WorldWideScience

Sample records for sensor laser con

  1. Polymer laser bio-sensors

    DEFF Research Database (Denmark)

    Kristensen, Anders; Vannahme, Christoph; Hermannsson, Pétur Gordon

    2014-01-01

    Organic dye based distributed feed-back lasers, featuring narrow linewidth and thus high quality spectral resolution, are used as highly sensitive refractive index sensors. The design, fabrication and application of the laser intra-cavity sensors are discussed....

  2. Laser self-mixing interference fibre sensor

    International Nuclear Information System (INIS)

    Zhu Jun; Zhao Yan; Jin Guofan

    2008-01-01

    Fibre sensors exhibit a number of advantages over other sensors such as high sensitivity, electric insulation, corrosion resistance, interference rejection and so on. And laser self-mixing interference can accurately detect the phase difference of feedback light. In this paper, a novel laser self-mixing interference fibre sensor that combines the advantages of fibre sensors with those of laser self-mixing interference is presented. Experimental configurations are set up to study the relationship between laser power output and phase of laser feedback light when the fibre trembles or when the fibre is stretched or pressed. The theoretical analysis of pressure sensors based on laser self-mixing interference is indicated to accord with the experimental results. (classical areas of phenomenology)

  3. Planar Laser-Based QEPAS Trace Gas Sensor

    Directory of Open Access Journals (Sweden)

    Yufei Ma

    2016-06-01

    Full Text Available A novel quartz enhanced photoacoustic spectroscopy (QEPAS trace gas detection scheme is reported in this paper. A cylindrical lens was employed for near-infrared laser focusing. The laser beam was shaped as a planar line laser between the gap of the quartz tuning fork (QTF prongs. Compared with a spherical lens-based QEPAS sensor, the cylindrical lens-based QEPAS sensor has the advantages of easier laser beam alignment and a reduction of stringent stability requirements. Therefore, the reported approach is useful in long-term and continuous sensor operation.

  4. Validez y fiabilidad del sensor láser del sistema BioLaserSport® para el análisis de la velocidad de la carrera. (Validity and reliability of the laser sensor of BioLaserSport® system for the analysis of the running velocity.

    Directory of Open Access Journals (Sweden)

    Raquel Aguado-Gómez

    2012-10-01

    Full Text Available ResumenEl análisis de la velocidad de carrera mediante sensores láser permite la obtención de datos en tiempo real siendo ventajosos frente a otros sistemas. El objetivo de este estudio fue valorar la validez y fiabilidad del sensor láser del sistema BioLaserSportÒ para el cálculo de velocidades medias y máximas mediante estadísticos relativos y absolutos. Los participantes fueron 17 varones (20.85 ± 1.54 años. Se utilizó un sensor láser tipo 1 (LDM301, Jenoptik, Germany que registró posiciones de los deportistas a 2000 Hz. Los datos se trataron con la rutina DSL-30 creada con DasyLab v.10.0. Para la validación se utilizó un sistema de fotogrametría-2D con una cámara de alta velocidad (Exilim High Speed EX-F1, Casio y SkillSpector v.1.3.2. (Video4coach, Grubbemollevej. Además, se utilizaron foto-células de doble haz (Polifemo Light, Microgate, Italy y un cronómetro Racetime2 (Microgate, Italy. Se registraron, durante dos días, tres series de 30 m de carrera a máxima velocidad. El sensor láser proporcionó, con relación a la fotogrametría, diferencias en las velocidades medias y máximas de -0.11 m·s-1 y 0.14 m·s-1, respectivamente, con unos coeficientes de correlación superiores a 0.86, y mayores de 0.92 con las foto-células para las velocidades medias. Este mostró una excelente fiabilidad test-retest para las velocidades medias con un coeficiente de correlación intraclase (ICC entre 0.7-0.9 y un error estándar de la media (SEM y SEM%, intrasesión e intersesión, menor de 0.05 m·s-1 y 0.12 m·s-1, respectivamente, y menores de 0.75% y de 2%, respectivamente. Para las velocidades máximas, los valores fueron menores de 0.10 m·s-1 y 0.17 m·s-1, respectivamente, y en ambos casos menores a 1.36% y 1,89%. El láser fue capaz de identificar mínimos cambios detectables (MDC y MDC% intrasesión, para ambas variables, menores a 0.14 m·s-1 y 0.29 m·s-1, respectivamente (AbstractSpeed running analysis using laser

  5. ConText : Contactless Sensors for Body Monitoring Incorporated in Textiles

    NARCIS (Netherlands)

    Langereis, G.; Voogd-Claessen, L. de; Spaepen, A.; Sipliä, A.; Rotsch, C.; Linz, T.

    2007-01-01

    The aim of the ConText project is to develop a vest with integrated sensors and electronics for constant monitoring of muscle activity. The vest measures muscle activity in order to derive the psychological stress level of a person. The ConText project proposes to develop a sensor technology, which

  6. Camera-laser fusion sensor system and environmental recognition for humanoids in disaster scenarios

    International Nuclear Information System (INIS)

    Lee, Inho; Oh, Jaesung; Oh, Jun-Ho; Kim, Inhyeok

    2017-01-01

    This research aims to develop a vision sensor system and a recognition algorithm to enable a humanoid to operate autonomously in a disaster environment. In disaster response scenarios, humanoid robots that perform manipulation and locomotion tasks must identify the objects in the environment from those challenged by the call by the United States’ Defense Advanced Research Projects Agency, e.g., doors, valves, drills, debris, uneven terrains, and stairs, among others. In order for a humanoid to undertake a number of tasks, we con- struct a camera–laser fusion system and develop an environmental recognition algorithm. Laser distance sensor and motor are used to obtain 3D cloud data. We project the 3D cloud data onto a 2D image according to the intrinsic parameters of the camera and the distortion model of the lens. In this manner, our fusion sensor system performs functions such as those performed by the RGB-D sensor gener- ally used in segmentation research. Our recognition algorithm is based on super-pixel segmentation and random sampling. The proposed approach clusters the unorganized cloud data according to geometric characteristics, namely, proximity and co-planarity. To assess the feasibility of our system and algorithm, we utilize the humanoid robot, DRC-HUBO, and the results are demonstrated in the accompanying video.

  7. Camera-laser fusion sensor system and environmental recognition for humanoids in disaster scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Inho [Institute for Human and Machine Cognition (IHMC), Florida (United States); Oh, Jaesung; Oh, Jun-Ho [Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Kim, Inhyeok [NAVER Green Factory, Seongnam (Korea, Republic of)

    2017-06-15

    This research aims to develop a vision sensor system and a recognition algorithm to enable a humanoid to operate autonomously in a disaster environment. In disaster response scenarios, humanoid robots that perform manipulation and locomotion tasks must identify the objects in the environment from those challenged by the call by the United States’ Defense Advanced Research Projects Agency, e.g., doors, valves, drills, debris, uneven terrains, and stairs, among others. In order for a humanoid to undertake a number of tasks, we con- struct a camera–laser fusion system and develop an environmental recognition algorithm. Laser distance sensor and motor are used to obtain 3D cloud data. We project the 3D cloud data onto a 2D image according to the intrinsic parameters of the camera and the distortion model of the lens. In this manner, our fusion sensor system performs functions such as those performed by the RGB-D sensor gener- ally used in segmentation research. Our recognition algorithm is based on super-pixel segmentation and random sampling. The proposed approach clusters the unorganized cloud data according to geometric characteristics, namely, proximity and co-planarity. To assess the feasibility of our system and algorithm, we utilize the humanoid robot, DRC-HUBO, and the results are demonstrated in the accompanying video.

  8. Flexible temperature and flow sensor from laser-induced graphene

    KAUST Repository

    Marengo, Marco

    2017-12-25

    Herein we present a flexible temperature sensor and a flow speed sensor based on laser-induced graphene. The main benefits arise from peculiar electrical, thermal and mechanical performances of the material thus obtained, along with a cheap and simple fabrication process. The temperature sensor is a negative temperature coefficient thermistor with non-linear response typical of semi-metals. The thermistor shows a 4% decrease of the resistance in a temperature range of 20–60 °C. The flow sensor exploits the piezoresistive properties of laser-induced graphene and can be used both in gaseous and liquid media thanks to a protective polydimethylsiloxane coating. Main characteristics are ultra-fast response and versatility in design offered by the laser technology.

  9. Tratamiento del síncope neuralmente mediado con marcapasos: utilidad del sensor de asa cerrada

    Directory of Open Access Journals (Sweden)

    Martín de la Ossa

    2015-01-01

    Full Text Available El síncope vasovagal es una entidad frecuente, de difícil manejo, con alta tasa de recurrencia aun con manejo médico. Se ha estudiado la estimulación cardiaca en pacientes con respuesta cardioinhibitoria en la mesa basculante con resultados contradictorios. Los estudios iniciales mostraron buenos resultados, que no lograron reproducirse cuando se introdujo el diseño doble ciego. La mayoría de estos estudios se realizaron con marcapasos con sensores convencionales. Las guías actuales de dispositivos indican la terapia de estimulación cardiaca en síncope vasovagal con respuesta cardioinhibitoria como una alternativa ante la no respuesta al tratamiento convencional. Existe evidencia reciente que indica que los marcapasos con sensores de asa cerrada (CLS, del inglés closed-loop sensor muestran mejores resultados que los sensores convencionales; estos estudios, aunque con población pequeña, reportan reducciones de la frecuencia de síncopes y presíncopes. Este tipo de dispositivos actúan en etapas más tempranas de la cascada de eventos fisiopatológicos del síncope vasovagal, detectando cambios en la impedancia ventricular antes de la caída de la frecuencia cardiaca, lo cual permite intervenir en forma precoz con estimulación para evitar el síncope.

  10. Laser-based gas sensors keep moisture out of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2006-07-15

    Natural gas often contains contaminants that cause corrosion, and long-term deterioration, and must be cleaned and brought to pipeline standards before it can be delivered to high-pressure, long-distance pipelines. Many older sensors produce false data that can result in contaminated gas getting through. This article presented details of the SpectraSensor, a new laser-based sensor technology used by the El Paso Natural Gas Company (EPNG). The SpectraSensor is comprised of a tunable diode laser (TDL) based technology developed by the National American Space Agency (NASA). The gas analyzer provides non-contact measurement of moisture, carbon dioxide, and other corrosives in natural gas pipelines, and the tunable laser-based gas sensors are fast, accurate, and flexible. Producers can monitor El Paso's gas analyzer readings by capturing the electronic signal from El Paso's unit via a SCADA system and view the readings from control rooms. While initial purchase price is higher than more problematic surface-based gas sensors, an evaluation of the technology has indicated that maintenance savings alone may provide an almost immediate return on investments. Unlike electrochemical and crystal gas sensors, laser-based gas analyzers do not come into direct contact with any substances, a fact which practically eliminates maintenance and operational costs. Studies have shown that the cost of operating conventional electrochemical sensors can result in a cumulative annual expense exceeding $50,000 per unit including labour; recalibration and rebuilding; back-up sensor heads; and gas dehydration and tariffs. 1 fig.

  11. Temperature Sensor Using a Multiwavelength Erbium-Doped Fiber Ring Laser

    Directory of Open Access Journals (Sweden)

    Silvia Diaz

    2017-01-01

    Full Text Available A novel temperature sensor is presented based on a multiwavelength erbium-doped fiber ring laser. The laser is comprised of fiber Bragg grating reflectors as the oscillation wavelength selecting filters. The performance of the temperature sensor in terms of both wavelength and laser output power was investigated, as well as the application of this system for remote temperature measurements.

  12. Highly sensitive SnO2 sensor via reactive laser-induced transfer

    Science.gov (United States)

    Palla Papavlu, Alexandra; Mattle, Thomas; Temmel, Sandra; Lehmann, Ulrike; Hintennach, Andreas; Grisel, Alain; Wokaun, Alexander; Lippert, Thomas

    2016-04-01

    Gas sensors based on tin oxide (SnO2) and palladium doped SnO2 (Pd:SnO2) active materials are fabricated by a laser printing method, i.e. reactive laser-induced forward transfer (rLIFT). Thin films from tin based metal-complex precursors are prepared by spin coating and then laser transferred with high resolution onto sensor structures. The devices fabricated by rLIFT exhibit low ppm sensitivity towards ethanol and methane as well as good stability with respect to air, moisture, and time. Promising results are obtained by applying rLIFT to transfer metal-complex precursors onto uncoated commercial gas sensors. We could show that rLIFT onto commercial sensors is possible if the sensor structures are reinforced prior to printing. The rLIFT fabricated sensors show up to 4 times higher sensitivities then the commercial sensors (with inkjet printed SnO2). In addition, the selectivity towards CH4 of the Pd:SnO2 sensors is significantly enhanced compared to the pure SnO2 sensors. Our results indicate that the reactive laser transfer technique applied here represents an important technical step for the realization of improved gas detection systems with wide-ranging applications in environmental and health monitoring control.

  13. Designing and testing a laser-based vibratory sensor

    Science.gov (United States)

    Nath, G.

    2018-04-01

    Sensor technology has proved its importance, not only in the range of few-meter applications in different fields, but in micro, nano, atomic and sub-atomic-sized objects. The present work describes the designing of a laser-based vibratory sensor using a He-Ne laser as the signal source. The received characteristics of the signal are mainly the frequency and amplitude of the vibration from which the physical parameters such as energy, power and absorption coefficients of the material are determined, which enables us to provide information of the hidden target or object. This laboratory-designed sensor finds application in different local phenomena as well as laboratory practical activity for students.

  14. Laser Truss Sensor for Segmented Telescope Phasing

    Science.gov (United States)

    Liu, Duncan T.; Lay, Oliver P.; Azizi, Alireza; Erlig, Herman; Dorsky, Leonard I.; Asbury, Cheryl G.; Zhao, Feng

    2011-01-01

    A paper describes the laser truss sensor (LTS) for detecting piston motion between two adjacent telescope segment edges. LTS is formed by two point-to-point laser metrology gauges in a crossed geometry. A high-resolution (distribution can be optimized using the range-gated metrology (RGM) approach.

  15. Fiber Bragg Grating vibration sensor with DFB laser diode

    Science.gov (United States)

    Siska, Petr; Brozovic, Martin; Cubik, Jakub; Kepak, Stanislav; Vitasek, Jan; Koudelka, Petr; Latal, Jan; Vasinek, Vladimir

    2012-01-01

    The Fiber Bragg Grating (FBG) sensors are nowadays used in many applications. Thanks to its quite big sensitivity to a surrounding environment, they can be used for sensing of temperature, strain, vibration or pressure. A fiber Bragg grating vibration sensor, which is interrogated by a distributed feedback laser diode (DFB) is demonstrated in this article. The system is based on the intensity modulation of the narrow spectral bandwidth of the DFB laser, when the reflection spectrum of the FBG sensor is shifted due to the strain that is applied on it in form of vibrations caused by acoustic wave pressure from loud speaker. The sensor's response in frequency domain and strain is measured; also the factor of sensor pre-strain impact on its sensitivity is discussed.

  16. Focused-laser interferometric position sensor

    International Nuclear Information System (INIS)

    Friedman, Stephen J.; Barwick, Brett; Batelaan, Herman

    2005-01-01

    We describe a simple method to measure the position shifts of an object with a range of tens of micrometers using a focused-laser (FL) interferometric position sensor. In this article we examine the effects of mechanical vibration on FL and Michelson interferometers. We tested both interferometers using vibration amplitudes ranging from 0 to 20 μm. Our FL interferometer has a resolution much better than the diffraction grating periodicities of 10 and 14 μm used in our experiments. A FL interferometer provides improved mechanical stability at the expense of spatial resolution. Our experimental results show that Michelson interferometers cannot be used when the vibration amplitude is more than an optical wavelength. The main purpose of this article is to demonstrate that a focused-laser interferometric position sensor can be used to measure the position shifts of an object on a less sensitive, micrometer scale when the vibration amplitude is too large to use a Michelson interferometer

  17. An improved triangulation laser rangefinder using a custom CMOS HDR linear image sensor

    Science.gov (United States)

    Liscombe, Michael

    3-D triangulation laser rangefinders are used in many modern applications, from terrain mapping to biometric identification. Although a wide variety of designs have been proposed, laser speckle noise still provides a fundamental limitation on range accuracy. These works propose a new triangulation laser rangefinder designed specifically to mitigate the effects of laser speckle noise. The proposed rangefinder uses a precision linear translator to laterally reposition the imaging system (e.g., image sensor and imaging lens). For a given spatial location of the laser spot, capturing N spatially uncorrelated laser spot profiles is shown to improve range accuracy by a factor of N . This technique has many advantages over past speckle-reduction technologies, such as a fixed system cost and form factor, and the ability to virtually eliminate laser speckle noise. These advantages are made possible through spatial diversity and come at the cost of increased acquisition time. The rangefinder makes use of the ICFYKWG1 linear image sensor, a custom CMOS sensor developed at the Vision Sensor Laboratory (York University). Tests are performed on the image sensor's innovative high dynamic range technology to determine its effects on range accuracy. As expected, experimental results have shown that the sensor provides a trade-off between dynamic range and range accuracy.

  18. Fiber Laser methane sensor with the function of self-diagnose

    Science.gov (United States)

    Li, Yan-fang; Wei, Yu-bin; Shang, Ying; Wang, Chang; Liu, Tong-yu

    2012-02-01

    Using the technology of tunable diode laser absorption spectroscopy and the technology of micro-electronics, a fiber laser methane sensor based on the microprocessor C8051F410 is given. In this paper, we use the DFB Laser as the light source of the sensor. By tuning temperature and driver current of the DFB laser, we can scan the laser over the methane absorption line, Based on the Beer-Lambert law, through detect the variation of the light power before and after the absorption we realize the methane detection. It makes the real-time and online detection of methane concentration to be true, and it has the advantages just as high accuracy, immunity to other gases , long calibration cycle and so on. The sensor has the function of adaptive gain and self-diagnose. By introducing digital potentiometers, the gain of the photoelectric conversion operational amplifier can be controlled by the microprocessor according to the light power. When the gain and the conversion voltage achieve the set value, then we can consider the sensor in a fault status, and then the software will alarm us to check the status of the probe. So we improved the dependence and the stability of the measured results. At last we give some analysis on the sensor according the field application and according the present working, we have a look of our next work in the distance.

  19. Characterization of silicon microstrip sensors with a pulsed infrared laser system for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pradeep [Goethe Univ., Frankfurt (Germany); GSI (Germany); Eschke, Juergen [GSI (Germany); FAIR (Germany); Collaboration: CBM-Collaboration

    2014-07-01

    The Silicon Tracking System (STS) for the Compressed Baryonic Matter (CBM) experiment at FAIR will comprise more than 1200 double-sided silicon microstrip sensors. For the quality assurance of the prototype sensors a laser test system has been built up. The aim of the sensor scans with the pulsed infrared laser system is to determine the charge sharing between strips and to measure the uniformity of the sensor response over the whole active area. The laser system measures the sensor response in an automatized procedure at several thousand positions across the sensor with focused infrared laser light (σ∼15 μm, λ=1060 nm). The duration (5 ns) and power (few mW) of the laser pulses are selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24k electrons, which is similar to the charge created by minimum ionizing particles in these sensors. Results from the characterization of monolithic active pixel sensors, to understand the spot-size of the laser, and laser scans for different sensors are presented.

  20. Flexible temperature and flow sensor from laser-induced graphene

    KAUST Repository

    Marengo, Marco; Marinaro, Giovanni; Kosel, Jü rgen

    2017-01-01

    Herein we present a flexible temperature sensor and a flow speed sensor based on laser-induced graphene. The main benefits arise from peculiar electrical, thermal and mechanical performances of the material thus obtained, along with a cheap

  1. Design and Performance Analysis of Laser Displacement Sensor Based on Position Sensitive Detector (PSD)

    International Nuclear Information System (INIS)

    Song, H X; Wang, X D; Ma, L Q; Cai, M Z; Cao, T Z

    2006-01-01

    By using PSD as sensitive element, and laser diode as emitting element, laser displacement sensor based on triangulation method has been widely used. From the point of view of design, sensor and its performance were studied. Two different sensor configurations were described. Determination of the dimension, sensing resolution and comparison of the two different configurations were presented. The factors affecting the performance of the laser displacement sensor were discussed and two methods, which can eliminate the affection of dark current and environment light, are proposed

  2. Photodiode-based cutting interruption sensor for near-infrared lasers.

    Science.gov (United States)

    Adelmann, B; Schleier, M; Neumeier, B; Hellmann, R

    2016-03-01

    We report on a photodiode-based sensor system to detect cutting interruptions during laser cutting with a fiber laser. An InGaAs diode records the thermal radiation from the process zone with a ring mirror and optical filter arrangement mounted between a collimation unit and a cutting head. The photodiode current is digitalized with a sample rate of 20 kHz and filtered with a Chebyshev Type I filter. From the measured signal during the piercing, a threshold value is calculated. When the diode signal exceeds this threshold during cutting, a cutting interruption is indicated. This method is applied to sensor signals from cutting mild steel, stainless steel, and aluminum, as well as different material thicknesses and also laser flame cutting, showing the possibility to detect cutting interruptions in a broad variety of applications. In a series of 83 incomplete cuts, every cutting interruption is successfully detected (alpha error of 0%), while no cutting interruption is reported in 266 complete cuts (beta error of 0%). With this remarkable high detection rate and low error rate, the possibility to work with different materials and thicknesses in combination with the easy mounting of the sensor unit also to existing cutting machines highlight the enormous potential for this sensor system in industrial applications.

  3. Characterization of FBG sensor interrogation based on a FDML wavelength swept laser

    Science.gov (United States)

    Jung, Eun Joo; Kim, Chang-Seok; Jeong, Myung Yung; Kim, Moon Ki; Jeon, Min Yong; Jung, Woonggyu; Chen, Zhongping

    2012-01-01

    In this study, we develop an ultra-fast fiber Bragg grating sensor system that is based on the Fourier domain mode-locked (FDML) swept laser. A FDML wavelength swept laser has many advantages compared to the conventional wavelength swept laser source, such as high-speed interrogation, narrow spectral sensitivity, and high phase stability. The newly developed FDML wavelength swept laser shows a superior performance of a high scan rate of 31.3 kHz and a broad scan range of over 70 nm simultaneously. The performance of the grating sensor interrogating system using a FDML wavelength swept laser is characterized in both static and dynamic strain responses. PMID:18852764

  4. Airborne Laser Polarization Sensor

    Science.gov (United States)

    Kalshoven, James, Jr.; Dabney, Philip

    1991-01-01

    Instrument measures polarization characteristics of Earth at three wavelengths. Airborne Laser Polarization Sensor (ALPS) measures optical polarization characteristics of land surface. Designed to be flown at altitudes of approximately 300 m to minimize any polarizing or depolarizing effects of intervening atmosphere and to look along nadir to minimize any effects depending on look angle. Data from measurements used in conjunction with data from ground surveys and aircraft-mounted video recorders to refine mathematical models used in interpretation of higher-altitude polarimetric measurements of reflected sunlight.

  5. Urinary incontinence monitoring system using laser-induced graphene sensors

    KAUST Repository

    Nag, Anindya

    2017-12-25

    This paper presents the design and development of a sensor patch to be used in a sensing system to deal with the urinary incontinence problem primarily faced by women and elderly people. The sensor patches were developed from laser-induced graphene from low-cost commercial polyimide (PI) polymers. The graphene was manually transferred to a commercial tape, which was used as sensor patch for experimentation. Salt solutions with different concentrations were tested to determine the most sensitive frequency region of the sensor. The results are encouraging to further develop this sensor in a platform for a fully functional urinary incontinence detection system.

  6. Optical fibres sensor based in the intensity switch of a linear laser with two Bragg gratings; Sensor de fibra optica basado en el salto de intensidad de un laser lineal con dos rejillas de Bragg

    Energy Technology Data Exchange (ETDEWEB)

    Basurto P, M.A.; Kuzin, E.A.; Archundia B, C.; Marroquin, E.; May A, M.; Cerecedo N, H.H.; Sanchez M, J.J. [Departamento de Fotonica y Fisica Optica, Instituto Nacional de Astrofisica, Optica y Electronica (INAOE). Apartado Postal 51 y 216, 72000 Puebla (Mexico); Tentori S, D.; Marquez B, I.; Shliagin, M.; Miridonov, S. [Centro de Investigacion CESE (Mexico)

    2000-07-01

    In this work we propose a new configuration for an optical fiber temperature sensor, based on a linear type Er-doped fiber laser. The laser cavity consists of an Er-doped fiber and two identical Bragg gratings at the fiber ends (working as reflectors). Temperature changes are detected by measuring, through one of the gratings, the intensity variations atthe system's output. When the temperature of one of the Bragg gratings is modified, a wavelength shift of its spectral reflectivity is observed. Hence, the laser emission intensity of the system is modified. We present experimental results of the intensity switch observed when the temperature difference between the gratings detunes their spectral reflectance. Making use of this effect it is possible to develop limit comparators to bound the temperature range for the object under supervision. This limiting work can be performed with a high sensitivity using a very simple interrogation procedure. (Author)

  7. Experimental Implementation of a Biometric Laser Synaptic Sensor

    Directory of Open Access Journals (Sweden)

    Alexander N. Pisarchik

    2013-12-01

    Full Text Available We fabricate a biometric laser fiber synaptic sensor to transmit information from one neuron cell to the other by an optical way. The optical synapse is constructed on the base of an erbium-doped fiber laser, whose pumped diode current is driven by a pre-synaptic FitzHugh–Nagumo electronic neuron, and the laser output controls a post-synaptic FitzHugh–Nagumo electronic neuron. The implemented laser synapse displays very rich dynamics, including fixed points, periodic orbits with different frequency-locking ratios and chaos. These regimes can be beneficial for efficient biorobotics, where behavioral flexibility subserved by synaptic connectivity is a challenge.

  8. Bullet Design and Fabrication of Dual Mode Pyroelectric Sensor: High Sensitive Energymeter for Nd: YAG Laser and Detector for Chopped He-Ne Laser

    Directory of Open Access Journals (Sweden)

    S. SATAPATHY

    2008-05-01

    Full Text Available Pyroelectric sensor using TGS has been designed and fabricated which can be operated in laser energy meter mode as well as pyroelectric detector mode. The amplifying circuit configuration has very good signal to noise ratio, very high input impedance and low drift. The pyroelectric sensor has been tested using Q-switched Nd: YAG laser and chopped He-Ne laser. The sensitivity of pyroelectric sensor in energymeter mode is 421.7V/J and the voltage responsivity of the pyroelectric sensor is 3.27 V/W in detector mode.

  9. Optical Fiber Sensors Based on Fiber Ring Laser Demodulation Technology.

    Science.gov (United States)

    Xie, Wen-Ge; Zhang, Ya-Nan; Wang, Peng-Zhao; Wang, Jian-Zhang

    2018-02-08

    A review for optical fiber sensors based on fiber ring laser (FRL) demodulation technology is presented. The review focuses on the principles, main structures, and the sensing performances of different kinds of optical fiber sensors based on FRLs. First of all, the theory background of the sensors has been discussed. Secondly, four different types of sensors are described and compared, which includes Mach-Zehnder interferometer (MZI) typed sensors, Fabry-Perot interferometer (FPI) typed sensors, Sagnac typed sensors, and fiber Bragg grating (FBG) typed sensors. Typical studies and main properties of each type of sensors are presented. Thirdly, a comparison of different types of sensors are made. Finally, the existing problems and future research directions are pointed out and analyzed.

  10. Laser sensor with Bragg gratings of fiber optics to physics parameter measuring

    International Nuclear Information System (INIS)

    Vazquez, R.; Garcia, C.; May, M.; Camas, J.

