WorldWideScience

Sample records for sensor system development

  1. Proximity sensor system development. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Haley, D.C. [Oak Ridge National Lab., TN (United States); Pigoski, T.M. [Merrit Systems, Inc. (United States)

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors.

  2. Proximity sensor system development. CRADA final report

    International Nuclear Information System (INIS)

    Haley, D.C.; Pigoski, T.M.

    1998-01-01

    Lockheed Martin Energy Research Corporation (LMERC) and Merritt Systems, Inc. (MSI) entered into a Cooperative Research and Development Agreement (CRADA) for the development and demonstration of a compact, modular proximity sensing system suitable for application to a wide class of manipulator systems operated in support of environmental restoration and waste management activities. In teleoperated modes, proximity sensing provides the manipulator operator continuous information regarding the proximity of the manipulator to objects in the workspace. In teleoperated and robotic modes, proximity sensing provides added safety through the implementation of active whole arm collision avoidance capabilities. Oak Ridge National Laboratory (ORNL), managed by LMERC for the United States Department of Energy (DOE), has developed an application specific integrated circuit (ASIC) design for the electronics required to support a modular whole arm proximity sensing system based on the use of capacitive sensors developed at Sandia National Laboratories. The use of ASIC technology greatly reduces the size of the electronics required to support the selected sensor types allowing deployment of many small sensor nodes over a large area of the manipulator surface to provide maximum sensor coverage. The ASIC design also provides a communication interface to support sensor commands from and sensor data transmission to a distributed processing system which allows modular implementation and operation of the sensor system. MSI is a commercial small business specializing in proximity sensing systems based upon infrared and acoustic sensors

  3. On-line methanol sensor system development for recombinant ...

    African Journals Online (AJOL)

    On-line methanol sensor system development for recombinant human serum ... of the methanol sensor system was done in a medium environment with yeast cells ... induction at a low temperature and a pH where protease does not function.

  4. Development of an equipment diagnostic system that evaluates sensor drift

    International Nuclear Information System (INIS)

    Kanada, Masaki; Arita, Setsuo; Tada, Nobuo; Yokota, Katsuo

    2011-01-01

    The importance of condition monitoring technology for equipment has increased with the introduction of condition-based maintenance in nuclear power plants. We are developing a diagnostic system using process signals for plant equipment, such as pumps and motors. It is important to enable the diagnostic system to distinguish sensor drift and equipment failure. We have developed a sensor drift diagnostic method that combines some highly correlative sensor signals by using the MT (Mahalanobis-Taguchi) method. Furthermore, we have developed an equipment failure diagnostic method that measures the Mahalanobis distance from the normal state of equipment by the MT method. These methods can respectively detect sensor drift and equipment failure, but there are the following problems. In the sensor drift diagnosis, there is a possibility of misjudging the sensor drift when the equipment failure occurs and the process signal changes because the behavior of the process signal is the same as that of the sensor drift. Oppositely, in the equipment failure diagnosis, there is a possibility of misjudging the equipment failure when the sensor drift occurs because the sensor drift influences the change of process signal. To solve these problems, we propose a diagnostic method combining the sensor drift diagnosis and the equipment failure diagnosis by the MT method. Firstly, the sensor drift values are estimated by the sensor drift diagnosis, and the sensor drift is removed from the process signal. It is necessary to judge the validity of the estimated sensor drift values before removing the sensor drift from the process signal. We developed a method for judging the validity of the estimated sensor drift values by using the drift distribution based on the sensor calibration data. And then, the equipment failure is diagnosed by using the process signals after removal of the sensor drifts. To verify the developed diagnostic system, several sets of simulation data based on abnormal cases

  5. Development of wireless sensor network for landslide monitoring system

    International Nuclear Information System (INIS)

    Suryadi; Puranto, Prabowo; Adinanta, Hendra; Tohari, Adrin; Priambodo, Purnomo S

    2017-01-01

    A wireless sensor network has been developed to monitor soil movement of some observed areas periodically. The system consists of four nodes and one gateway which installed on a scope area of 0.2 Km 2 . Each of nodehastwo types of sensor,an inclinometer and an extensometer. An inclinometer sensor is used to measure the tilt of a structure while anextensometer sensor is used to measure the displacement of soil movement. Each of nodeisalso supported by awireless communication device, a solar power supply unit, and a microcontroller unit called sensor module. In this system, there is also gateway module as a main communication system consistinga wireless communication device, power supply unit, and rain gauge to measure the rainfall intensity of the observed area. Each sensor of inclinometer and extensometer isconnected to the sensor module in wiring system but sensor module iscommunicating with gateway in a wireless system. Those four nodes are alsoconnectedeach other in a wireless system collecting the data from inclinometer and extensometer sensors. Module Gateway istransmitting the instruction code to each sensor module one by one and collecting the data from them. Gateway module is an important part to communicate with not only sensor modules but also to the server. This wireless system wasdesigned toreducethe electric consumption powered by 80 WP solar panel and 55Ah battery. This system has been implemented in Pangalengan, Bandung, which has high intensity of rainfall and it can be seen on the website. (paper)

  6. Development of sensor system built into a robot hand toward environmental monitoring

    International Nuclear Information System (INIS)

    Kaneko, Kenji; Ueshiba, Toshio; Yoshimi, Takashi; Kawai, Yoshihiro; Morisawa, Mitsuharu; Kanehiro, Fumio; Yokoi, Kazuhito

    2015-01-01

    The development of sensor system that is built into a hand of a humanoid robot toward environmental monitoring is presented in this paper. The developed system consists of a color C-MOS camera, a laser projector with a lens distributing a laser light, and a LED projector. The sensor system can activate/disable these components according to the purpose. This paper introduces the design process, pre-experimental results for evaluating components, and the specifications of the developed sensor system together with experimental results. (author)

  7. Development of basic system for sensor calibration support in nuclear power plants

    International Nuclear Information System (INIS)

    Kusumi, Naohiro; Ohga, Yukiharu; Fukuda, Mitsuko; Ishizaki, Yuuichi; Koyama, Mikio; Maeda, Akihiko

    2004-01-01

    It is strongly desirable to reduce maintenance costs and shorten the time of periodic inspections in nuclear power plants. Therefore, it is important to reduce the amount of maintenance work during the inspection. In Japan, sensor calibration is usually performed at every periodic inspection, and the sensor calibration requires a large amount of work. A system for sensor calibration support has been developed to reduce sensor calibration work. The system is composed of two subsystems: a statistical analysis subsystem and a drift detection subsystem, as well as a human-machine interface, which offers support information. The statistical analysis subsystem supports the decision of the sensor calibration intervals based on the statistical analysis of sensor calibration data. There is the possibility that sensor drift increases beyond an allowance value before the sensor calibration intervals determined by the statistical analysis subsystem because of malfunctions, etc. To cope with this, the drift detection subsystem detects the sensor drift online during the plant operation. By combining the statistical analysis subsystem and the drift detection subsystem, a reliable sensor calibration support system is realized. The basic system composed of two subsystems was developed and evaluated using real plant data. The results showed that the sensor calibration intervals can be extended beyond current intervals and that the system is capable of detecting the sensor drift online. (author)

  8. Cardiorespiratory system monitoring using a developed acoustic sensor.

    Science.gov (United States)

    Abbasi-Kesbi, Reza; Valipour, Atefeh; Imani, Khadije

    2018-02-01

    This Letter proposes a wireless acoustic sensor for monitoring heartbeat and respiration rate based on phonocardiogram (PCG). The developed sensor comprises a processor, a transceiver which operates at industrial, scientific and medical band and the frequency of 2.54 GHz as well as two capacitor microphones which one for recording the heartbeat and another one for respiration rate. To evaluate the precision of the presented sensor in estimating heartbeat and respiration rate, the sensor is tested on the different volunteers and the obtained results are compared with a gold standard as a reference. The results reveal that root-mean-square error are determined sensor estimate sounds of [Formula: see text] to [Formula: see text] obtained PCG signal with sensitivity and specificity 98.1% and 98.3% in turn that make 3% improvement than previous works. The results prove that the sensor can be appropriate candidate for recognising abnormal condition in the cardiorespiratory system.

  9. Novel Hall sensors developed for magnetic field imaging systems

    International Nuclear Information System (INIS)

    Cambel, Vladimir; Karapetrov, Goran; Novosad, Valentyn; Bartolome, Elena; Gregusova, Dagmar; Fedor, Jan; Kudela, Robert; Soltys, Jan

    2007-01-01

    We report here on the fabrication and application of novel planar Hall sensors based on shallow InGaP/AlGaAs/GaAs heterostructure with a two-dimensional electron gas (2DEG) as an active layer. The sensors are developed for two kinds of experiments. In the first one, magnetic samples are placed directly on the Hall sensor. Room temperature experiments of permalloy objects evaporated onto the sensor are presented. In the second experiment, the sensor scans close over a multigranular superconducting sample prepared on a YBCO thin film. Large-area and high-resolution scanning experiments were performed at 4.2 K with the Hall probe scanning system in a liquid helium flow cryostat

  10. Development of Remote-Type Haptic Catheter Sensor System using Piezoelectric Transducer

    Science.gov (United States)

    Haruta, Mineyuki; Murayama, Yoshinobu; Omata, Sadao

    This study describes the development of Remote-Type Haptic Catheter Sensor System which enables the mechanical property evaluation of a blood vessel. This system consists of a feedback circuit and a piezoelectric ultrasound transducer, and is operated based on a phase shift method so that the entire system oscillates at its inherent resonance frequency. Ultrasound reflected by the blood vessel makes a phase shift of the resonance system depending on the acoustic impedance of the reflector. The phase shift is then measured as a change in resonance frequency of the system; therefore, the detection resolution is highly improved. The correlation between the acoustic impedance and the resonance frequency change of the sensor system was demonstrated using silicone rubbers, metals and actual blood vessels from a pig. The performance of the sensor was also examined using vessel shaped phantom model. Finally, the discussion surveys a possibility of the novel sensor system in an application for intra vascular diagnosis.

  11. Development of a commercially viable piezoelectric force sensor system for static force measurement

    Science.gov (United States)

    Liu, Jun; Luo, Xinwei; Liu, Jingcheng; Li, Min; Qin, Lan

    2017-09-01

    A compensation method for measuring static force with a commercial piezoelectric force sensor is proposed to disprove the theory that piezoelectric sensors and generators can only operate under dynamic force. After studying the model of the piezoelectric force sensor measurement system, the principle of static force measurement using a piezoelectric material or piezoelectric force sensor is analyzed. Then, the distribution law of the decay time constant of the measurement system and the variation law of the measurement system’s output are studied, and a compensation method based on the time interval threshold Δ t and attenuation threshold Δ {{u}th} is proposed. By calibrating the system and considering the influences of the environment and the hardware, a suitable Δ {{u}th} value is determined, and the system’s output attenuation is compensated based on the Δ {{u}th} value to realize the measurement. Finally, a static force measurement system with a piezoelectric force sensor is developed based on the compensation method. The experimental results confirm the successful development of a simple compensation method for static force measurement with a commercial piezoelectric force sensor. In addition, it is established that, contrary to the current perception, a piezoelectric force sensor system can be used to measure static force through further calibration.

  12. Low-cost failure sensor design and development for water pipeline distribution systems.

    Science.gov (United States)

    Khan, K; Widdop, P D; Day, A J; Wood, A S; Mounce, S R; Machell, J

    2002-01-01

    This paper describes the design and development of a new sensor which is low cost to manufacture and install and is reliable in operation with sufficient accuracy, resolution and repeatability for use in newly developed systems for pipeline monitoring and leakage detection. To provide an appropriate signal, the concept of a "failure" sensor is introduced, in which the output is not necessarily proportional to the input, but is unmistakably affected when an unusual event occurs. The design of this failure sensor is based on the water opacity which can be indicative of an unusual event in a water distribution network. The laboratory work and field trials necessary to design and prove out this type of failure sensor are described here. It is concluded that a low-cost failure sensor of this type has good potential for use in a comprehensive water monitoring and management system based on Artificial Neural Networks (ANN).

  13. Development of a wireless MEMS multifunction sensor system and field demonstration of embedded sensors for monitoring concrete pavements, volume II

    Science.gov (United States)

    2016-08-01

    This two-pronged study evaluated the performance of commercial off-the-shelf (COTS) micro-electromechanical sensors and systems (MEMS) embedded in concrete pavement (Final Report Volume I) and developed a wireless MEMS multifunctional sensor system f...

  14. Wearable Sensor Systems for Infants

    Directory of Open Access Journals (Sweden)

    Zhihua Zhu

    2015-02-01

    Full Text Available Continuous health status monitoring of infants is achieved with the development and fusion of wearable sensing technologies, wireless communication techniques and a low energy-consumption microprocessor with high performance data processing algorithms. As a clinical tool applied in the constant monitoring of physiological parameters of infants, wearable sensor systems for infants are able to transmit the information obtained inside an infant’s body to clinicians or parents. Moreover, such systems with integrated sensors can perceive external threats such as falling or drowning and warn parents immediately. Firstly, the paper reviews some available wearable sensor systems for infants; secondly, we introduce the different modules of the framework in the sensor systems; lastly, the methods and techniques applied in the wearable sensor systems are summarized and discussed. The latest research and achievements have been highlighted in this paper and the meaningful applications in healthcare and behavior analysis are also presented. Moreover, we give a lucid perspective of the development of wearable sensor systems for infants in the future.

  15. Development of sensor system for indoor location based service implementation

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Joo Heon; Lee, Kyung Ho [Kookmin Univ., Seoul (Korea, Republic of)

    2012-11-15

    This paper introduces a sensor system based on indoor locations in order to implement the Building Energy Management System. This system consists of a thermopile sensor and an ultrasonic sensor. The sensor module is rotated by 360 .deg. and yawed up and down by two electric motors. Therefore, it can simultaneously detect the number and location of the inhabitants in the room. It uses wireless technology to communicate with the building manager or the smart home server, and it can save electric energy by controlling the lighting system or heating/air conditioning equipment automatically. We also demonstrate the usefulness of the proposed system by applying it to a real environment.

  16. Development of sensor system for indoor location based service implementation

    International Nuclear Information System (INIS)

    Cha, Joo Heon; Lee, Kyung Ho

    2012-01-01

    This paper introduces a sensor system based on indoor locations in order to implement the Building Energy Management System. This system consists of a thermopile sensor and an ultrasonic sensor. The sensor module is rotated by 360 .deg. and yawed up and down by two electric motors. Therefore, it can simultaneously detect the number and location of the inhabitants in the room. It uses wireless technology to communicate with the building manager or the smart home server, and it can save electric energy by controlling the lighting system or heating/air conditioning equipment automatically. We also demonstrate the usefulness of the proposed system by applying it to a real environment

  17. Development of Smart Sensors System Based on Formal Concept Analysis and Ontology Model

    Directory of Open Access Journals (Sweden)

    Hongsheng Xu

    2013-06-01

    Full Text Available The smart sensor is the product of the combination of one or more sensitive components, precision analog circuits, digital circuits, microprocessor, communication interface, intelligent software systems and hardware integration in a packaging component. Formal concept analysis is from the given data to automatically extract the classification relationship between the entire hidden concept and concept, formation of concept model. Ontology is a set of relations between concepts of the specific domain and concept, and it can effectively express the general knowledge of specific field. The paper proposes development of smart sensors system based on formal concept analysis and ontology model. Smart sensor is a micro processor, sensor with information detection, information processing, information memory, logical thinking and judging function. The methods can improve the effect of the smart sensors.

  18. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya

    2018-01-30

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  19. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas; Kosel, Jü rgen

    2018-01-01

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  20. A development platform for efficient realization of sensor systems

    Energy Technology Data Exchange (ETDEWEB)

    Roedjegaard, H.; Andersson, G.; Bjoerkholm, P.; Eibpoosh, M.; Loeoef, A. [IMEGO Inst., Goeteborg (Sweden); Ericson, T.; Hedstroem, M.; Schoener, A.; Kaplan, W. [ACREO AB, Electrum 236, Kista (Sweden); Johander, P.; Hagberg, B.; Hasselgren, L.; Malmstroem, K.; Nunez, D. [IVF Industrial Research and Development Corp., Moelndal (Sweden)

    2001-07-01

    We have developed TrySense{sup TM}, a tool for low cost rapid prototyping to speed up the development of new sensors and microsystems. TrySense is a general, wireless, battery powered stand-alone sensor test bench. (orig.)

  1. NSTX High Temperature Sensor Systems

    International Nuclear Information System (INIS)

    McCormack, B.; Kugel, H.W.; Goranson, P.; Kaita, R.

    1999-01-01

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed

  2. Development of chipless, wireless current sensor system based on giant magnetoimpedance magnetic sensor and surface acoustic wave transponder.

    Science.gov (United States)

    Kondalkar, Vijay V; Li, Xiang; Park, Ikmo; Yang, Sang Sik; Lee, Keekeun

    2018-02-05

    A chipless, wireless current sensor system was developed using a giant magnetoimpedance (GMI) magnetic sensor and one-port surface acoustic wave (SAW) reflective delay line for real-time power monitoring in a current-carrying conductor. The GMI sensor has a high-quality crystalline structure in each layer, which contributes to a high sensitivity and good linearity in a magnetic field of 3-16 Oe. A 400 MHz RF energy generated from the interdigital transducer (IDT)-type reflector on the one-port SAW delay line was used as an activation source for the GMI magnetic sensor. The one-port SAW delay line replaces the presently existing transceiver system, which is composed of thousands of transistors, thus enabling chipless and wireless operation. We confirmed a large variation in the amplitude of the SAW reflection peak with a change in the impedance of the GMI sensor caused by the current flow through the conductor. Good linearity and sensitivity of ~0.691 dB/A were observed for currents in the range 1-12 A. Coupling of Mode (COM) modeling and impedance matching analysis were also performed to predict the device performance in advance and these were compared with the experimental results.

  3. DEVELOPMENT OF A PEDESTRIAN INDOOR NAVIGATION SYSTEM BASED ON MULTI-SENSOR FUSION AND FUZZY LOGIC ESTIMATION ALGORITHMS

    Directory of Open Access Journals (Sweden)

    Y. C. Lai

    2015-05-01

    Full Text Available This paper presents a pedestrian indoor navigation system based on the multi-sensor fusion and fuzzy logic estimation algorithms. The proposed navigation system is a self-contained dead reckoning navigation that means no other outside signal is demanded. In order to achieve the self-contained capability, a portable and wearable inertial measure unit (IMU has been developed. Its adopted sensors are the low-cost inertial sensors, accelerometer and gyroscope, based on the micro electro-mechanical system (MEMS. There are two types of the IMU modules, handheld and waist-mounted. The low-cost MEMS sensors suffer from various errors due to the results of manufacturing imperfections and other effects. Therefore, a sensor calibration procedure based on the scalar calibration and the least squares methods has been induced in this study to improve the accuracy of the inertial sensors. With the calibrated data acquired from the inertial sensors, the step length and strength of the pedestrian are estimated by multi-sensor fusion and fuzzy logic estimation algorithms. The developed multi-sensor fusion algorithm provides the amount of the walking steps and the strength of each steps in real-time. Consequently, the estimated walking amount and strength per step are taken into the proposed fuzzy logic estimation algorithm to estimates the step lengths of the user. Since the walking length and direction are both the required information of the dead reckoning navigation, the walking direction is calculated by integrating the angular rate acquired by the gyroscope of the developed IMU module. Both the walking length and direction are calculated on the IMU module and transmit to a smartphone with Bluetooth to perform the dead reckoning navigation which is run on a self-developed APP. Due to the error accumulating of dead reckoning navigation, a particle filter and a pre-loaded map of indoor environment have been applied to the APP of the proposed navigation system

  4. Development of a Pedestrian Indoor Navigation System Based on Multi-Sensor Fusion and Fuzzy Logic Estimation Algorithms

    Science.gov (United States)

    Lai, Y. C.; Chang, C. C.; Tsai, C. M.; Lin, S. Y.; Huang, S. C.

    2015-05-01

    This paper presents a pedestrian indoor navigation system based on the multi-sensor fusion and fuzzy logic estimation algorithms. The proposed navigation system is a self-contained dead reckoning navigation that means no other outside signal is demanded. In order to achieve the self-contained capability, a portable and wearable inertial measure unit (IMU) has been developed. Its adopted sensors are the low-cost inertial sensors, accelerometer and gyroscope, based on the micro electro-mechanical system (MEMS). There are two types of the IMU modules, handheld and waist-mounted. The low-cost MEMS sensors suffer from various errors due to the results of manufacturing imperfections and other effects. Therefore, a sensor calibration procedure based on the scalar calibration and the least squares methods has been induced in this study to improve the accuracy of the inertial sensors. With the calibrated data acquired from the inertial sensors, the step length and strength of the pedestrian are estimated by multi-sensor fusion and fuzzy logic estimation algorithms. The developed multi-sensor fusion algorithm provides the amount of the walking steps and the strength of each steps in real-time. Consequently, the estimated walking amount and strength per step are taken into the proposed fuzzy logic estimation algorithm to estimates the step lengths of the user. Since the walking length and direction are both the required information of the dead reckoning navigation, the walking direction is calculated by integrating the angular rate acquired by the gyroscope of the developed IMU module. Both the walking length and direction are calculated on the IMU module and transmit to a smartphone with Bluetooth to perform the dead reckoning navigation which is run on a self-developed APP. Due to the error accumulating of dead reckoning navigation, a particle filter and a pre-loaded map of indoor environment have been applied to the APP of the proposed navigation system to extend its

  5. Computer-Aided Sensor Development Focused on Security Issues.

    Science.gov (United States)

    Bialas, Andrzej

    2016-05-26

    The paper examines intelligent sensor and sensor system development according to the Common Criteria methodology, which is the basic security assurance methodology for IT products and systems. The paper presents how the development process can be supported by software tools, design patterns and knowledge engineering. The automation of this process brings cost-, quality-, and time-related advantages, because the most difficult and most laborious activities are software-supported and the design reusability is growing. The paper includes a short introduction to the Common Criteria methodology and its sensor-related applications. In the experimental section the computer-supported and patterns-based IT security development process is presented using the example of an intelligent methane detection sensor. This process is supported by an ontology-based tool for security modeling and analyses. The verified and justified models are transferred straight to the security target specification representing security requirements for the IT product. The novelty of the paper is to provide a patterns-based and computer-aided methodology for the sensors development with a view to achieving their IT security assurance. The paper summarizes the validation experiment focused on this methodology adapted for the sensors system development, and presents directions of future research.

  6. Proximity Operations and Docking Sensor Development

    Science.gov (United States)

    Howard, Richard T.; Bryan, Thomas C.; Brewster, Linda L.; Lee, James E.

    2009-01-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) has been under development for the last three years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in spot mode out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. 12 Parts obsolescence issues prevent the construction of more AVGS units, and the next generation sensor was updated to allow it to support the CEV and COTS programs. The flight proven AR&D sensor has been redesigned to update parts and add additional capabilities for CEV and COTS with the development of the Next Generation AVGS at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities include greater sensor range, auto ranging capability, and real-time video output. This paper presents some sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements

  7. Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires

    International Nuclear Information System (INIS)

    Lee, Jaeyun; Choi, Bumkyoo

    2014-01-01

    Highlights: • This study is focused on a stable energy source independent of vehicle speed. • It is ascertained that the use of a strain field is suitable for this purpose. • A piezo patch generates 380.2 μJ per revolution under 500 kgf load and 60 km/h. • A self-powered wireless sensor system is manufactured for application and tested during vehicle driving. • The system is applicable to intelligent tire sensor systems. - Abstract: The need for energy harvesting technology is steadily growing in the field of self-powered wireless sensor systems for intelligent tires. The purpose of this study is to mount an energy harvester inside the tire. In order to achieve this, we focus on a stable energy source almost independent of vehicle speed. It is ascertained that the use of a strain field is suitable for this purpose. In order to develop the energy harvester for the tire, modeling of tire behavior has been performed and verified through comparing with experimental results. From the results, a piezoelectric energy harvester generates 380.2 μJ per revolution under 500 kgf load and 60 km/h. A self-powered wireless sensor system is manufactured for application and tested during vehicle driving. The result of this study presents 1.37 μW/mm 3 of power generation from the performance of the energy harvester. This study concludes that the system is applicable to wireless tire sensor systems after making minor improvements

  8. Computer-Aided Sensor Development Focused on Security Issues

    Directory of Open Access Journals (Sweden)

    Andrzej Bialas

    2016-05-01

    Full Text Available The paper examines intelligent sensor and sensor system development according to the Common Criteria methodology, which is the basic security assurance methodology for IT products and systems. The paper presents how the development process can be supported by software tools, design patterns and knowledge engineering. The automation of this process brings cost-, quality-, and time-related advantages, because the most difficult and most laborious activities are software-supported and the design reusability is growing. The paper includes a short introduction to the Common Criteria methodology and its sensor-related applications. In the experimental section the computer-supported and patterns-based IT security development process is presented using the example of an intelligent methane detection sensor. This process is supported by an ontology-based tool for security modeling and analyses. The verified and justified models are transferred straight to the security target specification representing security requirements for the IT product. The novelty of the paper is to provide a patterns-based and computer-aided methodology for the sensors development with a view to achieving their IT security assurance. The paper summarizes the validation experiment focused on this methodology adapted for the sensors system development, and presents directions of future research.

  9. Optimal Sensor Selection for Health Monitoring Systems

    Science.gov (United States)

    Santi, L. Michael; Sowers, T. Shane; Aguilar, Robert B.

    2005-01-01

    Sensor data are the basis for performance and health assessment of most complex systems. Careful selection and implementation of sensors is critical to enable high fidelity system health assessment. A model-based procedure that systematically selects an optimal sensor suite for overall health assessment of a designated host system is described. This procedure, termed the Systematic Sensor Selection Strategy (S4), was developed at NASA John H. Glenn Research Center in order to enhance design phase planning and preparations for in-space propulsion health management systems (HMS). Information and capabilities required to utilize the S4 approach in support of design phase development of robust health diagnostics are outlined. A merit metric that quantifies diagnostic performance and overall risk reduction potential of individual sensor suites is introduced. The conceptual foundation for this merit metric is presented and the algorithmic organization of the S4 optimization process is described. Representative results from S4 analyses of a boost stage rocket engine previously under development as part of NASA's Next Generation Launch Technology (NGLT) program are presented.

  10. Development of Non-contact Respiratory Monitoring System for Newborn Using a FG Vision Sensor

    Science.gov (United States)

    Kurami, Yoshiyuki; Itoh, Yushi; Natori, Michiya; Ohzeki, Kazuo; Aoki, Yoshimitsu

    In recent years, development of neonatal care is strongly hoped, with increase of the low-birth-weight baby birth rate. Especially respiration of low-birth-weight baby is incertitude because central nerve and respiratory function is immature. Therefore, a low-birth-weight baby often causes a disease of respiration. In a NICU (Neonatal Intensive Care Unit), neonatal respiration is monitored using cardio-respiratory monitor and pulse oximeter at all times. These contact-type sensors can measure respiratory rate and SpO2 (Saturation of Peripheral Oxygen). However, because a contact-type sensor might damage the newborn's skin, it is a real burden to monitor neonatal respiration. Therefore, we developed the respiratory monitoring system for newborn using a FG (Fiber Grating) vision sensor. FG vision sensor is an active stereo vision sensor, it is possible for non-contact 3D measurement. A respiratory waveform is calculated by detecting the vertical motion of the thoracic and abdominal region with respiration. We attempted clinical experiment in the NICU, and confirmed the accuracy of the obtained respiratory waveform was high. Non-contact respiratory monitoring of newborn using a FG vision sensor enabled the minimally invasive procedure.

  11. Development of low cost and accurate homemade sensor system based on Surface Plasmon Resonance (SPR)

    Science.gov (United States)

    Laksono, F. D.; Supardianningsih; Arifin, M.; Abraha, K.

    2018-04-01

    In this paper, we developed homemade and computerized sensor system based on Surface Plasmon Resonance (SPR). The developed systems consist of mechanical system instrument, laser power sensor, and user interface. The mechanical system development that uses anti-backlash gear design was successfully able to enhance the angular resolution angle of incidence laser up to 0.01°. In this system, the laser detector acquisition system and stepper motor controller utilizing Arduino Uno which is easy to program, flexible, and low cost, was used. Furthermore, we employed LabView’s user interface as the virtual instrument for facilitating the sample measurement and for transforming the data recording directly into the digital form. The test results using gold-deposited half-cylinder prism showed the Total Internal Reflection (TIR) angle of 41,34°± 0,01° and SPR angle of 44,20°± 0,01°, respectively. The result demonstrated that the developed system managed to reduce the measurement duration and data recording errors caused by human error. Also, the test results also concluded that the system’s measurement is repeatable and accurate.

  12. Development of Wearable Sheet-Type Shear Force Sensor and Measurement System that is Insusceptible to Temperature and Pressure.

    Science.gov (United States)

    Toyama, Shigeru; Tanaka, Yasuhiro; Shirogane, Satoshi; Nakamura, Takashi; Umino, Tokio; Uehara, Ryo; Okamoto, Takuma; Igarashi, Hiroshi

    2017-07-31

    A sheet-type shear force sensor and a measurement system for the sensor were developed. The sensor has an original structure where a liquid electrolyte is filled in a space composed of two electrode-patterned polymer films and an elastic rubber ring. When a shear force is applied on the surface of the sensor, the two electrode-patterned films mutually move so that the distance between the internal electrodes of the sensor changes, resulting in current increase or decrease between the electrodes. Therefore, the shear force can be calculated by monitoring the current between the electrodes. Moreover, it is possible to measure two-dimensional shear force given that the sensor has multiple electrodes. The diameter and thickness of the sensor head were 10 mm and 0.7 mm, respectively. Additionally, we also developed a measurement system that drives the sensor, corrects the baseline of the raw sensor output, displays data, and stores data as a computer file. Though the raw sensor output was considerably affected by the surrounding temperature, the influence of temperature was drastically decreased by introducing a simple arithmetical calculation. Moreover, the influence of pressure simultaneously decreased after the same calculation process. A demonstrative measurement using the sensor revealed the practical usefulness for on-site monitoring.

  13. Urinary incontinence monitoring system using laser-induced graphene sensors

    KAUST Repository

    Nag, Anindya

    2017-12-25

    This paper presents the design and development of a sensor patch to be used in a sensing system to deal with the urinary incontinence problem primarily faced by women and elderly people. The sensor patches were developed from laser-induced graphene from low-cost commercial polyimide (PI) polymers. The graphene was manually transferred to a commercial tape, which was used as sensor patch for experimentation. Salt solutions with different concentrations were tested to determine the most sensitive frequency region of the sensor. The results are encouraging to further develop this sensor in a platform for a fully functional urinary incontinence detection system.

  14. Advances in miniature spectrometer and sensor development

    Science.gov (United States)

    Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

    2014-05-01

    Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

  15. Sensor Webs as Virtual Data Systems for Earth Science

    Science.gov (United States)

    Moe, K. L.; Sherwood, R.

    2008-05-01

    The NASA Earth Science Technology Office established a 3-year Advanced Information Systems Technology (AIST) development program in late 2006 to explore the technical challenges associated with integrating sensors, sensor networks, data assimilation and modeling components into virtual data systems called "sensor webs". The AIST sensor web program was initiated in response to a renewed emphasis on the sensor web concepts. In 2004, NASA proposed an Earth science vision for a more robust Earth observing system, coupled with remote sensing data analysis tools and advances in Earth system models. The AIST program is conducting the research and developing components to explore the technology infrastructure that will enable the visionary goals. A working statement for a NASA Earth science sensor web vision is the following: On-demand sensing of a broad array of environmental and ecological phenomena across a wide range of spatial and temporal scales, from a heterogeneous suite of sensors both in-situ and in orbit. Sensor webs will be dynamically organized to collect data, extract information from it, accept input from other sensor / forecast / tasking systems, interact with the environment based on what they detect or are tasked to perform, and communicate observations and results in real time. The focus on sensor webs is to develop the technology and prototypes to demonstrate the evolving sensor web capabilities. There are 35 AIST projects ranging from 1 to 3 years in duration addressing various aspects of sensor webs involving space sensors such as Earth Observing-1, in situ sensor networks such as the southern California earthquake network, and various modeling and forecasting systems. Some of these projects build on proof-of-concept demonstrations of sensor web capabilities like the EO-1 rapid fire response initially implemented in 2003. Other projects simulate future sensor web configurations to evaluate the effectiveness of sensor-model interactions for producing

  16. Development of a Torque Sensor-Based Test Bed for Attitude Control System Verification and Validation

    Science.gov (United States)

    2017-12-30

    AFRL-RV-PS- AFRL-RV-PS- TR-2018-0008 TR-2018-0008 DEVELOPMENT OF A TORQUE SENSOR- BASED TEST BED FOR ATTITUDE CONTROL SYSTEM VERIFICATION AND...Sensor-Based Test Bed for Attitude Control System Verification & Validation 5a. CONTRACT NUMBER FA9453-15-1-0315 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...NUMBER 62601F 6. AUTHOR(S) Norman Fitz-Coy 5d. PROJECT NUMBER 4846 5e. TASK NUMBER PPM00015968 5f. WORK UNIT NUMBER EF125135 7. PERFORMING

  17. Development of an optical fiber flow velocity sensor.

    Science.gov (United States)

    Harada, Toshio; Kamoto, Kenji; Abe, Kyutaro; Izumo, Masaki

    2009-01-01

    A new optical fiber flow velocity sensor was developed by using an optical fiber information network system in sewer drainage pipes. The optical fiber flow velocity sensor operates without electric power, and the signals from the sensor can be transmitted over a long distance through the telecommunication system in the optical fiber network. Field tests were conducted to check the performance of the sensor in conduits in the pumping station and sewage pond managed by the Tokyo Metropolitan Government. Test results confirmed that the velocity sensor can be used for more than six months without any trouble even in sewer drainage pipes.

  18. Smart Optoelectronic Sensors and Intelligent Sensor Systems

    Directory of Open Access Journals (Sweden)

    Sergey Y. YURISH

    2012-03-01

    Full Text Available Light-to-frequency converters are widely used in various optoelectronic sensor systems. However, a further frequency-to-digital conversion is a bottleneck in such systems due to a broad frequency range of light-to-frequency converters’ outputs. This paper describes an effective OEM design approach, which can be used for smart and intelligent sensor systems design. The design is based on novel, multifunctional integrated circuit of Universal Sensors & Transducers Interface especially designed for such sensor applications. Experimental results have confirmed an efficiency of this approach and high metrological performances.

  19. Development of ultra-light pixelated systems based on CMOS sensors for future high precision vertex detectors

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Marc [Institut Pluridisciplinaire Hubert Curien - IPHC, 23 rue du loess - BP28, 67037 Strasbourg cedex 2 (France)

    2010-07-01

    CMOS pixel sensors have demonstrated attractive performances in terms of spatial resolution and material budget. The recent emergence of high resistivity substrates in mass production CMOS processes has originated particularly high signal-to-noise ratios and improved the non-ionising radiation tolerance to fluences close to 10{sup 14} Neq/cm{sup 2}. These achievements, obtained with MIMOSA sensors developed at IPHC (Strasbourg) and IRFU (Saclay) will be overviewed and put in perspective of the numerous applications of the sensors. These include collider experiments at RHIC, LHC, ILC and CLIC. The development of ultra-light ladders composed of these sensors and featuring 0.1% to 0.3% of radiation length, will be summarised. The contribution to the conference will also address the evolution of these pixelated systems, including on-going R on multi-tier sensors exploiting vertical integration technologies. (author)

  20. SU-E-T-258: Development of a New Patient Set-Up Monitoring System Using Force Sensing Resistor (FSR) Sensor for the Radiation Therapy

    International Nuclear Information System (INIS)

    Cho, M; Kim, T; Kang, S; Kim, D; Kim, K; Shin, D; Suh, T

    2015-01-01

    Purpose: The purpose of this work is to develop a new patient set-up monitoring system using force sensing resistor (FSR) sensors that can confirm pressure of contact surface and evaluate its feasibility. Methods: In this study, we focused on develop the patient set-up monitoring system to compensate for the limitation of existing optical based monitoring system, so the developed system can inform motion in the radiation therapy. The set-up monitoring system was designed consisting of sensor units (FSR sensor), signal conditioning devices (USB cable/interface electronics), a control PC, and a developed analysis software. The sensor unit was made by attaching FSR sensor and dispersing pressure sponge to prevent error which is caused by concentrating specific point. Measured signal from the FSR sensor was sampled to arduino mega 2560 microcontroller, transferred to control PC by using serial communication. The measured data went through normalization process. The normalized data was displayed through the developed graphic user interface (GUI) software. The software was designed to display a single sensor unit intensity (maximum 16 sensors) and display 2D pressure distribution (using 16 sensors) according to the purpose. Results: Changes of pressure value according to motion was confirmed by the developed set-up monitoring system. Very small movement such as little physical change in appearance can be confirmed using a single unit and using 2D pressure distribution. Also, the set-up monitoring system can observe in real time. Conclusion: In this study, we developed the new set-up monitoring system using FSR sensor. Especially, we expect that the new set-up monitoring system is suitable for motion monitoring of blind area that is hard to confirm existing optical system and compensate existing optical based monitoring system. As a further study, an integrated system will be constructed through correlation of existing optical monitoring system. This work was supported by

  1. SU-E-T-258: Development of a New Patient Set-Up Monitoring System Using Force Sensing Resistor (FSR) Sensor for the Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Cho, M; Kim, T; Kang, S; Kim, D; Kim, K; Shin, D; Suh, T [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    Purpose: The purpose of this work is to develop a new patient set-up monitoring system using force sensing resistor (FSR) sensors that can confirm pressure of contact surface and evaluate its feasibility. Methods: In this study, we focused on develop the patient set-up monitoring system to compensate for the limitation of existing optical based monitoring system, so the developed system can inform motion in the radiation therapy. The set-up monitoring system was designed consisting of sensor units (FSR sensor), signal conditioning devices (USB cable/interface electronics), a control PC, and a developed analysis software. The sensor unit was made by attaching FSR sensor and dispersing pressure sponge to prevent error which is caused by concentrating specific point. Measured signal from the FSR sensor was sampled to arduino mega 2560 microcontroller, transferred to control PC by using serial communication. The measured data went through normalization process. The normalized data was displayed through the developed graphic user interface (GUI) software. The software was designed to display a single sensor unit intensity (maximum 16 sensors) and display 2D pressure distribution (using 16 sensors) according to the purpose. Results: Changes of pressure value according to motion was confirmed by the developed set-up monitoring system. Very small movement such as little physical change in appearance can be confirmed using a single unit and using 2D pressure distribution. Also, the set-up monitoring system can observe in real time. Conclusion: In this study, we developed the new set-up monitoring system using FSR sensor. Especially, we expect that the new set-up monitoring system is suitable for motion monitoring of blind area that is hard to confirm existing optical system and compensate existing optical based monitoring system. As a further study, an integrated system will be constructed through correlation of existing optical monitoring system. This work was supported by

  2. On-line methanol sensor system development for recombinant ...

    African Journals Online (AJOL)

    PANCHIGA

    2016-10-19

    Oct 19, 2016 ... Calibration of the methanol sensor system was done in a medium environment with ... by taking protein induction at a low temperature and a pH where protease ... molecular weight of 66.5 kDa, HSA comprises about one-.

  3. Development of an Emergency Locking Unit for a Belt-In-Seat (BIS System Using a MEMS Acceleration Sensor

    Directory of Open Access Journals (Sweden)

    Chang Hyun Baek

    2010-04-01

    Full Text Available This paper proposes an emergency locking unit (ELU for a seat belt retractor which is mounted on the back frame of a vehicle seat. The proposed unit uses a recliner sensor based on a MEMS acceleration sensor and solenoid mechanism. The seat has an upper frame supported to tilt on a lower frame. The retractor in belt in seat (BIS system is supported by the upper frame. The proposed recliner sensor based on a MEMS acceleration sensor comprises orientation means for maintaining a predetermined orientation of emergency relative to the lower frame independently of the force of gravity when the upper frame tilts on the lower frame. Experimental results show that the developed recliner sensor unit operates effectively with respect to rollover angles. Thus, the developed unit will have a considerable potential to offer a new design concept in BIS system.

  4. Progress in triboluminescence-based smart optical sensor system

    International Nuclear Information System (INIS)

    Olawale, David O.; Dickens, Tarik; Sullivan, William G.; Okoli, Okenwa I.; Sobanjo, John O.; Wang, Ben

    2011-01-01

    Extensive research work has been done in recent times to apply the triboluminescence (TL) phenomenon for damage detection in engineering structures. Of particular note are the various attempts to apply it in the detection of impact damages in composites and aerospace structures. This is because TL-based sensor systems have a great potential for wireless, in-situ and distributed (WID) structural health monitoring when fully developed. This review article highlights development and the current state-of-the-art in the application of TL-based sensor systems. The underlying mechanisms believed to be responsible for triboluminescence, particularly in zinc sulfide manganese, a highly triboluminescent material, are discussed. The challenges militating against the full exploitation and field application of TL sensor systems are also identified. Finally, viable solutions and approaches to address these challenges are enumerated. - Highlights: → The underlying mechanisms believed to be responsible for triboluminescence. → State-of-the-art in the development and application of TL-based sensor systems. → The challenges militating against the full exploitation and field application of TL sensor systems are identified. → Viable solutions and approaches to address these challenges are enumerated.

  5. Design and Development of a Mobile Sensor Based the Blind Assistance Wayfinding System

    Science.gov (United States)

    Barati, F.; Delavar, M. R.

    2015-12-01

    The blind and visually impaired people are facing a number of challenges in their daily life. One of the major challenges is finding their way both indoor and outdoor. For this reason, routing and navigation independently, especially in urban areas are important for the blind. Most of the blind undertake route finding and navigation with the help of a guide. In addition, other tools such as a cane, guide dog or electronic aids are used by the blind. However, in some cases these aids are not efficient enough in a wayfinding around obstacles and dangerous areas for the blind. As a result, the need to develop effective methods as decision support using a non-visual media is leading to improve quality of life for the blind through their increased mobility and independence. In this study, we designed and implemented an outdoor mobile sensor-based wayfinding system for the blind. The objectives of this study are to guide the blind for the obstacle recognition and the design and implementation of a wayfinding and navigation mobile sensor system for them. In this study an ultrasonic sensor is used to detect obstacles and GPS is employed for positioning and navigation in the wayfinding. This type of ultrasonic sensor measures the interval between sending waves and receiving the echo signals with respect to the speed of sound in the environment to estimate the distance to the obstacles. In this study the coordinates and characteristics of all the obstacles in the study area are already stored in a GIS database. All of these obstacles were labeled on the map. The ultrasonic sensor designed and constructed in this study has the ability to detect the obstacles in a distance of 2cm to 400cm. The implementation and the results obtained from the interview of a number of blind persons who employed the sensor verified that the designed mobile sensor system for wayfinding was very satisfactory.

  6. DESIGN AND DEVELOPMENT OF A MOBILE SENSOR BASED THE BLIND ASSISTANCE WAYFINDING SYSTEM

    Directory of Open Access Journals (Sweden)

    F. Barati

    2015-12-01

    Full Text Available The blind and visually impaired people are facing a number of challenges in their daily life. One of the major challenges is finding their way both indoor and outdoor. For this reason, routing and navigation independently, especially in urban areas are important for the blind. Most of the blind undertake route finding and navigation with the help of a guide. In addition, other tools such as a cane, guide dog or electronic aids are used by the blind. However, in some cases these aids are not efficient enough in a wayfinding around obstacles and dangerous areas for the blind. As a result, the need to develop effective methods as decision support using a non-visual media is leading to improve quality of life for the blind through their increased mobility and independence. In this study, we designed and implemented an outdoor mobile sensor-based wayfinding system for the blind. The objectives of this study are to guide the blind for the obstacle recognition and the design and implementation of a wayfinding and navigation mobile sensor system for them. In this study an ultrasonic sensor is used to detect obstacles and GPS is employed for positioning and navigation in the wayfinding. This type of ultrasonic sensor measures the interval between sending waves and receiving the echo signals with respect to the speed of sound in the environment to estimate the distance to the obstacles. In this study the coordinates and characteristics of all the obstacles in the study area are already stored in a GIS database. All of these obstacles were labeled on the map. The ultrasonic sensor designed and constructed in this study has the ability to detect the obstacles in a distance of 2cm to 400cm. The implementation and the results obtained from the interview of a number of blind persons who employed the sensor verified that the designed mobile sensor system for wayfinding was very satisfactory.

  7. A Customized Metal Oxide Semiconductor-Based Gas Sensor Array for Onion Quality Evaluation: System Development and Characterization

    Directory of Open Access Journals (Sweden)

    Tharun Konduru

    2015-01-01

    Full Text Available A gas sensor array, consisting of seven Metal Oxide Semiconductor (MOS sensors that are sensitive to a wide range of organic volatile compounds was developed to detect rotten onions during storage. These MOS sensors were enclosed in a specially designed Teflon chamber equipped with a gas delivery system to pump volatiles from the onion samples into the chamber. The electronic circuit mainly comprised a microcontroller, non-volatile memory chip, and trickle-charge real time clock chip, serial communication chip, and parallel LCD panel. User preferences are communicated with the on-board microcontroller through a graphical user interface developed using LabVIEW. The developed gas sensor array was characterized and the discrimination potential was tested by exposing it to three different concentrations of acetone (ketone, acetonitrile (nitrile, ethyl acetate (ester, and ethanol (alcohol. The gas sensor array could differentiate the four chemicals of same concentrations and different concentrations within the chemical with significant difference. Experiment results also showed that the system was able to discriminate two concentrations (196 and 1964 ppm of methlypropyl sulfide and two concentrations (145 and 1452 ppm of 2-nonanone, two key volatile compounds emitted by rotten onions. As a proof of concept, the gas sensor array was able to achieve 89% correct classification of sour skin infected onions. The customized low-cost gas sensor array could be a useful tool to detect onion postharvest diseases in storage.

  8. Intelligent Wireless Sensor Networks for System Health Monitoring

    Science.gov (United States)

    Alena, Rick

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network (PAN) standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. WSNs provide the inherent fault tolerance required for aerospace applications. The Discovery and Systems Health Group at NASA Ames Research Center has been developing WSN technology for use aboard aircraft and spacecraft for System Health Monitoring of structures and life support systems using funding from the NASA Engineering and Safety Center and Exploration Technology Development and Demonstration Program. This technology provides key advantages for low-power, low-cost ancillary sensing systems particularly across pressure interfaces and in areas where it is difficult to run wires. Intelligence for sensor networks could be defined as the capability of forming dynamic sensor networks, allowing high-level application software to identify and address any sensor that joined the network without the use of any centralized database defining the sensors characteristics. The IEEE 1451 Standard defines methods for the management of intelligent sensor systems and the IEEE 1451.4 section defines Transducer Electronic Datasheets (TEDS), which contain key information regarding the sensor characteristics such as name, description, serial number, calibration information and user information such as location within a vehicle. By locating the TEDS information on the wireless sensor itself and enabling access to this information base from the application software, the application can identify the sensor unambiguously and interpret and present the sensor data stream without reference to any other information. The application software is able to read the status of each sensor module, responding in real-time to changes of

  9. Development of solid state reference electrodes and pH sensors for monitoring nuclear reactor cooling water systems

    International Nuclear Information System (INIS)

    Hettiarachchi, S.; Makela, K.; Macdonald, D.D.

    1991-01-01

    The growing interest in the electrochemical and corrosion behavior of structural alloys in high temperature aqueous systems has stimulated research in the design and testing of reliable reference electrodes and pH sensors for use in such environments. External reference electrodes have been successfully used in the recent years in high temperature aqueous environments, although their long-term stability is questionable. On the other hand, more reliable pH sensors have been developed by various workers for high temperature applications, the major drawback being their sensitivity to dissolved hydrogen, oxygen and other redox species. This paper describes the development of both solid-state reference electrodes and yttria-stabilized zirconia (YSZ) pH sensors for application in high temperature aqueous systems. (author)

  10. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain.

    Science.gov (United States)

    Müller, Gerhard; Hackner, Angelika; Beer, Sebastian; Göbel, Johann

    2016-01-20

    The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  11. Development of a modular and scalable sensor system for the gathering of position and orientation of moved objects

    International Nuclear Information System (INIS)

    Klingbeil, L.

    2006-02-01

    A modular and scalable sensor system for the estimation of position and orientation of moving objects has been developed and characterized. A sensor unit, which is mounted to the moving object, consists of acceleration -, angular rate - and magnetic field sensors for every spatial axis. Customized Kalman filter algorithms provide a robust and low latency reconstruction of the sensor's orientation. Additionally an ultrasound transducer network is used to measure the distance of a sensor unit with respect to several reference points in the room. This allows reconstruction of the absolute position using trilateration methods. The system is scalable with respect to the number of sensor units and the covered tracking volume. It is suitable for various applications for example the analysis of body movements or head tracking in augmented or virtual reality environments. (orig.)

  12. Distributed sensor coordination for advanced energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States). School of Mechanical, Industrial and Manufacturing Engineering

    2015-03-12

    coordination, and sensor network control in advanced power systems. Each application has specific needs, but they all share the one crucial underlying problem: how to ensure that the interactions of a large number of heterogenous agents lead to coordinated system behavior. This proposal describes a new paradigm that addresses that very issue in a systematic way. Key Results and Findings: All milestones have been completed. Our results demonstrate that by properly shaping agent objective functions, we can develop large (up to 10,000 devices) heterogeneous sensor networks with key desirable properties. The first milestone shows that properly choosing agent-specific objective functions increases system performance by up to 99.9% compared to global evaluations. The second milestone shows evolutionary algorithms learn excellent sensor network coordination policies prior to network deployment, and these policies can be refined online once the network is deployed. The third milestone shows the resulting sensor networks networks are extremely robust to sensor noise, where networks with up to 25% sensor noise are capable of providing measurements with errors on the order of 10⁻³. The fourth milestone shows the resulting sensor networks are extremely robust to sensor failure, with 25% of the sensors in the system failing resulting in no significant performance losses after system reconfiguration.

  13. Error propagation analysis for a sensor system

    International Nuclear Information System (INIS)

    Yeater, M.L.; Hockenbury, R.W.; Hawkins, J.; Wilkinson, J.

    1976-01-01

    As part of a program to develop reliability methods for operational use with reactor sensors and protective systems, error propagation analyses are being made for each model. An example is a sensor system computer simulation model, in which the sensor system signature is convoluted with a reactor signature to show the effect of each in revealing or obscuring information contained in the other. The error propagation analysis models the system and signature uncertainties and sensitivities, whereas the simulation models the signatures and by extensive repetitions reveals the effect of errors in various reactor input or sensor response data. In the approach for the example presented, the errors accumulated by the signature (set of ''noise'' frequencies) are successively calculated as it is propagated stepwise through a system comprised of sensor and signal processing components. Additional modeling steps include a Fourier transform calculation to produce the usual power spectral density representation of the product signature, and some form of pattern recognition algorithm

  14. Embedded Sensor Systems for Health - A Step Towards Personalized Health.

    Science.gov (United States)

    Lindén, Maria; Björkman, Mats

    2018-01-01

    The demography is changing towards older people, and the challenge to provide an appropriate care is well known. Sensor systems, combined with IT solutions are recognized as one of the major tools to handle this situation. Embedded Sensor Systems for Health (ESS-H) is a research profile at Mälardalen University in Sweden, focusing on embedded sensor systems for health technology applications. The research addresses several important issues: to provide sensor systems for health monitoring at home, to provide sensor systems for health monitoring at work, to provide safe and secure infrastructure and software testing methods for physiological data management. The user perspective is important in order to solve real problems and to develop systems that are easy and intuitive to use. One of the overall aims is to enable health trend monitoring in home environments, thus being able to detect early deterioration of a patient. Sensor systems, signal processing algorithms, and decision support algorithms have been developed. Work on development of safe and secure infrastructure and software testing methods are important for an embedded sensor system aimed for health monitoring, both in home and in work applications. Patient data must be sent and received in a safe and secure manner, also fulfilling the integrity criteria.

  15. Development library of finite elements for computer-aided design system of reed sensors

    Science.gov (United States)

    Kozlov, A. S.; Shmakov, N. A.; Tkalich, V. L.; Labkovskaia, R. I.; Kalinkina, M. E.; Pirozhnikova, O. I.

    2018-05-01

    The article is devoted to the development of a modern highly reliable element base of devices for security and fire alarm systems, in particular, to the improvement of the quality of contact cores (reed and membrane) of reed sensors. Modeling of elastic sensitive elements uses quadrangular elements of plates and shells, considered in the system of curvilinear orthogonal coordinates. The developed mathematical models and the formed finite element library are designed for systems of automated design of reed switch detectors to create competitive devices alarms. The finite element library is used for the automated system production of reed switch detectors both in series production and in the implementation of individual orders.

  16. Sensor Selection method for IoT systems – focusing on embedded system requirements

    Directory of Open Access Journals (Sweden)

    Hirayama Masayuki

    2016-01-01

    Full Text Available Recently, various types of sensors have been developed. Using these sensors, IoT systems have become hot topics in embedded system domain. However, sensor selections for embedded systems are not well discussed up to now. This paper focuses on embedded system’s features and architecture, and proposes a sensor selection method which is composed seven steps. In addition, we applied the proposed method to a simple example – a sensor selection for computer scored answer sheet reader unit. From this case study, an idea to use FTA in sensor selection is also discussed.

