with multiple time scales that deals with the dynamics of whole behavior distributions. The model includes multiple memories, each with a non-Gaussian distribution and its own associated time scale. The memories are combined to generate a distribution of the desired motor command. Our model explains simultaneously the dynamics of distributions of the songbird vocal behaviors in various experiments, including adaptations after step changes or ramps in the error signals and dynamics of forgetting during the washout period, where an immediate sharp approach to the baseline is followed by a prolonged decay. This work was supported partially by NIH Grant # 1 R01 EB022872, and NIH Grant # NS084844.

  18. Daily repetitive sensory stimulation of the paretic hand for the treatment of sensorimotor deficits in patients with subacute stroke: RESET, a randomized, sham-controlled trial.

    Science.gov (United States)

    Kattenstroth, Jan C; Kalisch, Tobias; Sczesny-Kaiser, Matthias; Greulich, Wolfgang; Tegenthoff, Martin; Dinse, Hubert R

    2018-01-09

    Repetitive sensory stimulation (RSS) adapts the timing of stimulation protocols used in cellular studies to induce synaptic plasticity. In healthy subjects, RSS leads to widespread sensorimotor cortical reorganization paralleled by improved sensorimotor behavior. Here, we investigated whether RSS reduces sensorimotor upper limb impairment in patients with subacute stroke more effectively than conventional therapy. A single-blinded sham-controlled clinical trial assessed the effectiveness of RSS in treating sensorimotor deficits of the upper limbs. Patients with subacute unilateral ischemic stroke were randomly assigned to receive standard therapy in combination with RSS or with sham RSS. Patients were masked to treatment allocation. RSS consisted of intermittent 20 Hz electrical stimulation applied on the affected hand for 45 min/day, 5 days per week, for 2 weeks, and was transmitted using custom-made stimulation-gloves with built-in electrodes contacting each fingertip separately. Before and after the intervention, we assessed light-touch and tactile discrimination, proprioception, dexterity, grip force, and subtasks of the Jebsen Taylor hand-function test for the non-affected and the affected hand. Data from these quantitative tests were combined into a total performance index serving as primary outcome measure. In addition, tolerability and side effects of RSS intervention were recorded. Seventy one eligible patients were enrolled and randomly assigned to receive RSS treatment (n = 35) or sham RSS (n = 36). Data of 25 patients were not completed because they were transferred to another hospital, resulting in n = 23 for each group. Before treatment, sensorimotor performance between groups was balanced (p = 0.237). After 2 weeks of the intervention, patients in the group receiving standard therapy with RSS showed significantly better restored sensorimotor function than the control group (standardized mean difference 0.57; 95% CI -0

  19. Perspectives on human-human sensorimotor interactions for the design of rehabilitation robots.

    Science.gov (United States)

    Sawers, Andrew; Ting, Lena H

    2014-10-06

    Physical interactions between patients and therapists during rehabilitation have served as motivation for the design of rehabilitation robots, yet we lack a fundamental understanding of the principles governing such human-human interactions (HHI). Here we review the literature and pose important open questions regarding sensorimotor interaction during HHI that could facilitate the design of human-robot interactions (HRI) and haptic interfaces for rehabilitation. Based on the goals of physical rehabilitation, three subcategories of sensorimotor interaction are identified: sensorimotor collaboration, sensorimotor assistance, and sensorimotor education. Prior research has focused primarily on sensorimotor collaboration and is generally limited to relatively constrained visuomotor tasks. Moreover, the mechanisms by which performance improvements are achieved during sensorimotor cooperation with haptic interaction remains unknown. We propose that the effects of role assignment, motor redundancy, and skill level in sensorimotor cooperation should be explicitly studied. Additionally, the importance of haptic interactions may be better revealed in tasks that do not require visual feedback. Finally, cooperative motor tasks that allow for motor improvement during solo performance to be examined may be particularly relevant for rehabilitation robotics. Identifying principles that guide human-human sensorimotor interactions may lead to the development of robots that can physically interact with humans in more intuitive and biologically inspired ways, thereby enhancing rehabilitation outcomes.

  20. Sensorimotor Processing in the Basal Ganglia Leads to Transient Beta Oscillations during Behavior.

    Science.gov (United States)

    Mirzaei, Amin; Kumar, Arvind; Leventhal, Daniel; Mallet, Nicolas; Aertsen, Ad; Berke, Joshua; Schmidt, Robert

    2017-11-15

    Brief epochs of beta oscillations have been implicated in sensorimotor control in the basal ganglia of task-performing healthy animals. However, which neural processes underlie their generation and how they are affected by sensorimotor processing remains unclear. To determine the mechanisms underlying transient beta oscillations in the LFP, we combined computational modeling of the subthalamo-pallidal network for the generation of beta oscillations with realistic stimulation patterns derived from single-unit data recorded from different basal ganglia subregions in rats performing a cued choice task. In the recordings, we found distinct firing patterns in the striatum, globus pallidus, and subthalamic nucleus related to sensory and motor events during the behavioral task. Using these firing patterns to generate realistic inputs to our network model led to transient beta oscillations with the same time course as the rat LFP data. In addition, our model can account for further nonintuitive aspects of beta modulation, including beta phase resets after sensory cues and correlations with reaction time. Overall, our model can explain how the combination of temporally regulated sensory responses of the subthalamic nucleus, ramping activity of the subthalamic nucleus, and movement-related activity of the globus pallidus leads to transient beta oscillations during behavior.SIGNIFICANCE STATEMENT Transient beta oscillations emerge in the normal functioning cortico-basal ganglia loop during behavior. Here, we used a unique approach connecting a computational model closely with experimental data. In this way, we achieved a simulation environment for our model that mimics natural input patterns in awake, behaving animals. We demonstrate that a computational model for beta oscillations in Parkinson's disease (PD) can also account for complex patterns of transient beta oscillations in healthy animals. Therefore, we propose that transient beta oscillations in healthy animals share

  1. Regulating prefrontal cortex activation

    DEFF Research Database (Denmark)

    Aznar, Susana; Klein, Anders Bue

    2013-01-01

    is highly expressed in the prefrontal cortex areas, playing an important role in modulating cortical activity and neural oscillations (brain waves). This makes it an interesting potential pharmacological target for the treatment of neuropsychiatric modes characterized by lack of inhibitory control...

  2. The posterior parietal cortex (PPC) mediates anticipatory motor control.

    Science.gov (United States)

    Krause, Vanessa; Weber, Juliane; Pollok, Bettina

    2014-01-01

    Flexible and precisely timed motor control is based on functional interaction within a cortico-subcortical network. The left posterior parietal cortex (PPC) is supposed to be crucial for anticipatory motor control by sensorimotor feedback matching. Intention of the present study was to disentangle the specific relevance of the left PPC for anticipatory motor control using transcranial direct current stimulation (tDCS) since a causal link remains to be established. Anodal vs. cathodal tDCS was applied for 10 min over the left PPC in 16 right-handed subjects in separate sessions. Left primary motor cortex (M1) tDCS served as control condition and was applied in additional 15 subjects. Prior to and immediately after tDCS, subjects performed three tasks demanding temporal motor precision with respect to an auditory stimulus: sensorimotor synchronization as measure of anticipatory motor control, interval reproduction and simple reaction. Left PPC tDCS affected right hand synchronization but not simple reaction times. Motor anticipation was deteriorated by anodal tDCS, while cathodal tDCS yielded the reverse effect. The variability of interval reproduction was increased by anodal left M1 tDCS, whereas it was reduced by cathodal tDCS. No significant effects on simple reaction times were found. The present data support the hypothesis that left PPC is causally involved in right hand anticipatory motor control exceeding pure motor implementation as processed by M1 and possibly indicating subjective timing. Since M1 tDCS particularly affects motor implementation, the observed PPC effects are not likely to be explained by alterations of motor-cortical excitability. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Sensorimotor and cognitive involvement of the beta-gamma oscillation in the frontal N30 component of somatosensory evoked potentials.

    Science.gov (United States)

    Cebolla, A M; Cheron, G

    2015-12-01

    The most consistent negative cortical component of somatosensory evoked potentials (SEPs), namely the frontal N30, can be considered more multidimensional than a strict item of standard somatosensory investigation, dedicated to tracking the afferent volley from the peripheral sensory nerve potentials to the primary somatosensory cortex. In this review, we revisited its classical sensorimotor implication within the framework of the recent oscillatory model of ongoing electroencephalogram (EEG) rhythms. Recently, the N30 component was demonstrated to be related to an increase in the power of beta-gamma EEG oscillation and a phase reorganization of the ongoing EEG oscillations (phase locking) in this frequency band. Thanks to high density EEG recordings and the inverse modeling method (swLORETA), it was shown that different overlapping areas of the motor and premotor cortex are specifically involved in generating the N30 in the form of a beta gamma oscillatory phase locking and power increase. This oscillatory approach has allowed a re-investigation of the movement gating behavior of the N30. It was demonstrated that the concomitant execution of finger movements by a stimulated hand impinges the temporal concentration of the ongoing beta/gamma EEG oscillations and abolished the N30 component. It was hypothesized that the involvement of neuronal populations in both the sensorimotor cortex and other related areas were unable to respond to the phasic sensory activation so could not phase-lock their oscillatory signals to the external sensory input during the movement. In this case, the actual movement has primacy over the artificial somatosensory input. The contribution of the ongoing oscillatory activity in the N30 emergence calls for a reappraisal of fundamental and clinical interpretations of the frontal N30 component. An absent or reduced amplitude of the N30 can now be viewed not only as a deficit in the activation of the somatosensory synaptic network in response

  4. Improving Sensorimotor Function and Adaptation using Stochastic Vestibular Stimulation

    Science.gov (United States)

    Galvan, R. C.; Bloomberg, J. J.; Mulavara, A. P.; Clark, T. K.; Merfeld, D. M.; Oman, C. M.

    2014-01-01

    Astronauts experience sensorimotor changes during adaption to G-transitions that occur when entering and exiting microgravity. Post space flight, these sensorimotor disturbances can include postural and gait instability, visual performance changes, manual control disruptions, spatial disorientation, and motion sickness, all of which can hinder the operational capabilities of the astronauts. Crewmember safety would be significantly increased if sensorimotor changes brought on by gravitational changes could be mitigated and adaptation could be facilitated. The goal of this research is to investigate and develop the use of electrical stochastic vestibular stimulation (SVS) as a countermeasure to augment sensorimotor function and facilitate adaptation. For this project, SVS will be applied via electrodes on the mastoid processes at imperceptible amplitude levels. We hypothesize that SVS will improve sensorimotor performance through the phenomena of stochastic resonance, which occurs when the response of a nonlinear system to a weak input signal is optimized by the application of a particular nonzero level of noise. In line with the theory of stochastic resonance, a specific optimal level of SVS will be found and tested for each subject [1]. Three experiments are planned to investigate the use of SVS in sensory-dependent tasks and performance. The first experiment will aim to demonstrate stochastic resonance in the vestibular system through perception based motion recognition thresholds obtained using a 6-degree of freedom Stewart platform in the Jenks Vestibular Laboratory at Massachusetts Eye and Ear Infirmary. A range of SVS amplitudes will be applied to each subject and the subjectspecific optimal SVS level will be identified as that which results in the lowest motion recognition threshold, through previously established, well developed methods [2,3,4]. The second experiment will investigate the use of optimal SVS in facilitating sensorimotor adaptation to system

  5. Sensorimotor control of vocal pitch production in Parkinson's disease.

    Science.gov (United States)

    Chen, Xi; Zhu, Xiaoxia; Wang, Emily Q; Chen, Ling; Li, Weifeng; Chen, Zhaocong; Liu, Hanjun

    2013-08-21

    The present study was designed to investigate the sensorimotor control of voice fundamental frequency (F0) in individuals with Parkinson's diseases (PD). Fifteen Cantonese individuals with PD, and fifteen age- and sex-matched healthy Cantonese individuals participated in the experiment. Participants were asked to vocalize a vowel sound while hearing their voice auditory feedback unexpectedly pitch-shifted upwards or downwards through headphones. The size of pitch shifts varied from 50, 100, to 200 cents. One novel averaging method was used to categorize the individual trials such that only those trials that opposed the perturbation direction were averaged to generate an overall response. The results showed that Cantonese individuals with PD produced significantly larger magnitudes of vocal compensation for pitch perturbations than healthy participants. Both groups showed systematic changes in compensation magnitude as a function of perturbation size and direction: larger perturbation size or upward direction elicited greater compensation magnitude. Moreover, pitch variability indexed by the standard deviations of the baseline F0 was significantly correlated with the magnitude of vocal compensation in individuals with PD, whereas this correlation failed to reach significance for healthy participants. This study presents the first data demonstrating the abnormal processing of auditory feedback in the sensorimotor control of voice F0 for Cantonese individuals with PD. It is suggested that the abnormal sensorimotor integration of voice F0 control in PD may be caused by the increased weighting of auditory feedback control resulting from dysfunction of feedforward control and somatosensory feedback caused by the impairment of the basal ganglia. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The role of cortical sensorimotor oscillations in action anticipation.

    Science.gov (United States)

    Denis, Dan; Rowe, Richard; Williams, A Mark; Milne, Elizabeth

    2017-02-01

    The human mirror neuron system is believed to play an important role in facilitating the ability of athletes to anticipate the actions of an opponent. This system is often assessed with EEG by measuring event-related changes in mu (8-13Hz) sensorimotor oscillations. However, traditional channel-based analyses of this measure are flawed in that due to volume conduction effects mu and non-mu alpha activity can become mixed. This flaw means it is unclear the extent to which mu activity indexes the mirror system, as opposed to other processes such as attentional demand. As a solution to this problem, we use independent component analysis to separate out the underlying brain processes during a tennis-related action observation and anticipation task. We investigated expertise-related differences in independent component activity. Experienced tennis players (N=18) were significantly more accurate than unexperienced novices (N=21) on the anticipation task. EEG results found significant group differences in both the mu and beta (15-25Hz) frequency bands in sensorimotor components, with earlier and greater desynchronisation in the experienced tennis players. In particular, only experienced players showed desynchronisation in the high mu (11-13Hz) band. No group differences were found in posterior alpha components. These results show for the first time that expertise differences during action observation and anticipation are unique to sensorimotor sources, and that no expertise-related differences exist in attention modulated, posterior alpha sources. As such, this paper provides a much cleaner measure of the human mirror system during action observation, and its modulation by motor expertise, than has been possible in previous work. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Sensorimotor memory biases weight perception during object lifting

    Directory of Open Access Journals (Sweden)

    Vonne evan Polanen

    2015-12-01

    Full Text Available When lifting an object, the brain uses visual cues and an internal object representation to predict its weight and scale fingertip forces accordingly. Once available, tactile information is rapidly integrated to update the weight prediction and refine the internal object representation. If visual cues cannot be used to predict weight, force planning relies on implicit knowledge acquired from recent lifting experience, termed sensorimotor memory. Here, we investigated whether perception of weight is similarly biased according to previous lifting experience and how this is related to force scaling. Participants grasped and lifted series of light or heavy objects in a semi-randomized order and estimated their weights. As expected, we found that forces were scaled based on previous lifts (sensorimotor memory and these effects increased depending on the length of recent lifting experience. Importantly, perceptual weight estimates were also influenced by the preceding lift, resulting in lower estimations after a heavy lift compared to a light one. In addition, the weight estimations were negatively correlated with the magnitude of planned force parameters. This perceptual bias was only found if the current lift was light, but not heavy since the magnitude of sensorimotor memory effects had, according to Weber’s law, relatively less impact on heavy compared to light objects. A control experiment tested the importance of active lifting in mediating these perceptual changes and showed that when weights are passively applied on the hand, no effect of previous sensory experience is found on perception. These results highlight how fast learning of novel object lifting dynamics can shape weight perception and demonstrate a tight link between action planning and perception control. If predictive force scaling and actual object weight do not match, the online motor corrections, rapidly implemented to downscale forces, will also downscale weight estimation in

  8. Modelling habits as self-sustaining patterns of sensorimotor behavior

    Directory of Open Access Journals (Sweden)

    Matthew Deems Egbert

    2014-08-01

    Full Text Available In the recent history of psychology and cognitive neuroscience, the notion of habit hasbeen reduced to a stimulus-triggered response probability correlation. In this paper we usea computational model to present an alternative theoretical view (with some philosophicalimplications, where habits are seen as self-maintaining patterns of behavior that shareproperties in common with self-maintaining biological processes, and that inhabit a complexecological context, including the presence and influence of other habits. Far from mechanicalautomatisms, this organismic and self-organizing concept of habit can overcome the dominatingatomistic and statistical conceptions, and the high temporal resolution effects of situatedness,embodiment and sensorimotor loops emerge as playing a more central, subtle and complex rolein the organization of behavior. The model is based on a novel iterant deformable sensorimotormedium (IDSM, designed such that trajectories taken through sensorimotor-space increasethe likelihood that in the future, similar trajectories will be taken. We couple the IDSM to sensorsand motors of a simulated body and environment and show that under certain conditions,the IDSM forms self-maintaining patterns of activity that operate across the IDSM, the body,and the environment. We present various environments and the resulting habits that form inthem. The model acts as an abstraction of habits at a much needed sensorimotor meso-scalebetween microscopic neuron-based models and macroscopic descriptions of behavior. Finally,we discuss how this model and extensions of it can help us understand aspects of behavioralself-organization, historicity and autonomy that remain out of the scope of contemporaryrepresentationalist frameworks.

  9. Sensorimotor Memory Biases Weight Perception During Object Lifting

    Science.gov (United States)

    van Polanen, Vonne; Davare, Marco

    2015-01-01

    When lifting an object, the brain uses visual cues and an internal object representation to predict its weight and scale fingertip forces accordingly. Once available, tactile information is rapidly integrated to update the weight prediction and refine the internal object representation. If visual cues cannot be used to predict weight, force planning relies on implicit knowledge acquired from recent lifting experience, termed sensorimotor memory. Here, we investigated whether perception of weight is similarly biased according to previous lifting experience and how this is related to force scaling. Participants grasped and lifted series of light or heavy objects in a semi-randomized order and estimated their weights. As expected, we found that forces were scaled based on previous lifts (sensorimotor memory) and these effects increased depending on the length of recent lifting experience. Importantly, perceptual weight estimates were also influenced by the preceding lift, resulting in lower estimations after a heavy lift compared to a light one. In addition, weight estimations were negatively correlated with the magnitude of planned force parameters. This perceptual bias was only found if the current lift was light, but not heavy since the magnitude of sensorimotor memory effects had, according to Weber’s law, relatively less impact on heavy compared to light objects. A control experiment tested the importance of active lifting in mediating these perceptual changes and showed that when weights are passively applied on the hand, no effect of previous sensory experience is found on perception. These results highlight how fast learning of novel object lifting dynamics can shape weight perception and demonstrate a tight link between action planning and perception control. If predictive force scaling and actual object weight do not match, the online motor corrections, rapidly implemented to downscale forces, will also downscale weight estimation in a proportional manner

  10. Subacute cutaneous lupus erythematosus inducing unilateral sensorimotor neuropathy.

    Science.gov (United States)

    Psarelis, Savvas; Georgiades, Fanourios; Ioannou, Antreas; Xenophontos, Eleni; Georgiou, Georgios; Papanicolaou, Eleni

    2017-05-01

    We describe the case of a 32-year-old male with previous history of subacute cutaneous lupus erythematosus (SCLE) who presented with arthritis followed by a unilateral lower-limb sensorimotor impairment, without biochemical or immunological marker abnormalities. Our patient currently satisfies only three of the systemic lupus international collaborating clinics criteria. Management of such patients is challenging due to lack of examples in the literature, with this case being the first described where a seronegative patient with SCLE demonstrated neurological involvement. A brief review of the available literature is included.

  11. Neural Signature of Value-Based Sensorimotor Prioritization in Humans.

    Science.gov (United States)

    Blangero, Annabelle; Kelly, Simon P

    2017-11-01

    In situations in which impending sensory events demand fast action choices, we must be ready to prioritize higher-value courses of action to avoid missed opportunities. When such a situation first presents itself, stimulus-action contingencies and their relative value must be encoded to establish a value-biased state of preparation for an impending sensorimotor decision. Here, we sought to identify neurophysiological signatures of such processes in the human brain (both female and male). We devised a task requiring fast action choices based on the discrimination of a simple visual cue in which the differently valued sensory alternatives were presented 750-800 ms before as peripheral "targets" that specified the stimulus-action mapping for the upcoming decision. In response to the targets, we identified a discrete, transient, spatially selective signal in the event-related potential (ERP), which scaled with relative value and strongly predicted the degree of behavioral bias in the upcoming decision both across and within subjects. This signal is not compatible with any hitherto known ERP signature of spatial selection and also bears novel distinctions with respect to characterizations of value-sensitive, spatially selective activity found in sensorimotor areas of nonhuman primates. Specifically, a series of follow-up experiments revealed that the signal was reliably invoked regardless of response laterality, response modality, sensory feature, and reward valence. It was absent, however, when the response deadline was relaxed and the strategic need for biasing removed. Therefore, more than passively representing value or salience, the signal appears to play a versatile and active role in adaptive sensorimotor prioritization.SIGNIFICANCE STATEMENT In many situations such as fast-moving sports, we must be ready to act fast in response to sensory events and, in our preparation, prioritize courses of action that lead to greater rewards. Although behavioral effects of

  12. Learning to perceive in the sensorimotor approach: Piaget's theory of equilibration interpreted dynamically.

    Science.gov (United States)

    Di Paolo, Ezequiel Alejandro; Barandiaran, Xabier E; Beaton, Michael; Buhrmann, Thomas

    2014-01-01

    if understanding is required for perception, how can we learn to perceive something new, something we do not yet understand? According to the sensorimotor approach, perception involves mastery of regular sensorimotor co-variations that depend on the agent and the environment, also known as the "laws" of sensorimotor contingencies (SMCs). In this sense, perception involves enacting relevant sensorimotor skills in each situation. It is important for this proposal that such skills can be learned and refined with experience and yet up to this date, the sensorimotor approach has had no explicit theory of perceptual learning. The situation is made more complex if we acknowledge the open-ended nature of human learning. In this paper we propose Piaget's theory of equilibration as a potential candidate to fulfill this role. This theory highlights the importance of intrinsic sensorimotor norms, in terms of the closure of sensorimotor schemes. It also explains how the equilibration of a sensorimotor organization faced with novelty or breakdowns proceeds by re-shaping pre-existing structures in coupling with dynamical regularities of the world. This way learning to perceive is guided by the equilibration of emerging forms of skillful coping with the world. We demonstrate the compatibility between Piaget's theory and the sensorimotor approach by providing a dynamical formalization of equilibration to give an explicit micro-genetic account of sensorimotor learning and, by extension, of how we learn to perceive. This allows us to draw important lessons in the form of general principles for open-ended sensorimotor learning, including the need for an intrinsic normative evaluation by the agent itself. We also explore implications of our micro-genetic account at the personal level.