    2009-01-01

    We present the operation of a fiber laser sensor made by an Erbium Doped Fiber pumped at 980nm, an 4.23 km passive fiber and two fiber Bragg gratings placed at the ends of the laser cavity. Under normal conditions, the Bragg gratings have different reflection wavelengths and laser emission is not generated. The two Bragg gratings can be placed at the same reflection wavelength when the Bragg grating with the lowest reflective wavelength increases their temperature which can be used as a sensor element. The laser generation thus shows that the Bragg grating is increasing their temperature. We used a Peltier cell for to change gradually the temperature. (Author)

  11. Multi-image acquisition-based distance sensor using agile laser spot beam.

    Science.gov (United States)

    Riza, Nabeel A; Amin, M Junaid

    2014-09-01

    We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.

  12. Quality assurance tests of the CBM silicon tracking system sensors with an infrared laser

    Energy Technology Data Exchange (ETDEWEB)

    Teklishyn, Maksym [FAIR GmbH, Darmstadt (Germany); KINR, Kyiv (Ukraine); Collaboration: CBM-Collaboration

    2016-07-01

    Double-sided 300 μm thick silicon microstrip sensors are planned to be used in the Silicon Tracking System (STS) of the future CBM experiment. Different tools, including an infrared laser, are used to induce charge in the sensor medium to study the sensor response. We use present installation to develop a procedure for the sensor quality assurance during mass production. The precise positioning of the laser spot allows to make a clear judgment about the sensor interstrip gap response which provides information about the charge distribution inside the sensor medium. Results are compared with the model estimations.

  13. A novel laser alignment system for tracking detectors using transparent silicon strip sensors

    International Nuclear Information System (INIS)

    Blum, W.; Kroha, H.; Widmann, P.

    1995-02-01

    Modern large-area precision tracking detectors require increasing accuracy of the geometrical alignment over large distances. A novel optical multi-point alignment system has been developed for the muon spectrometer of the ATLAS detector at the Large Hadron Collider. The system uses collimated laser beams as alignment references which are monitored by semi-transparent optical position sensors. The custom designed sensors provide very precise and uniform position information on the order of 1 μm over a wide measurement range. At suitable laser wavelengths, produced by laser diodes, transmission rates above 90% have been achieved which allow to align more than 30 sensors along one laser beam. With this capability and equipped with integrated readout electronics, the alignment system offers high flexibility for precision applications in a wide range of detector systems. (orig.)

  14. Optical Cutting Interruption Sensor for Fiber Lasers

    Directory of Open Access Journals (Sweden)

    Benedikt Adelmann

    2015-09-01

    Full Text Available We report on an optical sensor system attached to a 4 kW fiber laser cutting machine to detect cutting interruptions. The sensor records the thermal radiation from the process zone with a modified ring mirror and optical filter arrangement, which is placed between the cutting head and the collimator. The process radiation is sensed by a Si and InGaAs diode combination with the detected signals being digitalized with 20 kHz. To demonstrate the function of the sensor, signals arising during fusion cutting of 1 mm stainless steel and mild steel with and without cutting interruptions are evaluated and typical signatures derived. In the recorded signals the piercing process, the laser switch on and switch off point and waiting period are clearly resolved. To identify the cutting interruption, the signals of both Si and InGaAs diodes are high pass filtered and the signal fluctuation ranges being subsequently calculated. Introducing a correction factor, we identify that only in case of a cutting interruption the fluctuation range of the Si diode exceeds the InGaAs diode. This characteristic signature was successfully used to detect 80 cutting interruptions of 83 incomplete cuts (alpha error 3.6% and system recorded no cutting interruption from 110 faultless cuts (beta error of 0. This particularly high detection rate in combination with the easy integration of the sensor, highlight its potential for cutting interruption detection in industrial applications.

  15. Polymeric turbidity sensor fabricated by laser direct writing

    International Nuclear Information System (INIS)

    Li, Shu; Lin, Qiao; Wu, George; Chen, Liuhua; Wu, X

    2011-01-01

    The design of a miniature-sized turbidity sensor fabricated by laser direct writing was proposed and tested. A dual-beam dual-detector sensing structure was written by a 488 nm laser from UV curable optical polymer to form a 4 mm diameter turbidity sensing probe, with the fabrication process being shortened to a few seconds. Experimental tests on prototypes were conducted by using standard turbidity solutions, and the data were processed with a self-adapting neural network based on a single input single output algorithm. The scattering coefficient for normalized turbidity of the standards was obtained, and system accuracy was validated by an error analysis. Experimental results indicated that in the testing situation presented in this paper, the sensor was capable of responding to turbidity with a relative error of about 3%

  16. All-fiber-coupled laser-induced breakdown spectroscopy sensor for hazardous materials analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bohling, Christian [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); SECOPTA GmbH, Ostendstr. 25, 12459 Berlin (Germany)], E-mail: c.bohling@pe.tu-clausthal.de; Hohmann, Konrad [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany)], E-mail: k.hohmann@pe.tu-clausthal.de; Scheel, Dirk [Systektum GmbH, Arnold-Sommerfeld-Str. 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: d.scheel@systektum.de; Bauer, Christoph [LaserAnwendungsCentrum (LAC) Technische Universitaet Clausthal, Arnold-Sommerfeld-Strasse 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: c.bauer@pe.tu-clausthal.de; Schippers, Wolfgang [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany)], E-mail: w.schippers@pe.tu-clausthal.de; Burgmeier, Joerg [LaserAnwendungsCentrum (LAC) Technische Universitaet Clausthal, Arnold-Sommerfeld-Strasse 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: j.burgmeier@pe.tu-clausthal.de; Willer, Ulrike [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); LaserAnwendungsCentrum (LAC) Technische Universitaet Clausthal, Arnold-Sommerfeld-Strasse 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: u.willer@pe.tu-clausthal.de; Holl, Gerhard [Wehrwissenschaftliches Institut fuer Werk-, Explosiv- und Betriebsstoffe (WIWEB), Grosses Cent, 53913, Swisttal (Germany)], E-mail: gerhardholl@bwb.orgd; Schade, Wolfgang [Institut fuer Physik und Physikalische Technologien, Technische Universitaet Clausthal, Leibnizstrasse 4, 38678 Clausthal-Zellerfeld (Germany); LaserAnwendungsCentrum (LAC) Technische Universitaet Clausthal, Arnold-Sommerfeld-Strasse 6, 38678 Clausthal-Zellerfeld (Germany)], E-mail: w.schade@pe.tu-clausthal.de

    2007-12-15

    An all-fiber-coupled laser-induced breakdown spectroscopy (LIBS) sensor device is developed. A passively Q-switched Cr{sup 4+}Nd{sup 3+}:YAG microchip laser is amplified within an Yb fiber amplifier, thus generating high power laser pulses (pulse energy E{sub p} = 0.8 mJ, wavelength {lambda} = 1064 nm, repetition rate f{sub rep.} = 5 kHz, pulse duration t{sub p} = 1.2 ns). A passive (LMA) optical fiber is spliced to the active fiber of an Yb fiber amplifier for direct guiding of high power laser pulses to the sensor tip. In front of the sensor a plasma is generated on the surface to be analyzed. The plasma emission is collected by a set of optical fibers also integrated into the sensor tip. The spectrally resolved LIBS spectra are processed by application of principal component analysis (PCA) and analyzed together with the time-resolved spectra with neural networks. Such procedure allows accurate analysis of samples by LIBS even for materials with similar atomic composition. The system has been tested successfully during field measurements at the German Armed Forces test facility at Oberjettenberg. The LIBS sensor is not restricted to anti-personnel mine detection but has also the potential to be suitable for analysis of bulk explosives and surface contaminations with explosives, e.g. for the detection of improvised explosive devices (IEDs)

  17. Application of the laser scanning confocal microscope in fluorescent film sensor research

    Science.gov (United States)

    Zhang, Hongyan; Liu, Wei-Min; Zhao, Wen-Wen; Dai, Qing; Wang, Peng-Fei

    2010-10-01

    Confocal microscopy offers several advantages over conventional optical microscopy; we show an experimental investigation laser scanning confocal microscope as a tool to be used in cubic boron nitride (cBN) film-based fluorescent sensor research. Cubic boron nitride cBN film sensors are modified with dansyl chloride and rhodamine B isothiocyanate respectively. Fluorescent modification quality on the cubic boron nitride film is clearly express and the sensor ability to Hg2+ cations and pH are investigated in detail. We evidence the rhodamine B isothiocyanate modified quality on cBN surface is much better than that of dansyl chloride. And laser scanning confocal microscope has potential application lighttight fundus film fluorescent sensor research.

  18. Laser deposition of sulfonated phthalocyanines for gas sensors

    Czech Academy of Sciences Publication Activity Database

    Fitl, Přemysl; Vrňata, M.; Kopecký, D.; Vlček, J.; Škodová, J.; Bulíř, Jiří; Novotný, Michal; Pokorný, Petr

    2014-01-01

    Roč. 302, MAY (2014), s. 37-41 ISSN 0169-4332. [European-Materials-Research-Society Symposium on Laser Material Interactions for Micro- and Nano- Applications /5./. Strasbourg, 27.05.2013-31.05.2013] R&D Projects: GA ČR(CZ) GAP108/11/1298 Institutional support: RVO:68378271 Keywords : Matrix Assisted Pulsed Laser Evaporation * substituted phthalocyanine s * gas sensors * impedance measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014

  19. Experiment of Laser Pointing Stability on Different Surfaces to validate Micrometric Positioning Sensor

    CERN Document Server

    AUTHOR|(SzGeCERN)721924; Mainaud Durand, Helene; Piedigrossi, Didier; Sandomierski, Jacek; Sosin, Mateusz; Geiger, Alain; Guillaume, Sebastien

    2014-01-01

    CLIC requires 10 μm precision and accuracy over 200m for the pre-alignment of beam related components. A solution based on laser beam as straight line reference is being studied at CERN. It involves camera/shutter assemblies as micrometric positioning sensors. To validate the sensors, it is necessary to determine an appropriate material for the shutter in terms of laser pointing stability. Experiments are carried out with paper, metal and ceramic surfaces. This paper presents the standard deviations of the laser spot coordinates obtained on the different surfaces, as well as the measurement error. Our experiments validate the choice of paper and ceramic for the shutter of the micrometric positioning sensor. It also provides an estimate of the achievable precision and accuracy of the determination of the laser spot centre with respect to the shutter coordinate system defined by reference targets.

  20. Adaptive Pulsed Laser Line Extraction for Terrain Reconstruction using a Dynamic Vision Sensor

    Directory of Open Access Journals (Sweden)

    Christian eBrandli

    2014-01-01

    Full Text Available Mobile robots need to know the terrain in which they are moving for path planning and obstacle avoidance. This paper proposes the combination of a bio-inspired, redundancy-suppressing dynamic vision sensor with a pulsed line laser to allow fast terrain reconstruction. A stable laser stripe extraction is achieved by exploiting the sensor’s ability to capture the temporal dynamics in a scene. An adaptive temporal filter for the sensor output allows a reliable reconstruction of 3D terrain surfaces. Laser stripe extractions up to pulsing frequencies of 500Hz were achieved using a line laser of 3mW at a distance of 45cm using an event-based algorithm that exploits the sparseness of the sensor output. As a proof of concept, unstructured rapid prototype terrain samples have been successfully reconstructed with an accuracy of 2mm.

  1. Short-Range Sensor for Underwater Robot Navigation using Line-lasers and Vision

    DEFF Research Database (Denmark)

    Hansen, Peter Nicholas; Nielsen, Mikkel Cornelius; Christensen, David Johan

    2015-01-01

    This paper investigates a minimalistic laser-based range sensor, used for underwater inspection by Autonomous Underwater Vehicles (AUV). This range detection system system comprise two lasers projecting vertical lines, parallel to a camera’s viewing axis, into the environment. Using both lasers...

  2. A wireless laser displacement sensor node for structural health monitoring.

    Science.gov (United States)

    Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok

    2013-09-30

    This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  3. A Wireless Laser Displacement Sensor Node for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Se Woon Choi

    2013-09-01

    Full Text Available This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM. The proposed measurement system consists of a laser displacement sensor (LDS and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.

  4. Characterization of silicon micro-strip sensors with a pulsed infra-red laser system for the CBM experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Pradeep [Goethe University, Frankfurt am Main (Germany); GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt (Germany); Eschke, Juergen [GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt (Germany); Facility for Anti-proton and Ion Research, GmbH, Darmstadt (Germany); Collaboration: CBM-Collaboration

    2015-07-01

    The Silicon Tracking System (STS) of the CBM experiment at FAIR is composed of 8 tracking stations comprising of 1292 double-sided silicon micro-strip sensors. A Laser Test System (LTS) has been developed for the quality assurance of prototype sensors. The aim is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. Several prototype sensors with strip pitch of 50 and 58 μm have been tested, as well as a prototype module with realistic mechanical arrangement of sensor and read-out cables. The LTS is designed to measure sensor response in an automatized procedure across the sensor with focused laser beam (spot-size ∼ 12 μm, wavelength = 1060 nm). The pulse with duration (∼ 10 ns) and power (∼ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Results from laser scans of prototype sensors and detector module are reported.

  5. Laser of optical fiber composed by two coupled cavities: application as optical fiber sensor; Laser de fibra optica compuesto por dos cavidades acopladas: aplicacion como sensor de fibra optica

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez S, R.A.; Kuzin, E.A.; Ibarra E, B. [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), A.P. 51 y 216, 72000 Puebla (Mexico); May A, M. [Universidad Autonoma del Carmen (UNACAR) Av. 56 No. 4 por Av. Concordia, Campeche (Mexico); Shlyagin, M.; Marquez B, I. [Centro de Investigacion Cientifica y de Ensenanza Superior de Ensenada (CICESE), 22860 Ensenada, Baja California (Mexico)]. e-mail: ravsa100@hotmail.com

    2004-07-01

    We show an optical fiber laser sensor which consist of two cavities coupled and three fiber Bragg gratings. We used one Bragg grating (called reference) and two Bragg gratings (called sensors), which have the lower reflection wavelength. The reference grating with the two sensors grating make two cavities: first one is the internal cavity which has 4230 m of length and the another one is the external cavity which has 4277 m of length. Measuring the laser beating frequency for a resonance cavity and moving the frequency peaks when the another cavity is put in resonance, we prove that the arrangement can be used as a two points sensor for determining the difference of temperature or stress between these two points. (Author)

  6. Characterization of silicon micro-strip sensors with a pulsed infra-red laser system for the CBM experiment at FAIR

    International Nuclear Information System (INIS)

    Ghosh, P.

    2015-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of 1292 double sided silicon micro-strip sensors. For the quality assurance of produced prototype sensors a laser test system (LTS) has been developed. The aim of the LTS is to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype sensors which are tested with the LTS so far have 256 strips with a pitch of 50 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm , wavelength = 1060 nm). The pulse with duration (≈ 10 ns) and power (≈ 5 mW) of the laser pulses is selected such, that the absorption of the laser light in the 300 μm thick silicon sensors produces a number of about 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. Laser scans different prototype sensors is reported

  7. Design and implementation of a laser-based absorption spectroscopy sensor for in situ monitoring of biomass gasification

    Science.gov (United States)

    Viveros Salazar, David; Goldenstein, Christopher S.; Jeffries, Jay B.; Seiser, Reinhard; Cattolica, Robert J.; Hanson, Ronald K.

    2017-12-01

    Research to demonstrate in situ laser-absorption-based sensing of H2O, CH4, CO2, and CO mole fraction is reported for the product gas line of a biomass gasifier. Spectral simulations were used to select candidate sensor wavelengths that optimize sensitive monitoring of the target species while minimizing interference from other species in the gas stream. A prototype sensor was constructed and measurements performed in the laboratory at Stanford to validate performance. Field measurements then were demonstrated in a pilot scale biomass gasifier at West Biofuels in Woodland, CA. The performance of a prototype sensor was compared for two sensor strategies: wavelength-scanned direct absorption (DA) and wavelength-scanned wavelength modulation spectroscopy (WMS). The lasers used had markedly different wavelength tuning response to injection current, and modern distributed feedback lasers (DFB) with nearly linear tuning response to injection current were shown to be superior, leading to guidelines for laser selection for sensor fabrication. Non-absorption loss in the transmitted laser intensity from particulate scattering and window fouling encouraged the use of normalized WMS measurement schemes. The complications of using normalized WMS for relatively large values of absorbance and its mitigation are discussed. A method for reducing adverse sensor performance effects of a time-varying WMS background signal is also presented. The laser absorption sensor provided measurements with the sub-second time resolution needed for gasifier control and more importantly provided precise measurements of H2O in the gasification products, which can be problematic for the typical gas chromatography sensors used by industry.

  8. Autonomous Kinematic Calibration of the Robot Manipulator with a Linear Laser-Vision Sensor

    Science.gov (United States)

    Kang, Hee-Jun; Jeong, Jeong-Woo; Shin, Sung-Weon; Suh, Young-Soo; Ro, Young-Schick

    This paper presents a new autonomous kinematic calibration technique by using a laser-vision sensor called "Perceptron TriCam Contour". Because the sensor measures by capturing the image of a projected laser line on the surface of the object, we set up a long, straight line of a very fine string inside the robot workspace, and then allow the sensor mounted on a robot to measure the point intersection of the line of string and the projected laser line. The data collected by changing robot configuration and measuring the intersection points are constrained to on a single straght line such that the closed-loop calibration method can be applied. The obtained calibration method is simple and accurate and also suitable for on-site calibration in an industrial environment. The method is implemented using Hyundai VORG-35 for its effectiveness.

  9. Diseño de un nodo con arquitectura abierta para aplicaciones con redes inalámbricas de sensores (CRTECMOTE

    Directory of Open Access Journals (Sweden)

    Johan Carvajal Godínez

    2011-09-01

    Full Text Available Durante la última década las redes inalámbricas de sensores (WSN para la protección del medio ambiente surgen como área de investigación y desarrollo gracias a los avances en la microelectrónica, la ingeniería de computadoras y las ciencias de los materiales. Aspectos relevantes que han determinado el interés en esta área de investigación son, entre otros, la capacidad de mitigar el impacto al ambiente por consecuencia de actividades productivas, especialmente agrícolas, mediante la monitorización y control de variables de entrada para dicho proceso. Este artículo trata sobre la metodología con la cual se aborda el diseño, la optimización y la puesta en marcha de una infraestructura electrónica que funcione como herramienta para la adquisición de datos y tratamiento de información para la generación de modelos descriptivos que permitan atacar aquellos fenómenos que tienen mayor incidencia en la degradación de los recursos naturales que rodean las zonas geográficas productivas. El resultado obtenido mediante la investigación llevada a cabo fue el diseño de un nodo para red inalámbrica de sensores especializados en adquisición y procesamiento de datos, así como la selección de la arquitectura de red y las tecnologías de comunicación con las que se planea implementar la conexión de los nodos con un sistema central de adquisición y almacenamiento de la información (sumidero. El artículo concluye con la justificación del diseño de la red, cuya topología jerárquica se adapta a las necesidades de cobertura geográfica, costo de la infraestructura y capacidad de escalamiento de la red inalámbrica de sensores.

  10. Robotic tool positioning process using a multi-line off-axis laser triangulation sensor

    Science.gov (United States)

    Pinto, T. C.; Matos, G.

    2018-03-01

    Proper positioning of a friction stir welding head for pin insertion, driven by a closed chain robot, is important to ensure quality repair of cracks. A multi-line off-axis laser triangulation sensor was designed to be integrated to the robot, allowing relative measurements of the surface to be repaired. This work describes the sensor characteristics, its evaluation and the measurement process for tool positioning to a surface point of interest. The developed process uses a point of interest image and a measured point cloud to define the translation and rotation for tool positioning. Sensor evaluation and tests are described. Keywords: laser triangulation, 3D measurement, tool positioning, robotics.

  11. Oil spill sensing in marine and coastal environments using laser-based sensors

    International Nuclear Information System (INIS)

    Brown, C. E.; Fingas, M. F.

    1998-01-01

    A prototype laser environmental airborne fluorosensor (LEAF) under development by the Environmental Protection Service of Environment Canada, which has the ability to detect and classify oil on water, land and conditions of snow and ice, real-time from an airborne platform, was described. Also under development are a scanning laser environmental airborne fluorosensor (SLEAF) to detect and map oil in complex marine and shoreline environments where other nonspecific sensors are not effective, and a laser ultrasonic remote sensing of oil thickness (LURSOT) sensor, which is expected to provide a measurement of oil thickness from an airborne platform. Details of each of these remote sensing technologies are provided, along with a discussion of expected benefits to the oil spill response community. 12 refs

  12. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    OpenAIRE

    R. Brian Jenkins; Peter Joyce; Deborah Mechtel

    2017-01-01

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initia...

  13. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    R. Brian Jenkins

    2017-01-01

    Full Text Available Fiber Bragg grating (FBG temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  14. Localized Temperature Variations in Laser-Irradiated Composites with Embedded Fiber Bragg Grating Sensors.

    Science.gov (United States)

    Jenkins, R Brian; Joyce, Peter; Mechtel, Deborah

    2017-01-27

    Fiber Bragg grating (FBG) temperature sensors are embedded in composites to detect localized temperature gradients resulting from high energy infrared laser radiation. The goal is to detect the presence of radiation on a composite structure as rapidly as possible and to identify its location, much the same way human skin senses heat. A secondary goal is to determine how a network of sensors can be optimized to detect thermal damage in laser-irradiated composite materials or structures. Initial tests are conducted on polymer matrix composites reinforced with either carbon or glass fiber with a single optical fiber embedded into each specimen. As many as three sensors in each optical fiber measure the temporal and spatial thermal response of the composite to high energy radiation incident on the surface. Additional tests use a 2 × 2 × 3 array of 12 sensors embedded in a carbon fiber/epoxy composite to simultaneously measure temperature variations at locations on the composite surface and through the thickness. Results indicate that FBGs can be used to rapidly detect temperature gradients in a composite and their location, even for a direct strike of laser radiation on a sensor, when high temperatures can cause a non-uniform thermal response and FBG decay.

  15. Research on sensor design for internet of things and laser manufacturing

    Science.gov (United States)

    Wang, Tao; Yao, Jianquan; Guo, Ling; Zhang, Yanchun

    2010-12-01

    In this paper, we will introduce the research on sensor design for IOT (Internet of Things) and laser manufacturing, and supporting the establishment of local area IOT. The main contents include studying on the structure designing of silicon micro tilt sensor, data acquisition and processing, addressing implanted and building Local Area IOT with wireless sensor network technology. At last, it is discussed the status and trends of the Internet of Things from the promoters, watchers, pessimists and doers.

  16. Vertical-cavity surface-emitting laser vapor sensor using swelling polymer reflection modulation

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgård; Dohn, Søren

    2012-01-01

    Vapor detection using a low-refractive index polymer for reflection modulation of the top mirror in a vertical-cavity surface-emitting laser (VCSEL) is demonstrated. The VCSEL sensor concept presents a simple method to detect the response of a sensor polymer in the presence of volatile organic...

  17. Stabilizing operation point technique based on the tunable distributed feedback laser for interferometric sensors

    Science.gov (United States)

    Mao, Xuefeng; Zhou, Xinlei; Yu, Qingxu

    2016-02-01

    We describe a stabilizing operation point technique based on the tunable Distributed Feedback (DFB) laser for quadrature demodulation of interferometric sensors. By introducing automatic lock quadrature point and wavelength periodically tuning compensation into an interferometric system, the operation point of interferometric system is stabilized when the system suffers various environmental perturbations. To demonstrate the feasibility of this stabilizing operation point technique, experiments have been performed using a tunable-DFB-laser as light source to interrogate an extrinsic Fabry-Perot interferometric vibration sensor and a diaphragm-based acoustic sensor. Experimental results show that good tracing of Q-point was effectively realized.

  18. Nanoimprinted distributed feedback dye laser sensor for real-time imaging of small molecule diffusion

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin; Kristensen, Anders

    2014-01-01

    Label-free imaging is a promising tool for the study of biological processes such as cell adhesion and small molecule signaling processes. In order to image in two dimensions of space current solutions require motorized stages which results in low imaging frame rates. Here, a highly sensitive...... distributed feedback (DFB) dye laser sensor for real-time label-free imaging without any moving parts enabling a frame rate of 12 Hz is presented. The presence of molecules on the laser surface results in a wavelength shift which is used as sensor signal. The unique DFB laser structure comprises several areas...

  19. Burr formation detector for fiber laser cutting based on a photodiode sensor system

    Science.gov (United States)

    Schleier, Max; Adelmann, Benedikt; Neumeier, Benedikt; Hellmann, Ralf

    2017-11-01

    We report a unique sensor system based on a InGaAs photodiode to detect the formation of burr during near infrared fiber laser cutting. The sensor approach encompasses the measurement of the thermal radiation form the process zone, optical filtering, digitalized sampling at 20 kHz, digital filtering using an elliptical band-pass filter 12th order and calculation of the standard deviation. We find a linear correlation between the deduced sensor signal and the generated burr height with this functionality being experimentally confirmed for laser cutting of mild and stainless steel of different thicknesses. The underlying mechanism of this transducer concept is attributed to the melt flow dynamics inside the cut kerf.

  20. Laser of optical fiber composed by two coupled cavities: application as optical fiber sensor

    International Nuclear Information System (INIS)

    Vazquez S, R.A.; Kuzin, E.A.; Ibarra E, B.; May A, M.; Shlyagin, M.; Marquez B, I.

    2004-01-01

    We show an optical fiber laser sensor which consist of two cavities coupled and three fiber Bragg gratings. We used one Bragg grating (called reference) and two Bragg gratings (called sensors), which have the lower reflection wavelength. The reference grating with the two sensors grating make two cavities: first one is the internal cavity which has 4230 m of length and the another one is the external cavity which has 4277 m of length. Measuring the laser beating frequency for a resonance cavity and moving the frequency peaks when the another cavity is put in resonance, we prove that the arrangement can be used as a two points sensor for determining the difference of temperature or stress between these two points. (Author)

  1. Development of Laser LEDs Based a Programmable Optical Sensor for Detection of Environmental Pollutants

    Directory of Open Access Journals (Sweden)

    Amit K. Sharma

    2009-01-01

    Full Text Available The laser LED based optical sensor and its multifunctional operation for detection of environmental pollutants are described. The work will provide the instructions to design of circuitry for optical sensor instrument with a program based on a microcontroller (8902051-24PI, and to allow this program to communicate via RS-232 with computer. An algorithm is outlined by which the sensor instrument can use three laser LEDs (blue, Green and red to quantify the composition of pollutant. The operation of measurement through optical sensor has been applied to the study of detection and rate of reaction of pollutant i.e. methyl parathion and the produced informative data were also correlated with UV-vis spectrophotometry for the validation of results. The purpose of designed optical sensor is that the sophisticated analytical techniques show costly impact, time taking process, high consumable solvents and not suit for field application purpose which focuses the merits of the optical sensor.

  2. Optical fiber sensor for the detection of laser-generated ultrasound in arterial tissues

    Science.gov (United States)

    Beard, Paul C.; Mills, Timothy N.

    1995-02-01

    Theoretical and experimental aspects of an extrinsic Fabry-Perot optical fiber ultrasound sensor for use in a photoacoustic-guided laser angioplasty system are described. The sensor has been characterized using laser generated thermoelastic waves as a source of wideband ultrasound. A system sensitivity of 25 mV/MPa and an acoustic noise floor of 2 Pa/Hz1/2 are reported using a transparent polymer film as the sensing element. The system demonstrates the required bandwidth for sensing thermoelastic waves containing frequency components up to 20 MHz.