  17. Toward the Responsible Development and Commercialization of Sensor Nanotechnologies.

    Science.gov (United States)

    Fadel, Tarek R; Farrell, Dorothy F; Friedersdorf, Lisa E; Griep, Mark H; Hoover, Mark D; Meador, Michael A; Meyyappan, M

    2016-01-01

    Nanotechnology-enabled sensors (or nanosensors) will play an important role in enabling the progression toward ubiquitous information systems as the Internet of Things (IoT) emerges. Nanosensors offer new, miniaturized solutions in physiochemical and biological sensing that enable increased sensitivity, specificity, and multiplexing capability, all with the compelling economic drivers of low cost and high-energy efficiency. In the United States, Federal agencies participating in the National Nanotechnology Initiative (NNI) "Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment" Nanotechnology Signature Initiative (the Sensors NSI), address both the opportunity of using nanotechnology to advance sensor development and the challenges of developing sensors to keep pace with the increasingly widespread use of engineered nanomaterials. This perspective article will introduce and provide background on the NNI signature initiative on sensors. Recent efforts by the Sensors NSI aimed at promoting the successful development and commercialization of nanosensors will be reviewed and examples of sensor nanotechnologies will be highlighted. Future directions and critical challenges for sensor development will also be discussed.

  18. Sensor Technologies for Intelligent Transportation Systems.

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali; Contreras-Castillo, Juan

    2018-04-16

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  19. Sensor Technologies for Intelligent Transportation Systems

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali

    2018-01-01

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment. PMID:29659524

  20. Sensor Technologies for Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Juan Guerrero-Ibáñez

    2018-04-01

    Full Text Available Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  1. Development and performance of a new prosthesis system using ultrasonic sensor for wrist movements: a preliminary study

    Science.gov (United States)

    2014-01-01

    Background The design and performance of a new development prosthesis system known as biomechatronics wrist prosthesis is presented in this paper. The prosthesis system was implemented by replacing the Bowden tension cable of body powered prosthesis system using two ultrasonic sensors, two servo motors and microcontroller inside the prosthesis hand for transradial user. Methods The system components and hand prototypes involve the anthropometry, CAD design and prototyping, biomechatronics engineering together with the prosthetics. The modeler construction of the system develop allows the ultrasonic sensors that are placed on the shoulder to generate the wrist movement of the prosthesis. The kinematics of wrist movement, which are the pronation/supination and flexion/extension were tested using the motion analysis and general motion of human hand were compared. The study also evaluated the require degree of detection for the input of the ultrasonic sensor to generate the wrist movements. Results The values collected by the vicon motion analysis for biomechatronics prosthesis system were reliable to do the common tasks in daily life. The degree of the head needed to bend to give the full input wave was about 45° - 55° of rotation or about 14 cm – 16 cm. The biomechatronics wrist prosthesis gave higher degree of rotation to do the daily tasks but did not achieve the maximum degree of rotation. Conclusion The new development of using sensor and actuator in generating the wrist movements will be interesting for used list in medicine, robotics technology, rehabilitations, prosthetics and orthotics. PMID:24755242

  2. Towards Sensor Database Systems

    DEFF Research Database (Denmark)

    Bonnet, Philippe; Gehrke, Johannes; Seshadri, Praveen

    2001-01-01

    . These systems lack flexibility because data is extracted in a predefined way; also, they do not scale to a large number of devices because large volumes of raw data are transferred regardless of the queries that are submitted. In our new concept of sensor database system, queries dictate which data is extracted...... from the sensors. In this paper, we define the concept of sensor databases mixing stored data represented as relations and sensor data represented as time series. Each long-running query formulated over a sensor database defines a persistent view, which is maintained during a given time interval. We...... also describe the design and implementation of the COUGAR sensor database system....

  3. Development and Testing of a Post-Installable Deepwater Monitoring System Using Fiber-Optic Sensors

    Science.gov (United States)

    Seaman, Calvin H.; Brower, David V.; Le, Suy Q.; Tang, Henry H.

    2015-01-01

    This paper addresses the design and development of a fiber-optic monitoring system that can be deployed on existing deepwater risers and flowlines; and provides a summary of test article fabrication and the subsequent laboratory testing performed at the National Aeronautics and Space Administration-Johnson Space Center (NASA-JSC). A major challenge of a post-installed instrumentation system is to ensure adequate coupling between the instruments and the riser or flowline of interest. This work investigates the sensor coupling for pipelines that are suspended in a water column (from topside platform to seabed) using a fiber-optic sensor clamp and subsea bonding adhesive. The study involved the design, fabrication, and test of several prototype clamps that contained fiber-optic sensors. A mold was produced by NASA using 3-D printing methods that allowed the casting of polyurethane clamp test articles to accommodate 4-inch and 8-inch diameter pipes. The prototype clamps were installed with a subsea adhesive in a "wet" environment and then tested in the NASA Structures Test Laboratory (STL). The tension, compression, and bending test data showed that the prototype sensor clamps achieved good structural coupling, and could provide high quality strain measurement for active monitoring.

  4. Integrated active sensor system for real time vibration monitoring.

    Science.gov (United States)

    Liang, Qijie; Yan, Xiaoqin; Liao, Xinqin; Cao, Shiyao; Lu, Shengnan; Zheng, Xin; Zhang, Yue

    2015-11-05

    We report a self-powered, lightweight and cost-effective active sensor system for vibration monitoring with multiplexed operation based on contact electrification between sensor and detected objects. The as-fabricated sensor matrix is capable of monitoring and mapping the vibration state of large amounts of units. The monitoring contents include: on-off state, vibration frequency and vibration amplitude of each unit. The active sensor system delivers a detection range of 0-60 Hz, high accuracy (relative error below 0.42%), long-term stability (10000 cycles). On the time dimension, the sensor can provide the vibration process memory by recording the outputs of the sensor system in an extend period of time. Besides, the developed sensor system can realize detection under contact mode and non-contact mode. Its high performance is not sensitive to the shape or the conductivity of the detected object. With these features, the active sensor system has great potential in automatic control, remote operation, surveillance and security systems.

  5. Solid-State Gas Sensors: Sensor System Challenges in the Civil Security Domain

    Directory of Open Access Journals (Sweden)

    Gerhard Müller

    2016-01-01

    Full Text Available The detection of military high explosives and illicit drugs presents problems of paramount importance in the fields of counter terrorism and criminal investigation. Effectively dealing with such threats requires hand-portable, mobile and affordable instruments. The paper shows that solid-state gas sensors can contribute to the development of such instruments provided the sensors are incorporated into integrated sensor systems, which acquire the target substances in the form of particle residue from suspect objects and which process the collected residue through a sequence of particle sampling, solid-vapor conversion, vapor detection and signal treatment steps. Considering sensor systems with metal oxide gas sensors at the backend, it is demonstrated that significant gains in sensitivity, selectivity and speed of response can be attained when the threat substances are sampled in particle as opposed to vapor form.

  6. CMOS-MEMS Chemiresistive and Chemicapacitive Chemical Sensor System

    Science.gov (United States)

    Lazarus, Nathan S.

    Integrating chemical sensors with testing electronics is a powerful technique with the potential to lower power and cost and allow for lower system limits of detection. This thesis explores the possibility of creating an integrated sensor system intended to be embedded within respirator cartridges to notify the user that hazardous chemicals will soon leak into the face mask. For a chemical sensor designer, this application is particularly challenging due to the need for a very sensitive and cheap sensor that will be exposed to widely varying environmental conditions during use. An octanethiol-coated gold nanoparticle chemiresistor to detect industrial solvents is developed, focusing on characterizing the environmental stability and limits of detection of the sensor. Since the chemiresistor was found to be highly sensitive to water vapor, a series of highly sensitive humidity sensor topologies were developed, with sensitivities several times previous integrated capacitive humidity sensors achieved. Circuit techniques were then explored to reduce the humidity sensor limits of detection, including the analysis of noise, charge injection, jitter and clock feedthrough in a charge-based capacitance measurement (CBCM) circuit and the design of a low noise Colpitts LC oscillator. The characterization of high resistance gold nanoclusters for capacitive chemical sensing was also performed. In the final section, a preconcentrator, a heater element intended to release a brief concentrated pulse of analate, was developed and tested for the purposes of lowering the system limit of detection.

  7. The Mediterranean Moored Multi-sensor Array (M3A: system development and initial results

    Directory of Open Access Journals (Sweden)

    K. Nittis

    Full Text Available Operational forecasting of ocean circulation and marine ecosystem fluctuations requires multi-parametric real-time measurements of physical and biochemical properties. The architecture of a system that is able to provide such measurements from the upper-thermocline layers of the Mediterranean Sea is described here. The system was developed for the needs of the Mediterranean Forecasting System and incorporates state-of-the-art sensors for optical and chemical measurements in the upper 100 m and physical measurements down to 500 m. Independent moorings that communicate via hydro-acoustic modems are hosting the sensors. The satellite data transfer and the large autonomy allow for the operation of the system in any open-ocean site. The system has been in pre-operational use in the Cretan Sea since January 2000. The results of this pilot phase indicate that multi-parametric real-time observations with the M3A system are feasible, if a consistent maintenance and re-calibration program is followed. The main limitations of the present configuration of M3A are related: (a to bio-fouling that primarily affects the turbidity and secondarily affects the other optical sensors, and (b to the limited throughput of the currently used satellite communication system.

    Key words. Atmospheric composition and structure (instruments and techniques. Oceanography: general (ocean prediction Oceanography: physical (upper ocean process

  8. The Mediterranean Moored Multi-sensor Array (M3A: system development and initial results

    Directory of Open Access Journals (Sweden)

    K. Nittis

    2003-01-01

    Full Text Available Operational forecasting of ocean circulation and marine ecosystem fluctuations requires multi-parametric real-time measurements of physical and biochemical properties. The architecture of a system that is able to provide such measurements from the upper-thermocline layers of the Mediterranean Sea is described here. The system was developed for the needs of the Mediterranean Forecasting System and incorporates state-of-the-art sensors for optical and chemical measurements in the upper 100 m and physical measurements down to 500 m. Independent moorings that communicate via hydro-acoustic modems are hosting the sensors. The satellite data transfer and the large autonomy allow for the operation of the system in any open-ocean site. The system has been in pre-operational use in the Cretan Sea since January 2000. The results of this pilot phase indicate that multi-parametric real-time observations with the M3A system are feasible, if a consistent maintenance and re-calibration program is followed. The main limitations of the present configuration of M3A are related: (a to bio-fouling that primarily affects the turbidity and secondarily affects the other optical sensors, and (b to the limited throughput of the currently used satellite communication system. Key words. Atmospheric composition and structure (instruments and techniques. Oceanography: general (ocean prediction Oceanography: physical (upper ocean process

  9. Cross-platform wireless sensor network development

    DEFF Research Database (Denmark)

    Hansen, Morten Tranberg; Kusy, Branislav

    Design and development of wireless sensor network applications adds an additional layer of complexity to traditional computer systems. The developer needs to be an expert in resource constrained embedded devices as well as traditional desktop computers. We propose Tinylnventor, an open...

  10. Passive sensor systems for nuclear material monitoring

    International Nuclear Information System (INIS)

    Simpson, M.L.; Boatner, L.A.; Holcomb, D.E.; McElhaney, S.A.; Mihalczo, J.T.; Muhs, J.D.; Roberts, M.R.; Hill, N.W.

    1993-01-01

    Passive fiber optic sensor systems capable of confirming the presence of special nuclear materials in storage or process facilities are being developed at Oak Ridge National Laboratory (ORNL). These sensors provide completely passive, remote measurement capability. No power supplies, amplifiers, or other active components that could degrade system reliability are required at the sensor location. ORNL, through its research programs in scintillator materials, has developed a variety of materials for use in alpha-, beta-, gamma-, and neutron-sensitive scintillator detectors. In addition to sensors for measuring radiation flux, new sensor materials have been developed which are capable of measuring weight, temperature, and source location. An example of a passive sensor for temperature measurement is the combination of a thermophosphor (e.g., rare-earth activated Y 2 O 3 ) with 6 LiF (95% 6 Li). This combination results in a new class of scintillators for thermal neutrons that absorb energy from the radiation particles and remit the energy as a light pulse, the decay rate of which, over a specified temperature range, is temperature dependent. Other passive sensors being developed include pressure-sensitive triboluminescent materials, weight-sensitive silicone rubber fibers, scintillating fibers, and other materials for gamma and neutron detection. The light from the scintillator materials of each sensor would be sent through optical fibers to a monitoring station, where the attribute quantity could be measured and compared with previously recorded emission levels. Confirmatory measurement applications of these technologies are being evaluated to reduce the effort, costs, and employee exposures associated with inventorying stockpiles of highly enriched uranium at the Oak Ridge Y-12 Plant

  11. SU-E-J-190: Development of Abdominal Compression & Respiratory Guiding System Using Gas Pressure Sensor

    International Nuclear Information System (INIS)

    Kim, T; Kim, D; Kang, S; Cho, M; Kim, K; Shin, D; Suh, T; Kim, S

    2015-01-01

    Purpose: Abdominal compression is known to be effective but, often makes external-marker-based monitoring of breathing motion not feasible. In this study, we developed and evaluated a system that enables both abdominal compression and monitoring of residual abdominal motion simultaneously. The system can also provide visual-biofeedback capability. Methods: The system developed consists of a compression belt, an abdominal motion monitoring sensor (gas pressure sensor) and a visual biofeedback device. The compression belt was designed to be able to compress the frontal side of the abdomen. The pressure level of the belt is controlled by air volume and monitored in real time using the gas pressure sensor. The system displays not only the real-time monitoring curve but also a guiding respiration model (e.g., a breath hold or shallow breathing curve) simultaneously on the head mounted display to help patients keep their breathing pattern as consistent as possible. Three healthy volunteers were enrolled in this pilot study and respiratory signals (pressure variations) were obtained both with and without effective abdominal compression to investigate the feasibility of the developed system. Two guidance patterns, breath hold and shallow breathing, were tested. Results: All volunteers showed smaller abdominal motion with compression (about 40% amplitude reduction compared to without compression). However, the system was able to monitor residual abdominal motion for all volunteers. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed abdominal compression & respiratory guiding system was feasible for residual abdominal motion management. It is considered that the system can be used for a respiratory motion involved radiation therapy while maintaining the merit of abdominal compression. This work was supported by the Radiation Technology R

  12. SU-E-J-190: Development of Abdominal Compression & Respiratory Guiding System Using Gas Pressure Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T; Kim, D; Kang, S; Cho, M; Kim, K; Shin, D; Suh, T [The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of); Kim, S [Virginia Commonwealth University, Richmond, VA (United States)

    2015-06-15

    Purpose: Abdominal compression is known to be effective but, often makes external-marker-based monitoring of breathing motion not feasible. In this study, we developed and evaluated a system that enables both abdominal compression and monitoring of residual abdominal motion simultaneously. The system can also provide visual-biofeedback capability. Methods: The system developed consists of a compression belt, an abdominal motion monitoring sensor (gas pressure sensor) and a visual biofeedback device. The compression belt was designed to be able to compress the frontal side of the abdomen. The pressure level of the belt is controlled by air volume and monitored in real time using the gas pressure sensor. The system displays not only the real-time monitoring curve but also a guiding respiration model (e.g., a breath hold or shallow breathing curve) simultaneously on the head mounted display to help patients keep their breathing pattern as consistent as possible. Three healthy volunteers were enrolled in this pilot study and respiratory signals (pressure variations) were obtained both with and without effective abdominal compression to investigate the feasibility of the developed system. Two guidance patterns, breath hold and shallow breathing, were tested. Results: All volunteers showed smaller abdominal motion with compression (about 40% amplitude reduction compared to without compression). However, the system was able to monitor residual abdominal motion for all volunteers. Even under abdominal compression, in addition, it was possible to make the subjects successfully follow the guide patterns using the visual biofeedback system. Conclusion: The developed abdominal compression & respiratory guiding system was feasible for residual abdominal motion management. It is considered that the system can be used for a respiratory motion involved radiation therapy while maintaining the merit of abdominal compression. This work was supported by the Radiation Technology R

  13. AMRDEC's HWIL Synthetic Environment Development Efforts for LADAR Sensors

    National Research Council Canada - National Science Library

    Kim, Hajin J; Cornell, Michael C; Naumann, Charles B

    2004-01-01

    .... With the emerging sensor/electronics technology LADAR sensors are becoming more viable option as an integral part of weapon systems, and AMCOM has been expending efforts to develop the capabilities...

  14. Development of Weeds Density Evaluation System Based on RGB Sensor

    Science.gov (United States)

    Solahudin, M.; Slamet, W.; Wahyu, W.

    2018-05-01

    Weeds are plant competitors which potentially reduce the yields due to competition for sunlight, water and soil nutrients. Recently, for chemical-based weed control, site-specific weed management that accommodates spatial and temporal diversity of weeds attack in determining the appropriate dose of herbicide based on Variable Rate Technology (VRT) is preferable than traditional approach with single dose herbicide application. In such application, determination of the level of weed density is an important task. Several methods have been studied to evaluate the density of weed attack. The objective of this study is to develop a system that is able to evaluate weed density based on RGB (Red, Green, and Blue) sensors. RGB sensor was used to acquire the RGB values of the surface of the field. An artificial neural network (ANN) model was then used for determining the weed density. In this study the ANN model was trained with 280 training data (70%), 60 validation data (15%), and 60 testing data (15%). Based on the field test, using the proposed method the weed density could be evaluated with an accuracy of 83.75%.

  15. Distributed Sensor Coordination for Advanced Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tumer, Kagan [Oregon State Univ., Corvallis, OR (United States)

    2013-07-31

    The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control decisions to significantly improve both the quality/relevance of the collected data and the associating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as advanced energy systems, where crucial decisions may need to be reached quickly and locally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination routines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shifting the focus

  16. Testing of a Wireless Sensor System for Instrumented Thermal Protection Systems

    Science.gov (United States)

    Kummer, Allen T.; Weir, Erik D.; Morris, Trey J.; Friedenberger, Corey W.; Singh, Aseem; Capuro, Robert M.; Bilen, Sven G.; Fu, Johnny; Swanson, Gregory T.; Hash, David B.

    2011-01-01

    Funded by NASA's Constellation Universities Institutes Project (CUIP), we have been developing and testing a system to wirelessly power and collect data from sensors on space platforms in general and, in particular, the harsh environment of spacecraft re-entry. The elimination of wires and associated failures such as chafing, sparking, ageing, and connector issues can increase reliability and design flexibility while reducing costs. These factors present an appealing case for the pursuit of wireless solutions for harsh environments, particularly for their use in space and on spacecraft. We have designed and built a prototype wireless sensor system. The system, with capabilities similar to that of a wired sensor system, was tested in NASA Ames Research Center s Aerodynamic Heating Facility and Interaction Heating Facility. This paper discusses the overall development effort, testing results, as well as future directions.

  17. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  18. Development of an NDIR CO₂ sensor-based system for assessing soil toxicity using substrate-induced respiration.

    Science.gov (United States)

    Kaur, Jasmeen; Adamchuk, Viacheslav I; Whalen, Joann K; Ismail, Ashraf A

    2015-02-26

    The eco-toxicological indicators used to evaluate soil quality complement the physico-chemical criteria employed in contaminated site remediation, but their cost, time, sophisticated analytical methods and in-situ inapplicability pose a major challenge to rapidly detect and map the extent of soil contamination. This paper describes a sensor-based approach for measuring potential (substrate-induced) microbial respiration in diesel-contaminated and non-contaminated soil and hence, indirectly evaluates their microbial activity. A simple CO2 sensing system was developed using an inexpensive non-dispersive infrared (NDIR) CO2 sensor and was successfully deployed to differentiate the control and diesel-contaminated soils in terms of CO2 emission after glucose addition. Also, the sensor system distinguished glucose-induced CO2 emission from sterile and control soil samples (p ≤ 0.0001). Significant effects of diesel contamination (p ≤ 0.0001) and soil type (p ≤ 0.0001) on glucose-induced CO2 emission were also found. The developed sensing system can provide in-situ evaluation of soil microbial activity, an indicator of soil quality. The system can be a promising tool for the initial screening of contaminated environmental sites to create high spatial density maps at a relatively low cost.

  19. A neuro-fuzzy inference system for sensor monitoring

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2001-01-01

    A neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods has been developed to monitor the relevant sensor using the information of other sensors. The paramters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors

  20. Development of sensor augmented robotic weld systems for aerospace propulsion system fabrication

    Science.gov (United States)

    Jones, C. S.; Gangl, K. J.

    1986-01-01

    In order to meet stringent performance goals for power and reuseability, the Space Shuttle Main Engine was designed with many complex, difficult welded joints that provide maximum strength and minimum weight. To this end, the SSME requires 370 meters of welded joints. Automation of some welds has improved welding productivity significantly over manual welding. Application has previously been limited by accessibility constraints, requirements for complex process control, low production volumes, high part variability, and stringent quality requirements. Development of robots for welding in this application requires that a unique set of constraints be addressed. This paper shows how robotic welding can enhance production of aerospace components by addressing their specific requirements. A development program at the Marshall Space Flight Center combining industrial robots with state-of-the-art sensor systems and computer simulation is providing technology for the automation of welds in Space Shuttle Main Engine production.

  1. Integrating soft sensor systems using conductive thread

    Science.gov (United States)

    Teng, Lijun; Jeronimo, Karina; Wei, Tianqi; Nemitz, Markus P.; Lyu, Geng; Stokes, Adam A.

    2018-05-01

    We are part of a growing community of researchers who are developing a new class of soft machines. By using mechanically soft materials (MPa modulus) we can design systems which overcome the bulk-mechanical mismatches between soft biological systems and hard engineered components. To develop fully integrated soft machines—which include power, communications, and control sub-systems—the research community requires methods for interconnecting between soft and hard electronics. Sensors based upon eutectic gallium alloys in microfluidic channels can be used to measure normal and strain forces, but integrating these sensors into systems of heterogeneous Young’s modulus is difficult due the complexity of finding a material which is electrically conductive, mechanically flexible, and stable over prolonged periods of time. Many existing gallium-based liquid alloy sensors are not mechanically or electrically robust, and have poor stability over time. We present the design and fabrication of a high-resolution pressure-sensor soft system that can transduce normal force into a digital output. In this soft system, which is built on a monolithic silicone substrate, a galinstan-based microfluidic pressure sensor is integrated with a flexible printed circuit board. We used conductive thread as the interconnect and found that this method alleviates problems arising due to the mechanical mismatch between conventional metal wires and soft or liquid materials. Conductive thread is low-cost, it is readily wetted by the liquid metal, it produces little bending moment into the microfluidic channel, and it can be connected directly onto the copper bond-pads of the flexible printed circuit board. We built a bridge-system to provide stable readings from the galinstan pressure sensor. This system gives linear measurement results between 500-3500 Pa of applied pressure. We anticipate that integrated systems of this type will find utility in soft-robotic systems as used for wearable

  2. Air to fuel ratio sensor for internal combustion engine control system; Nainen kikan no nensho seigyoyo kunen hi sensor

    Energy Technology Data Exchange (ETDEWEB)

    Tsuzuki, M.; Kawai, T.; Yamada, T.; Nishio [NGK Spark Plug Co. Ltd., Aichi (Japan)

    1998-06-01

    Air to fuel ratio sensor is used for emission control system of three-way catalyst, and constitutes the important functional part of combustion control system. For further precise combustion control application, universal air to fuel ratio heated exhaust gas oxygen sensor (UEGO sensor) has been developed. This paper introduces heater control system for constant element temperature of UEGO sensor. By the heater wattage feedback control of sensing cell impedance, the change of sensor element temperature is decreased. 9 refs., 13 figs.

  3. Advanced interfacing techniques for sensors measurement circuits and systems for intelligent sensors

    CERN Document Server

    Roy, Joyanta; Kumar, V; Mukhopadhyay, Subhas

    2017-01-01

    This book presents ways of interfacing sensors to the digital world, and discusses the marriage between sensor systems and the IoT: the opportunities and challenges. As sensor output is often affected by noise and interference, the book presents effective schemes for recovering the data from a signal that is buried in noise. It also explores interesting applications in the area of health care, un-obstructive monitoring and the electronic nose and tongue. It is a valuable resource for engineers and scientists in the area of sensors and interfacing wanting to update their knowledge of the latest developments in the field and learn more about sensing applications and challenges.

  4. A multi-agent system architecture for sensor networks.

    Science.gov (United States)

    Fuentes-Fernández, Rubén; Guijarro, María; Pajares, Gonzalo

    2009-01-01

    The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  5. Sense, decide, act, communicate (SDAC): next generation of smart sensor systems

    Science.gov (United States)

    Berry, Nina; Davis, Jesse; Ko, Teresa H.; Kyker, Ron; Pate, Ron; Stark, Doug; Stinnett, Regan; Baker, James; Cushner, Adam; Van Dyke, Colin; Kyckelhahn, Brian

    2004-09-01

    The recent war on terrorism and increased urban warfare has been a major catalysis for increased interest in the development of disposable unattended wireless ground sensors. While the application of these sensors to hostile domains has been generally governed by specific tasks, this research explores a unique paradigm capitalizing on the fundamental functionality related to sensor systems. This functionality includes a sensors ability to Sense - multi-modal sensing of environmental events, Decide - smart analysis of sensor data, Act - response to environmental events, and Communication - internal to system and external to humans (SDAC). The main concept behind SDAC sensor systems is to integrate the hardware, software, and networking to generate 'knowledge and not just data'. This research explores the usage of wireless SDAC units to collectively make up a sensor system capable of persistent, adaptive, and autonomous behavior. These systems are base on the evaluation of scenarios and existing systems covering various domains. This paper presents a promising view of sensor network characteristics, which will eventually yield smart (intelligent collectives) network arrays of SDAC sensing units generally applicable to multiple related domains. This paper will also discuss and evaluate the demonstration system developed to test the concepts related to SDAC systems.

  6. Intelligent Chemical Sensor Systems for In-space Safety Applications

    Science.gov (United States)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  7. Development of a hybrid earthquake early warning system based on single sensor technique

    International Nuclear Information System (INIS)

    Gravirov, V.V.; Kislov, K.V.

    2012-01-01

    There are two methods to earthquake early warning system: the method based on a network of seismic stations and the single-sensor method. Both have advantages and drawbacks. The current systems rely on high density seismic networks. Attempts at implementing techniques based on the single-station principle encounter difficulties in the identification of earthquake in noise. The noise may be very diverse, from stationary to impulsive. It seems a promising line of research to develop hybrid warning systems with single-sensors being incorporated in the overall early warning network. This will permit using all advantages and will help reduce the radius of the hazardous zone where no earthquake warning can be produced. The main problems are highlighted and the solutions of these are discussed. The system is implemented to include three detection processes in parallel. The first is based on the study of the co-occurrence matrix of the signal wavelet transform. The second consists in using the method of a change point in a random process and signal detection in a moving time window. The third uses artificial neural networks. Further, applying a decision rule out the final earthquake detection is carried out and estimate its reliability. (author)

  8. Development and Testing of Prototype Commercial Gasifier Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zelepouga, Serguei [Gas Technology Inst., Des Plaines, IL (United States); Moery, Nathan [Gas Technology Inst., Des Plaines, IL (United States); Wu, Mengbai [Gas Technology Inst., Des Plaines, IL (United States); Saveliev, Alexei [Gas Technology Inst., Des Plaines, IL (United States)

    2015-01-31

    This report presents the results of the sensor development and testing at the Wabash River gasifier. The project work was initiated with modification of the sensor software (Task 2) to enable real time temperature data acquisition, and to process and provide the obtained gasifier temperature information to the gasifier operators. The software modifications were conducted by the North Carolina State University (NCSU) researchers. The modified software was tested at the Gas Technology Institute (GTI) combustion laboratory to assess the temperature recognition algorithm accuracy and repeatability. Task 3 was focused on the sensor hardware modifications needed to improve reliability of the sensor system. NCSU conducted numerical modeling of the sensor probe’s purging flow. Based on the modeling results the probe purging system was redesigned to prevent carbon particulates deposition on the probe’s sapphire window. The modified design was evaluated and approved by the Wabash representative. The modified gasifier sensor was built and installed at the Wabash River gasifier on May 1 2014. (Task 4) The sensor was tested from the startup of the gasifier on May 5, 2015 until the planned autumn gasifier outage starting in the beginning of October, 2015. (Task 5) The project team successfully demonstrated the Gasifier Sensor system’s ability to monitor gasifier temperature while maintaining unobstructed optical access for six months without any maintenance. The sensor examination upon completion of the trial revealed that the system did not sustain any damage.

  9. Research and development for the high-temperature helium-leak detection system (Joint research). Part 2. Development of temperature sensors using optical fibre for the HTTR

    Energy Technology Data Exchange (ETDEWEB)

    Sakaba, Nariaki; Nakazawa, Toshio; Kawasaki, Kozo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Urakami, Masao; Saisyu, Sadanori [Japan Atomic Power Co., Tokyo (Japan)

    2003-03-01

    In the second stage of the research and development for a high-temperature helium-leak detection system, the temperature sensor using optical fibres was studied. The sensor detects the helium leakage by the temperature increase surrounded optical fibre with or without heat insulator. Moreover, the applicability of high temperature equipments as the HTTR system was studied. With the sensor we detected 5.0-20.0 cm{sup 3}/s helium leakages within 60 minutes. Also it was possible to detect earlier when the leakage level is at 20.0 cm {sup 3}/s. (author)

  10. Sensor-based material tagging system

    International Nuclear Information System (INIS)

    Vercellotti, L.C.; Cox, R.W.; Ravas, R.J.; Schlotterer, J.C.

    1991-01-01

    Electronic identification tags are being developed for tracking material and personnel. In applying electronic identification tags to radioactive materials safeguards, it is important to measure attributes of the material to ensure that the tag remains with the material. The addition of a microcontroller with an on-board analog-to-digital converter to an electronic identification tag application-specific integrated-circuit has been demonstrated as means to provide the tag with sensor data. Each tag is assembled into a housing, which serves as a scale for measuring the weight of a paint-can-sized container and its contents. Temperature rise of the can above ambient is also measured, and a piezoelectric detector detects disturbances and immediately puts the tag into its alarm and beacon mode. Radiation measurement was also considered, but the background from nearby containers was found to be excessive. The sensor-based tagging system allows tracking of the material in cans as it is stored in vaults or is moved through the manufacturing process. The paper presents details of the sensor-based material tagging system and describes a demonstration system

  11. A bio-inspired apposition compound eye machine vision sensor system

    International Nuclear Information System (INIS)

    Davis, J D; Barrett, S F; Wright, C H G; Wilcox, M

    2009-01-01

    The Wyoming Information, Signal Processing, and Robotics Laboratory is developing a wide variety of bio-inspired vision sensors. We are interested in exploring the vision system of various insects and adapting some of their features toward the development of specialized vision sensors. We do not attempt to supplant traditional digital imaging techniques but rather develop sensor systems tailor made for the application at hand. We envision that many applications may require a hybrid approach using conventional digital imaging techniques enhanced with bio-inspired analogue sensors. In this specific project, we investigated the apposition compound eye and its characteristics commonly found in diurnal insects and certain species of arthropods. We developed and characterized an array of apposition compound eye-type sensors and tested them on an autonomous robotic vehicle. The robot exhibits the ability to follow a pre-defined target and avoid specified obstacles using a simple control algorithm.

  12. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  13. Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.

    2002-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  14. Smart sensors and systems

    CERN Document Server

    Kyung, Chong-Min; Yasuura, Hiroto; Liu, Yongpan

    2015-01-01

     This book describes for readers technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoTs).  The authors provide a multidisciplinary view of sensor technology from MEMS, biological, chemical, and electrical domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc.  Unlike earlier books on sensors, this book will provide a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms.  .

  15. New optical sensor systems for high-resolution satellite, airborne and terrestrial imaging systems

    Science.gov (United States)

    Eckardt, Andreas; Börner, Anko; Lehmann, Frank

    2007-10-01

    The department of Optical Information Systems (OS) at the Institute of Robotics and Mechatronics of the German Aerospace Center (DLR) has more than 25 years experience with high-resolution imaging technology. The technology changes in the development of detectors, as well as the significant change of the manufacturing accuracy in combination with the engineering research define the next generation of spaceborne sensor systems focusing on Earth observation and remote sensing. The combination of large TDI lines, intelligent synchronization control, fast-readable sensors and new focal-plane concepts open the door to new remote-sensing instruments. This class of instruments is feasible for high-resolution sensor systems regarding geometry and radiometry and their data products like 3D virtual reality. Systemic approaches are essential for such designs of complex sensor systems for dedicated tasks. The system theory of the instrument inside a simulated environment is the beginning of the optimization process for the optical, mechanical and electrical designs. Single modules and the entire system have to be calibrated and verified. Suitable procedures must be defined on component, module and system level for the assembly test and verification process. This kind of development strategy allows the hardware-in-the-loop design. The paper gives an overview about the current activities at DLR in the field of innovative sensor systems for photogrammetric and remote sensing purposes.

  16. Progress of optical sensor system for health monitoring of bridges at Chongqing University

    Science.gov (United States)

    Chen, W.; Fu, Y.; Zhu, Y.; Huang, S.

    2005-02-01

    With decades of research experience on optical sensors, Optoelectronic Technology Lab of Chongqing University (OTLCU) has studied on a variety of sensors system designed for practical use in health monitoring. In OTLCU, embedded and surface mounted fiber Fabry-Perot strain sensor has been developed for monitoring the local strain of both concrete and steel truss bridge. Optoelectronic deflect meter, with a group of optical level sensor in a series connected pipe, was developed for deflection monitoring and line shape monitoring of the bridges. Laser deflect meter, with a laser pointer and a sensors array, has been also developed for a dynamic deflection monitoring of the bridges. To monitoring the 2-Dimentional displacement of the bridge, a self-calibrating imaging system was developed. All these sensor systems have been applied in different bridges successfully. This paper briefly describes principle of these optical sensing systems, and also gives some representative results of the system in practical application of bridges.

  17. An Advanced Multi-Sensor Acousto-Ultrasonic Structural Health Monitoring System: Development and Aerospace Demonstration.

    Science.gov (United States)

    Smithard, Joel; Rajic, Nik; van der Velden, Stephen; Norman, Patrick; Rosalie, Cedric; Galea, Steve; Mei, Hanfei; Lin, Bin; Giurgiutiu, Victor

    2017-07-20

    A key longstanding objective of the Structural Health Monitoring (SHM) research community is to enable the embedment of SHM systems in high value assets like aircraft to provide on-demand damage detection and evaluation. As against traditional non-destructive inspection hardware, embedded SHM systems must be compact, lightweight, low-power and sufficiently robust to survive exposure to severe in-flight operating conditions. Typical Commercial-Off-The-Shelf (COTS) systems can be bulky, costly and are often inflexible in their configuration and/or scalability, which militates against in-service deployment. Advances in electronics have resulted in ever smaller, cheaper and more reliable components that facilitate the development of compact and robust embedded SHM systems, including for Acousto-Ultrasonics (AU), a guided plate-wave inspection modality that has attracted strong interest due mainly to its capacity to furnish wide-area diagnostic coverage with a relatively low sensor density. This article provides a detailed description of the development, testing and demonstration of a new AU interrogation system called the Acousto Ultrasonic Structural health monitoring Array Module⁺ (AUSAM⁺). This system provides independent actuation and sensing on four Piezoelectric Wafer Active Sensor (PWAS) elements with further sensing on four Positive Intrinsic Negative (PIN) photodiodes for intensity-based interrogation of Fiber Bragg Gratings (FBG). The paper details the development of a novel piezoelectric excitation amplifier, which, in conjunction with flexible acquisition-system architecture, seamlessly provides electromechanical impedance spectroscopy for PWAS diagnostics over the full instrument bandwidth of 50 KHz-5 MHz. The AUSAM⁺ functionality is accessed via a simple hardware object providing a myriad of custom software interfaces that can be adapted to suit the specific requirements of each individual application.

  18. Mechanical Resonators for Material Characterization: Sensor Development and Applications

    DEFF Research Database (Denmark)

    Casci Ceccacci, Andrea; Bosco, Filippo Giacomo

    The goals of this PhD project were to provide new approaches and developing new systems for material characterization, based on micro and nanomechanical sensors. Common issues that have shown to hinder large-scale integration of sensing techniques based on a micromechanical sensor are the readout......-co-Glycolic Acid (PLGA), which is of high relevance in the biomedical research field. A second version of the system is currently under development, and it aims to increase the throughput of the system allowing to read out multiple microbridge arrays. For material characterization, spectroscopy analysis is often...... considered a benchmark technology. Conventional infrared spectroscopy approaches commonly require milligram amount of sample. Considering the frame of reference given by the overall aim of the project, mechanical sensors can be exploited to provide a unique tool for performing spectroscopy on a limited...

  19. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications.

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Nonomura, Yutaka; Muroyama, Masanori

    2017-08-28

    Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as "sensor platform LSI") as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated.

  20. A Multi-Agent System Architecture for Sensor Networks

    Directory of Open Access Journals (Sweden)

    María Guijarro

    2009-12-01

    Full Text Available The design of the control systems for sensor networks presents important challenges. Besides the traditional problems about how to process the sensor data to obtain the target information, engineers need to consider additional aspects such as the heterogeneity and high number of sensors, and the flexibility of these networks regarding topologies and the sensors in them. Although there are partial approaches for resolving these issues, their integration relies on ad hoc solutions requiring important development efforts. In order to provide an effective approach for this integration, this paper proposes an architecture based on the multi-agent system paradigm with a clear separation of concerns. The architecture considers sensors as devices used by an upper layer of manager agents. These agents are able to communicate and negotiate services to achieve the required functionality. Activities are organized according to roles related with the different aspects to integrate, mainly sensor management, data processing, communication and adaptation to changes in the available devices and their capabilities. This organization largely isolates and decouples the data management from the changing network, while encouraging reuse of solutions. The use of the architecture is facilitated by a specific modelling language developed through metamodelling. A case study concerning a generic distributed system for fire fighting illustrates the approach and the comparison with related work.

  1. Monolithic active pixel sensor development for the upgrade of the ALICE inner tracking system

    Science.gov (United States)

    Aglieri, G.; Cavicchioli, C.; Chalmet, P. L.; Chanlek, N.; Collu, A.; Giubilato, P.; Hillemanns, H.; Junique, A.; Keil, M.; Kim, D.; Kim, J.; Kugathasan, T.; Lattuca, A.; Mager, M.; Marin Tobon, C. A.; Marras, D.; Martinengo, P.; Mattiazzo, S.; Mazza, G.; Mugnier, H.; Musa, L.; Pantano, D.; Puggioni, C.; Rousset, J.; Reidt, F.; Riedler, P.; Siddhanta, S.; Snoeys, W.; Usai, G.; van Hoorne, J. W.; Yang, P.; Yi, J.

    2013-12-01

    ALICE plans an upgrade of its Inner Tracking System for 2018. The development of a monolithic active pixel sensor for this upgrade is described. The TowerJazz 180 nm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel due to the offering of a deep pwell and also to use different starting materials. The ALPIDE development is an alternative to approaches based on a rolling shutter architecture, and aims to reduce power consumption and integration time by an order of magnitude below the ALICE specifications, which would be quite beneficial in terms of material budget and background. The approach is based on an in-pixel binary front-end combined with a hit-driven architecture. Several prototypes have already been designed, submitted for fabrication and some of them tested with X-ray sources and particles in a beam. Analog power consumption has been limited by optimizing the Q/C of the sensor using Explorer chips. Promising but preliminary first results have also been obtained with a prototype ALPIDE. Radiation tolerance up to the ALICE requirements has also been verified.

  2. Monolithic active pixel sensor development for the upgrade of the ALICE inner tracking system

    International Nuclear Information System (INIS)

    Aglieri, G; Cavicchioli, C; Hillemanns, H; Junique, A; Keil, M; Kugathasan, T; Mager, M; Tobon, C A Marin; Martinengo, P; Chalmet, P L; Mugnier, H; Chanlek, N; Collu, A; Marras, D; Giubilato, P; Mattiazzo, S; Kim, D; Kim, J; Lattuca, A; Mazza, G

    2013-01-01

    ALICE plans an upgrade of its Inner Tracking System for 2018. The development of a monolithic active pixel sensor for this upgrade is described. The TowerJazz 180 nm CMOS imaging sensor process has been chosen as it is possible to use full CMOS in the pixel due to the offering of a deep pwell and also to use different starting materials. The ALPIDE development is an alternative to approaches based on a rolling shutter architecture, and aims to reduce power consumption and integration time by an order of magnitude below the ALICE specifications, which would be quite beneficial in terms of material budget and background. The approach is based on an in-pixel binary front-end combined with a hit-driven architecture. Several prototypes have already been designed, submitted for fabrication and some of them tested with X-ray sources and particles in a beam. Analog power consumption has been limited by optimizing the Q/C of the sensor using Explorer chips. Promising but preliminary first results have also been obtained with a prototype ALPIDE. Radiation tolerance up to the ALICE requirements has also been verified

  3. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram; Shamim, Atif; Arsalan, Muhammad

    2018-01-01

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground

  4. MicroSensors Systems: detection of a dismounted threat

    Science.gov (United States)

    Davis, Bill; Berglund, Victor; Falkofske, Dwight; Krantz, Brian

    2005-05-01

    The Micro Sensor System (MSS) is a layered sensor network with the goal of detecting dismounted threats approaching high value assets. A low power unattended ground sensor network is dependant on a network protocol for efficiency in order to minimize data transmissions after network establishment. The reduction of network 'chattiness' is a primary driver for minimizing power consumption and is a factor in establishing a low probability of detection and interception. The MSS has developed a unique protocol to meet these challenges. Unattended ground sensor systems are most likely dependant on batteries for power which due to size determines the ability of the sensor to be concealed after placement. To minimize power requirements, overcome size limitations, and maintain a low system cost the MSS utilizes advanced manufacturing processes know as Fluidic Self-Assembly and Chip Scale Packaging. The type of sensing element and the ability to sense various phenomenologies (particularly magnetic) at ranges greater than a few meters limits the effectiveness of a system. The MicroSensor System will overcome these limitations by deploying large numbers of low cost sensors, which is made possible by the advanced manufacturing process used in production of the sensors. The MSS program will provide unprecedented levels of real-time battlefield information which greatly enhances combat situational awareness when integrated with the existing Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) infrastructure. This system will provide an important boost to realizing the information dominant, network-centric objective of Joint Vision 2020.

  5. Integration of Fiber-Optic Sensor Arrays into a Multi-Modal Tactile Sensor Processing System for Robotic End-Effectors

    Directory of Open Access Journals (Sweden)

    Peter Kampmann

    2014-04-01

    Full Text Available With the increasing complexity of robotic missions and the development towards long-term autonomous systems, the need for multi-modal sensing of the environment increases. Until now, the use of tactile sensor systems has been mostly based on sensing one modality of forces in the robotic end-effector. The use of a multi-modal tactile sensory system is motivated, which combines static and dynamic force sensor arrays together with an absolute force measurement system. This publication is focused on the development of a compact sensor interface for a fiber-optic sensor array, as optic measurement principles tend to have a bulky interface. Mechanical, electrical and software approaches are combined to realize an integrated structure that provides decentralized data pre-processing of the tactile measurements. Local behaviors are implemented using this setup to show the effectiveness of this approach.

  6. Development of flexible array tactile sensors

    DEFF Research Database (Denmark)

    Drimus, Alin; Marian, Nicolae; Bilberg, Arne

    2010-01-01

    time data acquisition system scans all the cells and converts electrical resistance to tactile pressure maps. We validate that this information can be used to improve grasping and perform object recognition. Key words: piezoresistivity, tactile, sensor, pressure, robotics......In this paper we describe the development of an array tactile sensor for use in robotic grippers based on a flexible piezoresistive material. We start by comparing different cell structures in terms of output characteristics and we construct an array of cells in a row and columns layout. A real...

  7. Heimdall System for MSSS Sensor Tasking

    Science.gov (United States)

    Herz, A.; Jones, B.; Herz, E.; George, D.; Axelrad, P.; Gehly, S.

    In Norse Mythology, Heimdall uses his foreknowledge and keen eyesight to keep watch for disaster from his home near the Rainbow Bridge. Orbit Logic and the Colorado Center for Astrodynamics Research (CCAR) at the University of Colorado (CU) have developed the Heimdall System to schedule observations of known and uncharacterized objects and search for new objects from the Maui Space Surveillance Site. Heimdall addresses the current need for automated and optimized SSA sensor tasking driven by factors associated with improved space object catalog maintenance. Orbit Logic and CU developed an initial baseline prototype SSA sensor tasking capability for select sensors at the Maui Space Surveillance Site (MSSS) using STK and STK Scheduler, and then added a new Track Prioritization Component for FiSST-inspired computations for predicted Information Gain and Probability of Detection, and a new SSA-specific Figure-of-Merit (FOM) for optimized SSA sensor tasking. While the baseline prototype addresses automation and some of the multi-sensor tasking optimization, the SSA-improved prototype addresses all of the key elements required for improved tasking leading to enhanced object catalog maintenance. The Heimdall proof-of-concept was demonstrated for MSSS SSA sensor tasking for a 24 hour period to attempt observations of all operational satellites in the unclassified NORAD catalog, observe a small set of high priority GEO targets every 30 minutes, make a sky survey of the GEO belt region accessible to MSSS sensors, and observe particular GEO regions that have a high probability of finding new objects with any excess sensor time. This Heimdall prototype software paves the way for further R&D that will integrate this technology into the MSSS systems for operational scheduling, improve the software's scalability, and further tune and enhance schedule optimization. The Heimdall software for SSA sensor tasking provides greatly improved performance over manual tasking, improved

  8. Development of a bio-magnetic measurement system and sensor configuration analysis for rats

    Science.gov (United States)

    Kim, Ji-Eun; Kim, In-Seon; Kim, Kiwoong; Lim, Sanghyun; Kwon, Hyukchan; Kang, Chan Seok; Ahn, San; Yu, Kwon Kyu; Lee, Yong-Ho

    2017-04-01

    Magnetoencephalography (MEG) based on superconducting quantum interference devices enables the measurement of very weak magnetic fields (10-1000 fT) generated from the human or animal brain. In this article, we introduce a small MEG system that we developed specifically for use with rats. Our system has the following characteristics: (1) variable distance between the pick-up coil and outer Dewar bottom (˜5 mm), (2) small pick-up coil (4 mm) for high spatial resolution, (3) good field sensitivity (45 ˜ 80 fT /cm/√{Hz} ) , (4) the sensor interval satisfies the Nyquist spatial sampling theorem, and (5) small source localization error for the region to be investigated. To reduce source localization error, it is necessary to establish an optimal sensor layout. To this end, we simulated confidence volumes at each point on a grid on the surface of a virtual rat head. In this simulation, we used locally fitted spheres as model rat heads. This enabled us to consider more realistic volume currents. We constrained the model such that the dipoles could have only four possible orientations: the x- and y-axes from the original coordinates, and two tangentially layered dipoles (local x- and y-axes) in the locally fitted spheres. We considered the confidence volumes according to the sensor layout and dipole orientation and positions. We then conducted a preliminary test with a 4-channel MEG system prior to manufacturing the multi-channel system. Using the 4-channel MEG system, we measured rat magnetocardiograms. We obtained well defined P-, QRS-, and T-waves in rats with a maximum value of 15 pT/cm. Finally, we measured auditory evoked fields and steady state auditory evoked fields with maximum values 400 fT/cm and 250 fT/cm, respectively.

  9. Wireless Sensor Network Based Smart Parking System

    Directory of Open Access Journals (Sweden)

    Jeffrey JOSEPH

    2014-01-01

    Full Text Available Ambient Intelligence is a vision in which various devices come together and process information from multiple sources in order to exert control on the physical environment. In addition to computation and control, communication plays a crucial role in the overall functionality of such a system. Wireless Sensor Networks are one such class of networks, which meet these criteria. These networks consist of spatially distributed sensor motes which work in a co-operative manner to sense and control the environment. In this work, an implementation of an energy-efficient and cost-effective, wireless sensor networks based vehicle parking system for a multi-floor indoor parking facility has been introduced. The system monitors the availability of free parking slots and guides the vehicle to the nearest free slot. The amount of time the vehicle has been parked is monitored for billing purposes. The status of the motes (dead/alive is also recorded. Information like slot allocated, directions to the slot and billing data is sent as a message to customer’s mobile phones. This paper extends our previous work 1 with the development of a low cost sensor mote, about one tenth the cost of a commercially available mote, keeping in mind the price sensitive markets of the developing countries.

  10. Development and application of bio-sensor. Production of ammonia sensor

    Energy Technology Data Exchange (ETDEWEB)

    Totsuka, Yoshiyuki; Matsumoto, Yutaka; Sakata, Tadashi; Nakatsugawa, Shuuji; Nishina, Tokuhiro; Shiozawa, Kanji [Shizuoka Prefectural Industrial Technology Center, Shizuoka, (Japan)

    1989-08-01

    The objectives of this study are to make a biosensor on a trial basis which can instantaneously measure the nitrogen in wastewater, and to develop a wastewater treatment system which is capable of on-line measurement and controlling. The system provides easier operational control relating to such a high efficient treatment as the removal of nitrogen content in wastewater, serving as a solution to the eutrophication problem. It can be applied also to the analysis of fertilizer components for agriculture. Ammonia oxidizing bacteria were immobilized with cellulose acetate film, which is mounted on a diaphragm type oxygen electrode to make a sensor, and its responsibility was studied. The gradient is slow in high concentration but sharp in low concentration, and it seems possible to use it for the measurement for less than 20 ppm nitrogen concentration. The dependence of the sensor including electrodes and activity of bacteria on temperature is large, and the measurement should be made at a constant temperature. The responsibility was best at the pH of 9. The sensor could be used repeatedly for about a month. 7 refs., 10 figs., 1 tab.

  11. Development of Sensors and Sensing Technology for Hydrogen Fuel Cell Vehicle Applications

    Energy Technology Data Exchange (ETDEWEB)

    Brosha, E L; Sekhar, P K; Mukundan, R; Williamson, T; Garzon, F H; Woo, L Y; Glass, R R

    2010-01-06

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features. Some of these devices (e.g. yaw sensors for dynamic stability control systems or tire presure warning RF-based devices) may be used on fuel cell vehicles without any modification. However the use of hydrogen as a fuel will dictate the development of completely new technologies for such requirements as the detection of hydrogen leaks, sensors and systems to continuously monitor hydrogen fuel purity and protect the fuel cell stack from poisoning, and for the important, yet often taken for granted, tasks such as determining the state of charge of the hydrogen fuel storage and delivery system. Two such sensors that rely on different transduction mechanisms will be highlighted in this presentation. The first is an electrochemical device for monitoring hydrogen levels in air. The other technology covered in this work, is an acoustic-based approach to determine the state of charge of a hydride storage system.

  12. Multi-Sensor Systems Development for UXO Detection and Discrimination: Hand-Held Dual Magnetic/Electromagnetic Induction Sensor

    National Research Council Canada - National Science Library

    Wright, David; Bennett, Jr., , Hollis H; Dove, Linda P; Butler, Dwain K

    2008-01-01

    ...) detection and discrimination system. This breakthrough technology markedly reduces UXO false alarm rates by fusing two heretofore incompatible sensor platforms, integrating highly accurate spatial data in real time, and applying...

  13. Development of sensors and sensing technology for hydrogen fuel cell vehicle applications

    Energy Technology Data Exchange (ETDEWEB)

    Brosha, Eric L [Los Alamos National Laboratory; Sekhar, Praveen K [Los Alamos National Laboratory; Mukundan, Rangchary [Los Alamos National Laboratory; Williamson, Todd L [Los Alamos National Laboratory; Barzon, Fernando H [Los Alamos National Laboratory; Woo, Leta Y [LLNL; Glass, Robert S [LLNL

    2010-01-01

    One related area of hydrogen fuel cell vehicle (FCV) development that cannot be overlooked is the anticipated requirement for new sensors for both the monitoring and control of the fuel cell's systems and for those devices that will be required for safety. Present day automobiles have dozens of sensors on-board including those for IC engine management/control, sensors for state-of-health monitoring/control of emissions systems, sensors for control of active safety systems, sensors for triggering passive safety systems, and sensors for more mundane tasks such as fluids level monitoring to name the more obvious. The number of sensors continues to grow every few years as a result of safety mandates but also in response to consumer demands for new conveniences and safety features.

  14. Bioinspired Sensor Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2011-10-01

    Full Text Available This editorial summarizes and classifies the contributions presented by different authors to the special issue of the journal Sensors dedicated to Bioinspired Sensor Systems. From the coupling of sensor arrays or networks, plus computer processing abilities, new applications to mimic or to complement human senses are arising in the context of ambient intelligence. Principles used, and illustrative study cases have been presented permitting readers to grasp the current status of the field.

  15. Development of a Hydrogen Gas Sensor Using a Double Saw Resonator System at Room Temperature

    Directory of Open Access Journals (Sweden)

    Zainab Yunusa

    2015-02-01

    Full Text Available A double SAW resonator system was developed as a novel method for gas sensing applications. The proposed system was investigated for hydrogen sensing. Commercial Surface Acoustic Wave (SAW resonators with resonance frequencies of 433.92 MHz and 433.42 MHz were employed in the double SAW resonator system configuration. The advantages of using this configuration include its ability for remote measurements, and insensitivity to vibrations and other external disturbances. The sensitive layer is composed of functionalized multiwalled carbon nanotubes and polyaniline nanofibers which were deposited on pre-patterned platinum metal electrodes fabricated on a piezoelectric substrate. This was mounted into the DSAWR circuit and connected in parallel. The sensor response was measured as the difference between the resonance frequencies of the SAW resonators, which is a measure of the gas concentration. The sensor showed good response towards hydrogen with a minimum detection limit of 1%.