  13. Learning to perceive in the sensorimotor approach: Piaget’s theory of equilibration interpreted dynamically

    Science.gov (United States)

    Di Paolo, Ezequiel Alejandro; Barandiaran, Xabier E.; Beaton, Michael; Buhrmann, Thomas

    2014-01-01

    Learning to perceive is faced with a classical paradox: if understanding is required for perception, how can we learn to perceive something new, something we do not yet understand? According to the sensorimotor approach, perception involves mastery of regular sensorimotor co-variations that depend on the agent and the environment, also known as the “laws” of sensorimotor contingencies (SMCs). In this sense, perception involves enacting relevant sensorimotor skills in each situation. It is important for this proposal that such skills can be learned and refined with experience and yet up to this date, the sensorimotor approach has had no explicit theory of perceptual learning. The situation is made more complex if we acknowledge the open-ended nature of human learning. In this paper we propose Piaget’s theory of equilibration as a potential candidate to fulfill this role. This theory highlights the importance of intrinsic sensorimotor norms, in terms of the closure of sensorimotor schemes. It also explains how the equilibration of a sensorimotor organization faced with novelty or breakdowns proceeds by re-shaping pre-existing structures in coupling with dynamical regularities of the world. This way learning to perceive is guided by the equilibration of emerging forms of skillful coping with the world. We demonstrate the compatibility between Piaget’s theory and the sensorimotor approach by providing a dynamical formalization of equilibration to give an explicit micro-genetic account of sensorimotor learning and, by extension, of how we learn to perceive. This allows us to draw important lessons in the form of general principles for open-ended sensorimotor learning, including the need for an intrinsic normative evaluation by the agent itself. We also explore implications of our micro-genetic account at the personal level. PMID:25126065

  14. Learning to perceive in the sensorimotor approach: Piaget's theory of equilibration interpreted dynamically

    Directory of Open Access Journals (Sweden)

    Ezequiel Alejandro Di Paolo

    2014-07-01

    Full Text Available Learning to perceive faces a classical paradox: if understanding is required for perception, how can we learn to perceive something new, something we do not yet understand? According to the sensorimotor approach, perception involves mastery of regular sensorimotor co-variations that depend on the agent and the environment, also known as the ‘laws’ of sensorimotor contingencies. In this sense, perception involves enacting relevant sensorimotor skills in each situation. It is important for this proposal that such skills can be learned and refined with experience and yet up to this date, the sensorimotor approach has had no explicit theory of perceptual learning. The situation is made more complex if we acknowledge the open-ended nature of human learning. In this paper we propose Piaget’s theory of equilibration as a potential candidate to fulfill this role. This theory highlights the importance of intrinsic sensorimotor norms, in terms of the closure of sensorimotor schemes. It also explains how the equilibration of a sensorimotor organization faced with novelty or breakdowns proceeds by re-shaping pre-existing structures in coupling with dynamical regularities of the world. This way learning to perceive is guided by the equilibration of emerging forms of skillful coping with the world. We demonstrate the compatibility between Piaget’s theory and the sensorimotor approach by providing a dynamical formalization of equilibration to give an explicit micro-genetic account of sensorimotor learning and, by extension, of how we learn to perceive. This allows us to draw important lessons in the form of general principles for open-ended sensorimotor learning, including the need for an intrinsic normative evaluation by the agent itself. We also explore implications of our micro-genetic account at the personal level.

  15. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    Science.gov (United States)

    Peng, Yu-Hao; Heintz, Ryan; Wang, Zhuo; Guo, Yumei; Myers, Kalisa; Scremin, Oscar; Maarek, Jean-Michel; Holschneider, Daniel

    2014-12-01

    Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC) on a flattened cortical map. A graphic user interface “Cx-2D” allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF) of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex--changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and histologic

  16. Distinct Modulations in Sensorimotor Postmovement and Foreperiod β-Band Activities Related to Error Salience Processing and Sensorimotor Adaptation.

    Science.gov (United States)

    Torrecillos, Flavie; Alayrangues, Julie; Kilavik, Bjørg Elisabeth; Malfait, Nicole

    2015-09-16

    In a recent study, Tan et al. (2014a,b) showed that the increase in β-power typically observed after a movement above sensorimotor regions (β-rebound) is attenuated when movement-execution errors are induced by visual perturbations. Moreover, akin to sensorimotor adaptation, the effect depended on the context in which the errors are experienced. Thus the β-rebound attenuation might relate to neural processes involved in trial-to-trial adaptive mechanisms. In two EEG experiments with human participants, along with the β-rebound, we examine β-activity during the preparation of reaches immediately following perturbed movements. In the first experiment, we show that both foreperiod and postmovement β-activities are parametrically modulated by the sizes of kinematic errors produced by unpredictable mechanical perturbations (force field) independent of their on-line corrections. In the second experiment, we contrast two types of reach errors: movement-execution errors that trigger trial-to-trial adaptive mechanisms and goal errors that do not elicit sensorimotor adaptation. Movement-execution errors were induced by mechanical or visual perturbations, whereas goal errors were caused by unexpected displacements of the target at movement initiation. Interestingly, foreperiod and postmovement β-activities exhibit contrasting patterns, pointing to important functional differences of their underlying neuronal activity. While both types of reach errors attenuate the postmovement β-rebound, only the kinematic errors that trigger trial-to-trial motor-command updates influenced β-activity during the foreperiod. These findings suggest that the error-related modulation of the β-rebound may reflect salience processing, independent of sensorimotor adaptation. In contrast, modulations in the foreperiod β-power might relate to the motor-command adjustments activated after movement-execution errors are experienced. The functional significance of sensorimotor β-band (15-25 Hz

  17. Motor cortex representation of the upper-limb in individuals born without a hand.

    Directory of Open Access Journals (Sweden)

    Karen T Reilly

    Full Text Available The body schema is an action-related representation of the body that arises from activity in a network of multiple brain areas. While it was initially thought that the body schema developed with experience, the existence of phantom limbs in individuals born without a limb (amelics led to the suggestion that it was innate. The problem with this idea, however, is that the vast majority of amelics do not report the presence of a phantom limb. Transcranial magnetic stimulation (TMS applied over the primary motor cortex (M1 of traumatic amputees can evoke movement sensations in the phantom, suggesting that traumatic amputation does not delete movement representations of the missing hand. Given this, we asked whether the absence of a phantom limb in the majority of amelics means that the motor cortex does not contain a cortical representation of the missing limb, or whether it is present but has been deactivated by the lack of sensorimotor experience. In four upper-limb amelic subjects we directly stimulated the arm/hand region of M1 to see 1 whether we could evoke phantom sensations, and 2 whether muscle representations in the two cortices were organised asymmetrically. TMS applied over the motor cortex contralateral to the missing limb evoked contractions in stump muscles but did not evoke phantom movement sensations. The location and extent of muscle maps varied between hemispheres but did not reveal any systematic asymmetries. In contrast, forearm muscle thresholds were always higher for the missing limb side. We suggest that phantom movement sensations reported by some upper limb amelics are mostly driven by vision and not by the persistence of motor commands to the missing limb within the sensorimotor cortex. We propose that prewired movement representations of a limb need the experience of movement to be expressed within the primary motor cortex.

  18. Forward Prediction in the Posterior Parietal Cortex and Dynamic Brain-Machine Interface.

    Science.gov (United States)

    Cui, He

    2016-01-01

    While remarkable progress has been made in brain-machine interfaces (BMIs) over the past two decades, it is still difficult to utilize neural signals to drive artificial actuators to produce predictive movements in response to dynamic stimuli. In contrast to naturalistic limb movements largely based on forward planning, brain-controlled neuroprosthetics mainly rely on feedback without prior trajectory formation. As an important sensorimotor interface integrating multisensory inputs and efference copy, the posterior parietal cortex (PPC) might play a proactive role in predictive motor control. Here it is proposed that predictive neural activity in PPC could be decoded to provide prosthetic control signals for guiding BMI systems in dynamic environments.

  19. Assessing sensorimotor excitability after spinal cord injury: a reflex testing method based on cycling with afferent stimulation.

    Science.gov (United States)

    Piazza, Stefano; Torricelli, Diego; Gómez-Soriano, Julio; Serrano-Muñoz, Diego; Ávila-Martín, Gerardo; Galán-Arriero, Iriana; Pons, José Luis; Taylor, Julian

    2018-01-17

    Several studies have examined spinal reflex modulation during leg cycling in healthy and spinal cord injury (SCI) subjects. However, the effect of cutaneous plantar afferent input on spinal excitability during leg cycling after SCI has not been characterised. The aim of the study was to test the feasibility of using controlled leg cycling in combination with plantar cutaneous electrical stimulation (ES) cycling to assess lower limb spinal sensorimotor excitability in subjects with motor complete or incomplete SCI. Spinal sensorimotor excitability was estimated by measuring cutaneomuscular-conditioned soleus H-reflex activity. Reflex excitability was tested before and after a 10-min ES cycling session in 13 non-injured subjects, 6 subjects with motor incomplete SCI (iSCI) who had moderately impaired gait function, 4 subjects with motor iSCI who had severely impaired gait function, and 5 subjects with motor complete SCI (cSCI). No modulation of soleus H-reflex with plantar cutaneous stimuli was observed after either iSCI or cSCI when compared to non-injured subjects. However, after ES cycling, reflex excitability significantly increased in subjects with iSCI and moderately impaired gait function. ES cycling facilitated spinal sensorimotor excitability only in subjects with motor iSCI with residual gait function. Increased spinal excitability induced with a combination of exercise and afferent stimulation could be adopted with diagnostic and prognostic purposes to reveal the activity-based neurorehabilitation profile of individual subjects with motor iSCI. ISRCTN 26172500 ; retrospectively registered on 15 July 2016 Graphical abstract ᅟ.

  20. Symbol Grounding Without Direct Experience: Do Words Inherit Sensorimotor Activation From Purely Linguistic Context?

    Science.gov (United States)

    Günther, Fritz; Dudschig, Carolin; Kaup, Barbara

    2017-10-19

    Theories of embodied cognition assume that concepts are grounded in non-linguistic, sensorimotor experience. In support of this assumption, previous studies have shown that upwards response movements are faster than downwards movements after participants have been presented with words whose referents are typically located in the upper vertical space (and vice versa for downwards responses). This is taken as evidence that processing these words reactivates sensorimotor experiential traces. This congruency effect was also found for novel words, after participants learned these words as labels for novel objects that they encountered either in their upper or lower visual field. While this indicates that direct experience with a word's referent is sufficient to evoke said congruency effects, the present study investigates whether this direct experience is also a necessary condition. To this end, we conducted five experiments in which participants learned novel words from purely linguistic input: Novel words were presented in pairs with real up- or down-words (Experiment 1); they were presented in natural sentences where they replaced these real words (Experiment 2); they were presented as new labels for these real words (Experiment 3); and they were presented as labels for novel combined concepts based on these real words (Experiment 4 and 5). In all five experiments, we did not find any congruency effects elicited by the novel words; however, participants were always able to make correct explicit judgements about the vertical dimension associated to the novel words. These results suggest that direct experience is necessary for reactivating experiential traces, but this reactivation is not a necessary condition for understanding (in the sense of storing and accessing) the corresponding aspects of word meaning. © 2017 Cognitive Science Society, Inc.

  1. Human sensorimotor communication: a theory of signaling in online social interactions.

    Directory of Open Access Journals (Sweden)

    Giovanni Pezzulo

    Full Text Available Although the importance of communication is recognized in several disciplines, it is rarely studied in the context of online social interactions and joint actions. During online joint actions, language and gesture are often insufficient and humans typically use non-verbal, sensorimotor forms of communication to send coordination signals. For example, when playing volleyball, an athlete can exaggerate her movements to signal her intentions to her teammates (say, a pass to the right or to feint an adversary. Similarly, a person who is transporting a table together with a co-actor can push the table in a certain direction to signal where and when he intends to place it. Other examples of "signaling" are over-articulating in noisy environments and over-emphasizing vowels in child-directed speech. In all these examples, humans intentionally modify their action kinematics to make their goals easier to disambiguate. At the moment no formal theory exists of these forms of sensorimotor communication and signaling. We present one such theory that describes signaling as a combination of a pragmatic and a communicative action, and explains how it simplifies coordination in online social interactions. We cast signaling within a "joint action optimization" framework in which co-actors optimize the success of their interaction and joint goals rather than only their part of the joint action. The decision of whether and how much to signal requires solving a trade-off between the costs of modifying one's behavior and the benefits in terms of interaction success. Signaling is thus an intentional strategy that supports social interactions; it acts in concert with automatic mechanisms of resonance, prediction, and imitation, especially when the context makes actions and intentions ambiguous and difficult to read. Our theory suggests that communication dynamics should be studied within theories of coordination and interaction rather than only in terms of the

  2. Human sensorimotor communication: a theory of signaling in online social interactions.

    Science.gov (United States)

    Pezzulo, Giovanni; Donnarumma, Francesco; Dindo, Haris

    2013-01-01

    Although the importance of communication is recognized in several disciplines, it is rarely studied in the context of online social interactions and joint actions. During online joint actions, language and gesture are often insufficient and humans typically use non-verbal, sensorimotor forms of communication to send coordination signals. For example, when playing volleyball, an athlete can exaggerate her movements to signal her intentions to her teammates (say, a pass to the right) or to feint an adversary. Similarly, a person who is transporting a table together with a co-actor can push the table in a certain direction to signal where and when he intends to place it. Other examples of "signaling" are over-articulating in noisy environments and over-emphasizing vowels in child-directed speech. In all these examples, humans intentionally modify their action kinematics to make their goals easier to disambiguate. At the moment no formal theory exists of these forms of sensorimotor communication and signaling. We present one such theory that describes signaling as a combination of a pragmatic and a communicative action, and explains how it simplifies coordination in online social interactions. We cast signaling within a "joint action optimization" framework in which co-actors optimize the success of their interaction and joint goals rather than only their part of the joint action. The decision of whether and how much to signal requires solving a trade-off between the costs of modifying one's behavior and the benefits in terms of interaction success. Signaling is thus an intentional strategy that supports social interactions; it acts in concert with automatic mechanisms of resonance, prediction, and imitation, especially when the context makes actions and intentions ambiguous and difficult to read. Our theory suggests that communication dynamics should be studied within theories of coordination and interaction rather than only in terms of the maximization of information

  3. The Effects of Long Duration Bed Rest as a Spaceflight Analogue on Resting State Sensorimotor Network Functional Connectivity and Neurocognitive Performance

    Science.gov (United States)

    Cassady, K.; Koppelmans, V.; Yuan, P.; Cooke, K.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.; hide

    2015-01-01

    Long duration spaceflight has been associated with detrimental alterations in human sensorimotor systems and neurocognitive performance. Prolonged exposure to a head-down tilt position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with neurocognitive performance is largely unknown, but of potential importance to the health and performance of astronauts both during and post-flight. The aims of the present study are 1) to identify changes in sensorimotor resting state functional connectivity that occur with extended bed rest exposure, and to characterize their recovery time course; 2) to evaluate how these neural changes correlate with neurocognitive performance. Resting-state functional magnetic resonance imaging (rsfMRI) data were collected from 17 male participants. The data were acquired through the NASA bed rest facility, located at the University of Texas Medical Branch (Galveston, TX). Participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. RsfMRI data were obtained at seven time points: 7 and 12 days before bed rest; 7, 50, and 65 days during bed rest; and 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (fcMRI) analysis was performed to measure the connectivity of sensorimotor networks in the brain before, during, and post-bed rest. We found a decrease in left putamen connectivity with the pre- and post-central gyri from pre bed rest to the last day in bed rest. In addition, vestibular cortex connectivity with the posterior cingulate cortex decreased from pre to post bed rest. Furthermore, connectivity between cerebellar right superior posterior fissure and other cerebellar regions decreased from

  4. Comparison of Maximal Lingual Pressure Generation During Isometric Gross and Fine Sensorimotor Tasks in Healthy Adults.

    Science.gov (United States)

    Rogus-Pulia, Nicole; Churness, Kim; Hind, Jacqueline; Gangnon, Ronald; Banaszynski, Kelsey; Robbins, JoAnne

    2015-10-01

    To (1) compare 2 distinct isometric lingual press tasks, fine sensorimotor versus gross sensorimotor, at multiple sensor locations in relation to age and sex; and (2) provide a normative data set using a lingual-strengthening device. Cohort study. University. Healthy men and women (N=71; age range, 21-82y) recruited from the community. Participants were stratified by age and sex and divided into 3 age groups. Participants completed, in random order, 2 isometric tasks: (1) fine sensorimotor: tongue press maximally and discreetly against each of 5 sensors; and (2) gross sensorimotor: tongue press maximally against all 5 sensors simultaneously. Primary outcome was maximum isometric pressure in hectopascals (hPa). Secondary outcomes were time to reach peak pressure (s) and pressure gradient (hPa/s). Maximum pressures were significantly lower in those of older age for both fine and gross sensorimotor lingual tasks (Psensorimotor task generating higher pressures at the front sensor for all age groups. However, the gross sensorimotor task generated faster maximum pressures at all sensor locations for all age groups. For both sensorimotor tasks, subjects of older age as a whole generated less steep pressure gradients (Psensorimotor task may be more beneficial for targeting timing as a biomechanical parameter during therapy, and the fine sensorimotor task may be more beneficial for targeting strength. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. Twitching in sensorimotor development from sleeping rats to robots.

    Science.gov (United States)

    Blumberg, Mark S; Marques, Hugo Gravato; Iida, Fumiya

    2013-06-17

    It is still not known how the 'rudimentary' movements of fetuses and infants are transformed into the coordinated, flexible and adaptive movements of adults. In addressing this important issue, we consider a behavior that has been perennially viewed as a functionless by-product of a dreaming brain: the jerky limb movements called myoclonic twitches. Recent work has identified the neural mechanisms that produce twitching as well as those that convey sensory feedback from twitching limbs to the spinal cord and brain. In turn, these mechanistic insights have helped inspire new ideas about the functional roles that twitching might play in the self-organization of spinal and supraspinal sensorimotor circuits. Striking support for these ideas is coming from the field of developmental robotics: when twitches are mimicked in robot models of the musculoskeletal system, the basic neural circuitry undergoes self-organization. Mutually inspired biological and synthetic approaches promise not only to produce better robots, but also to solve fundamental problems concerning the developmental origins of sensorimotor maps in the spinal cord and brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Sensorimotor experience enhances automatic imitation of robotic action.

    Science.gov (United States)

    Press, Clare; Gillmeister, Helge; Heyes, Cecilia

    2007-10-22

    Recent research in cognitive neuroscience has found that observation of human actions activates the 'mirror system' and provokes automatic imitation to a greater extent than observation of non-biological movements. The present study investigated whether this human bias depends primarily on phylogenetic or ontogenetic factors by examining the effects of sensorimotor experience on automatic imitation of non-biological robotic, stimuli. Automatic imitation of human and robotic action stimuli was assessed before and after training. During these test sessions, participants were required to execute a pre-specified response (e.g. to open their hand) while observing a human or robotic hand making a compatible (opening) or incompatible (closing) movement. During training, participants executed opening and closing hand actions while observing compatible (group CT) or incompatible movements (group IT) of a robotic hand. Compatible, but not incompatible, training increased automatic imitation of robotic stimuli (speed of responding on compatible trials, compared with incompatible trials) and abolished the human bias observed at pre-test. These findings suggest that the development of the mirror system depends on sensorimotor experience, and that, in our species, it is biased in favour of human action stimuli because these are more abundant than non-biological action stimuli in typical developmental environments.