  3. Chemical sensors based on quantum cascade lasers

    Science.gov (United States)

    Tittel, Frank K.; Kosterev, Anatoliy A.; Rochat, Michel; Beck, Mattias; Faist, Jerome

    2002-09-01

    There is an increasing need in many chemical sensing applications ranging from industrial process control to environmental science and medical diagnostics for fast, sensitive, and selective gas detection based on laser spectroscopy. The recent availability of novel pulsed and cw quantum cascade distributed feedback (QC-DFB) lasers as mid-infrared spectroscopic sources address this need. A number of spectroscopic techniques have been demonstrated. For example, the authors have employed QC-DFB lasers for the monitoring and quantification of several trace gases and isotopic species in ambient air at ppmv and ppbv levels by means of direct absorption, wavelength modulation, cavity enhanced and cavity ringdown spectroscopy. In this work, pulsed thermoelectrically cooled QC-DFB lasers operating at ~15.6 μm were characterized for spectroscopic gas sensing applications. A new method for wavelength scanning based on the repetition rate modulation was developed. A non-wavelength-selective pyroelectric detector was incorporated in the gas sensor giving an advantage of room-temperature operation and low cost. Absorption lines of CO2 and H2O were observed in ambient air providing information about the concentration of these species.

  4. Sensor virtual neuronal con variables instrumentales y su aplicación en un Convertidor Teniente

    Directory of Open Access Journals (Sweden)

    Suárez S. Alejandro

    2011-01-01

    Full Text Available Resumen: Se propone el diseño de un sensor virtual para medir la temperatura del baño de metal blanco en un Convertidor Teniente, utilizando redes neuronales a través de un nuevo método de entrenamiento que utiliza el concepto de variables instrumentales. Este nuevo tipo de entrenamiento será comparado con el método de gradiente descendente, el cual al estar basado en ajuste por mínimos cuadrados presenta sesgo en sus parámetros, producto del ruido de medición. La apuesta es que el método de variables instrumentales resuelva este problema, entregando una red con parámetros ajustados sin sesgo, lo que se verá reflejado en que la salida de esta red, se ajustará de mejor forma a la señal real que el método tradicional de gradiente descendente. Los resultados demuestran que la propuesta planteada entrega un sensor con mejor ajuste que el algoritmo tradicional cuando el instrumento real no se encuentra disponible. La aplicación específica del sensor virtual de temperatura para el Convertidor Teniente presenta gran interés para la industria debido al alto costo de los instrumentos que actualmente pueden cumplir dicha función. Palabras clave: sensores virtuales, redes neuronales, variables instrumentales, procesos de producción de cobre, instrumentación y mediciones virtuales

  5. Temperature monitoring with FBG sensor during diffuser-assisted laser-induced interstitial thermotherapy (Conference Presentation)

    Science.gov (United States)

    Pham, Ngot T.; Lee, Seul Lee; Lee, Yong Wook; Kang, Hyun Wook

    2017-02-01

    Temperature variations are often monitored by using sensors operating at the site of treatment during Laser-induced Interstitial Thermotherapy (LITT). Currently, temperature measurements during LITT have been performed with thermocouples (TCs). However, TCs could directly absorb laser light and lead to self-heating (resulting in an over-estimation). Fiber Bragg grating (FBG) sensors can instead overcome this limitation of the TCs due to its insensitivity to electromagnetic interference. The aim of the current study was to quantitatively evaluate the FBG temperature sensor with a K-type thermocouple to real-time monitor temperature increase in ex vivo tissue during diffuser-assisted LITT. A 4-W 980-nm laser was employed to deliver optical energy in continuous mode through a 600-µm core-diameter diffusing applicator. A goniometric measurement validated the uniform light distribution in polar and longitudinal directions. The FBG sensor showed a linear relationship (R2 = 0.995) between wavelength shift and temperature change in air and tissue along with a sensitivity of 0.0114 nm/˚C. Regardless of sensor type, the measured temperature increased with irradiation time and applied power but decreased with increasing distance from the diffuser surface. The temperature elevation augmented the degree of thermal coagulation in the tissue during LITT (4.0±0.3-mm at 99˚C after 120-s). The temperature elevation augmented the degree of thermal coagulation in the tissue during LITT s irradiation). The FBG-integrated diffuser was able to monitor the interstitial temperature in tubular tissue (porcine urethra) real-time during laser treatment. However, the thermal coagulation thickness of the porcine urethra was measured to be 1.5 mm that was slightly thicker ( 20%) than that of the bovine liver after 4-W 980-nm laser for 48 s. The FBG temperature sensor can be a feasible tool to real-time monitor the temporal development of the temperature during the diffuser-assisted LITT to

  6. Study on robot motion control for intelligent welding processes based on the laser tracking sensor

    Science.gov (United States)

    Zhang, Bin; Wang, Qian; Tang, Chen; Wang, Ju

    2017-06-01

    A robot motion control method is presented for intelligent welding processes of complex spatial free-form curve seams based on the laser tracking sensor. First, calculate the tip position of the welding torch according to the velocity of the torch and the seam trajectory detected by the sensor. Then, search the optimal pose of the torch under constraints using genetic algorithms. As a result, the intersection point of the weld seam and the laser plane of the sensor is within the detectable range of the sensor. Meanwhile, the angle between the axis of the welding torch and the tangent of the weld seam meets the requirements. The feasibility of the control method is proved by simulation.

  7. Usos del rayo Laser en Odontologia restauradora: Primera parte. Aspectos generales, clasificacion, interrelacion con los tejidos vivos y precauciones en el uso

    OpenAIRE

    Natera G, Alfredo E.

    2000-01-01

    Con este artículo se pretende dar comienzo a una serie de publicaciones para así plasmar todo lo relacionado con el uso de la tecnología Laser en la Odontología Restauradora. En este primer artículo leerá sobre los antecedentes y fundamentos físicos del Rayo Laser, la clasificación y tipos de Laser disponibles para ésta área de la Odontología, su interrelación con los tejidos vivos, así como las precauciones a tomar durante su uso. En las siguientes publicaciones se esta serie leeremos las pa...

  8. Assessment of laser ablation techniques in a-si technologies for position-sensor development

    Science.gov (United States)

    Molpeceres, C.; Lauzurica, S.; Ocana, J. L.; Gandia, J. J.; Urbina, L.; Carabe, J.

    2005-07-01

    Laser micromachining of semiconductor and Transparent Conductive Oxides (TCO) materials is very important for the practical applications in photovoltaic industry. In particular, a problem of controlled ablation of those materials with minimum of debris and small heat affected zone is one of the most vital for the successful implementation of laser micromachining. In particular, selective ablation of thin films for the development of new photovoltaic panels and sensoring devices based on amorphous silicon (a-Si) is an emerging field, in which laser micromachining systems appear as appropriate tools for process development and device fabrication. In particular, a promising application is the development of purely photovoltaic position sensors. Standard p-i-n or Schottky configurations using Transparent Conductive Oxides (TCO), a-Si and metals are especially well suited for these applications, appearing selective laser ablation as an ideal process for controlled material patterning and isolation. In this work a detailed study of laser ablation of a widely used TCO, Indium-tin-oxide (ITO), and a-Si thin films of different thicknesses is presented, with special emphasis on the morphological analysis of the generated grooves. The profiles of ablated grooves have been studied in order to determine the best processing conditions, i.e. laser pulse energy and wavelength, and to asses this technology as potentially competitive to standard photolithographic processes. The encouraging results obtained, with well defined ablation grooves having thicknesses in the order of 10 μm both in ITO and a-Si, open up the possibility of developing a high-performance double Schottky photovoltaic matrix position sensor.

  9. Distributed Intrusion Sensor Using DFB Laser with Optical Feedback and Saturable Absorber

    Directory of Open Access Journals (Sweden)

    Kyoo Nam Choi

    2018-01-01

    Full Text Available Characteristics of a distributed intrusion sensor using a coherent DFB laser diode with an external optical feedback and saturable absorber were experimentally investigated. The stimulus at a location of 2 km using a PZT transducer placed the location of a simulated intruder in Φ-OTDR trace after averaging 32 times. Field trials demonstrated the detection of a vehicle and a pedestrian crossing above the sensing line and a loop in a burial depth of 50 cm. This distributed intrusion sensor using a coherent DFB laser diode as the light source had the advantages of a simple structure and intruder detection capability at the underground burial location.

  10. Control of the positional relationship between a sample collection instrument and a surface to be analyzed during a sampling procedure using a laser sensor

    Science.gov (United States)

    Van Berkel, Gary J [Clinton, TN; Kertesz, Vilmos [Knoxville, TN

    2012-02-21

    A system and method utilizes distance-measuring equipment including a laser sensor for controlling the collection instrument-to-surface distance during a sample collection process for use, for example, with mass spectrometric detection. The laser sensor is arranged in a fixed positional relationship with the collection instrument, and a signal is generated by way of the laser sensor which corresponds to the actual distance between the laser sensor and the surface. The actual distance between the laser sensor and the surface is compared to a target distance between the laser sensor and the surface when the collection instrument is arranged at a desired distance from the surface for sample collecting purposes, and adjustments are made, if necessary, so that the actual distance approaches the target distance.

  11. Current and emerging laser sensors for greenhouse gas sensing and leak detection

    Science.gov (United States)

    Frish, Michael B.

    2014-05-01

    To reduce atmospheric accumulation of the greenhouse gases methane and carbon dioxide, networks of continuously operating sensors that monitor and map their sources are desirable. In this paper, we discuss advances in laser-based open-path leak detectors, as well as technical and economic challenges inhibiting widespread sensor deployment for "ubiquitous monitoring". We describe permanently-installed, wireless, solar-powered sensors that overcome previous installation and maintenance difficulties while providing autonomous real-time leak reporting without false alarms.

  12. RGB-D, Laser and Thermal Sensor Fusion for People following in a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Loreto Susperregi

    2013-06-01

    Full Text Available Detecting and tracking people is a key capability for robots that operate in populated environments. In this paper, we used a multiple sensor fusion approach that combines three kinds of sensors in order to detect people using RGB-D vision, lasers and a thermal sensor mounted on a mobile platform. The Kinect sensor offers a rich data set at a significantly low cost, however, there are some limitations to its use in a mobile platform, mainly that the Kinect algorithms for people detection rely on images captured by a static camera. To cope with these limitations, this work is based on the combination of the Kinect and a Hokuyo laser and a thermopile array sensor. A real-time particle filter system merges the information provided by the sensors and calculates the position of the target, using probabilistic leg and thermal patterns, image features and optical flow to this end. Experimental results carried out with a mobile platform in a Science museum have shown that the combination of different sensory cues increases the reliability of the people following system.

  13. Compact, diode-pumped, solid-state lasers for next generation defence and security sensors

    Science.gov (United States)

    Silver, M.; Lee, S. T.; Borthwick, A.; McRae, I.; Jackson, D.; Alexander, W.

    2015-06-01

    Low-cost semiconductor laser diode pump sources have made a dramatic impact in sectors such as advanced manufacturing. They are now disrupting other sectors, such as defence and security (D&S), where Thales UK is a manufacturer of sensor systems for application on land, sea, air and man portable. In this talk, we will first give an overview of the market trends and challenges in the D&S sector. Then we will illustrate how low cost pump diodes are enabling new directions in D&S sensors, by describing two diode pumped, solid- state laser products currently under development at Thales UK. The first is a new generation of Laser Target Designators (LTD) that are used to identify targets for the secure guiding of munitions. Current systems are bulky, expensive and require large battery packs to operate. The advent of low cost diode technology, merged with our novel solid-state laser design, has created a designator that will be the smallest, lowest cost, STANAG compatible laser designator on the market. The LTD delivers greater that 50mJ per pulse up to 20Hz, and has compact dimensions of 125×70×55mm. Secondly, we describe an ultra-compact, eye-safe, solid-state laser rangefinder (LRF) with reduced size, weight and power consumption compared to existing products. The LRF measures 100×55×34mm, weighs 200g, and can range to greater than 10km with a single laser shot and at a reprate of 1Hz. This also leverages off advances in laser pump diodes, but also utilises low cost, high reliability, packaging technology commonly found in the telecoms sector. As is common in the D&S sector, the products are designed to work in extreme environments, such as wide temperature range (-40 to +71°C) and high levels of shock and vibration. These disruptive products enable next- generation laser sensors such as rangefinders, target designators and active illuminated imagers.

  14. Sensor Fusion of Cameras and a Laser for City-Scale 3D Reconstruction

    Directory of Open Access Journals (Sweden)

    Yunsu Bok

    2014-11-01

    Full Text Available This paper presents a sensor fusion system of cameras and a 2D laser sensorfor large-scale 3D reconstruction. The proposed system is designed to capture data on afast-moving ground vehicle. The system consists of six cameras and one 2D laser sensor,and they are synchronized by a hardware trigger. Reconstruction of 3D structures is doneby estimating frame-by-frame motion and accumulating vertical laser scans, as in previousworks. However, our approach does not assume near 2D motion, but estimates free motion(including absolute scale in 3D space using both laser data and image features. In orderto avoid the degeneration associated with typical three-point algorithms, we present a newalgorithm that selects 3D points from two frames captured by multiple cameras. The problemof error accumulation is solved by loop closing, not by GPS. The experimental resultsshow that the estimated path is successfully overlaid on the satellite images, such that thereconstruction result is very accurate.

  15. Enhancement of methane gas sensing characteristics of graphene oxide sensor by heat treatment and laser irradiation.

    Science.gov (United States)

    Assar, Mohammadreza; Karimzadeh, Rouhollah

    2016-12-01

    The present study uses a rapid, easy and practical method for cost-effective fabrication of a methane gas sensor. The sensor was made by drop-casting a graphene oxide suspension onto an interdigital circuit surface. The electrical conductivity and gas-sensing characteristics of the sensor were determined and then heat treatment and in situ laser irradiation were applied to improve the device conductivity and gas sensitivity. Real-time monitoring of the evolution of the device current as a function of heat treatment time revealed significant changes in the conductance of the graphene oxide sensor. The use of low power laser irradiation enhanced both the electrical conductivity and sensing response of the graphene oxide sensor. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Nanosecond-laser induced crosstalk of CMOS image sensor

    Science.gov (United States)

    Zhu, Rongzhen; Wang, Yanbin; Chen, Qianrong; Zhou, Xuanfeng; Ren, Guangsen; Cui, Longfei; Li, Hua; Hao, Daoliang

    2018-02-01

    The CMOS Image Sensor (CIS) is photoelectricity image device which focused the photosensitive array, amplifier, A/D transfer, storage, DSP, computer interface circuit on the same silicon substrate[1]. It has low power consumption, high integration,low cost etc. With large scale integrated circuit technology progress, the noise suppression level of CIS is enhanced unceasingly, and its image quality is getting better and better. It has been in the security monitoring, biometrice, detection and imaging and even military reconnaissance and other field is widely used. CIS is easily disturbed and damaged while it is irradiated by laser. It is of great significance to study the effect of laser irradiation on optoelectronic countermeasure and device for the laser strengthening resistance is of great significance. There are some researchers have studied the laser induced disturbed and damaged of CIS. They focused on the saturation, supersaturated effects, and they observed different effects as for unsaturation, saturation, supersaturated, allsaturated and pixel flip etc. This paper research 1064nm laser interference effect in a typical before type CMOS, and observring the saturated crosstalk and half the crosstalk line. This paper extracted from cmos devices working principle and signal detection methods such as the Angle of the formation mechanism of the crosstalk line phenomenon are analyzed.

  17. High frame rate multi-resonance imaging refractometry with distributed feedback dye laser sensor

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Dufva, Martin; Kristensen, Anders

    2015-01-01

    imaging refractometry without moving parts is presented. DFB dye lasers are low-cost and highly sensitive refractive index sensors. The unique multi-wavelength DFB laser structure presented here comprises several areas with different grating periods. Imaging in two dimensions of space is enabled...... by analyzing laser light from all areas in parallel with an imaging spectrometer. With this multi-resonance imaging refractometry method, the spatial position in one direction is identified from the horizontal, i.e., spectral position of the multiple laser lines which is obtained from the spectrometer charged...

  18. Two transparent optical sensors for the positioning of detectors using a reference laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Barriere, J.Ch.; Blumenfeld, H.; Bourdinaud, M.; Cloue, O.; Guyot, C.; Molinie, F.; Ponsot, P.; Saudemont, J.C.; Schuller, J.P.; Schune, Ph.; Sube, S. [CEA Saclay, 91 - Gif sur Yvette (France). Dept. d' Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l' Instrumentation Associee

    1999-07-01

    We have developed two different optical systems in order to position detectors with respect to a reference laser beam. The first system, a telescope, permits the absolute positioning of an element with respect to a reference laser beam. The resolution is of the order of 10 {mu}m in translation and 50 {mu}rad in rotation. It is highly transparent (-90%) permitting several elements to be aligned. A calibration procedure has also been studied and is currently being tested in order to obtain an absolute alignment information. The second system is a highly transparent (95%) two dimensional position sensor which allows the accurate positioning (below 20 {mu}m) of several (up to ten) elements to which each sensor is attached, transversally to a laser beam used as a reference straight line. The present useful area of the first sensor is 20 x 20 mm{sup 2} and is 15 x 15 mm{sup 2} for the second. In both case it can be further increased to meet the experiment's requirement. (authors)

  19. Two transparent optical sensors for the positioning of detectors using a reference laser beam

    International Nuclear Information System (INIS)

    Barriere, J.Ch.; Blumenfeld, H.; Bourdinaud, M.; Cloue, O.; Guyot, C.; Molinie, F.; Ponsot, P.; Saudemont, J.C.; Schuller, J.P.; Schune, Ph.; Sube, S.

    1999-01-01

    We have developed two different optical systems in order to position detectors with respect to a reference laser beam. The first system, a telescope, permits the absolute positioning of an element with respect to a reference laser beam. The resolution is of the order of 10 μm in translation and 50 μrad in rotation. It is highly transparent (-90%) permitting several elements to be aligned. A calibration procedure has also been studied and is currently being tested in order to obtain an absolute alignment information. The second system is a highly transparent (95%) two dimensional position sensor which allows the accurate positioning (below 20 μm) of several (up to ten) elements to which each sensor is attached, transversally to a laser beam used as a reference straight line. The present useful area of the first sensor is 20 x 20 mm 2 and is 15 x 15 mm 2 for the second. In both case it can be further increased to meet the experiment's requirement. (authors)

  20. Laser beam welding quality monitoring system based in high-speed (10 kHz) uncooled MWIR imaging sensors

    Science.gov (United States)

    Linares, Rodrigo; Vergara, German; Gutiérrez, Raúl; Fernández, Carlos; Villamayor, Víctor; Gómez, Luis; González-Camino, Maria; Baldasano, Arturo; Castro, G.; Arias, R.; Lapido, Y.; Rodríguez, J.; Romero, Pablo

    2015-05-01

    The combination of flexibility, productivity, precision and zero-defect manufacturing in future laser-based equipment are a major challenge that faces this enabling technology. New sensors for online monitoring and real-time control of laserbased processes are necessary for improving products quality and increasing manufacture yields. New approaches to fully automate processes towards zero-defect manufacturing demand smarter heads where lasers, optics, actuators, sensors and electronics will be integrated in a unique compact and affordable device. Many defects arising in laser-based manufacturing processes come from instabilities in the dynamics of the laser process. Temperature and heat dynamics are key parameters to be monitored. Low cost infrared imagers with high-speed of response will constitute the next generation of sensors to be implemented in future monitoring and control systems for laser-based processes, capable to provide simultaneous information about heat dynamics and spatial distribution. This work describes the result of using an innovative low-cost high-speed infrared imager based on the first quantum infrared imager monolithically integrated with Si-CMOS ROIC of the market. The sensor is able to provide low resolution images at frame rates up to 10 KHz in uncooled operation at the same cost as traditional infrared spot detectors. In order to demonstrate the capabilities of the new sensor technology, a low-cost camera was assembled on a standard production laser welding head, allowing to register melting pool images at frame rates of 10 kHz. In addition, a specific software was developed for defect detection and classification. Multiple laser welding processes were recorded with the aim to study the performance of the system and its application to the real-time monitoring of laser welding processes. During the experiments, different types of defects were produced and monitored. The classifier was fed with the experimental images obtained. Self

  1. A Fiber Bragg Grating Sensor Interrogation System Based on a Linearly Wavelength-Swept Thermo-Optic Laser Chip

    Science.gov (United States)

    Lee, Hyung-Seok; Lee, Hwi Don; Kim, Hyo Jin; Cho, Jae Du; Jeong, Myung Yung; Kim, Chang-Seok

    2014-01-01

    A linearized wavelength-swept thermo-optic laser chip was applied to demonstrate a fiber Bragg grating (FBG) sensor interrogation system. A broad tuning range of 11.8 nm was periodically obtained from the laser chip for a sweep rate of 16 Hz. To measure the linear time response of the reflection signal from the FBG sensor, a programmed driving signal was directly applied to the wavelength-swept laser chip. The linear wavelength response of the applied strain was clearly extracted with an R-squared value of 0.99994. To test the feasibility of the system for dynamic measurements, the dynamic strain was successfully interrogated with a repetition rate of 0.2 Hz by using this FBG sensor interrogation system. PMID:25177803

  2. Experiments of Laser Pointing Stability in Air and in Vacuum to Validate Micrometric Positioning Sensor

    CERN Document Server

    Stern, G; Piedigrossi, D; Sandomierski, J; Sosin, M; Geiger, A; Guillaume, S

    2014-01-01

    Aligning accelerator components over 200m with 10 μm accuracy is a challenging task within the Compact Linear Collider (CLIC) study. A solution based on laser beam in vacuum as straight line reference is proposed. The positions of the accelerator’s components are measured with respect to the laser beam by sensors made of camera/shutter assemblies. To validate these sensors, laser pointing stability has to be studied over 200m. We perform experiments in air and in vacuum in order to know how laser pointing stability varies with the distance of propagation and with the environment. The experiments show that the standard deviations of the laser spot coordinates increase with the distance of propagation. They also show that the standard deviations are much smaller in vacuum (8 μm at 35m) than in air (2000 μm at 200m). Our experiment validates the concept of laser beam in vacuum with camera/shutter assembly for micrometric positioning over 35m. It also gives an estimation of the achievable precision.

  3. Characterization of a Low-Cost Optical Flow Sensor When Using an External Laser as a Direct Illumination Source

    Directory of Open Access Journals (Sweden)

    Jordi Palacín

    2011-12-01

    Full Text Available In this paper, a low cost optical flow sensor is combined with an external laser device to measure surface displacements and mechanical oscillations. The measurement system is based on applying coherent light to a diffuser surface and using an optical flow sensor to analyze the reflected and transferred light to estimate the displacement of the surface or the laser spot. This work is focused on the characterization of this measurement system, which can have the optical flow sensor placed at different angles and distances from the diffuser surface. The results have shown that the displacement of the diffuser surface is badly estimated when the optical mouse sensor is placed in front of the diffuser surface (angular orientation >150° while the highest sensitivity is obtained when the sensor is located behind the diffuser surface and on the axis of the laser source (angular orientation 0°. In this case, the coefficient of determination of the measured displacement, R2, was very high (>0.99 with a relative error of less than 1.29%. Increasing the distance between the surface and the sensor also increased the sensitivity which increases linearly, R2 = 0.99. Finally, this measurement setup was proposed to measure very low frequency mechanical oscillations applied to the laser device, up to 0.01 Hz in this work. The results have shown that increasing the distance between the surface and the optical flow sensor also increases the sensitivity and the measurement range.

  4. Real-time trace gas sensor using a multimode diode laser and multiple-line integrated cavity enhanced absorption spectroscopy.

    Science.gov (United States)

    Karpf, Andreas; Rao, Gottipaty N

    2015-07-01

    We describe and demonstrate a highly sensitive trace gas sensor based on a simplified design that is capable of measuring sub-ppb concentrations of NO2 in tens of milliseconds. The sensor makes use of a relatively inexpensive Fabry-Perot diode laser to conduct off-axis cavity enhanced spectroscopy. The broad frequency range of a multimode Fabry-Perot diode laser spans a large number of absorption lines, thereby removing the need for a single-frequency tunable laser source. The use of cavity enhanced absorption spectroscopy enhances the sensitivity of the sensor by providing a pathlength on the order of 1 km in a small volume. Off-axis alignment excites a large number of cavity modes simultaneously, thereby reducing the sensor's susceptibility to vibration. Multiple-line integrated absorption spectroscopy (where one integrates the absorption spectra over a large number of rovibronic transitions of the molecular species) further improves the sensitivity of detection. Relatively high laser power (∼400  mW) is used to compensate for the low coupling efficiency of a broad linewidth laser to the optical cavity. The approach was demonstrated using a 407 nm diode laser to detect trace quantities of NO2 in zero air. Sensitivities of 750 ppt, 110 ppt, and 65 ppt were achieved using integration times of 50 ms, 5 s, and 20 s respectively.