  16. Development of Abnormality Detection System for Bathers using Ultrasonic Sensors

    Science.gov (United States)

    Ohnishi, Yosuke; Abe, Takehiko; Nambo, Hidetaka; Kimura, Haruhiko; Ogoshi, Yasuhiro

    This paper proposes an abnormality detection system for bather sitting in bathtub. Increasing number of in-bathtub drowning accidents in Japan draws attention. Behind this large number of bathing accidents, Japan's unique social and cultural background come surface. For majority of people in Japan, bathing serves purpose in deep warming up of body, relax and enjoyable time. Therefore it is the custom for the Japanese to soak in bathtub. However overexposure to hot water may cause dizziness or fainting, which is possible to cause in-bathtub drowning. For drowning prevention, the system detects bather's abnormal state using an ultrasonic sensor array. The array, which has many ultrasonic sensors, is installed on the ceiling of bathroom above bathtub. The abnormality detection system uses the following two methods: posture detection and behavior detection. The function of posture detection is to estimate the risk of drowning by monitoring bather's posture. Meanwhile, the function of behavior detection is to estimate the risk of drowning by monitoring bather's behavior. By using these methods, the system detects bathers' different state from normal. As a result of experiment with a subject in the bathtub, the system was possible to detect abnormal state using subject's posture and behavior. Therefore the system is useful for monitoring bather to prevent drowning in bathtub.

  17. Sensor Failure Detection of FASSIP System using Principal Component Analysis

    Science.gov (United States)

    Sudarno; Juarsa, Mulya; Santosa, Kussigit; Deswandri; Sunaryo, Geni Rina

    2018-02-01

    In the nuclear reactor accident of Fukushima Daiichi in Japan, the damages of core and pressure vessel were caused by the failure of its active cooling system (diesel generator was inundated by tsunami). Thus researches on passive cooling system for Nuclear Power Plant are performed to improve the safety aspects of nuclear reactors. The FASSIP system (Passive System Simulation Facility) is an installation used to study the characteristics of passive cooling systems at nuclear power plants. The accuracy of sensor measurement of FASSIP system is essential, because as the basis for determining the characteristics of a passive cooling system. In this research, a sensor failure detection method for FASSIP system is developed, so the indication of sensor failures can be detected early. The method used is Principal Component Analysis (PCA) to reduce the dimension of the sensor, with the Squarred Prediction Error (SPE) and statistic Hotteling criteria for detecting sensor failure indication. The results shows that PCA method is capable to detect the occurrence of a failure at any sensor.

  18. Development of techniques for fabrication of film probe sensor assembly

    International Nuclear Information System (INIS)

    Moorhead, A.J.

    1982-10-01

    Pulsed laser welding and brazing techniques were developed for fabrication of sensors designed to measure liquid film properties in out-of-reactor safety tests that simulate a loss-of-coolant accident in a pressurized-water nuclear reactor. These sensors were made possible by a unique ceramic-to-metal seal system based on a cermet insulator and a brazing filler metal, both developed at ORNL. This seal system was shown to resist steam to an exposure of at least 100 h at 700 0 C (1292 0 F) and to resist repetitive thermal transients of 300 0 C/s (540 0 F). Procedures were also developed for induction brazing the instrumentation cables to a stainless steel end cap and for laser welding this component to the brazed sensor body itself. Cable end seals and sensor bodies fabricated with these designs and techniques maintained excellent helium leaktightness ( -6 cm 3 /s) after 20 severe thermal shock tests from 500 0 C air into water at 80 0 C

  19. Development and radiation evaluation of mobile station for personnel monitoring system based on indigenous plastic scintillator sensor rods

    International Nuclear Information System (INIS)

    Chaudhary, H.S.; Parihar, A.; Senwar, K.R.; Prakash, V.; Rathore, A.S.

    2018-01-01

    The Mobile Station for Personnel Monitoring (MSPM) system has been designed and developed for rapid screening of personnel with respect to radiation contamination during nuclear or radiological emergency; it can also be used for prevention of illicit movement of radioactive sources. The objective was to develop a modular, transportable and easily deployable gamma portal monitoring system based on indigenous DLJ developed plastic scintillator sensors. The Gamma radiation response of the system is presented here

  20. Internetting tactical security sensor systems

    Science.gov (United States)

    Gage, Douglas W.; Bryan, W. D.; Nguyen, Hoa G.

    1998-08-01

    The Multipurpose Surveillance and Security Mission Platform (MSSMP) is a distributed network of remote sensing packages and control stations, designed to provide a rapidly deployable, extended-range surveillance capability for a wide variety of military security operations and other tactical missions. The baseline MSSMP sensor suite consists of a pan/tilt unit with video and FLIR cameras and laser rangefinder. With an additional radio transceiver, MSSMP can also function as a gateway between existing security/surveillance sensor systems such as TASS, TRSS, and IREMBASS, and IP-based networks, to support the timely distribution of both threat detection and threat assessment information. The MSSMP system makes maximum use of Commercial Off The Shelf (COTS) components for sensing, processing, and communications, and of both established and emerging standard communications networking protocols and system integration techniques. Its use of IP-based protocols allows it to freely interoperate with the Internet -- providing geographic transparency, facilitating development, and allowing fully distributed demonstration capability -- and prepares it for integration with the IP-based tactical radio networks that will evolve in the next decade. Unfortunately, the Internet's standard Transport layer protocol, TCP, is poorly matched to the requirements of security sensors and other quasi- autonomous systems in being oriented to conveying a continuous data stream, rather than discrete messages. Also, its canonical 'socket' interface both conceals short losses of communications connectivity and simply gives up and forces the Application layer software to deal with longer losses. For MSSMP, a software applique is being developed that will run on top of User Datagram Protocol (UDP) to provide a reliable message-based Transport service. In addition, a Session layer protocol is being developed to support the effective transfer of control of multiple platforms among multiple control

  1. A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications †

    Science.gov (United States)

    Shao, Chenzhong; Tanaka, Shuji; Nakayama, Takahiro; Hata, Yoshiyuki; Bartley, Travis; Muroyama, Masanori

    2017-01-01

    Robot tactile sensation can enhance human–robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary Metal-Oxide-Semiconductor (CMOS) Large-Scale Integration (LSI) circuit chips (referred to as “sensor platform LSI”) as a framework of a serial bus-based tactile sensor network system. The sensor platform LSI supports three types of sensors: an on-chip temperature sensor, off-chip capacitive and resistive tactile sensors, and communicates with a relay node via a bus line. The multi-sensor system was first constructed on a printed circuit board to evaluate basic functions of the sensor platform LSI, such as capacitance-to-digital and resistance-to-digital conversion. Then, two kinds of external sensors, nine sensors in total, were connected to two sensor platform LSIs, and temperature, capacitive and resistive sensing data were acquired simultaneously. Moreover, we fabricated flexible printed circuit cables to demonstrate the multi-sensor system with 15 sensor platform LSIs operating simultaneously, which showed a more realistic implementation in robots. In conclusion, the multi-sensor system with up to 15 sensor platform LSIs on a bus line supporting temperature, capacitive and resistive sensing was successfully demonstrated. PMID:29061954

  2. A low-cost, portable, high-throughput wireless sensor system for phonocardiography applications.

    Science.gov (United States)

    Sa-Ngasoongsong, Akkarapol; Kunthong, Jakkrit; Sarangan, Venkatesh; Cai, Xinwei; Bukkapatnam, Satish T S

    2012-01-01

    This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm × 5 cm × 1 cm), high throughput (6,000 Hz data streaming rate), and low cost ($13 per unit for a 1,000 unit batch) of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2), and is also capable of capturing abnormal heart sounds (S3 and S4) and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60-180 Hz through exercise testing.

  3. A Low-Cost, Portable, High-Throughput Wireless Sensor System for Phonocardiography Applications

    Directory of Open Access Journals (Sweden)

    Akkarapol Sa-ngasoongsong

    2012-08-01

    Full Text Available This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm ´ 5 cm ´ 1 cm, high throughput (6,000 Hz data streaming rate, and low cost ($13 per unit for a 1,000 unit batch of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2, and is also capable of capturing abnormal heart sounds (S3 and S4 and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60–180 Hz through exercise testing.

  4. Development of application technology of ultrasonic wave sensor; Choonpa sensor oyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, H; Hikita, N; Sasaki, H; Kore, H [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    We have developed parking assist system, which informs a driver the closing point and distance to the objects such as other vehicle, wall and pole around the own vehicle at parking area and makes parking maneuverability easy. This system is based on the range detection technology using ultrasonic wave sensor. We have improved the detecting ability in short range of about 20cm by reducing the reverberation of transmitting wave signal and controlling sensitivities of signal intensity and threshold line. We will show mainly the improvement of short range detection of ultrasonic wave sensor, and briefly the performance of parking assist system. 1 ref., 14 figs., 1 tab.

  5. A Novel Attitude Determination System Aided by Polarization Sensor

    Directory of Open Access Journals (Sweden)

    Wei Zhi

    2018-01-01

    Full Text Available This paper aims to develop a novel attitude determination system aided by polarization sensor. An improved heading angle function is derived using the perpendicular relationship between directions of E-vector of linearly polarized light and solar vector in the atmospheric polarization distribution model. The Extended Kalman filter (EKF with quaternion differential equation as a dynamic model is applied to fuse the data from sensors. The covariance functions of filter process and measurement noises are deduced in detail. The indoor and outdoor tests are conducted to verify the validity and feasibility of proposed attitude determination system. The test results showed that polarization sensor is not affected by magnetic field, thus the proposed system can work properly in environments containing the magnetic interference. The results also showed that proposed system has higher measurement accuracy than common attitude determination system and can provide precise parameters for Unmanned Aerial Vehicle (UAV flight control. The main contribution of this paper is implementation of the EKF for incorporating the self-developed polarization sensor into the conventional attitude determination system. The real-world experiment with the quad-rotor proved that proposed system can work in a magnetic interference environment and provide sufficient accuracy in attitude determination for autonomous navigation of vehicle.

  6. A Novel Attitude Determination System Aided by Polarization Sensor.

    Science.gov (United States)

    Zhi, Wei; Chu, Jinkui; Li, Jinshan; Wang, Yinlong

    2018-01-09

    This paper aims to develop a novel attitude determination system aided by polarization sensor. An improved heading angle function is derived using the perpendicular relationship between directions of E-vector of linearly polarized light and solar vector in the atmospheric polarization distribution model. The Extended Kalman filter (EKF) with quaternion differential equation as a dynamic model is applied to fuse the data from sensors. The covariance functions of filter process and measurement noises are deduced in detail. The indoor and outdoor tests are conducted to verify the validity and feasibility of proposed attitude determination system. The test results showed that polarization sensor is not affected by magnetic field, thus the proposed system can work properly in environments containing the magnetic interference. The results also showed that proposed system has higher measurement accuracy than common attitude determination system and can provide precise parameters for Unmanned Aerial Vehicle (UAV) flight control. The main contribution of this paper is implementation of the EKF for incorporating the self-developed polarization sensor into the conventional attitude determination system. The real-world experiment with the quad-rotor proved that proposed system can work in a magnetic interference environment and provide sufficient accuracy in attitude determination for autonomous navigation of vehicle.

  7. Capillarity-based preparation system for optical colorimetric sensor arrays.

    Science.gov (United States)

    Luo, Xiao-Gang; Yi, Xin; Bu, Xiang-Nan; Hou, Chang-Jun; Huo, Dan-Qun; Yang, Mei; Fa, Huan-Bao; Lei, Jin-Can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  8. An expert system for sensor data validation and malfunction detection

    International Nuclear Information System (INIS)

    Hashemi, S.; Hajek, B.K.; Miller, D.W.; Chandrasekaran, B.; Punch, W.F. III.

    1987-01-01

    During recent years, applications of expert systems in different fields of engineering have been under study throughout the world. At the Ohio State University, the theories developed by the Laboratory for Artificial Intelligence Research (LAIR) have been implemented for nuclear power plants and chemical processing systems. For nuclear power plants, these techniques have been further developed to reach diagnostic conclusions about malfunctions and faulty sensors, as well as to suggest corrective actions about the malfunctions. This paper concentrates on the AI applications to plant diagnosis and faulty sensor identifications. To achieve the above goals without adding extra sensors in a plant, the use of unlike sensor data (such as relationships between pressure and temperature in a Boiling Water Reactor (BWR)) and diagnostic conclusions about malfunctions as backups for suspicious sensors has been made. This extra evidence is readily available throughout the plant and is not generally used to backup suspicious sensor data in any manner

  9. Development of an In-Situ Decommissioning Sensor Network Test Bed for Structural Condition Monitoring - 12156

    Energy Technology Data Exchange (ETDEWEB)

    Zeigler, Kristine E.; Ferguson, Blythe A. [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States)

    2012-07-01

    The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials and condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors

  10. Development of a wireless, self-sustaining damage detection sensor system based on chemiluminescence for structural health monitoring

    Science.gov (United States)

    Kuang, K. S. C.

    2014-03-01

    A novel application of chemiluminescence resulting from the chemical reaction in a glow-stick as sensors for structural health monitoring is demonstrated here. By detecting the presence of light emitting from these glow-sticks, it is possible to develop a low-cost sensing device with the potential to provide early warning of damage in a variety of engineering applications such as monitoring of cracks or damage in concrete shear walls, detecting of ground settlement, soil liquefaction, slope instability, liquefaction-related damage of underground structure and others. In addition, this paper demonstrates the ease of incorporating wireless capability to the sensor device and the possibility of making the sensor system self-sustaining by means of a renewable power source for the wireless module. A significant advantage of the system compared to previous work on the use of plastic optical fibre (POF) for damage detection is that here the system does not require an electrically-powered light source. Here, the sensing device, embedded in a cement host, is shown to be capable of detecting damage. A series of specimens with embedded glow-sticks have been investigated and an assessment of their damage detection capability will be reported. The specimens were loaded under flexure and the sensor responses were transmitted via a wireless connection.

  11. Structural health monitoring system for bridges based on skin-like sensor

    Science.gov (United States)

    Loupos, Konstantinos; Damigos, Yannis; Amditis, Angelos; Gerhard, Reimund; Rychkov, Dmitry; Wirges, Werner; Schulze, Manuel; Lenas, Sotiris-Angelos; Chatziandreoglou, Christos; Malliou, Christina M.; Tsaoussidis, Vassilis; Brady, Ken; Frankenstein, Bernd

    2017-09-01

    Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system.

  12. Third-generation imaging sensor system concepts

    Science.gov (United States)

    Reago, Donald A.; Horn, Stuart B.; Campbell, James, Jr.; Vollmerhausen, Richard H.

    1999-07-01

    Second generation forward looking infrared sensors, based on either parallel scanning, long wave (8 - 12 um) time delay and integration HgCdTe detectors or mid wave (3 - 5 um), medium format staring (640 X 480 pixels) InSb detectors, are being fielded. The science and technology community is now turning its attention toward the definition of a future third generation of FLIR sensors, based on emerging research and development efforts. Modeled third generation sensor performance demonstrates a significant improvement in performance over second generation, resulting in enhanced lethality and survivability on the future battlefield. In this paper we present the current thinking on what third generation sensors systems will be and the resulting requirements for third generation focal plane array detectors. Three classes of sensors have been identified. The high performance sensor will contain a megapixel or larger array with at least two colors. Higher operating temperatures will also be the goal here so that power and weight can be reduced. A high performance uncooled sensor is also envisioned that will perform somewhere between first and second generation cooled detectors, but at significantly lower cost, weight, and power. The final third generation sensor is a very low cost micro sensor. This sensor can open up a whole new IR market because of its small size, weight, and cost. Future unattended throwaway sensors, micro UAVs, and helmet mounted IR cameras will be the result of this new class.

  13. Design and Development of a Magneto-Optic Sensor for Magnetic Field Measurements

    Directory of Open Access Journals (Sweden)

    Sarbani CHAKRABORTY

    2015-01-01

    Full Text Available A magneto-optic sensor is developed using a Terbium Doped Glass (TDG element as a Faraday rotation sensor and optical fiber as light transmitting and receiving medium. Online LabView based application software is developed to process the sensor output. The system is used to sense the magnetic field of a DC motor field winding in industrial environment. The sensor output is compared with the magnetic flux density variation obtained with a calibrated Hall Magnetic sensor (Gauss Meter. A linear variation of sensor output over wide range of current passing through the field winding is obtained. Further the results show an improved sensitivity of magneto-optic sensor over the Hall sensor.

  14. Sensor Selection and Data Validation for Reliable Integrated System Health Management

    Science.gov (United States)

    Garg, Sanjay; Melcher, Kevin J.

    2008-01-01

    For new access to space systems with challenging mission requirements, effective implementation of integrated system health management (ISHM) must be available early in the program to support the design of systems that are safe, reliable, highly autonomous. Early ISHM availability is also needed to promote design for affordable operations; increased knowledge of functional health provided by ISHM supports construction of more efficient operations infrastructure. Lack of early ISHM inclusion in the system design process could result in retrofitting health management systems to augment and expand operational and safety requirements; thereby increasing program cost and risk due to increased instrumentation and computational complexity. Having the right sensors generating the required data to perform condition assessment, such as fault detection and isolation, with a high degree of confidence is critical to reliable operation of ISHM. Also, the data being generated by the sensors needs to be qualified to ensure that the assessments made by the ISHM is not based on faulty data. NASA Glenn Research Center has been developing technologies for sensor selection and data validation as part of the FDDR (Fault Detection, Diagnosis, and Response) element of the Upper Stage project of the Ares 1 launch vehicle development. This presentation will provide an overview of the GRC approach to sensor selection and data quality validation and will present recent results from applications that are representative of the complexity of propulsion systems for access to space vehicles. A brief overview of the sensor selection and data quality validation approaches is provided below. The NASA GRC developed Systematic Sensor Selection Strategy (S4) is a model-based procedure for systematically and quantitatively selecting an optimal sensor suite to provide overall health assessment of a host system. S4 can be logically partitioned into three major subdivisions: the knowledge base, the down

  15. A Brief Review of the Need for Robust Smart Wireless Sensor Systems for Future Propulsion Systems, Distributed Engine Controls, and Propulsion Health Management

    Science.gov (United States)

    Hunter, Gary W.; Behbahani, Alireza

    2012-01-01

    Smart Sensor Systems with wireless capability operational in high temperature, harsh environments are a significant component in enabling future propulsion systems to meet a range of increasingly demanding requirements. These propulsion systems must incorporate technology that will monitor engine component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This paper discusses the motivation towards the development of high temperature, smart wireless sensor systems that include sensors, electronics, wireless communication, and power. The challenges associated with the use of traditional wired sensor systems will be reviewed and potential advantages of Smart Sensor Systems will be discussed. A brief review of potential applications for wireless smart sensor networks and their potential impact on propulsion system operation, with emphasis on Distributed Engine Control and Propulsion Health Management, will be given. A specific example related to the development of high temperature Smart Sensor Systems based on silicon carbide electronics will be discussed. It is concluded that the development of a range of robust smart wireless sensor systems are a foundation for future development of intelligent propulsion systems with enhanced capabilities.

  16. Engineering the development of optical fiber sensors for adverse environments

    International Nuclear Information System (INIS)

    Hastings, M.C.

    1994-01-01

    During the last decade, many optical fiber sensors have been developed for particular applications in harsh environments with limited success. Off-the-shelf optical fiber sensors and measurement systems are not available, partly because they have not been engineered to meet tough environmental requirements necessary for applications outside the laboratory. Moreover, no generalized computer-aided tools exist to help advance their development, design, and use. Computer-aided design tools currently being developed are described in this paper. Structural finite element analyses have been coupled with optoelastic analyses of both all-fiber interferometers and serial microbend sensors for distributed measurement of various physical quantities. The combined analyses have been parameterized and implemented on personal computers and work stations for use as design/development tools that can be used to determine the performance of different sensor configurations in various environments. Potentially, these computer-aided tools could be used for failure diagnosis and redesign of existing optical fiber sensors. Performances predicted by the computer simulations are verified with experimental data and numerical analyses from the literature. The long-term goal is to develop user-friendly software packages for both sensor manufacturers and end users

  17. A Wildlife Monitoring System Based on Wireless Image Sensor Networks

    Directory of Open Access Journals (Sweden)

    Junguo Zhang

    2014-10-01

    Full Text Available Survival and development of wildlife sustains the balance and stability of the entire ecosystem. Wildlife monitoring can provide lots of information such as wildlife species, quantity, habits, quality of life and habitat conditions, to help researchers grasp the status and dynamics of wildlife resources, and to provide basis for the effective protection, sustainable use, and scientific management of wildlife resources. Wildlife monitoring is the foundation of wildlife protection and management. Wireless Sensor Networks (WSN technology has become the most popular technology in the field of information. With advance of the CMOS image sensor technology, wireless sensor networks combined with image sensors, namely Wireless Image Sensor Networks (WISN technology, has emerged as an alternative in monitoring applications. Monitoring wildlife is one of its most promising applications. In this paper, system architecture of the wildlife monitoring system based on the wireless image sensor networks was presented to overcome the shortcomings of the traditional monitoring methods. Specifically, some key issues including design of wireless image sensor nodes and software process design have been studied and presented. A self-powered rotatable wireless infrared image sensor node based on ARM and an aggregation node designed for large amounts of data were developed. In addition, their corresponding software was designed. The proposed system is able to monitor wildlife accurately, automatically, and remotely in all-weather condition, which lays foundations for applications of wireless image sensor networks in wildlife monitoring.

  18. Development of electrical capacitance sensor for tomography

    International Nuclear Information System (INIS)

    Rasif Mohd Zain; Jaafar Abdullah; Ismail Mustapha; Sazrol Azizee Ariff; Susan Maria Sipaun; Lojius Lombigit

    2004-01-01

    Electrical capacitance tomography (ECT) is one of the successful methods for imaging 2-phase liquid/gas mixture in oil pipelines and solids/gas mixture in fluidized bed and pneumatic conveying system for improvement of process plants. This paper presents the design development of an electrical capacitance sensor for use with an ECT system. This project is aimed at developing a demonstration ECT unit to be used in the oil pipe line. (Author)

  19. Development and Commissioning Results of the Hybrid Sensor Bus Engineering Qualification Model

    Science.gov (United States)

    Hurni, Andreas; Putzer, Phillipp; Roner, Markus; Gurster, Markus; Hulsemeyer, Christian; Lemke, Norbert M. K.

    2016-08-01

    In order to reduce mass, AIT effort and overall costs of classical point-to-point wired temperature sensor harness on-board spacecraft OHB System AGhas introduced the Hybrid Sensor Bus (HSB) system which interrogates sensors connected in a bus architecture. To use the advantages of electrical as wellas of fiber-optical sensing technologies, HSB is designed as a modular measurement system interrogating digital sensors connected on electricalsensor buses based on I2C and fiber-optical sensor buses based on fiber Bragg grating (FBG) sensors inscribed in optical fibers. Fiber-optical sensor bus networks on-board satellites are well suited for temperature measurement due to low mass, electro-magnetic insensitivity and the capability to embed them inside structure parts. The lightweight FBG sensors inscribed in radiation tolerant fibers can reach every part of the satellite. HSB has been developed in the frame of the ESA ARTES program with European and German co- funding and will be verified as flight demonstrator on- board the German Heinrich Hertz satellite (H2Sat).In this paper the Engineering Qualification Model (EQM) development of HSB and first commissioning results are presented. For the HSB development requirements applicable for telecommunication satellite platforms have been considered. This includes an operation of at least 15 years in a geostationary orbit.In Q3/2016 the qualification test campaign is planned to be carried out. The HSB EQM undergoes a full qualification according to ECSS. The paper concludes with an outlook regarding this HSB flight demonstrator development and its in-orbit verification (IOV) on board H2Sat.

  20. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  1. AN INTEROPERABLE ARCHITECTURE FOR AIR POLLUTION EARLY WARNING SYSTEM BASED ON SENSOR WEB

    Directory of Open Access Journals (Sweden)

    F. Samadzadegan

    2013-09-01

    Full Text Available Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE framework of the Open Geospatial Consortium (OGC, which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research

  2. An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web

    Science.gov (United States)

    Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.

    2013-09-01

    Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an

  3. Development of a Respiratory Inductive Plethysmography Module Supporting Multiple Sensors for Wearable Systems

    Directory of Open Access Journals (Sweden)

    Zhengbo Zhang

    2012-09-01

    Full Text Available In this paper, we present an RIP module with the features of supporting multiple inductive sensors, no variable frequency LC oscillator, low power consumption, and automatic gain adjustment for each channel. Based on the method of inductance measurement without using a variable frequency LC oscillator, we further integrate pulse amplitude modulation and time division multiplexing scheme into a module to support multiple RIP sensors. All inductive sensors are excited by a high-frequency electric current periodically and momentarily, and the inductance of each sensor is measured during the time when the electric current is fed to it. To improve the amplitude response of the RIP sensors, we optimize the sensing unit with a matching capacitor parallel with each RIP sensor forming a frequency selection filter. Performance tests on the linearity of the output with cross-sectional area and the accuracy of respiratory volume estimation demonstrate good linearity and accurate lung volume estimation. Power consumption of this new RIP module with two sensors is very low. The performance of respiration measurement during movement is also evaluated. This RIP module is especially desirable for wearable systems with multiple RIP sensors for long-term respiration monitoring.

  4. Micro digital sun sensor: system in a package

    NARCIS (Netherlands)

    Boom, C.W. de; Leijtens, J.A.P.; Duivenbode, L.M.H. van; Heiden, N. van der

    2004-01-01

    A novel micro Digital Sun Sensor (μDSS) is under development in the frame of a micro systems technology (MST) development program (Microned) from the Dutch Ministry of Economic Affairs. Use of available micro system technologies in combination with the implementation of a dedicated solarcell for

  5. Semiautonomous Avionics-and-Sensors System for a UAV

    Science.gov (United States)

    Shams, Qamar

    2006-01-01

    Unmanned Aerial Vehicles (UAVs) autonomous or remotely controlled pilotless aircraft have been recently thrust into the spotlight for military applications, for homeland security, and as test beds for research. In addition to these functions, there are many space applications in which lightweight, inexpensive, small UAVS can be used e.g., to determine the chemical composition and other qualities of the atmospheres of remote planets. Moreover, on Earth, such UAVs can be used to obtain information about weather in various regions; in particular, they can be used to analyze wide-band acoustic signals to aid in determining the complex dynamics of movement of hurricanes. The Advanced Sensors and Electronics group at Langley Research Center has developed an inexpensive, small, integrated avionics-and-sensors system to be installed in a UAV that serves two purposes. The first purpose is to provide flight data to an AI (Artificial Intelligence) controller as part of an autonomous flight-control system. The second purpose is to store data from a subsystem of distributed MEMS (microelectromechanical systems) sensors. Examples of these MEMS sensors include humidity, temperature, and acoustic sensors, plus chemical sensors for detecting various vapors and other gases in the environment. The critical sensors used for flight control are a differential- pressure sensor that is part of an apparatus for determining airspeed, an absolute-pressure sensor for determining altitude, three orthogonal accelerometers for determining tilt and acceleration, and three orthogonal angular-rate detectors (gyroscopes). By using these eight sensors, it is possible to determine the orientation, height, speed, and rates of roll, pitch, and yaw of the UAV. This avionics-and-sensors system is shown in the figure. During the last few years, there has been rapid growth and advancement in the technological disciplines of MEMS, of onboard artificial-intelligence systems, and of smaller, faster, and

  6. Development of SERS active fibre sensors

    International Nuclear Information System (INIS)

    Polwart, Ewan

    2002-01-01

    Surface-enhanced Raman scattering (SERS) is sensitive and selective and when coupled with fibre-optics could potentially produce an effective chemical sensing system. This thesis concerns the development of a single-fibre-based sensor, with an integral SERS-active substrate. A number of different methods for the manufacture of SERS-active surfaces on glass substrates were investigated and compared. The immobilisation of metal nanoparticles on glass functionalised with (3-aminopropyl)trimethoxysilane emerged as a suitable approach for the production of sensors. Substrates prepared by this approach were characterised using UV-visible spectroscopy, electron microscopy and Raman mapping. It was found that exposure of substrates to laser radiation led to a decrease in the signal recorded from adsorbed analytes. This speed of the decrease was shown to depend on the analyte, and the exciting wavelength and power. SERS-active fibre sensors were produced by immobilisation of silver nanoparticles at the distal end of a (3-aminopropyl)trimethoxysilane-derivatised optical fibre. These sensors were used to obtain spectra with good signal to noise ratios from 4-(benzotriazol-5-ylazo)-3,5-dimethoxyphenylamine and crystal violet. Sensing of dyes in effluent was also investigated. The development of sensors for the measurement of pH, by treating the SERS-active fibre tip with pH sensitive dyes is also described. Spectral changes were observed with these sensors as a response to the pH. Partial least squares regression was used to produce linear calibration models for the pH range 5-11 from which it was possible to predict the pH with an accuracy of ∼0.2 pH units. Some of the limitations of these sensors were explored. The feasibility of using these sensors for measurement of oxygen and thiols, was investigated. The measurement of oxygen using methylene blue as a transducer was demonstrated. Two transduction methodologies--reactions with iron porphyrins and pyrrole-2,5-diones

  7. Development of a Tactile Sensor Array

    DEFF Research Database (Denmark)

    Marian, Nicolae; Drimus, Alin; Bilberg, Arne

    2010-01-01

    Flexible grasping robots are needed for enabling automated, profitable and competitive production of small batch sizes including complex handling processes of often fragile objects. This development will create new conditions for value-adding activities in the production of the future world....... The paper describes the related research work we have developed for sensor design, exploration and control for a robot gripping system, in order to analyze normal forces applied on the tactile pixels for gripping force control and generate tactile images for gripping positioning and object recognition....... Section 1 gives an introduction of principles and technologies in tactile sensing for robot grippers. Section 2 presents the sensor cell (taxel) and array design and characterization. Section 3 introduces object recognition and shape analysis ideas showing a few preliminary examples, where geometrical...

  8. Wireless Zigbee strain gage sensor system for structural health monitoring

    Science.gov (United States)

    Ide, Hiroshi; Abdi, Frank; Miraj, Rashid; Dang, Chau; Takahashi, Tatsuya; Sauer, Bruce

    2009-05-01

    A compact cell phone size radio frequency (ZigBee) wireless strain measurement sensor system to measure the structural strain deformation was developed. The developed system provides an accurate strain measurement data stream to the Internet for further Diagnostic and Prognostic (DPS) correlation. Existing methods of structural measurement by strain sensors (gauges) do not completely satisfy problems posed by continuous structural health monitoring. The need for efficient health monitoring methods with real-time requirements to bidirectional data flow from sensors and to a commanding device is becoming critical for keeping our daily life safety. The use of full-field strain measurement techniques could reduce costly experimental programs through better understanding of material behavior. Wireless sensor-network technology is a monitoring method that is estimated to grow rapidly providing potential for cost savings over traditional wired sensors. The many of currently available wireless monitoring methods have: the proactive and constant data rate character of the data streams rather than traditional reactive, event-driven data delivery; mostly static node placement on structures with limited number of nodes. Alpha STAR Electronics' wireless sensor network system, ASWN, addresses some of these deficiencies, making the system easier to operate. The ASWN strain measurement system utilizes off-the-shelf sensors, namely strain gauges, with an analog-to-digital converter/amplifier and ZigBee radio chips to keep cost lower. Strain data is captured by the sensor, converted to digital form and delivered to the ZigBee radio chip, which in turn broadcasts the information using wireless protocols to a Personal Data Assistant (PDA) or Laptop/Desktop computers. From here, data is forwarded to remote computers for higher-level analysis and feedback using traditional cellular and satellite communication or the Ethernet infrastructure. This system offers a compact size, lower cost

  9. Compact, self-contained enhanced-vision system (EVS) sensor simulator

    Science.gov (United States)

    Tiana, Carlo

    2007-04-01

    We describe the model SIM-100 PC-based simulator, for imaging sensors used, or planned for use, in Enhanced Vision System (EVS) applications. Typically housed in a small-form-factor PC, it can be easily integrated into existing out-the-window visual simulators for fixed-wing or rotorcraft, to add realistic sensor imagery to the simulator cockpit. Multiple bands of infrared (short-wave, midwave, extended-midwave and longwave) as well as active millimeter-wave RADAR systems can all be simulated in real time. Various aspects of physical and electronic image formation and processing in the sensor are accurately (and optionally) simulated, including sensor random and fixed pattern noise, dead pixels, blooming, B-C scope transformation (MMWR). The effects of various obscurants (fog, rain, etc.) on the sensor imagery are faithfully represented and can be selected by an operator remotely and in real-time. The images generated by the system are ideally suited for many applications, ranging from sensor development engineering tradeoffs (Field Of View, resolution, etc.), to pilot familiarization and operational training, and certification support. The realistic appearance of the simulated images goes well beyond that of currently deployed systems, and beyond that required by certification authorities; this level of realism will become necessary as operational experience with EVS systems grows.

  10. Development of a wireless radioactive material sensor network

    Energy Technology Data Exchange (ETDEWEB)

    Katsis, Dimosthenis, E-mail: katsisdc@ieee.org [US Army Research Laboratory, Athena Energy Corporation, Adelphi, Bowie, MD (United States); Burns, David; Henriquez, Stanley; Howell, Steve; Litz, Marc [US Army Research Laboratory, Athena Energy Corporation, Adelphi, Bowie, MD (United States)

    2011-10-01

    Our team at the United States Army Research Laboratory (ARL) has designed and developed a low-power, compact, wireless-networked gamma sensor (WGS) array. The WGS system provides high sensitivity gamma photon detection and remote warning for a broad range of radioactive materials. This sensor identifies the presence of a 1 {mu}Ci Cs137 source at a distance of 1.5 m. The networked array of sensors presently operates as a facility and laboratory sensor for the movement of radioactive check sources. Our goal has been to apply this architecture for field security applications by incorporating low-power design with compact packaging. The performance of this radiation measurement network is demonstrated for both detection and location of radioactive material.

  11. Security Techniques for Sensor Systems and the Internet of Things

    Science.gov (United States)

    Midi, Daniele

    2016-01-01

    Sensor systems are becoming pervasive in many domains, and are recently being generalized by the Internet of Things (IoT). This wide deployment, however, presents significant security issues. We develop security techniques for sensor systems and IoT, addressing all security management phases. Prior to deployment, the nodes need to be hardened. We…

  12. Sensing System for Salinity Testing Using Laser-induced Graphene Sensors

    KAUST Repository

    Nag, Anindya

    2017-08-05

    The paper presents the development and implementation of a low-cost salinity sensing system. Commercial polymer films were laser ablated at specific conditions to form graphene-based sensors on flexible Kapton substrates. Sodium chloride was considered as the primary constituent for testing due to its prominent presence in water bodies. The sensor was characterized by testing different concentrations of sodium chloride. A standard curve was developed to perform real-time testing with a sample taken from sea water of unknown concentration. The sensitivity and resolution of these graphene sensors for the experimental solutions were 1.07Ω/ppm and 1ppm respectively. The developed system was validated by testing it with a real sample and cross checking it on the calibration curve. The signal conditioning circuit was further enhanced by embedding a microcontroller to the designed system. The obtained results did provide a platform for implementation of a low-cost salinity sensing system that could be used in marine applications.

  13. Sensing System for Salinity Testing Using Laser-induced Graphene Sensors

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas Chandra; Kosel, Jü rgen

    2017-01-01

    The paper presents the development and implementation of a low-cost salinity sensing system. Commercial polymer films were laser ablated at specific conditions to form graphene-based sensors on flexible Kapton substrates. Sodium chloride was considered as the primary constituent for testing due to its prominent presence in water bodies. The sensor was characterized by testing different concentrations of sodium chloride. A standard curve was developed to perform real-time testing with a sample taken from sea water of unknown concentration. The sensitivity and resolution of these graphene sensors for the experimental solutions were 1.07Ω/ppm and 1ppm respectively. The developed system was validated by testing it with a real sample and cross checking it on the calibration curve. The signal conditioning circuit was further enhanced by embedding a microcontroller to the designed system. The obtained results did provide a platform for implementation of a low-cost salinity sensing system that could be used in marine applications.

  14. Development of oxygen sensors for use in liquid metal

    International Nuclear Information System (INIS)

    Van Nieuwenhove, Rudi; Ejenstam, Jesper; Szakalos, Peter

    2015-01-01

    For generation IV reactor concepts, based on liquid metal cooling, there is a need for robust oxygen sensors which can be used in the core of the reactor since corrosion can only be kept sufficiently low by controlling the dissolved oxygen content in the liquid metal. A robust, ceramic membrane type sensor has been developed at IFE/Halden (Norway) and tested in an autoclave system at KTH (Sweden). The sensor has been tested in lead-bismuth at 550 deg. C and performed well. (authors)

  15. Development of oxygen sensors for use in liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Van Nieuwenhove, Rudi [Institutt for Energiteknikk, Halden, (Norway); Ejenstam, Jesper; Szakalos, Peter [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Stockholm, (Sweden)

    2015-07-01

    For generation IV reactor concepts, based on liquid metal cooling, there is a need for robust oxygen sensors which can be used in the core of the reactor since corrosion can only be kept sufficiently low by controlling the dissolved oxygen content in the liquid metal. A robust, ceramic membrane type sensor has been developed at IFE/Halden (Norway) and tested in an autoclave system at KTH (Sweden). The sensor has been tested in lead-bismuth at 550 deg. C and performed well. (authors)

  16. High pressure fiber optic sensor system

    Science.gov (United States)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  17. A Multiple Sensor Machine Vision System for Automatic Hardwood Feature Detection

    Science.gov (United States)

    D. Earl Kline; Richard W. Conners; Daniel L. Schmoldt; Philip A. Araman; Robert L. Brisbin

    1993-01-01

    A multiple sensor machine vision prototype is being developed to scan full size hardwood lumber at industrial speeds for automatically detecting features such as knots holes, wane, stain, splits, checks, and color. The prototype integrates a multiple sensor imaging system, a materials handling system, a computer system, and application software. The prototype provides...

  18. A Printed Organic Amplification System for Wearable Potentiometric Electrochemical Sensors.

    Science.gov (United States)

    Shiwaku, Rei; Matsui, Hiroyuki; Nagamine, Kuniaki; Uematsu, Mayu; Mano, Taisei; Maruyama, Yuki; Nomura, Ayako; Tsuchiya, Kazuhiko; Hayasaka, Kazuma; Takeda, Yasunori; Fukuda, Takashi; Kumaki, Daisuke; Tokito, Shizuo

    2018-03-02

    Electrochemical sensor systems with integrated amplifier circuits play an important role in measuring physiological signals via in situ human perspiration analysis. Signal processing circuitry based on organic thin-film transistors (OTFTs) have significant potential in realizing wearable sensor devices due to their superior mechanical flexibility and biocompatibility. Here, we demonstrate a novel potentiometric electrochemical sensing system comprised of a potassium ion (K + ) sensor and amplifier circuits employing OTFT-based pseudo-CMOS inverters, which have a highly controllable switching voltage and closed-loop gain. The ion concentration sensitivity of the fabricated K + sensor was 34 mV/dec, which was amplified to 160 mV/dec (by a factor of 4.6) with high linearity. The developed system is expected to help further the realization of ultra-thin and flexible wearable sensor devices for healthcare applications.

  19. Developing the ultimate biomimetic flow-sensor array

    NARCIS (Netherlands)

    Bruinink, C.M.; Jaganatharaja, R.K.; de Boer, Meint J.; Berenschot, Johan W.; Kolster, M.L.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Krijnen, Gijsbertus J.M.

    2009-01-01

    This contribution reports on the major developments and achievements in our group on fabricating highly sensitive biomimetic flow-sensor arrays. The mechanoreceptive sensory hairs of crickets are taken as a model system for their ability to perceive flow signals at thermal noise levels and,

  20. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    Science.gov (United States)

    Santos, José; Janeiro, Fernando M.; Ramos, Pedro M.

    2015-10-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed.

  1. Development, implementation, and characterization of a standalone embedded viscosity measurement system based on the impedance spectroscopy of a vibrating wire sensor

    International Nuclear Information System (INIS)

    Santos, José; Ramos, Pedro M; Janeiro, Fernando M

    2015-01-01

    This paper presents an embedded liquid viscosity measurement system based on a vibrating wire sensor. Although multiple viscometers based on different working principles are commercially available, there is still a market demand for a dedicated measurement system capable of performing accurate, fast measurements and requiring little or no operator training for simple systems and solution monitoring. The developed embedded system is based on a vibrating wire sensor that works by measuring the impedance response of the sensor, which depends on the viscosity and density of the liquid in which the sensor is immersed. The core of the embedded system is a digital signal processor (DSP) which controls the waveform generation and acquisitions for the measurement of the impedance frequency response. The DSP also processes the acquired waveforms and estimates the liquid viscosity. The user can interact with the measurement system through a keypad and an LCD or through a computer with a USB connection for data logging and processing. The presented system is tested on a set of viscosity standards and the estimated values are compared with the standard manufacturer specified viscosity values. A stability study of the measurement system is also performed. (paper)

  2. Operation of remote mobile sensors for security of drinking water distribution systems.

    Science.gov (United States)

    Perelman, By Lina; Ostfeld, Avi

    2013-09-01

    The deployment of fixed online water quality sensors in water distribution systems has been recognized as one of the key components of contamination warning systems for securing public health. This study proposes to explore how the inclusion of mobile sensors for inline monitoring of various water quality parameters (e.g., residual chlorine, pH) can enhance water distribution system security. Mobile sensors equipped with sampling, sensing, data acquisition, wireless transmission and power generation systems are being designed, fabricated, and tested, and prototypes are expected to be released in the very near future. This study initiates the development of a theoretical framework for modeling mobile sensor movement in water distribution systems and integrating the sensory data collected from stationary and non-stationary sensor nodes to increase system security. The methodology is applied and demonstrated on two benchmark networks. Performance of different sensor network designs are compared for fixed and combined fixed and mobile sensor networks. Results indicate that complementing online sensor networks with inline monitoring can increase detection likelihood and decrease mean time to detection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. A temperature and pressure controlled calibration system for pressure sensors

    Science.gov (United States)

    Chapman, John J.; Kahng, Seun K.

    1989-01-01

    A data acquisition and experiment control system capable of simulating temperatures from -184 to +220 C and pressures either absolute or differential from 0 to 344.74 kPa is developed to characterize silicon pressure sensor response to temperature and pressure. System software is described that includes sensor data acquisition, algorithms for numerically derived thermal offset and sensitivity correction, and operation of the environmental chamber and pressure standard. This system is shown to be capable of computer interfaced cryogenic testing to within 1 C and 34.47 Pa of single channel or multiplexed arrays of silicon pressure sensors.

  4. The Next Generation Advanced Video Guidance Sensor: Flight Heritage and Current Development

    Science.gov (United States)

    Howard, Richard T.; Bryan, Thomas C.

    2009-01-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) is the latest in a line of sensors that have flown four times in the last 10 years. The NGAVGS has been under development for the last two years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in "spot mode" out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. This paper presents the flight heritage and results of the sensor technology, some hardware trades for the current sensor, and discusses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, the testing of the various NGAVGS development units will be discussed along with the use of the NGAVGS as a proximity operations and docking sensor.

  5. Underwater Animal Monitoring Magnetic Sensor System

    KAUST Repository

    Kaidarova, Altynay

    2017-10-01

    Obtaining new insights into the behavior of free-living marine organisms is fundamental for conservation efforts and anticipating the impact of climate change on marine ecosystems. Despite the recent advances in biotelemetry, collecting physiological and behavioral parameters of underwater free-living animals remains technically challenging. In this thesis, we develop the first magnetic underwater animal monitoring system that utilizes Tunnel magnetoresistance (TMR) sensors, the most sensitive solid-state sensors today, coupled with flexible magnetic composites. The TMR sensors are composed of CoFeB free layers and MgO tunnel barriers, patterned using standard optical lithography and ion milling procedures. The short and long-term stability of the TMR sensors has been studied using statistical and Allan deviation analysis. Instrumentation noise has been reduced using optimized electrical interconnection schemes. We also develop flexible NdFeB-PDMS composite magnets optimized for applications in corrosive marine environments, and which can be attached to marine animals. The magnetic and mechanical properties are studied for different NdFeB powder concentrations and the performance of the magnetic composites for different exposure times to sea water is systematically investigated. Without protective layer, the composite magnets loose more than 50% of their magnetization after 51 days in seawater. The durability of the composite magnets can be considerably improved by using polymer coatings which are protecting the composite magnet, whereby Parylene C is found to be the most effective solution, providing simultaneously corrosion resistance, flexibility, and enhanced biocompatibility. A Parylene C film of 2μm thickness provides the sufficient protection of the magnetic composite in corrosive aqueous environments for more than 70 days. For the high level performance of the system, the theoretically optimal position of the composite magnets with respect to the sensing

  6. Functionality enhancement of industrialized optical fiber sensors and system developed for full-scale pavement monitoring.

    Science.gov (United States)

    Wang, Huaping; Liu, Wanqiu; He, Jianping; Xing, Xiaoying; Cao, Dandan; Gao, Xipeng; Hao, Xiaowei; Cheng, Hongwei; Zhou, Zhi

    2014-05-19

    Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.

  7. Functionality Enhancement of Industrialized Optical Fiber Sensors and System Developed for Full-Scale Pavement Monitoring

    Directory of Open Access Journals (Sweden)

    Huaping Wang

    2014-05-01

    Full Text Available Pavements always play a predominant role in transportation. Health monitoring of pavements is becoming more and more significant, as frequently suffering from cracks, rutting, and slippage renders them prematurely out of service. Effective and reliable sensing elements are thus in high demand to make prognosis on the mechanical properties and occurrence of damage to pavements. Therefore, in this paper, various types of functionality enhancement of industrialized optical fiber sensors for pavement monitoring are developed, with the corresponding operational principles clarified in theory and the performance double checked by basic experiments. Furthermore, a self-healing optical fiber sensing network system is adopted to accomplish full-scale monitoring of pavements. The application of optical fiber sensors assembly and self-healing network system in pavement has been carried out to validate the feasibility. It has been proved that the research in this article provides a valuable method and meaningful guidance for the integrity monitoring of civil structures, especially pavements.

  8. Development of Solar Powered Irrigation System

    International Nuclear Information System (INIS)

    Abdelkerim, A I; Eusuf, M M R Sami; Salami, M J E; Aibinu, A; Eusuf, M A

    2013-01-01

    Development of a solar powered irrigation system has been discussed in this paper. This system would be SCADA-based and quite useful in areas where there is plenty of sunshine but insufficient water to carry out farming activities, such as rubber plantation, strawberry plantation, or any plantation, that requires frequent watering. The system is powered by solar system as a renewable energy which uses solar panel module to convert Sunlight into electricity. The development and implementation of an automated SCADA controlled system that uses PLC as a controller is significant to agricultural, oil and gas monitoring and control purpose purposes. In addition, the system is powered by an intelligent solar system in which solar panel targets the radiation from the Sun. Other than that, the solar system has reduced energy cost as well as pollution. The system is equipped with four input sensors; two soil moisture sensors, two level detection sensors. Soil moisture sensor measures the humidity of the soil, whereas the level detection sensors detect the level of water in the tank. The output sides consist of two solenoid valves, which are controlled respectively by two moistures sensors

  9. Continuous liquid level monitoring sensor system using fiber Bragg grating

    Science.gov (United States)

    Sengupta, Dipankar; Kishore, Putha

    2014-01-01

    The design and packaging of simple, small, and low cost sensor heads, used for continuous liquid level measurement using uniformly thinned (etched) optical fiber Bragg grating (FBG) are proposed. The sensor system consists of only an FBG and a simple detection system. The sensitivity of sensor is found to be 23 pm/cm of water column pressure. A linear optical fiber edge filter is designed and developed for the conversion of Bragg wavelength shift to its equivalent intensity. The result shows that relative power measured by a photo detector is linearly proportional to the liquid level. The obtained sensitivity of the sensor is nearly -15 mV/cm.

  10. Development of clinically relevant implantable pressure sensors: perspectives and challenges.

    Science.gov (United States)

    Clausen, Ingelin; Glott, Thomas

    2014-09-22

    This review describes different aspects to consider when developing implantable pressure sensor systems. Measurement of pressure is in general highly important in clinical practice and medical research. Due to the small size, light weight and low energy consumption Micro Electro Mechanical Systems (MEMS) technology represents new possibilities for monitoring of physiological parameters inside the human body. Development of clinical relevant sensors requires close collaboration between technological experts and medical clinicians.  Site of operation, size restrictions, patient safety, and required measurement range and resolution, are only some conditions that must be taken into account. An implantable device has to operate under very hostile conditions. Long-term in vivo pressure measurements are particularly demanding because the pressure sensitive part of the sensor must be in direct or indirect physical contact with the medium for which we want to detect the pressure. New sensor packaging concepts are demanded and must be developed through combined effort between scientists in MEMS technology, material science, and biology. Before launching a new medical device on the market, clinical studies must be performed. Regulatory documents and international standards set the premises for how such studies shall be conducted and reported.

  11. Developments in Emission Measurements Using Lightweight Sensors and Samplers.

    Science.gov (United States)

    Lightweight emission measurement systems making use of miniaturized sensors and samplers have been developed for portable and aerial sampling for an array of pollutants. Shoebox-sized systems called “Kolibri”, weighing 3-5 kg, have been deployed on NASA-flown unmanned...

  12. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    Directory of Open Access Journals (Sweden)

    Xiang He

    2015-12-01

    Full Text Available Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer, wireless signal strength indicators (WiFi, Bluetooth, Zigbee, and visual sensors (LiDAR, camera. People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.

  13. The silicon tracking system of the CBM experiment at FAIR. Development of microstrip sensors and signal transmission lines for a low-mass, low-noise system

    International Nuclear Information System (INIS)

    Singla, Minni

    2014-01-01

    In this thesis, different physical and electrical aspects of silicon microstrip sensors and low-mass multi-line readout cables have been investigated. These silicon microstrip sensors and readout cables will be used in the Silicon Tracking System (STS) of the fixed-target heavy-ion Compressed Baryonic Matter (CBM) experiment which is under development at the upcoming Facility for Antiproton and ion Research (FAIR) in Darmstadt, Germany. The highly segmented low-mass tracking system is a central CBM detector system to resolve the high tracking densities of charged particles originating from beam-target interactions. Considering the low material budget requirement the double-sided silicon microstrip detectors have been used in several planar tracking stations. The readout electronics is planned to be installed at the periphery of the tracking stations along with the cooling system. Low-mass multi-line readout cables shall bridge the distance between the microstrip sensors and the readout electronics. The CBM running operational scenario suggests that some parts of the tracking stations are expected to be exposed to a total integrated particle fluence of the order of 1 x 10 14 n eq /cm 2 . After 1 x 10 14 n eq /cm 2 the damaged modules in the tracking stations will be replaced. Thus radiation hard sensor is an important requirement for the sensors. Moreover, to cope with the high reaction rates, free-streaming (triggerless) readout electronics with online event reconstruction must be used which require high signal-to-noise (SNR) ratio (i.e., high signal efficiency, low noise contributions). Therefore, reduction in noise is a major goal of the sensor and cable development. For better insight into the different aspects of the silicon microstrip sensors and multi-line readout cables, the simulation study has been performed using SYNOPSYS TCAD tools. 3D models of the silicon microstrip sensors and the readout cables were implemented which is motivated by the stereoscopic

  14. Adaptive Sensing Based on Profiles for Sensor Systems

    Directory of Open Access Journals (Sweden)

    Yoshiteru Ishida

    2009-10-01

    Full Text Available This paper proposes a profile-based sensing framework for adaptive sensor systems based on models that relate possibly heterogeneous sensor data and profiles generated by the models to detect events. With these concepts, three phases for building the sensor systems are extracted from two examples: a combustion control sensor system for an automobile engine, and a sensor system for home security. The three phases are: modeling, profiling, and managing trade-offs. Designing and building a sensor system involves mapping the signals to a model to achieve a given mission.

  15. Structural health monitoring system of soccer arena based on optical sensors

    Science.gov (United States)

    Shishkin, Victor V.; Churin, Alexey E.; Kharenko, Denis S.; Zheleznova, Maria A.; Shelemba, Ivan S.

    2014-05-01

    A structural health monitoring system based on optical sensors has been developed and installed on the indoor soccer arena "Zarya" in Novosibirsk. The system integrates 119 fiber optic sensors: 85 strain, 32 temperature and 2 displacement sensors. In addition, total station is used for measuring displacement in 45 control points. All of the constituents of the supporting structure are subjects for monitoring: long-span frames with under floor ties, connections, purlins and foundation.