  7. Awareness of Sensorimotor Adaptation to Visual Rotations of Different Size

    Science.gov (United States)

    Werner, Susen; van Aken, Bernice C.; Hulst, Thomas; Frens, Maarten A.; van der Geest, Jos N.; Strüder, Heiko K.; Donchin, Opher

    2015-01-01

    Previous studies on sensorimotor adaptation revealed no awareness of the nature of the perturbation after adaptation to an abrupt 30° rotation of visual feedback or after adaptation to gradually introduced perturbations. Whether the degree of awareness depends on the magnitude of the perturbation, though, has as yet not been tested. Instead of using questionnaires, as was often done in previous work, the present study used a process dissociation procedure to measure awareness and unawareness. A naïve, implicit group and a group of subjects using explicit strategies adapted to 20°, 40° and 60° cursor rotations in different adaptation blocks that were each followed by determination of awareness and unawareness indices. The awareness index differed between groups and increased from 20° to 60° adaptation. In contrast, there was no group difference for the unawareness index, but it also depended on the size of the rotation. Early adaptation varied between groups and correlated with awareness: The more awareness a participant had developed the more the person adapted in the beginning of the adaptation block. In addition, there was a significant group difference for savings but it did not correlate with awareness. Our findings suggest that awareness depends on perturbation size and that aware and strategic processes are differentially involved during adaptation and savings. Moreover, the use of the process dissociation procedure opens the opportunity to determine awareness and unawareness indices in future sensorimotor adaptation research. PMID:25894396

  8. Sensorimotor coordination and metastability in a situated HKB model

    Science.gov (United States)

    Santos, Bruno; Barandiaran, Xabier; Husbands, Philip; Aguilera, Miguel; Bedia, Manuel

    2012-12-01

    Oscillatory phenomena are ubiquitous in nature and have become particularly relevant for the study of brain and behaviour. One of the simplest, yet explanatorily powerful, models of oscillatory Coordination Dynamics is the Haken-Kelso-Bunz (HKB) model. The metastable regime described by the HKB equation has been hypothesised to be the signature of brain oscillatory dynamics underlying sensorimotor coordination. Despite evidence supporting such a hypothesis, to our knowledge, there are still very few models (if any) where the HKB equation generates spatially situated behaviour and, at the same time, has its dynamics modulated by the behaviour it generates (by means of the sensory feedback resulting from body movement). This work presents a computational model where the HKB equation controls an agent performing a simple gradient climbing task and shows (i) how different metastable dynamical patterns in the HKB equation are generated and sustained by the continuous interaction between the agent and its environment; and (ii) how the emergence of functional metastable patterns in the HKB equation - i.e. patterns that generate gradient climbing behaviour - depends not only on the structure of the agent's sensory input but also on the coordinated coupling of the agent's motor-sensory dynamics. This work contributes to Kelso's theoretical framework and also to the understanding of neural oscillations and sensorimotor coordination.

  9. Repeated anodal transcranial direct current stimulation induces neural plasticity-associated gene expression in the rat cortex and hippocampus.

    Science.gov (United States)

    Kim, Min Sun; Koo, Ho; Han, Sang Who; Paulus, Walter; Nitsche, Michael A; Kim, Yun-Hee; Yoon, Jin A; Shin, Yong-Il

    2017-01-01

    Anodal transcranial direct current stimulation (A-tDCS) induces a long-lasting increase in cortical excitability that can increase gene transcription in the brain. The purpose of this study was to evaluate the expression of genes related to activity-dependent neuronal plasticity in the sensorimotor cortex and hippocampus of young Sprague-Dawley rats following A-tDCS. We applied A-tDCS over the right sensorimotor cortex epicranially with a circular electrode (3 mm diameter) at 250 μA for 20 min per day for 7 consecutive days. Levels of mRNA for brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), synapsin I, Ca2+/calmodulin-dependent protein kinase II (CaMKII), activity-regulated cytoskeleton-associated protein (Arc), and c-Fos were analyzed using SYBR Green quantitative real-time polymerase chain reaction (PCR). We found that 7 days of unilateral A-tDCS resulted in significant increases in transcription of all plasticity-related genes tested in the ipsilateral cortex. Daily A-tDCS also resulted in a significant increase in c-Fos mRNA in the ipsilateral hippocampus. These results indicate that altered expression of plasticity-associated genes in the cortex and hippocampus is a molecular substrate of A-tDCS-induced neural plasticity.

  10. Structural and behavioral correlates of abnormal encoding of money value in the sensorimotor striatum in cocaine addiction.

    Science.gov (United States)

    Konova, Anna B; Moeller, Scott J; Tomasi, Dardo; Parvaz, Muhammad A; Alia-Klein, Nelly; Volkow, Nora D; Goldstein, Rita Z

    2012-10-01

    Abnormalities in frontostriatal systems are thought to be central to the pathophysiology of addiction, and may underlie the maladaptive processing of the highly generalizable reinforcer, money. Although abnormal frontostriatal structure and function have been observed in individuals addicted to cocaine, it is less clear how individual variability in brain structure is associated with brain function to influence behavior. Our objective was to examine frontostriatal structure and neural processing of money value in chronic cocaine users and closely matched healthy controls. A reward task that manipulated different levels of money was used to isolate neural activity associated with money value. Gray matter volume measures were used to assess frontostriatal structure. Our results indicated that cocaine users had an abnormal money value signal in the sensorimotor striatum (right putamen/globus pallidus) that was negatively associated with accuracy adjustments to money and was more pronounced in individuals with more severe use. In parallel, group differences were also observed in both the function and gray matter volume of the ventromedial prefrontal cortex; in the cocaine users, the former was directly associated with response to money in the striatum. These results provide strong evidence for abnormalities in the neural mechanisms of valuation in addiction and link these functional abnormalities with deficits in brain structure. In addition, as value signals represent acquired associations, their abnormal processing in the sensorimotor striatum, a region centrally implicated in habit formation, could signal disadvantageous associative learning in cocaine addiction. © 2012 Published 2012. This article is a US Government work and is in the public domain in the USA.

  11. Association between stimulus-evoked somatosensory inhibition and movement-related sensorimotor oscillation: A magnetoencephalographic study.

    Science.gov (United States)

    Hsiao, Fu-Jung; Chen, Wei-Ta; Lin, Yung-Yang

    2017-11-08

    The interaction between the somatosensory and motor cortices is understood; however, their functional relationship remains elusive. To elucidate the association between somatosensory and sensorimotor functions, this study investigated the correlation between somatosensory activities in response to paired-pulse stimulation and sensorimotor oscillations during self-paced finger movement in 18 healthy male subjects by using a magnetoencephalographic recording. The main finding was that stimulus-evoked somatosensory gating activities were significantly correlated with movement-related sensorimotor oscillatory responses. Specifically, the gating ratios of somatosensory N20m were related to the power changes of sensorimotor beta event-related desynchronization (ERD) (p=0.003) and event-related synchronization (ERS) (p=0.05). In conclusion, we confirmed that the inhibition of stimulus-evoked somatosensory responses is associated with the oscillatory characteristics of movement-related sensorimotor activities. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Repetitive grooming and sensorimotor abnormalities in an ephrin-A knockout model for Autism Spectrum Disorders.

    Science.gov (United States)

    Wurzman, Rachel; Forcelli, Patrick A; Griffey, Christopher J; Kromer, Lawrence F

    2015-02-01

    EphA receptors and ephrin-A ligands play important roles in neural development and synaptic plasticity in brain regions where expression persists into adulthood. Recently, EPHA3 and EPHA7 gene mutations were linked with Autism Spectrum Disorders (ASDs) and developmental neurological delays, respectively. Furthermore, deletions of ephrin-A2 or ephrin-A3, which exhibit high binding affinity for EphA3 and EphA7 receptors, are associated with subtle deficits in learning and memory behavior and abnormalities in dendritic spine morphology in the cortex and hippocampus in mice. To better characterize a potential role for these ligands in ASDs, we performed a comprehensive behavioral characterization of anxiety-like, sensorimotor, learning, and social behaviors in ephrin-A2/-A3 double knockout (DKO) mice. The predominant phenotype in DKO mice was repetitive and self-injurious grooming behaviors such as have been associated with corticostriatal circuit abnormalities in other rodent models of neuropsychiatric disorders. Consistent with ASDs specifically, DKO mice exhibited decreased preference for social interaction in the social approach assay, decreased locomotor activity in the open field, increased prepulse inhibition of acoustic startle, and a shift towards self-directed activity (e.g., grooming) in novel environments, such as marble burying. Although there were no gross deficits in cognitive assays, subtle differences in performance on fear conditioning and in the Morris water maze resembled traits observed in other rodent models of ASD. We therefore conclude that ephrin-A2/-A3 DKO mice have utility as a novel ASD model with an emphasis on sensory abnormalities and restricted, repetitive behavioral symptoms. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking

    Directory of Open Access Journals (Sweden)

    Thomas C Bulea

    2015-05-01

    Full Text Available Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training.

  14. Sensorimotor rhythm-based brain-computer interface training: the impact on motor cortical responsiveness

    Science.gov (United States)

    Pichiorri, F.; De Vico Fallani, F.; Cincotti, F.; Babiloni, F.; Molinari, M.; Kleih, S. C.; Neuper, C.; Kübler, A.; Mattia, D.

    2011-04-01

    The main purpose of electroencephalography (EEG)-based brain-computer interface (BCI) technology is to provide an alternative channel to support communication and control when motor pathways are interrupted. Despite the considerable amount of research focused on the improvement of EEG signal detection and translation into output commands, little is known about how learning to operate a BCI device may affect brain plasticity. This study investigated if and how sensorimotor rhythm-based BCI training would induce persistent functional changes in motor cortex, as assessed with transcranial magnetic stimulation (TMS) and high-density EEG. Motor imagery (MI)-based BCI training in naïve participants led to a significant increase in motor cortical excitability, as revealed by post-training TMS mapping of the hand muscle's cortical representation; peak amplitude and volume of the motor evoked potentials recorded from the opponens pollicis muscle were significantly higher only in those subjects who develop a MI strategy based on imagination of hand grasping to successfully control a computer cursor. Furthermore, analysis of the functional brain networks constructed using a connectivity matrix between scalp electrodes revealed a significant decrease in the global efficiency index for the higher-beta frequency range (22-29 Hz), indicating that the brain network changes its topology with practice of hand grasping MI. Our findings build the neurophysiological basis for the use of non-invasive BCI technology for monitoring and guidance of motor imagery-dependent brain plasticity and thus may render BCI a viable tool for post-stroke rehabilitation.

  15. Causal Influence of Articulatory Motor Cortex on Comprehending Single Spoken Words: TMS Evidence.

    Science.gov (United States)

    Schomers, Malte R; Kirilina, Evgeniya; Weigand, Anne; Bajbouj, Malek; Pulvermüller, Friedemann

    2015-10-01

    Classic wisdom had been that motor and premotor cortex contribute to motor execution but not to higher cognition and language comprehension. In contrast, mounting evidence from neuroimaging, patient research, and transcranial magnetic stimulation (TMS) suggest sensorimotor interaction and, specifically, that the articulatory motor cortex is important for classifying meaningless speech sounds into phonemic categories. However, whether these findings speak to the comprehension issue is unclear, because language comprehension does not require explicit phonemic classification and previous results may therefore relate to factors alien to semantic understanding. We here used the standard psycholinguistic test of spoken word comprehension, the word-to-picture-matching task, and concordant TMS to articulatory motor cortex. TMS pulses were applied to primary motor cortex controlling either the lips or the tongue as subjects heard critical word stimuli starting with bilabial lip-related or alveolar tongue-related stop consonants (e.g., "pool" or "tool"). A significant cross-over interaction showed that articulatory motor cortex stimulation delayed comprehension responses for phonologically incongruent words relative to congruous ones (i.e., lip area TMS delayed "tool" relative to "pool" responses). As local TMS to articulatory motor areas differentially delays the comprehension of phonologically incongruous spoken words, we conclude that motor systems can take a causal role in semantic comprehension and, hence, higher cognition. © The Author 2014. Published by Oxford University Press.

  16. Implications of plan-based generalization in sensorimotor adaptation.

    Science.gov (United States)

    McDougle, Samuel D; Bond, Krista M; Taylor, Jordan A

    2017-07-01

    Generalization is a fundamental aspect of behavior, allowing for the transfer of knowledge from one context to another. The details of this transfer are thought to reveal how the brain represents what it learns. Generalization has been a central focus in studies of sensorimotor adaptation, and its pattern has been well characterized: Learning of new dynamic and kinematic transformations in one region of space tapers off in a Gaussian-like fashion to neighboring untrained regions, echoing tuned population codes in the brain. In contrast to common allusions to generalization in cognitive science, generalization in visually guided reaching is usually framed as a passive consequence of neural tuning functions rather than a cognitive feature of learning. While previous research has presumed that maximum generalization occurs at the instructed task goal or the actual movement direction, recent work suggests that maximum generalization may occur at the location of an explicitly accessible movement plan. Here we provide further support for plan-based generalization, formalize this theory in an updated model of adaptation, and test several unexpected implications of the model. First, we employ a generalization paradigm to parameterize the generalization function and ascertain its maximum point. We then apply the derived generalization function to our model and successfully simulate and fit the time course of implicit adaptation across three behavioral experiments. We find that dynamics predicted by plan-based generalization are borne out in the data, are contrary to what traditional models predict, and lead to surprising implications for the behavioral, computational, and neural characteristics of sensorimotor adaptation.NEW & NOTEWORTHY The pattern of generalization is thought to reveal how the motor system represents learned actions. Recent work has made the intriguing suggestion that maximum generalization in sensorimotor adaptation tasks occurs at the location of the

  17. The anterior cingulate cortex

    Directory of Open Access Journals (Sweden)

    Pavlović D.M.

    2009-01-01

    Full Text Available The anterior cingulate cortex (ACC has a role in attention, analysis of sensory information, error recognition, problem solving, detection of novelty, behavior, emotions, social relations, cognitive control, and regulation of visceral functions. This area is active whenever the individual feels some emotions, solves a problem, or analyzes the pros and cons of an action (if it is a right decision. Analogous areas are also found in higher mammals, especially whales, and they contain spindle neurons that enable complex social interactions. Disturbance of ACC activity is found in dementias, schizophrenia, depression, the obsessive-compulsive syndrome, and other neuropsychiatric diseases.

  18. Intracortical Brain-Machine Interfaces Advance Sensorimotor Neuroscience.

    Science.gov (United States)

    Schroeder, Karen E; Chestek, Cynthia A

    2016-01-01

    Brain-machine interfaces (BMIs) decode brain activity to control external devices. Over the past two decades, the BMI community has grown tremendously and reached some impressive milestones, including the first human clinical trials using chronically implanted intracortical electrodes. It has also contributed experimental paradigms and important findings to basic neuroscience. In this review, we discuss neuroscience achievements stemming from BMI research, specifically that based upon upper limb prosthetic control with intracortical microelectrodes. We will focus on three main areas: first, we discuss progress in neural coding of reaches in motor cortex, describing recent results linking high dimensional representations of cortical activity to muscle activation. Next, we describe recent findings on learning and plasticity in motor cortex on various time scales. Finally, we discuss how bidirectional BMIs have led to better understanding of somatosensation in and related to motor cortex.

  19. Ventrolateral and dorsomedial somatosensory association cortex damage produces distinct somesthetic syndromes in humans.

    Science.gov (United States)

    Caselli, R J

    1993-04-01

    Five somatosensory cortices have distinctive somatotopic representations, cytoarchitecture, and connectivity: primary somatosensory cortex (SI), ventrolateral association cortices (SII, SIII, and SIV), and dorsomedial association cortex (supplementary sensory area). Patients with focal lesions of ventrolateral (n = 5) and dorsomedial (n = 6) somatosensory association cortices (SACs) and hemiparetic (n = 8) and neurologically normal control patients (n = 14) underwent detailed somesthetic testing that encompassed basic, intermediate, and complex (tactile object recognition) somesthetic functions. Dorsomedial lesions acutely caused severe disruption of somesthetic processing and severe apraxia when the area of damage was extensive and involved anterior and posterior cortices. In contrast, ventrolateral lesions caused tactile agnosia. Chronically, sensorimotor function following dorsomedial damage improved considerably. Tactile agnosia following ventrolateral damage, however, was readily detectable for years following onset. Functional differences between ventrolateral and dorsomedial SACs may reflect parallel processing in dual somatosensory systems.

  20. Exercise training reinstates cortico-cortical sensorimotor functional connectivity following striatal lesioning: Development and application of a subregional-level analytic toolbox for perfusion autoradiographs of the rat brain

    Directory of Open Access Journals (Sweden)

    Yu-Hao ePeng

    2014-12-01

    Full Text Available Current rodent connectome projects are revealing brain structural connectivity with unprecedented resolution and completeness. How subregional structural connectivity relates to subregional functional interactions is an emerging research topic. We describe a method for standardized, mesoscopic-level data sampling from autoradiographic coronal sections of the rat brain, and for correlation-based analysis and intuitive display of cortico-cortical functional connectivity (FC on a flattened cortical map. A graphic user interface Cx-2D allows for the display of significant correlations of individual regions-of-interest, as well as graph theoretical metrics across the cortex. Cx-2D was tested on an autoradiographic data set of cerebral blood flow (CBF of rats that had undergone bilateral striatal lesions, followed by 4 weeks of aerobic exercise training or no exercise. Effects of lesioning and exercise on cortico-cortical FC were examined during a locomotor challenge in this rat model of Parkinsonism. Subregional FC analysis revealed a rich functional reorganization of the brain in response to lesioning and exercise that was not apparent in a standard analysis focused on CBF of isolated brain regions. Lesioned rats showed diminished degree centrality of lateral primary motor cortex, as well as neighboring somatosensory cortex–-changes that were substantially reversed in lesioned rats following exercise training. Seed analysis revealed that exercise increased positive correlations in motor and somatosensory cortex, with little effect in non-sensorimotor regions such as visual, auditory, and piriform cortex. The current analysis revealed that exercise partially reinstated sensorimotor FC lost following dopaminergic deafferentation. Cx-2D allows for standardized data sampling from images of brain slices, as well as analysis and display of cortico-cortical FC in the rat cerebral cortex with potential applications in a variety of autoradiographic and

  1. Premonitory Urges and Sensorimotor Processing in Tourette Syndrome

    Directory of Open Access Journals (Sweden)

    Sangeerthana Rajagopal

    2013-01-01

    Full Text Available Most patients with Tourette syndrome report characteristic sensory experiences (premonitory urges associated with the expression of tic symptoms. Despite the central role of these experiences to the clinical phenomenology of Tourette syndrome, little is known about their underlying brain processes. In the present article we present the results of a systematic literature review of the published studies addressing the pathophysiological mechanisms of premonitory urges. We identified some preliminary evidence for specific alterations in sensorimotor processing at both cortical and subcortical levels. A better insight into the brain correlates of premonitory urges could lead to the identification of new targets to treat the sensory initiators of tics in patients with Tourette syndrome.

  2. Listening to the Human Voice Alters Sensorimotor Brain Rhythms

    Science.gov (United States)

    Lévêque, Yohana; Schön, Daniele

    2013-01-01

    While neuronal desynchronization in the mu (≈10Hz) and beta (≈20Hz) frequency bands has long been known to be an EEG index of sensorimotor activity, this method has rarely been employed to study auditory perception. In the present study, we measured mu and beta event-related desynchronisation (ERD) while participants were asked to listen to vocal and triangle-wave melodies and to sing them back. Results showed that mu and beta ERD began earlier and were stronger when listening to vocal compared to non-vocal melodies. Interestingly, this humanness effect was stronger for less accurate singers. These results show that voice perception favors an early involvement of motor representations. PMID:24265836

  3. 2013 Sensorimotor Risk Standing Review Panel Status Review

    Science.gov (United States)

    Steinberg, Susan

    2014-01-01

    On December 11, 2013, the Sensorimotor Risk SRP, participants from the JSC, the NSBRI, and NRESS participated in a WebEx/teleconference. The purpose of the call was to allow the SRP members to: 1. Receive an update by the Human Research Program (HRP) Chief Scientist or Deputy Chief Scientist on the status of NASA's current and future exploration plans and the impact these will have on the HRP. 2. Receive an update on any changes within the HRP since the 2012 SRP meeting. 3. Receive an update by the Element or Project Scientist(s) on progress since the 2012 SRP meeting. 4. Participate in a discussion with the HRP Chief Scientist, Deputy Chief Scientist, and the Element regarding possible topics to be addressed at the next SRP meeting.

  4. Listening to the human voice alters sensorimotor brain rhythms.

    Directory of Open Access Journals (Sweden)

    Yohana Lévêque

    Full Text Available While neuronal desynchronization in the mu (≈ 10 Hz and beta (≈ 20 Hz frequency bands has long been known to be an EEG index of sensorimotor activity, this method has rarely been employed to study auditory perception. In the present study, we measured mu and beta event-related desynchronisation (ERD while participants were asked to listen to vocal and triangle-wave melodies and to sing them back. Results showed that mu and beta ERD began earlier and were stronger when listening to vocal compared to non-vocal melodies. Interestingly, this humanness effect was stronger for less accurate singers. These results show that voice perception favors an early involvement of motor representations.

  5. Pre-stimulus alpha rhythms are correlated with post-stimulus sensorimotor performance in athletes and non-athletes: a high-resolution EEG study.

    Science.gov (United States)

    Del Percio, Claudio; Marzano, Nicola; Tilgher, Stefania; Fiore, Antonio; Di Ciolo, Enrico; Aschieri, Pierluigi; Lino, Andrea; Toràn, Giancarlo; Babiloni, Claudio; Eusebi, Fabrizio

    2007-08-01

    In this study, we tested the hypothesis that a pre-stimulus brief (1 min) 10-Hz audio-visual flickering stimulation modulates alpha EEG rhythms and cognitive-motor performance in elite athletes and in non-athletes during visuo-spatial demands. Electroencephalographic (EEG) data were recorded (56 channels; EB-Neuro) in 14 elite fencing athletes and in 14 non-athletes during visuo-spatial-motor demands (i.e. subjects had to react to pictures of fencing and karate attacks). The task was performed after pre-stimulus 15- (placebo) or 10-Hz (experimental) flickering audio-visual stimulation lasting 1 min and after no stimulation (baseline). With reference to the baseline condition, only the 10-Hz stimulation induced a negative correlation between pre-stimulus alpha power and reaction time in the fencing athletes and non-athletes as a single group. The higher the enhancement of alpha power before the pictures, the stronger the improvement of the reaction time. The maximum effects were observed in right posterior parietal area (P4 electrode) overlying sensorimotor integrative cortex. Similar results were obtained in a control experiment in which eight elite karate subjects had to react to pictures of karate and basket attacks. The present results suggest that a preliminary 10-Hz sensory stimulation can modulate EEG alpha rhythms and sensorimotor performance in both elite athletes and non-athletes engaged in visuo-spatial-motor demands. Identification of the EEG state of sporting experts prior to their performance provides a plausible rationale for the modulation of alpha rhythms to enhance sporting performance in athletes and sensorimotor performance in patients to be rehabilitated.