  5. Disruptive laser diode source for embedded LIDAR sensors

    Science.gov (United States)

    Canal, Celine; Laugustin, Arnaud; Kohl, Andreas; Rabot, Olivier

    2017-02-01

    Active imaging based on laser illumination is used in various fields such as medicine, security, defense, civil engineering and in the automotive sector. In this last domain, research and development to bring autonomous vehicles on the roads has been intensified these last years with an emphasis on lidar technology that is probably the key to achieve full automation level. Based on time-of-flight measurements, the profile of objects can be measured together with their location in various conditions, creating a 3D mapping of the environment. To be embedded on a vehicle as advanced driver assistance systems (ADAS), these sensors require compactness, low-cost and reliability, as it is provided by a flash lidar. An attractive candidate, especially with respect to cost reduction, for the laser source integrated in these devices is certainly laser diodes as long as they can provide sufficiently short pulses with a high energy. A recent breakthrough in laser diode and diode driver technology made by Quantel (Les Ulis, France) now allows laser emission higher than 1 mJ with pulses as short as 12 ns in a footprint of 4x5 cm2 (including both the laser diode and driver) and an electrical-to-optical conversion efficiency of the whole laser diode source higher than 25% at this level of energy. The components used for the laser source presented here can all be manufactured at low cost. In particular, instead of having several individual laser diodes positioned side by side, the laser diodes are monolithically integrated on a single semiconductor chip. The chips are then integrated directly on the driver board in a single assembly step. These laser sources emit in the range of 800-1000 nm and their emission is considered to be eye safe when taking into account the high divergence of the output beam and the aperture of possible macro lenses so that they can be used for end consumer applications. Experimental characterization of these state-of-the-art pulsed laser diode sources

  6. Design and Implementation of a Laser-Based Ammonia Breath Sensor for Medical Applications

    KAUST Repository

    Owen, Kyle

    2012-06-01

    Laser-based sensors can be used as non-invasive monitoring tools to measure parts per billion (ppb) levels of trace gases. Ammonia sensors are useful for applications in environmental pollutant monitoring, atmospheric and combustion kinetic studies, and medical diagnostics. This sensor was specifically designed to measure ammonia in exhaled breath to be used as a medical diagnostic and monitoring tool, however, it can also be extended for use in other applications. Although ammonia is a naturally occurring species in exhaled breath, abnormally elevated levels can be an indication of adverse medical conditions. Laser-based breath diagnostics have many benefits since they are cost effective, non-invasive, painless, real time monitors. They have the potential to improve the quality of medical care by replacing currently used blood tests and providing immediate feedback to physicians. This sensor utilizes a Quantum Cascade Laser and Wavelength Modulation Spectroscopy with second harmonic normalized by first harmonic detection in a 76 m multi-pass absorption cell to measure ppb levels of ammonia with improved sensitivity over previous sensors. Initial measurements to determine the ammonia absorption line parameters were performed using direct absorption spectroscopy. This is the first experimental study of the ammonia absorption line transitions near 1103.46 cm1 with absorption spectroscopy. The linestrengths were measured with uncertainties less than 10%. The collisional broadening coefficients for each of the ammonia lines with nitrogen, oxygen, water vapor, and carbon dioxide were also measured, many of which had uncertainties less than 5%. The sensor was characterized to show a detectability limit of 10 ppb with an uncertainty of less than 5% at typical breath ammonia levels. Initial breath test results showed that some of the patients with chronic kidney disease had elevated ammonia levels while others had ammonia levels in the same range as expected for healthy

  7. Laser-based sensors on UAVs for quantifying local emissions of greenhouse gases

    Science.gov (United States)

    Zondlo, Mark; Tao, Lei; O'Brien, Anthony; Ross, Kevin; Khan, Amir; Pan, Da; Golston, Levi; Sun, Kang; DiGangi, Josh

    2015-04-01

    Small unmanned aerial systems (UAS) provide an ideal platform to sample both locally near an emission source as well as within the atmospheric boundary layer. However, small UAS (those with wingspans or rotors on the order of a meter) place severe constraints on sensor size (~ liter volume), mass (~ kg), and power (10s W). Laser-based sensors employing absorption techniques are ideally suited for such platforms due to their high sensitivity, high selectivity, and compact footprint. We have developed and flown compact sensors for water vapor, carbon dioxide and methane using new advances in open-path, laser-based spectroscopy on a variety of platforms ranging from remote control helicopters to long-duration UAS. Open-path spectroscopy allows for high frequency sampling (10-25 Hz) while avoiding the size/mass/power of sample delays, inlet lines, and pumps. To address the challenges of in-flight stability in changing environmental conditions and any associated flight artifacts on the measurement itself (e.g. vibrations), we use an in-line reference cell at a reduced pressure (10 hPa) to account for systematic drift continuously while in flight. Wavelength modulation spectroscopy is used at different harmonics to isolate the narrow linewidth of the in-line reference signal from the ambient, pressure-broadened absorption lineshape of the trace gas of interest. As a result, a metric of in-flight performance is achieved in real-time on the same optical pathlength as the ambient signal. To demonstrate the great potential of laser-based sensors on UAS, we deployed a 1.65 micron-based methane sensor (4 kg, 50 W, 100 ppbv precision at 10 Hz) on a UT-Dallas remote control aircraft for two weeks around gas/oil extraction activities as part of the EDF Barnett Coordinated Campaign in October 2013. We conducted thirty-four flights around a compressor station to examine the spatial and temporal characteristics of its emissions. Leaks of methane were typically lofted to altitudes

  8. Measurement of drill grinding parameters using laser sensor

    Science.gov (United States)

    Yanping, Peng; Kumehara, Hiroyuki; Wei, Zhang; Nomura, Takashi

    2005-12-01

    To measure the grinding parameters and geometry parameters accurately for a drill point is essential to its design and reconditioning. In recent years, a number of non-contact coordinate measuring apparatuses, using CCD camera or laser sensors, are developed. But, a lot work is to be done for further improvement. This paper reports another kind of laser coordinate meter. As an example of its application, the method for geometry inspection of the drill flank surface is detailed. Measured data from laser scanning on the flank surface around some points with several 2-dimensional curves are analyzed with mathematical procedure. If one of these curves turns to be a straight line, it must be the generatrix of the grinding cone. Thus, the grinding parameters are determined by a set of three generatrices. Then, the measurement method and data processing procedure are proposed. Its validity is assessed by measuring a sample with given parameters. The point geometry measured agrees well with the known values. In comparison with other methods in the published literature, it is simpler in computation and more accurate in results.

  9. Broadband external cavity quantum cascade laser based sensor for gasoline detection

    Science.gov (United States)

    Ding, Junya; He, Tianbo; Zhou, Sheng; Li, Jinsong

    2018-02-01

    A new type of tunable diode spectroscopy sensor based on an external cavity quantum cascade laser (ECQCL) and a quartz crystal tuning fork (QCTF) were used for quantitative analysis of volatile organic compounds. In this work, the sensor system had been tested on different gasoline sample analysis. For signal processing, the self-established interpolation algorithm and multiple linear regression algorithm model were used for quantitative analysis of major volatile organic compounds in gasoline samples. The results were very consistent with that of the standard spectra taken from the Pacific Northwest National Laboratory (PNNL) database. In future, The ECQCL sensor will be used for trace explosive, chemical warfare agent, and toxic industrial chemical detection and spectroscopic analysis, etc.

  10. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Shu-Wei Chang

    2017-12-01

    Full Text Available This paper presents a novel experimental design for complex structural health monitoring (SHM studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  11. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    Science.gov (United States)

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  12. Low Cost Multi-Sensor Robot Laser Scanning System and its Accuracy Investigations for Indoor Mapping Application

    Science.gov (United States)

    Chen, C.; Zou, X.; Tian, M.; Li, J.; Wu, W.; Song, Y.; Dai, W.; Yang, B.

    2017-11-01

    In order to solve the automation of 3D indoor mapping task, a low cost multi-sensor robot laser scanning system is proposed in this paper. The multiple-sensor robot laser scanning system includes a panorama camera, a laser scanner, and an inertial measurement unit and etc., which are calibrated and synchronized together to achieve simultaneously collection of 3D indoor data. Experiments are undertaken in a typical indoor scene and the data generated by the proposed system are compared with ground truth data collected by a TLS scanner showing an accuracy of 99.2% below 0.25 meter, which explains the applicability and precision of the system in indoor mapping applications.

  13. Development and characterization of a semi-conductor laser sensor for real time measurement and identification of atmospheric pollutants

    International Nuclear Information System (INIS)

    Boulos, F.; Zaatar, Y.; Atanas, J.P.; Bechara, J.

    2004-01-01

    Full text.Tunable diode laser absorption spectroscopy (TDLAS) in the near infrared (NIR) using semiconductor lasers of compounds between elements of group III (Ga, Al and In) and group V (P, As and Sb) is being increasingly used in various environmental and industrial process control applications. This technique exploits the unique properties of these laser materials i.e., high coherence, high monochromaticity, low divergence and high brightness to permit rapid sensitive detection with high selectivity and spectral resolution. A computer-interfaced near infrared semiconductor laser sensor has been developed in our laboratory for spectroscopic applications in air pollution monitoring. The sensor can be operated in two configurations: open path free beam coupled to a multiple pass White cell and fiber optic guided beam coupled to an evanescent wave sensor. This paper will present an overview of the system's modulation, sensing and data acquisition methods and some recent measurement results, together with a description of ongoing research and development for the improvement of the system's performance and sensitivity

  14. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter

    OpenAIRE

    Youngchul Bae

    2016-01-01

    An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the stre...

  15. Magnetic field sensor based on the Ampere's force using dual-polarization DBR fiber laser

    Science.gov (United States)

    Yao, Shuang; Zhang, Yang; Guan, Baiou

    2015-08-01

    A novel magnetic field sensor using distributed Bragg reflector (DBR) fiber laser by Ampere's force effect is proposed and experimentally demonstrated. The key sensing element, that is the dual-polarization DBR fiber laser, is fixed on the middle part of two copper plates which carry the current. Ampere's force is applied onto the coppers due to an external magnetic field generated by a DC solenoid. Thus, the lateral force from the coppers is converted to a corresponding beat frequency signal shift produced by the DBR laser. The electric current sensing is also realized by the same configuration and same principle simultaneously in an intuitive manner. Good agreement between the theory calculation and the experimental results is obtained, which shows a good linearity. This sensor's sensitivity to the magnetic field and to the electric current finally reaches ~258.92 kHz/mT and ~1.08727 MHz/A, respectively.

  16. Simultaneous Intrinsic and Extrinsic Parameter Identification of a Hand-Mounted Laser-Vision Sensor

    Directory of Open Access Journals (Sweden)

    Taikyeong Jeong

    2011-09-01

    Full Text Available In this paper, we propose a simultaneous intrinsic and extrinsic parameter identification of a hand-mounted laser-vision sensor (HMLVS. A laser-vision sensor (LVS, consisting of a camera and a laser stripe projector, is used as a sensor component of the robotic measurement system, and it measures the range data with respect to the robot base frame using the robot forward kinematics and the optical triangulation principle. For the optimal estimation of the model parameters, we applied two optimization techniques: a nonlinear least square optimizer and a particle swarm optimizer. Best-fit parameters, including both the intrinsic and extrinsic parameters of the HMLVS, are simultaneously obtained based on the least-squares criterion. From the simulation and experimental results, it is shown that the parameter identification problem considered was characterized by a highly multimodal landscape; thus, the global optimization technique such as a particle swarm optimization can be a promising tool to identify the model parameters for a HMLVS, while the nonlinear least square optimizer often failed to find an optimal solution even when the initial candidate solutions were selected close to the true optimum. The proposed optimization method does not require good initial guesses of the system parameters to converge at a very stable solution and it could be applied to a kinematically dissimilar robot system without loss of generality.

  17. Laser Cladding of Embedded Sensors for Thermal Barrier Coating Applications

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2018-05-01

    Full Text Available The accurate real-time monitoring of surface or internal temperatures of thermal barrier coatings (TBCs in hostile environments presents significant benefits to the efficient and safe operation of gas turbines. A new method for fabricating high-temperature K-type thermocouple sensors on gas turbine engines using coaxial laser cladding technology has been developed. The deposition of the thermocouple sensors was optimized to provide minimal intrusive features to the TBC, which is beneficial for the operational reliability of the protective coatings. Notably, this avoids a melt pool on the TBC surface. Sensors were deposited onto standard yttria-stabilized zirconia (7–8 wt % YSZ coated substrates; subsequently, they were embedded with second YSZ layers by the Atmospheric Plasma Spray (APS process. Morphology of cladded thermocouples before and after embedding was optimized in terms of topography and internal homogeneity, respectively. The dimensions of the cladded thermocouple were in the order of 200 microns in thickness and width. The thermal and electrical response of the cladded thermocouple was tested before and after embedding in temperatures ranging from ambient to approximately 450 °C in a furnace. Seebeck coefficients of bared and embedded thermocouples were also calculated correspondingly, and the results were compared to that of a commercial standard K-type thermocouple, which demonstrates that laser cladding is a prospective technology for manufacturing microsensors on the surface of or even embedded into functional coatings.

  18. Sistemas integrados con Arduino

    OpenAIRE

    EL YAKOUTI, MOHAMMED

    2017-01-01

    Design of a robot prototype remotely controllable from Bluetooth using Arduino. Control and testing of sensors and events interacting with Arduino and Bluetooth. Diseño de un prototipo de robot controlable remotamente con Bluetooth utilizando Arduino. Control y verificación de los sensores y eventos que interactúan mediante el Arduino y el Bluetooth. El Yakouti, M. (2017). Sistemas integrados con Arduino. http://hdl.handle.net/10251/89274. TFGM

  19. Speckle reduction for a laser light sectioning sensor

    Directory of Open Access Journals (Sweden)

    Tutsch Rainer

    2015-01-01

    Full Text Available Automated optical inspection is an important test procedure in electronic circuits assembly. Frequently 3d information is required and laser light sectioning sensors are often applied. However, some effects complicate the reliable automatic detection of the shape of such assemblies and their components. The packages of electronic components often are made of black plastics or ceramics so that the intensity available for the optical detection is quite low, especially in comparison to the surface of the PCBs where the components are mounted on. In addition due to rough surfaces of the components and the coherence length of the laser light speckle structures arise. In the work presented here a piezo actuator is used to oscillate the illuminating laser lines along the direction of the lines. The aim is to reduce the visibility of the speckle structures by averaging while maintaining the geometrical shape of the lines. In addition, image processing methods like segmentation and skeletonization are used to allow the detection of the shape of components and assemblies also if materials with distinct differences in the reflectivity are involved. Investigations include the influence of the parameters amplitude and frequency of the piezo actuator.

  20. Numerical investigations of the potential for laser focus sensors in micrometrology

    Science.gov (United States)

    Bischoff, Jörg; Mastylo, Rostyslav; Manske, Eberhard

    2017-06-01

    Laser focus sensors (LFS)1 attached to a scanning nano-positioning and measuring machine (NPMM) enable near diffraction limit resolution with very large measuring areas up to 200 x 200 mm1. Further extensions are planned to address wafer sizes of 8 inch and beyond. Thus, they are preferably suited for micro-metrology on large wafers. On the other hand, the minimum lateral features in state-of-the-art semiconductor industry are as small as a few nanometer and therefore far beyond the resolution limits of classical optics. New techniques such as OCD or ODP3,4 a.k.a. as scatterometry have helped to overcome these constraints considerably. However, scatterometry relies on regular patterns and therefore, the measurements have to be performed on special reference gratings or boxes rather than in-die. Consequently, there is a gap between measurement and the actual structure of interest which becomes more and more an issues with shrinking feature sizes. On the other hand, near-field approaches would also allow to extent the resolution limit greatly5 but they require very challenging controls to keep the working distance small enough to stay within the near field zone. Therefore, the feasibility and the limits of a LFS scanner system have been investigated theoretically. Based on simulations of laser focus sensor scanning across simple topographies, it was found that there is potential to overcome the diffraction limitations to some extent by means of vicinity interference effects caused by the optical interaction of adjacent topography features. We think that it might be well possible to reconstruct the diffracting profile by means of rigorous diffraction simulation based on a thorough model of the laser focus sensor optics in combination with topography diffraction 6 in a similar way as applied in OCD. The difference lies in the kind of signal itself which has to be modeled. While standard OCD is based on spectra, LFS utilizes height scan signals. Simulation results are

  1. Process control of stainless steel laser welding using an optical spectroscopie sensor

    NARCIS (Netherlands)

    Konuk, A.R.; Aarts, Ronald G.K.M.; Huis in 't Veld, Bert; Sibillano, T.; Rizzi, D.; Ancona, A.

    2011-01-01

    The in-process monitoring and real-time control of the penetration depth during laser welding is evaluated. An optical collimator collects the optical emission for measurement with a fast spectrometer. The sensor data are used to calculate the electron temperature and subsequently to determine the

  2. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter.

    Science.gov (United States)

    Bae, Youngchul

    2016-05-23

    An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision.

  3. Synthesis of nano-structured materials by laser-ablation and their application to sensors

    International Nuclear Information System (INIS)

    Okada, T.; Suehiro, J.

    2007-01-01

    We describe the synthesis of nano-structured materials of ZnO and Pd by laser ablation and their applications to sensors. The synthesis of ZnO nano-wires was performed by nano-particle assisted deposition (NPAD) where nano-crystals were grown with nano-particles generated by laser-ablating a ZnO sintered target in an Ar background gas. The synthesized ZnO nano-wires were characterized with a scanning electron microscopy and the photoluminescent characteristics were examined under an excitation with the third harmonics of a Nd:YAG laser. The nano-wires with a diameter in the range from 50 to 150 nm and a length of up to 5 μm were taken out of the substrate by laser blow-off technique and/or sonication. It was confirmed that the nano-wires showed the stimulated emission under optical pumping, indicating a high quality of the crystalinity. Pd nano-particles were generated by laser-ablating a Pd plate in pure water. The transmission electron microscope observation revealed that Pd nano-particles with a diameter in the range from 3 nm to several tens of nanometers were produced. Using these nano-structured materials, we successfully fabricated sensors by the dielectrophoresis techniques. In the case of the ultraviolet photosensor, a detection sensitivity of 10 nW/cm 2 was achieved and in the case of hydrogen sensing, the response time of less than 10 s has been demonstrated with Pd nano-particles

  4. Control by hardware of government systems for laser diodes with STM32F4 and Peltier cells; Control por hardware de sistemas de gobierno para diodos laser con STM32F4 y celdas Peltier

    Energy Technology Data Exchange (ETDEWEB)

    Ulloa Solano, Natalia Irina

    2013-07-01

    A low cost prototype of a government system is developed for laser diodes with STM32F4 microcontrollers and Peltier cooling. Commercial and homemade government system (with STM32F4 microcontrollers ) are investigated with the objective of adequately control the current of a laser diode. Characteristics of STM32F4 microcontrollers are described. The low cost platforms as the Arduino and Raspberry Pi are compared. A bibliographical and documentary compilation is realized for the preliminary study of the components and tools to use in the prototype. The theory related with the heat transfer between a laser diode and the outside, and a Peltier cell and outside is summarized. A heat dissipation model is proposed of a system formed by a laser diode and Peltier cell. A control system of current and fed back temperature is designed and implemented to allow adequately control laser diodes without and with photodiode (2 pickups and 3 pickups respectively). The viability of control with free software is studied and corroborated. The temperature control of the laser diode using a Peltier cell as cooler has been possible through a simple control of ON/OFF mode. The integration of devices such as ADC, DAC, timers and facilities of STM32F4 microcontroller, have allowed to optimize costs by hardware, save time and costs. Also, the incorporation of the Cortex-M4 processor has optimized the consumption of operational resources and has executed much of its instruction set of efficient way. Because of this, the project has complied with its maximum as to low cost is concerned [Spanish] Un prototipo de bajo costo de un sistema de gobierno es desarrollado para diodos laser con microcontroladores STM32F4 y enfriamiento con Peltier. Los sistemas de gobierno comerciales y caseros (con microcontroladores STM32F4) son investigados con el objetivo de controlar adecuadamente la corriente de un diodo laser. Las caracteristicas de los microcontroladores STM32F4 son descritas. Las plataformas de

  5. Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor

    NARCIS (Netherlands)

    Serov, Alexander; Steenbergen, Wiendelt; de Mul, F.F.M.

    2002-01-01

    We utilized a complimentary metal oxide semiconductor video camera for fast f low imaging with the laser Doppler technique. A single sensor is used for both observation of the area of interest and measurements of the interference signal caused by dynamic light scattering from moving particles inside

  6. Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components

    Science.gov (United States)

    Töppel, Thomas; Lausch, Holger; Brand, Michael; Hensel, Eric; Arnold, Michael; Rotsch, Christian

    2018-03-01

    Laser beam melting (LBM), an additive laser powder bed fusion technology, enables the structural integration of temperature-sensitive sensors and actuators in complex monolithic metallic structures. The objective is to embed a functional component inside a metal part without losing its functionality by overheating. The first part of this paper addresses the development of a new process chain for bonded embedding of temperature-sensitive sensor/actuator systems by LBM. These systems are modularly built and coated by a multi-material/multi-layer thermal protection system of ceramic and metallic compounds. The characteristic of low global heat input in LBM is utilized for the functional embedding. In the second part, the specific functional design and optimization for tailored smart components with embedded functionalities are addressed. Numerical and experimental validated results are demonstrated on a smart femoral hip stem.

  7. Improved response time of laser etched polymer optical fiber Bragg grating humidity sensor

    OpenAIRE

    Zhang, Wei; Chen, Xianfeng; Liu, Chen; Lu, Yuanfu; Cardoso, Marcos; Webb, David J.

    2015-01-01

    The humidity sensor made of polymer optical fiber Bragg grating (POFBG) responds to the water content change in fiber induced by the change of environmental condition. The response time strongly depends on fiber size as the water change is a diffusion process. The ultra short laser pulses have been providing an effective micro fabrication method to achieve spatial localized modification in materials. In this work we used the excimer laser to create different microstructures (slot, D-shape) in...

  8. Sensing System for Salinity Testing Using Laser-induced Graphene Sensors

    KAUST Repository

    Nag, Anindya

    2017-08-05

    The paper presents the development and implementation of a low-cost salinity sensing system. Commercial polymer films were laser ablated at specific conditions to form graphene-based sensors on flexible Kapton substrates. Sodium chloride was considered as the primary constituent for testing due to its prominent presence in water bodies. The sensor was characterized by testing different concentrations of sodium chloride. A standard curve was developed to perform real-time testing with a sample taken from sea water of unknown concentration. The sensitivity and resolution of these graphene sensors for the experimental solutions were 1.07Ω/ppm and 1ppm respectively. The developed system was validated by testing it with a real sample and cross checking it on the calibration curve. The signal conditioning circuit was further enhanced by embedding a microcontroller to the designed system. The obtained results did provide a platform for implementation of a low-cost salinity sensing system that could be used in marine applications.

  9. Sensing System for Salinity Testing Using Laser-induced Graphene Sensors

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas Chandra; Kosel, Jü rgen

    2017-01-01

    The paper presents the development and implementation of a low-cost salinity sensing system. Commercial polymer films were laser ablated at specific conditions to form graphene-based sensors on flexible Kapton substrates. Sodium chloride was considered as the primary constituent for testing due to its prominent presence in water bodies. The sensor was characterized by testing different concentrations of sodium chloride. A standard curve was developed to perform real-time testing with a sample taken from sea water of unknown concentration. The sensitivity and resolution of these graphene sensors for the experimental solutions were 1.07Ω/ppm and 1ppm respectively. The developed system was validated by testing it with a real sample and cross checking it on the calibration curve. The signal conditioning circuit was further enhanced by embedding a microcontroller to the designed system. The obtained results did provide a platform for implementation of a low-cost salinity sensing system that could be used in marine applications.

  10. A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f

    KAUST Repository

    Owen, Kyle; Farooq, Aamir

    2013-01-01

    modulation spectroscopy with second harmonic normalized by the first harmonic (WMS 2f/1f) is a sensitive technique used in the development of calibration-free sensors. An ammonia gas sensor is designed and developed that uses a quantum cascade laser operating

  11. Tunable Diode Laser Sensor for Monitoring and Control of Harsh Combustion Environments

    Energy Technology Data Exchange (ETDEWEB)

    VonDrasek, William; Melsio-Pubill, Anna

    2006-05-30

    This work represents the collaborative effort between American Air Liquide and Physical Sciences, Inc. for developing a sensor based on near-IR tunable diode lasers (TDL). The multi-species capability of the sensor for simultaneous monitoring of CO, O2, and H2O concentration as well as gas temperature is ideal for in-situ monitoring on industrial furnaces. The chemical species targeted are fundamental for controlling the combustion space for improved energy efficiency, reduced pollutants, and improved product quality, when coupling the measurement to a combustion control system. Several add-on modules developed provide flexibility in the system configuration for handling different process monitoring applications. For example, the on-Demand Power Control system for the 1.5 ?m laser is used for high particle density exhaust streams where laser transmission is problematic. For long-distance signal collection a fiber optic communication system is used to reduce noise pick-up. Finally, hardened modules to withstand high ambient temperatures, immune to EMF interference, protection from flying debris, and interfaced with pathlength control laser beam shielding probes were developed specifically for EAF process monitoring. Demonstration of these different system configurations was conducted on Charter Steel's reheat furnace, Imco Recycling, Inc. (now Aleris International, Inc.) aluminum reverberatory furnace, and Gerdau Ameristeel's EAF. Measurements on the reheat furnace demonstrated zone monitoring with the measurement performed close to the steel billet. Results from the aluminum furnace showed the benefit of measuring in-situ near the bath. In this case, low-level furnace optimization was performed and demonstrated 5% fuel savings. Monitoring tests on the EAF off-gas demonstrated the level of industrialization of the sensor to survive the harsh EAF environment. Long-term testing on the EAF has been on-going for over 6 months with essentially zero maintenance

  12. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter

    Directory of Open Access Journals (Sweden)

    Youngchul Bae

    2016-05-01

    Full Text Available An optical sensor such as a laser range finder (LRF or laser displacement meter (LDM uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision.

  13. Medida de la temperatura con conexión directa sensor-microcontrolador para estación marítima

    OpenAIRE

    SISCAR ESCRIVÀ, XAVIER RAMÓN

    2013-01-01

    En el presente trabajo se ha diseñado e implementado un sistema de medida de la temperatura para una estación marina, usando una interfaz de conexión directa sensor-microcontrolador. El sistema se basa en un sensor resistivo para medir la temperatura, un microcontrolador para procesar los datos y una memoria donde se almacenan. La interfaz de conexión directa sensormicrocontrolador permite realizar medidas de manera más rápida y con menor consumo respecto al uso de convertidore...

  14. The con focal laser scanning microscope: a powerful tool for the investigation of micro devices and nano structures

    International Nuclear Information System (INIS)

    Montereali, R.M.; Baldacchini, G.; Bonfigli, F.; Vincenti, M.A.; Almaviva, S.

    2008-01-01

    In the last years the Con focal Laser Scanning Microscope (CLSM), a versatile and powerful optical instrument, gained a strong increase of interest in the scientific community, not only for biological applications, but also for the characterization of materials, microstructures and devices. The conditions that favoured its wide diffusion are surely the large availability of laser sources and powerful computer-imaging and data-processing systems at relatively low cost; however, the main reason that contributed to its popularity is the ability to obtain tri dimensional reconstruction of a great variety of biological and non-biological samples with sub micrometric resolution. In this report we show the main properties and characteristics of the Con focal Microscope Nikon Eclipse 80-i C1, which has operated sinc more than two years in the Solid State Laser and Spectroscopy Laboratory of the ENEA Research Center in Frascati. Some of the results obtained in the characterization of luminescent micro and nano structures based on lithium fluoride color centers will be presented [it

  15. Novel method of dual fiber Bragg gratings integrated in fiber ring laser for biochemical sensors

    Science.gov (United States)

    Bui, H.; Pham, T. B.; Nguyen, V. A.; Pham, V. D.; Do, T. C.; Nguyen, T. V.; Hoang, T. H. C.; Le, H. T.; Pham, V. H.

    2018-05-01

    Optical sensors have been shown to be very effective for measuring the toxic content in liquid and air environments. Optical sensors, which operate based on the wavelength shift of the optical signals, require an expensive spectrometer. In this paper, we propose a new configuration of the optical sensor device for measuring wavelength shift without using a spectrometer. This configuration has a large potential for application in biochemical sensing techniques, and comes with a low cost. This configuration uses dual fiber Bragg gratings (FBGs) integrated in a fiber ring laser structure of erbium-doped fiber, in which one FBG is used as a reference to sweep over the applicable spectrum of the etched-Bragg grating. The etched-FBG as a sensing probe is suitable for bio- and/or chemical sensors. The sensitivity and accuracy of the sensor system can be improved by the narrow linewidth of emission spectra from the laser, the best limit of detection of this sensor is 1.5  ×  10‑4 RIU (RIU: refractive index unit), as achieved by the optical sensor using a high resolution spectrometer. This sensor system has been experimentally investigated to detect different types of organic compounds, gasoline, mixing ratios of organic solvents in gasoline, and nitrate concentration in water samples. The experimental results show that this sensing method could determine different mixing ratios of organic solvents with good repeatability, high accuracy, and rapid response: e.g. for ethanol and/or methanol in gasoline RON 92 (RON: research octane number) of 0%–14% v/v, and nitrate in water samples at a low concentration range of 0–50 ppm. These results suggest that the proposed configuration can construct low-cost and accurate biochemical sensors.