  16. Wireless Integrated Microelectronic Vacuum Sensor System

    Science.gov (United States)

    Krug, Eric; Philpot, Brian; Trott, Aaron; Lawrence, Shaun

    2013-01-01

    NASA Stennis Space Center's (SSC's) large rocket engine test facility requires the use of liquid propellants, including the use of cryogenic fluids like liquid hydrogen as fuel, and liquid oxygen as an oxidizer (gases which have been liquefied at very low temperatures). These fluids require special handling, storage, and transfer technology. The biggest problem associated with transferring cryogenic liquids is product loss due to heat transfer. Vacuum jacketed piping is specifically designed to maintain high thermal efficiency so that cryogenic liquids can be transferred with minimal heat transfer. A vacuum jacketed pipe is essentially two pipes in one. There is an inner carrier pipe, in which the cryogenic liquid is actually transferred, and an outer jacket pipe that supports and seals the vacuum insulation, forming the "vacuum jacket." The integrity of the vacuum jacketed transmission lines that transfer the cryogenic fluid from delivery barges to the test stand must be maintained prior to and during engine testing. To monitor the vacuum in these vacuum jacketed transmission lines, vacuum gauge readings are used. At SSC, vacuum gauge measurements are done on a manual rotation basis with two technicians, each using a handheld instrument. Manual collection of vacuum data is labor intensive and uses valuable personnel time. Additionally, there are times when personnel cannot collect the data in a timely fashion (i.e., when a leak is detected, measurements must be taken more often). Additionally, distribution of this data to all interested parties can be cumbersome. To simplify the vacuum-gauge data collection process, automate the data collection, and decrease the labor costs associated with acquiring these measurements, an automated system that monitors the existing gauges was developed by Invocon, Inc. For this project, Invocon developed a Wireless Integrated Microelectronic Vacuum Sensor System (WIMVSS) that provides the ability to gather vacuum

  17. Developing a lower-cost atmospheric CO2 monitoring system using commercial NDIR sensor

    Science.gov (United States)

    Arzoumanian, E.; Bastos, A.; Gaynullin, B.; Laurent, O.; Vogel, F. R.

    2017-12-01

    Cities release to the atmosphere about 44 % of global energy-related CO2. It is clear that accurate estimates of the magnitude of anthropogenic and natural urban emissions are needed to assess their influence on the carbon balance. A dense ground-based CO2 monitoring network in cities would potentially allow retrieving sector specific CO2 emission estimates when combined with an atmospheric inversion framework using reasonably accurate observations (ca. 1 ppm for hourly means). One major barrier for denser observation networks can be the high cost of high precision instruments or high calibration cost of cheaper and unstable instruments. We have developed and tested a novel inexpensive NDIR sensors for CO2 measurements which fulfils cost and typical parameters requirements (i.e. signal stability, efficient handling, and connectivity) necessary for this task. Such sensors are essential in the market of emissions estimates in cities from continuous monitoring networks as well as for leak detection of MRV (monitoring, reporting, and verification) services for industrial sites. We conducted extensive laboratory tests (short and long-term repeatability, cross-sensitivities, etc.) on a series of prototypes and the final versions were also tested in a climatic chamber. On four final HPP prototypes the sensitivity to pressure and temperature were precisely quantified and correction&calibration strategies developed. Furthermore, we fully integrated these HPP sensors in a Raspberry PI platform containing the CO2 sensor and additional sensors (pressure, temperature and humidity sensors), gas supply pump and a fully automated data acquisition unit. This platform was deployed in parallel to Picarro G2401 instruments in the peri-urban site Saclay - next to Paris, and in the urban site Jussieu - Paris, France. These measurements were conducted over several months in order to characterize the long-term drift of our HPP instruments and the ability of the correction and calibration

  18. A review of wearable sensors and systems with application in rehabilitation

    Directory of Open Access Journals (Sweden)

    Patel Shyamal

    2012-04-01

    Full Text Available Abstract The aim of this review paper is to summarize recent developments in the field of wearable sensors and systems that are relevant to the field of rehabilitation. The growing body of work focused on the application of wearable technology to monitor older adults and subjects with chronic conditions in the home and community settings justifies the emphasis of this review paper on summarizing clinical applications of wearable technology currently undergoing assessment rather than describing the development of new wearable sensors and systems. A short description of key enabling technologies (i.e. sensor technology, communication technology, and data analysis techniques that have allowed researchers to implement wearable systems is followed by a detailed description of major areas of application of wearable technology. Applications described in this review paper include those that focus on health and wellness, safety, home rehabilitation, assessment of treatment efficacy, and early detection of disorders. The integration of wearable and ambient sensors is discussed in the context of achieving home monitoring of older adults and subjects with chronic conditions. Future work required to advance the field toward clinical deployment of wearable sensors and systems is discussed.

  19. Sensor-guided threat countermeasure system

    Science.gov (United States)

    Stuart, Brent C.; Hackel, Lloyd A.; Hermann, Mark R.; Armstrong, James P.

    2012-12-25

    A countermeasure system for use by a target to protect against an incoming sensor-guided threat. The system includes a laser system for producing a broadband beam and means for directing the broadband beam from the target to the threat. The countermeasure system comprises the steps of producing a broadband beam and directing the broad band beam from the target to blind or confuse the incoming sensor-guided threat.

  20. Fiscal 2000 achievement report on the venture business assisting type regional consortium - Core industry creation type. Comprehensive research and development for reducing ABS (MABS) sensor system into small module for enhancing vehicle steering safety; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo seika hokokusho. Koji no sharyo soansei wo jitsugensuru ABS (MABS) sensor system no kogata module ka ni tsuite no sogo kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The effort aims to develop a sensor system to enable overall VDC (vehicle dynamic control). The goal is to manufacture a small module type sensor system more than 20 times higher than the conventional type in responding speed and accuracy, which will use a novel ABS (anti-lock braking system) capable of direct and real-time measurement of axial forces in the four directions. The prototype module will be a package in which a system-on-a-chip accommodating peripheral circuits is integrated with a sensor. In the effort to develop a novel multi-axial sensing system (MASS) for a smaller ABS, a circuit optimization technology was developed. A dedicated IC (integrated circuit) was developed for a system to process a large volume of signals. In the effort to develop technologies for packaging the novel sensor system and for constructing modules, technologies were developed for integrating sensor components and an IC into one, module junctioning, module installation, simplification of the installation process, and for the manufacturing of modules. Developed in the effort to optimize MASS were technologies involving the selection and evaluation of sensor components and the enhancement of such processes, optimization of the sensor itself, and the improvement of the sensor system for higher efficiency in calculation. Sensor modules were tested aboard vehicles and the compatibility of the system-on-a-chip with the MASS module was confirmed. (NEDO)

  1. FluoRAS Sensor - Online organic matter for optimising recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Hambly, Adam; Stedmon, Colin

    2018-01-01

    FluorRAS will develop a sensor that can save recycled fish farms 30% per year in water and energy consumption for water treatment, as well as optimize nitrogen removal. The sensor will be developed in a partnership between engineers (Krüger A / S) and researchers (DTU), and the product will be made...... both the maintenance of necessary water quality and water treatment costs. Loss of production due to poor water quality is expensive and can be avoided with correct sensor systems. Accumulation of dissolved organic matter and nutrients in the water reduce the effectiveness of UV treatment, is a source...... of nutrition for opportunistic pathogens, and reduces the effectiveness of the biofilter's removing ammonia. Modern recycling systems are therefore dependent on a network of online sensors that monitor and respond to changes in water quality, but currently there is a need for a sensor to monitor...

  2. Development of dual sensor hand-held detector

    Science.gov (United States)

    Sezgin, Mehmet

    2010-04-01

    In this paper hand-held dual sensor detector development requirements are considered dedicated to buried object detection. Design characteristics of such a system are categorized and listed. Hardware and software structures, ergonomics, user interface, environmental and EMC/EMI tests to be applied and performance test issues are studied. Main properties of the developed system (SEZER) are presented, which contains Metal Detector (MD) and Ground Penetrating Radar (GPR). The realized system has ergonomic structure and can detect both metallic and non-metallic buried objects. Moreover classification of target is possible if it was defined to the signal processing software in learning phase.

  3. Sensor system for web inspection

    Science.gov (United States)

    Sleefe, Gerard E.; Rudnick, Thomas J.; Novak, James L.

    2002-01-01

    A system for electrically measuring variations over a flexible web has a capacitive sensor including spaced electrically conductive, transmit and receive electrodes mounted on a flexible substrate. The sensor is held against a flexible web with sufficient force to deflect the path of the web, which moves relative to the sensor.

  4. SENSOR++: Simulation of Remote Sensing Systems from Visible to Thermal Infrared

    Science.gov (United States)

    Paproth, C.; Schlüßler, E.; Scherbaum, P.; Börner, A.

    2012-07-01

    During the development process of a remote sensing system, the optimization and the verification of the sensor system are important tasks. To support these tasks, the simulation of the sensor and its output is valuable. This enables the developers to test algorithms, estimate errors, and evaluate the capabilities of the whole sensor system before the final remote sensing system is available and produces real data. The presented simulation concept, SENSOR++, consists of three parts. The first part is the geometric simulation which calculates where the sensor looks at by using a ray tracing algorithm. This also determines whether the observed part of the scene is shadowed or not. The second part describes the radiometry and results in the spectral at-sensor radiance from the visible spectrum to the thermal infrared according to the simulated sensor type. In the case of earth remote sensing, it also includes a model of the radiative transfer through the atmosphere. The final part uses the at-sensor radiance to generate digital images by using an optical and an electronic sensor model. Using SENSOR++ for an optimization requires the additional application of task-specific data processing algorithms. The principle of the simulation approach is explained, all relevant concepts of SENSOR++ are discussed, and first examples of its use are given, for example a camera simulation for a moon lander. Finally, the verification of SENSOR++ is demonstrated.

  5. System-level Modeling of Wireless Integrated Sensor Networks

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Hansen, Knud; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks have emerged as a promising infrastructure for a new generation of monitoring and tracking applications. In order to efficiently utilize the extremely limited resources of wireless sensor nodes, accurate modeling of the key aspects of wireless sensor networks...... is necessary so that system-level design decisions can be made about the hardware and the software (applications and real-time operating system) architecture of sensor nodes. In this paper, we present a SystemC-based abstract modeling framework that enables system-level modeling of sensor network behavior...... by modeling the applications, real-time operating system, sensors, processor, and radio transceiver at the sensor node level and environmental phenomena, including radio signal propagation, at the sensor network level. We demonstrate the potential of our modeling framework by simulating and analyzing a small...

  6. System-Level Modelling and Simulation of MEMS-Based Sensors

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Madsen, Jan; Shafique, Mohammad

    2005-01-01

    The growing complexity of MEMS devices and their increased used in embedded systems (e.g., wireless integrated sensor networks) demands a disciplined aproach for MEMS design as well as the development of techniques for system-level modeling of these devices so that a seamless integration with the......The growing complexity of MEMS devices and their increased used in embedded systems (e.g., wireless integrated sensor networks) demands a disciplined aproach for MEMS design as well as the development of techniques for system-level modeling of these devices so that a seamless integration...... with the existing embedded system design methodologies is possible. In this paper, we present a MEMS design methodology that uses VHDL-AMS based system-level model of a MEMS device as a starting point and combines the top-down and bottom-up design approaches for design, verification, and optimization...

  7. Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener

    Directory of Open Access Journals (Sweden)

    Masato Yasuura

    2014-04-01

    Full Text Available Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  8. Development of a sweetness sensor for aspartame, a positively charged high-potency sweetener.

    Science.gov (United States)

    Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi

    2014-04-23

    Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame.

  9. Active Hearing Mechanisms Inspire Adaptive Amplification in an Acoustic Sensor System.

    Science.gov (United States)

    Guerreiro, Jose; Reid, Andrew; Jackson, Joseph C; Windmill, James F C

    2018-06-01

    Over many millions of years of evolution, nature has developed some of the most adaptable sensors and sensory systems possible, capable of sensing, conditioning and processing signals in a very power- and size-effective manner. By looking into biological sensors and systems as a source of inspiration, this paper presents the study of a bioinspired concept of signal processing at the sensor level. By exploiting a feedback control mechanism between a front-end acoustic receiver and back-end neuronal based computation, a nonlinear amplification with hysteretic behavior is created. Moreover, the transient response of the front-end acoustic receiver can also be controlled and enhanced. A theoretical model is proposed and the concept is prototyped experimentally through an embedded system setup that can provide dynamic adaptations of a sensory system comprising a MEMS microphone placed in a closed-loop feedback system. It faithfully mimics the mosquito's active hearing response as a function of the input sound intensity. This is an adaptive acoustic sensor system concept that can be exploited by sensor and system designers within acoustics and ultrasonic engineering fields.

  10. Review of High-Speed Fiber Optic Grating Sensors Systems

    Energy Technology Data Exchange (ETDEWEB)

    Udd, E; Benterou, J; May, C; Mihailov, S J; Lu, P

    2010-03-24

    Fiber grating sensors can be used to support a wide variety of high speed measurement applications. This includes measurements of vibrations on bridges, traffic monitoring on freeways, ultrasonic detection to support non-destructive tests on metal plates and providing details of detonation events. This paper provides a brief overview of some of the techniques that have been used to support high speed measurements using fiber grating sensors over frequency ranges from 10s of kHz, to MHZ and finally toward frequencies approaching the GHz regime. Very early in the development of fiber grating sensor systems it was realized that a high speed fiber grating sensor system could be realized by placing an optical filter that might be a fiber grating in front of a detector so that spectral changes in the reflection from a fiber grating were amplitude modulated. In principal the only limitation on this type of system involved the speed of the output detector which with the development of high speed communication links moved from the regime of 10s of MHz toward 10s of GHz. The earliest deployed systems involved civil structures including measurements of the strain fields on composite utility poles and missile bodies during break tests, bridges and freeways. This was followed by a series of developments that included high speed fiber grating sensors to support nondestructive testing via ultrasonic wave detection, high speed machining and monitoring ship hulls. Each of these applications involved monitoring mechanical motion of structures and thus interest was in speeds up to a few 10s of MHz. Most recently there has been interest in using fiber grating to monitor the very high speed events such as detonations and this has led to utilization of fiber gratings that are consumed during an event that may require detection speeds of hundreds of MHz and in the future multiple GHz.

  11. Research on MEMS sensor in hydraulic system flow detection

    Science.gov (United States)

    Zhang, Hongpeng; Zhang, Yindong; Liu, Dong; Ji, Yulong; Jiang, Jihai; Sun, Yuqing

    2011-05-01

    With the development of mechatronics technology and fault diagnosis theory, people regard flow information much more than before. Cheap, fast and accurate flow sensors are urgently needed by hydraulic industry. So MEMS sensor, which is small, low cost, well performed and easy to integrate, will surely play an important role in this field. Based on the new method of flow measurement which was put forward by our research group, this paper completed the measurement of flow rate in hydraulic system by setting up the mathematical model, using numerical simulation method and doing physical experiment. Based on viscous fluid flow equations we deduced differential pressure-velocity model of this new sensor and did optimization on parameters. Then, we designed and manufactured the throttle and studied the velocity and pressure field inside the sensor by FLUENT. Also in simulation we get the differential pressure-velocity curve .The model machine was simulated too to direct experiment. In the static experiments we calibrated the MEMS sensing element and built some sample sensors. Then in a hydraulic testing system we compared the sensor signal with a turbine meter. It presented good linearity and could meet general hydraulic system use. Based on the CFD curves, we analyzed the error reasons and made some suggestion to improve. In the dynamic test, we confirmed this sensor can realize high frequency flow detection by a 7 piston-pump.

  12. Development Of A Sensor Network Test Bed For ISD Materials And Structural Condition Monitoring

    International Nuclear Information System (INIS)

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-01-01

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  13. DEVELOPMENT OF A SENSOR NETWORK TEST BED FOR ISD MATERIALS AND STRUCUTRAL CONDITION MONITORING

    Energy Technology Data Exchange (ETDEWEB)

    Zeigler, K.; Ferguson, B.; Karapatakis, D.; Herbst, C.; Stripling, C.

    2011-07-06

    The P Reactor at the Savannah River Site is one of the first reactor facilities in the US DOE complex that has been placed in its end state through in situ decommissioning (ISD). The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. To evaluate the feasibility and utility of remote sensors to provide verification of ISD system conditions and performance characteristics, an ISD Sensor Network Test Bed has been designed and deployed at the Savannah River National Laboratory. The test bed addresses the DOE-EM Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of: (1) Groutable thermistors for temperature and moisture monitoring; (2) Strain gauges for crack growth monitoring; (3) Tiltmeters for settlement monitoring; and (4) A communication system for data collection. Preliminary baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment.

  14. Development of concentration measurement system in a mini-channel using a local NMR sensor

    International Nuclear Information System (INIS)

    Ogawa, Kuniyasu; Haishi, Tomoyuki

    2008-01-01

    A local NMR sensor to measure methanol concentration of fluid flowing in a mini-channel was developed. The principle of the methanol sensor is based on the chemical shift of CH and OH species under high magnetic field. The sensor consists of a planar surface coil of 0.60 mm inside diameter. Using the sensors, local methanol concentration of water-methanol mixture in the mini-channel of 3.0 mm width and 1.5 mm depth was measured. The effects of flow velocity in the channel and the gravity direction on the methanol concentration distribution in the channel were investigated experimentally. (author)

  15. Everything is Data - Overview of Modular System of Sensors for Museum Environment

    Science.gov (United States)

    Valach, J.; Juliš, K.; Štefcová, P.; Pech, M.; Wolf, B.; Kotyk, M.; Frankl, J.

    2015-08-01

    The main aim of project nearing completion was to develop a modular and scalable system of sensors for monitoring of internal environment of museum exhibitions and depositories. The sensors vary according to parameters being monitored and at the same time also according to required energy autonomy, processing capability and bandwidth requirements. Sensors developed can be divided into three groups: environmental sensors, biosensors and sensors of vibrations. Data acquired by the sensors are archived and stored in open format. Metadata stored alongside true numerical data from measurement, represent assurance of future computer readability in data mining application. Long continuous series of data can provide sufficient data for acquisition of dose-response function.

  16. On the development of a magnetoresistive sensor for blade tip timing and blade tip clearance measurement systems

    Science.gov (United States)

    Tomassini, R.; Rossi, G.; Brouckaert, J.-F.

    2016-10-01

    A simultaneous blade tip timing (BTT) and blade tip clearance (BTC) measurement system enables the determination of turbomachinery blade vibrations and ensures the monitoring of the existing running gaps between the blade tip and the casing. This contactless instrumentation presents several advantages compared to the well-known telemetry system with strain gauges, at the cost of a more complex data processing procedure. The probes used can be optical, capacitive, eddy current as well as microwaves, everyone with its dedicated electronics and many existing different signal processing algorithms. Every company working in this field has developed its own processing method and sensor technology. Hence, repeating the same test with different instrumentations, the answer is often different. Moreover, rarely it is possible to achieve reliability for in-service measurements. Developments are focused on innovative instrumentations and a common standard. This paper focuses on the results achieved using a novel magnetoresistive sensor for simultaneous tip timing and tip clearance measurements. The sensor measurement principle is described. The sensitivity to gap variation is investigated. In terms of measurement of vibrations, experimental investigations were performed at the Air Force Institute of Technology (ITWL, Warsaw, Poland) in a real aeroengine and in the von Karman Institute (VKI) R2 compressor rig. The advantages and limitations of the magnetoresistive probe for turbomachinery testing are highlighted.

  17. Development of a fibre-optic sensor system for the continuous monitoring of a sanitary landfill for low-halogenated hydrocarbons, polycyclic aromatic hydrocarbons, and other pollutants

    International Nuclear Information System (INIS)

    Baumann, M.; Baumann, T.; Gahr, A.; Mueller-Ackermann, E.; Panne, U.; Niessner, R.

    1992-01-01

    The aim of the project is to develop a mobile fibre-optic sensor system for monitoring the ground water aquifer in the area of a landfill. Not only are the analytical methods to be developed further; but the system's performance in the field is to be tested as well. As a large part of knowledge on the long-time safety of mineral sealing systems of sanitary landfills derives from damage events, a measuring area was additionally established at the Augsburg-Nord landfill. This measuring area is to permit monitoring of the sealing also during operation and reclamation. Within the measuring area and in the environs of the landfill, both conventional sensors for temperature, conductibility, etc., and the specially developed fibre-optic sensors for on-line in-situ monitoring will be used. (orig.) [de

  18. MEMS CHIP CO2 SENSOR FOR BUILDING SYSTEMS INTEGRATION

    Energy Technology Data Exchange (ETDEWEB)

    Anton Carl Greenwald

    2005-09-14

    The objective of this research was to develop an affordable, reliable sensor to enable demand controlled ventilation (DCV). A significant portion of total energy consumption in the United States is used for heating or air conditioning (HVAC) buildings. To assure occupant safety and fresh air levels in large buildings, and especially those with sealed windows, HVAC systems are frequently run in excess of true requirements as automated systems cannot now tell the occupancy level of interior spaces. If such a sensor (e.g. thermostat sized device) were available, it would reduce energy use between 10 and 20% in such buildings. A quantitative measure of ''fresh air'' is the concentration of carbon dioxide (CO{sub 2}) present. An inert gas, CO{sub 2} is not easily detected by chemical sensors and is usually measured by infrared spectroscopy. Ion Optics research developed a complete infrared sensor package on a single MEMS chip. It contains the infrared (IR) source, IR detector and IR filter. The device resulting from this DOE sponsored research has sufficient sensitivity, lifetime, and drift rate to meet the specifications of commercial instrument manufacturers who are now testing the device for use in their building systems.

  19. Decoupling Principle Analysis and Development of a Parallel Three-Dimensional Force Sensor.

    Science.gov (United States)

    Zhao, Yanzhi; Jiao, Leihao; Weng, Dacheng; Zhang, Dan; Zheng, Rencheng

    2016-09-15

    In the development of the multi-dimensional force sensor, dimension coupling is the ubiquitous factor restricting the improvement of the measurement accuracy. To effectively reduce the influence of dimension coupling on the parallel multi-dimensional force sensor, a novel parallel three-dimensional force sensor is proposed using a mechanical decoupling principle, and the influence of the friction on dimension coupling is effectively reduced by making the friction rolling instead of sliding friction. In this paper, the mathematical model is established by combining with the structure model of the parallel three-dimensional force sensor, and the modeling and analysis of mechanical decoupling are carried out. The coupling degree (ε) of the designed sensor is defined and calculated, and the calculation results show that the mechanical decoupling parallel structure of the sensor possesses good decoupling performance. A prototype of the parallel three-dimensional force sensor was developed, and FEM analysis was carried out. The load calibration and data acquisition experiment system are built, and then calibration experiments were done. According to the calibration experiments, the measurement accuracy is less than 2.86% and the coupling accuracy is less than 3.02%. The experimental results show that the sensor system possesses high measuring accuracy, which provides a basis for the applied research of the parallel multi-dimensional force sensor.

  20. Development of a real-time monitoring system for intra-fractional motion in intracranial treatment using pressure sensors.

    Science.gov (United States)

    Inata, Hiroki; Araki, Fujio; Kuribayashi, Yuta; Hamamoto, Yasushi; Nakayama, Shigeki; Sodeoka, Noritaka; Kiriyama, Tetsukazu; Nishizaki, Osamu

    2015-09-21

    This study developed a dedicated real-time monitoring system to detect intra-fractional head motion in intracranial radiotherapy using pressure sensors. The dedicated real-time monitoring system consists of pressure sensors with a thickness of 0.6 mm and a radius of 9.1 mm, a thermoplastic mask, a vacuum pillow, and a baseplate. The four sensors were positioned at superior-inferior and right-left sides under the occipital area. The sampling rate of pressure sensors was set to 5 Hz. First, we confirmed that the relationship between the force and the displacement of the vacuum pillow follows Hook's law. Next, the spring constant for the vacuum pillow was determined from the relationship between the force given to the vacuum pillow and the displacement of the head, detected by Cyberknife target locating system (TLS) acquisitions in clinical application. Finally, the accuracy of our system was evaluated by using the 2  ×  2 confusion matrix. The regression lines between the force, y, and the displacement, x, of the vacuum pillow were given by y = 3.8x, y = 4.4x, and y = 5.0x when the degree of inner pressure was  -12 kPa,-20 kPa, and  -27 kPa, respectively. The spring constant of the vacuum pillow was 1.6 N mm(-1) from the 6D positioning data of a total of 2999 TLS acquisitions in 19 patients. Head motions of 1 mm, 1.5 mm, and 2 mm were detected in real-time with the accuracies of 67%, 84%, and 89%, respectively. Our system can detect displacement of the head continuously during every interval of TLS with a resolution of 1-2 mm without any radiation exposure.

  1. Design of A Development Platform for HW/SW Codesign of Wireless IOntegrated Sensor Nodes

    DEFF Research Database (Denmark)

    Virk, Kashif M.; Leopold, Martin; Madsen, Jan

    2005-01-01

    Wireless integrated sensor networks are a new class of embedded computer systems which have been made possible mainly by the recent advances in the micro and the nano technology. In order to efficiently utilize the limited resources available on a sensor node, we need to optimize its key design...... parameters which is only possible by making system-level design decisions about its hardware and software (operating system and applications) architecture. In this paper, we present the design of a sensor node development platform in relation to an application of wireless integrated sensor networks for sow...

  2. Analysis of the SNR and sensing ability of different sensor types in a LIDAR system

    Science.gov (United States)

    Choi, Gyudong; Han, Munhyun; Seo, Hongseok; Mheen, Bongki

    2017-10-01

    LIDAR (light distance and ranging) systems use sensors to detect reflected signals. The performance of the sensors significantly affects the specification of the LIDAR system. Especially, the number and size of the sensors determine the FOV (field of view) and resolution of the system, regardless of which sensors are used. The resolution of an array-type sensor normally depends on the number of pixels in the array. In this type of sensor, there are several limitations to increase the number of pixels in an array for higher resolution, specifically complexity, cost, and size limitations. Another type of sensors uses multiple pairs of transmitter and receiver channels. Each channel detects different points with the corresponding directions indicated by the laser points of each channel. In this case, in order to increase the resolution, it is required to increase the number of channels, resulting in bigger sensor head size and deteriorated reliability due to heavy rotating head module containing all the pairs. In this paper, we present a method to overcome these limitations and improve the performance of the LIDAR system. ETRI developed a type of scanning LIDAR system called a STUD (static unitary detector) LIDAR system. It was developed to solve the problems associated with the aforementioned sensors. The STUD LIDAR system can use a variety of sensors without any limitations on the size or number of sensors, unlike other LIDAR systems. Since it provides optimal performance in terms of range and resolution, the detailed analysis was conducted in the STUD LIDAR system by applying different sensor type to have improved sensing performance.

  3. Common bus multinode sensor system

    International Nuclear Information System (INIS)

    Kelly, T.F.; Naviasky, E.H.; Evans, W.P.; Jefferies, D.W.; Smith, J.R.

    1988-01-01

    This patent describes a nuclear power plant including a common bus multinode sensor system for sensors in the nuclear power plant, each sensor producing a sensor signal. The system consists of: a power supply providing power; a communication cable coupled to the power supply; plural remote sensor units coupled between the cable and one or more sensors, and comprising: a direct current power supply, connected to the cable and converting the power on the cable into direct current; an analog-to-digital converter connected to the direct current power supply; an oscillator reference; a filter; and an integrated circuit sensor interface connected to the direct current power supply, the analog-to-digital converter, the oscillator crystal and the filter, the interface comprising: a counter receiving a frequency designation word from external to the interface; a phase-frequency comparator connected to the counter; an oscillator connected to the oscillator reference; a timing counter connected to the oscillator, the phase/frequency comparator and the analog-to-digital converter; an analog multiplexer connectable to the sensors and the analog-to-digital converter, and connected to the timing counter; a shift register operatively connected to the timing counter and the analog-to-digital converter; an encoder connected to the shift register and connectable to the filter; and a voltage controlled oscillator connected to the filter and the cable

  4. Development of an intellectual maintenance management system. Development of trouble detection and troubleshooting evaluation system

    International Nuclear Information System (INIS)

    Suda, Kazunori; Yoshikawa, Shinji; Tani, Satoshi

    1998-03-01

    Many research activities are conducted to enhance cost performance and safety of nuclear power plants operation and maintenance. Concept of autonomous operating system to equal the role of operators and of maintenance personnel with artificial intelligence and autonomous robots has been developed. An intellectual maintenance management system has been developed to be equipped with decision making functions of maintenance personnel. The intellectual maintenance management system is in charge of maintenance function of an autonomous plant, which consists of plant-wide monitoring, evaluation of component integrity, and scheduling of maintenance activities. In other words, this system should be equipped with preventive maintenance and corrective maintenance functions those are currently loaded on personnel. In this report, we discussed condition monitoring maintenance in the preventive maintenance. We also reported a sensor validation system development for machinery condition monitoring and diagnosis. We adopted distributed and cooperative system construction technique, which is expected recently in applications to large-scale plants. This system has inter-agent communication function for signal transmission and reception among distributed physics models of machineries. The system has been constructed for water/steam system of the LMFBR power plant. The system has been validated to be capable of cooperative sensor validation by the distributed set of agents, with quantitative indication of sensor deviation based on a newly developed fuzzy algorithm with inter-agent cooperation. The derived reference parameter value from the inter-agent evaluations also stands for the alternative measurement to the malfunctioned sensor. (author)

  5. A Wireless Self-Powered Urinary Incontinence Sensor System

    Science.gov (United States)

    Tanaka, Ami; Utsunomiya, Fumiyasu; Douseki, Takakuni

    A self-powered urinary incontinence sensor system consisting of a urine-activated coin battery and a wireless transmitter has been developed as an application for wireless biosensor networks. The urine-activated battery makes possible both the sensing of urine leakage and self-powered operation. An intermittent power-supply circuit that uses an electric double-layer capacitor (EDLC) with a small internal resistance suppresses the supply voltage drop due to the large internal resistance of the battery. This circuit and a 1-V surface acoustic wave (SAW) oscillator reduce the power dissipation of a wireless transmitter. The SAW oscillator quickly responds to the on-off control of the power supply, which is suitable for intermittent operation. To verify the effectiveness of the circuit scheme, the authors fabricated a prototype sensor system. When the volume of urine is 0.2 ml, the battery outputs a voltage of over 1.3 V; and the sensor system can transmit signals over a distance of 5 m.

  6. Packaged Capacitive Pressure Sensor System for Aircraft Engine Health Monitoring

    Science.gov (United States)

    Scardelletti, Maximilian C.; Zorman, Christian A.

    2016-01-01

    This paper describes the development of a packaged silicon carbide (SiC) based MEMS pressure sensor system designed specifically for a conventional turbofan engine. The electronic circuit is based on a Clapp-type oscillator that incorporates a 6H-SiC MESFET, a SiCN MEMS capacitive pressure sensor, titanate MIM capacitors, wirewound inductors, and thick film resistors. The pressure sensor serves as the capacitor in the LC tank circuit, thereby linking pressure to the resonant frequency of the oscillator. The oscillator and DC bias circuitry were fabricated on an alumina substrate and secured inside a metal housing. The packaged sensing system reliably operates at 0 to 350 psi and 25 to 540C. The system has a pressure sensitivity of 6.8 x 10E-2 MHzpsi. The packaged system shows negligible difference in frequency response between 25 and 400C. The fully packaged sensor passed standard benchtop acceptance tests and was evaluated on a flight-worthy engine.

  7. Development of heat-resistant magnetic sensor

    International Nuclear Information System (INIS)

    Takaya, Shigeru; Arakawa, Hisashi; Keyakida, Satoshi

    2013-01-01

    A heat-resistant flux gate magnetic sensor has been developed. Permendur, which has high Curie point, is employed as the magnetic core material and the detection method of the external magnetic field is modified. The characteristics of the developed magnetic sensor up to 500degC were evaluated. The sensor output increased linearly with the external magnetic field in the range of ±5 G and the standard deviation at 500degC was about 0.85G. (author)

  8. Hybrid Exploration Agent Platform and Sensor Web System

    Science.gov (United States)

    Stoffel, A. William; VanSteenberg, Michael E.

    2004-01-01

    A sensor web to collect the scientific data needed to further exploration is a major and efficient asset to any exploration effort. This is true not only for lunar and planetary environments, but also for interplanetary and liquid environments. Such a system would also have myriad direct commercial spin-off applications. The Hybrid Exploration Agent Platform and Sensor Web or HEAP-SW like the ANTS concept is a Sensor Web concept. The HEAP-SW is conceptually and practically a very different system. HEAP-SW is applicable to any environment and a huge range of exploration tasks. It is a very robust, low cost, high return, solution to a complex problem. All of the technology for initial development and implementation is currently available. The HEAP Sensor Web or HEAP-SW consists of three major parts, The Hybrid Exploration Agent Platforms or HEAP, the Sensor Web or SW and the immobile Data collection and Uplink units or DU. The HEAP-SW as a whole will refer to any group of mobile agents or robots where each robot is a mobile data collection unit that spends most of its time acting in concert with all other robots, DUs in the web, and the HEAP-SWs overall Command and Control (CC) system. Each DU and robot is, however, capable of acting independently. The three parts of the HEAP-SW system are discussed in this paper. The Goals of the HEAP-SW system are: 1) To maximize the amount of exploration enhancing science data collected; 2) To minimize data loss due to system malfunctions; 3) To minimize or, possibly, eliminate the risk of total system failure; 4) To minimize the size, weight, and power requirements of each HEAP robot; 5) To minimize HEAP-SW system costs. The rest of this paper discusses how these goals are attained.

  9. Optical fiber sensors: Systems and applications. Volume 2

    Science.gov (United States)

    Culshaw, Brian; Dakin, John

    State-of-the-art fiber-optic (FO) sensors and their applications are described in chapters contributed by leading experts. Consideration is given to interferometers, FO gyros, intensity- and wavelength-based sensors and optical actuators, Si in FO sensors, point-sensor multiplexing principles, and distributed FO sensor systems. Also examined are chemical, biochemical, and medical sensors; physical and chemical sensors for process control; FO-sensor applications in the marine and aerospace industries; FO-sensor monitoring systems for security and safety, structural integrity, NDE, and the electric-power industry; and the market situation for FO-sensor technology. Diagrams, drawings, graphs, and photographs are provided.

  10. WIRELESS SENSOR SYSTEM FOR IMPLEMENTATION OF SMART SPACES

    Directory of Open Access Journals (Sweden)

    Gerardo Cázarez-Ayala

    2014-01-01

    Full Text Available This paper describes the design, implementation and application of a smart sensor system based in wireless communication protocol, which was developed with the main objective of facilitate the implementation of smart places, whereby monitoring and supervision of environmental physical variables in a residence or commercial buildings. Based in this system, we want to co-help taking advantage and save electric energy, optimizing the use of the lighting systems and air conditioner only in the schedules and under pre-established conditions for the final user. The system is based in a variety of nodes o modules of sensors like temperature, humidity, light, carbon monoxide, noise and LP gas which have the ability to work collaboratively in networks with topologies like star, tree and mesh.

  11. The application of force-sensing resistor sensors for measuring forces developed by the human hand.

    Science.gov (United States)

    Nikonovas, A; Harrison, A J L; Hoult, S; Sammut, D

    2004-01-01

    Most attempts to measure forces developed by the human hand have been implemented by placing force sensors on the object of interaction. Other researchers have placed sensors just on the subject's fingertips. In this paper, a system is described that measures forces over the entire hand using thin-film sensors and associated electronics. This system was developed by the authors and is able to obtain force readings from up to 60 thin-film sensors at rates of up to 400 samples/s per sensor. The sensors can be placed anywhere on the palm and/or fingers of the hand. The sensor readings, together with a video stream containing information about hand posture, are logged into a portable computer using a multiplexer, analogue-to-digital converter and software developed for the purpose. The system has been successfully used to measure forces involved in a range of everyday tasks such as driving a vehicle, lifting saucepans and hitting a golf ball. In the latter case, results are compared with those from an instrumented golf club. Future applications include the assessment of hand strength following disease, trauma or surgery, and to enable quantitative ergonomic investigations.

  12. Therapeutic hypertension system based on a microbreathing pressure sensor system

    Directory of Open Access Journals (Sweden)

    Diao Z

    2011-05-01

    Full Text Available Ziji Diao1, Hongying Liu1, Lan Zhu1, Xiaoqiang Gao1, Suwen Zhao1, Xitian Pi1,2, Xiaolin Zheng1,21Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Chongqing; 2Key Laboratories for National Defense Science and Technology of Innovative Micronano Devices and System Technology, Chongqing, People’s Republic of ChinaBackground and methods: A novel therapeutic system for the treatment of hypertension was developed on the basis of a slow-breath training mechanism, using a microbreathing pressure sensor device for the detection of human respiratory signals attached to the abdomen. The system utilizes a single-chip AT89C51 microcomputer as a core processor, programmed by Microsoft Visual C++6.0 to communicate with a PC via a full-speed PDIUSBD12 interface chip. The programming is based on a slow-breath guided algorithm in which the respiratory signal serves as a physiological feedback parameter. Inhalation and exhalation by the subject is guided by music signals.Results and conclusion: Our study indicates that this microbreathing sensor system may assist in slow-breath training and may help to decrease blood pressure.Keywords: hypertension, microbreathing sensor, single-chip microcomputer, slow-pace breathing

  13. Sensor Development for Active Flow Control

    Science.gov (United States)

    Kahng, Seun K.; Gorton, Susan A.; Mau, Johnney C.; Soto, Hector L.; Hernandez, Corey D.

    2001-01-01

    Presented are the developmental efforts for MEMS sensors for a closed-loop active flow control in a low-speed wind tunnel evaluation. The MEMS sensors are designed in-house and fabricated out of house, and the shear sensors are a thermal type that are collocated with temperature and pressure sensors on a flexible polyimide sheet, which conforms to surfaces of a simple curvature. A total of 6 sensors are located within a 1.5 by 3 mm area as a cluster with each sensor being 300 pm square. The thickness of this sensor cluster is 75 pm. Outputs from the shear sensors have been compared with respect to those of the Preston tube for evaluation of the sensors on a flat plate. Pressure sensors are the absolute type and have recorded pressure measurements within 0.05 percent of the tunnel ESP pressure sensor readings. The sensors and signal conditioning electronics have been tested on both a flat plate and a ramp in Langley s 15-Inch Low-Turbulence Tunnel. The system configuration and control PC is configured with LabView, where calibration constants are stored for desired compensation and correction. The preliminary test results are presented within.

  14. One-port portable SAW sensor system

    Science.gov (United States)

    Hoa Nguyen, Vu; Peters, Oliver; Schnakenberg, Uwe

    2018-01-01

    A portable device using the SAW-based impedance sensor type based on one interdigital transducer simultaneously as SAW generator and sensor element (1-port approach) is introduced. As a novelty, the so far required expensive vector network analyzer (VNA) is replaced by a hand-held device to measure the impedance spectrum of the SAW sensor by RF-gain-phase meters. Hence, some of the best features from the conventional oscillator and VNA approaches are combined to develop a low-cost and self-contained measurement system, including signal in- and output ability for real-time measurements. The pivotal aspect of the portable system is the transfer of the sophisticated high frequency approach into a quasi-static one. This enables the use of simple lumped electronics without the need of impedance matching circuits. Proof-of-concept was carried out by measuring conductivities of phosphate-buffered solutions and viscosities of glycerin. Sensitivities for temperature of 0.3%/°C, viscosity of 10.1% (mPa s)-1 and conductivity of 0.5% (S cm)-1 have been determined, respectively, which are competitive results compared to the benchmark approaches.

  15. Robust Solar Position Sensor for Tracking Systems

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Argeseanu, Alin; Leban, Krisztina Monika

    2009-01-01

    The paper proposes a new solar position sensor used in tracking system control. The main advantages of the new solution are the robustness and the economical aspect. Positioning accuracy of the tracking system that uses the new sensor is better than 1°. The new sensor uses the ancient principle...... of the solar clock. The sensitive elements are eight ordinary photo-resistors. It is important to note that all the sensors are not selected simultaneously. It is not necessary for sensor operating characteristics to be quasi-identical because the sensor principle is based on extreme operating duty measurement...... (bright or dark). In addition, the proposed solar sensor significantly simplifies the operation of the tracking control device....

  16. Sensor network infrastructure for a home care monitoring system.

    Science.gov (United States)

    Palumbo, Filippo; Ullberg, Jonas; Stimec, Ales; Furfari, Francesco; Karlsson, Lars; Coradeschi, Silvia

    2014-02-25

    This paper presents the sensor network infrastructure for a home care system that allows long-term monitoring of physiological data and everyday activities. The aim of the proposed system is to allow the elderly to live longer in their home without compromising safety and ensuring the detection of health problems. The system offers the possibility of a virtual visit via a teleoperated robot. During the visit, physiological data and activities occurring during a period of time can be discussed. These data are collected from physiological sensors (e.g., temperature, blood pressure, glucose) and environmental sensors (e.g., motion, bed/chair occupancy, electrical usage). The system can also give alarms if sudden problems occur, like a fall, and warnings based on more long-term trends, such as the deterioration of health being detected. It has been implemented and tested in a test environment and has been deployed in six real homes for a year-long evaluation. The key contribution of the paper is the presentation of an implemented system for ambient assisted living (AAL) tested in a real environment, combining the acquisition of sensor data, a flexible and adaptable middleware compliant with the OSGistandard and a context recognition application. The system has been developed in a European project called GiraffPlus.

  17. Principle Findings from Development of a Recirculated Exhaust Gas Intake Sensor (REGIS) Enabling Cost-Effective Fuel Efficiency Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Claus [Robert Bosch LLC, Farmington Hills, MI (United States)

    2016-03-30

    Kick-off of the Bosch scope of work for the REGIS project started in October 2012. The primary work-packages included in the Bosch scope of work were the following: overall project management, development of the EGR sensor (design of sensor element, design of protection tube, and design of mounting orientation), development of EGR system control strategy, build-up of prototype sensors, evaluation of system performance with the new sensor and the new control strategy, long-term durability testing, and development of a 2nd generation sensor concept for continued technology development after the REGIS project. The University of Clemson was a partner with Bosch in the REGIS project. The Clemson scope of work for the REGIS project started in June 2013. The primary work-packages included in the Clemson scope of work were the following: development of EGR system control strategy, and evaluation of system performance with the new sensor and new control strategy. This project was split into phase I, phase II and phase III. Phase I work was completed by the end of June 2014 and included the following primary work packages: development of sensor technical requirements, assembly of engine testbench at Clemson, design concept for sensor housing, connector, and mounting orientation, build-up of EGR flow test benches at Bosch, and build-up of first sensor prototypes. Phase II work was completed by the end of June 2015 and included the following primary work pack ages: development of an optimizing function and demonstration of robustness of sensor, system control strategy implementation and initial validation, completion of engine in the loop testing of developed control algorithm, completion of sensor testing including characteristic line, synthetic gas test stand, and pressure dependency characterization, demonstration of benefits of control w/o sensing via simulation, development of 2nd generation sensor concept. Notable technical achievements from phase II were the following

  18. Calibrating a novel multi-sensor physical activity measurement system

    International Nuclear Information System (INIS)

    John, D; Sasaki, J E; Howe, C A; Freedson, P S; Liu, S; Gao, R X; Staudenmayer, J

    2011-01-01

    Advancing the field of physical activity (PA) monitoring requires the development of innovative multi-sensor measurement systems that are feasible in the free-living environment. The use of novel analytical techniques to combine and process these multiple sensor signals is equally important. This paper describes a novel multi-sensor 'integrated PA measurement system' (IMS), the lab-based methodology used to calibrate the IMS, techniques used to predict multiple variables from the sensor signals, and proposes design changes to improve the feasibility of deploying the IMS in the free-living environment. The IMS consists of hip and wrist acceleration sensors, two piezoelectric respiration sensors on the torso, and an ultraviolet radiation sensor to obtain contextual information (indoors versus outdoors) of PA. During lab-based calibration of the IMS, data were collected on participants performing a PA routine consisting of seven different ambulatory and free-living activities while wearing a portable metabolic unit (criterion measure) and the IMS. Data analyses on the first 50 adult participants are presented. These analyses were used to determine if the IMS can be used to predict the variables of interest. Finally, physical modifications for the IMS that could enhance the feasibility of free-living use are proposed and refinement of the prediction techniques is discussed

  19. Wearable flex sensor system for multiple badminton player grip identification

    Science.gov (United States)

    Jacob, Alvin; Zakaria, Wan Nurshazwani Wan; Tomari, Mohd Razali Bin Md; Sek, Tee Kian; Suberi, Anis Azwani Muhd

    2017-09-01

    This paper focuses on the development of a wearable sensor system to identify the different types of badminton grip that is used by a player during training. Badminton movements and strokes are fast and dynamic, where most of the involved movement are difficult to identify with the naked eye. Also, the usage of high processing optometric motion capture system is expensive and causes computational burden. Therefore, this paper suggests the development of a sensorized glove using flex sensor to measure a badminton player's finger flexion angle. The proposed Hand Monitoring Module (HMM) is connected to a personal computer through Bluetooth to enable wireless data transmission. The usability and feasibility of the HMM to identify different grip types were examined through a series of experiments, where the system exhibited 70% detection ability for the five different grip type. The outcome plays a major role in training players to use the proper grips for a badminton stroke to achieve a more powerful and accurate stroke execution.

  20. [The recent development of fiber-optic chemical sensor].

    Science.gov (United States)

    Wang, Jian; Wei, Jian-ping; Yang, Bo; Gao, Zhi-yang; Zhang, Li-wei; Yang, Xue-feng

    2014-08-01

    The present article provides a brief review of recent research on fiber-optic chemical sensor technology and the future development trends. Especially, fiber-optic pH chemical sensor, fiber-optic ion chemicl sensor, and fiber-optic gas chemical sensor are introduced respectively. Sensing film preparation methods such as chemical bonding method and sol-gel method were briefly reviewed. The emergence of new type fiber-microstructured optical fiber opened up a new development direction for fiber-optic chemical sensor. Because of its large inner surface area, flexible design of structure, having internal sensing places in fibers, it has rapidly become an important development direction and research focus of the fiber-optic chemical sensors. The fiber-optic chemical sensor derived from microstructured optical fiber is also discussed in detail. Finally, we look to the future of the fiber-optic chemical sensor.

  1. A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing

    Directory of Open Access Journals (Sweden)

    Gabriel J. García

    2014-03-01

    Full Text Available The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc., reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.

  2. A survey on FPGA-based sensor systems: towards intelligent and reconfigurable low-power sensors for computer vision, control and signal processing.

    Science.gov (United States)

    García, Gabriel J; Jara, Carlos A; Pomares, Jorge; Alabdo, Aiman; Poggi, Lucas M; Torres, Fernando

    2014-03-31

    The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.

  3. Bayesian based design of real-time sensor systems for high-risk indoor contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Sreedharan, Priya [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    The sudden release of toxic contaminants that reach indoor spaces can be hazardousto building occupants. To respond effectively, the contaminant release must be quicklydetected and characterized to determine unobserved parameters, such as release locationand strength. Characterizing the release requires solving an inverse problem. Designinga robust real-time sensor system that solves the inverse problem is challenging becausethe fate and transport of contaminants is complex, sensor information is limited andimperfect, and real-time estimation is computationally constrained.This dissertation uses a system-level approach, based on a Bayes Monte Carloframework, to develop sensor-system design concepts and methods. I describe threeinvestigations that explore complex relationships among sensors, network architecture,interpretation algorithms, and system performance. The investigations use data obtainedfrom tracer gas experiments conducted in a real building. The influence of individual sensor characteristics on the sensor-system performance for binary-type contaminant sensors is analyzed. Performance tradeoffs among sensor accuracy, threshold level and response time are identified; these attributes could not be inferred without a system-level analysis. For example, more accurate but slower sensors are found to outperform less accurate but faster sensors. Secondly, I investigate how the sensor-system performance can be understood in terms of contaminant transport processes and the model representation that is used to solve the inverse problem. The determination of release location and mass are shown to be related to and constrained by transport and mixing time scales. These time scales explain performance differences among different sensor networks. For example, the effect of longer sensor response times is comparably less for releases with longer mixing time scales. The third investigation explores how information fusion from heterogeneous sensors may improve the sensor-system

  4. Hidden Markov Model-based Pedestrian Navigation System using MEMS Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Zhang Yingjun

    2015-02-01

    Full Text Available In this paper, a foot-mounted pedestrian navigation system using MEMS inertial sensors is implemented, where the zero-velocity detection is abstracted into a hidden Markov model with 4 states and 15 observations. Moreover, an observations extraction algorithm has been developed to extract observations from sensor outputs; sample sets are used to train and optimize the model parameters by the Baum-Welch algorithm. Finally, a navigation system is developed, and the performance of the pedestrian navigation system is evaluated using indoor and outdoor field tests, and the results show that position error is less than 3% of total distance travelled.

  5. Innovative multi-cantilever array sensor system with MOEMS read-out

    Science.gov (United States)

    Ivaldi, F.; Bieniek, T.; Janus, P.; Grabiec, P.; Majstrzyk, W.; Kopiec, D.; Gotszalk, T.

    2016-11-01

    Cantilever based sensor system are a well-established sensor family exploited in several every-day life applications as well as in high-end research areas. The very high sensitivity of such systems and the possibility to design and functionalize the cantilevers to create purpose built and highly selective sensors have increased the interest of the scientific community and the industry in further exploiting this promising sensors type. Optical deflection detection systems for cantilever sensors provide a reliable, flexible method for reading information from cantilevers with the highest sensitivity. However the need of using multi-cantilever arrays in several fields of application such as medicine, biology or safety related areas, make the optical method less suitable due to its structural complexity. Working in the frame of a the Joint Undertaking project Lab4MEMS II our group proposes a novel and innovative approach to solve this issue, by integrating a Micro-Opto-Electro-Mechanical-System (MOEMS) with dedicated optics, electronics and software with a MOEMS micro-mirror, ultimately developed in the frame of Lab4MEMSII. In this way we are able to present a closely packed, lightweight solution combining the advantages of standard optical read-out systems with the possibility of recording multiple read-outs from large cantilever arrays quasi simultaneously.

  6. Development of electrochemical sensor for the determination of toxic gases

    International Nuclear Information System (INIS)

    Ahmed, R.

    1997-01-01

    Monitoring release of flue and toxic gases and vapours of volatile organic toxic substances into the atmosphere is one of the most important problems in environmental pollution control studies particularly in industrial installations in order to avoid poisoning and other health hazards. In industrial areas continuous monitoring of toxic gases and vapours is required for the safety of workers and for this purpose different types of sensors and available such as thermal sensors mass sensors, biosensors, optical sensors and electrochemical sensors. Among all of these sensors electrochemical sensors are most cost-effective, accurate and very good for continuous monitoring. They can be categorized into potentiometric, conductometric, amperometric and voltammetric sensors. Applications of different types of electrochemical sensors are briefly reviewed. Development of polymer membrane and conducting polymers are most important for fabrication of electrochemical sensors, which can analyse up to twenty two gases and vapours simultaneously. Some of the commercially used electrochemical sensors are described. For the determination of hydrogen sulfide an electrochemical sensor was developed. Teflon based conduction polymer membrane was treated with some electrolytes and then silver metal was deposited on one side of the membrane. Metal part side was exposed to gases and the other side was deposited on one side of the membrane metal part side was exposed to gasses and the other side was connected with two electrodes including reference and counter electrodes, whereas metal part acted as working electrode. This system can also me used for the analysis of their gases like SO/sub 2/ etc; because they react at different potentials with the metal to generate the signals. (author)

  7. A Method of Data Aggregation for Wearable Sensor Systems

    Directory of Open Access Journals (Sweden)

    Bo Shen

    2016-06-01

    Full Text Available Data aggregation has been considered as an effective way to decrease the data to be transferred in sensor networks. Particularly for wearable sensor systems, smaller battery has less energy, which makes energy conservation in data transmission more important. Nevertheless, wearable sensor systems usually have features like frequently dynamic changes of topologies and data over a large range, of which current aggregating methods can’t adapt to the demand. In this paper, we study the system composed of many wearable devices with sensors, such as the network of a tactical unit, and introduce an energy consumption-balanced method of data aggregation, named LDA-RT. In the proposed method, we develop a query algorithm based on the idea of ‘happened-before’ to construct a dynamic and energy-balancing routing tree. We also present a distributed data aggregating and sorting algorithm to execute top-k query and decrease the data that must be transferred among wearable devices. Combining these algorithms, LDA-RT tries to balance the energy consumptions for prolonging the lifetime of wearable sensor systems. Results of evaluation indicate that LDA-RT performs well in constructing routing trees and energy balances. It also outperforms the filter-based top-k monitoring approach in energy consumption, load balance, and the network’s lifetime, especially for highly dynamic data sources.

  8. Development of multivariate and multi-sensors systems for the measurement of atmospheric pollutants; Developpement de systemes multicapteurs et multivariables pour la mesure en continu de polluants atmospheriques

    Energy Technology Data Exchange (ETDEWEB)

    Kamionka, M.