  6. Resting-State Fluctuations of EEG Sensorimotor Rhythm Reflect BOLD Activities in the Pericentral Areas: A Simultaneous EEG-fMRI Study

    Directory of Open Access Journals (Sweden)

    Shohei Tsuchimoto

    2017-07-01

    Full Text Available Blockade of the scalp electroencephalographic (EEG sensorimotor rhythm (SMR is a well-known phenomenon following attempted or executed motor functions. Such a frequency-specific power attenuation of the SMR occurs in the alpha and beta frequency bands and is spatially registered at primary somatosensory and motor cortices. Here, we hypothesized that resting-state fluctuations of the SMR in the alpha and beta frequency bands also covary with resting-state sensorimotor cortical activity, without involving task-related neural dynamics. The present study employed functional magnetic resonance imaging (fMRI to investigate the neural regions whose activities were correlated with the simultaneously recorded SMR power fluctuations. The SMR power fluctuations were convolved with a canonical hemodynamic response function and correlated with blood-oxygen-level dependent (BOLD signals obtained from the entire brain. Our findings show that the alpha and beta power components of the SMR correlate with activities of the pericentral area. Furthermore, brain regions with correlations between BOLD signals and the alpha-band SMR fluctuations were located posterior to those with correlations between BOLD signals and the beta-band SMR. These results are consistent with those of event-related studies of SMR modulation induced by sensory input or motor output. Our findings may help to understand the role of the sensorimotor cortex activity in contributing to the amplitude modulation of SMR during the resting state. This knowledge may be applied to the diagnosis of pathological conditions in the pericentral areas or the refinement of brain–computer interfaces using SMR in the future.

  7. Sensorimotor Skills Impact on Temporal Expectation: Evidence from Swimmers

    Directory of Open Access Journals (Sweden)

    Marco Bove

    2017-10-01

    Full Text Available Aim of this study was to assess whether the ability to predict the temporal outcome of a sport action was influenced by the sensorimotor skills previously acquired during a specific sport training. Four groups, each of 30 subjects, were enrolled in this study; subjects of three groups practiced different sports disciplines (i.e., swimming, rhythmic gymnastics, and water polo at competitive level whilst the fourth group consisted of control subjects. Subjects were asked to observe a video showing a swimmer doing two laps in crawl style. This video was shown 36 times, and was occluded after variable intervals, randomized across trials, by a dark window that started 3, 6, and 12 s before the swimmer touched the poolside. During the occluded interval, subjects were asked to indicate when the swimmer touched the edge of the pool by clicking on any button of the laptop keyboard. We found that swimmers were more accurate than subjects performing other sports in temporally predicting the final outcome of the swimming task. Particularly, we observed a significant difference in absolute timing error that was lower in swimmers compared to other groups when they were asked to make a temporal prediction with the occluded interval of short duration (i.e., 3 s. Our findings demonstrate that the ability to extract temporal patterns of a motor action depends largely on the subjective expertise, suggesting that sport-acquired sensorimotor skills impact on the temporal representation of the previously observed action, allowing subjects to predict the time course of the action in absence of visual information.

  8. Sensorimotor Skills Impact on Temporal Expectation: Evidence from Swimmers

    Science.gov (United States)

    Bove, Marco; Strassera, Laura; Faelli, Emanuela; Biggio, Monica; Bisio, Ambra; Avanzino, Laura; Ruggeri, Piero

    2017-01-01

    Aim of this study was to assess whether the ability to predict the temporal outcome of a sport action was influenced by the sensorimotor skills previously acquired during a specific sport training. Four groups, each of 30 subjects, were enrolled in this study; subjects of three groups practiced different sports disciplines (i.e., swimming, rhythmic gymnastics, and water polo) at competitive level whilst the fourth group consisted of control subjects. Subjects were asked to observe a video showing a swimmer doing two laps in crawl style. This video was shown 36 times, and was occluded after variable intervals, randomized across trials, by a dark window that started 3, 6, and 12 s before the swimmer touched the poolside. During the occluded interval, subjects were asked to indicate when the swimmer touched the edge of the pool by clicking on any button of the laptop keyboard. We found that swimmers were more accurate than subjects performing other sports in temporally predicting the final outcome of the swimming task. Particularly, we observed a significant difference in absolute timing error that was lower in swimmers compared to other groups when they were asked to make a temporal prediction with the occluded interval of short duration (i.e., 3 s). Our findings demonstrate that the ability to extract temporal patterns of a motor action depends largely on the subjective expertise, suggesting that sport-acquired sensorimotor skills impact on the temporal representation of the previously observed action, allowing subjects to predict the time course of the action in absence of visual information. PMID:29085314

  9. Lamotrigine effects sensorimotor gating in WAG/Rij rats

    Directory of Open Access Journals (Sweden)

    Ipek Komsuoglu Celikyurt

    2012-01-01

    Full Text Available Introduction: Prepulse inhibition (PPI is a measurable form of sensorimotor gating. Disruption of PPI reflects the impairment in the neural filtering process of mental functions that are related to the transformation of an external stimuli to a response. Impairment of PPI is reported in neuropsychiatric illnesses such as schizophrenia, Huntington′s disease, Parkinson′s diseases, Tourette syndrome, obsessive compulsive disorder, and temporal lobe epilepsy with psychosis. Absence epilepsy is the most common type of primary generalized epilepsy. Lamotrigine is an antiepileptic drug that is preferred in absence epilepsy and acts by stabilizing the voltage-gated sodium channels. Aim: In this study, we have compared WAG-Rij rats (genetically absence epileptic rats with Wistar rats, in order to clarify if there is a deficient sensorimotor gating in absence epilepsy, and have examined the effects of lamotrigine (15, 30 mg/kg, i.p. on this phenomenon. Materials and Methods: Depletion in PPI percent value is accepted as a disruption in sensory-motor filtration function. The difference between the Wistar and WAG/Rij rats has been evaluated with the student t test and the effects of lamotrigine on the PPI percent have been evaluated by the analysis of variance (ANOVA post-hoc Dunnett′s test. Results: The PPI percent was low in the WAG/Rij rats compared to the controls (P<0.0001, t:9,612. Although the PPI percent value of the control rats was not influenced by lamotrigine, the PPI percent value of the WAG/Rij rats was raised by lamotrigine treatment (P<0.0001, F:861,24. Conclusions: As a result of our study, PPI was disrupted in the WAG/Rij rats and this disruption could be reversed by an antiepileptic lamotrigine.

  10. Sensory Disturbances, but Not Motor Disturbances, Induced by Sensorimotor Conflicts Are Increased in the Presence of Acute Pain

    Science.gov (United States)

    Brun, Clémentine; Gagné, Martin; McCabe, Candida S.; Mercier, Catherine

    2017-01-01

    Incongruence between our motor intention and the sensory feedback of the action (sensorimotor conflict) induces abnormalities in sensory perception in various chronic pain populations, and to a lesser extent in pain-free individuals. The aim of this study was to simultaneously investigate sensory and motor disturbances evoked by sensorimotor conflicts, as well as to assess how they are influenced by the presence of acute pain. It was hypothesized that both sensory and motor disturbances would be increased in presence of pain, which would suggest that pain makes body representations less robust. Thirty healthy participants realized cyclic asymmetric movements of flexion-extension with both upper limbs in a robotized system combined to a 2D virtual environment. The virtual environment provided a visual feedback (VF) about movements that was either congruent or incongruent, while the robotized system precisely measured motor performance (characterized by bilateral amplitude asymmetry and medio-lateral drift). Changes in sensory perception were assessed with a questionnaire after each trial. The effect of pain (induced with capsaicin) was compared to three control conditions (no somatosensory stimulation, tactile distraction and proprioceptive masking). Results showed that while both sensory and motor disturbances were induced by sensorimotor conflicts, only sensory disturbances were enhanced during pain condition comparatively to the three control conditions. This increase did not statistically differ across VF conditions (congruent or incongruent). Interestingly however, the types of sensations evoked by the conflict in the presence of pain (changes in intensity of pain or discomfort, changes in temperature or impression of a missing limb) were different than those evoked by the conflict alone (loss of control, peculiarity and the perception of having an extra limb). Finally, results showed no relationship between the amount of motor and sensory disturbances evoked

  11. Sensory Disturbances, but Not Motor Disturbances, Induced by Sensorimotor Conflicts Are Increased in the Presence of Acute Pain

    Directory of Open Access Journals (Sweden)

    Clémentine Brun

    2017-07-01

    Full Text Available Incongruence between our motor intention and the sensory feedback of the action (sensorimotor conflict induces abnormalities in sensory perception in various chronic pain populations, and to a lesser extent in pain-free individuals. The aim of this study was to simultaneously investigate sensory and motor disturbances evoked by sensorimotor conflicts, as well as to assess how they are influenced by the presence of acute pain. It was hypothesized that both sensory and motor disturbances would be increased in presence of pain, which would suggest that pain makes body representations less robust. Thirty healthy participants realized cyclic asymmetric movements of flexion-extension with both upper limbs in a robotized system combined to a 2D virtual environment. The virtual environment provided a visual feedback (VF about movements that was either congruent or incongruent, while the robotized system precisely measured motor performance (characterized by bilateral amplitude asymmetry and medio-lateral drift. Changes in sensory perception were assessed with a questionnaire after each trial. The effect of pain (induced with capsaicin was compared to three control conditions (no somatosensory stimulation, tactile distraction and proprioceptive masking. Results showed that while both sensory and motor disturbances were induced by sensorimotor conflicts, only sensory disturbances were enhanced during pain condition comparatively to the three control conditions. This increase did not statistically differ across VF conditions (congruent or incongruent. Interestingly however, the types of sensations evoked by the conflict in the presence of pain (changes in intensity of pain or discomfort, changes in temperature or impression of a missing limb were different than those evoked by the conflict alone (loss of control, peculiarity and the perception of having an extra limb. Finally, results showed no relationship between the amount of motor and sensory

  12. Sensory Disturbances, but Not Motor Disturbances, Induced by Sensorimotor Conflicts Are Increased in the Presence of Acute Pain.

    Science.gov (United States)

    Brun, Clémentine; Gagné, Martin; McCabe, Candida S; Mercier, Catherine

    2017-01-01

    Incongruence between our motor intention and the sensory feedback of the action (sensorimotor conflict) induces abnormalities in sensory perception in various chronic pain populations, and to a lesser extent in pain-free individuals. The aim of this study was to simultaneously investigate sensory and motor disturbances evoked by sensorimotor conflicts, as well as to assess how they are influenced by the presence of acute pain. It was hypothesized that both sensory and motor disturbances would be increased in presence of pain, which would suggest that pain makes body representations less robust. Thirty healthy participants realized cyclic asymmetric movements of flexion-extension with both upper limbs in a robotized system combined to a 2D virtual environment. The virtual environment provided a visual feedback (VF) about movements that was either congruent or incongruent, while the robotized system precisely measured motor performance (characterized by bilateral amplitude asymmetry and medio-lateral drift). Changes in sensory perception were assessed with a questionnaire after each trial. The effect of pain (induced with capsaicin) was compared to three control conditions (no somatosensory stimulation, tactile distraction and proprioceptive masking). Results showed that while both sensory and motor disturbances were induced by sensorimotor conflicts, only sensory disturbances were enhanced during pain condition comparatively to the three control conditions. This increase did not statistically differ across VF conditions (congruent or incongruent). Interestingly however, the types of sensations evoked by the conflict in the presence of pain (changes in intensity of pain or discomfort, changes in temperature or impression of a missing limb) were different than those evoked by the conflict alone (loss of control, peculiarity and the perception of having an extra limb). Finally, results showed no relationship between the amount of motor and sensory disturbances evoked

  13. Functional and structural balances of homologous sensorimotor regions in multiple sclerosis fatigue

    DEFF Research Database (Denmark)

    Cogliati Dezza, I; Zito, G; Tomasevic, L

    2015-01-01

    Fatigue in multiple sclerosis (MS) is a highly disabling symptom. Among the central mechanisms behind it, an involvement of sensorimotor networks is clearly evident from structural and functional studies. We aimed at assessing whether functional/structural balances of homologous sensorimotor...... in 27 mildly disabled MS patients. Structural MRI-derived inter-hemispheric asymmetries included the cortical thickness of Rolandic regions and the volume of thalami. Fatigue symptoms increased together with the functional inter-hemispheric imbalance of sensorimotor homologous areas activities at rest...

  14. Exercise Effects on the Brain and Sensorimotor Function in Bed Rest

    Science.gov (United States)

    Koppelmans, V.; Cassady, K.; De Dios, Y. E.; Szecsy, D.; Gadd, N.; Wood, S. J.; Reuter-Lorenz, R. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; hide

    2016-01-01

    using both a region of interest (ROI, or seed-to-voxel) approach as well as a whole brain intrinsic connectivity (i.e., voxel-to-voxel) analysis. For the ROI analysis we selected 11 ROIs of brain regions that are involved in sensorimotor function (i.e., L. Insular C., L. Putamen, R. Premotor C., L.+R. Primary Motor C., R. Vestibular C., L. Posterior Cingulate G., R. Cerebellum Lobule V + VIIIb + Crus I, and the R. Superior Parietal G.) and correlated their time course of brain activation during rest with all other voxels in the brain. The whole brain connectivity analysis tests changes in the strength of the global connectivity pattern between each voxel and the rest of the brain. Functional mobility was assessed using an obstacle course. Vestibular contribution to balance was measured using Neurocom Sensory Organization Test 5. Behavioral measures were assessed pre-HDBR, and 0, 8 and 12 days post-HDBR. Linear mixed models were used to test for effects of time, group, and group-by-time interactions. Family-wise error corrected VBM revealed significantly larger increases in GM volume in the right primary motor cortex in bed rest control subjects than in bed rest exercise subjects. No other significant group by time interactions in gray matter changes with bed rest were observed. Functional connectivity MRI revealed that the increase in connectivity during bed rest of the left putamen with the bilateral midsagittal precunes and the right cingulate gyrus was larger in bed rest control subjects than in bed rest exercise subjects. Furthermore, the increase in functional connectivity with bed rest of the right premotor cortex with the right inferior frontal gyrus and the right primary motor cortex with the bilateral premotor cortex was smaller in bed rest control subjects than in bed rest exercise subjects. Functional mobility performance was less affected by HDBR in exercise subjects than in control subjects and post HDBR exercise subjects recovered faster than control

  15. Prediction of three-dimensional arm trajectories based on ECoG signals recorded from human sensorimotor cortex.

    Directory of Open Access Journals (Sweden)

    Yasuhiko Nakanishi

    Full Text Available Brain-machine interface techniques have been applied in a number of studies to control neuromotor prostheses and for neurorehabilitation in the hopes of providing a means to restore lost motor function. Electrocorticography (ECoG has seen recent use in this regard because it offers a higher spatiotemporal resolution than non-invasive EEG and is less invasive than intracortical microelectrodes. Although several studies have already succeeded in the inference of computer cursor trajectories and finger flexions using human ECoG signals, precise three-dimensional (3D trajectory reconstruction for a human limb from ECoG has not yet been achieved. In this study, we predicted 3D arm trajectories in time series from ECoG signals in humans using a novel preprocessing method and a sparse linear regression. Average Pearson's correlation coefficients and normalized root-mean-square errors between predicted and actual trajectories were 0.44~0.73 and 0.18~0.42, respectively, confirming the feasibility of predicting 3D arm trajectories from ECoG. We foresee this method contributing to future advancements in neuroprosthesis and neurorehabilitation technology.

  16. Improved Diagnostic Accuracy of SPECT Through Statistical Analysis and the Detection of Hot Spots at the Primary Sensorimotor Area for the Diagnosis of Alzheimer Disease in a Community-Based Study: "The Osaki-Tajiri Project".

    Science.gov (United States)

    Kaneta, Tomohiro; Nakatsuka, Masahiro; Nakamura, Kei; Seki, Takashi; Yamaguchi, Satoshi; Tsuboi, Masahiro; Meguro, Kenichi

    2016-01-01

    SPECT is an important diagnostic tool for dementia. Recently, statistical analysis of SPECT has been commonly used for dementia research. In this study, we evaluated the accuracy of visual SPECT evaluation and/or statistical analysis for the diagnosis (Dx) of Alzheimer disease (AD) and other forms of dementia in our community-based study "The Osaki-Tajiri Project." Eighty-nine consecutive outpatients with dementia were enrolled and underwent brain perfusion SPECT with 99mTc-ECD. Diagnostic accuracy of SPECT was tested using 3 methods: visual inspection (SPECT Dx), automated diagnostic tool using statistical analysis with easy Z-score imaging system (eZIS Dx), and visual inspection plus eZIS (integrated Dx). Integrated Dx showed the highest sensitivity, specificity, and accuracy, whereas eZIS was the second most accurate method. We also observed that a higher than expected rate of SPECT images indicated false-negative cases of AD. Among these, 50% showed hypofrontality and were diagnosed as frontotemporal lobar degeneration. These cases typically showed regional "hot spots" in the primary sensorimotor cortex (ie, a sensorimotor hot spot sign), which we determined were associated with AD rather than frontotemporal lobar degeneration. We concluded that the diagnostic abilities were improved by the integrated use of visual assessment and statistical analysis. In addition, the detection of a sensorimotor hot spot sign was useful to detect AD when hypofrontality is present and improved the ability to properly diagnose AD.

  17. Reduction of Interhemispheric Functional Connectivity in Sensorimotor and Visual Information Processing Pathways in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Xu Lang

    2016-01-01

    Conclusions: Interhemispheric functional connectivity in the sensorimotor and visual processing pathways was reduced in patients with schizophrenia, but this reduction was unrelated to the disease state; thus, this reduction may serve as a trait marker of schizophrenia.

  18. Sensorimotor functioning and prelinguistic communication of severely and profoundly retarded individuals.

    Science.gov (United States)

    Lobato, D; Barrera, R D; Feldman, R S

    1981-03-01

    The prelinguistic, nonverbal communicative behavior of 40 institutionalized severely and profoundly retarded children and adolescents functioning at various stages of Piaget's sensorimotor period was examined. Five scales of the Uzgiris and Hunt (1975) sensorimotor assessment were used to determine general level of sensorimotor functioning. A standard set of communication elicitation tasks was employed to examine the gestures used to communicate in both imperative and declarative contexts. More competent sensorimotor performance was associated with higher frequency of more sophisticated and symbolic forms of gestural communication, and subjects generally used more complex gestures to communicate in the imperative than in the declarative tasks. Applicability of the results to the design of future language-intervention programs and their implications for general theory concerning the relations between language and cognition and between normal and atypical development were discussed.

  19. Passive sensorimotor stimulation triggers long lasting alpha-band fluctuations in visual perception.

    Science.gov (United States)

    Tomassini, Alice; D'Ausilio, Alessandro

    2018-02-01

    Movement planning and execution rely on the anticipation and online control of the incoming sensory input. Evidence suggests that sensorimotor processes may synchronize visual rhythmic activity in preparation of action performance. Indeed, we recently reported periodic fluctuations of visual contrast sensitivity that are time-locked to the onset of an intended movement of the arm. However, the origin of the observed visual modulations has so far remained unclear because of the endogenous (and thus temporally undetermined) activation of the sensorimotor system that is associated with voluntary movement initiation. In this study, we activated the sensorimotor circuitry involved in the hand control in an exogenous and controlled way by means of peripheral stimulation of the median nerve and characterized the spectrotemporal dynamics of the ensuing visual perception. The stimulation of the median nerve triggers robust and long-lasting (∼1 s) alpha-band oscillations in visual perception, whose strength is temporally modulated in a way that is consistent with the changes in alpha power described at the neurophysiological level after sensorimotor stimulation. These findings provide evidence in support of a causal role of the sensorimotor system in modulating oscillatory activity in visual areas with consequences for visual perception. NEW & NOTEWORTHY This study shows that the peripheral activation of the somatomotor hand system triggers long-lasting alpha periodicity in visual perception. This demonstrates that not only the endogenous sensorimotor processes involved in movement preparation but also the passive stimulation of the sensorimotor system can synchronize visual activity. The present work suggests that oscillation-based mechanisms may subserve core (task independent) sensorimotor integration functions.

  20. Effects of Water and Land-based Sensorimotor Training Programs on Static Balance among University Students

    OpenAIRE

    Abdolhamid Daneshjoo; Ashril Yusof

    2016-01-01

    This study examined the effect of sensorimotor training on static balance in two different environments; in water and on land. Thirty non-clinical university male students (aged 22±0.85 years) were divided randomly into three groups; water, land and control groups. The experimental groups performed their respective sensorimotor training programs for 6 weeks (3 times per week). The Stork Stand Balance Test was used to examine the static balance at pre- and post-time points. Significant main ef...