  16. Tunable, multiwavelength-swept fiber laser based on nematic liquid crystal device for fiber-optic electric-field sensor

    Science.gov (United States)

    Lee, Hyun Ji; Kim, Sung-Jo; Ko, Myeong Ock; Kim, Jong-Hyun; Jeon, Min Yong

    2018-03-01

    We propose a tunable multiwavelength-swept laser based on a nematic liquid crystal (NLC) Fabry-Perot (FP) etalon, which is embedded in the resonator of a wavelength-swept laser. We achieve the continuous wavelength tuning of the multiwavelength-swept laser by applying the electric field to the NLC FP etalon. The free spectral range of the fabricated NLC FP etalon is approximately 7.9 nm. When the electric field applied to the NLC FP etalon exceeds the threshold value (Fréedericksz threshold voltage), the output of the multiwavelength-swept laser can be tuned continuously. The tuning range of the multiwavelength-swept laser can be achieved at a value greater than 75 nm, which has a considerably wider tunable range than a conventional multiwavelength laser based on an NLC FP etalon. The slope efficiencies in the spectral and temporal domains for the tunable multiwavelength-swept laser are 22.2 nm/(mVrms / μm) and 0.17 ms/(mVrms / μm), respectively in the linear region. Therefore, the developed multiwavelength-swept laser based on the NLC FP etalon can be applied to an electric-field sensor. Because the wavelength measurement and time measurement have a linear relationship, the electric-field sensor can detect a rapid change in the electric-field intensity by measuring the peak change of the pulse in the temporal domain using the NLC FP etalon-based multiwavelength-swept laser.

  17. Diseño de una arquitectura para redes de sensores con soporte para aplicaciones de detección de eventos

    OpenAIRE

    LINO RAMIREZ, CARLOS

    2012-01-01

    Las aplicaciones para redes de sensores inalámbricas, o Wireless Sensor Networks (WSNs), han mostrado un crecimiento significativo en los últimos años. Actualmente constituyen una alternativa tecnológica interesante para el desarrollo de aplicaciones que requieren monitorizar constantemente el estado de cualquier variable relacionada con escenarios de diversos ámbitos. Si las aplicaciones detectan cambios en los valores de dichas variables, pueden activar la ejecución de acciones preventivas ...

  18. Femtosecond Laser Processing of Membranes for Sensor Devices on different Bulk Materials

    Directory of Open Access Journals (Sweden)

    Johann Zehetner

    2017-01-01

    Full Text Available We demonstrate that diaphragms for sensor applications can be fabricated by laser ablation in a~variety of substrates such as ceramics, glass, sapphire or SiC. However, ablation can cause pinholes in membranes made of SiC, Si and metals. Our experiments indicate that pinhole defects in the ablated membranes are affected by ripple structures related to the polarization of the laser. From our simulation results on light propagation in Laser-Induced Periodic Surface Structures (LIPSS we find out that they are acting as a slot waveguide in SiC material. The results further show that field intensity is enhanced inside LIPSS and spreads out at surface distortions promoting the formation of pinholes. The membrane corner area is most vulnerable for pinhole formation. Pinholes funnel laser radiation into the bulk material causing structural damage and stress in the membrane. We show that a~polarization flipping technique inhibits the formation of pin holes caused by LIPSS.

  19. Sensor-Topology Based Simplicial Complex Reconstruction from Mobile Laser Scanning

    Science.gov (United States)

    Guinard, S.; Vallet, B.

    2018-05-01

    We propose a new method for the reconstruction of simplicial complexes (combining points, edges and triangles) from 3D point clouds from Mobile Laser Scanning (MLS). Our main goal is to produce a reconstruction of a scene that is adapted to the local geometry of objects. Our method uses the inherent topology of the MLS sensor to define a spatial adjacency relationship between points. We then investigate each possible connexion between adjacent points and filter them by searching collinear structures in the scene, or structures perpendicular to the laser beams. Next, we create triangles for each triplet of self-connected edges. Last, we improve this method with a regularization based on the co-planarity of triangles and collinearity of remaining edges. We compare our results to a naive simplicial complexes reconstruction based on edge length.

  20. A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath

    Science.gov (United States)

    Azhar, M.; Mandon, J.; Neerincx, A. H.; Liu, Z.; Mink, J.; Merkus, P. J. F. M.; Cristescu, S. M.; Harren, F. J. M.

    2017-11-01

    A compact, cost-effective sensor is developed for detection of hydrogen cyanide (HCN) in exhaled breath within seconds. For this, an off-axis integrated cavity output spectroscopy setup is combined with a widely tunable compact near-infrared laser (tunability 1527-1564 nm). For HCN a detection sensitivity has been obtained of 8 ppbv in nitrogen (within 1 s), equal to a noise equivalent absorption sensitivity of 1.9 × 10-9 cm-1 Hz-1/2. With this sensor we demonstrated the presence of HCN in exhaled breath; its detection could be a good indicator for bacterial lung infection. Due to its compact, cost-effective and user-friendly design, this laser-based sensor has the potential to be implemented in future clinical applications.

  1. Progress Toward Measuring CO2 Isotopologue Fluxes in situ with the LLNL Miniature, Laser-based CO2 Sensor

    Science.gov (United States)

    Osuna, J. L.; Bora, M.; Bond, T.

    2015-12-01

    One method to constrain photosynthesis and respiration independently at the ecosystem scale is to measure the fluxes of CO2­ isotopologues. Instrumentation is currently available to makes these measurements but they are generally costly, large, bench-top instruments. Here, we present progress toward developing a laser-based sensor that can be deployed directly to a canopy to passively measure CO2 isotopologue fluxes. In this study, we perform initial proof-of-concept and sensor characterization tests in the laboratory and in the field to demonstrate performance of the Lawrence Livermore National Laboratory (LLNL) tunable diode laser flux sensor. The results shown herein demonstrate measurement of bulk CO2 as a first step toward achieving flux measurements of CO2 isotopologues. The sensor uses a Vertical Cavity Surface Emitting Laser (VCSEL) in the 2012 nm range. The laser is mounted in a multi-pass White Cell. In order to amplify the absorption signal of CO2 in this range we employ wave modulation spectroscopy, introducing an alternating current (AC) bias component where f is the frequency of modulation on the laser drive current in addition to the direct current (DC) emission scanning component. We observed a strong linear relationship (r2 = 0.998 and r2 = 0.978 at all and low CO2 concentrations, respectively) between the 2f signal and the CO2 concentration in the cell across the range of CO2 concentrations relevant for flux measurements. We use this calibration to interpret CO2 concentration of a gas flowing through the White cell in the laboratory and deployed over a grassy field. We will discuss sensor performance in the lab and in situ as well as address steps toward achieving canopy-deployed, passive measurements of CO2 isotopologue fluxes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675788

  2. Optical fiber laser sensor with a cavity of 8.6 Km formed by two fiber Bragg gratings used as mirrors

    Energy Technology Data Exchange (ETDEWEB)

    May A, M.; Kuzin, E.A.; Vazquez S, R.A. [Instituto Nacional de Astrofisica, Optica y Electronica, A. P. 51 y 216, C.P. 72000 Puebla (Mexico); Basurto P, M.A. [Universidad Autonoma del Estado de Morelos, Av. Universidad No. 1001, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos (Mexico); Shlyagin, M.G.; Marquez B, I. [Centro de Investigacion Cientifica y de Ensenanza Superior de Ensenada, C.P. 22860 Ensenada, Baja California (Mexico)

    2002-07-01

    We report the operation of a fiber laser sensor made by an Erbium Doped Fiber pumped at 980 nm, an 8.67 km passive fiber and two fiber Bragg gratings placed at the ends of the laser cavity. Under normal conditions, the Bragg gratings have different reflection wavelengths and laser emission is not generated. The two Bragg gratings can be placed at the same reflection wavelength when the Bragg grating with the lowest reflective wavelength is strained which can be used as a sensor element. The laser generation thus shows that the Bragg grating is under strain. Furthermore, our configuration give us the possibility for knowing the distance between two Bragg gratings when the laser beating frequency is measured. A measurement precision better than 25 m in 8.67 Km is shown to be feasible. (Author)

  3. Optical fiber laser sensor with a cavity of 8.6 Km formed by two fiber Bragg gratings used as mirrors

    CERN Document Server

    May, M; Vázquez, R A; Basurto, M A; Shlyagin, M G; Márquez, I

    2002-01-01

    We report the operation of a fiber laser sensor made by an Erbium Doped Fiber pumped at 980 nm, an 8.67 km passive fiber and two fiber Bragg gratings placed at the ends of the laser cavity. Under normal conditions, the Bragg gratings have different reflection wavelengths and laser emission is not generated. The two Bragg gratings can be placed at the same reflection wavelength when the Bragg grating with the lowest reflective wavelength is strained which can be used as a sensor element. The laser generation thus shows that the Bragg grating is under strain. Furthermore, our configuration give us the possibility for knowing the distance between two Bragg gratings when the laser beating frequency is measured. A measurement precision better than 25 m in 8.67 Km is shown to be feasible. (Author)

  4. IR laser sensors for the detection food adulteration

    International Nuclear Information System (INIS)

    Giubileo, Gianfranco

    2015-01-01

    The paper reports the results of the project SAL@CQO aimed at the development of instrumentation Innovative optical, laser based sensors, for the improvement of the level of safety of products food and for the detection of food fraud. Through the developed prototypes, the project aims provide on the one hand a means of rapid screening, automated, and to facilitate the use of simplified Work of the Audit Institutions responsible for monitoring and repression of food frauds. On the other hand It intends to provide a method of production chains practical monitoring for the maintenance of a of the final product quality standards. [it

  5. Laser Power Measurement Using Commercial MEMS Pressure Sensor along with PSoC Embedded Read-out

    Directory of Open Access Journals (Sweden)

    J. Jayapandian

    2011-06-01

    Full Text Available Solid-state, gas, semiconductor and other types of lasers are extensively employed in industry for producing laser beams used in such wide ranging fields as machining, medicine and communications. In such applications, it is necessary to be able to accurately measure the power of the laser beam that is emitted by the laser. This paper describes a novel design technique which uses the diaphragm of a commercial MEMS pressure sensor as a target surface on which laser beam impinge, transfer heat and causes change in piezo resistance. The measured change in resistance was proportional to the intensity of laser beam in the range of 0 to 300 mW. The ratio metric embedded read-out design using a single chip programmable system on chip (PSoC has been used to acquire the resistance.

  6. Improved laser-based triangulation sensor with enhanced range and resolution through adaptive optics-based active beam control.

    Science.gov (United States)

    Reza, Syed Azer; Khwaja, Tariq Shamim; Mazhar, Mohsin Ali; Niazi, Haris Khan; Nawab, Rahma

    2017-07-20

    Various existing target ranging techniques are limited in terms of the dynamic range of operation and measurement resolution. These limitations arise as a result of a particular measurement methodology, the finite processing capability of the hardware components deployed within the sensor module, and the medium through which the target is viewed. Generally, improving the sensor range adversely affects its resolution and vice versa. Often, a distance sensor is designed for an optimal range/resolution setting depending on its intended application. Optical triangulation is broadly classified as a spatial-signal-processing-based ranging technique and measures target distance from the location of the reflected spot on a position sensitive detector (PSD). In most triangulation sensors that use lasers as a light source, beam divergence-which severely affects sensor measurement range-is often ignored in calculations. In this paper, we first discuss in detail the limitations to ranging imposed by beam divergence, which, in effect, sets the sensor dynamic range. Next, we show how the resolution of laser-based triangulation sensors is limited by the interpixel pitch of a finite-sized PSD. In this paper, through the use of tunable focus lenses (TFLs), we propose a novel design of a triangulation-based optical rangefinder that improves both the sensor resolution and its dynamic range through adaptive electronic control of beam propagation parameters. We present the theory and operation of the proposed sensor and clearly demonstrate a range and resolution improvement with the use of TFLs. Experimental results in support of our claims are shown to be in strong agreement with theory.

  7. Graphene functionalised by laser-ablated V2O5 for a highly sensitive NH3 sensor

    Directory of Open Access Journals (Sweden)

    Margus Kodu

    2017-03-01

    Full Text Available Graphene has been recognized as a promising gas sensing material. The response of graphene-based sensors can be radically improved by introducing defects in graphene using, for example, metal or metal oxide nanoparticles. We have functionalised CVD grown, single-layer graphene by applying pulsed laser deposition (PLD of V2O5 which resulted in a thin V2O5 layer on graphene with average thickness of ≈0.6 nm. From Raman spectroscopy, it was concluded that the PLD process also induced defects in graphene. Compared to unmodified graphene, the obtained chemiresistive sensor showed considerable improvement of sensing ammonia at room temperature. In addition, the response time, sensitivity and reversibility were essentially enhanced due to graphene functionalisation by laser deposited V2O5. This can be explained by an increased surface density of gas adsorption sites introduced by high energy atoms in laser ablation plasma and formation of nanophase boundaries between deposited V2O5 and graphene.

  8. [INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology

    Science.gov (United States)

    Delaporte, Philippe; Alloncle, Anne-Patricia

    2016-04-01

    Among the additive manufacturing techniques, laser-induced forward transfer addresses the challenges of printing thin films in solid phase or small volume droplets in liquid phase with very high resolution. This paper reviews the physics of this process and explores the pros and cons of this technology versus other digital printing technologies. The main field of applications are printed electronics, organic electronics and tissue engineering, and the most promising short terms ones concern digital laser printing of sensors and conductive tracks. Future directions and emerging areas of interest are discussed such as printing solid from a liquid phase and 3D digital nanomanufacturing.

  9. Quantum Cascade Laser-Based Photoacoustic Sensor for Trace Detection of Formaldehyde Gas

    Directory of Open Access Journals (Sweden)

    Pietro Mario Lugarà

    2009-04-01

    Full Text Available We report on the development of a photoacoustic sensor for the detection of formaldehyde (CH2O using a thermoelectrically cooled distributed-feedback quantum cascade laser operating in pulsed mode at 5.6 mm. A resonant photoacoustic cell, equipped with four electret microphones, is excited in its first longitudinal mode at 1,380 Hz. The absorption line at 1,778.9 cm-1 is selected for CH2O detection. A detection limit of 150 parts per billion in volume in nitrogen is achieved using a 10 seconds time constant and 4 mW laser power. Measurements in ambient air will require water vapour filters.

  10. Performance of laser distance sensors for Atlas Micromegas production

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Ralph; Biebel, Otmar; Bortfeldt, Jonathan; Flierl, Bernhard; Hertenberger, Ralf; Loesel, Philipp; Pree, Elias [LMU Muenchen (Germany); Zibell, Andre [JMU Wuerzburg (Germany)

    2015-07-01

    During the second long LHC shutdown, 2018/19, the precision tracking detectors of the ATLAS muon spectrometer in the inner end caps will be replaced using Micromegas, a planar gas-detector technology. Modules of 2 m{sup 2} area are built in quadruplets from five precisely planar sandwich panels that define the anodes and the cathodes of the four active detector planes. Single plane spatial resolutions below 100 μ m are achievable when the deviation from planarity of the strip-anodes does not exceed 80 μ m RMS over the whole active area and the parallelism of the readout strips is within 30 μ m. In order to measure the dimensional accuracy of each panel, laser distance sensors to be combined with a coordinate measurement system have been investigated. One of them turned out to be capable to measure the planarity of the panels. It has a resolution of 0.3 μ m and a beam spot diameter of ∼50 μ m, which is well below 100 μ m the size of the smallest structures. For monitoring purposes during the construction process a less accurate but cheaper sensor turned out to be sufficient. We report on the performance of the sensors and their applicability to our tasks.

  11. A sulfur hexafluoride sensor using quantum cascade and CO2 laser-based photoacoustic spectroscopy.

    Science.gov (United States)

    Rocha, Mila; Sthel, Marcelo; Lima, Guilherme; da Silva, Marcelo; Schramm, Delson; Miklós, András; Vargas, Helion

    2010-01-01

    The increase in greenhouse gas emissions is a serious environmental problem and has stimulated the scientific community to pay attention to the need for detection and monitoring of gases released into the atmosphere. In this regard, the development of sensitive and selective gas sensors has been the subject of several research programs. An important greenhouse gas is sulphur hexafluoride, an almost non-reactive gas widely employed in industrial processes worldwide. Indeed it is estimated that it has a radiative forcing of 0.52 W/m(2). This work compares two photoacoustic spectrometers, one coupled to a CO(2) laser and another one coupled to a Quantum Cascade (QC) laser, for the detection of SF(6). The laser photoacoustic spectrometers described in this work have been developed for gas detection at small concentrations. Detection limits of 20 ppbv for CO(2) laser and 50 ppbv for quantum cascade laser were obtained.

  12. SENSOR-TOPOLOGY BASED SIMPLICIAL COMPLEX RECONSTRUCTION FROM MOBILE LASER SCANNING

    Directory of Open Access Journals (Sweden)

    S. Guinard

    2018-05-01

    Full Text Available We propose a new method for the reconstruction of simplicial complexes (combining points, edges and triangles from 3D point clouds from Mobile Laser Scanning (MLS. Our main goal is to produce a reconstruction of a scene that is adapted to the local geometry of objects. Our method uses the inherent topology of the MLS sensor to define a spatial adjacency relationship between points. We then investigate each possible connexion between adjacent points and filter them by searching collinear structures in the scene, or structures perpendicular to the laser beams. Next, we create triangles for each triplet of self-connected edges. Last, we improve this method with a regularization based on the co-planarity of triangles and collinearity of remaining edges. We compare our results to a naive simplicial complexes reconstruction based on edge length.

  13. Fabrication Quality Analysis of a Fiber Optic Refractive Index Sensor Created by CO2 Laser Machining

    Directory of Open Access Journals (Sweden)

    Wei-Te Wu

    2013-03-01

    Full Text Available This study investigates the CO2 laser-stripped partial cladding of silica-based optic fibers with a core diameter of 400 μm, which enables them to sense the refractive index of the surrounding environment. However, inappropriate treatments during the machining process can generate a number of defects in the optic fiber sensors. Therefore, the quality of optic fiber sensors fabricated using CO2 laser machining must be analyzed. The results show that analysis of the fiber core size after machining can provide preliminary defect detection, and qualitative analysis of the optical transmission defects can be used to identify imperfections that are difficult to observe through size analysis. To more precisely and quantitatively detect fabrication defects, we included a tensile test and numerical aperture measurements in this study. After a series of quality inspections, we proposed improvements to the existing CO2 laser machining parameters, namely, a vertical scanning pathway, 4 W of power, and a feed rate of 9.45 cm/s. Using these improved parameters, we created optical fiber sensors with a core diameter of approximately 400 μm, no obvious optical transmission defects, a numerical aperture of 0.52 ± 0.019, a 0.886 Weibull modulus, and a 1.186 Weibull-shaped parameter. Finally, we used the optical fiber sensor fabricated using the improved parameters to measure the refractive indices of various solutions. The results show that a refractive-index resolution of 1.8 × 10−4 RIU (linear fitting R2 = 0.954 was achieved for sucrose solutions with refractive indices ranging between 1.333 and 1.383. We also adopted the particle plasmon resonance sensing scheme using the fabricated optical fibers. The results provided additional information, specifically, a superior sensor resolution of 5.73 × 10−5 RIU, and greater linearity at R2 = 0.999.

  14. High-quality phase-shifted Bragg grating sensor inscribed with only one laser pulse in a polymer optical fiber

    DEFF Research Database (Denmark)

    Marques, C. A. F.; Pospori, A.; Pereira, L.

    2017-01-01

    We present the first phase-shifted polymer optical fiber Bragg grating sensor inscribed with only one KrF laser pulse. The phase shift defect was created directly during the grating inscription process by placing a very narrow blocking aperture, in the center of the UV beam. One laser pulse...

  15. Development of a portable heavy-water leak sensor based on laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Lee, Lim; Park, Hyunmin; Kim, Taek-Soo; Kim, Minho; Jeong, Do-Young

    2016-01-01

    Highlights: • We developed a compact and portable laser sensor for a detection of heavy water leakage. • The sensor is wearable and also easy to use to search for the leak point. • It is sensitive enough to find invisible very tiny leaks. - Abstract: A compact and portable leak sensor based on cavity enhanced absorption spectroscopy has been newly developed for a detection of heavy water leakage which may happen in the facilities using heavy water such as pressurized heavy water reactor (PHWR). The developed portable sensor is suitable as an individual instrument for the measuring leak rate and finding the leak location because it is sufficiently compact in size and weight and operated by using an internal battery. In the performance test, the minimum detectable leak rate was estimated as 0.05 g/day from the calibration curve. This new sensor is expected to be a reliable and promising device for the detection of heavy water leakage since it has advantages on real-time monitoring and early detection for nuclear safety.

  16. Real-time measurements of endogenous CO production from vascular cells using an ultrasensitive laser sensor

    Science.gov (United States)

    Morimoto, Y.; Durante, W.; Lancaster, D. G.; Klattenhoff, J.; Tittel, F. K.

    2001-01-01

    Carbon monoxide (CO) has been implicated as a biological messenger molecule analogous to nitric oxide. A compact gas sensor based on a midinfrared laser absorption spectroscopy was developed for direct and real-time measurement of trace levels (in approximate pmol) of CO release by vascular cells. The midinfrared light is generated by difference frequency mixing of two nearinfrared lasers in a nonlinear optical crystal. A strong infrared absorption line of CO (4.61 microm) is chosen for convenient CO detection without interference from other gas species. The generation of CO from cultured vascular smooth muscle cells was detected every 20 s without any chemical modification to the CO. The sensitivity of the sensor reached 6.9 pmol CO. CO synthesis was measured from untreated control cells (0.25 nmol per 10(7) cells/h), sodium nitroprusside-treated cells (0.29 nmol per 10(7) cells/h), and hemin-treated cells (0.49 nmol per 10(7) cells/h). The sensor also detected decreases in CO production after the addition of the heme oxygenase (HO) inhibitor tin protoporphyrin-IX (from 0.49 to 0.02 nmol per 10(7) cells/h) and increases after the administration of the HO substrate hemin (from 0.27 to 0.64 nmol per 10(7) cells/h). These results demonstrate that midinfrared laser absorption spectroscopy is a useful technique for the noninvasive and real-time detection of trace levels of CO from biological tissues.

  17. Mechanism of laser and rf plasma in vibrational nonequilibrium CO-N2 gas mixture

    International Nuclear Information System (INIS)

    Lou Guofeng; Adamovich, Igor V.

    2009-01-01

    This paper investigates the mechanism of plasma created by focused CO laser and rf electric field. The plasma is created in a CO/N 2 environment, at a total pressure of 600 torr. Ionization of the gases occurs by an associative ionization mechanism, in collisions of two highly vibrationally excited molecules. These highly vibrationally excited states are populated by resonance absorption of the CO radiation followed by anharmonic vibration-vibration (V-V) pumping. Moreover N 2 also becomes vibrationally excited due to collisions with vibrationally excited CO. The coupled rf reduced electric field E/N is sufficiently low to prevent electron impact ionization that may create plasma individually, so when a subbreakdown rf field is applied to the plasma, collisions between the free electrons heated by the field and the diatomic species create additional vibrational excitation both in the region occupied by the CO laser beam and outside of the laser beam region. The numerical results show plasma created in both regions (in and out of the CO laser beam region) with the associative ionization mechanism. This suggests a method for creating a stable nonequilibrium plasma. The calculation result is verified by comparison the synthetic spectrum to a measured one.

  18. Laser self-mixing interferometry in VCSELs - an ultra-compact and massproduceable deflection detection system for nanomechanical polymer cantilever sensors

    DEFF Research Database (Denmark)

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    2008-01-01

    We have realised an ultra-compact deflection detection system based on laser self-mixing interferometry in a Vertical-Cavity Surface-Emitting Laser (VCSEL). The system can be used together with polymer nanomechanical cantilevers to form chemical sensors capable of detecting less than 1nm deflection....

  19. In-situ position and vibration measurement of rough surfaces using laser Doppler distance sensors

    Science.gov (United States)

    Czarske, J.; Pfister, T.; Günther, P.; Büttner, L.

    2009-06-01

    In-situ measurement of distances and shapes as well as dynamic deformations and vibrations of fast moving and especially rotating objects, such as gear shafts and turbine blades, is an important task at process control. We recently developed a laser Doppler distance frequency sensor, employing two superposed fan-shaped interference fringe systems with contrary fringe spacing gradients. Via two Doppler frequency evaluations the non-incremental position (i.e. distance) and the tangential velocity of rotating bodies are determined simultaneously. The distance uncertainty is in contrast to e.g. triangulation in principle independent of the object velocity. This unique feature allows micrometer resolutions of fast moved rough surfaces. The novel sensor was applied at turbo machines in order to control the tip clearance. The measurements at a transonic centrifugal compressor were performed during operation at up to 50,000 rpm, i.e. 586 m/s velocity of the blade tips. Due to the operational conditions such as temperatures of up to 300 °C, a flexible and robust measurement system with a passive fiber-coupled sensor, using diffractive optics, has been realized. Since the tip clearance of individual blades could be temporally resolved an analysis of blade vibrations was possible. A Fourier transformation of the blade distances results in an average period of 3 revolutions corresponding to a frequency of 1/3 of the rotary frequency. Additionally, a laser Doppler distance sensor using two tilted fringe systems and phase evaluation will be presented. This phase sensor exhibits a minimum position resolution of σz = 140 nm. It allows precise in-situ shape measurements at grinding and turning processes.

  20. SnO.sub.2./sub. and SnAcAc thin film sensors created by laser

    Czech Academy of Sciences Publication Activity Database

    Myslík, V.; Vysloužil, F.; Vrňata, M.; Jelínek, Miroslav; Lančok, Ján

    2002-01-01

    Roč. 374, - (2002), s. 285-288 ISSN 1058-725X Institutional research plan: CEZ:AV0Z1010914 Keywords : laser deposition * thin films * gas sensors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.457, year: 2002

  1. Frequency-modulated laser ranging sensor with closed-loop control

    Science.gov (United States)

    Müller, Fabian M.; Böttger, Gunnar; Janeczka, Christian; Arndt-Staufenbiel, Norbert; Schröder, Henning; Schneider-Ramelow, Martin

    2018-02-01

    Advances in autonomous driving and robotics are creating high demand for inexpensive and mass-producible distance sensors. A laser ranging system (Lidar), based on the frequency-modulated continuous-wave (FMCW) method is built in this work. The benefits of an FMCW Lidar system are the low-cost components and the performance in comparison to conventional time-of-flight Lidar systems. The basic system consists of a DFB laser diode (λ= 1308 nm) and an asymmetric fiber-coupled Mach-Zehnder interferometer with a fixed delay line in one arm. Linear tuning of the laser optical frequency via injection current modulation creates a beat signal at the interferometer output. The frequency of the beat signal is proportional to the optical path difference in the interferometer. Since the laser frequency-to-current response is non-linear, a closed-loop feed-back system is designed to improve the tuning linearity, and consequently the measurement resolution. For fast active control, an embedded system with FPGA is used, resulting in a nearly linear frequency tuning, realizing a narrow peak in the Fourier spectrum of the beat signal. For free-space measurements, a setup with two distinct interferometers is built. The fully fiber-coupled Mach-Zehnder reference interferometer is part of the feed-back loop system, while the other - a Michelson interferometer - has a free-space arm with collimator lens and reflective target. A resolution of 2:0 mm for a 560 mm distance is achieved. The results for varying target distances show high consistency and a linear relation to the measured beat-frequency.

  2. Low-Temperature Rapid Fabrication of ZnO Nanowire UV Sensor Array by Laser-Induced Local Hydrothermal Growth

    Directory of Open Access Journals (Sweden)

    Sukjoon Hong

    2013-01-01

    Full Text Available We demonstrate ZnO nanowire based UV sensor by laser-induced hydrothermal growth of ZnO nanowire. By inducing a localized temperature rise using focused laser, ZnO nanowire array at ~15 μm size consists of individual nanowires with ~8 μm length and 200~400 nm diameter is readily synthesized on gold electrode within 30 min at the desired position. The laser-induced growth process is consecutively applied on two different points to bridge the micron gap between the electrodes. The resultant photoconductive ZnO NW interconnections display 2~3 orders increase in the current upon the UV exposure at a fixed voltage bias. It is also confirmed that the amount of photocurrent can be easily adjusted by changing the number of ZnO NW array junctions. The device exhibits clear response to the repeated UV illumination, suggesting that this process can be usefully applied for the facile fabrication of low-cost UV sensor array.