    2005-04-15

    The purpose of this work was to measure the concentrations of atmospheric pollutants using sensors based on a metal semiconductor, tin dioxide. These sensors were tested with two reducing gases which are carbon monoxide (0-20 ppm), a mixture of hydrocarbons (0-10 ppm) and two oxidizing gases which is ozone (0-500 ppb) and nitrogen dioxide (0-500 ppb). One of the major disadvantages of this type of sensor is their lack of selectivity. Thus the association of several different sensors in multi-sensors system can be a solution. We have developed an automated test bench able to generate the suitable gas concentrations with a controlled humidity. It is then possible to carry out the acquisition of four devices (mono or multi-sensors) with cycles of temperature. We followed the evolution with their age of the performances of various sensors worked out by serigraphy. At the end of these experiments, we showed the interest of the use of some of these sensors for the evaluation of two major components of pollution: ozone and hydrocarbons. We could not prove that the capacitive effects and the effects of electrode were useful parameters for our application. Nevertheless, the measurement with increasing temperature give additional information. Thus, two multi-sensors systems were carried out. One associates three independent sensors and the other consists of three layers deposited on the same heating substrate. These three layers are initially identical (tin dioxide) but two are covered with a thin film, platinum for one and silica for the other. Moreover, one system made up of three commercial sensors used with a constant temperature was also tested. For each studied system, we built behavior models using a Neural Network algorithm. Whereas the models carried out using synthetic gas mixtures appeared unusable for measurements in real pollution, it was shown that a model calibrated directly with air bled in urban environment appears effective for the measurement of

  9. A portable readout system for silicon microstrip sensors

    International Nuclear Information System (INIS)

    Marco-Hernandez, Ricardo

    2010-01-01

    This system can measure the collected charge in one or two microstrip silicon sensors by reading out all the channels of the sensor(s), up to 256. The system is able to operate with different types (p- and n-type) and different sizes (up to 3 cm 2 ) of microstrip silicon sensors, both irradiated and non-irradiated. Heavily irradiated sensors will be used at the Super Large Hadron Collider, so this system can be used to research the performance of microstrip silicon sensors in conditions as similar as possible to the Super Large Hadron Collider operating conditions. The system has two main parts: a hardware part and a software part. The hardware part acquires the sensor signals either from external trigger inputs, in case of a radioactive source setup is used, or from a synchronised trigger output generated by the system, if a laser setup is used. The software controls the system and processes the data acquired from the sensors in order to store it in an adequate format. The main characteristics of the system are described. Results of measurements acquired with n- and p-type detectors using both the laser and the radioactive source setup are also presented and discussed.

  10. Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors.

    Science.gov (United States)

    Yurtman, Aras; Barshan, Billur

    2017-08-09

    Most activity recognition studies that employ wearable sensors assume that the sensors are attached at pre-determined positions and orientations that do not change over time. Since this is not the case in practice, it is of interest to develop wearable systems that operate invariantly to sensor position and orientation. We focus on invariance to sensor orientation and develop two alternative transformations to remove the effect of absolute sensor orientation from the raw sensor data. We test the proposed methodology in activity recognition with four state-of-the-art classifiers using five publicly available datasets containing various types of human activities acquired by different sensor configurations. While the ordinary activity recognition system cannot handle incorrectly oriented sensors, the proposed transformations allow the sensors to be worn at any orientation at a given position on the body, and achieve nearly the same activity recognition performance as the ordinary system for which the sensor units are not rotatable. The proposed techniques can be applied to existing wearable systems without much effort, by simply transforming the time-domain sensor data at the pre-processing stage.

  11. Irradiance sensors for solar systems

    Energy Technology Data Exchange (ETDEWEB)

    Storch, A.; Schindl, J. [Oesterreichisches Forschungs- und Pruefzentrum Arsenal GesmbH, Vienna (Austria). Business Unit Renewable Energy

    2004-07-01

    The presented project surveyed the quality of irradiance sensors used for applications in solar systems. By analysing an outdoor measurement, the accuracies of ten commercially available irradiance sensors were evaluated, comparing their results to those of a calibrated Kipp and Zonen pyranometer CM21. Furthermore, as a simple method for improving the quality of the results, for each sensor an irradiance-calibration was carried out and examined for its effectiveness. (orig.)

  12. The Radio Frequency Health Node Wireless Sensor System

    Science.gov (United States)

    Valencia, J. Emilio; Stanley, Priscilla C.; Mackey, Paul J.

    2009-01-01

    The Radio Frequency Health Node (RFHN) wireless sensor system differs from other wireless sensor systems in ways originally intended to enhance utility as an instrumentation system for a spacecraft. The RFHN can also be adapted to use in terrestrial applications in which there are requirements for operational flexibility and integrability into higher-level instrumentation and data acquisition systems. As shown in the figure, the heart of the system is the RFHN, which is a unit that passes commands and data between (1) one or more commercially available wireless sensor units (optionally, also including wired sensor units) and (2) command and data interfaces with a local control computer that may be part of the spacecraft or other engineering system in which the wireless sensor system is installed. In turn, the local control computer can be in radio or wire communication with a remote control computer that may be part of a higher-level system. The remote control computer, acting via the local control computer and the RFHN, cannot only monitor readout data from the sensor units but can also remotely configure (program or reprogram) the RFHN and the sensor units during operation. In a spacecraft application, the RFHN and the sensor units can also be configured more nearly directly, prior to launch, via a serial interface that includes an umbilical cable between the spacecraft and ground support equipment. In either case, the RFHN wireless sensor system has the flexibility to be configured, as required, with different numbers and types of sensors for different applications. The RFHN can be used to effect realtime transfer of data from, and commands to, the wireless sensor units. It can also store data for later retrieval by an external computer. The RFHN communicates with the wireless sensor units via a radio transceiver module. The modular design of the RFHN makes it possible to add radio transceiver modules as needed to accommodate additional sets of wireless sensor

  13. Automated wireless monitoring system for cable tension using smart sensors

    Science.gov (United States)

    Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jongwoong; Cho, Soojin; Spencer, Billie F.; Yun, Chung-Bang

    2013-04-01

    Cables are critical load carrying members of cable-stayed bridges; monitoring tension forces of the cables provides valuable information for SHM of the cable-stayed bridges. Monitoring systems for the cable tension can be efficiently realized using wireless smart sensors in conjunction with vibration-based cable tension estimation approaches. This study develops an automated cable tension monitoring system using MEMSIC's Imote2 smart sensors. An embedded data processing strategy is implemented on the Imote2-based wireless sensor network to calculate cable tensions using a vibration-based method, significantly reducing the wireless data transmission and associated power consumption. The autonomous operation of the monitoring system is achieved by AutoMonitor, a high-level coordinator application provided by the Illinois SHM Project Services Toolsuite. The monitoring system also features power harvesting enabled by solar panels attached to each sensor node and AutoMonitor for charging control. The proposed wireless system has been deployed on the Jindo Bridge, a cable-stayed bridge located in South Korea. Tension forces are autonomously monitored for 12 cables in the east, land side of the bridge, proving the validity and potential of the presented tension monitoring system for real-world applications.

  14. Development of Light Powered Sensor Networks for Thermal Comfort Measurement

    Directory of Open Access Journals (Sweden)

    Dasheng Lee

    2008-10-01

    Full Text Available Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy.

  15. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chunrui [Univ. of Texas, San Antonio, TX (United States); Enriquez, Erik [Univ. of Texas, San Antonio, TX (United States); Wang, Haibing [Univ. of Texas, San Antonio, TX (United States); Xu, Xing [Univ. of Texas, San Antonio, TX (United States); Bao, Shangyong [Univ. of Texas, San Antonio, TX (United States); Collins, Gregory [Univ. of Texas, San Antonio, TX (United States)

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo2O5+d (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  16. Tablet PC Enabled Body Sensor System for Rural Telehealth Applications

    Directory of Open Access Journals (Sweden)

    Nitha V. Panicker

    2016-01-01

    Full Text Available Telehealth systems benefit from the rapid growth of mobile communication technology for measuring physiological signals. Development and validation of a tablet PC enabled noninvasive body sensor system for rural telehealth application are discussed in this paper. This system includes real time continuous collection of physiological parameters (blood pressure, pulse rate, and temperature and fall detection of a patient with the help of a body sensor unit and wireless transmission of the acquired information to a tablet PC handled by the medical staff in a Primary Health Center (PHC. Abnormal conditions are automatically identified and alert messages are given to the medical officer in real time. Clinical validation is performed in a real environment and found to be successful. Bland-Altman analysis is carried out to validate the wrist blood pressure sensor used. The system works well for all measurements.

  17. The tsunami service bus, an integration platform for heterogeneous sensor systems

    Science.gov (United States)

    Haener, R.; Waechter, J.; Kriegel, U.; Fleischer, J.; Mueller, S.

    2009-04-01

    1. INTRODUCTION Early warning systems are long living and evolving: New sensor-systems and -types may be developed and deployed, sensors will be replaced or redeployed on other locations and the functionality of analyzing software will be improved. To ensure a continuous operability of those systems their architecture must be evolution-enabled. From a computer science point of view an evolution-enabled architecture must fulfill following criteria: • Encapsulation of and functionality on data in standardized services. Access to proprietary sensor data is only possible via these services. • Loose coupling of system constituents which easily can be achieved by implementing standardized interfaces. • Location transparency of services what means that services can be provided everywhere. • Separation of concerns that means breaking a system into distinct features which overlap in functionality as little as possible. A Service Oriented Architecture (SOA) as e. g. realized in the German Indonesian Tsunami Early Warning System (GITEWS) and the advantages of functional integration on the basis of services described below adopt these criteria best. 2. SENSOR INTEGRATION Integration of data from (distributed) data sources is just a standard task in computer science. From few well known solution patterns, taking into account performance and security requirements of early warning systems only functional integration should be considered. Precondition for this is that systems are realized compliant to SOA patterns. Functionality is realized in form of dedicated components communicating via a service infrastructure. These components provide their functionality in form of services via standardized and published interfaces which could be used to access data maintained in - and functionality provided by dedicated components. Functional integration replaces the tight coupling at data level by a dependency on loosely coupled services. If the interfaces of the service providing

  18. Pollution Monitoring System Using Gas Sensor based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    M. Udin Harun Al Rasyid

    2016-01-01

    Full Text Available Carbon monoxide (CO and carbon dioxide (CO2 gases are classified as colorless and odorless gas so we need special tools to monitor their concentration in the air. Concentration of air pollution of CO and CO2 that are high in the air will give serious effects for health status. CO is a poisonous gas that damages the circulation of oxygen in the blood when inhaled, while CO2 is one of the gases that causes global warming. In this paper, we developed an integrated pollution monitoring (IPOM system to monitor the concentration of air pollution. This research implemented three sensor nodes (end-device which each node contains CO and CO2 sensors on the gas sensors board to perform sensing from the environment. Furthermore, the data taken from the environment by the sensor will be sent to the meshlium gateway using IEEE 802.15.4 Zigbee communications and processed by the gateway in order to be sent to the computer server. The data is stored in meshlium gateway using MySQL database as a backup, and it will be synchronized to the MySQL database in the computer server. We provide services for public to access the information in database server through a desktop and website application.

  19. Optimal sensor configuration for complex systems

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    configuration is based on maximizing the overall sensor response while minimizing the correlation among the sensor outputs. The procedure for sensor configuration is based on simultaneous perturbation stochastic approximation (SPSA). SPSA avoids the need for detailed modeling of the sensor response by simply......Considers the problem of sensor configuration for complex systems. Our approach involves definition of an appropriate optimality criterion or performance measure, and description of an efficient and practical algorithm for achieving the optimality objective. The criterion for optimal sensor...... relying on observed responses as obtained by limited experimentation with test sensor configurations. We illustrate the approach with the optimal placement of acoustic sensors for signal detection in structures. This includes both a computer simulation study for an aluminum plate, and real...

  20. Portable DMFC system with methanol sensor-less control

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.Y.; Liu, D.H.; Huang, C.L.; Chang, C.L. [Institute of Nuclear Energy Research (INER), No. 1000, Wunhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546 (China)

    2007-05-15

    This work develops a prototype 20 W portable DMFC by system integration of stack, condenser, methanol sensor-less control and start-up characteristics. The effects of these key components and control schemes on the performance are also discussed. To expedite the use of portable DMFC in electronic applications, the system utilizes a novel methanol sensor-less control method, providing improved fuel efficiency, durability, miniaturization and cost reduction. The operating characteristics of the DMFC stack are applied to control the fuel ejection time and period, enabling the system to continue operating even when the MEAs of the stack are deteriorated. The portable system is also designed with several features including water balance and quick start-up (in 5 min). Notably, the proposed system using methanol sensor-less control with injection of pure methanol can power the DVD player and notebook PC. The system specific energy and energy density following three days of operation are 362 Wh kg{sup -1} and 335 Wh L{sup -1}, respectively, which are better than those of lithium batteries ({proportional_to}150 Wh kg{sup -1} and {proportional_to}250 Wh L{sup -}). This good energy storage feature demonstrates that the portable DMFC is likely to be valuable in computer, communication and consumer electronic (3C) markets. (author)

  1. Developing sensor-driven robots for hazardous environments

    International Nuclear Information System (INIS)

    Trivedi, M.M.; Gonzalez, R.C.; Abidi, M.A.

    1987-01-01

    Advancements in robotic technology are sought to provide enhanced personnel safety and reduced costs of operation associated with nuclear power plant manufacture, construction, maintenance, operation, and decommissioning. The authors describe main characteristics of advanced robotic systems for such applications and suggest utilization of sensor-driven robots. Research efforts described in the paper are directed towards developing robotic systems for automatic inspection and manipulation of various tasks associated with a test panel mounted with a variety of switches, controls, displays, meters, and valves

  2. Experimental Investigations of a Precision Sensor for an Automatic Weapons Stabilizer System

    Directory of Open Access Journals (Sweden)

    Igor Korobiichuk

    2016-12-01

    Full Text Available This paper presents the results of experimental investigations of a precision sensor for an automatic weapons stabilizer system. It also describes the experimental equipment used and the structure of the developed sensor. A weapons stabilizer is designed for automatic guidance of an armament unit in the horizontal and vertical planes when firing at ground and air targets that are quickly maneuvering, and at lower speeds when firing anti-tank missiles, as well as the bypass of construction elements by the armament unit, and the automatic tracking of moving targets when interacting with a fire control system. The results of experimental investigations have shown that the error of the precision sensor developed on the basis of a piezoelectric element is 6 × 10−10 m/s2 under quasi-static conditions, and ~10−5 m/s2 for mobile use. This paper defines metrological and calibration properties of the developed sensor.

  3. Development of Green Box sensor module technologies for rail applications

    Energy Technology Data Exchange (ETDEWEB)

    Rey, D.; Breeding, R. [Sandia National Labs., Albuquerque, NM (United States); Hogan, J.; Mitchell, J. [Sandia National Labs., Livermore, CA (United States); McKeen, R.G. [New Mexico Engineering Research Inst., Albuquerque, NM (United States); Brogan, J. [New Mexico Univ., Albuquerque, NM (United States)

    1996-04-01

    Results of a joint Sandia National Laboratories, University of New Mexico, and New Mexico Engineering Research Institute project to investigate an architecture implementing real-time monitoring and tracking technologies in the railroad industry is presented. The work, supported by the New Mexico State Transportation Authority, examines a family of smart sensor products that can be tailored to the specific needs of the user. The concept uses a strap-on sensor package, designed as a value-added component, integrated into existing industry systems and standards. Advances in sensor microelectronics and digital signal processing permit us to produce a class of smart sensors that interpret raw data and transmit inferred information. As applied to freight trains, the sensors` primary purpose is to minimize operating costs by decreasing losses due to theft, and by reducing the number, severity, and consequence of hazardous materials incidents. The system would be capable of numerous activities including: monitoring cargo integrity, controlling system braking and vehicle acceleration, recognizing component failure conditions, and logging sensor data. A cost-benefit analysis examines the loss of revenue resulting from theft, hazardous materials incidents, and accidents. Customer survey data are combined with the cost benefit analysis and used to guide the product requirements definition for a series of specific applications. A common electrical architecture is developed to support the product line and permit rapid product realization. Results of a concept validation, which used commercial hardware and was conducted on a revenue-generating train, are also reported.

  4. System of the sensor failure detection and isolation system using Kalman filter

    International Nuclear Information System (INIS)

    Assumpcao Filho, E.O.; Nakata, H.

    1991-01-01

    The present work work summarizes the development of the sensor failure detection and isolation system (FDIS) suitable to be implemented in nuclear plant control systems. The methodology is based on the extended Kalman filter applied to a PWR pressurizer simplified model. The simulation of the most representative failure types showed the great reliability and fast response capability of the FDIS developed allowing the sizable savings in computational and economic expenditures. (author)

  5. Integrated cable vibration control system using wireless sensors

    Science.gov (United States)

    Jeong, Seunghoo; Cho, Soojin; Sim, Sung-Han

    2017-04-01

    As the number of long-span bridges is increasing worldwide, maintaining their structural integrity and safety become an important issue. Because the stay cable is a critical member in most long-span bridges and vulnerable to wind-induced vibrations, vibration mitigation has been of interest both in academia and practice. While active and semi-active control schemes are known to be quite effective in vibration reduction compared to the passive control, requirements for equipment including data acquisition, control devices, and power supply prevent a widespread adoption in real-world applications. This study develops an integrated system for vibration control of stay-cables using wireless sensors implementing a semi-active control. Arduino, a low-cost single board system, is employed with a MEMS digital accelerometer and a Zigbee wireless communication module to build the wireless sensor. The magneto-rheological (MR) damper is selected as a damping device, controlled by an optimal control algorithm implemented on the Arduino sensing system. The developed integrated system is tested in a laboratory environment using a cable to demonstrate the effectiveness of the proposed system on vibration reduction. The proposed system is shown to reduce the vibration of stay-cables with low operating power effectively.

  6. Sensor system for fuel transport vehicle

    Science.gov (United States)

    Earl, Dennis Duncan; McIntyre, Timothy J.; West, David L.

    2016-03-22

    An exemplary sensor system for a fuel transport vehicle can comprise a fuel marker sensor positioned between a fuel storage chamber of the vehicle and an access valve for the fuel storage chamber of the vehicle. The fuel marker sensor can be configured to measure one or more characteristics of one or more fuel markers present in the fuel adjacent the sensor, such as when the marked fuel is unloaded at a retail station. The one or more characteristics can comprise concentration and/or identity of the one or more fuel markers in the fuel. Based on the measured characteristics of the one or more fuel markers, the sensor system can identify the fuel and/or can determine whether the fuel has been adulterated after the marked fuel was last measured, such as when the marked fuel was loaded into the vehicle.

  7. Unobtrusive measurement of indoor energy expenditure using an infrared sensor-based activity monitoring system.

    Science.gov (United States)

    Hwang, Bosun; Han, Jonghee; Choi, Jong Min; Park, Kwang Suk

    2008-11-01

    The purpose of this study was to develop an unobtrusive energy expenditure (EE) measurement system using an infrared (IR) sensor-based activity monitoring system to measure indoor activities and to estimate individual quantitative EE. IR-sensor activation counts were measured with a Bluetooth-based monitoring system and the standard EE was calculated using an established regression equation. Ten male subjects participated in the experiment and three different EE measurement systems (gas analyzer, accelerometer, IR sensor) were used simultaneously in order to determine the regression equation and evaluate the performance. As a standard measurement, oxygen consumption was simultaneously measured by a portable metabolic system (Metamax 3X, Cortex, Germany). A single room experiment was performed to develop a regression model of the standard EE measurement from the proposed IR sensor-based measurement system. In addition, correlation and regression analyses were done to compare the performance of the IR system with that of the Actigraph system. We determined that our proposed IR-based EE measurement system shows a similar correlation to the Actigraph system with the standard measurement system.

  8. Fusion of Images from Dissimilar Sensor Systems

    National Research Council Canada - National Science Library

    Chow, Khin

    2004-01-01

    Different sensors exploit different regions of the electromagnetic spectrum; therefore a multi-sensor image fusion system can take full advantage of the complementary capabilities of individual sensors in the suit...

  9. Design and Evaluation of a Wireless Sensor Network Based Aircraft Strength Testing System

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system. PMID:22408521

  10. Design and evaluation of a wireless sensor network based aircraft strength testing system.

    Science.gov (United States)

    Wu, Jian; Yuan, Shenfang; Zhou, Genyuan; Ji, Sai; Wang, Zilong; Wang, Yang

    2009-01-01

    The verification of aerospace structures, including full-scale fatigue and static test programs, is essential for structure strength design and evaluation. However, the current overall ground strength testing systems employ a large number of wires for communication among sensors and data acquisition facilities. The centralized data processing makes test programs lack efficiency and intelligence. Wireless sensor network (WSN) technology might be expected to address the limitations of cable-based aeronautical ground testing systems. This paper presents a wireless sensor network based aircraft strength testing (AST) system design and its evaluation on a real aircraft specimen. In this paper, a miniature, high-precision, and shock-proof wireless sensor node is designed for multi-channel strain gauge signal conditioning and monitoring. A cluster-star network topology protocol and application layer interface are designed in detail. To verify the functionality of the designed wireless sensor network for strength testing capability, a multi-point WSN based AST system is developed for static testing of a real aircraft undercarriage. Based on the designed wireless sensor nodes, the wireless sensor network is deployed to gather, process, and transmit strain gauge signals and monitor results under different static test loads. This paper shows the efficiency of the wireless sensor network based AST system, compared to a conventional AST system.

  11. NASA's Automated Rendezvous and Docking/Capture Sensor Development and Its Applicability to the GER

    Science.gov (United States)

    Hinkel, Heather; Cryan, Scott; DSouza, Christopher; Strube, Matthew

    2014-01-01

    This paper will address how a common Automated Rendezvous and Docking/Capture (AR&D/C) sensor suite can support Global Exploration Roadmap (GER) missions, and discuss how the model of common capability development to support multiple missions can enable system capability level partnerships and further GER objectives. NASA has initiated efforts to develop AR&D/C sensors, that are directly applicable to GER. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion crew vehicle. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a three-dimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build time instead of at design time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal nonrecurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. NASA's AR&D/C sensor development path could benefit the International Exploration Coordination Group (ISECG) and support the GER mission scenario by providing a common sensor suite upon which GER objectives could be achieved while

  12. EMI free fiber optic strain sensor system for TFTR

    International Nuclear Information System (INIS)

    Szuchy, N.C.; Caserta, A.L.; Ferrara, A.A.; Squires, R.W.; Sredniawski, J.J.

    1983-01-01

    In certain applications, structural components are subjected to loadings in high electromagnetic interference (EMI) environments. The mechanical responses of these components must be monitored under rapidly varying electromagnetic fields. A Fiber Optic Strain Sensor System (FOSSS) is an acceptable solution since it is immune to EMI. Grumman Aerospace Corporation initiated the development of a FOSSS that can be used in high EMI situations where resistive/electronic-based strain measurement systems would not be effective, such as on the Tokamak Fusion Test Reactor (TFTR) during plasma disruption. Tests have indicated that because of their increased sensitivity due to the size of the fiber optic (FO) transducer (1-in. 2 ) and responsiveness due to the areal changes of the FO sensor, the strain tracking capability of FO sensors are excellent. For the TFTR application a jacketed 400-micron fiber capable of operating in a 250 0 C temperature environment was used. Continuous 30 foot lengths of high-temperature FO cables were affixed to 304 LN SS tabs, forming an integrated strain sensor and pigtail unit. By fusion splicing 400-micron room temperature fibers to the pigtails, the required runs (approximately 200 feet) to the TFTR data acquisition room were made with minimum coupling attenuation. Development methodology is discussed and test data presented

  13. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-01-01

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  14. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  15. Battery management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2016-02-23

    A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.

  16. Optimal sensor configuration for complex systems

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    1998-01-01

    . The procedure for sensor configuration is based on the simultaneous perturbation stochastic approximation (SPSA) algorithm. SPSA avoids the need for detailed modeling of the sensor response by simply relying on the observed responses obtained by limited experimentation with test sensor configurations. We......The paper considers the problem of sensor configuration for complex systems with the aim of maximizing the useful information about certain quantities of interest. Our approach involves: 1) definition of an appropriate optimality criterion or performance measure; and 2) description of an efficient...... and practical algorithm for achieving the optimality objective. The criterion for optimal sensor configuration is based on maximizing the overall sensor response while minimizing the correlation among the sensor outputs, so as to minimize the redundant information being provided by the multiple sensors...

  17. Everything is Data – Overview of Modular System of Sensors for Museum Environment

    Directory of Open Access Journals (Sweden)

    J. Valach

    2015-08-01

    Full Text Available The main aim of project nearing completion was to develop a modular and scalable system of sensors for monitoring of internal environment of museum exhibitions and depositories. The sensors vary according to parameters being monitored and at the same time also according to required energy autonomy, processing capability and bandwidth requirements. Sensors developed can be divided into three groups: environmental sensors, biosensors and sensors of vibrations. Data acquired by the sensors are archived and stored in open format. Metadata stored alongside true numerical data from measurement, represent assurance of future computer readability in data mining application. Long continuous series of data can provide sufficient data for acquisition of dose-response function.

  18. Neuromorphic vision sensors and preprocessors in system applications

    Science.gov (United States)

    Kramer, Joerg; Indiveri, Giacomo

    1998-09-01

    A partial review of neuromorphic vision sensors that are suitable for use in autonomous systems is presented. Interfaces are being developed to multiplex the high- dimensional output signals of arrays of such sensors and to communicate them in standard formats to off-chip devices for higher-level processing, actuation, storage and display. Alternatively, on-chip processing stages may be implemented to extract sparse image parameters, thereby obviating the need for multiplexing. Autonomous robots are used to test neuromorphic vision chips in real-world environments and to explore the possibilities of data fusion from different sensing modalities. Examples of autonomous mobile systems that use neuromorphic vision chips for line tracking and optical flow matching are described.

  19. The development of a solid-state hydrogen sensor for rocket engine leakage detection

    Science.gov (United States)

    Liu, Chung-Chiun

    1994-01-01

    Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.

  20. The development of a solid-state hydrogen sensor for rocket engine leakage detection

    Science.gov (United States)

    Liu, Chung-Chiun

    Hydrogen propellant leakage poses significant operational problems in the rocket propulsion industry as well as for space exploratory applications. Vigorous efforts have been devoted to minimizing hydrogen leakage in assembly, test, and launch operations related to hydrogen propellant. The objective has been to reduce the operational cost of assembling and maintaining hydrogen delivery systems. Specifically, efforts have been made to develop a hydrogen leak detection system for point-contact measurement. Under the auspices of Lewis Research Center, the Electronics Design Center at Case Western Reserve University, Cleveland, Ohio, has undertaken the development of a point-contact hydrogen gas sensor with potential applications to the hydrogen propellant industry. We envision a sensor array consisting of numbers of discrete hydrogen sensors that can be located in potential leak sites. Silicon-based microfabrication and micromachining techniques are used in the fabrication of these sensor prototypes. Evaluations of the sensor are carried out in-house at Case Western Reserve University as well as at Lewis Research Center and GenCorp Aerojet, Sacramento, California. The hydrogen gas sensor is not only applicable in a hydrogen propulsion system, but also usable in many other civilian and industrial settings. This includes vehicles or facility use, or in the production of hydrogen gas. Dual space and commercial uses of these point-contacted hydrogen sensors are feasible and will directly meet the needs and objectives of NASA as well as various industrial segments.

  1. Miniature fiber Bragg grating sensor interrogator (FBG-Transceiver) system

    Science.gov (United States)

    Mendoza, Edgar A.; Kempen, Cornelia; Lopatin, Craig

    2007-04-01

    This paper describes recent progress conducted towards the development of a miniature fiber Bragg grating sensor interrogator (FBG-Transceiver TM) system based on multi-channel integrated optic sensor (InOSense TM) microchip technology. The hybrid InOSense TM microchip technology enables the integration of all of the functionalities, both passive and active, of conventional bench top FBG sensor interrogator systems, packaged in a miniaturized, low power operation, 2-cm x 5-cm package suitable for the long-term structural health monitoring in applications where size, weight, and power are critical for operation. The FBG-Transceiver system uses active optoelectronic components monolithically integrated to the InOSense TM microchip, a microprocessor controlled signal processing electronics board capable of processing the FBG sensors signals related to stress-strain and temperature as well as vibration and acoustics. The FBG-Transceiver TM system represents a new, reliable, highly robust technology that can be used to accurately monitor the status of an array of distributed fiber optic Bragg grating sensors installed in critical infrastructures. Its miniature package, low power operation, and state-of-the-art data communications architecture, all at a very affordable price makes it a very attractive solution for a large number of SHM/NDI applications in aerospace, naval and maritime industry, civil structures like bridges, buildings and dams, the oil and chemical industry, and for homeland security applications. The miniature, cost-efficient FBG-Transceiver TM system is poised to revolutionize the field of structural health monitoring and nondestructive inspection market. The sponsor of this program is NAVAIR under a DOD SBIR contract.

  2. SMART CITIES INTELLIGENCE SYSTEM (SMACiSYS) INTEGRATING SENSOR WEB WITH SPATIAL DATA INFRASTRUCTURES (SENSDI)

    OpenAIRE

    D. Bhattacharya; M. Painho

    2017-01-01

    The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS) with sensor-web access (SENSDI) utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists...

  3. Adaptive Home System Using Wireless Sensor Network And Multi Agent System

    OpenAIRE

    Jayarani Kamble; Prof.Nandini Dhole

    2014-01-01

    Smart Home is an emerging technology growing continuously which includes number of new technologies which helps to improve human’s quality of living. This paper proposes an adaptive home system for optimum utilization of power, through Artificial Intelligence and Wireless Sensor network. Artificial Intelligence is a technology for developing adaptive system that can perceive the enviornmrnt, learn from the environment and can make decision using Rule based system.Zigbee is a w...

  4. Aerial measuring system sensor modeling

    International Nuclear Information System (INIS)

    Detwiler, Rebecca

    2002-01-01

    The AMS fixed-wing and rotary-wing systems are critical National Nuclear Security Administration (NNSA) Emergency Response assets. This project is principally focused on the characterization of the sensors utilized with these systems via radiation transport calculations. The Monte Carlo N-Particle code (MCNP) which has been developed at Los Alamos National Laboratory was used to model the detector response of the AMS fixed wing and helicopter systems. To validate the calculations, benchmark measurements were made for simple source-detector configurations. The fixed-wing system is an important tool in response to incidents involving the release of mixed fission products (a commercial power reactor release), the threat or actual explosion of a Radiological Dispersal Device, and the loss or theft of a large industrial source (a radiography source). Calculations modeled the spectral response for the sensors contained, a 3-element NaI detector pod and HpGe detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photo-peak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 C i/m2

  5. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  6. Development of smart active layer sensor

    International Nuclear Information System (INIS)

    Lee, Young Sup; Lee, Sang Il; Yoon, Dong Jin; Kwon, Jae Hwa

    2004-01-01

    Structural health monitoring (SHM) is a new technology that will be increasingly applied at the industrial field as a potential approach to improve cost and convenience of structural inspection. Recently, the development of smart sensor is very active for real application. This study has focused on preparation and application study of SAL sensor. In order to detect elastic wave, smart piezoelectric sensor, SAL, is fabricated by using a piezoelectric element, shielding layer and protection layer. This protection layer plays an important role in a patched network of distributed piezoelectric sensor and shielding treatment. Four types of SAL sensor are designed/prepared/tested, and these details will be discussed in the paper. In this study, SAL sensor can be feasibly applied to perform structural health monitoring and to detect damage sources which result in elastic waves.

  7. Active Sensor Configuration Validation for Refrigeration Systems

    DEFF Research Database (Denmark)

    Hovgaard, Tobias Gybel; Blanke, Mogens; Niemann, Hans Henrik

    2010-01-01

    -diagnosis methods falling short on this problem, this paper suggests an active diagnosis procedure to isolate sensor faults at the commissioning stage, before normal operation has started. Using statistical methods, residuals are evaluated versus multiple hypothesis models in a minimization process to uniquely......Major faults in the commissioning phase of refrigeration systems are caused by defects related to sensors. With a number of similar sensors available that do not differ by type but only by spatial location in the plant, interchange of sensors is a common defect. With sensors being used quite...... differently by the control system, fault-finding is difficult in practice and defects are regularly causing commissioning delays at considerable expense. Validation and handling of faults in the sensor configuration are therefore essential to cut costs during commissioning. With passive fault...

  8. Printable low-cost sensor systems for healthcare smart textiles

    Science.gov (United States)

    Rai, Pratyush; Kumar, Prashanth S.; Oh, Sechang; Kwon, Hyeokjun; Mathur, Gyanesh N.; Varadan, Vijay K.

    2011-04-01

    Smart textiles-based wearable health monitoring systems (ST-HMS) have been presented as elegant solutions to the requirements of individuals across a wide range of ages. They can be used to monitor young or elderly recuperating /convalescent patients either in hospital or at home, or they can be used by young athletes to monitor important physiological parameters to better design their training or fitness program. Business and academic interests, all over the world, have fueled a great deal of work in the development of this technology since 1990. However, two important impediments to the development of ST-HMS are:-integration of flexible electrodes, flexible sensors, signal conditioning circuits and data logging or wireless transmission devices into a seamless garment and a means to mass manufacture the same, while keeping the costs low. Roll-to-roll printing and screen printing are two low cost methods for large scale manufacturing on flexible substrates and can be extended to textiles as well. These two methods are, currently, best suited for planar structures. The sensors, integrated with wireless telemetry, facilitate development of a ST-HMS that allows for unobtrusive health monitoring. In this paper, we present our results with planar screen printable sensors based on conductive inks which can be used to monitor EKG, abdominal respiration effort, blood pressure, pulse rate and body temperature. The sensor systems were calibrated, and tested for sensitivity, reliability and robustness to ensure reuse after washing cycles.

  9. Development of High Temperature SiC Based Hydrogen/Hydrocarbon Sensors with Bond Pads for Packaging

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Chen, Liangyu; Biagi-Labiosa, Azlin M.; Ward, Benjamin J.; Lukco, Dorothy; Gonzalez, Jose M., III; Lampard, Peter S.; Artale, Michael A.; Hampton, Christopher L.

    2011-01-01

    This paper describes efforts towards the transition of existing high temperature hydrogen and hydrocarbon Schottky diode sensor elements to packaged sensor structures that can be integrated into a testing system. Sensor modifications and the technical challenges involved are discussed. Testing of the sensors at 500 C or above is also presented along with plans for future development.

  10. Intelligence Control System for Landfills Based on Wireless Sensor Network

    Science.gov (United States)

    Zhang, Qian; Huang, Chuan; Gong, Jian

    2018-06-01

    This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG) exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.

  11. Sensor Systems Collect Critical Aerodynamics Data

    Science.gov (United States)

    2010-01-01

    With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.

  12. A basic system architecture for sensor data diffusion of environment sensors for intelligent cruise control systems; Eine Basis-Systemarchitektur zur Sensordatenfusion von Umfeldsensoren fuer Fahrerassistenzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Darms, M.

    2007-07-01

    The design of the system architecture for sensor data diffusion at the beginning of the development process has significant influence on the cost. With a view to intelligent cruise control systems, the author investigated general assumptions concerning data association and data filtering for sensor data diffusion of environment sensors which must be considered when designing an architecture or may be considered for optimisation. The validity of the assumption is illustrated by simulations of adaptive speed control and time-to-collision calculations as well as on the basis of available literature. A basic sytem architecture is presented as a precursor of the final architecture which is based on these assumptions. Their applicability is proved by implementation in the PRORETA project. The author's work provides a validated basis for architects of a serial system architecture enabling them to design and implement their ultimate systems. (orig.)

  13. Sensor system for multi-point monitoring using bending loss of single mode optical fiber

    International Nuclear Information System (INIS)

    Kim, Heon Young; Kim, Dae Hyun

    2015-01-01

    Applications of smart sensors have been extended to safety systems in the aerospace, transportation and civil engineering fields. In particular, structural health monitoring techniques using smart sensors have gradually become necessary and have been developed to prevent dangers to human life and damage to assets. Generally, smart sensors are based on electro-magnets and have several weaknesses, including electro-magnetic interference and distortion. Therefore, fiber optic sensors are an outstanding alternative to overcome the weaknesses of electro-magnetic sensors. However, they require expensive devices and complex systems. This paper proposes a new, affordable and simple sensor system that uses a single fiber to monitor pressures at multiple-points. Moreover, a prototype of the sensor system was manufactured and tested for a feasibility study. Based on the results of this experimental test, a relationship was carefully observed between the bend loss conditions and light-intensity. As a result, it was shown that impacts at multiple-points could be monitored.

  14. A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology

    Science.gov (United States)

    Huang, Che-Wei; Huang, Yu-Jie; Lu, Shey-Shi; Lin, Chih-Ting

    2012-01-01

    A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC) architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm) integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK) wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH) range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.

  15. Optical seismic sensor systems and methods

    Science.gov (United States)

    Beal, A. Craig; Cummings, Malcolm E.; Zavriyev, Anton; Christensen, Caleb A.; Lee, Keun

    2015-12-08

    Disclosed is an optical seismic sensor system for measuring seismic events in a geological formation, including a surface unit for generating and processing an optical signal, and a sensor device optically connected to the surface unit for receiving the optical signal over an optical conduit. The sensor device includes at least one sensor head for sensing a seismic disturbance from at least one direction during a deployment of the sensor device within a borehole of the geological formation. The sensor head includes a frame and a reference mass attached to the frame via at least one flexure, such that movement of the reference mass relative to the frame is constrained to a single predetermined path.

  16. Enhanced Bank of Kalman Filters Developed and Demonstrated for In-Flight Aircraft Engine Sensor Fault Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2005-01-01

    In-flight sensor fault detection and isolation (FDI) is critical to maintaining reliable engine operation during flight. The aircraft engine control system, which computes control commands on the basis of sensor measurements, operates the propulsion systems at the demanded conditions. Any undetected sensor faults, therefore, may cause the control system to drive the engine into an undesirable operating condition. It is critical to detect and isolate failed sensors as soon as possible so that such scenarios can be avoided. A challenging issue in developing reliable sensor FDI systems is to make them robust to changes in engine operating characteristics due to degradation with usage and other faults that can occur during flight. A sensor FDI system that cannot appropriately account for such scenarios may result in false alarms, missed detections, or misclassifications when such faults do occur. To address this issue, an enhanced bank of Kalman filters was developed, and its performance and robustness were demonstrated in a simulation environment. The bank of filters is composed of m + 1 Kalman filters, where m is the number of sensors being used by the control system and, thus, in need of monitoring. Each Kalman filter is designed on the basis of a unique fault hypothesis so that it will be able to maintain its performance if a particular fault scenario, hypothesized by that particular filter, takes place.

  17. Sensor Arrays and Electronic Tongue Systems

    Directory of Open Access Journals (Sweden)

    Manel del Valle

    2012-01-01

    Full Text Available This paper describes recent work performed with electronic tongue systems utilizing electrochemical sensors. The electronic tongues concept is a new trend in sensors that uses arrays of sensors together with chemometric tools to unravel the complex information generated. Initial contributions and also the most used variant employ conventional ion selective electrodes, in which it is named potentiometric electronic tongue. The second important variant is the one that employs voltammetry for its operation. As chemometric processing tool, the use of artificial neural networks as the preferred data processing variant will be described. The use of the sensor arrays inserted in flow injection or sequential injection systems will exemplify attempts made to automate the operation of electronic tongues. Significant use of biosensors, mainly enzyme-based, to form what is already named bioelectronic tongue will be also presented. Application examples will be illustrated with selected study cases from the Sensors and Biosensors Group at the Autonomous University of Barcelona.

  18. Integrated Instrumentation and Sensor Systems Enabling Condition-Based Maintenance of Aerospace Equipment

    Directory of Open Access Journals (Sweden)

    Richard C. Millar

    2012-01-01

    Full Text Available The objective of the work reported herein was to use a systems engineering approach to guide development of integrated instrumentation/sensor systems (IISS incorporating communications, interconnections, and signal acquisition. These require enhanced suitability and effectiveness for diagnostics and health management of aerospace equipment governed by the principles of Condition-based maintenance (CBM. It is concluded that the systems engineering approach to IISS definition provided clear benefits in identifying overall system requirements and an architectural framework for categorizing and evaluating alternative architectures, relative to a bottom up focus on sensor technology blind to system level user needs. CBM IISS imperatives identified include factors such as tolerance of the bulk of aerospace equipment operational environments, low intrusiveness, rapid reconfiguration, and affordable life cycle costs. The functional features identified include interrogation of the variety of sensor types and interfaces common in aerospace equipment applications over multiplexed communication media with flexibility to allow rapid system reconfiguration to adapt to evolving sensor needs. This implies standardized interfaces at the sensor location (preferably to open standards, reduced wire/connector pin count in harnesses (or their elimination through use of wireless communications.

  19. Multi-Sensor Calibration of Low-Cost Magnetic, Angular Rate and Gravity Systems

    Directory of Open Access Journals (Sweden)

    Markus Lüken

    2015-10-01

    Full Text Available We present a new calibration procedure for low-cost nine degrees-of-freedom (9DOF magnetic, angular rate and gravity (MARG sensor systems, which relies on a calibration cube, a reference table and a body sensor network (BSN. The 9DOF MARG sensor is part of our recently-developed “Integrated Posture and Activity Network by Medit Aachen” (IPANEMA BSN. The advantage of this new approach is the use of the calibration cube, which allows for easy integration of two sensor nodes of the IPANEMA BSN. One 9DOF MARG sensor node is thereby used for calibration; the second 9DOF MARG sensor node is used for reference measurements. A novel algorithm uses these measurements to further improve the performance of the calibration procedure by processing arbitrarily-executed motions. In addition, the calibration routine can be used in an alignment procedure to minimize errors in the orientation between the 9DOF MARG sensor system and a motion capture inertial reference system. A two-stage experimental study is conducted to underline the performance of our calibration procedure. In both stages of the proposed calibration procedure, the BSN data, as well as reference tracking data are recorded. In the first stage, the mean values of all sensor outputs are determined as the absolute measurement offset to minimize integration errors in the derived movement model of the corresponding body segment. The second stage deals with the dynamic characteristics of the measurement system where the dynamic deviation of the sensor output compared to a reference system is Sensors 2015, 15 25920 corrected. In practical validation experiments, this procedure showed promising results with a maximum RMS error of 3.89°.

  20. Multi-sensor calibration of low-cost magnetic, angular rate and gravity systems.

    Science.gov (United States)

    Lüken, Markus; Misgeld, Berno J E; Rüschen, Daniel; Leonhardt, Steffen

    2015-10-13

    We present a new calibration procedure for low-cost nine degrees-of-freedom (9DOF) magnetic, angular rate and gravity (MARG) sensor systems, which relies on a calibration cube, a reference table and a body sensor network (BSN). The 9DOF MARG sensor is part of our recently-developed "Integrated Posture and Activity Network by Medit Aachen" (IPANEMA) BSN. The advantage of this new approach is the use of the calibration cube, which allows for easy integration of two sensor nodes of the IPANEMA BSN. One 9DOF MARG sensor node is thereby used for calibration; the second 9DOF MARG sensor node is used for reference measurements. A novel algorithm uses these measurements to further improve the performance of the calibration procedure by processing arbitrarily-executed motions. In addition, the calibration routine can be used in an alignment procedure to minimize errors in the orientation between the 9DOF MARG sensor system and a motion capture inertial reference system. A two-stage experimental study is conducted to underline the performance of our calibration procedure. In both stages of the proposed calibration procedure, the BSN data, as well as reference tracking data are recorded. In the first stage, the mean values of all sensor outputs are determined as the absolute measurement offset to minimize integration errors in the derived movement model of the corresponding body segment. The second stage deals with the dynamic characteristics of the measurement system where the dynamic deviation of the sensor output compared to a reference system is Sensors 2015, 15 25920 corrected. In practical validation experiments, this procedure showed promising results with a maximum RMS error of 3.89°.

  1. Design and implementation of smart sensor nodes for wireless disaster monitoring systems

    Science.gov (United States)

    Chen, Yih-Fan; Wu, Wen-Jong; Chen, Chun-Kuang; Wen, Chih-Min; Jin, Ming-Hui; Gau, Chung-Yun; Chang, Chih-Chie; Lee, Chih-Kung

    2004-07-01

    A newly developed smart sensor node that can monitor the safety of temporary structures such as scaffolds at construction sites is detailed in this paper. The design methodology and its trade-offs, as well as its influence on the optimization of sensor networks, is examined. The potential impact on civil engineering construction sites, environmental and natural disaster pre-warning issues, etc., all of which are foundations of smart sensor nodes and corresponding smart sensor networks, is also presented. To minimize the power requirements in order to achieve a true wireless system both in terms of signal and power, a sensor node was designed by adopting an 8051-based micro-controller, an ISM band RF transceiver, and an auto-balanced strain gage signal conditioner. With the built-in RF transceiver, all measurement data can be transmitted to a local control center for data integrity, security, central monitoring, and full-scale analysis. As a battery is the only well-established power source and there is a strong desire to eliminate the need to install bulky power lines, this system designed includes a battery-powered core with optimal power efficiency. To further extend the service life of the built-in power source, a power control algorithm has been embedded in the microcontroller of each sensor node. The entire system has been verified by experimental tests on full-scale scaffold monitoring. The results show that this system provides a practical method to monitor the structure safety in real time and possesses the potential of reducing maintenance costs significantly. The design of the sensor node, central control station, and the integration of several kinds of wireless communication protocol, all of which are successfully integrated to demonstrate the capabilities of this newly developed system, are detailed. Potential impact to the network topology is briefly examined as well.

  2. Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures

    Science.gov (United States)

    Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser

    2012-01-01

    Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the

  3. Multistream sensor fusion-based prognostics model for systems with single failure modes

    International Nuclear Information System (INIS)

    Fang, Xiaolei; Paynabar, Kamran; Gebraeel, Nagi

    2017-01-01

    Advances in sensor technology have facilitated the capability of monitoring the degradation of complex engineering systems through the analysis of multistream degradation signals. However, the varying levels of correlation with physical degradation process for different sensors, high-dimensionality of the degradation signals and cross-correlation among different signal streams pose significant challenges in monitoring and prognostics of such systems. To address the foregoing challenges, we develop a three-step multi-sensor prognostic methodology that utilizes multistream signals to predict residual useful lifetimes of partially degraded systems. We first identify the informative sensors via the penalized (log)-location-scale regression. Then, we fuse the degradation signals of the informative sensors using multivariate functional principal component analysis, which is capable of modeling the cross-correlation of signal streams. Finally, the third step focuses on utilizing the fused signal features for prognostics via adaptive penalized (log)-location-scale regression. We validate our multi-sensor prognostic methodology using simulation study as well as a case study of aircraft turbofan engines available from NASA repository.

  4. Alcohol Control: Mobile Sensor System and Numerical Signal Analysis

    Directory of Open Access Journals (Sweden)

    Rolf SEIFERT

    2016-10-01

    Full Text Available An innovative mobile sensor system for alcohol control in the respiratory air is introduced. The gas sensor included in the sensor system is thermo-cyclically operated. Ethanol is the leading component in this context. However, other components occur in the breathing air which can influence the concentration determination of ethanol. Therefore, mono- ethanol samples and binary gas mixtures are measured by the sensor system and analyzed with a new calibration and evaluation procedure which is also incorporated in the system. The applications demonstrate a good substance identification capability of the sensor system and a very good concentration determination of the components.

  5. Development of taste sensor system for differentiation of Indonesian herbal medicines

    International Nuclear Information System (INIS)

    Kaltsum, U.; Triyana, K.; Siswanta, D.

    2014-01-01

    In Indonesia, herbal medicines are usually produced by small and medium enterprises which are relatively low in quality control. The purpose of this paper is to report that we have developed a taste sensor system with global selectivity, i.e., electronic tongue (e-tongue) for differentiation of Indonesian herbal medicines. The e-tongue was composed of five kinds of ion selective electrodes as working electrodes, data acquisition system, and pattern recognition system. Each ion selective electrode (ISE) was built by attaching lipid/polymer membrane. For this purpose, the five kinds of membranes were built by mixing lipid, plasticizer (nitrophenyl octyl ether/NPOE), polyvinyl chloride (PVC), and tetrahydrofuran (THF). In this study, we employed five kinds of lipid, namely oleic acid (OA), dioctyl phosphate (DOP), decyl alcohol (DA), dodecylamine (DDC), and trioctyl methyl ammonium chloride (TOMA). In this case, the membranes transform information of taste substances into electric signal. The five kinds of Indonesian herbal medicine were purchased from local supermarket in Yogyakarta, i.e., kunyit asam (made from turmeric and tamarind), beras kencur (made from rice and kencur), jahe wangi (made from ginger and fragrance), sirih wangi (made from betel leaf), and temulawak (made from Javanese ginger). Prior to detecting the taste from the Indonesian herbal medicine samples, each ion selective electrode was tested with five basic taste samples, i.e., for saltiness, sweetness, umami, bitterness, and sourness. All ISEs showed global selectivity to all samples. Furthermore, the array of ISEs showed specific response pattern to each Indonesian herbal medicine. For pattern recognition system, we employed principle component analysis (PCA). As a result, the e-tongue was able to differentiate five kinds of Indonesian herbal medicines, proven by the total variance of first and second principle components is about 93%. For the future, the e-tongue may be developed for quality

  6. Development of taste sensor system for differentiation of Indonesian herbal medicines

    Science.gov (United States)

    Kaltsum, U.; Triyana, K.; Siswanta, D.

    2014-09-01

    In Indonesia, herbal medicines are usually produced by small and medium enterprises which are relatively low in quality control. The purpose of this paper is to report that we have developed a taste sensor system with global selectivity, i.e., electronic tongue (e-tongue) for differentiation of Indonesian herbal medicines. The e-tongue was composed of five kinds of ion selective electrodes as working electrodes, data acquisition system, and pattern recognition system. Each ion selective electrode (ISE) was built by attaching lipid/polymer membrane. For this purpose, the five kinds of membranes were built by mixing lipid, plasticizer (nitrophenyl octyl ether/NPOE), polyvinyl chloride (PVC), and tetrahydrofuran (THF). In this study, we employed five kinds of lipid, namely oleic acid (OA), dioctyl phosphate (DOP), decyl alcohol (DA), dodecylamine (DDC), and trioctyl methyl ammonium chloride (TOMA). In this case, the membranes transform information of taste substances into electric signal. The five kinds of Indonesian herbal medicine were purchased from local supermarket in Yogyakarta, i.e., kunyit asam (made from turmeric and tamarind), beras kencur (made from rice and kencur), jahe wangi (made from ginger and fragrance), sirih wangi (made from betel leaf), and temulawak (made from Javanese ginger). Prior to detecting the taste from the Indonesian herbal medicine samples, each ion selective electrode was tested with five basic taste samples, i.e., for saltiness, sweetness, umami, bitterness, and sourness. All ISEs showed global selectivity to all samples. Furthermore, the array of ISEs showed specific response pattern to each Indonesian herbal medicine. For pattern recognition system, we employed principle component analysis (PCA). As a result, the e-tongue was able to differentiate five kinds of Indonesian herbal medicines, proven by the total variance of first and second principle components is about 93%. For the future, the e-tongue may be developed for quality

  7. Development of taste sensor system for differentiation of Indonesian herbal medicines

    Energy Technology Data Exchange (ETDEWEB)

    Kaltsum, U., E-mail: um-mik@yahoo.co.id [Physics Education Department, IKIP PGRI Semarang (Indonesia); Triyana, K., E-mail: triyana@ugm.ac.id; Siswanta, D., E-mail: triyana@ugm.ac.id [Physics Department, Gadjah Mada University (Indonesia)

    2014-09-25

    In Indonesia, herbal medicines are usually produced by small and medium enterprises which are relatively low in quality control. The purpose of this paper is to report that we have developed a taste sensor system with global selectivity, i.e., electronic tongue (e-tongue) for differentiation of Indonesian herbal medicines. The e-tongue was composed of five kinds of ion selective electrodes as working electrodes, data acquisition system, and pattern recognition system. Each ion selective electrode (ISE) was built by attaching lipid/polymer membrane. For this purpose, the five kinds of membranes were built by mixing lipid, plasticizer (nitrophenyl octyl ether/NPOE), polyvinyl chloride (PVC), and tetrahydrofuran (THF). In this study, we employed five kinds of lipid, namely oleic acid (OA), dioctyl phosphate (DOP), decyl alcohol (DA), dodecylamine (DDC), and trioctyl methyl ammonium chloride (TOMA). In this case, the membranes transform information of taste substances into electric signal. The five kinds of Indonesian herbal medicine were purchased from local supermarket in Yogyakarta, i.e., kunyit asam (made from turmeric and tamarind), beras kencur (made from rice and kencur), jahe wangi (made from ginger and fragrance), sirih wangi (made from betel leaf), and temulawak (made from Javanese ginger). Prior to detecting the taste from the Indonesian herbal medicine samples, each ion selective electrode was tested with five basic taste samples, i.e., for saltiness, sweetness, umami, bitterness, and sourness. All ISEs showed global selectivity to all samples. Furthermore, the array of ISEs showed specific response pattern to each Indonesian herbal medicine. For pattern recognition system, we employed principle component analysis (PCA). As a result, the e-tongue was able to differentiate five kinds of Indonesian herbal medicines, proven by the total variance of first and second principle components is about 93%. For the future, the e-tongue may be developed for quality

  8. Vertebrate gravity sensors as dynamic systems

    Science.gov (United States)

    Ross, M. D.

    1985-01-01

    This paper considers verterbrate gravity receptors as dynamic sensors. That is, it is hypothesized that gravity is a constant force to which an acceleration-sensing system would readily adapt. Premises are considered in light of the presence of kinocilia on hair cells of vertebrate gravity sensors; differences in loading of the sensors among species; and of possible reduction in loading by inclusion of much organic material in otoconia. Moreover, organic-inorganic interfaces may confer a piezoelectric property upon otoconia, which increase the sensitivity of the sensory system to small accelerations. Comparisons with man-made accelerometers are briefly taken up.

  9. Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction.