  1. Sensorimotor learning and associated visual perception are intact but unrelated in autism spectrum disorder.

    Science.gov (United States)

    Hayes, Spencer J; Andrew, Matthew; Foster, Nathan C; Elliott, Digby; Gowen, Emma; Bennett, Simon J

    2017-10-20

    Humans show an astonishing capability to learn sensorimotor behaviours. However, data from sensorimotor learning experiments suggest the integration of efferent sensorimotor commands, afferent sensorimotor information, and visual consequences of a performed action during learning is different in autism, leading to atypical representation of internal action models. Here, we investigated the generalization of a sensorimotor internal action model formed during sensorimotor learning to a different, but associated, visual perception task. Although motor timing was generally less accurate in adults with autism, following practice with feedback both autistic adults, and controls, significantly improved performance of the movement sequence timing task by reducing timing error. In a subsequent perception task, both groups demonstrated similar temporal-discrimination accuracy (autism = 75%; control = 76%). Significant correlations between motor timing error, and temporal-discrimination during a perception task, was found for controls. No significant correlations were found for autistic adults. Our findings indicate that autistic adults demonstrated adaptation by reducing motor timing error through sensorimotor learning. However, the finding of significant correlations between motor timing error and temporal-discrimination accuracy in the control group only suggests sensorimotor processes underpinning internal action model formation operate differently in autism. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. We showed autistic adults learned a new motor skill, and visually judged moving objects, to a similar level of accuracy as a control group. Unlike the control group, there was no relationship between how well autistic adults learned the motor skill, and how well they judged objects. The lack of a relationship might be one of the reasons autistic adults interact differently in the social world. © 2017 International

  2. Biomechanical effects of sensorimotor orthoses in adults with Charcot-Marie-Tooth disease.

    Science.gov (United States)

    Wegener, Caleb; Wegener, Katrin; Smith, Richard; Schott, Karl-Heinz; Burns, Joshua

    2016-08-01

    Charcot-Marie-Tooth disease is an inherited neuropathy causing progressive weakness, foot deformity and difficulty walking. Clinical anecdotes suggest orthoses designed on the 'sensorimotor' paradigm are beneficial for improving gait in Charcot-Marie-Tooth disease. Investigate the effect of sensorimotor orthoses on in-shoe and lower limb biomechanics in adults with Charcot-Marie-Tooth disease. Randomised, repeated-measures, exploratory study. Eight males and two females with Charcot-Marie-Tooth disease aged 31-68 years fitted with pedorthic shoes and custom-made sensorimotor orthoses were randomly tested at baseline and after 4 weeks of adaptation. In-shoe three-dimensional multi-segment foot and lower limb kinematics and kinetics were collected as were plantar pressures, electromyography and self-reported comfort, stability, cushioning and preference. Compared to the shoe only condition, sensorimotor orthoses increased midfoot eversion and plantarflexion, increased ankle eversion and produced small but significant changes at the knee and hip indicating increased internal rotation. The orthoses increased medial ground reaction forces and increased pressure at the heel, midfoot and toes. There were minimal effects on electromyography. The sensorimotor orthoses were rated higher for comfort, cushioning, stability and preference. Sensorimotor orthoses produced changes in kinematic, kinetic and pressure variables in adults with Charcot-Marie-Tooth disease and were regarded as more comfortable, cushioned and stable during walking. In this study, the walking ability of patients with Charcot-Marie-Tooth disease improved with the use of foot orthoses designed according to the sensorimotor paradigm. However, the mechanism of action appears to be primarily mechanical in origin. Randomised controlled trials are necessary to evaluate the long-term patient-reported outcomes of sensorimotor orthoses. © The International Society for Prosthetics and Orthotics 2015.

  3. Functional Evidence for Memory Stabilization in Sensorimotor Adaptation: A 24-h Resting-State fMRI Study.

    Science.gov (United States)

    Della-Maggiore, Valeria; Villalta, Jorge I; Kovacevic, Natasa; McIntosh, Anthony Randal

    2017-03-01

    Adaptation learning is crucial to maintain precise motor control in face of environmental perturbations. Although much progress has been made in understanding the psychophysics and neurophysiology of sensorimotor adaptation (SA), the time course of memory consolidation remains elusive. The lack of a reproducible gradient of memory resistance using protocols of retrograde interference has even led to the proposal that memories produced through SA do not consolidate. Here, we pursued an alternative approach using resting-state fMRI to track changes in functional connectivity (FC) induced by learning. Given that consolidation leads to long-term memory, we hypothesized that a change in FC that predicted long-term memory but not short-term memory would provide indirect evidence for memory stabilization. Six scans were acquired before, 15 min, 1, 3, 5.5, and 24 h after training on a center-out task under veridical or distorted visual feedback. The experimental group showed an increment in FC of a network including motor, premotor, posterior parietal cortex, cerebellum, and putamen that peaked at 5.5 h. Crucially, the strengthening of this network correlated positively with long-term retention but negatively with short-term retention. Our work provides evidence, suggesting that adaptation memories stabilize within a 6-h window, and points to different mechanisms subserving short- and long-term memory. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. The contributions of the cerebellum in sensorimotor control: what are the prevailing opinions which will guide forthcoming studies?

    Science.gov (United States)

    Manto, Mario; Oulad Ben Taib, Nordeyn

    2013-06-01

    Although considerable progress has been made in developing models of cerebellar function in sensorimotor control, the exact nature of the basic operations performed by the cerebellum remain elusive. Several major theories have emerged these last decades. According to the hypothesis of Marr and Albus, the climbing fiber input carries an error signal weakening the strength of a subset of parallel fibers/Purkinje neurons synapses in the cerebellar cortex. Cerebellar circuits would gain the control of movement through trial and error. The hypothesis of internal models emulating movements is currently highly cited. There is a general agreement that (1) the central nervous system has to cope with an intrinsic time delay of sensory feedback related to motor activities and (2) estimations of future motor states are essential to perform fast and accurate movements. According to this second theory, cerebellar dysmetria, one of the cardinal cerebellar deficits, would result from a distorted predictive control. A third popular theory relates to the inverse models that would be stored in the cerebellum. Acquisition of a motor act would require forward models, and the acquisition process itself would generate an inverse model to allow an unconscious coordinated movement. Recently, an international panel of experts from various disciplines discussed the prevailing opinions in a consensus statement and tried to extract their clinical relevance in terms of pathogenesis of the clinical symptoms. Although a consensus is still not reached, the prevailing opinions provide a sound framework to conduct novel studies and try to discover the secrets of cerebellar circuits.

  5. Abnormal connectivity in the sensorimotor network predicts attention deficits in traumatic brain injury.

    Science.gov (United States)

    Shumskaya, Elena; van Gerven, Marcel A J; Norris, David G; Vos, Pieter E; Kessels, Roy P C

    2017-03-01

    The aim of this study was to explore modifications of functional connectivity in multiple resting-state networks (RSNs) after moderate to severe traumatic brain injury (TBI) and evaluate the relationship between functional connectivity patterns and cognitive abnormalities. Forty-three moderate/severe TBI patients and 34 healthy controls (HC) underwent resting-state fMRI. Group ICA was applied to identify RSNs. Between-subject analysis was performed using dual regression. Multiple linear regressions were used to investigate the relationship between abnormal connectivity strength and neuropsychological outcome. Forty (93%) TBI patients showed moderate disability, while 2 (5%) and 1 (2%) upper severe disability and low good recovery, respectively. TBI patients performed worse than HC on the domains attention and language. We found increased connectivity in sensorimotor, visual, default mode (DMN), executive, and cerebellar RSNs after TBI. We demonstrated an effect of connectivity in the sensorimotor RSN on attention (p sensorimotor network (p = 0.002). In TBI, attention was positively related to abnormal connectivity within the sensorimotor RSN, while in HC this relation was negative. Our results show altered patterns of functional connectivity after TBI. Attention impairments in TBI were associated with increased connectivity in the sensorimotor network. Further research is needed to test whether attention in TBI patients is directly affected by changes in functional connectivity in the sensorimotor network or whether the effect is actually driven by changes in the DMN.

  6. Reactivity of sensorimotor oscillations is altered in children with hemiplegic cerebral palsy: A magnetoencephalographic study.

    Science.gov (United States)

    Pihko, Elina; Nevalainen, Päivi; Vaalto, Selja; Laaksonen, Kristina; Mäenpää, Helena; Valanne, Leena; Lauronen, Leena

    2014-08-01

    Cerebral palsy (CP) is characterized by difficulty in control of movement and posture due to brain damage during early development. In addition, tactile discrimination deficits are prevalent in CP. To study the function of somatosensory and motor systems in CP, we compared the reactivity of sensorimotor cortical oscillations to median nerve stimulation in 12 hemiplegic CP children vs. 12 typically developing children using magnetoencephalography. We also determined the primary cortical somatosensory and motor representation areas of the affected hand in the CP children using somatosensory-evoked magnetic fields and navigated transcranial magnetic stimulation, respectively. We hypothesized that the reactivity of the sensorimotor oscillations in alpha (10 Hz) and beta (20 Hz) bands would be altered in CP and that the beta-band reactivity would depend on the individual pattern of motor representation. Accordingly, in children with CP, suppression and rebound of both oscillations after stimulation of the contralateral hand were smaller in the lesioned than intact hemisphere. Furthermore, in two of the three children with CP having ipsilateral motor representation, the beta- but not alpha-band modulations were absent in both hemispheres after affected hand stimulation suggesting abnormal sensorimotor network interactions in these individuals. The results are consistent with widespread alterations in information processing in the sensorimotor system and complement current understanding of sensorimotor network development after early brain insults. Precise knowledge of the functional sensorimotor network organization may be useful in tailoring individual rehabilitation for people with CP. Copyright © 2014 Wiley Periodicals, Inc.

  7. Complex sensorimotor transformation processes required for response selection are facilitated by the striatum.

    Science.gov (United States)

    Stock, Ann-Kathrin; Ness, Vanessa; Beste, Christian

    2015-12-01

    Both fronto-parietal networks and the basal ganglia play an important role in action cascading. It is well-known that cortical structures mediate sensorimotor transformation for this purpose. The striatum receives extensive input from those cortical structures and has been shown to be modulated by the predictability of cortical input. Until today, it has however remained unclear whether the processing of spatial codes or even sensorimotor transformation processes for the purpose of action cascading involve the striatum. We therefore examined this question by means of fMRI using a stop-change task that varied the predictability as well as the complexity of sensorimotor transformations required for correct responding in the context of action cascading. On the behavioral level, we found that the complexity of sensorimotor transformation processes only prolonged reaction times when the requirement for this transformation was predictable. fMRI results matched this effect showing enhanced activity of the caudate in case a complex sensorimotor transformation could be anticipated. Irrespective of the complexity of the required transformations, the putamen was furthermore involved in the prediction of imminent action cascading demands. Taken together, our findings give rise to a conceptual advance regarding basal ganglia function by showing that the anticipation and, more importantly, processing of complex sensorimotor transformation processes involves the striatum. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Pulse-train Stimulation of Primary Somatosensory Cortex Blocks Pain Perception in Tail Clip Test.

    Science.gov (United States)

    Lee, Soohyun; Hwang, Eunjin; Lee, Dongmyeong; Choi, Jee Hyun

    2017-04-01

    Human studies of brain stimulation have demonstrated modulatory effects on the perception of pain. However, whether the primary somatosensory cortical activity is associated with antinociceptive responses remains unknown. Therefore, we examined the antinociceptive effects of neuronal activity evoked by optogenetic stimulation of primary somatosensory cortex. Optogenetic transgenic mice were subjected to continuous or pulse-train optogenetic stimulation of the primary somatosensory cortex at frequencies of 15, 30, and 40 Hz, during a tail clip test. Reaction time was measured using a digital high-speed video camera. Pulse-train optogenetic stimulation of primary somatosensory cortex showed a delayed pain response with respect to a tail clip, whereas no significant change in reaction time was observed with continuous stimulation. In response to the pulse-train stimulation, video monitoring and local field potential recording revealed associated paw movement and sensorimotor rhythms, respectively. Our results show that optogenetic stimulation of primary somatosensory cortex at beta and gamma frequencies blocks transmission of pain signals in tail clip test.

  9. Aging and selective sensorimotor strategies in the regulation of upright balance

    Directory of Open Access Journals (Sweden)

    Bugnariu Nicoleta

    2007-06-01

    Full Text Available Abstract Background The maintenance of upright equilibrium is essentially a sensorimotor integration task. The central nervous system (CNS has to generate appropriate and complex motor responses based on the selective and rapid integration of sensory information from multiple sources. Since each sensory system has its own coordinate framework, specific time delay and reliability, sensory conflicts may arise and represent situations in which the CNS has to recalibrate the weight attributed to each particular sensory input. The resolution of sensory conflicts may represent a particular challenge for older adults given the age-related decline in the integrity of many postural regulating systems, including musculoskeletal and sensory systems, as well as neural processing and conduction of information. The effects of aging and adaptation (by repeated exposures on the capability of the CNS to select pertinent sensory information and resolve sensory conflicts were thus investigated with virtual reality (VR in the present study. Methods Healthy young and older adults maintained quiet stance while immersed in a virtual environment (VE for 1 hour during which transient visual and/or surface perturbations were randomly presented. Visual perturbations were induced by sudden pitch or roll plane tilts of the VE viewed through a helmet-mounted display, and combined with or without surface perturbations presented in a direction that was either identical or opposite to the visual perturbations. Results Results showed a profound influence of aging on postural adjustments measured by electromyographic (EMG responses and displacements of the center of pressure (COP and body's center of mass (COM in the recovery of upright stance, especially in the presence of sensory conflicts. Older adults relied more on vision as compared to young adults. Aging affects the interaction of the somatosensory and visual systems on the control of equilibrium during standing and the

  10. Robot-guided ankle sensorimotor rehabilitation of patients with multiple sclerosis.

    Science.gov (United States)

    Lee, Yunju; Chen, Kai; Ren, Yupeng; Son, Jongsang; Cohen, Bruce A; Sliwa, James A; Zhang, Li-Qun

    2017-01-01

    People with multiple sclerosis (MS) often develop symptoms including muscle weakness, spasticity, imbalance, and sensory loss in the lower limbs, especially at the ankle, which result in impaired balance and locomotion and increased risk of falls. Rehabilitation strategies that improve ankle function may improve mobility and safety of ambulation in patients with MS. This pilot study investigated effectiveness of a robot-guided ankle passive-active movement training in reducing motor and sensory impairments and improving balance and gait functions. Seven patients with MS participated in combined passive stretching and active movement training using an ankle rehabilitation robot. Six of the patients finished robotic training 3 sessions per week over 6 weeks for a total of 18 sessions. Biomechanical and clinical outcome evaluations were done before and after the 6-week treatment, and at a follow-up six weeks afterwards. After six-week ankle sensorimotor training, there were increases in active range of motion in dorsiflexion, dorsiflexor and plantar flexor muscle strength, and balance and locomotion (pRobot-guided ankle training is potentially a useful therapeutic intervention to improve mobility in patients with MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Neurodynamics in the Sensorimotor Loop: Representing Behavior Relevant External Situations.

    Science.gov (United States)

    Pasemann, Frank

    2017-01-01

    In the context of the dynamical system approach to cognition and supposing that brains or brain-like systems controlling the behavior of autonomous systems are permanently driven by their sensor signals, the paper approaches the question of neurodynamics in the sensorimotor loop in a purely formal way. This is carefully done by addressing the problem in three steps, using the time-discrete dynamics of standard neural networks and a fiber space representation for better clearness. Furthermore, concepts like meta-transients, parametric stability and dynamical forms are introduced, where meta-transients describe the effect of realistic sensor inputs, parametric stability refers to a class of sensor inputs all generating the "same type" of dynamic behavior, and a dynamical form comprises the corresponding class of parametrized dynamical systems. It is argued that dynamical forms are the essential internal representatives of behavior relevant external situations. Consequently, it is suggested that dynamical forms are the basis for a memory of these situations. Finally, based on the observation that not all brain process have a direct effect on the motor activity, a natural splitting of neurodynamics into vertical (internal) and horizontal (effective) parts is introduced.

  12. Multimodal sensorimotor system in unicellular zoospores of a fungus.

    Science.gov (United States)

    Swafford, Andrew J M; Oakley, Todd H

    2017-11-23

    Complex sensory systems often underlie critical behaviors, including avoiding predators and locating prey, mates, and shelter. Multisensory systems that control motor behavior even appear in unicellular eukaryotes, such as Chlamydomonas, which are important laboratory models for sensory biology. However, we know of no unicellular opisthokonts that control motor behavior using a multimodal sensory system. Therefore, existing single-celled models for multimodal sensorimotor integration are very distantly related to animals. Here, we describe a multisensory system that controls the motor function of unicellular fungal zoospores. We find that zoospores of Allomyces arbusculus exhibit both phototaxis and chemotaxis. Furthermore, we report that closely related Allomyces species respond to either only the chemical or light stimuli presented in this study, and likely do not share this multisensory system. This diversity of sensory systems within Allomyces provides a rare example of a comparative framework that can be used to examine the evolution of sensory systems following gain/loss of available sensory modalities. The tractability of Allomyces and related fungi as laboratory organisms will facilitate detailed mechanistic investigations into the genetic underpinnings of novel photosensory systems, and how multisensory systems may have functioned in early opisthokonts before multicellularity allowed for the evolution of specialized cell types. © 2017. Published by The Company of Biologists Ltd.

  13. Vocal learning is constrained by the statistics of sensorimotor experience.

    Science.gov (United States)

    Sober, Samuel J; Brainard, Michael S

    2012-12-18

    The brain uses sensory feedback to correct behavioral errors. Larger errors by definition require greater corrections, and many models of learning assume that larger sensory feedback errors drive larger motor changes. However, an alternative perspective is that larger errors drive learning less effectively because such errors fall outside the range of errors normally experienced and are therefore unlikely to reflect accurate feedback. This is especially crucial in vocal control because auditory feedback can be contaminated by environmental noise or sensory processing errors. A successful control strategy must therefore rely on feedback to correct errors while disregarding aberrant auditory signals that would lead to maladaptive vocal corrections. We hypothesized that these constraints result in compensation that is greatest for smaller imposed errors and least for larger errors. To test this hypothesis, we manipulated the pitch of auditory feedback in singing Bengalese finches. We found that learning driven by larger sensory errors was both slower than that resulting from smaller errors and showed less complete compensation for the imposed error. Additionally, we found that a simple principle could account for these data: the amount of compensation was proportional to the overlap between the baseline distribution of pitch production and the distribution experienced during the shift. Correspondingly, the fraction of compensation approached zero when pitch was shifted outside of the song's baseline pitch distribution. Our data demonstrate that sensory errors drive learning best when they fall within the range of production variability, suggesting that learning is constrained by the statistics of sensorimotor experience.

  14. Mina: A Sensorimotor Robotic Orthosis for Mobility Assistance

    Directory of Open Access Journals (Sweden)

    Anil K. Raj

    2011-01-01

    Full Text Available While most mobility options for persons with paraplegia or paraparesis employ wheeled solutions, significant adverse health, psychological, and social consequences result from wheelchair confinement. Modern robotic exoskeleton devices for gait assistance and rehabilitation, however, can support legged locomotion systems for those with lower extremity weakness or paralysis. The Florida Institute for Human and Machine Cognition (IHMC has developed the Mina, a prototype sensorimotor robotic orthosis for mobility assistance that provides mobility capability for paraplegic and paraparetic users. This paper describes the initial concept, design goals, and methods of this wearable overground robotic mobility device, which uses compliant actuation to power the hip and knee joints. Paralyzed users can balance and walk using the device over level terrain with the assistance of forearm crutches employing a quadrupedal gait. We have initiated sensory substitution feedback mechanisms to augment user sensory perception of his or her lower extremities. Using this sensory feedback, we hypothesize that users will ambulate with a more natural, upright gait and will be able to directly control the gait parameters and respond to perturbations. This may allow bipedal (with minimal support gait in future prototypes.

  15. Sensorimotor Learning of Acupuncture Needle Manipulation Using Visual Feedback.

    Directory of Open Access Journals (Sweden)

    Won-Mo Jung

    Full Text Available Humans can acquire a wide variety of motor skills using sensory feedback pertaining to discrepancies between intended and actual movements. Acupuncture needle manipulation involves sophisticated hand movements and represents a fundamental skill for acupuncturists. We investigated whether untrained students could improve their motor performance during acupuncture needle manipulation using visual feedback (VF.Twenty-one untrained medical students were included, randomly divided into concurrent (n = 10 and post-trial (n = 11 VF groups. Both groups were trained in simple lift/thrusting techniques during session 1, and in complicated lift/thrusting techniques in session 2 (eight training trials per session. We compared the motion patterns and error magnitudes of pre- and post-training tests.During motion pattern analysis, both the concurrent and post-trial VF groups exhibited greater improvements in motion patterns during the complicated lifting/thrusting session. In the magnitude error analysis, both groups also exhibited reduced error magnitudes during the simple lifting/thrusting session. For the training period, the concurrent VF group exhibited reduced error magnitudes across all training trials, whereas the post-trial VF group was characterized by greater error magnitudes during initial trials, which gradually reduced during later trials.Our findings suggest that novices can improve the sophisticated hand movements required for acupuncture needle manipulation using sensorimotor learning with VF. Use of two types of VF can be beneficial for untrained students in terms of learning how to manipulate acupuncture needles, using either automatic or cognitive processes.

  16. Bayesian optimal adaptation explains age-related human sensorimotor changes.

    Science.gov (United States)

    Karmali, Faisal; Whitman, Gregory T; Lewis, Richard F

    2017-11-08

    The brain uses information from different sensory systems to guide motor behavior, and aging is associated with a simultaneous decline in the quality of sensory information provided to the brain and a deterioration in motor control. Correlations between age-dependent decline in sensory anatomical structures and behavior have been demonstrated, and it has recently been suggested that a Bayesian framework could explain these relationships. Here we show that age-dependent changes in a human sensorimotor reflex, the vestibulo-ocular reflex, are explained by a Bayesian optimal adaptation in the brain occurring in response to death of motion-sensing hair cells. Specifically, we found that the temporal dynamics of the reflex as a function of age are predicted (r=0.93, pBayesian framework has been shown to be a general neural principle for multimodal sensory integration and dynamic sensory estimation, these findings provide evidence of longitudinal Bayesian processing over the human lifespan. These results illuminate how the aging brain strives to optimize motor behavior when faced with deterioration in the peripheral and central nervous system, and have implications in the field of vestibular and balance disorders, as they will likely provide guidance for physical therapy and for prosthetic aids that aim to reduce falls in the elderly. Copyright © 2017, Journal of Neurophysiology.