  3. CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm

    KAUST Repository

    Ren, Wei; Farooq, Aamir; Davidson, David Frank; Hanson, Ronald Kenneth

    2012-01-01

    A sensor for sensitive in situ measurements of carbon monoxide and temperature in combustion gases has been developed using absorption transitions in the (v′ = 1 ← v″ = 0) and (v′ = 2 ← v″ = 1) fundamental bands of CO. Recent availability of mid-infrared quantum-cascade (QC) lasers provides convenient access to the CO fundamental band near 4.7 μm, having approximately 104 and 102 times stronger absorption line-strengths compared to the overtone bands near 1.55 μm and 2.3 μm used previously to sense CO in combustion gases. Spectroscopic parameters of the selected transitions were determined via laboratory measurements in a shock tube over the 1100-2000 K range and also at room temperature. A single-laser absorption sensor was developed for accurate CO measurements in shock-heated gases by scanning the line pair v″ = 0, R(12) and v″ = 1, R(21) at 2.5 kHz. To capture the rapidly varying CO time-histories in chemical reactions, two different QC lasers were then used to probe the line-center absorbance of transitions v″ = 0, P(20) and v″ = 1, R(21) with a bandwidth of 1 MHz using fixed-wavelength direct absorption. The sensor was applied in successful shock tube measurements of temperature and CO time-histories during the pyrolysis and oxidation of methyl formate, illustrating the capability of this sensor for chemical kinetic studies. © 2012 Springer-Verlag.

  4. CO concentration and temperature sensor for combustion gases using quantum-cascade laser absorption near 4.7 μm

    KAUST Repository

    Ren, Wei

    2012-05-25

    A sensor for sensitive in situ measurements of carbon monoxide and temperature in combustion gases has been developed using absorption transitions in the (v′ = 1 ← v″ = 0) and (v′ = 2 ← v″ = 1) fundamental bands of CO. Recent availability of mid-infrared quantum-cascade (QC) lasers provides convenient access to the CO fundamental band near 4.7 μm, having approximately 104 and 102 times stronger absorption line-strengths compared to the overtone bands near 1.55 μm and 2.3 μm used previously to sense CO in combustion gases. Spectroscopic parameters of the selected transitions were determined via laboratory measurements in a shock tube over the 1100-2000 K range and also at room temperature. A single-laser absorption sensor was developed for accurate CO measurements in shock-heated gases by scanning the line pair v″ = 0, R(12) and v″ = 1, R(21) at 2.5 kHz. To capture the rapidly varying CO time-histories in chemical reactions, two different QC lasers were then used to probe the line-center absorbance of transitions v″ = 0, P(20) and v″ = 1, R(21) with a bandwidth of 1 MHz using fixed-wavelength direct absorption. The sensor was applied in successful shock tube measurements of temperature and CO time-histories during the pyrolysis and oxidation of methyl formate, illustrating the capability of this sensor for chemical kinetic studies. © 2012 Springer-Verlag.

  5. Surface-Enhanced Raman Scattering Sensor on an Optical Fiber Probe Fabricated with a Femtosecond Laser

    OpenAIRE

    Ma, Xiaodong; Huo, Haibin; Wang, Wenhui; Tian, Ye; Wu, Nan; Guthy, Charles; Shen, Mengyan; Wang, Xingwei

    2010-01-01

    A novel fabrication method for surface-enhanced Raman scattering (SERS) sensors that used a fast femtosecond (fs) laser scanning process to etch uniform patterns and structures on the endface of a fused silica optical fiber, which is then coated with a thin layer of silver through thermal evaporation is presented. A high quality SERS signal was detected on the patterned surface using a Rhodamine 6G (Rh6G) solution. The uniform SERS sensor built on the tip of the optical fiber tip was small, l...

  6. Hand-held Raman sensor head for in-situ characterization of meat quality applying a microsystem 671 nm diode laser

    Science.gov (United States)

    Schmidt, Heinar; Sowoidnich, Kay; Maiwald, Martin; Sumpf, Bernd; Kronfeldt, Heinz-Detlef

    2009-05-01

    A hand-held Raman sensor head was developed for the in-situ characterization of meat quality. As light source, a microsystem based external cavity diode laser module (ECDL) emitting at 671 nm was integrated in the sensor head and attached to a miniaturized optical bench which contains lens optics for excitation and signal collection as well as a Raman filter stage for Rayleigh rejection. The signal is transported with an optical fiber to the detection unit which was in the initial phase a laboratory spectrometer with CCD detector. All elements of the ECDL are aligned on a micro optical bench with 13 x 4 mm2 footprint. The wavelength stability is provided by a reflection Bragg grating and the laser has an optical power of up to 200 mW. However, for the Raman measurements of meat only 35 mW are needed to obtain Raman spectra within 1 - 5 seconds. Short measuring times are essential for the hand-held device. The laser and the sensor head are characterized in terms of stability and performance for in-situ Raman investigations. The function is demonstrated in a series of measurements with raw and packaged pork meat as samples. The suitability of the Raman sensor head for the quality control of meat and other products will be discussed.

  7. Laser-induced breakdown spectroscopy - An emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications

    International Nuclear Information System (INIS)

    Harmon, Russell S.; DeLucia, Frank C.; McManus, Catherine E.; McMillan, Nancy J.; Jenkins, Thomas F.; Walsh, Marianne E.; Miziolek, Andrzej

    2006-01-01

    Laser induced breakdown spectroscopy (LIBS) is a simple spark spectrochemical sensor technology in which a laser beam is directed at a sample surface to create a high-temperature microplasma and a detector used to collect the spectrum of light emission and record its intensity at specific wavelengths. LIBS is an emerging chemical sensor technology undergoing rapid advancement in instrumentation capability and in areas of application. Attributes of a LIBS sensor system include: (i) small size and weight; (ii) technologically mature, inherently rugged, and affordable components; (iii) real-time response; (iv) in situ analysis with no sample preparation required; (v) a high sensitivity to low atomic weight elements which are difficult to determine by other field-portable sensor techniques, and (vi) point sensing or standoff detection. Recent developments in broadband LIBS provide the capability for detection at very high resolution (0.1 nm) of all elements in any unknown target material because all chemical elements emit in the 200-980 nm spectral region. This progress portends a unique potential for the development of a rugged and reliable field-portable chemical sensor that has the potential to be utilized in variety of geochemical, mineralogical, and environmental applications

  8. Intra-pulse laser absorption sensor with cavity enhancement for oxidation experiments in a rapid compression machine

    KAUST Repository

    Nasir, Ehson Fawad; Farooq, Aamir

    2018-01-01

    A sensor based on a mid-IR pulsed quantum cascade laser (QCL) and off-axis cavity enhanced absorption spectroscopy (OA-CEAS) has been developed for highly sensitive concentration measurements of carbon monoxide (CO) in a rapid compression machine

  9. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation

    Directory of Open Access Journals (Sweden)

    Roberto Rella

    2009-04-01

    Full Text Available The matrix assisted pulsed laser evaporation (MAPLE technique has been used for the deposition of metal dioxide (TiO2, SnO2 nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit towards ethanol and acetone are presented.

  10. Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation.

    Science.gov (United States)

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO(2), SnO(2)) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al(2)O(3) substrates. A rather uniform distribution of TiO(2) nanoparticles with an average size of about 10 nm and of SnO(2) nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented.

  11. A laser-based sensor for measurement of off-gas composition and temperature in basic oxygen steelmaking

    International Nuclear Information System (INIS)

    Ottesen, D.; Allendorf, S.; Ludowise, P.; Hardesty, D.; Miller, T.; Goldstein, D.; Smith, C.; Bonin, M.

    1999-01-01

    We are developing an optical sensor for process control in basic oxygen steelmaking. The sensor measures gas temperature and relative CO/CO 2 concentration ratios in the furnace off-gas by transmitting the laser probe beam directly above the furnace lip and below the exhaust hood during oxygen blowing. Dynamic off-gas information is being evaluated for optimizing variables such as lance height, oxygen flow, post-combustion control, and prediction of final melt-carbon content. The non-invasive nature of the optical sensor renders it robust and relatively maintenance-free. Additional potential applications of the method are process control for electric arc furnace and bottom-blown oxygen steelmaking processes. (author)

  12. Contactless respiratory monitoring system for magnetic resonance imaging applications using a laser range sensor

    Directory of Open Access Journals (Sweden)

    Krug Johannes W.

    2016-09-01

    Full Text Available During a magnetic resonance imaging (MRI exam, a respiratory signal can be required for different purposes, e.g. for patient monitoring, motion compensation or for research studies such as in functional MRI. In addition, respiratory information can be used as a biofeedback for the patient in order to control breath holds or shallow breathing. To reduce patient preparation time or distortions of the MR imaging system, we propose the use of a contactless approach for gathering information about the respiratory activity. An experimental setup based on a commercially available laser range sensor was used to detect respiratory induced motion of the chest or abdomen. This setup was tested using a motion phantom and different human subjects in an MRI scanner. A nasal airflow sensor served as a reference. For both, the phantom as well as the different human subjects, the motion frequency was precisely measured. These results show that a low cost, contactless, laser-based approach can be used to obtain information about the respiratory motion during an MRI exam.

  13. VARIACION DE PARAMETROS DE CRIPTOGRAFIA CON CURVAS ELIPTICAS USADOS EN LA FIRMA DIGITAL DE DATOS SOBRE UNA RED DE SENSORES INALAMBRICOS

    Directory of Open Access Journals (Sweden)

    Javier Omar Contreras Rodriguez

    2016-09-01

    Full Text Available En la actualidad, el auge de las aplicaciones de las redes de sensores inalámbricos (WSN = Wireless Sensors Networks está generando una gran cantidad de información de carácter sensible que requiere un manejo confiable mediante la implementación de sistemas de seguridad de los datos compatibles con la naturaleza de estas redes. En ese sentido, cada vez más aumenta el interés por el uso de algoritmos de criptografía de clave pública con curvas elípticas (ECC = Elliptic Curve Cryptography como una alternativa de menor consumo de recursos computacionales comparado con los algoritmos tradicionalmente usados, como por ejemplo, RSA (Rivest-Shamir-Adleman, Diffie-Hellman, otros. En este artículo, se revisa la construcción de un prototipo de sistema de seguridad usando ECC para la firma digital de datos (ECDSA = Elliptic Curve Digital Signature Algorithm usando un control lógico basado en redes definidas por software (SDN = Software Defined Networking para el control de funcionalidades básicas y que permita ajustar en tiempo real los parámetros del algoritmo ECDSA según el tipo de aplicación de la WSN.

  14. Learning probabilistic features for robotic navigation using laser sensors.

    Directory of Open Access Journals (Sweden)

    Fidel Aznar

    Full Text Available SLAM is a popular task used by robots and autonomous vehicles to build a map of an unknown environment and, at the same time, to determine their location within the map. This paper describes a SLAM-based, probabilistic robotic system able to learn the essential features of different parts of its environment. Some previous SLAM implementations had computational complexities ranging from O(Nlog(N to O(N(2, where N is the number of map features. Unlike these methods, our approach reduces the computational complexity to O(N by using a model to fuse the information from the sensors after applying the Bayesian paradigm. Once the training process is completed, the robot identifies and locates those areas that potentially match the sections that have been previously learned. After the training, the robot navigates and extracts a three-dimensional map of the environment using a single laser sensor. Thus, it perceives different sections of its world. In addition, in order to make our system able to be used in a low-cost robot, low-complexity algorithms that can be easily implemented on embedded processors or microcontrollers are used.

  15. Learning probabilistic features for robotic navigation using laser sensors.

    Science.gov (United States)

    Aznar, Fidel; Pujol, Francisco A; Pujol, Mar; Rizo, Ramón; Pujol, María-José

    2014-01-01

    SLAM is a popular task used by robots and autonomous vehicles to build a map of an unknown environment and, at the same time, to determine their location within the map. This paper describes a SLAM-based, probabilistic robotic system able to learn the essential features of different parts of its environment. Some previous SLAM implementations had computational complexities ranging from O(Nlog(N)) to O(N(2)), where N is the number of map features. Unlike these methods, our approach reduces the computational complexity to O(N) by using a model to fuse the information from the sensors after applying the Bayesian paradigm. Once the training process is completed, the robot identifies and locates those areas that potentially match the sections that have been previously learned. After the training, the robot navigates and extracts a three-dimensional map of the environment using a single laser sensor. Thus, it perceives different sections of its world. In addition, in order to make our system able to be used in a low-cost robot, low-complexity algorithms that can be easily implemented on embedded processors or microcontrollers are used.

  16. Tailored Algorithm for Sensitivity Enhancement of Gas Concentration Sensors Based on Tunable Laser Absorption Spectroscopy.

    Science.gov (United States)

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana Dinora; Baeza-Serrato, Roberto

    2018-06-04

    In this work, a novel tailored algorithm to enhance the overall sensitivity of gas concentration sensors based on the Direct Absorption Tunable Laser Absorption Spectroscopy (DA-ATLAS) method is presented. By using this algorithm, the sensor sensitivity can be custom-designed to be quasi constant over a much larger dynamic range compared with that obtained by typical methods based on a single statistics feature of the sensor signal output (peak amplitude, area under the curve, mean or RMS). Additionally, it is shown that with our algorithm, an optimal function can be tailored to get a quasi linear relationship between the concentration and some specific statistics features over a wider dynamic range. In order to test the viability of our algorithm, a basic C 2 H 2 sensor based on DA-ATLAS was implemented, and its experimental measurements support the simulated results provided by our algorithm.

  17. Laser-engraved carbon nanotube paper for instilling high sensitivity, high stretchability, and high linearity in strain sensors

    KAUST Repository

    Xin, Yangyang

    2017-06-29

    There is an increasing demand for strain sensors with high sensitivity and high stretchability for new applications such as robotics or wearable electronics. However, for the available technologies, the sensitivity of the sensors varies widely. These sensors are also highly nonlinear, making reliable measurement challenging. Here we introduce a new family of sensors composed of a laser-engraved carbon nanotube paper embedded in an elastomer. A roll-to-roll pressing of these sensors activates a pre-defined fragmentation process, which results in a well-controlled, fragmented microstructure. Such sensors are reproducible and durable and can attain ultrahigh sensitivity and high stretchability (with a gauge factor of over 4.2 × 10(4) at 150% strain). Moreover, they can attain high linearity from 0% to 15% and from 22% to 150% strain. They are good candidates for stretchable electronic applications that require high sensitivity and linearity at large strains.

  18. Laser fluorosensors : a survey of applications and developments of a versatile sensor

    International Nuclear Information System (INIS)

    Brown, C.E.; Fingas, M.F.; An, J.

    2001-01-01

    Recent advances in the development of laser fluorosensors were reviewed. Laser fluorosensors are used for several purposes including airborne monitoring of oil spills, the exploration of marine petroleum resources, and the monitoring of environmentally important substances such as chlorophyll. Since laser fluorosensors provide their own source of excitation, they can be used during daylight or darkness. Certain compounds such as chlorophyll found in plant material, plankton and in aromatic hydrocarbons from petroleum oils can absorb ultraviolet laser light and become electronically excited. This excitation is quickly removed by the process of fluorescence emission, mostly in the visible region of the spectrum. Natural substances such as chlorophyll can be differentiated from materials such as petroleum oils by careful choice of the excitation laser wavelength and range-gated detection at specific emission wavelengths. This paper described the different system components of laser fluorosensors such as excitation laser source, and detection schemes that make it possible for these sensors to be used for the detection and classification of a wide range of fluorescent compounds. Many fluorosensors have been used as research and development tools on both ship and aircraft to help determine the direction of oil spills. This real-time operating system provides information that can be rapidly transferred to personnel on the ground or at sea to mitigate the effects of an oil spill on marine and coastal environments. Environment Canada's Scanning Laser Environmental Airborne Fluorosensor (SLEAF) was designed to detect, characterize and map oil contamination in marine and coastal shoreline environments. Principle component analysis is used to classify the oil class as light refined, crude or heavy refined and the extent of oil coverage as clean, light, moderate or heavy. 18 refs

  19. Laser fluorosensors : a survey of applications and developments of a versatile sensor

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C.E.; Fingas, M.F.; An, J. [Environment Canada, Ottawa, ON (Canada). Emergencies Science Div

    2001-07-01

    Recent advances in the development of laser fluorosensors were reviewed. Laser fluorosensors are used for several purposes including airborne monitoring of oil spills, the exploration of marine petroleum resources, and the monitoring of environmentally important substances such as chlorophyll. Since laser fluorosensors provide their own source of excitation, they can be used during daylight or darkness. Certain compounds such as chlorophyll found in plant material, plankton and in aromatic hydrocarbons from petroleum oils can absorb ultraviolet laser light and become electronically excited. This excitation is quickly removed by the process of fluorescence emission, mostly in the visible region of the spectrum. Natural substances such as chlorophyll can be differentiated from materials such as petroleum oils by careful choice of the excitation laser wavelength and range-gated detection at specific emission wavelengths. This paper described the different system components of laser fluorosensors such as excitation laser source, and detection schemes that make it possible for these sensors to be used for the detection and classification of a wide range of fluorescent compounds. Many fluorosensors have been used as research and development tools on both ship and aircraft to help determine the direction of oil spills. This real-time operating system provides information that can be rapidly transferred to personnel on the ground or at sea to mitigate the effects of an oil spill on marine and coastal environments. Environment Canada's Scanning Laser Environmental Airborne Fluorosensor (SLEAF) was designed to detect, characterize and map oil contamination in marine and coastal shoreline environments. Principle component analysis is used to classify the oil class as light refined, crude or heavy refined and the extent of oil coverage as clean, light, moderate or heavy. 18 refs.

  20. Range-Measuring Video Sensors

    Science.gov (United States)

    Howard, Richard T.; Briscoe, Jeri M.; Corder, Eric L.; Broderick, David

    2006-01-01

    Optoelectronic sensors of a proposed type would perform the functions of both electronic cameras and triangulation- type laser range finders. That is to say, these sensors would both (1) generate ordinary video or snapshot digital images and (2) measure the distances to selected spots in the images. These sensors would be well suited to use on robots that are required to measure distances to targets in their work spaces. In addition, these sensors could be used for all the purposes for which electronic cameras have been used heretofore. The simplest sensor of this type, illustrated schematically in the upper part of the figure, would include a laser, an electronic camera (either video or snapshot), a frame-grabber/image-capturing circuit, an image-data-storage memory circuit, and an image-data processor. There would be no moving parts. The laser would be positioned at a lateral distance d to one side of the camera and would be aimed parallel to the optical axis of the camera. When the range of a target in the field of view of the camera was required, the laser would be turned on and an image of the target would be stored and preprocessed to locate the angle (a) between the optical axis and the line of sight to the centroid of the laser spot.

  1. A mid-infrared laser absorption sensor for carbon monoxide and temperature measurements

    Science.gov (United States)

    Vanderover, Jeremy

    A mid-infrared (mid-IR) absorption sensor based on quantum cascade laser (QCL) technology has been developed and demonstrated for high-temperature thermometry and carbon monoxide (CO) measurements in combustion environments. The sensor probes the high-intensity fundamental CO ro-vibrational band at 4.6 mum enabling sensitive measurement of CO and temperature at kHz acquisition rates. Because the sensor operates in the mid-IR CO fundamental band it is several orders of magnitude more sensitive than most of the previously developed CO combustion sensors which utilized absorption in the near-IR overtone bands and mature traditional telecommunications-based diode lasers. The sensor has been demonstrated and validated under operation in both scanned-wavelength absorption and wavelength-modulation spectroscopy (WMS) modes in room-temperature gas cell and high-temperature shock tube experiments with known and specified gas conditions. The sensor has also been demonstrated for CO and temperature measurements in an atmospheric premixed ethylene/air McKenna burner flat flame for a range of equivalence ratios (phi = 0.7-1.4). Demonstration of the sensor under scanned-wavelength direct absorption operation was performed in a room-temperature gas cell (297 K and 0.001-1 atm) allowing validation of the line strengths and line shapes predicted by the HITRAN 2004 spectroscopic database. Application of the sensor in scanned-wavelength mode, at 1-2 kHz acquisition bandwidths, to specified high-temperature shock-heated gases (950-3400 K, 1 atm) provided validation of the sensor for measurements under the high-temperature conditions found in combustion devices. The scanned-wavelength shock tube measurements yielded temperature determinations that deviated by only +/-1.2% (1-sigma deviation) with the reflected shock temperatures and CO mole fraction determinations that deviated by that specified CO mole fraction by only +/-1.5% (1-sigma deviation). These deviations are in fact smaller

  2. A calibration-free ammonia breath sensor using a quantum cascade laser with WMS 2f/1f

    KAUST Repository

    Owen, Kyle

    2013-12-22

    The amount of ammonia in exhaled breath has been linked to a variety of adverse medical conditions, including chronic kidney disease (CKD). The development of accurate, reliable breath sensors has the potential to improve medical care. Wavelength modulation spectroscopy with second harmonic normalized by the first harmonic (WMS 2f/1f) is a sensitive technique used in the development of calibration-free sensors. An ammonia gas sensor is designed and developed that uses a quantum cascade laser operating near 1,103.44 cm -1 and a multi-pass cell with an effective path length of 76.45 m. The sensor has a 7 ppbv detection limit and 5 % total uncertainty for breath measurements. The sensor was successfully used to detect ammonia in exhaled breath and compare healthy patients to patients diagnosed with CKD. © 2013 Springer-Verlag Berlin Heidelberg.

  3. In situ ozone data for comparison with laser absorption remote sensor: 1980 pepe/neros program

    International Nuclear Information System (INIS)

    Mcdougal, D.S.; Lee, R.B. III; Bendura, R.J.

    1982-05-01

    Several sets of in situ ozone (O 3 ) measurements were made by a NASA aircraft in support of the laser absorption spectrometer (LAS) remote sensor. These measurements were designed to provide comparative O 3 data for the LAS sensor. The LAS, which was flown on a second aircraft, remotely measured the vertical burden of O 3 from the aircraft to the surface. In situ results of the air quality (O 3 and B sub scat) and meteorological (temperature and dewpoint) parameters for three correlative missions are presented. The aircraft flight plans, in situ concentration profiles and vertical burdens, and measurement errors are summarized

  4. Continuous Water Vapor Mass Flux and Temperature Measurements in a Model Scramjet Combustor Using a Diode Laser Sensor

    National Research Council Canada - National Science Library

    Upschulte, B. L; Miller, M. F; Allen, M. G; Jackson, K; Gruber, M; Mathur, T

    1998-01-01

    A sensor for simultaneous measurements of water vapor density, temperature and velocity has been developed based on absorption techniques using room temperature diode lasers (InGaAsP) operating at 1.31 micrometers...

  5. Roadmap on optical sensors

    Science.gov (United States)

    Ferreira, Mário F. S.; Castro-Camus, Enrique; Ottaway, David J.; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M.; Pellegrino, Paul M.; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin

    2017-08-01

    Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both

  6. Roadmap on optical sensors.

    Science.gov (United States)

    Ferreira, Mário F S; Castro-Camus, Enrique; Ottaway, David J; López-Higuera, José Miguel; Feng, Xian; Jin, Wei; Jeong, Yoonchan; Picqué, Nathalie; Tong, Limin; Reinhard, Björn M; Pellegrino, Paul M; Méndez, Alexis; Diem, Max; Vollmer, Frank; Quan, Qimin

    2017-08-01

    Sensors are devices or systems able to detect, measure and convert magnitudes from any domain to an electrical one. Using light as a probe for optical sensing is one of the most efficient approaches for this purpose. The history of optical sensing using some methods based on absorbance, emissive and florescence properties date back to the 16th century. The field of optical sensors evolved during the following centuries, but it did not achieve maturity until the demonstration of the first laser in 1960. The unique properties of laser light become particularly important in the case of laser-based sensors, whose operation is entirely based upon the direct detection of laser light itself, without relying on any additional mediating device. However, compared with freely propagating light beams, artificially engineered optical fields are in increasing demand for probing samples with very small sizes and/or weak light-matter interaction. Optical fiber sensors constitute a subarea of optical sensors in which fiber technologies are employed. Different types of specialty and photonic crystal fibers provide improved performance and novel sensing concepts. Actually, structurization with wavelength or subwavelength feature size appears as the most efficient way to enhance sensor sensitivity and its detection limit. This leads to the area of micro- and nano-engineered optical sensors. It is expected that the combination of better fabrication techniques and new physical effects may open new and fascinating opportunities in this area. This roadmap on optical sensors addresses different technologies and application areas of the field. Fourteen contributions authored by experts from both industry and academia provide insights into the current state-of-the-art and the challenges faced by researchers currently. Two sections of this paper provide an overview of laser-based and frequency comb-based sensors. Three sections address the area of optical fiber sensors, encompassing both

  7. High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance.

    Science.gov (United States)

    Ma, Yufei; Tong, Yao; He, Ying; Yu, Xin; Tittel, Frank K

    2018-01-04

    A highly sensitive carbon monoxide (CO) trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS) was demonstrated. A high-power distributed feedback (DFB), continuous wave (CW) 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF), a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL) of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA) coefficient of 1.8 × 10 -5 cm -1 W/√Hz were obtained for the reported CO-QEPAS sensor.

  8. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    Directory of Open Access Journals (Sweden)

    W. A. Cooper

    2014-09-01

    Full Text Available A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s−1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  9. Real time ammonia detection in exhaled human breath using a distributed feedback quantum cascade laser based sensor

    Science.gov (United States)

    Lewicki, Rafał; Kosterev, Anatoliy A.; Thomazy, David M.; Risby, Terence H.; Solga, Steven; Schwartz, Timothy B.; Tittel, Frank K.

    2011-01-01

    A continuous wave, thermoelectrically cooled, distributed feedback quantum cascade laser (DFB-QCL) based sensor platform for the quantitative detection of ammonia (NH3) concentrations present in exhaled human breath is reported. The NH3 concentration measurements are performed with a 2f wavelength modulation quartz enhanced photoacoustic spectroscopy (QEPAS) technique, which is very well suited for real time breath analysis, due to the fast gas exchange inside a compact QEPAS gas cell. An air-cooled DFB-QCL was designed to target the interference-free NH3 absorption line located at 967.35 cm-1 (λ~10.34 μm). The laser is operated at 17.5 °C, emitting ~ 24 mW of optical power at the selected wavelength. A 1σ minimum detectable concentration of ammonia for the line-locked NH3 sensor is ~ 6 ppb with 1 sec time resolution. The NH3 sensor, packaged in a 12"x14"x10" housing, is currently installed at a medical breath research center in Bethlehem, PA and tested as an instrument for non-invasive verification of liver and kidney disorders based on human breath samples.

  10. Extrinsic Calibration of Camera and 2D Laser Sensors without Overlap

    Directory of Open Access Journals (Sweden)

    Khalil M. Ahmad Yousef

    2017-10-01

    Full Text Available Extrinsic calibration of a camera and a 2D laser range finder (lidar sensors is crucial in sensor data fusion applications; for example SLAM algorithms used in mobile robot platforms. The fundamental challenge of extrinsic calibration is when the camera-lidar sensors do not overlap or share the same field of view. In this paper we propose a novel and flexible approach for the extrinsic calibration of a camera-lidar system without overlap, which can be used for robotic platform self-calibration. The approach is based on the robot–world hand–eye calibration (RWHE problem; proven to have efficient and accurate solutions. First, the system was mapped to the RWHE calibration problem modeled as the linear relationship AX = ZB , where X and Z are unknown calibration matrices. Then, we computed the transformation matrix B , which was the main challenge in the above mapping. The computation is based on reasonable assumptions about geometric structure in the calibration environment. The reliability and accuracy of the proposed approach is compared to a state-of-the-art method in extrinsic 2D lidar to camera calibration. Experimental results from real datasets indicate that the proposed approach provides better results with an L2 norm translational and rotational deviations of 314 mm and 0 . 12 ∘ respectively.