    Science.gov (United States)

    Steeneveld, W; Vernooij, J C M; Hogeveen, H

    2015-06-01

    To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study was to investigate the effect of using sensor systems on measures of health and production in dairy herds. Data of 414 Dutch dairy farms with (n=152) and without (n=262) sensor systems were available. For these herds, information on milk production per cow, days to first service, first calving age, and somatic cell count (SCC) was provided for the years 2003 to 2013. Moreover, year of investment in sensor systems was available. For every farm year, we determined whether that year was before or after the year of investment in sensor systems on farms with an automatic milking system (AMS) or a conventional milking system (CMS), or whether it was a year on a farm that never invested in sensor systems. Separate statistical analyses were performed to determine the effect of sensor systems for mastitis detection (color, SCC, electrical conductivity, and lactate dehydrogenase sensors), estrus detection for dairy cows, estrus detection for young stock, and other sensor systems (weighing platform, rumination time sensor, fat and protein sensor, temperature sensor, milk temperature sensor, urea sensor, β-hydroxybutyrate sensor, and other sensor systems). The AMS farms had a higher average SCC (by 12,000 cells/mL) after sensor investment, and CMS farms with a mastitis detection system had a lower average SCC (by 10,000 cells/mL) in the years after sensor investment. Having sensor systems was associated with a higher average production per cow on AMS farms, and with a lower average production per cow on CMS farms in the years after investment. The most likely reason for this lower milk production after investment was that on 96% of CMS farms, the sensor system investment occurred

  10. Sensor fusion: lane marking detection and autonomous intelligent cruise control system

    Science.gov (United States)

    Baret, Marc; Baillarin, S.; Calesse, C.; Martin, Lionel

    1995-12-01

    In the past few years MATRA and RENAULT have developed an Autonomous Intelligent Cruise Control (AICC) system based on a LIDAR sensor. This sensor incorporating a charge coupled device was designed to acquire pulsed laser diode emission reflected by standard car reflectors. The absence of moving mechanical parts, the large field of view, the high measurement rate and the very good accuracy for distance range and angular position of targets make this sensor very interesting. It provides the equipped car with the distance and the relative speed of other vehicles enabling the safety distance to be controlled by acting on the throttle and the automatic gear box. Experiments in various real traffic situations have shown the limitations of this kind of system especially on bends. All AICC sensors are unable to distinguish between a bend and a change of lane. This is easily understood if we consider a road without lane markings. This fact has led MATRA to improve its AICC system by providing the lane marking information. Also in the scope of the EUREKA PROMETHEUS project, MATRA and RENAULT have developed a lane keeping system in order to warn of the drivers lack of vigilance. Thus, MATRA have spread this system to far field lane marking detection and have coupled it with the AICC system. Experiments will be carried out on roads to estimate the gain in performance and comfort due to this fusion.

  11. Smart sensor systems for outdoor intrusion detection

    International Nuclear Information System (INIS)

    Lynn, J.K.

    1988-01-01

    A major improvement in outdoor perimeter security system probability of detection (PD) and reduction in false alarm rate (FAR) and nuisance alarm rate (NAR) may be obtained by analyzing the indications immediately preceding an event which might be interpreted as an intrusion. Existing systems go into alarm after crossing a threshold. Very slow changes, which accumulate until the threshold is reached, may be assessed falsely as an intrusion. A hierarchial program has begun at Stellar to develop a modular, expandable Smart Sensor system which may be interfaced to most types of sensor and alarm reporting systems. A major upgrade to the SSI Test Site is in progress so that intrusions may be simulated in a controlled and repeatable manner. A test platform is being constructed which will operate in conduction with a mobile instrumentation center with CCTVB, lighting control, weather and data monitoring and remote control of the test platform and intrusion simulators. Additional testing was contracted with an independent test facility to assess the effects of severe winter weather conditions

  12. Development of magnetic jxB sensor

    International Nuclear Information System (INIS)

    Kasai, Satoshi; Ishitsuka, Etsuo

    2001-12-01

    The improved mechanical sensor, i.e. magnetic jxB sensor (a mechanical sensor and a part of the steady state hybrid-type magnetic sensor) has been designed. The basic structure of the sensor is similar to the previously developed sensor (old sensor) in EDA phase. In this design, the neutron resistant materials are selected for the load cell (strain gauge and sensor beam) and sensing coil/frame. In order to reduce temperature drift of the sensor signal, four strain gauges with the same electrical property and geometrical size are bonded on the sensor beam by using Al 2 O 3 plasma spraying process, i.e., a couple of strain gauges is bonded on one side of the beam and another couple of gauges is bonded on the other side. These four strain gauges form an electrical bridge circuit. The zero-level drift of the output of the load cell used in the magnetic jxB sensor was reduced to about 1/20 compared with the old sensor. The temperature dependence of the output of the load cell is small. The linearity of the output of the load cell against weight was obtained. A non-linearity was observed in the sensitivity of the magnetic jxB sensor. The deviation of sensitivity from the fitting line was less than 7% in the high magnetic field region. The neutron irradiation effect on sensitivity of the sensor was investigated. The sensitivity of the sensor was gradually decreased by ∼30% at neutron fluence of (1.8-2.8)x10 23 n/m 2 in the high magnetic field. During irradiation, the non-linearity was observed in the sensitivity. (author)

  13. A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network

    Science.gov (United States)

    Li, Xiu-hong; Cheng, Xiao; Yan, Ke; Gong, Peng

    2010-01-01

    A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetatables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring. PMID:22163391

  14. AN/FSY-3 Space Fence SystemSensor Site One/Operations Center Integration Status and Sensor Site Two Planned Capability

    Science.gov (United States)

    Fonder, G. P.; Hack, P. J.; Hughes, M. R.

    This paper covers two topics related to Space Fence System development: Sensor Site One / Operations Center construction and integration status including risk reduction integration and test efforts at the Moorestown, NJ Integrated Test Bed (ITB); and the planned capability of Sensor Site Two. The AN/FSY-3 Space Fence System is a ground-based system of S-band radars integrated with an Operations Center designed to greatly enhance the Air Force Space Surveillance network. The radar architecture is based on Digital Beam-forming. This capability permits tremendous user-defined flexibility to customize volume surveillance and track sectors instantaneously without impacting routine surveillance functions. Space Fence provides unprecedented sensitivity, coverage and tracking accuracy, and contributes to key mission threads with the ability to detect, track and catalog small objects in LEO, MEO and GEO. The system is net-centric and will seamlessly integrate into the existing Space Surveillance Network, providing services to external users—such as JSpOC—and coordinating handoffs to other SSN sites. Sensor Site One construction on the Kwajalein Atoll is in progress and nearing completion. The Operations Center in Huntsville, Alabama has been configured and will be integrated with Sensor Site One in the coming months. System hardware, firmware, and software is undergoing integration testing at the Mooretown, NJ ITB and will be deployed at Sensor Site One and the Operations Center. The preliminary design for Sensor Site Two is complete and will provide critical coverage, timeliness, and operational flexibility to the overall system.

  15. Chemical sensors technology development planning workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bastiaans, G.J.; Haas, W.J. Jr.; Junk, G.A. [eds.

    1993-03-01

    The workshop participants were asked to: (1) Assess the current capabilities of chemical sensor technologies for addressing US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) needs; (2) Estimate potential near term (one to two years) and intermediate term (three to five years) capabilities for addressing those needs; and (3) Generate a ranked list of specific recommendations on what research and development (R&D) should be funded to provide the necessary capabilities. The needs were described in terms of two pervasive EM problems, the in situ determination of chlorinated volatile organic compounds (VOCs), and selected metals in various matrices at DOE sites. The R&D recommendations were to be ranked according to the estimated likelihood that the product technology will be ready for application within the time frame it is needed and the estimated return on investment. The principal conclusions and recommendations of the workshop are as follows: Chemical sensors capable of in situ determinations can significantly reduce analytical costs; Chemical sensors have been developed for certain VOCs in gases and water but none are currently capable of in situ determination of VOCs in soils; The DOE need for in situ determination of metals in soils cannot be addressed with existing chemical sensors and the prospects for their availability in three to five years are uncertain; Adaptation, if necessary, and field application of laboratory analytical instruments and those few chemical sensors that are already in field testing is the best approach for the near term; The chemical sensor technology development plan should include balanced support for near- and intermediate-term efforts.

  16. Obstacle avoidance test using a sensor-based autonomous robotic system

    International Nuclear Information System (INIS)

    Fujii, Yoshio; Suzuki, Katsuo

    1998-12-01

    From a viewpoint of reducing personnel radiation exposure of plant staffs working in the high radiation area of nuclear facilities, it is often said to be necessary to develop remote robotic systems, which have great potential of performing various tasks in nuclear facilities. Hence, we developed an advanced remote robotic system, consisting of redundant manipulator and environment-sensing systems, which can be applied to complicated handling tasks under unstructured environment. In the robotic system, various types of sensors for environment-sensing are mounted on the redundant manipulator and sensor-based autonomous capabilities are incorporated. This report describes the results of autonomous obstacle avoidance test which was carried out as follows: manipulating valves at the rear-side of wall, through a narrow window of the wall, with the redundant manipulator mounted on an x-axis driving mechanism. From this test, it is confirmed that the developed robotic system can autonomously achieve handling tasks in limited space as avoiding obstacles, which is supposed to be difficult by a non-redundant manipulator. (author)

  17. A modular optical sensor

    Science.gov (United States)

    Conklin, John Albert

    This dissertation presents the design of a modular, fiber-optic sensor and the results obtained from testing the modular sensor. The modular fiber-optic sensor is constructed in such manner that the sensor diaphragm can be replaced with different configurations to detect numerous physical phenomena. Additionally, different fiber-optic detection systems can be attached to the sensor. Initially, the modular sensor was developed to be used by university of students to investigate realistic optical sensors and detection systems to prepare for advance studies of micro-optical mechanical systems (MOMS). The design accomplishes this by doing two things. First, the design significantly lowers the costs associated with studying optical sensors by modularizing the sensor design. Second, the sensor broadens the number of physical phenomena that students can apply optical sensing techniques to in a fiber optics sensor course. The dissertation is divided into seven chapters covering the historical development of fiber-optic sensors, a theoretical overview of fiber-optic sensors, the design, fabrication, and the testing of the modular sensor developed in the course of this work. Chapter 1 discusses, in detail, how this dissertation is organized and states the purpose of the dissertation. Chapter 2 presents an historical overview of the development of optical fibers, optical pressure sensors, and fibers, optical pressure sensors, and optical microphones. Chapter 3 reviews the theory of multi-fiber optic detection systems, optical microphones, and pressure sensors. Chapter 4 presents the design details of the modular, optical sensor. Chapter 5 delves into how the modular sensor is fabricated and how the detection systems are constructed. Chapter 6 presents the data collected from the microphone and pressure sensor configurations of the modular sensor. Finally, Chapter 7 discusses the data collected and draws conclusions about the design based on the data collected. Chapter 7 also

  18. Optical Force Sensor for the DEXMART Hand Twisted String Actuation System

    Directory of Open Access Journals (Sweden)

    Gianluca PALLI

    2013-01-01

    Full Text Available In this paper, the force sensor developed for the twisted string actuation system of the DEXMART Hand is described. The proposed solution makes use of optoelectronic components for measuring the deformation of the properly designed motor module structure caused by the force applied to the tendon transmission system. The paper reports the working principle, the calibration and the characterization of the sensor in terms of sensitivity, repeatability, full-scale and Signal-to-Noise ratio.

  19. Next generation sensors and systems

    CERN Document Server

    2016-01-01

    Written by experts in their area of research, this book has outlined the current status of the fundamentals and analytical concepts, modelling and design issues, technical details and practical applications of different types of sensors and discussed about the trends of next generation of sensors and systems happening in the area of Sensing technology. This book will be useful as a reference book for engineers and scientist especially the post-graduate students find will this book as reference book for their research on wearable sensors, devices and technologies.  .

  20. A Real Time AI Approach to Discrimination Boost Phase Optical Sensor Systems in SDI Architectures

    Science.gov (United States)

    Sloggett, David R.

    1990-04-01

    Interest has been rekindled in the potential utility of Ballistic Missile Defence (BMD) systems 1,2 and their ability to enhance the existing NATO strategic defence posture 3,4. Whereas in the past BMD systems have been thought to be vulnerable to relatively simple offence countermeasures, technological developments that have occurred over the past 20 years offer the potential to solve some of the main criticisms that have bedeviled BMD research since its inception in the early 1950s. One of the key areas where dramatic developments have taken place is in the field of electro-optic sensor technologies where developments in device sensitivity and packing density offer new solutions to threat detection, tracking and discrimination that complement data traditionally associated with radar based systems. Analysis has shown 5 that optical sensor systems can make a significant contribution to threat analysis in the boost and mid course phases of flight of ballistic missile systems. In the Boost phase the large amounts of energy contained within the plume of a ballistic missile system provides a signature that must be detected against cloud and earth backgrounds - necessitating viewing from space. The process of detection is complicated by reflected sunlight and other sources of false alarms. The optical sensor systems must therefore be adaptable and capable of reasoning about the location of the signatures, their persistence and temporal variations. Much of this processing is ideally carried out at the sensor system - in order to eliminate false alarms and reduce the communications bandwidths required to transfer the sensor data to centralised early warning and battle management facilities. In the mid course phase optical sensor systems can be used to detect warm objects against the background of deep space. These sensor systems can form tracks on these objects that can be merged into 3D tracks as data from individual sensor systems are combined. As closely spaced objects

  1. Development of sensor guided precision sprayers

    NARCIS (Netherlands)

    Nieuwenhuizen, A.T.; Zande, van de J.C.

    2013-01-01

    Sensor guided precision sprayers were developed to automate the spray process with a focus on emission reduction and identical or increased efficacy, with the precision agriculture concept in mind. Within the project “Innovations2” sensor guided precision sprayers were introduced to leek,

  2. Smart Sensor Network System For Environment Monitoring

    Directory of Open Access Journals (Sweden)

    Javed Ali Baloch

    2012-07-01

    Full Text Available SSN (Smart Sensor Network systems could be used to monitor buildings with modern infrastructure, plant sites with chemical pollution, horticulture, natural habitat, wastewater management and modern transport system. To sense attributes of phenomena and make decisions on the basis of the sensed value is the primary goal of such systems. In this paper a Smart Spatially aware sensor system is presented. A smart system, which could continuously monitor the network to observe the functionality and trigger, alerts to the base station if a change in the system occurs and provide feedback periodically, on demand or even continuously depending on the nature of the application. The results of the simulation trials presented in this paper exhibit the performance of a Smart Spatially Aware Sensor Networks.

  3. A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology

    Directory of Open Access Journals (Sweden)

    Chih-Ting Lin

    2012-08-01

    Full Text Available A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.

  4. Development of compact slip detection sensor using dielectric elastomer

    Science.gov (United States)

    Choi, Jae-young; Hwang, Do-Yeon; Kim, Baek-chul; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Ja Choon

    2015-04-01

    In this paper, we developed a resistance tactile sensor that can detect a slip on the surface of sensor structure. The presented sensor device has fingerprint-like structures that are similar with the role of the humans finger print. The resistance slip sensor that the novel developed uses acrylo-nitrile butadiene rubber (NBR) as a dielectric substrate and graphene as an electrode material. We can measure the slip as the structure of sensor makes a deformation and it changes the resistance through forming a new conductive route. To manufacture our sensor, we developed a new imprint process. By using this process, we can produce sensor with micro unit structure. To verify effectiveness of the proposed slip detection, experiment using prototype of resistance slip sensor is conducted with an algorithm to detect slip and slip is successfully detected. We will discuss the slip detection properties.

  5. Smart Cities Intelligence System (SMACiSYS) Integrating Sensor Web with Spatial Data Infrastructures (sensdi)

    Science.gov (United States)

    Bhattacharya, D.; Painho, M.

    2017-09-01

    The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS) with sensor-web access (SENSDI) utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI) aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC) keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.

  6. SMART CITIES INTELLIGENCE SYSTEM (SMACiSYS INTEGRATING SENSOR WEB WITH SPATIAL DATA INFRASTRUCTURES (SENSDI

    Directory of Open Access Journals (Sweden)

    D. Bhattacharya

    2017-09-01

    Full Text Available The paper endeavours to enhance the Sensor Web with crucial geospatial analysis capabilities through integration with Spatial Data Infrastructure. The objective is development of automated smart cities intelligence system (SMACiSYS with sensor-web access (SENSDI utilizing geomatics for sustainable societies. There has been a need to develop automated integrated system to categorize events and issue information that reaches users directly. At present, no web-enabled information system exists which can disseminate messages after events evaluation in real time. Research work formalizes a notion of an integrated, independent, generalized, and automated geo-event analysing system making use of geo-spatial data under popular usage platform. Integrating Sensor Web With Spatial Data Infrastructures (SENSDI aims to extend SDIs with sensor web enablement, converging geospatial and built infrastructure, and implement test cases with sensor data and SDI. The other benefit, conversely, is the expansion of spatial data infrastructure to utilize sensor web, dynamically and in real time for smart applications that smarter cities demand nowadays. Hence, SENSDI augments existing smart cities platforms utilizing sensor web and spatial information achieved by coupling pairs of otherwise disjoint interfaces and APIs formulated by Open Geospatial Consortium (OGC keeping entire platform open access and open source. SENSDI is based on Geonode, QGIS and Java, that bind most of the functionalities of Internet, sensor web and nowadays Internet of Things superseding Internet of Sensors as well. In a nutshell, the project delivers a generalized real-time accessible and analysable platform for sensing the environment and mapping the captured information for optimal decision-making and societal benefit.

  7. Development of fiber optic sensors at TNO for explosion and shock wave measurements

    NARCIS (Netherlands)

    Cheng, L.K.; Smorenburg, C.; Bree, J.L.M.J. van; Bouma, R.H.B.; Meer, B.J. van der; Prinse, W.C.; Scholtes, J.H.G.

    2000-01-01

    Fiber Optic sensors are found to be very suitable for explosion and shock wave measurements because they are immune to Electromagnetic Interference (EMI). In the past few years, TNO has developed a number of sensor systems for explosion and shock wave measurements in which the optical fiber is a

  8. Development and Application of Microfabricated Chemical Gas Sensors For Aerospace Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, A.; Hammond, J.; Makel, D.; hide

    1990-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring and control, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. This paper discusses the needs of space applications and the point-contact sensor technology being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (Nox, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. Demonstration and application these sensor technologies will be described. The demonstrations range from use of a microsystem based hydrogen sensor on the Shuttle to engine demonstration of a nanocrystalline based sensor for NO, detection. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  9. Optimization of wireless Bluetooth sensor systems.

    Science.gov (United States)

    Lonnblad, J; Castano, J; Ekstrom, M; Linden, M; Backlund, Y

    2004-01-01

    Within this study, three different Bluetooth sensor systems, replacing cables for transmission of biomedical sensor data, have been designed and evaluated. The three sensor architectures are built on 1-, 2- and 3-chip solutions and depending on the monitoring situation and signal character, different solutions are optimal. Essential parameters for all systems have been low physical weight and small size, resistance to interference and interoperability with other technologies as global- or local networks, PC's and mobile phones. Two different biomedical input signals, ECG and PPG (photoplethysmography), have been used to evaluate the three solutions. The study shows that it is possibly to continuously transmit an analogue signal. At low sampling rates and slowly varying parameters, as monitoring the heart rate with PPG, the 1-chip solution is the most suitable, offering low power consumption and thus a longer battery lifetime or a smaller battery, minimizing the weight of the sensor system. On the other hand, when a higher sampling rate is required, as an ECG, the 3-chip architecture, with a FPGA or micro-controller, offers the best solution and performance. Our conclusion is that Bluetooth might be useful in replacing cables of medical monitoring systems.

  10. Ultrasonic sensors in urban traffic driving-aid systems.

    Science.gov (United States)

    Alonso, Luciano; Milanés, Vicente; Torre-Ferrero, Carlos; Godoy, Jorge; Oria, Juan P; de Pedro, Teresa

    2011-01-01

    Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS), Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC) for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  11. Recent Developments on Wireless Sensor Networks Technology for Bridge Health Monitoring

    Directory of Open Access Journals (Sweden)

    Guang-Dong Zhou

    2013-01-01

    Full Text Available Structural health monitoring (SHM systems have shown great potential to sense the responses of a bridge system, diagnose the current structural conditions, predict the expected future performance, provide information for maintenance, and validate design hypotheses. Wireless sensor networks (WSNs that have the benefits of reducing implementation costs of SHM systems as well as improving data processing efficiency become an attractive alternative to traditional tethered sensor systems. This paper introduces recent technology developments in the field of bridge health monitoring using WSNs. As a special application of WSNs, the requirements and characteristics of WSNs when used for bridge health monitoring are firstly briefly discussed. Then, the state of the art in WSNs-based bridge health monitoring systems is reviewed including wireless sensor, network topology, data processing technology, power management, and time synchronization. Following that, the performance validations and applications of WSNs in bridge health monitoring through scale models and field deployment are presented. Finally, some existing problems and promising research efforts for promoting applications of WSNs technology in bridge health monitoring throughout the world are explored.

  12. Development of Hardware Dual Modality Tomography System

    Directory of Open Access Journals (Sweden)

    R. M. Zain

    2009-06-01

    Full Text Available The paper describes the hardware development and performance of the Dual Modality Tomography (DMT system. DMT consists of optical and capacitance sensors. The optical sensors consist of 16 LEDs and 16 photodiodes. The Electrical Capacitance Tomography (ECT electrode design use eight electrode plates as the detecting sensor. The digital timing and the control unit have been developing in order to control the light projection of optical emitters, switching the capacitance electrodes and to synchronize the operation of data acquisition. As a result, the developed system is able to provide a maximum 529 set data per second received from the signal conditioning circuit to the computer.

  13. Intelligence Control System for Landfills Based on Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Zhang Qian

    2018-01-01

    Full Text Available This paper put forward an intelligence system for controlling the landfill gas in landfills to make the landfill gas (LFG exhaust controllably and actively. The system, which is assigned by the wireless sensor network, were developed and supervised by remote applications in workshop instead of manual work. An automatic valve control depending on the sensor units embedded is installed in tube, the air pressure and concentration of LFG are detected to decide the level of the valve switch. The paper also proposed a modified algorithm to solve transmission problem, so that the system can keep a high efficiency and long service life.

  14. Thermostatic system of sensor in NIR spectrometer based on PID control

    Science.gov (United States)

    Wang, Zhihong; Qiao, Liwei; Ji, Xufei

    2016-11-01

    Aiming at the shortcomings of the primary sensor thermostatic control system in the near infrared (NIR) spectrometer, a novel thermostatic control system based on proportional-integral-derivative (PID) control technology was developed to improve the detection precision of the NIR spectrometer. There were five parts including bridge amplifier circuit, analog-digital conversion (ADC) circuit, microcontroller, digital-analog conversion (DAC) circuit and drive circuit in the system. The five parts formed a closed-loop control system based on PID algorithm that was used to control the error between the temperature calculated by the sampling data of ADC and the designed temperature to ensure the stability of the spectrometer's sensor. The experimental results show that, when the operating temperature of sensor is -11°, compared with the original system, the temperature control precision of the new control system is improved from ±0.64° to ±0.04° and the spectrum signal to noise ratio (SNR) is improved from 4891 to 5967.

  15. MEGAS multi-electrode gas sensor system. Final report; MEGAS - Multi-Elektroden-Gassensorsystem. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Kelleter, J.

    2003-07-01

    In the context of the MEGAS project, GTE developed and and constructed an electronic system for controlling and data acquisition of sensors for laboratory and test applications. The system is based on microcontrollers and has a data bus connection. Measurements made in order to find out whether the concentrations of a binary gas mixture and combustion gases are detected separately were successful. A demonstration system was constructed. The MEGAS project showed that it is possible to separate two gases by a sensitive layer at constant sensor temperature. The sensor element is a promising technology. Further research is required on suppressing sensor poisoning by siloxanes, and on reduced sensitivity to interfering gases (e.g. ethanol in the case of combustion gases). (orig.)

  16. Simulator of a fail detector system for redundant sensors

    International Nuclear Information System (INIS)

    Assumpcao Filho, E.O.; Nakata, H.

    1990-01-01

    A failure detection and isolation system (FDI) simulation program has been developed for IBM-PC microcomputers. The program, based on the sequencial likelihood ratio testing method developed by A. Wald, was implemented with Monte-Carlo technique. The calculated failure detection rate was favorably compared against the wind-tunnel experimental redundant temperature sensors. (author)

  17. A multichannel portable ECG system with capacitive sensors

    International Nuclear Information System (INIS)

    Oehler, M; Schilling, M; Ling, V; Melhorn, K

    2008-01-01

    Capacitive sensors can be employed for measuring the electrocardiogram of a human heart without electric contact with the skin. This configuration avoids contact problems experienced by conventional electrocardiography. In our studies, we integrated these capacitive electrocardiogram electrodes in a 15-sensor array and combined this array with a tablet personal computer. By placing the system on the patient's body, we can measure a 15-channel electrocardiogram even through clothes and without any preparation. The goal of this development is to provide a new diagnostic tool that offers the user a reproducible, easy access to a fast and spatially resolved diagnostic 'heart view'

  18. Aerial Measuring System Sensor Modeling

    International Nuclear Information System (INIS)

    Detwiler, R.S.

    2002-01-01

    This project deals with the modeling the Aerial Measuring System (AMS) fixed-wing and rotary-wing sensor systems, which are critical U.S. Department of Energy's National Nuclear Security Administration (NNSA) Consequence Management assets. The fixed-wing system is critical in detecting lost or stolen radiography or medical sources, or mixed fission products as from a commercial power plant release at high flying altitudes. The helicopter is typically used at lower altitudes to determine ground contamination, such as in measuring americium from a plutonium ground dispersal during a cleanup. Since the sensitivity of these instruments as a function of altitude is crucial in estimating detection limits of various ground contaminations and necessary count times, a characterization of their sensitivity as a function of altitude and energy is needed. Experimental data at altitude as well as laboratory benchmarks is important to insure that the strong effects of air attenuation are modeled correctly. The modeling presented here is the first attempt at such a characterization of the equipment for flying altitudes. The sodium iodide (NaI) sensors utilized with these systems were characterized using the Monte Carlo N-Particle code (MCNP) developed at Los Alamos National Laboratory. For the fixed wing system, calculations modeled the spectral response for the 3-element NaI detector pod and High-Purity Germanium (HPGe) detector, in the relevant energy range of 50 keV to 3 MeV. NaI detector responses were simulated for both point and distributed surface sources as a function of gamma energy and flying altitude. For point sources, photopeak efficiencies were calculated for a zero radial distance and an offset equal to the altitude. For distributed sources approximating an infinite plane, gross count efficiencies were calculated and normalized to a uniform surface deposition of 1 microCi/m 2 . The helicopter calculations modeled the transport of americium-241 ( 241 Am) as this is

  19. Chemical sensors technology development planning workshop

    International Nuclear Information System (INIS)

    Bastiaans, G.J.; Haas, W.J. Jr.; Junk, G.A.

    1993-03-01

    The workshop participants were asked to: (1) Assess the current capabilities of chemical sensor technologies for addressing US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) needs; (2) Estimate potential near term (one to two years) and intermediate term (three to five years) capabilities for addressing those needs; and (3) Generate a ranked list of specific recommendations on what research and development (R ampersand D) should be funded to provide the necessary capabilities. The needs were described in terms of two pervasive EM problems, the in situ determination of chlorinated volatile organic compounds (VOCs), and selected metals in various matrices at DOE sites. The R ampersand D recommendations were to be ranked according to the estimated likelihood that the product technology will be ready for application within the time frame it is needed and the estimated return on investment. The principal conclusions and recommendations of the workshop are as follows: Chemical sensors capable of in situ determinations can significantly reduce analytical costs; Chemical sensors have been developed for certain VOCs in gases and water but none are currently capable of in situ determination of VOCs in soils; The DOE need for in situ determination of metals in soils cannot be addressed with existing chemical sensors and the prospects for their availability in three to five years are uncertain; Adaptation, if necessary, and field application of laboratory analytical instruments and those few chemical sensors that are already in field testing is the best approach for the near term; The chemical sensor technology development plan should include balanced support for near- and intermediate-term efforts

  20. Development of air fuel ratio sensor; A/F sensor no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sakawa, T; Hori, M [Denso Corp., Aichi (Japan); Nakamura, Y [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    The Air Fuel Ratio Sensor (A/F sensor), which is applied to a 1997 model year Low Emission Vehicle (LEV) was developed. This sensor enables the detection of the exhaust gas air fuel ratio, both lean and rich of stoichiometric. It has an effective air fuel ratio range from 12 to 18 as required for LEV regulation. It has the fast light off, - within 20 seconds - to minimize exhaust hydrocarbon content. Further, it has fast response time, less than 200 msec, to improve the air fuel ratio controllability. 3 refs., 7 figs.

  1. Landslide and Flood Warning System Prototypes based on Wireless Sensor Networks

    Science.gov (United States)

    Hloupis, George; Stavrakas, Ilias; Triantis, Dimos

    2010-05-01

    Wireless sensor networks (WSNs) are one of the emerging areas that received great attention during the last few years. This is mainly due to the fact that WSNs have provided scientists with the capability of developing real-time monitoring systems equipped with sensors based on Micro-Electro-Mechanical Systems (MEMS). WSNs have great potential for many applications in environmental monitoring since the sensor nodes that comprised from can host several MEMS sensors (such as temperature, humidity, inertial, pressure, strain-gauge) and transducers (such as position, velocity, acceleration, vibration). The resulting devices are small and inexpensive but with limited memory and computing resources. Each sensor node contains a sensing module which along with an RF transceiver. The communication is broadcast-based since the network topology can change rapidly due to node failures [1]. Sensor nodes can transmit their measurements to central servers through gateway nodes without any processing or they make preliminary calculations locally in order to produce results that will be sent to central servers [2]. Based on the above characteristics, two prototypes using WSNs are presented in this paper: A Landslide detection system and a Flood warning system. Both systems sent their data to central processing server where the core of processing routines exists. Transmission is made using Zigbee and IEEE 802.11b protocol but is capable to use VSAT communication also. Landslide detection system uses structured network topology. Each measuring node comprises of a columnar module that is half buried to the area under investigation. Each sensing module contains a geophone, an inclinometer and a set of strain gauges. Data transmitted to central processing server where possible landslide evolution is monitored. Flood detection system uses unstructured network topology since the failure rate of sensor nodes is expected higher. Each sensing module contains a custom water level sensor

  2. Progress In Developing An In-Pile Acoustically Telemetered Sensor Infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James A.; Garrett, Steven L.; Heibel, Michael D.; Agarwal, Vivek; Heidrich, Brenden J.

    2016-09-01

    A salient grand challenge for a number of Department of Energy programs such as Fuels Cycle Research and Development ( includes Accident Tolerant Fuel research and the Transient Reactor Test Facility Restart experiments), Light Water Sustainability, and Advanced Reactor Technologies is to enhance our fundamental understanding of fuel and materials behavior under irradiation. Robust and accurate in-pile measurements will be instrumental to develop and validate a computationally predictive multi-scale understanding of nuclear fuel and materials. This sensing technology will enable the linking of fundamental micro-structural evolution mechanisms to the macroscopic degradation of fuels and materials. The in situ sensors and measurement systems will monitor local environmental parameters as well as characterize microstructure evolution during irradiation. One of the major road blocks in developing practical robust, and cost effective in-pile sensor systems, are instrument leads. If a wireless telemetry infrastructure can be developed for in-pile use, in-core measurements would become more attractive and effective. Thus to be successful in accomplishing effective in-pile sensing and microstructure characterization an interdisciplinary measurement infrastructure needs to be developed in parallel with key sensing technology. For the discussion in this research, infrastructure is defined as systems, technology, techniques, and algorithms that may be necessary in the delivery of beneficial and robust data from in-pile devices. The architecture of a system’s infrastructure determines how well it operates and how flexible it is to meet future requirements. The limiting path for the effective deployment of the salient sensing technology will not be the sensors themselves but the infrastructure that is necessary to communicate data from in-pile to the outside world in a non-intrusive and reliable manner. This article gives a high level overview of a promising telemetry

  3. Alcohol control: Mobile sensor system and numerical signal analysis

    OpenAIRE

    Seifert, Rolf; Keller, Hubert B.; Conrad, Thorsten; Peter, Jens

    2016-01-01

    An innovative mobile sensor system for alcohol control in the respiratory air is introduced. The gas sensor included in the sensor system is thermo-cyclically operated. Ethanol is the leading component in this context. However, other components occur in the breathing air which can influence the concentration determination of ethanol. Therefore, mono- ethanol samples and binary gas mixtures are measured by the sensor system and analyzed with a new calibration and evaluation procedure which is ...

  4. Wireless Sensor Network Metrics for Real-Time Systems

    Science.gov (United States)

    2009-05-20

    Wireless Sensor Network Metrics for Real-Time Systems Phoebus Wei-Chih Chen Electrical Engineering and Computer Sciences University of California at...3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Wireless Sensor Network Metrics for Real-Time Systems 5a. CONTRACT NUMBER 5b... wireless sensor networks (WSNs) is moving from studies of WSNs in isolation toward studies where the WSN is treated as a component of a larger system

  5. Development of a hybrid haptic master system without using a force sensor

    International Nuclear Information System (INIS)

    Bae, Byung Hoon; Park, Kyi Hwan

    2001-01-01

    A hybrid type master system is proposed to take the advantage of the link mechanism and magnetic levitation mechanism without using a force sensor. Two different types of electromagnetic actuators, moving coil type and moving magnet types are used to drive the master system which is capable of 4-DOF actuation. It is designed that the rotation motions about x-y axis are decoupled and the whole system is represented by simple dynamic equations. The force reflection is achieved by using the simple relation between the force and applied current and position. The simulation and experimental results are presented to show its performance

  6. Development of a hybrid haptic master system without using a force sensor

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byung Hoon; Park, Kyi Hwan [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2001-08-01

    A hybrid type master system is proposed to take the advantage of the link mechanism and magnetic levitation mechanism without using a force sensor. Two different types of electromagnetic actuators, moving coil type and moving magnet types are used to drive the master system which is capable of 4-DOF actuation. It is designed that the rotation motions about x-y axis are decoupled and the whole system is represented by simple dynamic equations. The force reflection is achieved by using the simple relation between the force and applied current and position. The simulation and experimental results are presented to show its performance.

  7. Ultrasonic Sensors in Urban Traffic Driving-Aid Systems

    Directory of Open Access Journals (Sweden)

    Teresa de Pedro

    2011-01-01

    Full Text Available Currently, vehicles are often equipped with active safety systems to reduce the risk of accidents, most of which occur in urban environments. The most prominent include Antilock Braking Systems (ABS, Traction Control and Stability Control. All these systems use different kinds of sensors to constantly monitor the conditions of the vehicle, and act in an emergency. In this paper the use of ultrasonic sensors in active safety systems for urban traffic is proposed, and the advantages and disadvantages when compared to other sensors are discussed. Adaptive Cruise Control (ACC for urban traffic based on ultrasounds is presented as an application example. The proposed system has been implemented in a fully-automated prototype vehicle and has been tested under real traffic conditions. The results confirm the good performance of ultrasonic sensors in these systems.

  8. Ultra-Low Power Sensor System for Disaster Event Detection in Metro Tunnel Systems

    Directory of Open Access Journals (Sweden)

    Jonah VINCKE

    2017-05-01

    Full Text Available In this extended paper, the concept for an ultra-low power wireless sensor network (WSN for underground tunnel systems is presented highlighting the chosen sensors. Its objectives are the detection of emergency events either from natural disasters, such as flooding or fire, or from terrorist attacks using explosives. Earlier works have demonstrated that the power consumption for the communication can be reduced such that the data acquisition (i.e. sensor sub-system becomes the most significant energy consumer. By using ultra-low power components for the smoke detector, a hydrostatic pressure sensor for water ingress detection and a passive acoustic emission sensor for explosion detection, all considered threats are covered while the energy consumption can be kept very low in relation to the data acquisition. In addition to 1 the sensor system is integrated into a sensor board. The total average power consumption for operating the sensor sub-system is measured to be 35.9 µW for lower and 7.8 µW for upper nodes.

  9. Development of heat flux sensors for turbine airfoils

    Science.gov (United States)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-10-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  10. Development of heat flux sensors for turbine airfoils

    Science.gov (United States)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-01-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  11. Attacks and intrusion detection in wireless sensor networks of industrial SCADA systems

    Science.gov (United States)

    Kamaev, V. A.; Finogeev, A. G.; Finogeev, A. A.; Parygin, D. S.

    2017-01-01

    The effectiveness of automated process control systems (APCS) and supervisory control and data acquisition systems (SCADA) information security depends on the applied protection technologies of transport environment data transmission components. This article investigates the problems of detecting attacks in wireless sensor networks (WSN) of SCADA systems. As a result of analytical studies, the authors developed the detailed classification of external attacks and intrusion detection in sensor networks and brought a detailed description of attacking impacts on components of SCADA systems in accordance with the selected directions of attacks.

  12. Design of a sensor network system with a self-maintenance function for homeland security applications

    International Nuclear Information System (INIS)

    Fujiwara, Takeshi; Takahashi, Hiroyuki; Iyomoto, Naoko

    2008-01-01

    In this study, we develop a new concept of a robust wireless sensor network for homeland security applications. The sensor system consists of intelligent radiation sensors that can communicate each other through the wireless network. This structure can cover a wide area with a flexible geometry which is suitable for detecting a moving object with a detectable radiation source. Also, it has a tolerance against both the partial node's failure and packet errors; realized by a Self-Maintenance function. The Self-maintenance function is a function that enables an artifact to find, diagnosis and fix the trouble automatically and maintain itself. So far some approaches have been tried to realize robust monitoring system by applying the idea of multiplex system, based on ''2 out of 3'', but this requires a large amount of the hardware and is not suitable for sensor network systems. We designed a sensor network system with Self-Maintenance function based on qualitative reasoning technique for robust wireless sensor network system, and an instrument network based on ZigBee has been set up for investigations. CsI(Tl) gamma-ray detectors are used as sensors. The network system picks up correlation signals from sensors even some of sensors send false signals, which can be used as a reliable detection system for practical use. (author)

  13. DEVELOPMENT OF SIGNAL PROCESSING TOOLS AND HARDWARE FOR PIEZOELECTRIC SENSOR DIAGNOSTIC PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    OVERLY, TIMOTHY G. [Los Alamos National Laboratory; PARK, GYUHAE [Los Alamos National Laboratory; FARRAR, CHARLES R. [Los Alamos National Laboratory

    2007-02-09

    This paper presents a piezoelectric sensor diagnostic and validation procedure that performs in -situ monitoring of the operational status of piezoelectric (PZT) sensor/actuator arrays used in structural health monitoring (SHM) applications. The validation of the proper function of a sensor/actuator array during operation, is a critical component to a complete and robust SHM system, especially with the large number of active sensors typically involved. The method of this technique used to obtain the health of the PZT transducers is to track their capacitive value, this value manifests in the imaginary part of measured electrical admittance. Degradation of the mechanical/electric properties of a PZT sensor/actuator as well as bonding defects between a PZT patch and a host structure can be identified with the proposed procedure. However, it was found that temperature variations and changes in sensor boundary conditions manifest themselves in similar ways in the measured electrical admittances. Therefore, they examined the effects of temperature variation and sensor boundary conditions on the sensor diagnostic process. The objective of this study is to quantify and classify several key characteristics of temperature change and to develop efficient signal processing techniques to account for those variations in the sensor diagnostis process. In addition, they developed hardware capable of making the necessary measurements to perform the sensor diagnostics and to make impedance-based SHM measurements. The paper concludes with experimental results to demonstrate the effectiveness of the proposed technique.

  14. Wireless Biological Electronic Sensors.

    Science.gov (United States)

    Cui, Yue

    2017-10-09

    The development of wireless biological electronic sensors could open up significant advances for both fundamental studies and practical applications in a variety of areas, including medical diagnosis, environmental monitoring, and defense applications. One of the major challenges in the development of wireless bioelectronic sensors is the successful integration of biosensing units and wireless signal transducers. In recent years, there are a few types of wireless communication systems that have been integrated with biosensing systems to construct wireless bioelectronic sensors. To successfully construct wireless biological electronic sensors, there are several interesting questions: What types of biosensing transducers can be used in wireless bioelectronic sensors? What types of wireless systems can be integrated with biosensing transducers to construct wireless bioelectronic sensors? How are the electrical sensing signals generated and transmitted? This review will highlight the early attempts to address these questions in the development of wireless biological electronic sensors.

  15. Circuits and Systems for Low-Power Miniaturized Wireless Sensors

    Science.gov (United States)

    Nagaraju, Manohar

    The field of electronic sensors has witnessed a tremendous growth over the last decade particularly with the proliferation of mobile devices. New applications in Internet of Things (IoT), wearable technology, are further expected to fuel the demand for sensors from current numbers in the range of billions to trillions in the next decade. The main challenges for a trillion sensors are continued miniaturization, low-cost and large-scale manufacturing process, and low power consumption. Traditional integration and circuit design techniques in sensor systems are not suitable for applications in smart dust, IoT etc. The first part of this thesis demonstrates an example sensor system for biosignal recording and illustrates the tradeoffs in the design of low-power miniaturized sensors. The different components of the sensor system are integrated at the board level. The second part of the thesis demonstrates fully integrated sensors that enable extreme miniaturization of a sensing system with the sensor element, processing circuitry, a frequency reference for communication and the communication circuitry in a single hermetically sealed die. Design techniques to reduce the power consumption of the sensor interface circuitry at the architecture and circuit level are demonstrated. The principles are used to design sensors for two of the most common physical variables, mass and pressure. A low-power wireless mass and pressure sensor suitable for a wide variety of biological/chemical sensing applications and Tire Pressure Monitoring Systems (TPMS) respectively are demonstrated. Further, the idea of using high-Q resonators for a Voltage Controlled Oscillator (VCO) is proposed and a low-noise, wide bandwidth FBAR-based VCO is presented.

  16. Measurement system for special surface mapping using miniature displacement sensors

    Directory of Open Access Journals (Sweden)

    Zowade Martyna

    2018-01-01

    Full Text Available The aim of the work was to design a special system for measurements of elements with repetitive geometry or assemblies with repeating components, set in a linear patterns. The main focus was based on developing a computer program for signal analysis from variable number of miniature displacement sensors. It was set that the response for displacement of measuring tip from each sensor was a 0-5 V voltage signal with possibility of using different type of sensors. Requirements were determined based on projected measurement method. A special design of sensor was made for testing the computer program. If the characteristics of the sensor is known, it is possible to compute the type A evaluation of uncertainty. The results are presented in XY chart on computer screen. The program allows the user to choose any number of the sensors and determine the distance between them. Also, the possibility of calibration of sensors’ set was provided. The test were conducted on a prototype handle for sensors, made on a 3D printer.

  17. Energy harvesting autonomous sensor systems design, analysis, and practical implementation

    CERN Document Server

    Tan, Yen Kheng

    2013-01-01

    This book is the considered the first to describe sensor-oriented energy harvesting issues. Its content is derived from the author's research on the development of a truly self-autonomous and sustainable energy harvesting wireless sensor network (EH-WSN). This network harvests energy from a variety of ambient energy sources and converts it into electrical energy to power batteries. The book discusses various types of energy harvesting (EH) systems and their respective main components.

  18. Design and Implementation of e-Health System Based on Semantic Sensor Network Using IETF YANG

    Directory of Open Access Journals (Sweden)

    Wenquan Jin

    2018-02-01

    Full Text Available Recently, healthcare services can be delivered effectively to patients anytime and anywhere using e-Health systems. e-Health systems are developed through Information and Communication Technologies (ICT that involve sensors, mobiles, and web-based applications for the delivery of healthcare services and information. Remote healthcare is an important purpose of the e-Health system. Usually, the eHealth system includes heterogeneous sensors from diverse manufacturers producing data in different formats. Device interoperability and data normalization is a challenging task that needs research attention. Several solutions are proposed in the literature based on manual interpretation through explicit programming. However, programmatically implementing the interpretation of the data sender and data receiver in the e-Health system for the data transmission is counterproductive as modification will be required for each new device added into the system. In this paper, an e-Health system with the Semantic Sensor Network (SSN is proposed to address the device interoperability issue. In the proposed system, we have used IETF YANG for modeling the semantic e-Health data to represent the information of e-Health sensors. This modeling scheme helps in provisioning semantic interoperability between devices and expressing the sensing data in a user-friendly manner. For this purpose, we have developed an ontology for e-Health data that supports different styles of data formats. The ontology is defined in YANG for provisioning semantic interpretation of sensing data in the system by constructing meta-models of e-Health sensors. The proposed approach assists in the auto-configuration of eHealth sensors and querying the sensor network with semantic interoperability support for the e-Health system.

  19. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  20. Finger and foot tapping sensor system for objective motor assessment

    Directory of Open Access Journals (Sweden)

    Đurić-Jovičić Milica

    2018-01-01

    Full Text Available Background/Aim. Finger tapping test is commonly used in neurological examinations as a test of motor performance. The new system comprising inertial and force sensors and custom proprietary software was developed for quantitative estimation and assessment of finger and foot tapping tests. The aim of this system was to provide diagnosis support and objective assessment of motor function. Methods. Miniature inertial sensors were placed on fingertips and used for measuring finger movements. A force sensor was placed on the fingertip of one finger, in order to measure the force during tapping. For foot tapping assessment, an inertial sensor was mounted on the subject’s foot, which was placed above a force platform. By using this system, various parameters such as a number of taps, tapping duration, rhythm, open and close speed, the applied force and tapping angle, can be extracted for detailed analysis of a patient’s motor performance. The system was tested on 13 patients with Parkinson’s disease and 14 healthy controls. Results. The system allowed easy measurement of listed parameters, and additional graphical representation showed quantitative differences in these parameters between neurological patient and healthy subjects. Conclusion. The novel system for finger and foot tapping test is compact, simple to use and efficiently collects patient data. Parameters measured in patients can be compared to those measured in healthy subjects, or among groups of patients, or used to monitor progress of the disease, or therapy effects. Created data and scores could be used together with the scores from clinical tests, providing the possibility for better insight into the diagnosis. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 175090 and Grant no. 175016

  1. Hybrid online sensor error detection and functional redundancy for systems with time-varying parameters.

    Science.gov (United States)

    Feng, Jianyuan; Turksoy, Kamuran; Samadi, Sediqeh; Hajizadeh, Iman; Littlejohn, Elizabeth; Cinar, Ali

    2017-12-01

    Supervision and control systems rely on signals from sensors to receive information to monitor the operation of a system and adjust manipulated variables to achieve the control objective. However, sensor performance is often limited by their working conditions and sensors may also be subjected to interference by other devices. Many different types of sensor errors such as outliers, missing values, drifts and corruption with noise may occur during process operation. A hybrid online sensor error detection and functional redundancy system is developed to detect errors in online signals, and replace erroneous or missing values detected with model-based estimates. The proposed hybrid system relies on two techniques, an outlier-robust Kalman filter (ORKF) and a locally-weighted partial least squares (LW-PLS) regression model, which leverage the advantages of automatic measurement error elimination with ORKF and data-driven prediction with LW-PLS. The system includes a nominal angle analysis (NAA) method to distinguish between signal faults and large changes in sensor values caused by real dynamic changes in process operation. The performance of the system is illustrated with clinical data continuous glucose monitoring (CGM) sensors from people with type 1 diabetes. More than 50,000 CGM sensor errors were added to original CGM signals from 25 clinical experiments, then the performance of error detection and functional redundancy algorithms were analyzed. The results indicate that the proposed system can successfully detect most of the erroneous signals and substitute them with reasonable estimated values computed by functional redundancy system.

  2. Sensor selection and chemo-sensory optimization: toward an adaptable chemo-sensory system

    Directory of Open Access Journals (Sweden)

    Alexander eVergara

    2012-01-01

    Full Text Available Over the past two decades, despite the tremendous research effort performed on chemical sensors and machine olfaction to develop micro-sensory systems that will accomplish the growing existent needs in personal health (implantable sensors, environment monitoring (widely distributed sensor networks, and security/threat detection (chemo/bio warfare agents, simple, low-cost molecular sensing platforms capable of long-term autonomous operation remain beyond the current state-of-the-art of chemical sensing. A fundamental issue within this context is that most of the chemical sensors depend on interactions between the targeted species and the surfaces functionalized with receptors that bind the target species selectively, and that these binding events are coupled with transduction processes that begin to change when they are exposed to the messy world of real samples. With the advent of fundamental breakthroughs at the intersection of materials science, micro/nano-technology, and signal processing, hybrid chemo-sensory systems have incorporated tunable, optimizable operating parameters, through which changes in the response characteristics can be modeled and compensated as the environmental conditions or application needs change.The objective of this article, in this context, is to bring together the key advances at the device, data processing, and system levels that enable chemo-sensory systems to adapt in response to their environments. Accordingly, in this review we will feature the research effort made by selected experts on chemical sensing and information theory, whose work has been devoted to develop strategies that provide tunability and adaptability to single sensor devices or sensory array systems. Particularly, we consider sensor-array selection, modulation of internal sensing parameters, and active sensing. The article ends with some conclusions drawn from the results presented and a visionary look toward the future in terms of how the

  3. Intelligent Luminance Control of Lighting Systems Based on Imaging Sensor Feedback

    Directory of Open Access Journals (Sweden)

    Haoting Liu

    2017-02-01

    Full Text Available An imaging sensor-based intelligent Light Emitting Diode (LED lighting system for desk use is proposed. In contrast to the traditional intelligent lighting system, such as the photosensitive resistance sensor-based or the infrared sensor-based system, the imaging sensor can realize a finer perception of the environmental light; thus it can guide a more precise lighting control. Before this system works, first lots of typical imaging lighting data of the desk application are accumulated. Second, a series of subjective and objective Lighting Effect Evaluation Metrics (LEEMs are defined and assessed for these datasets above. Then the cluster benchmarks of these objective LEEMs can be obtained. Third, both a single LEEM-based control and a multiple LEEMs-based control are developed to realize a kind of optimal luminance tuning. When this system works, first it captures the lighting image using a wearable camera. Then it computes the objective LEEMs of the captured image and compares them with the cluster benchmarks of the objective LEEMs. Finally, the single LEEM-based or the multiple LEEMs-based control can be implemented to get a kind of optimal lighting effect. Many experiment results have shown the proposed system can tune the LED lamp automatically according to environment luminance changes.

  4. Mobile Sensor Technologies Being Developed

    Science.gov (United States)

    Greer, Lawrence C.; Oberle, Lawrence G.

    2003-01-01

    The NASA Glenn Research Center is developing small mobile platforms for sensor placement, as well as methods for communicating between roving platforms and a central command location. The first part of this project is to use commercially available equipment to miniaturize an existing sensor platform. We developed a five-circuit-board suite, with an average board size of 1.5 by 3 cm. Shown in the preceding photograph, this suite provides all motor control, direction finding, and communications capabilities for a 27- by 21- by 40-mm prototype mobile platform. The second part of the project is to provide communications between mobile platforms, and also between multiple platforms and a central command location. This is accomplished with a low-power network labeled "SPAN," Sensor Platform Area Network, a local area network made up of proximity elements. In practice, these proximity elements are composed of fixed- and mobile-sensor-laden science packages that communicate to each other via radiofrequency links. Data in the network will be shared by a central command location that will pass information into and out of the network through its access to a backbone element. The result will be a protocol portable to general purpose microcontrollers satisfying a host of sensor networking tasks. This network will enter the gap somewhere between television remotes and Bluetooth but, unlike 802.15.4, will not specify a physical layer, thus allowing for many data rates over optical, acoustical, radiofrequency, hardwire, or other media. Since the protocol will exist as portable C-code, developers may be able to embed it in a host of microcontrollers from commercial to space grade and, of course, to design it into ASICs. Unlike in 802.15.4, the nodes will relate to each other as peers. A demonstration of this protocol using the two test bed platforms was recently held. Two NASA modified, commercially available, mobile platforms communicated and shared data with each other and a

  5. SENSORS FAULT DIAGNOSIS ALGORITHM DESIGN OF A HYDRAULIC SYSTEM

    Directory of Open Access Journals (Sweden)

    Matej ORAVEC

    2017-06-01

    Full Text Available This article presents the sensors fault diagnosis system design for the hydraulic system, which is based on the group of the three fault estimation filters. These filters are used for estimation of the system states and sensors fault magnitude. Also, this article briefly stated the hydraulic system state control design with integrator, which is important assumption for the fault diagnosis system design. The sensors fault diagnosis system is implemented into the Matlab/Simulink environment and it is verified using the controlled hydraulic system simulation model. Verification of the designed fault diagnosis system is realized by series of experiments, which simulates sensors faults. The results of the experiments are briefly presented in the last part of this article.

  6. Effect of sensor systems for cow management on milk production, somatic cell count, and reproduction

    NARCIS (Netherlands)

    Steeneveld, W.; Vernooij, J.C.M.; Hogeveen, H.

    2015-01-01

    To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study

  7. Effect of sensor systems for cow management on milk production, somatic cell count and reproduction

    NARCIS (Netherlands)

    Steeneveld, W.; Vernooij, J.C.M.; Hogeveen, H.