  17. Computational Graph Theoretical Model of the Zebrafish Sensorimotor Pathway

    Science.gov (United States)

    Peterson, Joshua M.; Stobb, Michael; Mazzag, Bori; Gahtan, Ethan

    2011-11-01

    Mapping the detailed connectivity patterns of neural circuits is a central goal of neuroscience and has been the focus of extensive current research [4, 3]. The best quantitative approach to analyze the acquired data is still unclear but graph theory has been used with success [3, 1]. We present a graph theoretical model with vertices and edges representing neurons and synaptic connections, respectively. Our system is the zebrafish posterior lateral line sensorimotor pathway. The goal of our analysis is to elucidate mechanisms of information processing in this neural pathway by comparing the mathematical properties of its graph to those of other, previously described graphs. We create a zebrafish model based on currently known anatomical data. The degree distributions and small-world measures of this model is compared to small-world, random and 3-compartment random graphs of the same size (with over 2500 nodes and 160,000 connections). We find that the zebrafish graph shows small-worldness similar to other neural networks and does not have a scale-free distribution of connections.

  18. Learning indoor robot navigation using visual and sensorimotor map information

    Science.gov (United States)

    Yan, Wenjie; Weber, Cornelius; Wermter, Stefan

    2013-01-01

    As a fundamental research topic, autonomous indoor robot navigation continues to be a challenge in unconstrained real-world indoor environments. Although many models for map-building and planning exist, it is difficult to integrate them due to the high amount of noise, dynamics, and complexity. Addressing this challenge, this paper describes a neural model for environment mapping and robot navigation based on learning spatial knowledge. Considering that a person typically moves within a room without colliding with objects, this model learns the spatial knowledge by observing the person's movement using a ceiling-mounted camera. A robot can plan and navigate to any given position in the room based on the acquired map, and adapt it based on having identified possible obstacles. In addition, salient visual features are learned and stored in the map during navigation. This anchoring of visual features in the map enables the robot to find and navigate to a target object by showing an image of it. We implement this model on a humanoid robot and tests are conducted in a home-like environment. Results of our experiments show that the learned sensorimotor map masters complex navigation tasks. PMID:24109451

  19. Elucidating Sensorimotor Control Principles with Myoelectric Musculoskeletal Models

    Directory of Open Access Journals (Sweden)

    Sarah E. Goodman

    2017-11-01

    Full Text Available There is an old saying that you must walk a mile in someone's shoes to truly understand them. This mini-review will synthesize and discuss recent research that attempts to make humans “walk a mile” in an artificial musculoskeletal system to gain insight into the principles governing human movement control. In this approach, electromyography (EMG is used to sample human motor commands; these commands serve as inputs to mathematical models of muscular dynamics, which in turn act on a model of skeletal dynamics to produce a simulated motor action in real-time (i.e., the model's state is updated fast enough produce smooth motion without noticeable transitions; Manal et al., 2002. In this mini-review, these are termed myoelectric musculoskeletal models (MMMs. After a brief overview of typical MMM design and operation principles, the review will highlight how MMMs have been used for understanding human sensorimotor control and learning by evoking apparent alterations in a user's biomechanics, neural control, and sensory feedback experiences.

  20. Reading sheet music facilitates sensorimotor mu-desynchronization in musicians.

    Science.gov (United States)

    Behmer, Lawrence Paul; Jantzen, Kelly J

    2011-07-01

    Recent brain imaging studies have demonstrated that the human mirror system, in addition to becoming active while viewing the actions of others, also responds to abstract visual and auditory stimuli associated with specific actions. Here, we test the hypothesis that when musicians read sheet music an associated motor act is automatically recruited in the same way as when we observe the actions of others. Using EEG, we measured event related desynchronization of the sensorimotor mu rhythm (mu-ERD) while musicians and non-musicians listened to music, observed movies of a musical instrument being played and observed a static image of the corresponding sheet music. Musicians showed significantly greater mu-ERD than non-musicians when observing sheet music and musical performances. Our results demonstrate that the human motor system aids in the process of perception and understanding by forming functional links between arbitrary, abstract percepts and associated acts. This research uniquely adds to the existing body of literature by demonstrating that abstract images are capable of triggering an "action understanding" system when viewed by experts who have formed the appropriate visual-motor association. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Discriminant validity of lateral sensorimotor tests in children.

    Science.gov (United States)

    Francis, D J; Fletcher, J M; Rourke, B P

    1988-12-01

    The discriminant validity of left- (LH) and right-hand (RH) sensorimotor measures from a comprehensive neuropsychological battery was tested using confirmatory factor analysis. A group of children (primarily learning disabled) was divided into analysis (n = 488) and cross-validation (n = 400) samples and the following measures were taken for both the LH and the RH Tactile Perception, Finger Agnosia, Fingertip Number Writing, Tactile Form Recognition, Finger Tapping, Grip Strength, Grooved Pegboard, and Mazes. RH- and LH scores from these tests, and scores from five WISC subtests (Information, Similarities, Vocabulary, Block Design, and Object Assembly) were analyzed in a series of four nested confirmatory factor models. Models distinguished between LH and RH skill factors, and/or between simple- and complex-skill factors. Models were compared using incremental fit ratios and chi 2 difference tests (Bentler & Bonnett, 1980). Model comparisons revealed little evidence for discriminant validity of LH and RH measures, but strong support for distinctions between measures of simple- and complex-skills. These findings were replicated in the cross-validation sample.

  2. Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Passot

    Full Text Available Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation.

  3. Sensorimotor integration of vision and proprioception for obstacle crossing in ambulatory individuals with spinal cord injury.

    Science.gov (United States)

    Malik, Raza Naseem; Cote, Rachel; Lam, Tania

    2017-01-01

    Skilled walking, such as obstacle crossing, is an essential component of functional mobility. Sensorimotor integration of visual and proprioceptive inputs is important for successful obstacle crossing. The objective of this study was to understand how proprioceptive deficits affect obstacle-crossing strategies when controlling for variations in motor deficits in ambulatory individuals with spinal cord injury (SCI). Fifteen ambulatory individuals with SCI and 15 able-bodied controls were asked to step over an obstacle scaled to their motor abilities under full and obstructed vision conditions. An eye tracker was used to determine gaze behaviour and motion capture analysis was used to determine toe kinematics relative to the obstacle. Combined, bilateral hip and knee proprioceptive sense (joint position sense and movement detection sense) was assessed using the Lokomat and customized software controls. Combined, bilateral hip and knee proprioceptive sense in subjects with SCI varied and was significantly different from able-bodied subjects. Subjects with greater proprioceptive deficits stepped higher over the obstacle with their lead and trail limbs in the obstructed vision condition compared with full vision. Subjects with SCI also glanced at the obstacle more frequently and with longer fixation times compared with controls, but this was not related to proprioceptive sense. This study indicates that ambulatory individuals with SCI rely more heavily on vision to cross obstacles and show impairments in key gait parameters required for successful obstacle crossing. Our data suggest that proprioceptive deficits need to be considered in rehabilitation programs aimed at improving functional mobility in ambulatory individuals with SCI. This work is unique since it examines the contribution of combined, bilateral hip and knee proprioceptive sense on the recovery of skilled walking function, in addition to characterizing gaze behavior during a skilled walking task in people

  4. Salience, central executive, and sensorimotor network functional connectivity alterations in failed back surgery syndrome.

    Science.gov (United States)

    Kolesar, Tiffany A; Bilevicius, Elena; Kornelsen, Jennifer

    2017-07-01

    This study examined the altered patterns of functional connectivity in task-positive resting state networks in failed back surgery syndrome (FBSS) patients compared to healthy controls using functional magnetic resonance imaging (fMRI). This work stems from a previous study in which alterations in the task-negative default mode network were investigated. Participants underwent a 7-minute resting state fMRI scan in which they lay still, with eyes closed, in the absence of a task. Scanning took place at the National Research Council's 3Tesla MRI magnet in Winnipeg, Canada. Fourteen patients with FBSS and age- and gender-matched controls participated in this study. Three patients were removed from the analyses due to image artefact (n=1) and effective pain treatment (n=2). Eleven patients (5 female, mean age 52.7 years) and their matched controls were included in the final analyses. Resting state fMRI data were analyzed using an independent component analysis, yielding three resting state networks of interest: the salience network (SN), involved in detection of external stimuli, central executive network (CEN), involved in cognitions, and sensorimotor network (SeN), involved in sensory and motor integration. Analysis of Variance contrasts were performed for each network, comparing functional connectivity differences between FBSS patients and healthy controls. Alterations were observed in all three resting state networks, primarily relating to pain and its processing in the FBSS group. Specifically, compared to healthy controls, FBSS patients demonstrated increased functional connectivity in the anterior cingulate cortex within the SN, medial frontal gyrus in the CEN, and precentral gyrus within the SeN. FBSS patients also demonstrated decreased functional connectivity in the medial frontal gyrus in the SeN compared to healthy controls. Interestingly, we also observed internetwork functional connectivity in the SN and SeN. FBSS is associated with altered patterns of

  5. Chemosensory Learning in the Cortex

    Directory of Open Access Journals (Sweden)

    Edmund eRolls

    2011-09-01

    Full Text Available Taste is a primary reinforcer. Olfactory-taste and visual-taste association learning takes place in the primate including human orbitofrontal cortex to build representations of flavour. Rapid reversal of this learning can occur using a rule-based learning system that can be reset when an expected taste or flavour reward is not obtained, that is by negative reward prediction error, to which a population of neurons in the orbitofrontal cortex responds. The representation in the orbitofrontal cortex but not the primary taste or olfactory cortex is of the reward value of the visual / olfactory / taste / input as shown by devaluation experiments in which food is fed to satiety, and by correlations with the activations with subjective pleasantness ratings in humans. Sensory-specific satiety for taste, olfactory, visual, and oral somatosensory inputs produced by feeding a particular food to satiety are implemented it is proposed by medium-term synaptic adaptation in the orbitofrontal cortex. Cognitive factors, including word-level descriptions, modulate the representation of the reward value of food in the orbitofrontal cortex, and this effect is learned it is proposed by associative modification of top-down synapses onto neurons activated by bottom-up taste and olfactory inputs when both are active in the orbitofrontal cortex. A similar associative synaptic learning process is proposed to be part of the mechanism for the top-down attentional control to the reward value vs the sensory properties such as intensity of taste and olfactory inputs in the orbitofrontal cortex, as part of a biased activation theory of selective attention.

  6. Sensorimotor learning biases choice behavior: a learning neural field model for decision making.

    Directory of Open Access Journals (Sweden)

    Christian Klaes

    Full Text Available According to a prominent view of sensorimotor processing in primates, selection and specification of possible actions are not sequential operations. Rather, a decision for an action emerges from competition between different movement plans, which are specified and selected in parallel. For action choices which are based on ambiguous sensory input, the frontoparietal sensorimotor areas are considered part of the common underlying neural substrate for selection and specification of action. These areas have been shown capable of encoding alternative spatial motor goals in parallel during movement planning, and show signatures of competitive value-based selection among these goals. Since the same network is also involved in learning sensorimotor associations, competitive action selection (decision making should not only be driven by the sensory evidence and expected reward in favor of either action, but also by the subject's learning history of different sensorimotor associations. Previous computational models of competitive neural decision making used predefined associations between sensory input and corresponding motor output. Such hard-wiring does not allow modeling of how decisions are influenced by sensorimotor learning or by changing reward contingencies. We present a dynamic neural field model which learns arbitrary sensorimotor associations with a reward-driven Hebbian learning algorithm. We show that the model accurately simulates the dynamics of action selection with different reward contingencies, as observed in monkey cortical recordings, and that it correctly predicted the pattern of choice errors in a control experiment. With our adaptive model we demonstrate how network plasticity, which is required for association learning and adaptation to new reward contingencies, can influence choice behavior. The field model provides an integrated and dynamic account for the operations of sensorimotor integration, working memory and action

  7. Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions

    Science.gov (United States)

    Kattenstroth, Jan-Christoph; Kalisch, Tobias; Holt, Stephan; Tegenthoff, Martin; Dinse, Hubert R.

    2013-01-01

    During aging, sensorimotor, cognitive and physical performance decline, but can improve by training and exercise indicating that age-related changes are treatable. Dancing is increasingly used as an intervention because it combines many diverse features making it a promising neuroplasticity-inducing tool. We here investigated the effects of a 6-month dance class (1 h/week) on a group of healthy elderly individuals compared to a matched control group (CG). We performed a broad assessment covering cognition, intelligence, attention, reaction time, motor, tactile, and postural performance, as well as subjective well-being and cardio-respiratory performance. After 6 months, in the CG no changes, or further degradation of performance was found. In the dance group, beneficial effects were found for dance-related parameters such as posture and reaction times, but also for cognitive, tactile, motor performance, and subjective well-being. These effects developed without alterations in the cardio-respiratory performance. Correlation of baseline performance with the improvement following intervention revealed that those individuals, who benefitted most from the intervention, were those who showed the lowest performance prior to the intervention. Our findings corroborate previous observations that dancing evokes widespread positive effects. The pre-post design used in the present study implies that the efficacy of dance is most likely not based on a selection bias of particularly gifted individuals. The lack of changes of cardio-respiratory fitness indicates that even moderate levels of physical activity can in combination with rich sensorimotor, cognitive, social, and emotional challenges act to ameliorate a wide spectrum of age-related decline. PMID:23447455

  8. Six months of dance intervention enhances postural, sensorimotor, and cognitive performance in elderly without affecting cardio-respiratory functions

    Directory of Open Access Journals (Sweden)

    Jan-ChristophKattenstroth

    2013-02-01

    Full Text Available During aging, sensorimotor, cognitive and physical performance decline, but can improve by training and exercise indicating that age-related changes are treatable. Dancing is increasingly used as an intervention because it combines many diverse features making it a promising neuroplasticity-inducing tool. We here investigated the effects of a 6-months dance class (1 h/week on a group of healthy elderly individuals compared to a matched control group. We performed a broad assessment covering cognition, intelligence, attention, reaction time, motor, tactile, and postural performance, as well as subjective well-being and cardio-respiratory performance. After 6 months, in the control group no changes, or further degradation of performance was found. In the dance group, beneficial effects were found for dance-related parameters such as posture and reaction times, but also for cognitive, tactile, motor performance, and subjective well-being. These effects developed without alterations in the cardio-respiratory performance. Correlation of baseline performance with the improvement following intervention revealed that those individuals, who benefitted most from the intervention, were those who showed the lowest performance prior to the intervention. Our findings corroborate previous observations that dancing evokes widespread positive effects. The pre-post design used in the present study implies that the efficacy of dance is most likely not based on a selection bias of particularly gifted individuals. The lack of changes of cardio-respiratory fitness indicates that even moderate levels of physical activity can in combination with rich sensorimotor, cognitive, social, and emotional challenges act to ameliorate a wide spectrum of age-related decline.

  9. The impact of sensorimotor experience on affective evaluation of dance

    Science.gov (United States)

    Kirsch, Louise P.; Drommelschmidt, Kim A.; Cross, Emily S.

    2013-01-01

    Past research demonstrates that we are more likely to positively evaluate a stimulus if we have had previous experience with that stimulus. This has been shown for judgment of faces, architecture, artworks and body movements. In contrast, other evidence suggests that this relationship can also work in the inverse direction, at least in the domain of watching dance. Specifically, it has been shown that in certain contexts, people derive greater pleasure from watching unfamiliar movements they would not be able to physically reproduce compared to simpler, familiar actions they could physically reproduce. It remains unknown, however, how different kinds of experience with complex actions, such as dance, might change observers' affective judgments of these movements. Our aim was to clarify the relationship between experience and affective evaluation of whole body movements. In a between-subjects design, participants received either physical dance training with a video game system, visual and auditory experience or auditory experience only. Participants' aesthetic preferences for dance stimuli were measured before and after the training sessions. Results show that participants from the physical training group not only improved their physical performance of the dance sequences, but also reported higher enjoyment and interest in the stimuli after training. This suggests that physically learning particular movements leads to greater enjoyment while observing them. These effects are not simply due to increased familiarity with audio or visual elements of the stimuli, as the other two training groups showed no increase in aesthetic ratings post-training. We suggest these results support an embodied simulation account of aesthetics, and discuss how the present findings contribute to a better understanding of the shaping of preferences by sensorimotor experience. PMID:24027511

  10. The impact of sensorimotor experience on affective evaluation of dance

    Directory of Open Access Journals (Sweden)

    Louise eKirsch

    2013-09-01

    Full Text Available Past research demonstrates that we are more likely to positively evaluate a stimulus if we have had previous experience with that stimulus. This has been shown for judgement of faces, architecture, artworks and body movements. In contrast, other evidence suggests that this relationship can also work in the inverse direction, at least in the domain of watching dance. Specifically, it has been shown that in certain contexts, people derive greater pleasure from watching unfamiliar movements they would not be able to physically reproduce compared to simpler, familiar actions they could physically reproduce. It remains unknown, however, how different kinds of experience with complex actions, such as dance, might change observers’ affective judgements of these movements. Our aim was to clarify the relationship between experience and affective evaluation of whole body movements. In a between-subjects design, participants received either physical dance training with a video game system, visual and auditory experience or auditory experience only. Participants’ aesthetic preferences for dance stimuli were measured before and after the training sessions. Results show that participants from the physical training group not only improved their physical performance of the dance sequences, but also reported higher enjoyment and interest in the stimuli after training. This suggests that physically learning particular movements leads to greater enjoyment while observing them. These effects are not simply due to increased familiarity with audio or visual elements of the stimuli, as the other two training groups showed no increase in aesthetic ratings post-training. We suggest these results support an embodied simulation account of aesthetics, and discuss how the present findings contribute to a better understanding of the shaping of preferences by sensorimotor experience.

  11. Continuity of visual and auditory rhythms influences sensorimotor coordination.

    Directory of Open Access Journals (Sweden)

    Manuel Varlet

    Full Text Available People often coordinate their movement with visual and auditory environmental rhythms. Previous research showed better performances when coordinating with auditory compared to visual stimuli, and with bimodal compared to unimodal stimuli. However, these results have been demonstrated with discrete rhythms and it is possible that such effects depend on the continuity of the stimulus rhythms (i.e., whether they are discrete or continuous. The aim of the current study was to investigate the influence of the continuity of visual and auditory rhythms on sensorimotor coordination. We examined the dynamics of synchronized oscillations of a wrist pendulum with auditory and visual rhythms at different frequencies, which were either unimodal or bimodal and discrete or continuous. Specifically, the stimuli used were a light flash, a fading light, a short tone and a frequency-modulated tone. The results demonstrate that the continuity of the stimulus rhythms strongly influences visual and auditory motor coordination. Participants' movement led continuous stimuli and followed discrete stimuli. Asymmetries between the half-cycles of the movement in term of duration and nonlinearity of the trajectory occurred with slower discrete rhythms. Furthermore, the results show that the differences of performance between visual and auditory modalities depend on the continuity of the stimulus rhythms as indicated by movements closer to the instructed coordination for the auditory modality when coordinating with discrete stimuli. The results also indicate that visual and auditory rhythms are integrated together in order to better coordinate irrespective of their continuity, as indicated by less variable coordination closer to the instructed pattern. Generally, the findings have important implications for understanding how we coordinate our movements with visual and auditory environmental rhythms in everyday life.

  12. The impact of sensorimotor experience on affective evaluation of dance.

    Science.gov (United States)

    Kirsch, Louise P; Drommelschmidt, Kim A; Cross, Emily S

    2013-01-01

    Past research demonstrates that we are more likely to positively evaluate a stimulus if we have had previous experience with that stimulus. This has been shown for judgment of faces, architecture, artworks and body movements. In contrast, other evidence suggests that this relationship can also work in the inverse direction, at least in the domain of watching dance. Specifically, it has been shown that in certain contexts, people derive greater pleasure from watching unfamiliar movements they would not be able to physically reproduce compared to simpler, familiar actions they could physically reproduce. It remains unknown, however, how different kinds of experience with complex actions, such as dance, might change observers' affective judgments of these movements. Our aim was to clarify the relationship between experience and affective evaluation of whole body movements. In a between-subjects design, participants received either physical dance training with a video game system, visual and auditory experience or auditory experience only. Participants' aesthetic preferences for dance stimuli were measured before and after the training sessions. Results show that participants from the physical training group not only improved their physical performance of the dance sequences, but also reported higher enjoyment and interest in the stimuli after training. This suggests that physically learning particular movements leads to greater enjoyment while observing them. These effects are not simply due to increased familiarity with audio or visual elements of the stimuli, as the other two training groups showed no increase in aesthetic ratings post-training. We suggest these results support an embodied simulation account of aesthetics, and discuss how the present findings contribute to a better understanding of the shaping of preferences by sensorimotor experience.

  13. Graph theoretical model of a sensorimotor connectome in zebrafish.

    Directory of Open Access Journals (Sweden)

    Michael Stobb

    Full Text Available Mapping the detailed connectivity patterns (connectomes of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.