  11. Extrinsic Calibration of Camera and 2D Laser Sensors without Overlap.

    Science.gov (United States)

    Ahmad Yousef, Khalil M; Mohd, Bassam J; Al-Widyan, Khalid; Hayajneh, Thaier

    2017-10-14

    Extrinsic calibration of a camera and a 2D laser range finder (lidar) sensors is crucial in sensor data fusion applications; for example SLAM algorithms used in mobile robot platforms. The fundamental challenge of extrinsic calibration is when the camera-lidar sensors do not overlap or share the same field of view. In this paper we propose a novel and flexible approach for the extrinsic calibration of a camera-lidar system without overlap, which can be used for robotic platform self-calibration. The approach is based on the robot-world hand-eye calibration (RWHE) problem; proven to have efficient and accurate solutions. First, the system was mapped to the RWHE calibration problem modeled as the linear relationship AX = ZB , where X and Z are unknown calibration matrices. Then, we computed the transformation matrix B , which was the main challenge in the above mapping. The computation is based on reasonable assumptions about geometric structure in the calibration environment. The reliability and accuracy of the proposed approach is compared to a state-of-the-art method in extrinsic 2D lidar to camera calibration. Experimental results from real datasets indicate that the proposed approach provides better results with an L2 norm translational and rotational deviations of 314 mm and 0 . 12 ∘ respectively.

  12. Sensor óptico colorimétrico de peróxido de hidrógeno con doble referencia basado en nanopartículas de oro y plata

    OpenAIRE

    Ibáñez Puy, Elia

    2016-01-01

    Este trabajo se centra en la síntesis en vía húmeda para la obtención de nanopartículas estables y con una morfología controlada. Se trabaja con nanopartículas de oro y plata de forma esferoidal, y se realiza un estudio exhaustivo de múltiples factores como la concentración y el pH, para seleccionar el mejor agente encapsulante con el objetivo de obtener un sensor colorimétrico basado en la estabilidad del oro frente a la reactividad de la plata ante el contacto con peróxido de hidrógeno G...

  13. Laser Research Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Laser Research lab is thecenter for the development of new laser sources, nonlinear optical materials, frequency conversion processes and laser-based sensors for...

  14. Tunable Diode Laser Absorption Spectroscopy Sensor for Calibration Free Humidity Measurements in Pure Methane and Low CO2 Natural Gas.

    Science.gov (United States)

    Nwaboh, Javis Anyangwe; Pratzler, Sonja; Werhahn, Olav; Ebert, Volker

    2017-05-01

    We report a new direct tunable diode laser absorption spectroscopy (dTDLAS) sensor for absolute measurements of H 2 O in methane, ethane, propane, and low CO 2 natural gas. The sensor is operated with a 2.7 µm DFB laser, equipped with a high pressure single pass gas cell, and used to measure H 2 O amount of substance fractions in the range of 0.31-25 000 µmol/mol. Operating total gas pressures are up to 5000 hPa. The sensor has been characterized, addressing the traceability of the spectrometric results to the SI and the evaluation of the combined uncertainty, following the guide to the expression of uncertainty in measurement (GUM). The relative reproducibility of H 2 O amount of substance fraction measurements at 87 µmol/mol is 0.26% (0.23 µmol/mol). The maximum precision of the sensor was determined using a H 2 O in methane mixture, and found to be 40 nmol/mol for a time resolution of 100 s. This corresponds to a normalized detection limit of 330 nmol mol -1 ·m Hz -1/2 . The relative combined uncertainty of H 2 O amount fraction measurements delivered by the sensor is 1.2%.

  15. Intra-pulse laser absorption sensor with cavity enhancement for oxidation experiments in a rapid compression machine

    KAUST Repository

    Nasir, Ehson Fawad

    2018-05-23

    A sensor based on a mid-IR pulsed quantum cascade laser (QCL) and off-axis cavity enhanced absorption spectroscopy (OA-CEAS) has been developed for highly sensitive concentration measurements of carbon monoxide (CO) in a rapid compression machine. The duty cycle and the pulse repetition rate of the laser were optimized for increased tuning range, high chirp rate, and small line width to achieve effective laser-cavity coupling. This enabled spectrally resolved CO line-shape measurements at high pressures (P ~10 bar). A gain factor of 133 and a time resolution of 10 μs were demonstrated. CO concentration-time profiles during the oxidation of highly dilute n-octane/air mixtures were recorded, illustrating new opportunities in RCM experiments for chemical kinetics.

  16. High Temperature and High Sensitive NOx Gas Sensor with Hetero-Junction Structure using Laser Ablation Method

    Science.gov (United States)

    Gao, Wei; Shi, Liqin; Hasegawa, Yuki; Katsube, Teruaki

    In order to develop a high temperature (200°C˜400°C) and high sensitive NOx gas sensor, we developed a new structure of SiC-based hetero-junction device Pt/SnO2/SiC/Ni, Pt/In2O3/SiC/Ni and Pt/WO3/SiC/Ni using a laser ablation method for the preparation of both metal (Pt) electrode and metal-oxide film. It was found that Pt/In2O3/SiC/Ni sensor shows higher sensitivity to NO2 gas compared with the Pt/SnO2/SiC/Ni and Pt/WO3/SiC/Ni sensor, whereas the Pt/WO3/SiC/Ni sensor had better sensitivity to NO gas. These results suggest that selective detection of NO and NO2 gases may be obtained by choosing different metal oxide films.

  17. Enabling new sensor applications for (V)HTRS by laser hybrid brazing of oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, F.; Rixecker, G. [Robert Bosch GmbH, Stuttgart (Germany). Corporate Research and Development; Herrmann, M.; Lippmann, W.; Hurtado, A. [Univ. of Technology, Dresden (Germany). Chair of Hydrogen- and Nuclear Engineering

    2008-07-01

    The use of (very) high temperature reactors ((V)HTRs) requires a sensor technology suitable to withstand thermal loads both in normal operation mode and under incident conditions which may appear during service. Especially ceramic sensors are ideal to suit this purpose. A special sensor type that is based upon oxide ceramics is the high temperature oxygen sensor. Base material for this application is yttria-doped zirconia. At elevated temperatures (above 450 C) the activation energy of oxygen ions is sufficient to migrate in the ZrO{sub 2} lattice following an oxygen partial pressure gradient. This diffusion process is facilitated by the trivalent yttrium ions which give rise to a high concentration of oxygen vacancies. The macroscopical effect of the migration of the oxygen ions can be detected as a Nernst voltage or, alternatively, as an electrical current. Thus it is possible to compare the oxygen content of measured media with that of a known reference gas. To be able to produce such sensors both efficiently and in the desired quality, joining technologies adapted to ceramics are necessary. Laser-based technologies for brazing with glass or glass-ceramic solders are especially suitable, as they combine high precision with high throughput. They thus enable cost efficient production processes both for large and small lot sizes. (orig.)

  18. Simple laser vision sensor calibration for surface profiling applications

    Science.gov (United States)

    Abu-Nabah, Bassam A.; ElSoussi, Adnane O.; Al Alami, Abed ElRahman K.

    2016-09-01

    Due to the relatively large structures in the Oil and Gas industry, original equipment manufacturers (OEMs) have been implementing custom-designed laser vision sensor (LVS) surface profiling systems as part of quality control in their manufacturing processes. The rough manufacturing environment and the continuous movement and misalignment of these custom-designed tools adversely affect the accuracy of laser-based vision surface profiling applications. Accordingly, Oil and Gas businesses have been raising the demand from the OEMs to implement practical and robust LVS calibration techniques prior to running any visual inspections. This effort introduces an LVS calibration technique representing a simplified version of two known calibration techniques, which are commonly implemented to obtain a calibrated LVS system for surface profiling applications. Both calibration techniques are implemented virtually and experimentally to scan simulated and three-dimensional (3D) printed features of known profiles, respectively. Scanned data is transformed from the camera frame to points in the world coordinate system and compared with the input profiles to validate the introduced calibration technique capability against the more complex approach and preliminarily assess the measurement technique for weld profiling applications. Moreover, the sensitivity to stand-off distances is analyzed to illustrate the practicality of the presented technique.

  19. High-Power DFB Diode Laser-Based CO-QEPAS Sensor: Optimization and Performance

    Directory of Open Access Journals (Sweden)

    Yufei Ma

    2018-01-01

    Full Text Available A highly sensitive carbon monoxide (CO trace gas sensor based on quartz-enhanced photoacoustic spectroscopy (QEPAS was demonstrated. A high-power distributed feedback (DFB, continuous wave (CW 2.33 μm diode laser with an 8.8 mW output power was used as the QEPAS excitation source. By optimizing the modulation depth and adding an optimum micro-resonator, compared to a bare quartz tuning fork (QTF, a 10-fold enhancement of the CO-QEPAS signal amplitude was achieved. When water vapor acting as a vibrational transfer catalyst was added to the target gas, the signal was further increased by a factor of ~7. A minimum detection limit (MDL of 11.2 ppm and a calculated normalized noise equivalent absorption (NNEA coefficient of 1.8 × 10−5 cm−1W/√Hz were obtained for the reported CO-QEPAS sensor.

  20. Laser Doppler Blood Flow Imaging Using a CMOS Imaging Sensor with On-Chip Signal Processing

    Directory of Open Access Journals (Sweden)

    Cally Gill

    2013-09-01

    Full Text Available The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  1. Laser doppler blood flow imaging using a CMOS imaging sensor with on-chip signal processing.

    Science.gov (United States)

    He, Diwei; Nguyen, Hoang C; Hayes-Gill, Barrie R; Zhu, Yiqun; Crowe, John A; Gill, Cally; Clough, Geraldine F; Morgan, Stephen P

    2013-09-18

    The first fully integrated 2D CMOS imaging sensor with on-chip signal processing for applications in laser Doppler blood flow (LDBF) imaging has been designed and tested. To obtain a space efficient design over 64 × 64 pixels means that standard processing electronics used off-chip cannot be implemented. Therefore the analog signal processing at each pixel is a tailored design for LDBF signals with balanced optimization for signal-to-noise ratio and silicon area. This custom made sensor offers key advantages over conventional sensors, viz. the analog signal processing at the pixel level carries out signal normalization; the AC amplification in combination with an anti-aliasing filter allows analog-to-digital conversion with a low number of bits; low resource implementation of the digital processor enables on-chip processing and the data bottleneck that exists between the detector and processing electronics has been overcome. The sensor demonstrates good agreement with simulation at each design stage. The measured optical performance of the sensor is demonstrated using modulated light signals and in vivo blood flow experiments. Images showing blood flow changes with arterial occlusion and an inflammatory response to a histamine skin-prick demonstrate that the sensor array is capable of detecting blood flow signals from tissue.

  2. Sensores electroquímicos basados en nanomateriales de carbono

    OpenAIRE

    Remesal García, Lucía

    2017-01-01

    Caracterización de tres sensores basados en materiales de nanocarbono mediante el análisis de diferentes compuestos. El objetivo del proyecto ha sido analizar que sensor es el más sensible para detectar los compuestos electroactivos en soluciones. Se han utilizado tres tipos diferentes de sensores: Electrodo de carbono modificado con nanotubos de carbono (CNT), Electrodo de carbono modificado con Nanofibras de carbono grafitizadas (CNF) y Electrodo de carbono modificado con grafeno (GPH). El ...

  3. Photoacoustic CO2 sensor based on a DFB diode laser at 2.7 μm

    Science.gov (United States)

    Wolff, M.; Germer, M.; Groninga, H. G.; Harde, H.

    2008-01-01

    We present a new detection scheme for carbon dioxide (CO{2}) based on a custom-made room temperature distributed feedback (DFB) diode laser at 2.7 μm, currently representing one of the lasers with the highest emission wavelength of its kind. The detector's especially compact and simple set-up is based on photoacoustic spectroscopy (PAS). This method makes use of the transformation of absorbed modulated radiation into a sound wave. The sensor enables a very high detection sensitivity for CO{2} in the ppb range. Furthermore, the carefully selected spectral region as well as the narrow bandwidth and wide tunability of the single-mode laser ensure an excellent selectivity. Even measurements of different CO{2} isotopes can be easily performed. This enables applications in industrial sensing and medical diagnostics (e.g. 13C-breath tests).

  4. Aerometrics' laser-based lane-tracker sensor: engineering and on-the-road evaluation of advanced prototypes

    Science.gov (United States)

    Schuler, Carlos A.; Tapos, Francis M.; Alayleh, Mehyeddine M.; Bachalo, William D.

    1997-02-01

    Aerometrics initiated and continues on the development an innovative laser-diode based device that provides a warning signal when a motor-vehicle deviates from the center of the lane. The device is based on a sensor that scans the roadway on either side of the vehicle and determines the lateral position relative to the existing painted lines marking the lane. The principles of operation of the sensor, and the results of Aerometrics' early testing were presented last year in this forum. This paper presents Aerometrics' continuing efforts in bringing the technology to market. New prototypes have been developed and tested. Aerometrics' engineering efforts and the use of latest technologies have resulted in a 24-fold reduction in sensor volume when compared to their predecessors and similar reductions in weight. The current prototype measures less than 9 cm X 8 cm X 7 cm, and can be easily fit within the cavity of rear-view mirror holders used in most present-day vehicles. Also, advances in signal conditioning and processing have improved the reliability of the sensor. Results of continuing testing of the sensor will be presented.

  5. Trabeculoplastia selectiva con láser en glaucoma Selective laser trabeculoplasy in the treatment of glaucoma

    Directory of Open Access Journals (Sweden)

    Ailen Garcés Fernández

    2009-12-01

    Full Text Available Se realiza una breve revisión bibliográfica sobre la trabeculoplastia selectiva con Nd YAG Láser de frecuencia doblada en la enfermedad glaucomatosa. El equipo Laserex Tango LT 5106-T Nd: YAG Láser (Ellex Medical Pty Ltd para trabeculoplastia selectiva se encuentra en nuestro instituto desde marzo de 2006, única institución del país que dispone de este equipo hasta este momento. La alta esperanza de vida de nuestra población, que conlleva a un incremento en la incidencia de glaucoma y cataratas, induce a ser consecuentes con todo aquello que contribuya a mejorar la calidad de vida de los pacientes: esta circunstancia motivó esta revisión. Se presentan sus indicaciones, parámetros más utilizados, efectividad y complicaciones.A brief literature review on selective trabeculoplasty with doubled frequency Nd:YAG laser in the treatment of glaucoma was made. Laserex Tango LT 5106-T Nd: YAG Laser (Ellex Medical Pty Ltd equipment for selective trabeculoplasty is available in our institute since March 2006 (the only center having this equipment in our country up to the present. The high life expectancy of our population, with an increase of glaucoma and cataract incidence, prompts us to be consistent with everything that supports the improved quality of life of patients; this was the reason for this review. Indications, most used parameters, effectiveness and complications were presented.

  6. Characterization of a FBG sensor interrogation system based on a mode-locked laser scheme.

    Science.gov (United States)

    Madrigal, Javier; Fraile-Peláez, Francisco Javier; Zheng, Di; Barrera, David; Sales, Salvador

    2017-10-02

    This paper is focused on the characterization of a fiber Bragg grating (FBG) sensor interrogation system based on a fiber ring laser with a semiconductor optical amplifier as the gain medium, and an in-loop electro-optical modulator. This system operates as a switchable active (pulsed) mode-locked laser. The operation principle of the system is explained theoretically and validated experimentally. The ability of the system to interrogate an array of different FBGs in wavelength and spatial domain is demonstrated. Simultaneously, the influence of several important parameters on the performance of the interrogation technique has been investigated. Specifically, the effects of the bandwidth and the reflectivity of the FBGs, the SOA gain, and the depth of the intensity modulation have been addressed.

  7. Self-injection locking of the DFB laser through an external ring fiber cavity: Application for phase sensitive OTDR acoustic sensor

    Directory of Open Access Journals (Sweden)

    J.L. Bueno Escobedo

    Full Text Available Self-injection locking of DFB laser implemented through the laser coupling with an external fiber optic ring cavity allows its direct employment as an interrogating light source for a phase sensitive OTDR acoustic sensor. Distributed detection and localization of dynamic perturbations of the optical fiber is experimentally demonstrated at the distance of 9270 m. Keywords: Self-injection locking, Optical fiber resonator, φ-OTDR

  8. Fast Prototyping of Sensorized Cell Culture Chips and Microfluidic Systems with Ultrashort Laser Pulses

    Directory of Open Access Journals (Sweden)

    Sebastian M. Bonk

    2015-03-01

    Full Text Available We developed a confined microfluidic cell culture system with a bottom plate made of a microscopic slide with planar platinum sensors for the measurement of acidification, oxygen consumption, and cell adhesion. The slides were commercial slides with indium tin oxide (ITO plating or were prepared from platinum sputtering (100 nm onto a 10-nm titanium adhesion layer. Direct processing of the sensor structures (approximately three minutes per chip by an ultrashort pulse laser facilitated the production of the prototypes. pH-sensitive areas were produced by the sputtering of 60-nm Si3N4 through a simple mask made from a circuit board material. The system body and polydimethylsiloxane (PDMS molding forms for the microfluidic structures were manufactured by micromilling using a printed circuit board (PCB milling machine for circuit boards. The microfluidic structure was finally imprinted in PDMS. Our approach avoided the use of photolithographic techniques and enabled fast and cost-efficient prototyping of the systems. Alternatively, the direct production of metallic, ceramic or polymeric molding tools was tested. The use of ultrashort pulse lasers improved the precision of the structures and avoided any contact of the final structures with toxic chemicals and possible adverse effects for the cell culture in lab-on-a-chip systems.

  9. Ammonia Sensor Using Wavelength Modulation Spectroscopy

    KAUST Repository

    Farooq, Aamir; Owen, Kyle

    2015-01-01

    An ammonia sensor can include a laser detector configured to provide stable sample readings. The sensor can implement a method including processing the recorded intensity of the laser beam to determine a first harmonic component and a second harmonic component and the amount of ammonia in the sample.

  10. Ammonia Sensor Using Wavelength Modulation Spectroscopy

    KAUST Repository

    Farooq, Aamir

    2015-09-01

    An ammonia sensor can include a laser detector configured to provide stable sample readings. The sensor can implement a method including processing the recorded intensity of the laser beam to determine a first harmonic component and a second harmonic component and the amount of ammonia in the sample.

  11. Diatomic gasdynamic lasers.

    Science.gov (United States)

    Mckenzie, R. L.

    1972-01-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant overpopulations of upper vibrational states. When mixtures of CO and N2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N2 expansions. The resulting CO-N2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO2 lasers.

  12. Diatomic gasdynamic lasers

    International Nuclear Information System (INIS)

    McKenzie, R.L.

    1971-12-01

    Predictions from a numerical model of the vibrational relaxation of anharmonic diatomic oscillators in supersonic expansions are used to show the extent to which the small anharmonicity of gases like CO can cause significant over-populations of upper vibrational states. When mixtures of CO and N 2 are considered, radiative gain on many of the vibration-rotation transitions of CO is predicted. Experiments are described that qualitatively verify the predictions by demonstrating laser oscillation in CO-N 2 expansions. The resulting CO-N 2 gasdynamic laser displays performance characteristics that equal or exceed those of similar CO 2 lasers

  13. Hartmann-Shack wave front measurements for real time determination of laser beam propagation parameters

    International Nuclear Information System (INIS)

    Schaefer, B.; Luebbecke, M.; Mann, K.

    2006-01-01

    The suitability of the Hartmann-Shack technique for the determination of the propagation parameters of a laser beam is faced against the well known caustic approach according to the ISO 11146 standard. A He-Ne laser (543 nm) was chosen as test beam, both in its fundamental mode as well as after intentional distortion, introducing a moderate amount of spherical aberration. Results are given for the most important beam parameters M 2 , divergence, and beam widths, indicating an agreement of better than 10% and for adapted beam diameter <5%. Furthermore, the theoretical background, pros and cons, as well as some features of the software implementation for the Hartmann-Shack sensor are briefly reviewed

  14. A Framework Based on Reference Data with Superordinate Accuracy for the Quality Analysis of Terrestrial Laser Scanning-Based Multi-Sensor-Systems.

    Science.gov (United States)

    Stenz, Ulrich; Hartmann, Jens; Paffenholz, Jens-André; Neumann, Ingo

    2017-08-16

    Terrestrial laser scanning (TLS) is an efficient solution to collect large-scale data. The efficiency can be increased by combining TLS with additional sensors in a TLS-based multi-sensor-system (MSS). The uncertainty of scanned points is not homogenous and depends on many different influencing factors. These include the sensor properties, referencing, scan geometry (e.g., distance and angle of incidence), environmental conditions (e.g., atmospheric conditions) and the scanned object (e.g., material, color and reflectance, etc.). The paper presents methods, infrastructure and results for the validation of the suitability of TLS and TLS-based MSS. Main aspects are the backward modelling of the uncertainty on the basis of reference data (e.g., point clouds) with superordinate accuracy and the appropriation of a suitable environment/infrastructure (e.g., the calibration process of the targets for the registration of laser scanner and laser tracker data in a common coordinate system with high accuracy) In this context superordinate accuracy means that the accuracy of the acquired reference data is better by a factor of 10 than the data of the validated TLS and TLS-based MSS. These aspects play an important role in engineering geodesy, where the aimed accuracy lies in a range of a few mm or less.

  15. Functional characterization of planar sensors with active edges using laser and X-ray beam scans

    International Nuclear Information System (INIS)

    Povoli, M.; Bagolini, A.; Boscardin, M.; Dalla Betta, G.-F.; Giacomini, G.; Hasi, J.; Oh, A.; Zorzi, N.

    2013-01-01

    We report on the functional characterization of planar sensors with active edges fabricated at Fondazione Bruno Kessler (FBK), Trento, Italy. The measurements here reported were performed by means of laser and X-ray beam scans mainly focusing on the signal efficiency of the edge region of the devices. Results are very encouraging and show very good sensitivity up to few microns away from the device physical edge

  16. Functional characterization of planar sensors with active edges using laser and X-ray beam scans

    Energy Technology Data Exchange (ETDEWEB)

    Povoli, M., E-mail: povoli@disi.unitn.it [Dipartimento di Ingegneria e Scienza dell' Informazione, Università di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento),Via Sommarive, 14, I-38123 Povo di Trento (Italy); Bagolini, A.; Boscardin, M. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Dalla Betta, G.-F. [Dipartimento di Ingegneria e Scienza dell' Informazione, Università di Trento, Via Sommarive, 14, I-38123 Povo di Trento (Italy); INFN, Sezione di Padova (Gruppo Collegato di Trento),Via Sommarive, 14, I-38123 Povo di Trento (Italy); Giacomini, G. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy); Hasi, J. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025-7015 (United States); Oh, A. [The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Zorzi, N. [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive, 18, I-38123 Povo di Trento (Italy)

    2013-08-01

    We report on the functional characterization of planar sensors with active edges fabricated at Fondazione Bruno Kessler (FBK), Trento, Italy. The measurements here reported were performed by means of laser and X-ray beam scans mainly focusing on the signal efficiency of the edge region of the devices. Results are very encouraging and show very good sensitivity up to few microns away from the device physical edge.

  17. A Fiber Optic PD Sensor Using a Balanced Sagnac Interferometer and an EDFA-Based DOP Tunable Fiber Ring Laser

    Science.gov (United States)

    Wang, Lutang; Fang, Nian; Wu, Chunxu; Qin, Haijuan; Huang, Zhaoming

    2014-01-01

    A novel fiber-optic acoustic sensor using an erbium-doped fiber amplifier (EDFA)-based fiber ring laser and a balanced Sagnac interferometer for acoustic sensing of the partial discharge (PD) in power transformers is proposed and demonstrated. As a technical background, an experimental investigation on how the variations of the fiber birefringence affect the sensor performances was carried out, and the results are discussed. The operation principles are described, and the relevant formulas are derived. The analytical results show that an EDFA-based fiber ring laser operating in chaotic mode can provide a degree of polarization (DOP) tunable light beam for effectively suppressing polarization fading noises. The balanced Sagnac interferometer can eliminate command intensity noises and enhance the signal-to-noise ratio (SNR). Furthermore, it inherently operates at the quadrature point of the response curve without any active stabilizations. Several experiments are conducted for evaluating the performances of the sensor system, as well as for investigating the ability of the detection of high-frequency acoustic emission signals. The experimental results demonstrate that the DOP of the laser beam can be continuously tuned from 0.2% to 100%, and the power fluctuation in the whole DOP tuning range is less than 0.05 dBm. A high-frequency response up to 300 kHz is reached, and the high sensing sensitivity for detections of weak corona discharges, as well as partial discharges also is verified. PMID:24824371

  18. Distributed Optical Fiber Sensors with Ultrafast Laser Enhanced Rayleigh Backscattering Profiles for Real-Time Monitoring of Solid Oxide Fuel Cell Operations.

    Science.gov (United States)

    Yan, Aidong; Huang, Sheng; Li, Shuo; Chen, Rongzhang; Ohodnicki, Paul; Buric, Michael; Lee, Shiwoo; Li, Ming-Jun; Chen, Kevin P

    2017-08-24

    This paper reports a technique to enhance the magnitude and high-temperature stability of Rayleigh back-scattering signals in silica fibers for distributed sensing applications. With femtosecond laser radiation, more than 40-dB enhancement of Rayleigh backscattering signal was generated in silica fibers using 300-nJ laser pulses at 250 kHz repetition rate. The laser-induced Rayleigh scattering defects were found to be stable from the room temperature to 800 °C in hydrogen gas. The Rayleigh scatter at high temperatures was correlated to the formation and modification of nanogratings in the fiber core. Using optical fibers with enhanced Rayleigh backscattering profiles as distributed temperature sensors, we demonstrated real-time monitoring of solid oxide fuel cell (SOFC) operations with 5-mm spatial resolution at 800 °C. Information gathered by these fiber sensor tools can be used to verify simulation results or operated in a process-control system to improve the operational efficiency and longevity of SOFC-based energy generation systems.

  19. Optical beam deflection sensor: design and experiments.

    Science.gov (United States)

    Sakamoto, João M S; Marques, Renan B; Kitano, Cláudio; Rodrigues, Nicolau A S; Riva, Rudimar

    2017-10-01

    In this work, we present a double-pass optical beam deflection sensor and its optical design method. To accomplish that, a mathematical model was proposed and computational simulations were performed, in order to obtain the sensor's characteristic curves and to analyze its behavior as function of design parameters. The mathematical model was validated by comparison with the characteristic curves acquired experimentally. The sensor was employed to detect acoustic pulses generated by a pulsed laser in a sample surface, in order to show its potential for monitoring applications handling high energy input as laser welding or laser ablation.

  20. Diode Laser Sensor for Gas Temperature and H2O Concentration in a Scramjet Combustor Using Wavelength Modulation Spectroscopy (Postprint)

    National Research Council Canada - National Science Library

    Rieker, Gregory B; Li, Jonathan T; Jeffries, Jay B; Mathur, Tarun; Gruber, Mark R; Carter, Campbell D

    2005-01-01

    A diode laser absorption sensor which probes three spectral features of water vapor in the near infrared region to infer gas temperature and water vapor concentration near the exit of a scramjet combustor is presented...