    2015-01-01

    To improve management on dairy herds, sensor systems have been developed that can measure physiological, behavioral, and production indicators on individual cows. It is not known whether using sensor systems also improves measures of health and production in dairy herds. The objective of this study

  8. Wireless network system based multi-non-invasive sensors for smart home

    Science.gov (United States)

    Issa Ahmed, Rudhwan

    There are several techniques that have been implemented for smart homes usage; however, most of these techniques are limited to a few sensors. Many of these methods neither meet the needs of the user nor are cost-effective. This thesis discusses the design, development, and implementation of a wireless network system, based on multi-non-invasive sensors for smart home environments. This system has the potential to be used as a means to accurately, and remotely, determine the activities of daily living by continuously monitoring relatively simple parameters that measure the interaction between users and their surrounding environment. We designed and developed a prototype system to meet the specific needs of the elderly population. Unlike audio-video based health monitoring systems (which have associated problems such as the encroachment of privacy), the developed system's distinct features ensure privacy and are almost invisible to the occupants, thus increasing the acceptance levels of this system in household environments. The developed system not only achieved high levels of accuracy, but it is also portable, easy to use, cost-effective, and requires low data rates and less power compared to other wireless devices such as Wi-Fi, Bluetooth, wireless USB, Ultra wideband (UWB), or Infrared (IR) wireless. Field testing of the prototype system was conducted at different locations inside and outside of the Minto Building (Centre for Advanced Studies in Engineering at Carleton University) as well as other locations, such as the washroom, kitchen, and living room of a prototype apartment. The main goal of the testing was to determine the range of the prototype system and the functionality of each sensor in different environments. After it was verified that the system operated well in all of the tested environments, data were then collected at the different locations for analysis and interpretation in order to identify the activities of daily living of an occupant.

  9. Real-Time Identification of Smoldering and Flaming Combustion Phases in Forest Using a Wireless Sensor Network-Based Multi-Sensor System and Artificial Neural Network.

    Science.gov (United States)

    Yan, Xiaofei; Cheng, Hong; Zhao, Yandong; Yu, Wenhua; Huang, Huan; Zheng, Xiaoliang

    2016-08-04

    Diverse sensing techniques have been developed and combined with machine learning method for forest fire detection, but none of them referred to identifying smoldering and flaming combustion phases. This study attempts to real-time identify different combustion phases using a developed wireless sensor network (WSN)-based multi-sensor system and artificial neural network (ANN). Sensors (CO, CO₂, smoke, air temperature and relative humidity) were integrated into one node of WSN. An experiment was conducted using burning materials from residual of forest to test responses of each node under no, smoldering-dominated and flaming-dominated combustion conditions. The results showed that the five sensors have reasonable responses to artificial forest fire. To reduce cost of the nodes, smoke, CO₂ and temperature sensors were chiefly selected through correlation analysis. For achieving higher identification rate, an ANN model was built and trained with inputs of four sensor groups: smoke; smoke and CO₂; smoke and temperature; smoke, CO₂ and temperature. The model test results showed that multi-sensor input yielded higher predicting accuracy (≥82.5%) than single-sensor input (50.9%-92.5%). Based on these, it is possible to reduce the cost with a relatively high fire identification rate and potential application of the system can be tested in future under real forest condition.

  10. Development of Implantable Wireless Sensor Nodes for Animal Husbandry and MedTech Innovation

    Directory of Open Access Journals (Sweden)

    Jian Lu

    2018-03-01

    Full Text Available In this paper, we report the development, evaluation, and application of ultra-small low-power wireless sensor nodes for advancing animal husbandry, as well as for innovation of medical technologies. A radio frequency identification (RFID chip with hybrid interface and neglectable power consumption was introduced to enable switching of ON/OFF and measurement mode after implantation. A wireless power transmission system with a maximum efficiency of 70% and an access distance of up to 5 cm was developed to allow the sensor node to survive for a duration of several weeks from a few minutes’ remote charge. The results of field tests using laboratory mice and a cow indicated the high accuracy of the collected biological data and bio-compatibility of the package. As a result of extensive application of the above technologies, a fully solid wireless pH sensor and a surgical navigation system using artificial magnetic field and a 3D MEMS magnetic sensor are introduced in this paper, and the preliminary experimental results are presented and discussed.

  11. Development of Implantable Wireless Sensor Nodes for Animal Husbandry and MedTech Innovation.

    Science.gov (United States)

    Lu, Jian; Zhang, Lan; Zhang, Dapeng; Matsumoto, Sohei; Hiroshima, Hiroshi; Maeda, Ryutaro; Sato, Mizuho; Toyoda, Atsushi; Gotoh, Takafumi; Ohkohchi, Nobuhiro

    2018-03-26

    In this paper, we report the development, evaluation, and application of ultra-small low-power wireless sensor nodes for advancing animal husbandry, as well as for innovation of medical technologies. A radio frequency identification (RFID) chip with hybrid interface and neglectable power consumption was introduced to enable switching of ON/OFF and measurement mode after implantation. A wireless power transmission system with a maximum efficiency of 70% and an access distance of up to 5 cm was developed to allow the sensor node to survive for a duration of several weeks from a few minutes' remote charge. The results of field tests using laboratory mice and a cow indicated the high accuracy of the collected biological data and bio-compatibility of the package. As a result of extensive application of the above technologies, a fully solid wireless pH sensor and a surgical navigation system using artificial magnetic field and a 3D MEMS magnetic sensor are introduced in this paper, and the preliminary experimental results are presented and discussed.

  12. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS2 2015. 14th international conference on infrared sensors and systems. Proceedings

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS 2 (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS 2 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical modulators; F.3

  13. Pyroelectric Ceramics as Temperature Sensors for Energy System Applications

    Science.gov (United States)

    Silva, Jorge Luis

    Temperature is continuously monitored in energy systems to ensure safe operation temperatures, increase efficiency and avoid high emissions. Most of energy systems operate at high temperature and harsh environments to achieve higher efficiencies, therefore temperature sensing devices that can operate under these conditions are highly desired. The interest has increased in temperature sensors capable to operate and in harsh environments and temperature sensors capable to transmit thermal information wirelessly. One of the solutions for developing harsh environment sensors is to use ceramic materials, especially functional ceramics such as pyroelectrics. Pyroelectric ceramics could be used to develop active sensors for both temperature and pressure due to their capabilities in coupling energy among mechanical, thermal, and electrical domains. In this study, two different pyroelectric materials were used to develop two different temperature sensors systems. First, a high temperature sensor was developed using a lithium niobate (LiNbO3) pyroelectric ceramic. With its Curie temperature of 1210 °C, lithium niobate is capable to maintain its pyroelectric properties at high temperature making it ideal for temperature sensing at high temperature applications. Lithium niobate has been studied previously in the attempt to use its pyroelectric current as the sensing mechanism to measure temperatures up to 500 °C. Pyroelectric coefficient of lithium niobate is a function of temperature as reported in a previous study, therefore a dynamic technique is utilized to measure the pyroelectric coefficient of the lithium niobate used in this study. The pyroelectric coefficient was successfully measured up to 500 °C with coefficients ranging from -8.5 x 10 -5 C/m2 °C at room temperature to -23.70 x 10 -5 C/m2 °C at 500 °C. The lithium niobate sensor was then tested at higher temperatures: 220 °C, 280 °C, 410 °C and 500 °C with 4.31 %, 2.1 %, 0.4 % and 0.6 % deviation

  14. Real-Time Monitoring System Using Smartphone-Based Sensors and NoSQL Database for Perishable Supply Chain

    Directory of Open Access Journals (Sweden)

    Ganjar Alfian

    2017-11-01

    Full Text Available Since customer attention is increasing due to growing customer health awareness, it is important for the perishable food supply chain to monitor food quality and safety. This study proposes a real-time monitoring system that utilizes smartphone-based sensors and a big data platform. Firstly, we develop a smartphone-based sensor to gather temperature, humidity, GPS, and image data. The IoT-generated sensor on the smartphone has characteristics such as a large amount of storage, an unstructured format, and continuous data generation. Thus, in this study, we propose an effective big data platform design to handle IoT-generated sensor data. Furthermore, the abnormal sensor data generated by failed sensors is called outliers and may arise in real cases. The proposed system utilizes outlier detection based on statistical and clustering approaches to filter out the outlier data. The proposed system was evaluated for system and gateway performance and tested on the kimchi supply chain in Korea. The results showed that the proposed system is capable of processing a massive input/output of sensor data efficiently when the number of sensors and clients increases. The current commercial smartphones are sufficiently capable of combining their normal operations with simultaneous performance as gateways for transmitting sensor data to the server. In addition, the outlier detection based on the 3-sigma and DBSCAN were used to successfully detect/classify outlier data as separate from normal sensor data. This study is expected to help those who are responsible for developing the real-time monitoring system and implementing critical strategies related to the perishable supply chain.

  15. Smart Sensors' Role in Integrated System Health Management

    Science.gov (United States)

    Perotti, Jose M.; Mata, Carlos

    2005-01-01

    During the last decade, there has been a major effort in the aerospace industry to reduce the cost per pond of payload and become competitive in the international market. Competition from Europe, Japan, and China has reduced this cost to almost a third from 1990 to 2000. This cost has leveled in recent years to an average price of around $12,000/pound of payload. One of NASA's goals is to promote the development of technologies to reduce this cost by a factor of 10 or more Exploration of space, specially manned exploration missions, involves very complex launch and flight vehicles, associated ground support systems, and extensive human support during all phases of the mission. When considering the Space Shuttle Program, we can see that vehicle and ground support systems' processing, operation, and maintenance represent a large percentage of the program cost and time. Reducing operating, processing and maintenance costs will greatly reduce the cost of Exploration programs. The Integrated System Health Management (ISHM) concept is one of the technologies that will help reduce these operating, processing and maintenance costs. ISHM is an integrated health monitoring system applicable to both flight and ground systems. It automatically and autonomously acquires information from sensors and actuators and processes that information using the ISHM-embedded knowledge. As a result, it establishes the health of the system based on the acquired information and its prior knowledge. When this concept is fully implemented, ISHM systems shall be able to perform failure prediction and remediation before actual hard failures occurs, preventing its costly consequences. Data sources, sensors, and their associated data acquisition systems, constitute the foundation of the system. A smart sensing architecture is required to support the acquisition of reliable, high quality data, required by the ISHM. A thorough definition of the smart sensor architectures, their embedded diagnostic

  16. Muscular condition monitoring system using fiber bragg grating sensors

    International Nuclear Information System (INIS)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun

    2014-01-01

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  17. Muscular condition monitoring system using fiber bragg grating sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Young; Lee, Jin Hyuk; Kim, Dae Hyun [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-10-15

    Fiber optic sensors (FOS) have advantages such as electromagnetic interference (EMI) immunity, corrosion resistance and multiplexing capability. For these reasons, they are widely used in various condition monitoring systems (CMS). This study investigated a muscular condition monitoring system using fiber optic sensors (FOS). Generally, sensors for monitoring the condition of the human body are based on electro-magnetic devices. However, such an electrical system has several weaknesses, including the potential for electro-magnetic interference and distortion. Fiber Bragg grating (FBG) sensors overcome these weaknesses, along with simplifying the devices and increasing user convenience. To measure the level of muscle contraction and relaxation, which indicates the muscle condition, a belt-shaped FBG sensor module that makes it possible to monitor the movement of muscles in the radial and circumferential directions was fabricated in this study. In addition, a uniaxial tensile test was carried out in order to evaluate the applicability of this FBG sensor module. Based on the experimental results, a relationship was observed between the tensile stress and Bragg wavelength of the FBG sensors, which revealed the possibility of fabricating a muscular condition monitoring system based on FBG sensors.

  18. Comparison of sensor systems designed using multizone, zonal, and CFD data for protection of indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. Lisa; Wen, Jin [Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA 19104 (United States)

    2010-04-15

    Sensors that detect chemical and biological warfare agents can offer early warning of dangerous contaminants. However, current sensor system design is mostly by intuition and experience rather than by systematic design. To develop a sensor system design methodology, the proper selection of an indoor airflow model is needed. Various indoor airflow models exist in the literature, from complex computational fluid dynamics (CFD) to simpler approaches such as multizone and zonal models. Airflow models provide the contaminant concentration data, to which an optimization method can be applied to design sensor systems. The authors utilized a subzonal modeling approach when using a multizone model and were the first to utilize a zonal model for systematic sensor system design. The objective of the study was to examine whether or not data from a simpler airflow model could be used to design sensor systems capable of performing just as well as those designed using data from more complex CFD models. Three test environments, a small office, a large hall, and an office suite were examined. Results showed that when a unique sensor system design was not needed, sensor systems designed using data from simpler airflow models could perform just as well as those designed using CFD data. Further, only for the small office did the common engineering sensor system design practice of placing a sensor at the exhaust result in sensor system performance that was equivalent to one designed using CFD data. (author)

  19. Closed-loop System Identification with New Sensors

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, K; Stoustrup, Jakob

    2008-01-01

    This paper deals with system identification of new system dynamics revealed by online introduction of new sensors in existing multi-variable linear control systems. The so-called "Hansen Scheme" utilises the dual Youla-Kucera parameterisation of all systems stabilised by a given linear controller...... to transform closed-loop system identification problems into open-loop-like problems. We show that this scheme can be formally extended to accomodate extra sensors in a nice way. The approach is illustrated on a simple simulation example....

  20. Energy storage management system with distributed wireless sensors

    Science.gov (United States)

    Farmer, Joseph C.; Bandhauer, Todd M.

    2015-12-08

    An energy storage system having a multiple different types of energy storage and conversion devices. Each device is equipped with one or more sensors and RFID tags to communicate sensor information wirelessly to a central electronic management system, which is used to control the operation of each device. Each device can have multiple RFID tags and sensor types. Several energy storage and conversion devices can be combined.

  1. Enhanced technologies for unattended ground sensor systems

    Science.gov (United States)

    Hartup, David C.

    2010-04-01

    Progress in several technical areas is being leveraged to advantage in Unattended Ground Sensor (UGS) systems. This paper discusses advanced technologies that are appropriate for use in UGS systems. While some technologies provide evolutionary improvements, other technologies result in revolutionary performance advancements for UGS systems. Some specific technologies discussed include wireless cameras and viewers, commercial PDA-based system programmers and monitors, new materials and techniques for packaging improvements, low power cueing sensor radios, advanced long-haul terrestrial and SATCOM radios, and networked communications. Other technologies covered include advanced target detection algorithms, high pixel count cameras for license plate and facial recognition, small cameras that provide large stand-off distances, video transmissions of target activity instead of still images, sensor fusion algorithms, and control center hardware. The impact of each technology on the overall UGS system architecture is discussed, along with the advantages provided to UGS system users. Areas of analysis include required camera parameters as a function of stand-off distance for license plate and facial recognition applications, power consumption for wireless cameras and viewers, sensor fusion communication requirements, and requirements to practically implement video transmission through UGS systems. Examples of devices that have already been fielded using technology from several of these areas are given.

  2. An inexpensive optical sensor system for monitoring total suspended solids in water

    International Nuclear Information System (INIS)

    Sami Gumaan Daraigan; Mohd Zubir Matjafri; Khiruddin Abdullah; Azlan Abdul Aziz; Abdul Aziz Tajuddin; Mohd Firdaus Othman

    2005-01-01

    The objectives of this work are to design and develop an optical transsmissometer sensor for measuring total suspended solids TSS concentrations in water samples. The proposed optical sensor has the advantages of being relatively inexpensive, and easy to make and operate. An optical algorithm has been developed and used for the measurement of total suspended solids concentrations. The developed optical sensor components include light emitting diodes LEDs that are used for measuring transmitted light. The concentrations of total suspended solids TSS are determined from transmitted light through the water samples. The transmitted light is measured in terms of the output voltage of the photodetector of the sensor system. The readings are measured using a digital multimeter. The results indicate that the level of the photocurrent is linearly proportional to the total suspended solids concentration. The proposed algorithm produces a high correlation coefficient and low root mean square error. (Author)

  3. Development of a wireless MEMS multifunction sensor system and field demonstration of embedded sensors for monitoring concrete pavements : tech transfer summary.

    Science.gov (United States)

    2016-08-01

    Micro-electromechanical sensors and systems- (MEMS)-based and : wireless-based smart-sensing technologies have, until now, rarely : been used for monitoring pavement response in the field, and the : requirements for using such smart sensing technolog...

  4. Distributed Database Semantic Integration of Wireless Sensor Network to Access the Environmental Monitoring System

    Directory of Open Access Journals (Sweden)

    Ubaidillah Umar

    2018-06-01

    Full Text Available A wireless sensor network (WSN works continuously to gather information from sensors that generate large volumes of data to be handled and processed by applications. Current efforts in sensor networks focus more on networking and development services for a variety of applications and less on processing and integrating data from heterogeneous sensors. There is an increased need for information to become shareable across different sensors, database platforms, and applications that are not easily implemented in traditional database systems. To solve the issue of these large amounts of data from different servers and database platforms (including sensor data, a semantic sensor web service platform is needed to enable a machine to extract meaningful information from the sensor’s raw data. This additionally helps to minimize and simplify data processing and to deduce new information from existing data. This paper implements a semantic web data platform (SWDP to manage the distribution of data sensors based on the semantic database system. SWDP uses sensors for temperature, humidity, carbon monoxide, carbon dioxide, luminosity, and noise. The system uses the Sesame semantic web database for data processing and a WSN to distribute, minimize, and simplify information processing. The sensor nodes are distributed in different places to collect sensor data. The SWDP generates context information in the form of a resource description framework. The experiment results demonstrate that the SWDP is more efficient than the traditional database system in terms of memory usage and processing time.

  5. Intelligent Monitoring System with High Temperature Distributed Fiberoptic Sensor for Power Plant Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Kwang Y. Lee; Stuart S. Yin; Andre Boehman

    2006-09-26

    The objective of the proposed work is to develop an intelligent distributed fiber optical sensor system for real-time monitoring of high temperature in a boiler furnace in power plants. Of particular interest is the estimation of spatial and temporal distributions of high temperatures within a boiler furnace, which will be essential in assessing and controlling the mechanisms that form and remove pollutants at the source, such as NOx. The basic approach in developing the proposed sensor system is three fold: (1) development of high temperature distributed fiber optical sensor capable of measuring temperatures greater than 2000 C degree with spatial resolution of less than 1 cm; (2) development of distributed parameter system (DPS) models to map the three-dimensional (3D) temperature distribution for the furnace; and (3) development of an intelligent monitoring system for real-time monitoring of the 3D boiler temperature distribution. Under Task 1, we have set up a dedicated high power, ultrafast laser system for fabricating in-fiber gratings in harsh environment optical fibers, successfully fabricated gratings in single crystal sapphire fibers by the high power laser system, and developed highly sensitive long period gratings (lpg) by electric arc. Under Task 2, relevant mathematical modeling studies of NOx formation in practical combustors have been completed. Studies show that in boiler systems with no swirl, the distributed temperature sensor may provide information sufficient to predict trends of NOx at the boiler exit. Under Task 3, we have investigated a mathematical approach to extrapolation of the temperature distribution within a power plant boiler facility, using a combination of a modified neural network architecture and semigroup theory. Given a set of empirical data with no analytic expression, we first developed an analytic description and then extended that model along a single axis.

  6. A New Miniaturized Inkjet Printed Solid State Electrolyte Sensor for Applications in Life Support Systems - First Results

    Science.gov (United States)

    Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix

    New generations of integrated closed loop systems will combine life support systems (incl. biological components) and energy systems such as fuel cell and electrolysis systems. Those systems and their test beds also contain complex safety sensor monitoring systems. Especially in fuel cells and electrolysis systems, the hydrogen and oxygen flows and exchange into other areas due to diffusion processes or leaks need to be monitored. Knowledge of predominant gas concentrations at all times is essential to avoid explosive gas mixtures. Solid state electrolyte sensors are promising for use as safety sensors. They have already been developed and produced at various institutes, but the power consumption for heating an existing solid state electrolyte sensor element still lies between 1 to 1.5 W and the operational readiness still takes about 20 to 30 s. This is partially due to the current manufacturing process for the solid state electrolyte sensor elements that is based on screen printing technology. However this technology has strong limitations in flexibility of the layout and re-designs. It is therefore suitable for mass production, but not for a flexible development and the production of specific individual sensors, e.g. for space applications. Moreover a disadvantage is the relatively high material consumption, especially in combination with the sensors need of expensive noble metal and ceramic pastes, which leads to a high sensor unit price. The Inkjet technology however opens up completely new possibilities in terms of dimensions, geometries, structures, morphologies and materials of sensors. This new approach is capable of printing finer high-resolution layers without the necessity of meshes or masks for patterning. Using the Inkjet technology a design change is possible at any time on the CAD screen. Moreover the ink is only deposited where it is needed. Custom made sensors, as they are currently demanded in space sensor applications, are thus realized simply

  7. Development of a versatile readout and test system and characterization of a capacitively coupled active pixel sensor

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, Jens; Gonella, Laura; Hemperek, Tomasz; Hirono, Toko; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn, Bonn (Germany); Peric, Ivan [Karlsruher Institut fuer Technologie, Karlsruhe (Germany); Collaboration: ATLAS-Collaboration

    2015-07-01

    With the availability of high voltage and high resistivity CMOS processes, active pixel sensors are becoming increasingly interesting for radiation detection in high energy physics experiments. Although the pixel signal-to-noise ratio and the sensor radiation tolerance were improved, active pixel sensors cannot yet compete with state-of-the-art hybrid pixel detector in a high radiation environment. Hence, active pixel sensors are possible candidates for the outer tracking detector in HEP experiments where production cost plays a role. The investigation of numerous prototyping steps and different technologies is still ongoing and requires a versatile test and readout system, which will be presented in this talk. A capacitively coupled active pixel sensor fabricated in AMS 180 nm high voltage CMOS process is investigated. The sensor is designed to be glued to existing front-end pixel readout chips. Results from the characterization are presented in this talk.

  8. Evaluation of the AN/SAY-1 Thermal Imaging Sensor System

    National Research Council Canada - National Science Library

    Smith, John G; Middlebrook, Christopher T

    2002-01-01

    The AN/SAY-1 Thermal Imaging Sensor System "TISS" was developed to provide surface ships with a day/night imaging capability to detect low radar reflective, small cross-sectional area targets such as floating mines...

  9. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  10. Design and development of DC high current sensor using Hall-Effect method

    Science.gov (United States)

    Dewi, Sasti Dwi Tungga; Panatarani, C.; Joni, I. Made

    2016-02-01

    This paper report a newly developed high DC current sensor by using a Hall effect method and also the measurement system. The Hall effect sensor receive the magnetic field generated by a current carrying conductor wire. The SS49E (Honeywell) magnetoresistive sensor was employed to sense the magnetic field from the field concentrator. The voltage received from SS49E then converted into digital by using analog to digital converter (ADC-10 bit). The digital data then processed in the microcontroller to be displayed as the value of the electric current in the LCD display. In addition the measurement was interfaced into Personal Computer (PC) using the communication protocols of RS232 which was finally displayed in real-time graphical form on the PC display. The performance test on the range ± 40 Ampere showed that the maximum relative error is 5.26%. It is concluded that the sensors and the measurement system worked properly according to the design with acceptable accuracy.

  11. Sensor Network Middleware for Cyber-Physical Systems: Opportunities and Challenges

    Science.gov (United States)

    Singh, G.

    2015-12-01

    Wireless Sensor Network middleware typically provides abstractions for common tasks such as atomicity, synchronization and communication with the intention of isolating the developers of distributed applications from lower-level details of the underlying platforms. Developing middleware to meet the performance constraints of applications is an important challenge. Although one would like to develop generic middleware services which can be used in a variety of different applications, efficiency considerations often force developers to design middleware and algorithms customized to specific operational contexts. This presentation will discuss techniques to design middleware that is customizable to suit the performance needs of specific applications. We also discuss the challenges poised in designing middleware for pervasive sensor networks and cyber-physical systems with specific focus on environmental monitoring.

  12. 3D sensors and micro-fabricated detector systems

    International Nuclear Information System (INIS)

    Da Vià, Cinzia

    2014-01-01

    Micro-systems based on the Micro Electro Mechanical Systems (MEMS) technology have been used in miniaturized low power and low mass smart structures in medicine, biology and space applications. Recently similar features found their way inside high energy physics with applications in vertex detectors for high-luminosity LHC Upgrades, with 3D sensors, 3D integration and efficient power management using silicon micro-channel cooling. This paper reports on the state of this development

  13. Fault-tolerant cooperative output regulation for multi-vehicle systems with sensor faults

    Science.gov (United States)

    Qin, Liguo; He, Xiao; Zhou, D. H.

    2017-10-01

    This paper presents a unified framework of fault diagnosis and fault-tolerant cooperative output regulation (FTCOR) for a linear discrete-time multi-vehicle system with sensor faults. The FTCOR control law is designed through three steps. A cooperative output regulation (COR) controller is designed based on the internal mode principle when there are no sensor faults. A sufficient condition on the existence of the COR controller is given based on the discrete-time algebraic Riccati equation (DARE). Then, a decentralised fault diagnosis scheme is designed to cope with sensor faults occurring in followers. A residual generator is developed to detect sensor faults of each follower, and a bank of fault-matching estimators are proposed to isolate and estimate sensor faults of each follower. Unlike the current distributed fault diagnosis for multi-vehicle systems, the presented decentralised fault diagnosis scheme in each vehicle reduces the communication and computation load by only using the information of the vehicle. By combing the sensor fault estimation and the COR control law, an FTCOR controller is proposed. Finally, the simulation results demonstrate the effectiveness of the FTCOR controller.

  14. A closed-loop system for frequency tracking of piezoresistive cantilever sensors

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Zhang, Qing; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    A closed loop circuit capable of tracking resonant frequencies for MEMS-based piezoresistive cantilever resonators is developed in this work. The proposed closed-loop system is mainly based on a phase locked loop (PLL) circuit. In order to lock onto the resonant frequency of the resonator, an actuation signal generated from a voltage-controlled oscillator (VCO) is locked to the phase of the input reference signal of the cantilever sensor. In addition to the PLL component, an instrumentation amplifier and an active low pass filter (LPF) are connected to the system for gaining the amplitude and reducing the noise of the cantilever output signals. The LPF can transform a rectangular signal into a sinusoidal signal with voltage amplitudes ranging from 5 to 10 V which are sufficient for a piezoactuator input (i.e., maintaining a large output signal of the cantilever sensor). To demonstrate the functionality of the system, a self-sensing silicon cantilever resonator with a built-in piezoresistive Wheatstone bridge is fabricated and integrated with the circuit. A piezoactuator is utilized for actuating the cantilever into resonance. Implementation of this closed loop system is used to track the resonant frequency of a silicon cantilever-based sensor resonating at 9.4 kHz under a cross-sensitivity test of ambient temperature. The changes of the resonant frequency are interpreted using a frequency counter connected to the system. From the experimental results, the temperature sensitivity and coefficient of the employed sensor are 0.3 Hz/°C and 32.8 ppm/°C, respectively. The frequency stability of the system can reach up to 0.08 Hz. The development of this system will enable real-time nanoparticle monitoring systems and provide a miniaturization of the instrumentation modules for cantilever-based nanoparticle detectors.

  15. Development of a Simple Traffic Sensor and System with Vehicle Classification Based on PVDF Film Element

    Directory of Open Access Journals (Sweden)

    D. R. SANTOSO

    2011-03-01

    Full Text Available In this paper, piezoelectric sensor system for measuring traffic flow with vehicle classification is proposed and investigated. Sensing element is made of PVDF film, which on both sides plastered with sheets of metal electrodes for making electrical connections. This sensor will generate electric voltage when subjected to mechanical pressure by the wheels of the vehicle. The signal conditioning is required to make sensor output voltage in the range of 0-5 Volts. To classify the types of vehicles crossing the sensor, three-level comparator is used, with specifications of a low voltage reference for motorcycles, medium voltage reference for a family vehicle, and a high voltage reference for buses, trucks and the like. Output of the comparators are already a logic '0' or '1' is then processed by a microcontroller based data acquisition system that the output shows the number and type of vehicles that crossed the road in the form of digital code. These data then transmitted to a control centre that was built based on a PC. At the control centre, traffic data tabulated in the form of measurement database and stored for further analysis.

  16. MEMS sensors and wireless telemetry for distributed systems

    Energy Technology Data Exchange (ETDEWEB)

    Britton, C.L. Jr.; Warmack, R.J.; Smith, S.F. [and others

    1998-02-01

    Selectively coated cantilevers are being developed at ORNL for chemical and biological sensing. The sensitivity can exceed that of other electro-mechanical devices as parts-per-trillion detection can be demonstrated for certain species. The authors are now proceeding to develop systems that employ electrically readable microcantilevers in a standard MEMS process and standard CMOS processes. One of their primary areas of interest is chemical sensing for environmental applications. Towards this end, they are presently developing electronic readout of a mercury-sensitive coated cantilever. In order to field arrays of distributed sensors, a wireless network for data reporting is needed. For this, the authors are developing on-chip spread-spectrum encoding and modulation circuitry to improve the robustness and security of sensor data in typical interference- and multipath-impaired environments. They have also provided for a selection of distinct spreading codes to serve groups of sensors in a common environment by the application of code-division multiple-access techniques. Most of the RF circuitry they have designed and fabricated in 0.5 {micro}m CMOS has been tested and verified operational to above 1 GHz. The initial intended operation is for use in the 915 MHz Industrial, Scientific, and Medical (ISM) band. This paper presents measured data on the microcantilever-based mercury detector. They also present design data and measurements of the RF telemetry chip.

  17. Development of oxygen and pH sensors for aqueous systems

    International Nuclear Information System (INIS)

    Stvartak, C.; Alcock, C.B.; Li, B.; Wang, L.; Fergus, J.W.; Bakshi, N.

    1994-04-01

    Corrosion science has long recognized that two of the most important parameters in characterizing the corrosivity of an aqueous environment are oxygen chemical potential and pH. These parameters not only determine the thermodynamic driving forces for various corrosion reactions, but also characterize the rates of these reactions and hence the lifetime of a particular component. The primary goal of this project is to develop an electrochemical oxygen and pH sensor for continuous use in the cycle chemistry control of power plants. In the past year, electrochemical sensors with a metal/metal oxide or metal/metal hydride internal reference electrode and a fluoride-based electrolyte tube have been developed and tested in this laboratory. The corrosion tests showed that the LaF 3 -based solid electrolyte was very stable both chemically and physically in water. Furthermore, its electrical conductivity is 4 to 5 orders of magnitude higher than that of stabilized zirconia below 573 K (300 degree C), which is the main advantage of a fluoride-based electrolyte at low temperatures. With this electrolyte and the selected internal oxygen reference electrode (Ag/Ag 2 O), the electrochemical probe demonstrated Nernstian responses to the oxygen chemical potential and pH of the aqueous solution with good reproducibility. A similar cell with Zr/ZrH 1+x as the internal hydrogen reference electrode showed promising pH sensing characteristics. It is proposed that these two cells be combined to form a double-headed electrochemical probe to determine oxygen chemical potential and pH in the solution simultaneously

  18. Reconfigurable Sensor Monitoring System

    Science.gov (United States)

    Alhorn, Dean C. (Inventor); Dutton, Kenneth R. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)

    2017-01-01

    A reconfigurable sensor monitoring system includes software tunable filters, each of which is programmable to condition one type of analog signal. A processor coupled to the software tunable filters receives each type of analog signal so-conditioned.

  19. Transparent Fingerprint Sensor System for Large Flat Panel Display.

    Science.gov (United States)

    Seo, Wonkuk; Pi, Jae-Eun; Cho, Sung Haeung; Kang, Seung-Youl; Ahn, Seong-Deok; Hwang, Chi-Sun; Jeon, Ho-Sik; Kim, Jong-Uk; Lee, Myunghee

    2018-01-19

    In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT) sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO) TFT sensor array and associated custom Read-Out IC (ROIC) are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE) amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC). To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger's ridges and valleys through the fingerprint sensor array.

  20. An Environmental Monitoring System for Managing Spatiotemporal Sensor Data over Sensor Networks

    Directory of Open Access Journals (Sweden)

    Keun Ho Ryu

    2012-03-01

    Full Text Available In a wireless sensor network, sensors collect data about natural phenomena and transmit them to a server in real-time. Many studies have been conducted focusing on the processing of continuous queries in an approximate form. However, this approach is difficult to apply to environmental applications which require the correct data to be stored. In this paper, we propose a weather monitoring system for handling and storing the sensor data stream in real-time in order to support continuous spatial and/or temporal queries. In our system, we exploit two time-based insertion methods to store the sensor data stream and reduce the number of managed tuples, without losing any of the raw data which are useful for queries, by using the sensors’ temporal attributes. In addition, we offer a method for reducing the cost of the join operations used in processing spatiotemporal queries by filtering out a list of irrelevant sensors from query range before making a join operation. In the results of the performance evaluation, the number of tuples obtained from the data stream is reduced by about 30% in comparison to a naïve approach, thereby decreasing the query execution time.

  1. Development of a platform to combine sensor networks and home robots to improve fall detection in the home environment.

    Science.gov (United States)

    Della Toffola, Luca; Patel, Shyamal; Chen, Bor-rong; Ozsecen, Yalgin M; Puiatti, Alessandro; Bonato, Paolo

    2011-01-01

    Over the last decade, significant progress has been made in the development of wearable sensor systems for continuous health monitoring in the home and community settings. One of the main areas of application for these wearable sensor systems is in detecting emergency events such as falls. Wearable sensors like accelerometers are increasingly being used to monitor daily activities of individuals at a risk of falls, detect emergency events and send alerts to caregivers. However, such systems tend to have a high rate of false alarms, which leads to low compliance levels. Home robots can enable caregivers with the ability to quickly make an assessment and intervene if an emergency event is detected. This can provide an additional layer for detecting false positives, which can lead to improve compliance. In this paper, we present preliminary work on the development of a fall detection system based on a combination sensor networks and home robots. The sensor network architecture comprises of body worn sensors and ambient sensors distributed in the environment. We present the software architecture and conceptual design home robotic platform. We also perform preliminary characterization of the sensor network in terms of latencies and battery lifetime.

  2. Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review.

    Science.gov (United States)

    Zou, Liang; Ge, Chang; Wang, Z Jane; Cretu, Edmond; Li, Xiaoou

    2017-11-17

    During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted.

  3. Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review

    Directory of Open Access Journals (Sweden)

    Liang Zou

    2017-11-01

    Full Text Available During the last decades, smart tactile sensing systems based on different sensing techniques have been developed due to their high potential in industry and biomedical engineering. However, smart tactile sensing technologies and systems are still in their infancy, as many technological and system issues remain unresolved and require strong interdisciplinary efforts to address them. This paper provides an overview of smart tactile sensing systems, with a focus on signal processing technologies used to interpret the measured information from tactile sensors and/or sensors for other sensory modalities. The tactile sensing transduction and principles, fabrication and structures are also discussed with their merits and demerits. Finally, the challenges that tactile sensing technology needs to overcome are highlighted.

  4. Design and application of star map simulation system for star sensors

    Science.gov (United States)

    Wu, Feng; Shen, Weimin; Zhu, Xifang; Chen, Yuheng; Xu, Qinquan

    2013-12-01

    Modern star sensors are powerful to measure attitude automatically which assure a perfect performance of spacecrafts. They achieve very accurate attitudes by applying algorithms to process star maps obtained by the star camera mounted on them. Therefore, star maps play an important role in designing star cameras and developing procession algorithms. Furthermore, star maps supply significant supports to exam the performance of star sensors completely before their launch. However, it is not always convenient to supply abundant star maps by taking pictures of the sky. Thus, star map simulation with the aid of computer attracts a lot of interests by virtue of its low price and good convenience. A method to simulate star maps by programming and extending the function of the optical design program ZEMAX is proposed. The star map simulation system is established. Firstly, based on analyzing the working procedures of star sensors to measure attitudes and the basic method to design optical system by ZEMAX, the principle of simulating star sensor imaging is given out in detail. The theory about adding false stars and noises, and outputting maps is discussed and the corresponding approaches are proposed. Then, by external programming, the star map simulation program is designed and produced. Its user interference and operation are introduced. Applications of star map simulation method in evaluating optical system, star image extraction algorithm and star identification algorithm, and calibrating system errors are presented completely. It was proved that the proposed simulation method provides magnificent supports to the study on star sensors, and improves the performance of star sensors efficiently.

  5. Development and Flight Test of a Robust Optical-Inertial Navigation System Using Low-Cost Sensors

    National Research Council Canada - National Science Library

    Nielsen, Michael B

    2008-01-01

    .... This algorithm provides an alternative to the Global Positioning System (GPS) as a precision navigation source, enabling navigation in GPS denied environments, using low-cost sensors and equipment...

  6. AMA Conferences 2015. SENSOR 2015. 17th international conference on sensors and measurement technology. IRS{sup 2} 2015. 14th international conference on infrared sensors and systems. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    This meeting paper contains presentations of two conferences: SENSOR 2015 and IRS{sup 2} (= International conference on InfraRed Sensors and systems). The first part of SENSOR 2015 contains the following chapters: (A) SENSOR PRINCIPLES: A.1: Mechanical sensors; A.2: Optical sensors; A.3: Ultrasonic sensors; A.4: Microacoustic sensors; A.5: Magnetic sensors; A.6: Impedance sensors; A.7: Gas sensors; A.8: Flow sensors; A.9: Dimensional measurement; A.10: Temperature and humidity sensors; A.11: Chemosensors; A.12: Biosensors; A.13: Embedded sensors; A.14: Sensor-actuator systems; (B) SENSOR TECHNOLOGY: B.1: Sensor design; B.2: Numerical simulation of sensors; B.3: Sensor materials; B.4: MEMS technology; B.5: Micro-Nano-Integration; B.6: Packaging; B.7: Materials; B.8: Thin films; B.9: Sensor production; B.10: Sensor reliability; B.11: Calibration and testing; B.12: Optical fibre sensors. (C) SENSOR ELECTRONICS AND COMMUNICATION: C.1: Sensor electronics; C.2: Sensor networks; C.3: Wireless sensors; C.4: Sensor communication; C.5: Energy harvesting; C.6: Measuring systems; C.7: Embedded systems; C.8: Self-monitoring and diagnosis; (D) APPLICATIONS: D.1: Medical measuring technology; D.2: Ambient assisted living; D.3: Process measuring technology; D.4: Automotive; D.5: Sensors in energy technology; D.6: Production technology; D.7: Security technology; D.8: Smart home; D.9: Household technology. The second part with the contributions of the IRS{sup 2} 2015 is structured as follows: (E) INFRARED SENSORS: E.1: Photon detectors; E.2: Thermal detectors; E.3: Cooled detectors; E.4: Uncooled detectors; E.5: Sensor modules; E.6: Sensor packaging. (G) INFRARED SYSTEMS AND APPLICATIONS: G.1: Thermal imaging; G.2: Pyrometry / contactless temperature measurement; G.3: Gas analysis; G.4: Spectroscopy; G.5: Motion control and presence detection; G.6: Security and safety monitoring; G.7: Non-destructive testing; F: INFRARED SYSTEM COMPONENTS: F.1: Infrared optics; F.2: Optical

  7. Quality assurance tests of the CBM silicon tracking system sensors with an infrared laser

    Energy Technology Data Exchange (ETDEWEB)

    Teklishyn, Maksym [FAIR GmbH, Darmstadt (Germany); KINR, Kyiv (Ukraine); Collaboration: CBM-Collaboration

    2016-07-01

    Double-sided 300 μm thick silicon microstrip sensors are planned to be used in the Silicon Tracking System (STS) of the future CBM experiment. Different tools, including an infrared laser, are used to induce charge in the sensor medium to study the sensor response. We use present installation to develop a procedure for the sensor quality assurance during mass production. The precise positioning of the laser spot allows to make a clear judgment about the sensor interstrip gap response which provides information about the charge distribution inside the sensor medium. Results are compared with the model estimations.

  8. An update on TED gunshot detection system development status

    Science.gov (United States)

    Tidhar, Gil A.; Aphek, Ori; Gurovich, Martin

    2009-05-01

    In recent years the TED system has been under development, starting from new SWIR sensor technology, optics and real-time sensor technologies and following with complete system architecture as a soldier mounted optical gun shot detection system with high precision and imaging means. For the first time, the modules and the concept of operation of the system will be explained, with emphasis on new sensor-to-shooter capabilities. Actual field trial results will be shown.

  9. Water-Cut Sensor System

    KAUST Repository

    Karimi, Muhammad Akram

    2018-01-11

    Provided in some embodiments is a method of manufacturing a pipe conformable water-cut sensors system. Provided in some embodiments is method for manufacturing a water-cut sensor system that includes providing a helical T-resonator, a helical ground conductor, and a separator at an exterior of a cylindrical pipe. The helical T-resonator including a feed line, and a helical open shunt stub conductively coupled to the feed line. The helical ground conductor including a helical ground plane opposite the helical open shunt stub and a ground ring conductively coupled to the helical ground plane. The feed line overlapping at least a portion of the ground ring, and the separator disposed between the feed line and the portion of the ground ring overlapped by the feed line to electrically isolate the helical T-resonator from the helical ground conductor.

  10. Sensor Deployment for Air Pollution Monitoring Using Public Transportation System

    OpenAIRE

    Yu, James J. Q.; Li, Victor O. K.; Lam, Albert Y. S.

    2015-01-01

    Air pollution monitoring is a very popular research topic and many monitoring systems have been developed. In this paper, we formulate the Bus Sensor Deployment Problem (BSDP) to select the bus routes on which sensors are deployed, and we use Chemical Reaction Optimization (CRO) to solve BSDP. CRO is a recently proposed metaheuristic designed to solve a wide range of optimization problems. Using the real world data, namely Hong Kong Island bus route data, we perform a series of simulations an...

  11. Intrusion detection sensors

    International Nuclear Information System (INIS)

    Williams, J.D.

    1978-07-01

    Intrusion detection sensors are an integral part of most physical security systems. Under the sponsorship of the U.S. Department of Energy, Office of Safeguards and Security, Sandia Laboratories has conducted a survey of available intrusion detection sensors and has tested a number of different sensors. An overview of these sensors is provided. This overview includes (1) the operating principles of each type of sensor, (2) unique sensor characteristics, (3) desired sensor improvements which must be considered in planning an intrusion detection system, and (4) the site characteristics which affect the performance of both exterior and interior sensors. Techniques which have been developed to evaluate various intrusion detection sensors are also discussed

  12. Optical detection system for MEMS-type pressure sensor

    International Nuclear Information System (INIS)

    Sareło, K; Górecka-Drzazga, A; Dziuban, J A

    2015-01-01

    In this paper a special optical detection system designed for a MEMS-type (micro-electro-mechanical system) silicon pressure sensor is presented. The main part of the optical system—a detection unit with a perforated membrane—is bonded to the silicon sensor, and placed in a measuring system. An external light source illuminates the membrane of the pressure sensor. Owing to the light reflected from the deflected membrane sensor, the optical pattern consisting of light points is visible, and pressure can be estimated. The optical detection unit (20   ×   20   ×   20.4 mm 3 ) is fabricated using microengineering techniques. Its dimensions are adjusted to the dimensions of the pressure sensor (5   ×   5 mm 2 silicon membrane). Preliminary tests of the optical detection unit integrated with the silicon pressure sensor are carried out. For the membrane sensor from 15 to 60 µm thick, a repeatable detection of the differential pressure in the range of 0 to 280 kPa is achieved. The presented optical microsystem is especially suitable for the pressure measurements in a high radiation environment. (paper)

  13. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture

    Directory of Open Access Journals (Sweden)

    Francisco Javier Ferrández-Pastor

    2016-07-01

    Full Text Available The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water; however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols, the evolution of Internet technologies (Internet of Things and ubiquitous computing (Ubiquitous Sensor Networks allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists when a project is launched.

  14. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture.

    Science.gov (United States)

    Ferrández-Pastor, Francisco Javier; García-Chamizo, Juan Manuel; Nieto-Hidalgo, Mario; Mora-Pascual, Jerónimo; Mora-Martínez, José

    2016-07-22

    The application of Information Technologies into Precision Agriculture methods has clear benefits. Precision Agriculture optimises production efficiency, increases quality, minimises environmental impact and reduces the use of resources (energy, water); however, there are different barriers that have delayed its wide development. Some of these main barriers are expensive equipment, the difficulty to operate and maintain and the standard for sensor networks are still under development. Nowadays, new technological development in embedded devices (hardware and communication protocols), the evolution of Internet technologies (Internet of Things) and ubiquitous computing (Ubiquitous Sensor Networks) allow developing less expensive systems, easier to control, install and maintain, using standard protocols with low-power consumption. This work develops and test a low-cost sensor/actuator network platform, based in Internet of Things, integrating machine-to-machine and human-machine-interface protocols. Edge computing uses this multi-protocol approach to develop control processes on Precision Agriculture scenarios. A greenhouse with hydroponic crop production was developed and tested using Ubiquitous Sensor Network monitoring and edge control on Internet of Things paradigm. The experimental results showed that the Internet technologies and Smart Object Communication Patterns can be combined to encourage development of Precision Agriculture. They demonstrated added benefits (cost, energy, smart developing, acceptance by agricultural specialists) when a project is launched.

  15. Sensors for advanced driver assistance systems; Sensoren fuer Fahrerassistenzsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Ritschel, W.; Wixforth, T. [Hella KGaA Hueck und Co., Lippstadt (Germany)

    2004-07-01

    Essential safety applications and those aimed at driver convenience (blind spot surveillance, stop and go, pre-crash, parking assistant) can be effected in vehicles with the aid of radar sensors. The radar sensors used can be differentiated in terms of the bandwidth required (narrow band or ultra-wide band) and in terms of the modulation of the transmission signal (pulse modulation or CW). Ultra-wide band systems at the moment are not eligible for admission and do not conform with the present regulations in the European Union. The sensors currently being developed at hella for production use are characterized by the fact that they cover the primary applications in motor vehicles. In these cases the transmission signals radiated lie within the valid limits currently approved within the European Union. (orig.)

  16. Development of an Optical Sensor Head for Current and Temperature Measurements in Power Systems

    Directory of Open Access Journals (Sweden)

    Fábio V. B. de Nazaré

    2013-01-01

    Full Text Available The development of a current and temperature monitoring optical device intended to be used in high-voltage environments, particularly transmission lines, is presented. The system is intended to offer not only measurement reliability, but to be also practical and light weighted. Fiber Bragg gratings (FBGs are employed in the measurement of both physical parameters: the current will be acquired using a hybrid sensor head setup—an FBG fixed on a magnetostrictive rod—while a single-point temperature information is provided by a dedicated grating. An inexpensive and outdoor-suitable demodulation method, such as the fixed filter technique, should be used in order to improve the instrumentation robustness, avoiding expensive and complex auxiliary electronics. The preliminary results for laboratory tests are also discussed.

  17. Processing large sensor data sets for safeguards : the knowledge generation system.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Maikel A.; Smartt, Heidi Anne; Matthews, Robert F.

    2012-04-01

    Modern nuclear facilities, such as reprocessing plants, present inspectors with significant challenges due in part to the sheer amount of equipment that must be safeguarded. The Sandia-developed and patented Knowledge Generation system was designed to automatically analyze large amounts of safeguards data to identify anomalous events of interest by comparing sensor readings with those expected from a process of interest and operator declarations. This paper describes a demonstration of the Knowledge Generation system using simulated accountability tank sensor data to represent part of a reprocessing plant. The demonstration indicated that Knowledge Generation has the potential to address several problems critical to the future of safeguards. It could be extended to facilitate remote inspections and trigger random inspections. Knowledge Generation could analyze data to establish trust hierarchies, to facilitate safeguards use of operator-owned sensors.

  18. Toward Sensor-Based Context Aware Systems

    Directory of Open Access Journals (Sweden)

    Kouhei Takada

    2012-01-01

    Full Text Available This paper proposes a methodology for sensor data interpretation that can combine sensor outputs with contexts represented as sets of annotated business rules. Sensor readings are interpreted to generate events labeled with the appropriate type and level of uncertainty. Then, the appropriate context is selected. Reconciliation of different uncertainty types is achieved by a simple technique that moves uncertainty from events to business rules by generating combs of standard Boolean predicates. Finally, context rules are evaluated together with the events to take a decision. The feasibility of our idea is demonstrated via a case study where a context-reasoning engine has been connected to simulated heartbeat sensors using prerecorded experimental data. We use sensor outputs to identify the proper context of operation of a system and trigger decision-making based on context information.

  19. Low-Cost Spectral Sensor Development Description.

    Energy Technology Data Exchange (ETDEWEB)

    Armijo, Kenneth Miguel; Yellowhair, Julius

    2014-11-01

    Solar spectral data for all parts of the US is limited due in part to the high cost of commercial spectrometers. Solar spectral information is necessary for accurate photovoltaic (PV) performance forecasting, especially for large utility-scale PV installations. A low-cost solar spectral sensor would address the obstacles and needs. In this report, a novel low-cost, discrete- band sensor device, comprised of five narrow-band sensors, is described. The hardware is comprised of commercial-off-the-shelf components to keep the cost low. Data processing algorithms were developed and are being refined for robustness. PV module short-circuit current ( I sc ) prediction methods were developed based on interaction-terms regression methodology and spectrum reconstruction methodology for computing I sc . The results suggest the computed spectrum using the reconstruction method agreed well with the measured spectrum from the wide-band spectrometer (RMS error of 38.2 W/m 2 -nm). Further analysis of computed I sc found a close correspondence of 0.05 A RMS error. The goal is for ubiquitous adoption of the low-cost spectral sensor in solar PV and other applications such as weather forecasting.

  20. Bio-integrated electronics and sensor systems

    Science.gov (United States)

    Yeo, Woon-Hong; Webb, R. Chad; Lee, Woosik; Jung, Sungyoung; Rogers, John A.

    2013-05-01

    Skin-mounted epidermal electronics, a strategy for bio-integrated electronics, provide an avenue to non-invasive monitoring of clinically relevant physiological signals for healthcare applications. Current conventional systems consist of single-point sensors fastened to the skin with adhesives, and sometimes with conducting gels, which limits their use outside of clinical settings due to loss of adhesion and irritation to the user. In order to facilitate extended use of skin-mounted healthcare sensors without disrupting everyday life, we envision electronic monitoring systems that integrate seamlessly with the skin below the notice of the user. This manuscript reviews recent significant results towards our goal of wearable electronic sensor systems for long-term monitoring of physiological signals. Ultra-thin epidermal electronic systems (EES) are demonstrated for extended use on the skin, in a conformal manner, including during everyday bathing and sleeping activities. We describe the assessment of clinically relevant physiological parameters, such as electrocardiograms (ECG), electromyograms (EMG), electroencephalograms (EEG), temperature, mechanical strain and thermal conductivity, using examples of multifunctional EES devices. Additionally, we demonstrate capability for real life application of EES by monitoring the system functionality, which has no discernible change, during cyclic fatigue testing.

  1. [The Development of Information Centralization and Management Integration System for Monitors Based on Wireless Sensor Network].

    Science.gov (United States)

    Xu, Xiu; Zhang, Honglei; Li, Yiming; Li, Bin

    2015-07-01

    Developed the information centralization and management integration system for monitors of different brands and models with wireless sensor network technologies such as wireless location and wireless communication, based on the existing wireless network. With adaptive implementation and low cost, the system which possesses the advantages of real-time, efficiency and elaboration is able to collect status and data of the monitors, locate the monitors, and provide services with web server, video server and locating server via local network. Using an intranet computer, the clinical and device management staffs can access the status and parameters of monitors. Applications of this system provide convenience and save human resource for clinical departments, as well as promote the efficiency, accuracy and elaboration for the device management. The successful achievement of this system provides solution for integrated and elaborated management of the mobile devices including ventilator and infusion pump.

  2. Monitoring of slope-instabilities and deformations with Micro-Electro-Mechanical-Systems (MEMS) in wireless ad-hoc Sensor Networks

    Science.gov (United States)

    Arnhardt, C.; Fernández-Steeger, T. M.; Azzam, R.

    2009-04-01

    In most mountainous regions, landslides represent a major threat to human life, properties and infrastructures. Nowadays existing landslide monitoring systems are often characterized by high efforts in terms of purchase, installation, maintenance, manpower and material. In addition (or because of this) only small areas or selective points of the endangered zone can be observed by the system. Therefore the improvement of existing and the development of new monitoring and warning systems are of high relevance. The joint project "Sensor based Landslide Early Warning Systems" (SLEWS) deals with the development of a prototypic Alarm- and Early Warning system (EWS) for different types of landslides using low-cost micro-sensors (MEMS) integrated in a wireless sensor network (WSN). Modern so called Ad-Hoc, Multi-Hop wireless sensor networks (WSN) are characterized by a self organizing and self-healing capacity of the system (autonomous systems). The network consists of numerous individual and own energy-supply operating sensor nodes, that can send data packages from their measuring devices (here: MEMS) over other nodes (Multi-Hop) to a collection point (gateway). The gateway provides the interface to central processing and data retrieval units (PC, Laptop or server) outside the network. In order to detect and monitor the different landslide processes (like fall, topple, spreading or sliding) 3D MEMS capacitive sensors made from single silicon crystals and glass were chosen to measure acceleration, tilting and altitude changes. Based on the so called MEMS (Micro-Electro-Mechanical Systems) technology, the sensors combine very small mechanical and electronic units, sensing elements and transducers on a small microchip. The mass production of such type of sensors allows low cost applications in different areas (like automobile industries, medicine, and automation technology). Apart from the small and so space saving size and the low costs another advantage is the energy

  3. Camera-laser fusion sensor system and environmental recognition for humanoids in disaster scenarios

    International Nuclear Information System (INIS)

    Lee, Inho; Oh, Jaesung; Oh, Jun-Ho; Kim, Inhyeok

    2017-01-01

    This research aims to develop a vision sensor system and a recognition algorithm to enable a humanoid to operate autonomously in a disaster environment. In disaster response scenarios, humanoid robots that perform manipulation and locomotion tasks must identify the objects in the environment from those challenged by the call by the United States’ Defense Advanced Research Projects Agency, e.g., doors, valves, drills, debris, uneven terrains, and stairs, among others. In order for a humanoid to undertake a number of tasks, we con- struct a camera–laser fusion system and develop an environmental recognition algorithm. Laser distance sensor and motor are used to obtain 3D cloud data. We project the 3D cloud data onto a 2D image according to the intrinsic parameters of the camera and the distortion model of the lens. In this manner, our fusion sensor system performs functions such as those performed by the RGB-D sensor gener- ally used in segmentation research. Our recognition algorithm is based on super-pixel segmentation and random sampling. The proposed approach clusters the unorganized cloud data according to geometric characteristics, namely, proximity and co-planarity. To assess the feasibility of our system and algorithm, we utilize the humanoid robot, DRC-HUBO, and the results are demonstrated in the accompanying video.