  14. The changes of regional cerebral blood flow: successful pain relief of intractable CRPS type II patients by motor cortex stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, J. A.; Son, H. S.; Kim, S. H.; Jung, S. G [The Catholic University of Korea, Seoul (Korea, Republic of)

    2004-07-01

    Authors report the effectiveness of MCS in extraordinarily extended pain due to intractable CRPS type II and rCBF study result for mechanism of pain control by MCS. A 43-year-old male presented severe spontaneous burning pain in his left hand and forearm and allodynia over the left arm and left hemibody. Authors planned MCS as a neuromodulation therapy for this intractable peripheral neuropathic pain patient because further neurodestructive procedure did not work anymore and have a potential risk of further aggrevation of neuopathic pain. We performed baseline and stimulation brain perfusion SPECT using 20 mCi of Tc-99m ECD. The baseline CBD studies were done with stimulator 'off' state and stimulation studies were done after stimulator 'on' with satisfactory pain relief. For the stimulation study, the radioisotope was injected immediately after pain-relief and the images were taken about 50 minutes after injection of radioisotope. In resting rCBF in the patient was compared with normal control datas, we found significant increase in rCBF in the bilateral prefrontal cortex, right dorsolateral prefrontal cortex, right superior temporal gyrus, left temporooccipital area. When rCBF datas obtained after alleviation of pain with stimulator 'on' . there were significant increase in rCBF in bilateral prefrontal cortex and left temporoocipital area. After subtraction of ECD SPECT, we found significant increase in rCBF in the right premotor and supplementary motor cortex left sensorimotor cortex, right cingulated cortex, right posterior insular cortex, right anterior limb of internal capsule. left orbitofrontal cortex and right pyramidal tract in cerebral peduncle. Authors report exellent pain control by MCS in a case of severe CRPS type II with hemibody involvement and regional cerebral blood flow changes according to successful pain control.

  15. Neural discriminability in rat lateral extrastriate cortex and deep but not superficial primary visual cortex linearly correlates with shape discriminability

    Directory of Open Access Journals (Sweden)

    Ben eVermaercke

    2015-05-01

    Full Text Available Recent studies have revealed a surprising degree of functional specialization in rodent visual cortex. It is unknown to what degree this functional organization is related to the well-known hierarchical organization of the visual system in primates. We designed a study in rats that targets one of the hallmarks of the hierarchical object vision pathway in primates: selectivity for behaviorally relevant dimensions. We compared behavioral performance in a visual water maze with neural discriminability in five visual cortical areas. We tested behavioral discrimination in two independent batches of six rats using six pairs of shapes used previously to probe shape selectivity in monkey cortex (Lehky and Sereno, 2007. The relative difficulty (error rate of shape pairs was strongly correlated between the two batches, indicating that some shape pairs were more difficult to discriminate than others. Then, we recorded in naive rats from five visual areas from primary visual cortex (V1 over areas LM, LI, LL, up to lateral occipito-temporal cortex (TO. Shape selectivity in the upper layers of V1, where the information enters cortex, correlated mostly with physical stimulus dissimilarity and not with behavioral performance. In contrast, neural discriminability in lower layers of all areas was strongly correlated with behavioral performance. These findings, in combination with the results from Vermaercke et al 2014, suggest that the functional specialization in rodent lateral visual cortex reflects a processing hierarchy resulting in the emergence of complex selectivity for behaviorally relevant stimulus differences.

  16. Beyond the sensorimotor plasticity: cognitive expansion of prism adaptation in healthy individuals.

    Directory of Open Access Journals (Sweden)

    Carine eMICHEL

    2016-01-01

    Full Text Available Sensorimotor plasticity allows us to maintain an efficient motor behavior in reaction to environmental changes. One of the classical models for the study of sensorimotor plasticity is prism adaptation. It consists of pointing to visual targets while wearing prismatic lenses that shift the visual field laterally. The conditions of the development of the plasticity and the sensorimotor after-effects have been extensively studied for more than a century. However, the interest taken in this phenomenon was considerably increased since the demonstration of neglect rehabilitation following prism adaptation by Rossetti and his colleagues in 1998. Mirror effects, i.e. simulation of neglect in healthy individuals, were observed for the first time by Colent and collaborators in 2000. The present review focuses on the expansion of prism adaptation to cognitive functions in healthy individuals during the last 15 years. Cognitive after-effects have been shown in numerous tasks even in those that are not intrinsically spatial in nature. Altogether, these results suggest the existence of a strong link between low-level sensorimotor plasticity and high-level cognitive functions and raise important questions about the mechanisms involved in producing unexpected cognitive effects following prism adaptation. Implications for the functional mechanisms and neuroanatomical network of prism adaptation are discussed to explain how sensorimotor plasticity may affect cognitive processes.

  17. The influence of neck pain on sensorimotor function in the elderly.

    Science.gov (United States)

    Uthaikhup, Sureeporn; Jull, Gwendolen; Sungkarat, Somporn; Treleaven, Julia

    2012-01-01

    Greater disturbances in sensorimotor control have been demonstrated in younger to middle aged groups. However, it is unknown whether or not the impairments documented in these populations can be extrapolated to elders with neck pain. The aim of this study was to investigate the influence of neck pain on sensorimotor function in elders. Twenty elders with neck pain (12 women and 8 men) and 20 healthy elder controls (14 women and 6 men) aged 65 years and over were recruited from the general community. Tests for sensorimotor function included; cervical joint position sense (JPS); computerised rod-and-frame test (RFT); smooth pursuit neck torsion test (SPNT); standing balance (under conditions of eyes open, eyes closed on firm and soft surfaces in comfortable stance); step test and ten-meter walk test with and without head movement. Elders with neck pain had greater deficits in the majority of sensorimotor function tests after controlling for effects of age and comorbidities. Significant differences were found in the SPNT (pneck pain have greater sensorimotor disturbances than elders without neck pain, supporting a contribution of altered afferent information originating from the cervical spine to such disturbances. The findings may inform falls prevention and management programs. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Cervical sensorimotor control in idiopathic cervical dystonia: A cross-sectional study.

    Science.gov (United States)

    De Pauw, Joke; Mercelis, Rudy; Hallemans, Ann; Michiels, Sarah; Truijen, Steven; Cras, Patrick; De Hertogh, Willem

    2017-09-01

    Patients with idiopathic adult-onset cervical dystonia (CD) experience an abnormal head posture and involuntary muscle contractions. Although the exact areas affected in the central nervous system remain uncertain, impaired functions in systems stabilizing the head and neck are apparent such as the somatosensory and sensorimotor integration systems. The aim of the study is to investigate cervical sensorimotor control dysfunction in patients with CD. Cervical sensorimotor control was assessed by a head repositioning task in 24 patients with CD and 70 asymptomatic controls. Blindfolded participants were asked to reposition their head to a previously memorized neutral head position (NHP) following an active movement (flexion, extension, left, and right rotation). The repositioning error (joint position error, JPE) was registered via 3D motion analysis with an eight-camera infrared system (VICON ® T10). Disease-specific characteristics of all patients were obtained via the Tsui scale, Cervical Dystonia Impact Profile (CDIP-58), and Toronto Western Spasmodic Rating Scale. Patients with CD showed larger JPE than controls (mean difference of 1.5°, p sensorimotor control is impaired in patients with CD. As cervical sensorimotor control can be trained, this might be a potential treatment option for therapy, adjuvant to botulinum toxin injections.

  19. Finger tapping and pre-attentive sensorimotor timing in adults with ADHD.

    Science.gov (United States)

    Hove, Michael J; Gravel, Nickolas; Spencer, Rebecca M C; Valera, Eve M

    2017-12-01

    Sensorimotor timing deficits are considered central to attention-deficit/hyperactivity disorder (ADHD). However, the tasks establishing timing impairments often involve interconnected processes, including low-level sensorimotor timing and higher level executive processes such as attention. Thus, the source of timing deficits in ADHD remains unclear. Low-level sensorimotor timing can be isolated from higher level processes in a finger-tapping task that examines the motor response to unexpected shifts of metronome onsets. In this study, adults with ADHD and ADHD-like symptoms (n = 25) and controls (n = 26) performed two finger-tapping tasks. The first assessed tapping variability in a standard tapping task (metronome-paced and unpaced). In the other task, participants tapped along with a metronome that contained unexpected shifts (±15, 50 ms); the timing adjustment on the tap following the shift captures pre-attentive sensorimotor timing (i.e., phase correction) and thus should be free of potential higher order confounds (e.g., attention). In the standard tapping task, as expected, the ADHD group had higher timing variability in both paced and unpaced tappings. However, in the pre-attentive task, performance did not differ between the ADHD and control groups. Together, results suggest that low-level sensorimotor timing and phase correction are largely preserved in ADHD and that some timing impairments observed in ADHD may stem from higher level factors (such as sustained attention).

  20. Towards a self-organizing pre-symbolic neural model representing sensorimotor primitives

    Directory of Open Access Journals (Sweden)

    Junpei eZhong

    2014-02-01

    Full Text Available The acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e. observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context.

  1. Toward a self-organizing pre-symbolic neural model representing sensorimotor primitives.

    Science.gov (United States)

    Zhong, Junpei; Cangelosi, Angelo; Wermter, Stefan

    2014-01-01

    The acquisition of symbolic and linguistic representations of sensorimotor behavior is a cognitive process performed by an agent when it is executing and/or observing own and others' actions. According to Piaget's theory of cognitive development, these representations develop during the sensorimotor stage and the pre-operational stage. We propose a model that relates the conceptualization of the higher-level information from visual stimuli to the development of ventral/dorsal visual streams. This model employs neural network architecture incorporating a predictive sensory module based on an RNNPB (Recurrent Neural Network with Parametric Biases) and a horizontal product model. We exemplify this model through a robot passively observing an object to learn its features and movements. During the learning process of observing sensorimotor primitives, i.e., observing a set of trajectories of arm movements and its oriented object features, the pre-symbolic representation is self-organized in the parametric units. These representational units act as bifurcation parameters, guiding the robot to recognize and predict various learned sensorimotor primitives. The pre-symbolic representation also accounts for the learning of sensorimotor primitives in a latent learning context.

  2. Sensorimotor and visual perceptual functioning in school-aged children with Williams syndrome.

    Science.gov (United States)

    Wuang, Y-P; Tsai, H-Y

    2017-04-01

    The purpose of the study was to describe sensorimotor profile and visual perceptual performance in school-aged (6-12 years) children with Williams syndrome (WS). The impacts of sensorimotor and visual perception on participation in WS were examined as well to guide research and evidence-based practices. A total of 38 children with WS aged 6 to 12 years were evaluated with measures of motor performance (Bruininks-Oseretsky of Motor Proficiency-Second Edition), sensory processing (Sensory Profile), visual perceptual abilities (Test of Visual Perception Skills-Third Edition) and activity participation (Vineland Adaptive Behavior Scale, School Function Assessment). Children with WS performed significantly less well on all sensorimotor and visual perceptual measures, and 71% of children scored in the impaired range on six or more (one third of ) out of 18 measures. They had weaker fine motor skills than gross motor skills. Sensory modulation was the most impaired among the sensory processing functions. Visual perceptions were all moderately impaired. All the sensorimotor measures and visual perceptual functions correlated to the cognitive functions (IQ) and linked to activity participation measures in WS. Our findings characterised the profiles of body functions (sensorimotor functions and visual organisation) of children with DS, and revealed their correlations with activity participation. Interventions focused on improving body functions are needed while stressing the acquisition of functional skills that increase participation in age-appropriate activities. © 2016 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  3. Direct measurement of free radicals in the brain cortex and the blood serum after nociceptive stimulation in rats.

    Science.gov (United States)

    Rokyta, Richard; Stopka, Pavel; Holecek, Václav; Krikava, Karel; Pekárková, Ivana

    2004-08-01

    The concentrations of ROS were measured in samples of the sensorimotor brain cortex and in the rat blood. We measured the following parameters: The six lines spectra, nitroxide radical, free hydroxyl radical and singleton oxygen. Their concentration was measured under physiological conditions, after the nociceptive stimulation and after the application of melatonin, both in normal and stimulated animals. In the brain cortex only the singleton oxygen decreased after the nociceptive stimulation, whereas the nitroxide radicals and six lines spectra increased. The free hydroxyl radicals did not change significantly. In the blood serum the six lines spectra and nitroxide radical increased, the concentration of the free hydroxyl radicals did not change. Melatonin increased both the hydroxyl and nitroxide radicals. There was a non-significant decrease in the six lines spectra. The estimation of ROS can be used as a tool for detecting metabolic changes and the consequences of different environmental influences, in our case the influence of nociception and melatonin.

  4. TRH regulates action potential shape in cerebral cortex pyramidal neurons.

    Science.gov (United States)

    Rodríguez-Molina, Víctor; Patiño, Javier; Vargas, Yamili; Sánchez-Jaramillo, Edith; Joseph-Bravo, Patricia; Charli, Jean-Louis

    2014-07-07

    Thyrotropin releasing hormone (TRH) is a neuropeptide with a wide neural distribution and a variety of functions. It modulates neuronal electrophysiological properties, including resting membrane potential, as well as excitatory postsynaptic potential and spike frequencies. We explored, with whole-cell patch clamp, TRH effect on action potential shape in pyramidal neurons of the sensorimotor cortex. TRH reduced spike and after hyperpolarization amplitudes, and increased spike half-width. The effect varied with dose, time and cortical layer. In layer V, 0.5µM of TRH induced a small increase in spike half-width, while 1 and 5µM induced a strong but transient change in spike half-width, and amplitude; after hyperpolarization amplitude was modified at 5µM of TRH. Cortical layers III and VI neurons responded intensely to 0.5µM TRH; layer II neurons response was small. The effect of 1µM TRH on action potential shape in layer V neurons was blocked by G-protein inhibition. Inhibition of the activity of the TRH-degrading enzyme pyroglutamyl peptidase II (PPII) reproduced the effect of TRH, with enhanced spike half-width. Many cortical PPII mRNA+ cells were VGLUT1 mRNA+, and some GAD mRNA+. These data show that TRH regulates action potential shape in pyramidal cortical neurons, and are consistent with the hypothesis that PPII controls its action in this region. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Cholinesterase inhibition improves blood flow in the ischemic cerebral cortex.

    Science.gov (United States)

    Scremin, O U; Li, M G; Scremin, A M; Jenden, D J

    1997-01-01

    The ability of central cholinesterase inhibition to improve cerebral blood flow in the ischemic brain was tested in Sprague-Dawley rats with tandem occlusion of left middle cerebral and common carotid arteries. Cerebral blood flow was measured with lodo- 14C-antipyrine autoradiography in 170 regions of cerebral cortex. The regional distribution of blood flow was characterized in normal animals by cerebral blood flow maxima in the temporal regions. After 2 h ischemia, minimum cerebral blood flow values were found in the lateral frontal and parietal areas on the left hemisphere, and a new maximum was found in the right hemisphere in an area approximately symmetrical to the ischemic focus. Heptyl-physostigmine (eptastigmine), a carbamate cholinesterase inhibitor with prolonged time of action improved cerebral blood flow in most regions, with the exception of the ischemic core. The drug also enhanced the ischemia-induced rostral shift of cerebral blood flow maxima in the right hemisphere. The effects of eptastigmine were more marked 24 h after ischemia. Discriminant analysis showed that data from only 22 regions was sufficient to achieve 100% accuracy in classifying all cases into the various experimental conditions. The redistribution of cerebral blood flow to the sensorimotor area of the right hemisphere of animals with cerebral ischemia, a phenomenon possibly related to recovery of function, was also enhanced by eptastigmine.

  6. Beyond the cover test: the motor half of the sensorimotor exam.

    Science.gov (United States)

    Arnoldi, Kyle

    2013-01-01

    The cover tests fulfill both the "sensory" and the "motor" requirements of the sensorimotor exam because they not only detect and quantify strabismus but also evaluate control. Control is achieved through various types of vergence, but vergence is not the only type of eye movement that is integral to fusion. The function of all eye movements is to position and maintain similar images on corresponding areas of the retinae in order to sustain binocular vision. Therefore, a complete motor exam should include evaluation of all eye movement systems. Such an exam can be performed without expensive and complicated equipment, without supplementary education, without significantly extending exam time, and within the confines of an average exam lane, because much of the exam is concealed within the standard sensorimotor evaluation. The term "sensorimotor exam" underscores the fact that sensory and motor fusion, and their respective cortical pathways, are inextricably linked, and function simultaneously and cooperatively to achieve normal visual experience.

  7. MEG study of long-term cortical reorganization of sensorimotor areas with respect to using chopsticks.

    Science.gov (United States)

    Ishii, Ryouhei; Schulz, Matthias; Xiang, Jing; Takeda, Masatoshi; Shinosaki, Kazuhiro; Stuss, Donald T; Pantev, Christo

    2002-11-15

    The movements required to use chopsticks are overlearned and routine in Asians. Most non-Asians, on the other hand, typically have difficulty performing this unfamiliar manual activity, and have to focus their attention on the movements required to use chopsticks adequately. Using magnetoencephalography (MEG) we compared the cortical activation of highly trained Asian chopstick users to the activation of Europeans who only occasionally used chopsticks, while they performed the same tasks with chopsticks or a control task of simple tapping of the same fingers. The data were analyzed using the new method of synthetic aperture magnetometry (SAM). In Europeans there was a significantly higher ratio of spectral power in the higher gamma frequency band (60-80 Hz) over the sensorimotor area compared to the Asian subjects. From these results we conclude that the high gamma band activity in the sensorimotor area may reflect focused attention and functional reorganization of the cortical network with respect to sensorimotor experience.

  8. Sensorimotor strategies for recognizing geometrical shapes: a comparative study with different sensory substitution devices

    Directory of Open Access Journals (Sweden)

    Fernando eBermejo

    2015-06-01

    Full Text Available The sensorimotor approach proposes that perception is constituted by the mastery of lawful sensorimotor regularities or sensorimotor contingencies (SMCs, which depend on specific bodily characteristics and on actions possibilities that the environment enables and constrains. Sensory substitution devices (SSDs provide the user information about the world typically corresponding to one sensory modality through the stimulation of another modality. We investigate how perception emerges in novice adult participants equipped with vision-to-auditory SSDs while solving a simple geometrical shape recognition task. In particular, we examine the distinction between apparatus-related SMCs (those originating mostly in properties of the perceptual system and object-related SMCs (those mostly connected with the perceptual task. We study the sensorimotor strategies employed by participants in three experiments with three different SSDs: a minimalist head-mounted SSD, a traditional, also head-mounted SSD (the vOICe and an enhanced, hand-held echolocation device. Motor activity is recorded and analyzed. Results show that participants are able to quickly learn the necessary skills to distinguish geometric shapes. Comparing the sensorimotor strategies utilized with each SSD we identify differential features of the sensorimotor patterns attributable mostly to the device, which account for the emergence of apparatus-based SMCs. These relate to differences in sweeping strategies between SSDs. We identify, also, components related to the emergence of object-related SMCs. These relate mostly to exploratory movements around the border of a shape. The study provides empirical support for SMC theory and discusses considerations about the nature of perception in sensory substitution.

  9. Sensorimotor strategies for recognizing geometrical shapes: a comparative study with different sensory substitution devices.

    Science.gov (United States)

    Bermejo, Fernando; Di Paolo, Ezequiel A; Hüg, Mercedes X; Arias, Claudia

    2015-01-01

    The sensorimotor approach proposes that perception is constituted by the mastery of lawful sensorimotor regularities or sensorimotor contingencies (SMCs), which depend on specific bodily characteristics and on actions possibilities that the environment enables and constrains. Sensory substitution devices (SSDs) provide the user information about the world typically corresponding to one sensory modality through the stimulation of another modality. We investigate how perception emerges in novice adult participants equipped with vision-to-auditory SSDs while solving a simple geometrical shape recognition task. In particular, we examine the distinction between apparatus-related SMCs (those originating mostly in properties of the perceptual system) and object-related SMCs (those mostly connected with the perceptual task). We study the sensorimotor strategies employed by participants in three experiments with three different SSDs: a minimalist head-mounted SSD, a traditional, also head-mounted SSD (the vOICe) and an enhanced, hand-held echolocation device. Motor activity and fist-person data are registered and analyzed. Results show that participants are able to quickly learn the necessary skills to distinguish geometric shapes. Comparing the sensorimotor strategies utilized with each SSD we identify differential features of the sensorimotor patterns attributable mostly to the device, which account for the emergence of apparatus-based SMCs. These relate to differences in sweeping strategies between SSDs. We identify, also, components related to the emergence of object-related SMCs. These relate mostly to exploratory movements around the border of a shape. The study provides empirical support for SMC theory and discusses considerations about the nature of perception in sensory substitution.

  10. Does the sensorimotor system minimize prediction error or select the most likely prediction during object lifting?

    Science.gov (United States)

    Cashaback, Joshua G A; McGregor, Heather R; Pun, Henry C H; Buckingham, Gavin; Gribble, Paul L

    2017-01-01

    The human sensorimotor system is routinely capable of making accurate predictions about an object's weight, which allows for energetically efficient lifts and prevents objects from being dropped. Often, however, poor predictions arise when the weight of an object can vary and sensory cues about object weight are sparse (e.g., picking up an opaque water bottle). The question arises, what strategies does the sensorimotor system use to make weight predictions when one is dealing with an object whose weight may vary? For example, does the sensorimotor system use a strategy that minimizes prediction error (minimal squared error) or one that selects the weight that is most likely to be correct (maximum a posteriori)? In this study we dissociated the predictions of these two strategies by having participants lift an object whose weight varied according to a skewed probability distribution. We found, using a small range of weight uncertainty, that four indexes of sensorimotor prediction (grip force rate, grip force, load force rate, and load force) were consistent with a feedforward strategy that minimizes the square of prediction errors. These findings match research in the visuomotor system, suggesting parallels in underlying processes. We interpret our findings within a Bayesian framework and discuss the potential benefits of using a minimal squared error strategy. Using a novel experimental model of object lifting, we tested whether the sensorimotor system models the weight of objects by minimizing lifting errors or by selecting the statistically most likely weight. We found that the sensorimotor system minimizes the square of prediction errors for object lifting. This parallels the results of studies that investigated visually guided reaching, suggesting an overlap in the underlying mechanisms between tasks that involve different sensory systems. Copyright © 2017 the American Physiological Society.