  4. Camera-laser fusion sensor system and environmental recognition for humanoids in disaster scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Inho [Institute for Human and Machine Cognition (IHMC), Florida (United States); Oh, Jaesung; Oh, Jun-Ho [Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Kim, Inhyeok [NAVER Green Factory, Seongnam (Korea, Republic of)

    2017-06-15

    This research aims to develop a vision sensor system and a recognition algorithm to enable a humanoid to operate autonomously in a disaster environment. In disaster response scenarios, humanoid robots that perform manipulation and locomotion tasks must identify the objects in the environment from those challenged by the call by the United States’ Defense Advanced Research Projects Agency, e.g., doors, valves, drills, debris, uneven terrains, and stairs, among others. In order for a humanoid to undertake a number of tasks, we con- struct a camera–laser fusion system and develop an environmental recognition algorithm. Laser distance sensor and motor are used to obtain 3D cloud data. We project the 3D cloud data onto a 2D image according to the intrinsic parameters of the camera and the distortion model of the lens. In this manner, our fusion sensor system performs functions such as those performed by the RGB-D sensor gener- ally used in segmentation research. Our recognition algorithm is based on super-pixel segmentation and random sampling. The proposed approach clusters the unorganized cloud data according to geometric characteristics, namely, proximity and co-planarity. To assess the feasibility of our system and algorithm, we utilize the humanoid robot, DRC-HUBO, and the results are demonstrated in the accompanying video.

  5. A Modular Plug-And-Play Sensor System for Urban Air Pollution Monitoring: Design, Implementation and Evaluation.

    Science.gov (United States)

    Yi, Wei-Ying; Leung, Kwong-Sak; Leung, Yee

    2017-12-22

    Urban air pollution has caused public concern globally because it seriously affects human life. Modern monitoring systems providing pollution information with high spatio-temporal resolution have been developed to identify personal exposures. However, these systems' hardware specifications and configurations are usually fixed according to the applications. They can be inconvenient to maintain, and difficult to reconfigure and expand with respect to sensing capabilities. This paper aims at tackling these issues by adopting the proposed Modular Sensor System (MSS) architecture and Universal Sensor Interface (USI), and modular design in a sensor node. A compact MSS sensor node is implemented and evaluated. It has expandable sensor modules with plug-and-play feature and supports multiple Wireless Sensor Networks (WSNs). Evaluation results show that MSS sensor nodes can easily fit in different scenarios, adapt to reconfigurations dynamically, and detect low concentration air pollution with high energy efficiency and good data accuracy. We anticipate that the efforts on system maintenance, adaptation, and evolution can be significantly reduced when deploying the system in the field.

  6. Battery system with temperature sensors

    Science.gov (United States)

    Wood, Steven J.; Trester, Dale B.

    2012-11-13

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  7. Developing wireless sensor networks for monitoring crop canopy temperature using a moving sprinkler system as a platform

    Science.gov (United States)

    The objectives of this study were to characterize wireless sensor nodes that we developed in terms of power consumption and functionality, and compare the performance of mesh and non-mesh wireless sensor networks (WSNs) comprised mainly of infrared thermometer thermocouples located on a center pivot...

  8. Development of in-situ monitoring system

    International Nuclear Information System (INIS)

    Lee, Bong Soo; Cho, Dong Hyun; Yoo, Wook Jae; Heo, Ji Yeon

    2010-03-01

    Development of in-situ monitoring system using an optical fiber to measure the real time temperature variation of subsurface water for the evaluation of flow characteristics. We describe the feasibility of developing a fiber-optic temperature sensor using a thermochromic material. A sensor-tip is fabricated by mixing of a thermochromic material powder. The relationships between the temperatures and the output voltages of detectors are determined to measure the temperature of water. It is expected that the fiber-optic temperature monitoring sensor using thermochromic material can be used to measure the real time temperature variation of subsurface water

  9. A smart sensor-based vision system: implementation and evaluation

    International Nuclear Information System (INIS)

    Elouardi, A; Bouaziz, S; Dupret, A; Lacassagne, L; Klein, J O; Reynaud, R

    2006-01-01

    One of the methods of solving the computational complexity of image-processing is to perform some low-level computations on the sensor focal plane. This paper presents a vision system based on a smart sensor. PARIS1 (Programmable Analog Retina-like Image Sensor1) is the first prototype used to evaluate the architecture of an on-chip vision system based on such a sensor coupled with a microcontroller. The smart sensor integrates a set of analog and digital computing units. This architecture paves the way for a more compact vision system and increases the performances reducing the data flow exchanges with a microprocessor in control. A system has been implemented as a proof-of-concept and has enabled us to evaluate the performance requirements for a possible integration of a microcontroller on the same chip. The used approach is compared with two architectures implementing CMOS active pixel sensors (APS) and interfaced to the same microcontroller. The comparison is related to image processing computation time, processing reliability, programmability, precision, bandwidth and subsequent stages of computations

  10. A smart sensor-based vision system: implementation and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Elouardi, A; Bouaziz, S; Dupret, A; Lacassagne, L; Klein, J O; Reynaud, R [Institute of Fundamental Electronics, Bat. 220, Paris XI University, 91405 Orsay (France)

    2006-04-21

    One of the methods of solving the computational complexity of image-processing is to perform some low-level computations on the sensor focal plane. This paper presents a vision system based on a smart sensor. PARIS1 (Programmable Analog Retina-like Image Sensor1) is the first prototype used to evaluate the architecture of an on-chip vision system based on such a sensor coupled with a microcontroller. The smart sensor integrates a set of analog and digital computing units. This architecture paves the way for a more compact vision system and increases the performances reducing the data flow exchanges with a microprocessor in control. A system has been implemented as a proof-of-concept and has enabled us to evaluate the performance requirements for a possible integration of a microcontroller on the same chip. The used approach is compared with two architectures implementing CMOS active pixel sensors (APS) and interfaced to the same microcontroller. The comparison is related to image processing computation time, processing reliability, programmability, precision, bandwidth and subsequent stages of computations.

  11. A Fine-Grained Data Access Control System in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Boniface K. Alese

    2015-12-01

    Full Text Available The evolving realities of Wireless Sensor Network (WSN deployed to various terrain of life require serving multiple applications. As large amount of sensed data are distributed and stored in individual sensors nodes, the illegal access to these sensitive data can be devastating. Consequently, data insecurity becomes a big concern. This study, therefore, proposes a fine-grained access control system which only requires the right set of users to access a particular data, based on their access privileges in the sensor networks. It is designed using Priccess Protocol with Access policy formulation adopting the principle of Bell Lapadula model as well as Attribute-Based Encryption (ABE to control access to sensor data. The functionality of the proposed system is simulated using Netbeans. The performance analysis of the proposed system using execution time and size of the key show that the higher the key size, the harder it becomes for the attacker to hack the system. Additionally, the time taken for the proposed work is lesser which makes the work faster than the existing work. Consequently, a well secure interactive web-based application that could facilitates the field officers access to stored data in safe and secure manner is developed.

  12. A novel laser alignment system for tracking detectors using transparent silicon strip sensors

    International Nuclear Information System (INIS)

    Blum, W.; Kroha, H.; Widmann, P.

    1995-02-01

    Modern large-area precision tracking detectors require increasing accuracy of the geometrical alignment over large distances. A novel optical multi-point alignment system has been developed for the muon spectrometer of the ATLAS detector at the Large Hadron Collider. The system uses collimated laser beams as alignment references which are monitored by semi-transparent optical position sensors. The custom designed sensors provide very precise and uniform position information on the order of 1 μm over a wide measurement range. At suitable laser wavelengths, produced by laser diodes, transmission rates above 90% have been achieved which allow to align more than 30 sensors along one laser beam. With this capability and equipped with integrated readout electronics, the alignment system offers high flexibility for precision applications in a wide range of detector systems. (orig.)

  13. Development of Infrared Lip Movement Sensor for Spoken Word Recognition

    Directory of Open Access Journals (Sweden)

    Takahiro Yoshida

    2007-12-01

    Full Text Available Lip movement of speaker is very informative for many application of speech signal processing such as multi-modal speech recognition and password authentication without speech signal. However, in collecting multi-modal speech information, we need a video camera, large amount of memory, video interface, and high speed processor to extract lip movement in real time. Such a system tends to be expensive and large. This is one reasons of preventing the use of multi-modal speech processing. In this study, we have developed a simple infrared lip movement sensor mounted on a headset, and made it possible to acquire lip movement by PDA, mobile phone, and notebook PC. The sensor consists of an infrared LED and an infrared photo transistor, and measures the lip movement by the reflected light from the mouth region. From experiment, we achieved 66% successfully word recognition rate only by lip movement features. This experimental result shows that our developed sensor can be utilized as a tool for multi-modal speech processing by combining a microphone mounted on the headset.

  14. Development of a nonlinear model for the prediction of response times of glucose affinity sensors using concanavalin A and dextran and the development of a differential osmotic glucose affinity sensor

    Science.gov (United States)

    Reis, Louis G.

    With the increasing prevalence of diabetes in the United States and worldwide, blood glucose monitoring must be accurate and reliable. Current enzymatic sensors have numerous disadvantages that make them unreliable and unfavorable among patients. Recent research in glucose affinity sensors correct some of the problems that enzymatic sensors experience. Dextran and concanavalin A are two of the more common components used in glucose affinity sensors. When these sensors were first explored, a model was derived to predict the response time of a glucose affinity sensor using concanavalin A and dextran. However, the model assumed the system was linear and fell short of calculating times representative of the response times determined through experimental tests with the sensors. In this work, a new model that uses the Stokes-Einstein Equation to demonstrate the nonlinear behavior of the glucose affinity assay was developed to predict the response times of similar glucose affinity sensors. In addition to the device tested by the original linear model, additional devices were identified and tested with the proposed model. The nonlinear model was designed to accommodate the many different variations between systems. The proposed model was able to accurately calculate response times for sensors using the concanavalin A-dextran affinity assay with respect to the experimentally reported times by the independent research groups. Parameter studies using the nonlinear model were able to identify possible setbacks that could compromise the response of thesystem. Specifically, the model showed that the improper use of asymmetrical membranes could increase the response time by as little as 20% or more as the device is miniaturized. The model also demonstrated that systems using the concanavalin Adextran assay would experience higher response times in the hypoglycemic range. This work attempted to replicate and improve an osmotic glucose affinity sensor. The system was designed to

  15. Transparent Fingerprint Sensor System for Large Flat Panel Display

    Directory of Open Access Journals (Sweden)

    Wonkuk Seo

    2018-01-01

    Full Text Available In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO TFT sensor array and associated custom Read-Out IC (ROIC are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 μm × 50 μm. The ROIC uses only eight analog front-end (AFE amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC. To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger’s ridges and valleys through the fingerprint sensor array.

  16. Development of Self-Powered Wireless-Ready High Temperature Electrochemical Sensors for In-Situ Corrosion Monitoring for Boiler Tubes in Next Generation Coal-based Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingbo [West Virginia Univ., Morgantown, WV (United States)

    2015-06-30

    The key innovation of this project is the synergy of the high temperature sensor technology based on the science of electrochemical measurement and state-of-the-art wireless communication technology. A novel self-powered wireless high temperature electrochemical sensor system has been developed for coal-fired boilers used for power generation. An initial prototype of the in-situ sensor demonstrated the capability of the wireless communication system in the laboratory and in a pilot plant (Industrial USC Boiler Setting) environment to acquire electrochemical potential and current signals during the corrosion process. Uniform and localized under-coal ash deposit corrosion behavior of Inconel 740 superalloy has been studied at different simulated coal ash hot corrosion environments using the developed sensor. Two typical potential noise patterns were found to correlate with the oxidation and sulfidation stages in the hot coal ash corrosion process. Two characteristic current noise patterns indicate the extent of the corrosion. There was a good correlation between the responses of electrochemical test data and the results from corroded surface analysis. Wireless electrochemical potential and current noise signals from a simulated coal ash hot corrosion process were concurrently transmitted and recorded. The results from the performance evaluation of the sensor confirm a high accuracy in the thermodynamic and kinetic response represented by the electrochemical noise and impedance test data.

  17. Active Sensing System with In Situ Adjustable Sensor Morphology

    Science.gov (United States)

    Nurzaman, Surya G.; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Background Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. Methodology This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. Conclusions/Significance The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed. PMID:24416094

  18. Active sensing system with in situ adjustable sensor morphology.

    Science.gov (United States)

    Nurzaman, Surya G; Culha, Utku; Brodbeck, Luzius; Wang, Liyu; Iida, Fumiya

    2013-01-01

    Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed.

  19. Development of a real-time closed-loop micro-/nano-positioning system embedded with a capacitive sensor

    International Nuclear Information System (INIS)

    Shiou, Fang-Jung; Chiang, Chia-Jui; Liou, Ke-Jhen; Liao, Shu-Chung; Chen, Chao-Jung; Liou, Huay-Chung

    2010-01-01

    The hysteresis and nonlinearity of the PZT is an actual problem in the piezo-driven micro-/nano-positioning stage, especially for the open-loop positioning stage. The study presents the development of an NI cRIO9074-based real-time closed-loop micro-/nano-positioning system, to overcome the problem of the hysteresis and nonlinearity of a PZT and to increase the positioning speed of the positioning stage. The developed system mainly consists of a piezoelectric actuator, a bridge-type hinge mechanism for displacement magnification, a micro-/nano-positioning stage body, a capacitive sensor system, an NI cRIO9074 real-time control unit with FPGA chip and a PC. After executing the optimization analysis of the displacement, stress and the frequency, using the ANSYS software, the dimensions of the stage body have been designed and determined. A set of software written with the LabView programming language was developed to construct the real-time PID closed-loop control of the developed positioning system. Based on the test results, the designed closed-loop micro-/nano-positioning system was capable of precision positioning within the travel of 119.08 µm with maximum stage tilting angle at 25 µrad. The steady-state positioning deviation of the stage is about ±2 nm in the step-positioning test. In the transient slope-tracing test at a tracing speed of 5 µm s −1 , an error of about ±100 nm is observed

  20. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad; Shamim, Atif; Tarr, Nicholas Garry; Roy, Langis

    2013-01-01

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  1. Miniaturized, low power FGMOSFET radiation sensor and wireless dosimeter system

    KAUST Repository

    Arsalan, Muhammad

    2013-08-27

    A miniaturized floating gate (FG) MOSFET radiation sensor system is disclosed, The sensor preferably comprises a matched pair of sensor and reference FGMOSFETs wherein the sensor FGMOSFET has a larger area floating gate with an extension over a field oxide layer, for accumulation of charge and increased sensitivity. Elimination of a conventional control gate and injector gate reduces capacitance, and increases sensitivity, and allows for fabrication using standard low cost CMOS technology. A sensor system may be provided with integrated signal processing electronics, for monitoring a change in differential channel current I.sub.D, indicative of radiation dose, and an integrated negative bias generator for automatic pre-charging from a low voltage power source. Optionally, the system may be coupled to a wireless transmitter. A compact wireless sensor System on Package solution is presented, suitable for dosimetry for radiotherapy or other biomedical applications.

  2. Development of a Smart Residential Fire Protection System

    Directory of Open Access Journals (Sweden)

    Juhwan Oh

    2013-01-01

    Full Text Available Embedded system is applied for the development of smart residential fire detection and extinguishing system. Wireless communication capability is integrated into various fire sensors and alarm devices. The system activates the fire alarm to warn occupants, executes emergency and rescue calls to remote residents and fire-fighting facility in an intelligent way. The effective location of extra-sprinklers within the space of interest for the fire extinguishing system is also investigated. Actual fire test suggests that the developed wireless system for the smart residential fire protection system is reliable in terms of sensors and their communication linkage.

  3. Catalytic molecularly imprinted polymer membranes: development of the biomimetic sensor for phenols detection.

    Science.gov (United States)

    Sergeyeva, T A; Slinchenko, O A; Gorbach, L A; Matyushov, V F; Brovko, O O; Piletsky, S A; Sergeeva, L M; Elska, G V

    2010-02-05

    Portable biomimetic sensor devices for the express control of phenols content in water were developed. The synthetic binding sites mimicking active site of the enzyme tyrosinase were formed in the structure of free-standing molecularly imprinted polymer membranes. Molecularly imprinted polymer membranes with the catalytic activity were obtained by co-polymerization of the complex Cu(II)-catechol-urocanic acid ethyl ester with (tri)ethyleneglycoldimethacrylate, and oligourethaneacrylate. Addition of the elastic component oligourethaneacrylate provided formation of the highly cross-linked polymer with the catalytic activity in a form of thin, flexible, and mechanically stable membrane. High accessibility of the artificial catalytic sites for the interaction with the analyzed phenol molecules was achieved due to addition of linear polymer (polyethyleneglycol Mw 20,000) to the initial monomer mixture before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) were formed. The cross-linked component of the semi-IPN was represented by the highly cross-linked catalytic molecularly imprinted polymer, while the linear one was represented by polyethyleneglycol Mw 20,000. Extraction of the linear polymer from the fully formed semi-IPN resulted in formation of large pores in the membranes' structure. Concentration of phenols in the analyzed samples was detected using universal portable device oxymeter with the oxygen electrode in a close contact with the catalytic molecularly imprinted polymer membrane as a transducer. The detection limit of phenols detection using the developed sensor system based on polymers-biomimics with the optimized composition comprised 0.063 mM, while the linear range of the sensor comprised 0.063-1 mM. The working characteristics of the portable sensor devices were investigated. Storage stability of sensor systems at room temperature comprised 12 months (87%). As compared to traditional methods of phenols

  4. Multimodal surveillance sensors, algorithms, and systems

    CERN Document Server

    Zhu, Zhigang

    2007-01-01

    From front-end sensors to systems and environmental issues, this practical resource guides you through the many facets of multimodal surveillance. The book examines thermal, vibration, video, and audio sensors in a broad context of civilian and military applications. This cutting-edge volume provides an in-depth treatment of data fusion algorithms that takes you to the core of multimodal surveillance, biometrics, and sentient computing. The book discusses such people and activity topics as tracking people and vehicles and identifying individuals by their speech.Systems designers benefit from d

  5. Sensor network based vehicle classification and license plate identification system

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Janette Rose [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Rosten, Edward J [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Kulathumani, Vinod K [WEST VIRGINIA UNIV.

    2009-01-01

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

  6. Fiber optical sensor system for shape and haptics for flexible instruments in minimally invasive surgery: overview and status quo

    Science.gov (United States)

    Ledermann, Christoph; Pauer, Hendrikje; Woern, Heinz

    2014-05-01

    In minimally invasive surgery, exible mechatronic instruments promise to improve the overall performance of surgical interventions. However, those instruments require highly developed sensors in order to provide haptic feedback to the surgeon or to enable (semi-)autonomous tasks. Precisely, haptic sensors and a shape sensor are required. In this paper, we present our ber optical sensor system of Fiber Bragg Gratings, which consists of a shape sensor, a kinesthetic sensor and a tactile sensor. The status quo of each of the three sensors is described, as well as the concept to integrate them into one ber optical sensor system.

  7. THE TSUNAMI SERVICE BUS, AN INTEGRATION PLATFORM FOR HETEROGENEOUS SENSOR SYSTEMS

    Science.gov (United States)

    Fleischer, J.; Häner, R.; Herrnkind, S.; Kriegel, U.; Schwarting, H.; Wächter, J.

    2009-12-01

    The Tsunami Service Bus (TSB) is the sensor integration platform of the German Indonesian Tsunami Early Warning System (GITEWS) [1]. The primary goal of GITEWS is to deliver reliable tsunami warnings as fast as possible. This is achieved on basis of various sensor systems like seismometers, ocean instrumentation, and GPS stations, all providing fundamental data to support prediction of tsunami wave propagation by the GITEWS warning center. However, all these sensors come with their own proprietary data formats and specific behavior. Also new sensor types might be added, old sensors will be replaced. To keep GITEWS flexible the TSB was developed in order to access and control sensors in a uniform way. To meet these requirements the TSB follows the architectural blueprint of a Service Oriented Architecture (SOA). The integration platform implements dedicated services communicating via a service infrastructure. The functionality required for early warnings is provided by loosely coupled services replacing the "hard-wired" coupling at data level. Changes in the sensor specification are confined to the data level without affecting the warning center. Great emphasis was laid on following the Sensor Web Enablement (SWE) standard [2], specified by the Open Geospatial Consortium (OGC) [3]. As a result the full functionality needed in GITEWS could be achieved by implementing the four SWE services: The Sensor Observation Service for retrieving sensor measurements, the Sensor Alert Service in order to deliver sensor alerts, the Sensor Planning Service for tasking sensors, and the Web Notification Service for conduction messages to various media channels. Beyond these services the TSB also follows SWE Observation & Measurements specifications (O&M) for data encoding and Sensor Model Language (SensorML) for meta information. Moreover, accessing sensors via the TSB is not restricted to GITEWS. Multiple instances of the TSB can be composed to realize federate warning system

  8. Power consumption analysis of operating systems for wireless sensor networks.

    Science.gov (United States)

    Lajara, Rafael; Pelegrí-Sebastiá, José; Perez Solano, Juan J

    2010-01-01

    In this paper four wireless sensor network operating systems are compared in terms of power consumption. The analysis takes into account the most common operating systems--TinyOS v1.0, TinyOS v2.0, Mantis and Contiki--running on Tmote Sky and MICAz devices. With the objective of ensuring a fair evaluation, a benchmark composed of four applications has been developed, covering the most typical tasks that a Wireless Sensor Network performs. The results show the instant and average current consumption of the devices during the execution of these applications. The experimental measurements provide a good insight into the power mode in which the device components are running at every moment, and they can be used to compare the performance of different operating systems executing the same tasks.

  9. Measurement system for nitrous oxide based on amperometric gas sensor

    Science.gov (United States)

    Siswoyo, S.; Persaud, K. C.; Phillips, V. R.; Sneath, R.

    2017-03-01

    It has been well known that nitrous oxide is an important greenhouse gas, so monitoring and control of its concentration and emission is very important. In this work a nitrous oxide measurement system has been developed consisting of an amperometric sensor and an appropriate lab-made potentiostat that capable measuring picoampere current ranges. The sensor was constructed using a gold microelectrode as working electrode surrounded by a silver wire as quasi reference electrode, with tetraethyl ammonium perchlorate and dimethylsulphoxide as supporting electrolyte and solvent respectively. The lab-made potentiostat was built incorporating a transimpedance amplifier capable of picoampere measurements. This also incorporated a microcontroller based data acquisition system, controlled by a host personal computer using a dedicated computer program. The system was capable of detecting N2O concentrations down to 0.07 % v/v.

  10. Wireless microwave acoustic sensor system for condition monitoring in power plant environments

    Energy Technology Data Exchange (ETDEWEB)

    Pereira da Cunha, Mauricio [Univ. of Maine, Orno, ME (United States)

    2017-03-30

    This project successfully demonstrated novel wireless microwave acoustic temperature and pressure sensors that can be embedded into equipment and structures located in fossil fuel power plant environments to monitor the condition of components such as steam headers, re-heat lines, water walls, burner tubes, and power turbines. The wireless microwave acoustic sensor technology researched and developed through a collaborative partnership between the University of Maine and Environetix Technologies Corporation can provide a revolutionary impact in the power industry since it is anticipated that the wireless sensors will deliver reliable real-time sensing information in harsh power plant conditions that involve temperatures up to 1100oC and pressures up to 750 psi. The work involved the research and development of novel high temperature harsh environment thin film electrodes, piezoelectric smart microwave acoustic sensing elements, sensor encapsulation materials that were engineered to function over long times up to 1100oC, and a radio-frequency (RF) wireless interrogation electronics unit that are located both inside and outside the high temperature harsh environment. The UMaine / Environetix team have interacted with diverse power plant facilities, and identified as a testbed a local power generation facility, which burns municipal solid waste (MSW), the Penobscot Energy Recovery Company (PERC), Orrington, Maine. In this facility Environetix / UMaine successfully implemented and tested multiple wireless temperature sensor systems within the harsh-environment of the economizer chamber and at the boiler tubes, transferring the developed technology to the power plant environment to perform real-time sensor monitoring experiments under typical operating conditions, as initially targeted in the project. The wireless microwave acoustic sensor technology developed under this project for power plant applications offers several significant advantages including wireless

  11. Wireless energizing system for an automated implantable sensor

    Energy Technology Data Exchange (ETDEWEB)

    Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.; Bhuyan, Satyanarayan; Mishra, Laxmi P. [Department of Electronics and Instrumentation Engineering, Siksha ‘O’ Anusandhan University, Bhubaneswar 751030 (India)

    2016-07-15

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  12. Wireless energizing system for an automated implantable sensor

    International Nuclear Information System (INIS)

    Swain, Biswaranjan; Nayak, Praveen P.; Kar, Durga P.; Bhuyan, Satyanarayan; Mishra, Laxmi P.

    2016-01-01

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  13. Wireless energizing system for an automated implantable sensor.

    Science.gov (United States)

    Swain, Biswaranjan; Nayak, Praveen P; Kar, Durga P; Bhuyan, Satyanarayan; Mishra, Laxmi P

    2016-07-01

    The wireless drive of an automated implantable electronic sensor has been explored for health monitoring applications. The proposed system comprises of an automated biomedical sensing system which is energized through resonant inductive coupling. The implantable sensor unit is able to monitor the body temperature parameter and sends back the corresponding telemetry data wirelessly to the data recoding unit. It has been observed that the wireless power delivery system is capable of energizing the automated biomedical implantable electronic sensor placed over a distance of 3 cm from the power transmitter with an energy transfer efficiency of 26% at the operating resonant frequency of 562 kHz. This proposed method ensures real-time monitoring of different human body temperatures around the clock. The monitored temperature data have been compared with a calibrated temperature measurement system to ascertain the accuracy of the proposed system. The investigated technique can also be useful for monitoring other body parameters such as blood pressure, bladder pressure, and physiological signals of the patient in vivo using various implantable sensors.

  14. A wireless sensor system for a biofeedback training of hammer throwers.

    Science.gov (United States)

    Wang, Ye; Wan, Bingjun; Li, Hua; Shan, Gongbing

    2016-01-01

    Hammer-throw has a long-standing history in track and field, but unlike some other sports events, men's hammer throw has not seen a new world record since 1986. One of the possible reasons for this stagnation could be the lack of real-time biomechanical feedback training. In this study, we proposed to establish scientifically described training targets and routes, which in turn required tools that could measure and quantify characteristics of an effective hammer-throw. Towards this goal, we have developed a real-time biomechanical feedback device-a wireless sensor system-to help the training of hammer-throw. The system includes two sensors-an infrared proximity sensor for tracing the hip vertical movement and a load cell for recording the wire tension during a hammer-throw. The system uses XBees for data transmission and an Arduino processor for data processing and system control. The results revealed that the wire tension measurement could supply sufficient key features for coaches to analyze hammer-throw and give real-time feedback for improving training efficiency.

  15. A novel design of an automatic lighting control system for a wireless sensor network with increased sensor lifetime and reduced sensor numbers.

    Science.gov (United States)

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a lighting automatic control system (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane's surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design.

  16. Programmable System-on-Chip (PSoC) Embedded Readout Designs for Liquid Helium Level Sensors.

    Science.gov (United States)

    Parasakthi, C; Gireesan, K; Usha Rani, R; Sheela, O K; Janawadkar, M P

    2014-08-01

    This article reports the development of programmable system-on-chip (PSoC)-based embedded readout designs for liquid helium level sensors using resistive liquid vapor discriminators. The system has been built for the measurement of liquid helium level in a concave-bottomed, helmet-shaped, fiber-reinforced plastic cryostat for magnetoencephalography. This design incorporates three carbon resistors as cost-effective sensors, which are mounted at desired heights inside the cryostat and were used to infer the liquid helium level by measuring their temperature-dependent resistance. Localized electrical heating of the carbon resistors was used to discriminate whether the resistor is immersed in liquid helium or its vapor by exploiting the difference in the heat transfer rates in the two environments. This report describes a single PSoC chip for the design and development of a constant current source to drive the three carbon resistors, a multiplexer to route the sensor outputs to the analog-to-digital converter (ADC), a buffer to avoid loading of the sensors, an ADC for digitizing the data, and a display using liquid crystal display cum light-emitting diode modules. The level sensor readout designed with a single PSoC chip enables cost-effective and reliable measurement system design. © 2014 Society for Laboratory Automation and Screening.

  17. Development and Evaluation of A Novel and Cost-Effective Approach for Low-Cost NO₂ Sensor Drift Correction.

    Science.gov (United States)

    Sun, Li; Westerdahl, Dane; Ning, Zhi

    2017-08-19

    Emerging low-cost gas sensor technologies have received increasing attention in recent years for air quality measurements due to their small size and convenient deployment. However, in the diverse applications these sensors face many technological challenges, including sensor drift over long-term deployment that cannot be easily addressed using mathematical correction algorithms or machine learning methods. This study aims to develop a novel approach to auto-correct the drift of commonly used electrochemical nitrogen dioxide (NO₂) sensor with comprehensive evaluation of its application. The impact of environmental factors on the NO₂ electrochemical sensor in low-ppb concentration level measurement was evaluated in laboratory and the temperature and relative humidity correction algorithm was evaluated. An automated zeroing protocol was developed and assessed using a chemical absorbent to remove NO₂ as a means to perform zero correction in varying ambient conditions. The sensor system was operated in three different environments in which data were compared to a reference NO₂ analyzer. The results showed that the zero-calibration protocol effectively corrected the observed drift of the sensor output. This technique offers the ability to enhance the performance of low-cost sensor based systems and these findings suggest extension of the approach to improve data quality from sensors measuring other gaseous pollutants in urban air.

  18. Patient Posture Monitoring System Based on Flexible Sensors

    Directory of Open Access Journals (Sweden)

    Youngsu Cha

    2017-03-01

    Full Text Available Monitoring patients using vision cameras can cause privacy intrusion problems. In this paper, we propose a patient position monitoring system based on a patient cloth with unobtrusive sensors. We use flexible sensors based on polyvinylidene fluoride, which is a flexible piezoelectric material. Theflexiblesensorsareinsertedintopartsclosetothekneeandhipoftheloosepatientcloth. We measure electrical signals from the sensors caused by the piezoelectric effect when the knee and hip in the cloth are bent. The measured sensor outputs are transferred to a computer via Bluetooth. We use a custom-made program to detect the position of the patient through a rule-based algorithm and the sensor outputs. The detectable postures are based on six human motions in and around a bed. The proposed system can detect the patient positions with a success rate over 88 percent for three patients.

  19. Development of magnetic sensors for JT-60SA

    Energy Technology Data Exchange (ETDEWEB)

    Takechi, M., E-mail: takechi.manabu@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Matsunaga, G.; Sakurai, S.; Sasajima, T.; Yagyu, J.; Hoshi, R.; Kawamata, Y.; Kurihara, K. [Japan Atomic Energy Agency, Naka, Ibaraki 311-0193 (Japan); Nishikawa, T.; Ryo, T.; Kagamihara, S. [Okazaki Manufacturing Company, Kobe, Hyogo 651-0087 (Japan); Nakamura, K. [RIAM, Kyushu Univ., Kasuga, Fukuoka 816-8580,Japan (Japan)

    2015-10-15

    JT-60SA has been designed and is being constructed to demonstrate and develop steady-state high-beta operation. Resistive wall mode (RWM) control, error field correction, and edge-localized mode (ELM) control will be performed using in-vessel coils. For these controls, we have developed a biaxial magnetic sensor to determine 3D magnetic configuration of the plasma. Moreover, for obtaining basic information about JT-60SA plasma, magnetic sensors, in particular, one-turn loops, Rogowski coils, diamagnetic loops, and saddle coils have been developed. Because the length of the vacuum vessel in the poloidal direction of JT-60SA is 16 m and almost twice as long as that of JT-60U, the length of the Rogowski coil and the diamagnetic loop of JT-60SA are also twice as long as those on JT-60U. We have devised new types of sensors and a connector for the mineral-insulated cable because construction and installation of these sensors are much more difficult in JT-60SA. We will report the design and specification of the magnetic sensors for JT-60SA from the physics and engineering aspects.

  20. BABY MONITORING SYSTEM USING WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    G. Rajesh

    2014-09-01

    Full Text Available Sudden Infant Death Syndrome (SIDS is marked by the sudden death of an infant during sleep that is not predicted by the medical history and remains unexplained even after thorough forensic autopsy and detailed death investigation. In this we developed a system that provides solutions for the above problems by making the crib smart using the wireless sensor networks (WSN and smart phones. The system provides visual monitoring service through live video, alert services by crib fencing and awakens alert, monitoring services by temperature reading and light intensity reading, vaccine reminder and weight monitoring.

  1. The Application of Metal Oxide Nanomaterials for Chemical Sensor Development

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.

    2007-01-01

    NASA Glenn Research Center (GRC) has been developing miniature chemical sensors for a variety of applications including fire detection, emissions monitoring, fuel leak detection, and environmental monitoring. Smart Lick and Stick sensor technology which integrates a sensor array, electronics, telemetry, and power into one microsystem are being developed. These microsystems require low power consumption for long-term aerospace applications. One approach to decreasing power consumption is the use of nanotechnology. Nanocrystalline tin oxide (SnO2) carbon monoxide (CO) sensors developed previously by this group have been successfully used for fire detection and emissions monitoring. This presentation will briefly review the overall NASA GRC chemical sensor program and discuss our further effort in nanotechnology applications. New carbon dioxide (CO2) sensing material using doped nanocrystalline SnO2 will be discussed. Nanocrystalline SnO2 coated solid electrolyte CO2 sensors and SnO2 nanorod and nanofiber hydrogen (H2) sensors operated at reduced or room temperatures will also be discussed.

  2. Fiber-Optic Pressure Sensor With Dynamic Demodulation Developed

    Science.gov (United States)

    Lekki, John D.

    2002-01-01

    Researchers at the NASA Glenn Research Center developed in-house a method to detect pressure fluctuations using a fiber-optic sensor and dynamic signal processing. This work was in support of the Intelligent Systems Controls and Operations project under NASA's Information Technology Base Research Program. We constructed an optical pressure sensor by attaching a fiber-optic Bragg grating to a flexible membrane and then adhering the membrane to one end of a small cylinder. The other end of the cylinder was left open and exposed to pressure variations from a pulsed air jet. These pressure variations flexed the membrane, inducing a strain in the fiber-optic grating. This strain was read out optically with a dynamic spectrometer to record changes in the wavelength of light reflected from the grating. The dynamic spectrometer was built in-house to detect very small wavelength shifts induced by the pressure fluctuations. The spectrometer is an unbalanced interferometer specifically designed for maximum sensitivity to wavelength shifts. An optimum pathlength difference, which was determined empirically, resulted in a 14-percent sensitivity improvement over theoretically predicted path-length differences. This difference is suspected to be from uncertainty about the spectral power difference of the signal reflected from the Bragg grating. The figure shows the output of the dynamic spectrometer as the sensor was exposed to a nominally 2-kPa peak-to-peak square-wave pressure fluctuation. Good tracking, sensitivity, and signal-to-noise ratios are evident even though the sensor was constructed as a proof-of-concept and was not optimized in any way. Therefore the fiber-optic Bragg grating, which is normally considered a good candidate as a strain or temperature sensor, also has been shown to be a good candidate for a dynamic pressure sensor.

  3. Electro-optical rendezvous and docking sensors

    Science.gov (United States)

    Tubbs, David J.; Kesler, Lynn O.; Sirko, Robert J.

    1991-01-01

    Electro-optical sensors provide unique and critical functionality for space missions requiring rendezvous, docking, and berthing. McDonnell Douglas is developing a complete rendezvous and docking system for both manned and unmanned missions. This paper examines our sensor development and the systems and missions which benefit from rendezvous and docking sensors. Simulation results quantifying system performance improvements in key areas are given, with associated sensor performance requirements. A brief review of NASA-funded development activities and the current performance of electro-optical sensors for space applications is given. We will also describe current activities at McDonnell Douglas for a fully functional demonstration to address specific NASA mission needs.

  4. A neuro-fuzzy inference system for sensor failure detection using wavelet denoising, PCA and SPRT

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2001-01-01

    In this work, a neuro-fuzzy inference system combined with the wavelet denoising, PCA(principal component analysis) and SPRT (sequential probability ratio test) methods is developed to detect the relevant sensor failure using other sensor signals. The wavelet denoising technique is applied to remove noise components in input signals into the neuro-fuzzy system. The PCA is used to reduce the dimension of an input space without losing a significant amount of information, The PCA makes easy the selection of the input signals into the neuro-fuzzy system. Also, a lower dimensional input space usually reduces the time necessary to train a neuro-fuzzy system. The parameters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The residuals between the estimated signals and the measured signals are used to detect whether the sensors are failed or not. The SPRT is used in this failure detection algorithm. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level and the hot-leg flowrate sensors in pressurized water reactors

  5. Electron beam diagnostic system using computed tomography and an annular sensor

    Science.gov (United States)

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  6. Distributed Multi-Sensor Real-Time Building Environmental Parameters Monitoring System with Remote Data Access

    Directory of Open Access Journals (Sweden)

    Beinarts Ivars

    2014-12-01

    Full Text Available In this paper the advanced monitoring system of multiple environmental parameters is presented. The purpose of the system is a long-term estimation of energy efficiency and sustainability for the research test stands which are made of different building materials. Construction of test stands, and placement of main sensors are presented in the first chapter. The structure of data acquisition system includes a real-time interface with sensors and a data logger that allows to acquire and log data from all sensors with fixed rate. The data logging system provides a remote access to the processing of the acquired data and carries out periodical saving at a remote FTP server using an Internet connection. The system architecture and the usage of sensors are explained in the second chapter. In the third chapter implementation of the system, different interfaces of sensors and energy measuring devices are discussed and several examples of data logger program are presented. Each data logger is reading data from analog and digital channels. Measurements can be displayed directly on a screen using WEB access or using data from FTP server. Measurements and acquired data graphical results are presented in the fourth chapter in the selected diagrams. The benefits of the developed system are presented in the conclusion.

  7. Development of a Low-Cost Attitude Sensor for Agricultural Vehicles

    Science.gov (United States)

    The objective of this research was to develop a low-cost attitude sensor for agricultural vehicles. The attitude sensor was composed of three vibratory gyroscopes and two inclinometers. A sensor fusion algorithm was developed to estimate tilt angles (roll and pitch) by least-squares method. In the a...

  8. System overview and applications of a panoramic imaging perimeter sensor

    International Nuclear Information System (INIS)

    Pritchard, D.A.

    1995-01-01

    This paper presents an overview of the design and potential applications of a 360-degree scanning, multi-spectral intrusion detection sensor. This moderate-resolution, true panoramic imaging sensor is intended for exterior use at ranges from 50 to 1,500 meters. This Advanced Exterior Sensor (AES) simultaneously uses three sensing technologies (infrared, visible, and radar) along with advanced data processing methods to provide low false-alarm intrusion detection, tracking, and immediate visual assessment. The images from the infrared and visible detector sets and the radar range data are updated as the sensors rotate once per second. The radar provides range data with one-meter resolution. This sensor has been designed for easy use and rapid deployment to cover wide areas beyond or in place of typical perimeters, and tactical applications around fixed or temporary high-value assets. AES prototypes are in development. Applications discussed in this paper include replacements, augmentations, or new installations at fixed sites where topological features, atmospheric conditions, environmental restrictions, ecological regulations, and archaeological features limit the use of conventional security components and systems

  9. Development of tsunami early warning systems and future challenges

    Directory of Open Access Journals (Sweden)

    J. Wächter

    2012-06-01

    Full Text Available Fostered by and embedded in the general development of information and communications technology (ICT, the evolution of tsunami warning systems (TWS shows a significant development from seismic-centred to multi-sensor system architectures using additional sensors (e.g. tide gauges and buoys for the detection of tsunami waves in the ocean.

    Currently, the beginning implementation of regional tsunami warning infrastructures indicates a new phase in the development of TWS. A new generation of TWS should not only be able to realise multi-sensor monitoring for tsunami detection. Moreover, these systems have to be capable to form a collaborative communication infrastructure of distributed tsunami warning systems in order to implement regional, ocean-wide monitoring and warning strategies.

    In the context of the development of the German Indonesian Tsunami Early Warning System (GITEWS and in the EU-funded FP6 project Distant Early Warning System (DEWS, a service platform for both sensor integration and warning dissemination has been newly developed and demonstrated. In particular, standards of the Open Geospatial Consortium (OGC and the Organization for the Advancement of Structured Information Standards (OASIS have been successfully incorporated.

    In the FP7 project Collaborative, Complex and Critical Decision-Support in Evolving Crises (TRIDEC, new developments in ICT (e.g. complex event processing (CEP and event-driven architecture (EDA are used to extend the existing platform to realise a component-based technology framework for building distributed tsunami warning systems.

  10. State Estimation for Sensor Monitoring System with Uncertainty and Disturbance

    Directory of Open Access Journals (Sweden)

    Jianhong Sun

    2014-10-01

    Full Text Available This paper considers the state estimation problem for the sensor monitoring system which contains system uncertainty and nonlinear disturbance. In the sensor monitoring system, states of each inner sensor node usually contains system uncertainty, and external noise often works as nonlinear item. Besides, information transmission in the system is also time consuming. All mentioned above may arouse in unstable of the monitoring system. In this case, states of sensors could be wrongly sampled. Under this circumstance, a proper mathematical model is proposed and by the use of Lipschitz condition, the nonlinear item is transformed to linear one. In addition, we suppose that all sensor nodes are distributed arranged, no interface occurs with each other. By establishing proper Lyapunov– Krasovskii functional, sufficient conditions are acquired by solving linear matrix inequality to make the error augmented system stable, and the gains of observers are also derived. Finally, an illustrated example is given to show that system observed value tracks system states well, which fully demonstrate the effectiveness of our result.

  11. Evaluation of a Sensor System for Detecting Humans Trapped under Rubble: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Di Zhang

    2018-03-01

    Full Text Available Rapid localization of injured survivors by rescue teams to prevent death is a major issue. In this paper, a sensor system for human rescue including three different types of sensors, a CO2 sensor, a thermal camera, and a microphone, is proposed. The performance of this system in detecting living victims under the rubble has been tested in a high-fidelity simulated disaster area. Results show that the CO2 sensor is useful to effectively reduce the possible concerned area, while the thermal camera can confirm the correct position of the victim. Moreover, it is believed that the use of microphones in connection with other sensors would be of great benefit for the detection of casualties. In this work, an algorithm to recognize voices or suspected human noise under rubble has also been developed and tested.

  12. On the development of mobile agent systems for wireless sensor networks : issues and solutions

    NARCIS (Netherlands)

    Fortino, G.; Galzarano, S.; Ganzha, M.; Jain, L.C.

    2013-01-01

    Due to the growing exploitation of wireless sensor networks (WSNs) for enhancing all major conventional application domains and enabling brand new application domains, the development of applications based on WSNs has recently gained a significant focus. Thus, design methods, middleware and

  13. Sensor Substrate Development

    Data.gov (United States)

    National Aeronautics and Space Administration — Novel substrates, such as aerogels and porous, low density ceramics may increase the sensitivities of chemical reaction-based sensors for toxic vapors. These sensors...

  14. A Novel Design of an Automatic Lighting Control System for a Wireless Sensor Network with Increased Sensor Lifetime and Reduced Sensor Numbers

    Science.gov (United States)

    Mohamaddoust, Reza; Haghighat, Abolfazl Toroghi; Sharif, Mohamad Javad Motahari; Capanni, Niccolo

    2011-01-01

    Wireless sensor networks (WSN) are currently being applied to energy conservation applications such as light control. We propose a design for such a system called a Lighting Automatic Control System (LACS). The LACS system contains a centralized or distributed architecture determined by application requirements and space usage. The system optimizes the calculations and communications for lighting intensity, incorporates user illumination requirements according to their activities and performs adjustments based on external lighting effects in external sensor and external sensor-less architectures. Methods are proposed for reducing the number of sensors required and increasing the lifetime of those used, for considerably reduced energy consumption. Additionally we suggest methods for improving uniformity of illuminance distribution on a workplane’s surface, which improves user satisfaction. Finally simulation results are presented to verify the effectiveness of our design. PMID:22164114

  15. Impact of sensor detection limits on protecting water distribution systems from contamination events

    International Nuclear Information System (INIS)

    McKenna, Sean Andrew; Hart, David Blaine; Yarrington, Lane

    2006-01-01

    Real-time water quality sensors are becoming commonplace in water distribution systems. However, field deployable, contaminant-specific sensors are still in the development stage. As development proceeds, the necessary operating parameters of these sensors must be determined to protect consumers from accidental and malevolent contamination events. This objective can be quantified in several different ways including minimization of: the time necessary to detect a contamination event, the population exposed to contaminated water, the extent of the contamination within the network, and others. We examine the ability of a sensor set to meet these objectives as a function of both the detection limit of the sensors and the number of sensors in the network. A moderately sized distribution network is used as an example and different sized sets of randomly placed sensors are considered. For each combination of a certain number of sensors and a detection limit, the mean values of the different objectives across multiple random sensor placements are calculated. The tradeoff between the necessary detection limit in a sensor and the number of sensors is evaluated. Results show that for the example problem examined here, a sensor detection limit of 0.01 of the average source concentration is adequate for maximum protection. Detection of events is dependent on the detection limit of the sensors, but for those events that are detected, the values of the performance measures are not a function of the sensor detection limit. The results of replacing a single sensor in a network with a sensor having a much lower detection limit show that while this replacement can improve results, the majority of the additional events detected had performance measures of relatively low consequence.

  16. Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies

    Science.gov (United States)

    Hauptmann, Peter R.

    2006-03-01

    The capability of intelligent sensors to have more intelligence built into them continues to drive their application in areas including automotive, aerospace and defense, industrial, intelligent house and wear, medical and homeland security. In principle it is difficult to overestimate the importance of intelligent (micro) sensors or sensor systems within advanced societies but one characteristic feature is the global market for sensors, which is now about 20 billion annually. Therefore sensors or sensor systems play a dominant role in many fields from the macro sensor in manufacturing industry down to the miniaturized sensor for medical applications. The diversity of sensors precludes a complete description of the state-of-the-art; selected examples will illustrate the current situation. MEMS (microelectromechanical systems) devices are of special interest in the context of micro sensor systems. In past the main requirements of a sensor were in terms of metrological performance. The electrical (or optical) signal produced by the sensor needed to match the measure relatively accurately. Such basic functionality is no longer sufficient. Data processing near the sensor, the extraction of more information than just the direct sensor information by signal analysis, system aspects and multi-sensor information are the new demands. A shifting can be observed away from aiming to design perfect single-function transducers and towards the utilization of system-based sensors as system components. In the ideal case such systems contain sensors, actuators and electronics. They can be realized in monolithic, hybrid or discrete form—which kind is used depends on the application. In this article the state-of-the-art of intelligent sensors or sensor systems is reviewed using selected examples. Future trends are deduced.

  17. The Performance Analysis of AN Indoor Mobile Mapping System with Rgb-D Sensor

    Science.gov (United States)

    Tsai, G. J.; Chiang, K. W.; Chu, C. H.; Chen, Y. L.; El-Sheimy, N.; Habib, A.

    2015-08-01

    Over the years, Mobile Mapping Systems (MMSs) have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM). The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG) performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU), the Kinect RGB-D sensor and light detection, ranging (LIDAR) and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.

  18. THE PERFORMANCE ANALYSIS OF AN INDOOR MOBILE MAPPING SYSTEM WITH RGB-D SENSOR

    Directory of Open Access Journals (Sweden)

    G. J. Tsai

    2015-08-01

    Full Text Available Over the years, Mobile Mapping Systems (MMSs have been widely applied to urban mapping, path management and monitoring and cyber city, etc. The key concept of mobile mapping is based on positioning technology and photogrammetry. In order to achieve the integration, multi-sensor integrated mapping technology has clearly established. In recent years, the robotic technology has been rapidly developed. The other mapping technology that is on the basis of low-cost sensor has generally used in robotic system, it is known as the Simultaneous Localization and Mapping (SLAM. The objective of this study is developed a prototype of indoor MMS for mobile mapping applications, especially to reduce the costs and enhance the efficiency of data collection and validation of direct georeferenced (DG performance. The proposed indoor MMS is composed of a tactical grade Inertial Measurement Unit (IMU, the Kinect RGB-D sensor and light detection, ranging (LIDAR and robot. In summary, this paper designs the payload for indoor MMS to generate the floor plan. In first session, it concentrates on comparing the different positioning algorithms in the indoor environment. Next, the indoor plans are generated by two sensors, Kinect RGB-D sensor LIDAR on robot. Moreover, the generated floor plan will compare with the known plan for both validation and verification.

  19. Development and evaluation of optical fiber NH3 sensors for application in air quality monitoring

    Science.gov (United States)

    Huang, Yu; Wieck, Lucas; Tao, Shiquan

    2013-02-01

    Ammonia is a major air pollutant emitted from agricultural practices. Sources of ammonia include manure from animal feeding operations and fertilizer from cropping systems. Sensor technologies with capability of continuous real time monitoring of ammonia concentration in air are needed to qualify ammonia emissions from agricultural activities and further evaluate human and animal health effects, study ammonia environmental chemistry, and provide baseline data for air quality standard. We have developed fiber optic ammonia sensors using different sensing reagents and different polymers for immobilizing sensing reagents. The reversible fiber optic sensors have detection limits down to low ppbv levels. The response time of these sensors ranges from seconds to tens minutes depending on transducer design. In this paper, we report our results in the development and evaluation of fiber optic sensor technologies for air quality monitoring. The effect of change of temperature, humidity and carbon dioxide concentration on fiber optic ammonia sensors has been investigated. Carbon dioxide in air was found not interfere the fiber optic sensors for monitoring NH3. However, the change of humidity can cause interferences to some fiber optic NH3 sensors depending on the sensor's transducer design. The sensitivity of fiber optic NH3 sensors was found depends on temperature. Methods and techniques for eliminating these interferences have been proposed.

  20. The development of a metering and remote checking system using a light sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jang, S.Y.; Ahn, S.H.; Lee, K.J. [R and D Center, Korea Gas Corporation, Ansan (Korea); Choi, W.Y.; Lee, B.C.; Song, J.C.; Park, J.Y.; Park, J.H.; Park, K.L.; Kim, K.Y.; Kim, J.Y [Venture Korea Corporation (Korea)

    1999-12-01

    The light sensing technology developed in this project can apply all the conventional mechanical meters using only attaching a light sensor set. The technology is available to the majority of small scale consumption such as households, restaurants and offices rather than the minority of large scale consumption such as industry use. When the light sensing technology is practically in use, the expense of the remote checking system can be below 30,000 won per household, and unnecessary national loss can be prevented due to replacement of the conventional meters. If the remote checking system can be constructed using low-priced expenses, all the city gas companies can not only settle all the inconveniences of consumers due to unexpected visit of a gas meterman and communication problems in their absence fundamentally but expect economic profit such as curtailment of the expenses of inspection of meters and early retrieval of gas usage charge. Especially, by inspecting all the households in the midnight of every month simultaneously, civil petitions can be reduced by eliminating causes of bottleneck for flexible rate of natural gas, thus it is expected that general management expenses can be curtailed to a great extent. 22 figs., 6 tabs.

  1. A new VFA sensor technique for anaerobic reactor systems

    DEFF Research Database (Denmark)

    Pind, Peter Frode; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    , propionate, iso-/n-butyrate and iso-/n-valerate ranging from 0.1 to 50 mM (6-3000 mg). The measuring range could readily be expanded to more components and both lower and higher concentrations if desired. In addition to the new VFA sensor system, test results from development and testing of the in situ...

  2. DEVELOPMENT OF A MICROCONTROLLED TEMPERATURE MONITORING SYSTEM AND EVALUATION OF THE SENSOR ELEMENT IMPLANT IN BOVINES DESENVOLVIMENTO DE UM SISTEMA MICROCONTROLADO DE MONITORAÇÃO DA TEMPERATURA E AVALIAÇÃO DO IMPLANTE DO ELEMENTO SENSOR DIGITAL EM BOVINOS

    Directory of Open Access Journals (Sweden)

    Ernane José Xavier Costa

    2007-09-01

    Full Text Available

    this paper presents a complete system for tempe-rature monitoring. the system was developed to speed up bovine behavior studies under temperature exposure. the equipment uses digital technology with custom setup ca-pability by means of computer program and the sensor can be implanted in to animal. results obtained show that the developed system is able to monitor bovine temperatures with a sample rate of five minutes during 30 days with accuracy of 0.0625 oc.

    KEY-WORDS: Heat stress sensors, optical, temperature, transceptor.

    um sistema completo de instrumentação para monitoração d