  11. Advantages of comparative studies in songbirds to understand the neural basis of sensorimotor integration.

    Science.gov (United States)

    Murphy, Karagh; James, Logan S; Sakata, Jon T; Prather, Jonathan F

    2017-08-01

    Sensorimotor integration is the process through which the nervous system creates a link between motor commands and associated sensory feedback. This process allows for the acquisition and refinement of many behaviors, including learned communication behaviors such as speech and birdsong. Consequently, it is important to understand fundamental mechanisms of sensorimotor integration, and comparative analyses of this process can provide vital insight. Songbirds offer a powerful comparative model system to study how the nervous system links motor and sensory information for learning and control. This is because the acquisition, maintenance, and control of birdsong critically depend on sensory feedback. Furthermore, there is an incredible diversity of song organizations across songbird species, ranging from songs with simple, stereotyped sequences to songs with complex sequencing of vocal gestures, as well as a wide diversity of song repertoire sizes. Despite this diversity, the neural circuitry for song learning, control, and maintenance remains highly similar across species. Here, we highlight the utility of songbirds for the analysis of sensorimotor integration and the insights about mechanisms of sensorimotor integration gained by comparing different songbird species. Key conclusions from this comparative analysis are that variation in song sequence complexity seems to covary with the strength of feedback signals in sensorimotor circuits and that sensorimotor circuits contain distinct representations of elements in the vocal repertoire, possibly enabling evolutionary variation in repertoire sizes. We conclude our review by highlighting important areas of research that could benefit from increased comparative focus, with particular emphasis on the integration of new technologies. Copyright © 2017 the American Physiological Society.

  12. Does the sensorimotor system minimize prediction error or select the most likely prediction during object lifting?

    Science.gov (United States)

    McGregor, Heather R.; Pun, Henry C. H.; Buckingham, Gavin; Gribble, Paul L.

    2016-01-01

    The human sensorimotor system is routinely capable of making accurate predictions about an object's weight, which allows for energetically efficient lifts and prevents objects from being dropped. Often, however, poor predictions arise when the weight of an object can vary and sensory cues about object weight are sparse (e.g., picking up an opaque water bottle). The question arises, what strategies does the sensorimotor system use to make weight predictions when one is dealing with an object whose weight may vary? For example, does the sensorimotor system use a strategy that minimizes prediction error (minimal squared error) or one that selects the weight that is most likely to be correct (maximum a posteriori)? In this study we dissociated the predictions of these two strategies by having participants lift an object whose weight varied according to a skewed probability distribution. We found, using a small range of weight uncertainty, that four indexes of sensorimotor prediction (grip force rate, grip force, load force rate, and load force) were consistent with a feedforward strategy that minimizes the square of prediction errors. These findings match research in the visuomotor system, suggesting parallels in underlying processes. We interpret our findings within a Bayesian framework and discuss the potential benefits of using a minimal squared error strategy. NEW & NOTEWORTHY Using a novel experimental model of object lifting, we tested whether the sensorimotor system models the weight of objects by minimizing lifting errors or by selecting the statistically most likely weight. We found that the sensorimotor system minimizes the square of prediction errors for object lifting. This parallels the results of studies that investigated visually guided reaching, suggesting an overlap in the underlying mechanisms between tasks that involve different sensory systems. PMID:27760821

  13. Recessive C10orf2 mutations in a family with infantile-onset spinocerebellar ataxia, sensorimotor polyneuropathy, and myopathy.

    Science.gov (United States)

    Park, Mi-Hyun; Woo, Hae-Mi; Hong, Young Bin; Park, Ji Hoon; Yoon, Bo Ram; Park, Jin-Mo; Yoo, Jeong Hyun; Koo, Heasoo; Chae, Jong-Hee; Chung, Ki Wha; Choi, Byung-Ok; Koo, Soo Kyung

    2014-08-01

    Recessive mutations in chromosome 10 open reading frame 2 (C10orf2) are relevant in infantile-onset spinocerebellar ataxia (IOSCA). In this study, we investigated the causative mutation in a Korean family with combined phenotypes of IOSCA, sensorimotor polyneuropathy, and myopathy. We investigated recessive mutations in a Korean family with two individuals affected by IOSCA. Causative mutations were investigated using whole exome sequencing. Electrophysiological analyses and muscle and nerve biopsies were performed, along with magnetic resonance imaging (MRI) of the brain and lower extremities. Compound heterozygous mutations c.1460C>T and c.1485-1G>A in C10orf2 were identified as causative of IOSCA. Skeletal muscle showed mitochondrial DNA (mtDNA) deletions. Both patients showed a period of normal development until 12-15 months, followed by ataxia, athetosis, hearing loss, and intellectual disability. Electrophysiological findings indicated motor and sensory polyneuropathies. Muscle biopsy revealed variations in the size and shape of myofibers with scattered, small, and angulated degenerating myofibers containing abnormal mitochondria; these observations are consistent with myopathy and may be the result of mtDNA deletions. Sural nerve biopsy revealed an axonal neuropathy. High-signal-intensity lesions in the middle cerebellar peduncles were correlated with clinical severity, and MRI of the lower legs was compatible with the hypothesis of length-dependent axonal degeneration. We identified novel compound heterozygous mutations of the C10orf2 gene as the cause of IOSCA with sensorimotor polyneuropathy and myopathy. Signs of motor neuropathy and myopathy were discovered for the first time in IOSCA patients with C10orf2 mutations. These results suggest that the clinical spectrum of IOSCA caused by C10orf2 mutations may be more variable than previously reported.

  14. Effects of prefrontal cortex damage on emotion understanding: EEG and behavioural evidence.

    Science.gov (United States)

    Perry, Anat; Saunders, Samantha N; Stiso, Jennifer; Dewar, Callum; Lubell, Jamie; Meling, Torstein R; Solbakk, Anne-Kristin; Endestad, Tor; Knight, Robert T

    2017-04-01

    Humans are highly social beings that interact with each other on a daily basis. In these complex interactions, we get along by being able to identify others' actions and infer their intentions, thoughts and feelings. One of the major theories accounting for this critical ability assumes that the understanding of social signals is based on a primordial tendency to simulate observed actions by activating a mirror neuron system. If mirror neuron regions are important for action and emotion recognition, damage to regions in this network should lead to deficits in these domains. In the current behavioural and EEG study, we focused on the lateral prefrontal cortex including dorsal and ventral prefrontal cortex and utilized a series of task paradigms, each measuring a different aspect of recognizing others' actions or emotions from body cues. We examined 17 patients with lesions including (n = 8) or not including (n = 9) the inferior frontal gyrus, a core mirror neuron system region, and compared their performance to matched healthy control subjects (n = 18), in behavioural tasks and in an EEG observation-execution task measuring mu suppression. Our results provide support for the role of the lateral prefrontal cortex in understanding others' emotions, by showing that even unilateral lesions result in deficits in both accuracy and reaction time in tasks involving the recognition of others' emotions. In tasks involving the recognition of actions, patients showed a general increase in reaction time, but not a reduction in accuracy. Deficits in emotion recognition can be seen by either direct damage to the inferior frontal gyrus, or via damage to dorsal lateral prefrontal cortex regions, resulting in deteriorated performance and less EEG mu suppression over sensorimotor cortex. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Learning New Sensorimotor Contingencies: Effects of Long-Term Use of Sensory Augmentation on the Brain and Conscious Perception

    NARCIS (Netherlands)

    König, Sabine U.; Schumann, Frank; Keyser, Johannes; Goeke, Caspar; Krause, Carina; Wache, Susan; Lytochkin, Aleksey; Ebert, Manuel; Brunsch, Vincent; Wahn, Basil; Kaspar, Kai; Nagel, Saskia K.; Nagel, Saskia Kathi; Meilinger, Tobias; Bülthoff, Heinrich; Wolbers, Thomas; Büchel, Christian; König, Peter

    2016-01-01

    Theories of embodied cognition propose that perception is shaped by sensory stimuli and by the actions of the organism. Following sensorimotor contingency theory, the mastery of lawful relations between own behavior and resulting changes in sensory signals, called sensorimotor contingencies, is

  16. Learning new sensorimotor contingencies: Effects of long-term use of sensory augmentation on the brain and conscious perception

    NARCIS (Netherlands)

    König, S.U.; Schumann, F.; Keyser, J.; Goeke, C.M.; Krause, C.; Wache, S.; Lytochkin, A.; Ebert, M.; Brunsch, V.; Wahn, B.; Kaspar, K.; Nagel, S.K.; Meilinger, T.; Bülthoff, H.H.; Wolbers, T.; Büchel, C.; König, P.

    2016-01-01

    Theories of embodied cognition propose that perception is shaped by sensory stimuli and by the actions of the organism. Following sensorimotor contingency theory, the mastery of lawful relations between own behavior and resulting changes in sensory signals, called sensorimotor contingencies, is

  17. Detection of Optogenetic Stimulation in Somatosensory Cortex by Non-Human Primates - Towards Artificial Tactile Sensation

    Science.gov (United States)

    Brush, Benjamin; Borton, David; Wagner, Fabien; Agha, Naubahar; Sheinberg, David L.; Nurmikko, Arto V.

    2014-01-01

    Neuroprosthesis research aims to enable communication between the brain and external assistive devices while restoring lost functionality such as occurs from stroke, spinal cord injury or neurodegenerative diseases. In future closed-loop sensorimotor prostheses, one approach is to use neuromodulation as direct stimulus to the brain to compensate for a lost sensory function and help the brain to integrate relevant information for commanding external devices via, e.g. movement intention. Current neuromodulation techniques rely mainly of electrical stimulation. Here we focus specifically on the question of eliciting a biomimetically relevant sense of touch by direct stimulus of the somatosensory cortex by introducing optogenetic techniques as an alternative to electrical stimulation. We demonstrate that light activated opsins can be introduced to target neurons in the somatosensory cortex of non-human primates and be optically activated to create a reliably detected sensation which the animal learns to interpret as a tactile sensation localized within the hand. The accomplishment highlighted here shows how optical stimulation of a relatively small group of mostly excitatory somatosensory neurons in the nonhuman primate brain is sufficient for eliciting a useful sensation from data acquired by simultaneous electrophysiology and from behavioral metrics. In this first report to date on optically neuromodulated behavior in the somatosensory cortex of nonhuman primates we do not yet dissect the details of the sensation the animals exerience or contrast it to those evoked by electrical stimulation, issues of considerable future interest. PMID:25541938

  18. The sensorimotor system minimizes prediction error for object lifting when the object's weight is uncertain.

    Science.gov (United States)

    Brooks, Jack; Thaler, Anne

    2017-08-01

    A reliable mechanism to predict the heaviness of an object is important for manipulating an object under environmental uncertainty. Recently, Cashaback et al. (Cashaback JGA, McGregor HR, Pun HCH, Buckingham G, Gribble PL. J Neurophysiol 117: 260-274, 2017) showed that for object lifting the sensorimotor system uses a strategy that minimizes prediction error when the object's weight is uncertain. Previous research demonstrates that visually guided reaching is similarly optimized. Although this suggests a unified strategy of the sensorimotor system for object manipulation, the selected strategy appears to be task dependent and subject to change in response to the degree of environmental uncertainty. Copyright © 2017 the American Physiological Society.

  19. Trends in sensorimotor research and countermeasures for exploration-class space flights

    Directory of Open Access Journals (Sweden)

    Mark eShelhamer

    2015-08-01

    Full Text Available Research in the area of sensorimotor and neurovestibular function has played an important role in enabling human space flight. This role, however, is changing. One of the key aspects of sensorimotor function relevant to this role will build on its widespread connections with other physiological and psychological systems in the body. The firm knowledge base in this area can provide a strong platform to explore these interactions, which can also provide for the development of effective and efficient countermeasures to the deleterious effects of space flight.

  20. Principles of brain plasticity in improving sensorimotor function of the knee and leg in healthy subjects

    DEFF Research Database (Denmark)

    Ageberg, Eva; Bjorkman, Anders; Rosen, Birgitta

    2009-01-01

    and foot to improve sensorimotor function can be applied on the knee. We hypothesized that temporary anesthesia of the skin area above and below the knee would improve sensorimotor function of the ipsilateral knee and leg. METHODS: In this first double-blind exploratory study, 28 uninjured subjects (mean...... age 26 years, range 19-34, 50% women) were randomized to temporary local cutaneous application of anesthetic (EMLA) (n=14) or placebo cream (n=14). Fifty grams of EMLA, or placebo, was applied on the leg 10 cm above and 10 cm below the center of patella, leaving the area around the knee without cream...

  1. A jacket for assisting sensorimotor-related impairments and spatial perception

    Science.gov (United States)

    Blumenstein, Tobias; Turova, Varvara; Alves-Pinto, Ana; Lampe, Renée

    2017-04-01

    A sensorimotor jacket, which is able to measure distances to nearby objects with ultrasonic sensors and to transmit information about distances via vibrating transducers, has been designed with the aim of improving the spatial awareness of patients with cerebral palsy and to facilitate spatial orientation for blind people. The efficiency was tested for patients diagnosed with cerebral palsy, blind participants and healthy people. A positive impact of the sensorimotor jacket on the performance in a spatial task has been established both in patients with cerebral palsy and blind participants. Moreover, for patients with cerebral palsy, the training effect was visible after only three training exercises.

  2. Sensory gating and sensorimotor gating in medication-free obsessive-compulsive disorder patients

    DEFF Research Database (Denmark)

    de Leeuw, Aart S; Oranje, Bob; van Megen, Harold J G M

    2010-01-01

    Obsessive-compulsive disorder (OCD) is associated with deficits in inhibition mechanisms. This is reflected in reports showing impaired sensorimotor and sensory gating in OCD patients, as measured with prepulse inhibition (PPI) of the startle reflex and P50 suppression paradigms. However, most...... established, based on clinical variables (e.g. 'washers' and 'checkers'). No impairments in PPI or P50 suppression were found in the OCD group when compared with healthy controls. However, a subgroup of OCD patients ('checkers', n=12) showed increased P50 suppression. It was concluded that sensorimotor...

  3. Functional Task Test: 1. Sensorimotor changes Associated with Postflight Alterations in Astronaut Functional Task Performance

    Science.gov (United States)

    Bloomberg, J. J.; Arzeno, N. H.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Platts, S. H.; Peters, B. T.; hide

    2011-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. This presentation will focus on the sensorimotor contributions to postflight functional performance.

  4. Physical and neural entrainment to rhythm: human sensorimotor coordination across tasks and effector systems

    Directory of Open Access Journals (Sweden)

    Jessica Marie Ross

    2014-08-01

    Full Text Available The human sensorimotor system can be readily entrained to environmental rhythms, through multiple sensory modalities. In this review, we provide an overview of theories of timekeeping that make this neuroentrainment possible. First, we present recent evidence that contests the assumptions made in classic timekeeper models. The role of state estimation, sensory feedback and movement parameters on the organization of sensorimotor timing are discussed in the context of recent experiments that examined simultaneous timing and force control. This discussion is extended to the study of coordinated multi-effector movements and how they may be entrained.

  5. Partial genetic deletion of neuregulin 1 and adolescent stress interact to alter NMDA receptor binding in the medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Tariq Waseem Chohan

    2014-09-01

    Full Text Available Schizophrenia is thought to arise due to a complex interaction between genetic and environmental factors during early neurodevelopment. We have recently shown that partial genetic deletion of the schizophrenia susceptibility gene neuregulin 1 (Nrg1 and adolescent stress interact to disturb sensorimotor gating, neuroendocrine activity and dendritic morphology in mice. Both stress and Nrg1 may have converging effects upon N-methyl-D-aspartate receptors (NMDARs which are implicated in the pathogenesis of schizophrenia, sensorimotor gating and dendritic spine plasticity. Using an identical repeated restraint stress paradigm to our previous study, here we determined NMDAR binding across various brain regions in adolescent Nrg1 heterozygous (HET and wild-type (WT mice using [3H] MK-801 autoradiography. Repeated restraint stress increased NMDAR binding in the ventral part of the lateral septum (LSV and the dentate gyrus (DG of the hippocampus irrespective of genotype. Partial genetic deletion of Nrg1 interacted with adolescent stress to promote an altered pattern of NMDAR binding in the infralimbic (IL subregion of the medial prefrontal cortex. In the IL, whilst stress tended to increase NMDAR binding in WT mice, it decreased binding in Nrg1 HET mice. However in the DG, stress selectively increased the expression of NMDAR binding in Nrg1 HET mice but not WT mice. These results demonstrate a Nrg1-stress interaction during adolescence on NMDAR binding in the medial prefrontal cortex.

  6. Keep your head on straight: facilitating sensori-motor transformations for eye-hand coordination.

    Science.gov (United States)

    Tagliabue, M; Arnoux, L; McIntyre, J

    2013-09-17

    In many day-to-day situations humans manifest a marked tendency to hold the head vertical while performing sensori-motor actions. For instance, when performing coordinated whole-body motor tasks, such as skiing, gymnastics or simply walking, and even when driving a car, human subjects will strive to keep the head aligned with the gravito-inertial vector. Until now, this phenomenon has been thought of as a means to limit variations of sensory signals emanating from the eyes and inner ears. Recent theories suggest that for the task of aligning the hand to a target, the CNS compares target and hand concurrently in both visual and kinesthetic domains, rather than combining sensory data into a single, multimodal reference frame. This implies that when sensory information is lacking in one modality, it must be 'reconstructed' based on information from the other. Here we asked subjects to reach to a visual target with the unseen hand. In this situation, the CNS might reconstruct the orientation of the target in kinesthetic space or reconstruct the orientation of the hand in visual space, or both. By having subjects tilt the head during target acquisition or during movement execution, we show a greater propensity to perform the sensory reconstruction that can be achieved when the head is held upright. These results suggest that the reason humans tend to keep their head upright may also have to do with how the brain manipulates and stores spatial information between reference frames and between sensory modalities, rather than only being tied to the specific problem of stabilizing visual and vestibular inputs. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Consensus paper: use of transcranial magnetic stimulation to probe motor cortex plasticity in dystonia and levodopa-induced dyskinesia.

    Science.gov (United States)

    Quartarone, Angelo; Classen, Joseph; Morgante, Francesca; Rosenkranz, Karin; Hallett, Mark

    2009-04-01

    Plasticity includes the ability of the nervous system to optimize neuronal activity at a cellular and system level according to the needs imposed by the environment. Neuroplasticity phenomena within sensorimotor cortex are crucial to enhance function to increase skillfulness. Such plasticity may be termed "adaptive" to indicate its ecologically beneficial role. In professional musicians, enhanced adaptive plasticity is associated with one of the highest level of motor skill a human being can achieve and the amount of these changes is even dependent on the age at which instrumental playing was started. In addition, adaptive neuroplastic changes occur when nervous system try to repair itself thus compensating dysfunctions. However, when these adaptive phenomena are pushed to an extreme, they can produce a maladaptive sensorimotor reorganization that interferes with motor performance rather than improving it. The model we discuss here is focal hand dystonia I which an intrinsic abnormality of neural plasticity, in some predisposed individuals, may lead to abnormal sensorimotor integration and to the appearance of a characteristic movement disorder. Deficient homeostatic control might be an important mechanism triggering this maladaptive reorganization, and future behavioral studies are needed to confirm this hypothesis. In the second part of this consensus paper, we will critically discuss as a second model, the hypothesis that levodopa-induced dyskinesia correlate with an aberrant form of plasticity in the human primary motor cortex, possibly because of abnormal oscillations within the basal ganglia loop. Disorders of cortical plasticity have not in the past been considered as possible causes of human clinical states. The recognition that this can occur, together with a speculative mechanism, generates an important and provocative hypothesis for future research at the clinical-scientific interface.

  8. Evidence for inhibitory deficits in the prefrontal cortex in schizophrenia.

    Science.gov (United States)

    Radhu, Natasha; Garcia Dominguez, Luis; Farzan, Faranak; Richter, Margaret A; Semeralul, Mawahib O; Chen, Robert; Fitzgerald, Paul B; Daskalakis, Zafiris J

    2015-02-01

    Abnormal gamma-aminobutyric acid inhibitory neurotransmission is a key pathophysiological mechanism underlying schizophrenia. Transcranial magnetic stimulation can be combined with electroencephalography to index long-interval cortical inhibition, a measure of GABAergic receptor-mediated inhibitory neurotransmission from the frontal and motor cortex. In previous studies we have reported that schizophrenia is associated with inhibitory deficits in the dorsolateral prefrontal cortex compared to healthy subjects and patients with bipolar disorder. The main objective of the current study was to replicate and extend these initial findings by evaluating long-interval cortical inhibition from the dorsolateral prefrontal cortex in patients with schizophrenia compared to patients with obsessive-compulsive disorder. A total of 111 participants were assessed: 38 patients with schizophrenia (average age: 35.71 years, 25 males, 13 females), 27 patients with obsessive-compulsive disorder (average age: 36.15 years, 11 males, 16 females) and 46 healthy subjects (average age: 33.63 years, 23 females, 23 males). Long-interval cortical inhibition was measured from the dorsolateral prefrontal cortex and motor cortex through combined transcranial magnetic stimulation and electroencephalography. In the dorsolateral prefrontal cortex, long-interval cortical inhibition was significantly reduced in patients with schizophrenia compared to healthy subjects (P = 0.004) and not significantly different between patients with obsessive-compulsive disorder and healthy subjects (P = 0.5445). Long-interval cortical inhibition deficits in the dorsolateral prefrontal cortex were also significantly greater in patients with schizophrenia compared to patients with obsessive-compulsive disorder (P = 0.0465). Th