  1. A three-dimensional laser vibration measurement technology realized on five laser beam and its calibration

    Science.gov (United States)

    Li, Lu-Ke; Zhang, Shen-Feng

    2018-03-01

    Put forward a kind of three-dimensional vibration information technology of vibrating object by the mean of five laser beam of He-Ne laser, and with the help of three-way sensor, measure the three-dimensional laser vibration developed by above mentioned technology. The technology based on the Doppler principle of interference and signal demodulation technology, get the vibration information of the object, through the algorithm processing, extract the three-dimensional vibration information of space objects, and can achieve the function of angle calibration of five beam in the space, which avoid the effects of the mechanical installation error, greatly improve the accuracy of measurement. With the help of a & B K4527 contact three axis sensor, measure and calibrate three-dimensional laser vibrometer, which ensure the accuracy of the measurement data. Summarize the advantages and disadvantages of contact and non-contact sensor, and analysis the future development trends of the sensor industry.

  2. Optical fibres sensor based in the intensity switch of a linear laser with two Bragg gratings

    International Nuclear Information System (INIS)

    Basurto P, M.A.; Kuzin, E.A.; Archundia B, C.; Marroquin, E.; May A, M.; Cerecedo N, H.H.; Sanchez M, J.J.; Tentori S, D.; Marquez B, I.; Shliagin, M.; Miridonov, S.

    2000-01-01

    In this work we propose a new configuration for an optical fiber temperature sensor, based on a linear type Er-doped fiber laser. The laser cavity consists of an Er-doped fiber and two identical Bragg gratings at the fiber ends (working as reflectors). Temperature changes are detected by measuring, through one of the gratings, the intensity variations at the system's output. When the temperature of one of the Bragg gratings is modified, a wavelength shift of its spectral reflectivity is observed. Hence, the laser emission intensity of the system is modified. We present experimental results of the intensity switch observed when the temperature difference between the gratings detunes their spectral reflectance. Making use of this effect it is possible to develop limit comparators to bound the temperature range for the object under supervision. This limiting work can be performed with a high sensitivity using a very simple interrogation procedure. (Author)

  3. H2O temperature sensor for low-pressure flames using tunable diode laser absorption near 2.9 νm

    KAUST Repository

    Li, Sijie; Farooq, Aamir; Hanson, Ronald Kenneth

    2011-01-01

    Making use of a newly available rapid-tuning diode laser operating at wavelengths up to 2.9 νm, an absorption-based temperature sensor was developed for in situ measurements in low-pressure flames. Based on the systematic analysis of H2O vapor

  4. Transparent silicon strip sensors for the optical alignment of particle detector systems

    International Nuclear Information System (INIS)

    Blum, W.; Kroha, H.; Widmann, P.

    1995-05-01

    Modern large-area precision tracking detectors require increasing accuracy for the alignment of their components. A novel multi-point laser alignment system has been developed for such applications. The position of detector components with respect to reference laser beams is monitored by semi-transparent optical position sensors which work on the principle of silicon strip photodiodes. Two types of custom designed transparent strip sensors, based on crystalline and on amorphous silicon as active material, have been studied. The sensors are optimised for the typical diameters of collimated laser beams of 3-5 mm over distances of 10-20 m. They provide very high position resolution, on the order of 1 μm, uniformly over a wide measurement range of several centimeters. The preparation of the sensor surfaces requires special attention in order to achieve high light transmittance and minimum distortion of the traversing laser beams. At selected wavelengths, produced by laser diodes, transmission rates above 90% have been achieved. This allows to position more than 30 sensors along one laser beam. The sensors will be equipped with custom designed integrated readout electronics. (orig.)

  5. Design of pre-optics for laser guide star wavefront sensor for the ELT

    Science.gov (United States)

    Muslimov, Eduard; Dohlen, Kjetil; Neichel, Benoit; Hugot, Emmanuel

    2017-12-01

    In the present paper, we consider the optical design of a zoom system for the active refocusing in laser guide star wavefront sensors. The system is designed according to the specifications coming from the Extremely Large Telescope (ELT)-HARMONI instrument, the first-light, integral field spectrograph for the European (E)-ELT. The system must provide a refocusing of the laser guide as a function of telescope pointing and large decentring of the incoming beam. The system considers four moving lens groups, each of them being a doublet with one aspherical surface. The advantages and shortcomings of such a solution in terms of the component displacements and complexity of the surfaces are described in detail. It is shown that the system can provide the median value of the residual wavefront error of 13.8-94.3 nm and the maximum value <206 nm, while the exit pupil distortion is 0.26-0.36% for each of the telescope pointing directions.

  6. Direct laser writing for nanoporous liquid core laser sensors

    DEFF Research Database (Denmark)

    Grossmann, Tobias; Christiansen, Mads Brøkner; Peterson, Jeffrey

    2012-01-01

    We report the fabrication of nanoporous liquid core lasers via direct laser writing based on two-photon absorption in combination with thiolene-chemistry. As gain medium Rhodamine 6G was embedded in the nanoporous polybutadiene matrix. The lasing devices with thresholds of 19 µJ/mm2 were measured...

  7. Interfacing Sensors To Micro Controllers

    KAUST Repository

    Norain, Mohamed

    2018-01-01

    This lecture will cover the most common interface and interface techniques between sensors and microcontrollers. The presentation will introduce the pros and cons of each interface type including analogue, digital and serial output sensors. It will also cover the basic required electronics knowledge to help you in selecting and designing your next sensor to microcontroller interface.

  8. Interfacing Sensors To Micro Controllers

    KAUST Repository

    Norain, Mohamed

    2018-01-15

    This lecture will cover the most common interface and interface techniques between sensors and microcontrollers. The presentation will introduce the pros and cons of each interface type including analogue, digital and serial output sensors. It will also cover the basic required electronics knowledge to help you in selecting and designing your next sensor to microcontroller interface.

  9. Heterodyne laser Doppler distance sensor with phase coding measuring stationary as well as laterally and axially moving objects

    International Nuclear Information System (INIS)

    Pfister, T; Günther, P; Nöthen, M; Czarske, J

    2010-01-01

    Both in production engineering and process control, multidirectional displacements, deformations and vibrations of moving or rotating components have to be measured dynamically, contactlessly and with high precision. Optical sensors would be predestined for this task, but their measurement rate is often fundamentally limited. Furthermore, almost all conventional sensors measure only one measurand, i.e. either out-of-plane or in-plane distance or velocity. To solve this problem, we present a novel phase coded heterodyne laser Doppler distance sensor (PH-LDDS), which is able to determine out-of-plane (axial) position and in-plane (lateral) velocity of rough solid-state objects simultaneously and independently with a single sensor. Due to the applied heterodyne technique, stationary or purely axially moving objects can also be measured. In addition, it is shown theoretically as well as experimentally that this sensor offers concurrently high temporal resolution and high position resolution since its position uncertainty is in principle independent of the lateral object velocity in contrast to conventional distance sensors. This is a unique feature of the PH-LDDS enabling precise and dynamic position and shape measurements also of fast moving objects. With an optimized sensor setup, an average position resolution of 240 nm was obtained

  10. Retrieval of water vapor mixing ratios from a laser-based sensor

    Science.gov (United States)

    Tucker, George F.

    1995-01-01

    Langley Research Center has developed a novel external path sensor which monitors water vapor along an optical path between an airplane window and reflective material on the plane's engine. An infrared tunable diode laser is wavelength modulated across a water vapor absorption line at a frequency f. The 2f and DC signals are measured by a detector mounted adjacent to the laser. The 2f/DC ratio depends on the amount of wavelength modulation, the water vapor absorption line being observed, and the temperature, pressure, and water vapor content of the atmosphere. The present work concerns efforts to quantify the contributions of these factors and to derive a method for extracting the water vapor mixing ratio from the measurements. A 3 m cell was fabricated in order to perform laboratory tests of the sensor. Measurements of 2f/DC were made for a series of pressures and modulation amplitudes. During my 1994 faculty fellowship, a computer program was created which allowed 2f/DC to be calculated for any combination of the variables which effect it. This code was used to generate 2f/DC values for the conditions measured in the laboratory. The experimental and theoretical values agreed to within a few percent. As a result, the laser modulation amplitude can now be set in the field by comparing the response of the instrument to the calculated response as a function of modulation amplitude. Once the validity of the computer code was established, it was used to investigate possible candidate absorption lines. 2f/DC values were calculated for pressures, temperatures, and water vapor mixing ratios expected to be encountered in future missions. The results have been incorporated into a database which will be used to select the best line for a particular mission. The database will also be used to select a retrieval technique. For examples under some circumstances there is little temperature dependence in 2f/DC so temperature can be neglected. In other cases, there is a dependence

  11. H2O temperature sensor for low-pressure flames using tunable diode laser absorption near 2.9 νm

    KAUST Repository

    Li, Sijie

    2011-10-19

    Making use of a newly available rapid-tuning diode laser operating at wavelengths up to 2.9 νm, an absorption-based temperature sensor was developed for in situ measurements in low-pressure flames. Based on the systematic analysis of H2O vapor transitions in the fundamental vibrational bands (ν1 and ν3) of H2O in the range of 2.5-3.0 νm, an optimal closely-spaced spectral line pair near 2.9 νm was selected for its temperature sensitivity in the range of 1000-2500 K. The narrow-linewidth room-temperature laser was scanned repetitively across these spectral features at 5 kHz, enabling fast, accurate temperature sensing. Use of the temperature sensor was investigated in low-pressure flames supported on a McKenna burner at 15, 25 and 60 Torr. To avoid absorption by the cold gases in the flame edges and the recirculation region between the burner and the vacuum chamber wall, a variable-path in situ probe was designed and an optimal path length was determined to accurately measure the flame centerline temperature. Different flame conditions were investigated to illustrate the potential of this sensor system for sensitive measurements of combustion temperature in low-pressure flames. © 2011 IOP Publishing Ltd.

  12. Development of a diamond waveguide sensor for sensitive protein analysis using IR quantum cascade lasers

    Science.gov (United States)

    Piron, P.; Vargas Catalan, E.; Haas, J.; Österlund, L.; Nikolajeff, F.; Andersson, P. O.; Bergström, J.; Mizaikoff, B.; Karlsson, M.

    2018-02-01

    Microfabricated diamond waveguides, between 5 and 20 μm thick, manufactured by chemical vapor deposition of diamond, followed by standard lithographic techniques and inductively coupled plasma etching of diamond, are used as bio-chemical sensors in the mid infrared domain: 5-11 μm. Infrared light, emitted from a broadly tunable quantum cascade laser with a wavelength resolution smaller than 20 nm, is coupled through the diamond waveguides for attenuated total reflection spectroscopy. The expected advantages of these waveguides are a high sensitivity due to the high number of internal reflections along the propagation direction, a high transmittance in the mid-IR domain, the bio-compatibility of diamond and the possibility of functionalizing the surface layer. The sensor will be used for analyzing different forms of proteins such as α-synuclein which is relevant in understanding the mechanism behind Parkinson's disease. The fabrication process of the waveguide, its characteristics and several geometries are introduced. The optical setup of the biosensor is described and our first measurements on two analytes to demonstrate the principle of the sensing method will be presented. Future use of this sensor includes the functionalization of the diamond waveguide sensor surface to be able to fish out alpha-synuclein from cerebrospinal fluid.

  13. Measurements of laser parameters for the Shiva laser fusion facility

    International Nuclear Information System (INIS)

    Ozarski, R.G.

    1979-01-01

    Large laser systems require numerous laser diagnostics to provide configuration, performance and maintenance data to permit efficient operation. The following diagnostics for a large laser system named Shiva are discussed: (1) description of Shiva laser system, (2) what measurements are desired and or required and why, (3) what measurement techniques and packages are employed and a brief description of the operating principles of the sensors employed, and (4) the laser diagnostic data acquisition and display system

  14. The Use of Laser Microdissection in Forensic Sexual Assault Casework: Pros and Cons Compared to Standard Methods.

    Science.gov (United States)

    Costa, Sergio; Correia-de-Sá, Paulo; Porto, Maria J; Cainé, Laura

    2017-07-01

    Sexual assault samples are among the most frequently analyzed in a forensic laboratory. These account for almost half of all samples processed routinely, and a large portion of these cases remain unsolved. These samples often pose problems to traditional analytic methods of identification because they consist most frequently of cell mixtures from at least two contributors: the victim (usually female) and the perpetrator (usually male). In this study, we propose the use of current preliminary testing for sperm detection in order to determine the chances of success when faced with samples which can be good candidates to undergo analysis with the laser microdissection technology. Also, we used laser microdissection technology to capture fluorescently stained cells of interest differentiated by gender. Collected materials were then used for DNA genotyping with commercially available amplification kits such as Minifiler, Identifiler Plus, NGM, and Y-Filer. Both the methodology and the quality of the results were evaluated to assess the pros and cons of laser microdissection compared with standard methods. Overall, the combination of fluorescent staining combined with the Minifiler amplification kit provided the best results for autosomal markers, whereas the Y-Filer kit returned the expected results regardless of the used method. © 2017 American Academy of Forensic Sciences.

  15. Laser-Based and Ultra-Portable Gas Sensor for Indoor and Outdoor Formaldehyde (HCHO) Monitoring

    Science.gov (United States)

    Shutter, J. D.; Allen, N.; Paul, J.; Thiebaud, J.; So, S.; Scherer, J. J.; Keutsch, F. N.

    2017-12-01

    While used as a key tracer of oxidative chemistry in the atmosphere, formaldehyde (HCHO) is also a known human carcinogen and is listed and regulated by the United States EPA as a hazardous air pollutant. Combustion processes and photochemical oxidation of volatile organic compounds (VOCs) are the major outdoor sources of HCHO, and building materials and household products are ubiquitous sources of indoor HCHO. Due to the ease with which humans can be exposed to HCHO, it is imperative to monitor levels of both indoor and outdoor HCHO exposure in both short and long-term studies.High-quality direct and indirect methods of quantifying HCHO mixing ratios exist, but instrument size and user-friendliness can make them cumbersome or impractical for certain types of indoor and long-term outdoor measurements. In this study, we present urban HCHO measurements by using a new, commercially-available, ppbv-level accurate HCHO gas sensor (Aeris Technologies' MIRA Pico VOC Laser-Based Gas Analyzer) that is highly portable (29 cm x 20 cm x 10 cm), lightweight (3 kg), easy-to-use, and has low power (15 W) consumption. Using an ultra-compact multipass cell, an absorption path length of 13 m is achieved, resulting in a sensor capable of achieving ppbv/s sensitivity levels with no significant spectral interferences.To demonstrate the utility of the gas sensor for emissions measurements, a GPS was attached to the sensor's housing in order to map mobile HCHO measurements in real-time around the Boston, Massachusetts, metro area. Furthermore, the sensor was placed in residential and industrial environments to show its usefulness for indoor and outdoor pollution measurements. Lastly, we show the feasibility of using the HCHO sensor (or a network of them) in long-term monitoring stations for hazardous air pollutants.

  16. Toward the integration of optical sensors in smartphone screens using femtosecond laser writing.

    Science.gov (United States)

    Lapointe, Jerome; Parent, Francois; de Lima Filho, Elton Soares; Loranger, Sébastien; Kashyap, Raman

    2015-12-01

    We demonstrate a new type of sensor incorporated directly into Corning Gorilla glass, an ultraresistant glass widely used in the screen of popular devices such as smartphones, tablets, and smart watches. Although physical space is limited in portable devices, the screens have been so far neglected in regard to functionalization. Our proof-of-concept shows a new niche for photonics device development, in which the screen becomes an active component integrated into the device. The sensor itself is a near-surface waveguide, sensitive to refractive index changes, enabling the analysis of liquids directly on the screen of a smartphone, without the need for any add-ons, thus opening this part of the device to advanced functionalization. The primary function of the screen is unaffected, since the sensor and waveguide are effectively invisible to the naked eye. We fabricated a waveguide just below the glass surface, directly written without any surface preparation, in which the change in refractive index on the surface-air interface changes the light guidance, thus the transmission of light. This work reports on sensor fabrication, using a femtosecond pulsed laser, and the light-interaction model of the beam propagating at the surface is discussed and compared with experimental measurement for refractive indexes in the range 1.3-1.7. A new and improved model, including input and output reflections due to the effective mode index change, is also proposed and yields a better match with our experimental measurements and also with previous measurements reported in the literature.

  17. A simulation environment for assisting system design of coherent laser doppler wind sensor for active wind turbine pitch control

    Science.gov (United States)

    Shinohara, Leilei; Pham Tran, Tuan Anh; Beuth, Thorsten; Umesh Babu, Harsha; Heussner, Nico; Bogatscher, Siegwart; Danilova, Svetlana; Stork, Wilhelm

    2013-05-01

    In order to assist a system design of laser coherent Doppler wind sensor for active pitch control of wind turbine systems (WTS), we developed a numerical simulation environment for modeling and simulation of the sensor system. In this paper we present this simulation concept. In previous works, we have shown the general idea and the possibility of using a low cost coherent laser Doppler wind sensing system for an active pitch control of WTS in order to achieve a reduced mechanical stress, increase the WTS lifetime and therefore reduce the electricity price from wind energy. Such a system is based on a 1.55μm Continuous-Wave (CW) laser plus an erbium-doped fiber amplifier (EDFA) with an output power of 1W. Within this system, an optical coherent detection method is chosen for the Doppler frequency measurement in megahertz range. A comparatively low cost short coherent length laser with a fiber delay line is used for achieving a multiple range measurement. In this paper, we show the current results on the improvement of our simulation by applying a Monte Carlo random generation method for positioning the random particles in atmosphere and extend the simulation to the entire beam penetrated space by introducing a cylindrical co-ordinate concept and meshing the entire volume into small elements in order to achieve a faster calculation and gain more realistic simulation result. In addition, by applying different atmospheric parameters, such as particle sizes and distributions, we can simulate different weather and wind situations.

  18. Calibration-free sensor for pressure and H2O concentration in headspace of sterile vial using tunable diode laser absorption spectroscopy.

    Science.gov (United States)

    Cai, Tingdong; Gao, Guangzhen; Liu, Ying

    2013-11-10

    Tunable diode laser absorption measurements of pressure and H2O concentration in the headspace of vials using a distributed-feedback (DFB) diode laser near 1.4 μm are reported. A H2O line located near 7161.41 cm(-1) is selected based on its strong absorption strength and isolation from interference of neighboring transitions. Direct absorption spectra of H2O are obtained for the measurement path as well as the reference path by scanning the laser wavelength. The pressure and H2O vapor concentration in the headspace of a vial are inferred from a differential absorption signal, which is the difference between the measured and the referenced absorbance spectra. This sensor is calibration-free and no purge gas is needed. The demonstrated capability would enable measurements of pressure and H2O concentration in the headspace of vials within 2.21% and 2.86%, respectively. A precision of 1.02 Torr and 390 ppm is found for the pressure and H2O concentration, respectively. A set of measurements for commercial freeze-dried products are also performed to illustrate the usefulness of this sensor.

  19. Ultra-Trace Chemical Sensing with Long-Wave Infrared Cavity-Enhanced Spectroscopic Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Taubman, Matthew S.; Myers, Tanya L.; Cannon, Bret D.; Williams, Richard M.; Schultz, John F.

    2003-02-20

    The infrared sensors task of Pacific Northwest National Laboratory's (PNNL's) Remote Spectroscopy Project (Task B of Project PL211) is focused on the science and technology of remote and in-situ spectroscopic chemical sensors for detecting proliferation and coun-tering terrorism. Missions to be addressed by remote chemical sensor development in-clude detecting proliferation of nuclear or chemical weapons, and providing warning of terrorist use of chemical weapons. Missions to be addressed by in-situ chemical sensor development include countering terrorism by screening luggage, personnel, and shipping containers for explosives, firearms, narcotics, chemical weapons, or chemical weapons residues, and mapping contaminated areas. The science and technology is also relevant to chemical weapons defense, air operations support, monitoring emissions from chemi-cal weapons destruction or industrial activities, law enforcement, medical diagnostics, and other applications. Sensors for most of these missions will require extreme chemical sensitivity and selectiv-ity because the signature chemicals of importance are expected to be present in low con-centrations or have low vapor pressures, and the ambient air is likely to contain pollutants or other chemicals with interfering spectra. Cavity-enhanced chemical sensors (CES) that draw air samples into optical cavities for laser-based interrogation of their chemical content promise real-time, in-situ chemical detection with extreme sensitivity to specified target molecules and superb immunity to spectral interference and other sources of noise. PNNL is developing CES based on quantum cascade (QC) lasers that operate in the mid-wave infrared (MWIR - 3 to 5 microns) and long-wave infrared (LWIR - 8 to 14 mi-crons), and CES based on telecommunications lasers operating in the short-wave infrared (SWIR - 1 to 2 microns). All three spectral regions are promising because smaller mo-lecular absorption cross sections in the SWIR

  20. A comparative study of misalignment detection using a novel Wireless Sensor with conventional Wired Sensors

    International Nuclear Information System (INIS)

    Arebi, L; Gu, F; Ball, A

    2012-01-01

    The advancement in low cost and low power MEMS sensors makes it possible to develop a cost-effective wireless accelerometer for condition monitoring. Especially, the MEMS accelerometer can be mounted directly on a rotating shaft, which has the potential to capture the dynamics of the shaft more accurately and hence to achieve high monitoring performance. In this paper a systematic comparison of shaft misalignment detection is conducted, based on a bearing test rig, between the wireless sensor measurement scheme and other three common sensors: a laser vibrometer, an accelerometer and a shaft encoder. These four sensors are used to measure simultaneously the dynamic responses: Instantaneous Angular Speed (IAS) from the encoder, bearing house acceleration from the accelerometer, shaft displacements from the laser vibrometer and angular acceleration from the wireless sensor. These responses are then compared in both the time and frequency domains in detecting and diagnosing different levels of shaft misalignment. Results show the effectiveness of wireless accelerometer in detecting the faults.

  1. Parametric Investigation of Laser Doppler Microphones

    Science.gov (United States)

    Daoud, M.; Naguib, A.

    2002-11-01

    The concept of a Laser Doppler Microphone (LDM) is based on utilizing the Doppler frequency shift of a focused laser beam to measure the unsteady velocity of the center point of a flexible polymer diaphragm that is mounted on top of a hole and subjected to the unsteady pressure. Time integration of the velocity signal yields a time series of the diaphragm displacement, which can be converted to pressure from knowledge of the sensor's deflection sensitivity. In our APS/DFD presentation last year, the stringent frequency resolution requirement of these new sensors and methods to meet this requirement were discussed. Here, the dependence of the sensor characteristics (sensitivity, bandwidth, and noise floor) on various significant parameters is investigated in detail by calibrating the sensor in a plane wave tube in the frequency range of 50 - 5000 Hz. Parameters investigated include sensor diaphragm material and thickness, sensor size, damping of the diaphragm motion and laser beam spot size. The results shed light on the operating limits of the new sensor and demonstrate its ability to conduct high-spatial-resolution measurements in typical high-Reynolds-number test facilities. Moreover, calibrated LDM sensors were used to conduct measurements in a separating/reattaching flow and the results are compared to classical electret-type microphones with a similar sensing diameter.

  2. Tunable Diode Laser Sensors to Monitor Temperature and Gas Composition in High-Temperature Coal Gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Ronald [Stanford Univ., CA (United States); Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States)

    2014-12-01

    The integrated gasification combined cycle (IGCC) when combined with carbon capture and storage can be one of the cleanest methods of extracting energy from coal. Control of coal and biomass gasification processes to accommodate the changing character of input-fuel streams is required for practical implementation of integrated gasification combined-cycle (IGCC) technologies. Therefore a fast time-response sensor is needed for real-time monitoring of the composition and ideally the heating value of the synthesis gas (here called syngas) as it exits the gasifier. The goal of this project was the design, construction, and demonstration an in situ laserabsorption sensor to monitor multiple species in the syngas output from practical-scale coal gasifiers. This project investigated the hypothesis of using laser absorption sensing in particulateladen syngas. Absorption transitions were selected with design rules to optimize signal strength while minimizing interference from other species. Successful in situ measurements in the dusty, high-pressure syngas flow were enabled by Stanford’s normalized and scanned wavelength modulation strategy. A prototype sensor for CO, CH4, CO2, and H2O was refined with experiments conducted in the laboratory at Stanford University, a pilot-scale at the University of Utah, and an engineering-scale gasifier at DoE’s National Center for Carbon Capture with the demonstration of a prototype sensor with technical readiness level 6 in the 2014 measurement campaign.

  3. A flexible and highly sensitive nonenzymatic glucose sensor based on DVD-laser scribed graphene substrate.

    Science.gov (United States)

    Lin, Songyue; Feng, Wendou; Miao, Xiaofei; Zhang, Xiangxin; Chen, Sujing; Chen, Yuanqiang; Wang, Wei; Zhang, Yining

    2018-07-01

    Flexible and implantable glucose biosensors are emerging technologies for continuous monitoring of blood-glucose of diabetes. Developing a flexible conductive substrates with high active surface area is critical for advancing the technology. Here, we successfully fabricate a flexible and highly sensitive nonenzymatic glucose by using DVD-laser scribed graphene (LSG) as a flexible conductively substrate. Copper nanoparticles (Cu-NPs) are electrodeposited as the catalyst. The LSG/Cu-NPs sensor demonstrates excellent catalytic activity toward glucose oxidation and exhibits a linear glucose detection range from 1 μM to 4.54 mM with high sensitivity (1.518 mA mM -1 cm -2 ) and low limit of detection (0.35 μM). Moreover, the LSG/Cu-NPs sensor shows excellent reproducibility and long-term stability. It is also highly selective toward glucose oxidation under the presence of various interfering species. Excellent flexing stability is also demonstrated by the LSG/Cu-NPs sensor, which is capable of maintaining 83.9% of its initial current after being bent against a 4-mm diameter rod for 180 times. The LSG/Cu-NPs sensor shows great potential for practical application as a nonenzymatic glucose biosensor. Meanwhile, the LSG conductive substrate provides a platform for the developing next-generation flexible and potentially implantable bioelectronics and biosensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Integrated sensors for robotic laser welding

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Beyer, E.; Dausinger, F; Ostendorf, A; Otto, A.

    2005-01-01

    A welding head is under development with integrated sensory systems for robotic laser welding applications. Robotic laser welding requires sensory systems that are capable to accurately guide the welding head over a seam in three-dimensional space and provide information about the welding process as

  5. Multilayered metal oxide thin film gas sensors obtained by conventional and RF plasma-assisted laser ablation

    International Nuclear Information System (INIS)

    Mitu, B.; Marotta, V.; Orlando, S.

    2006-01-01

    Multilayered thin films of In 2 O 3 and SnO 2 have been deposited by conventional and RF plasma-assisted reactive pulsed laser ablation, with the aim to evaluate their behaviour as toxic gas sensors. The depositions have been carried out by a frequency doubled Nd-YAG laser (λ = 532 nm, τ = 7 ns) on Si(1 0 0) substrates, in O 2 atmosphere. The thin films have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrical resistance measurements. A comparison of the electrical response of the simple (indium oxide, tin oxide) and multilayered oxides to toxic gas (nitric oxide, NO) has been performed. The influence on the structural and electrical properties of the deposition parameters, such as substrate temperature and RF power is reported

  6. Turbo machine tip clearance and vibration measurements using a fibre optic laser Doppler position sensor

    Science.gov (United States)

    Pfister, T.; Büttner, L.; Czarske, J.; Krain, H.; Schodl, R.

    2006-07-01

    This paper presents a novel fibre optic laser Doppler position sensor for single blade tip clearance and vibration measurements at turbo machines, which offers high temporal resolution and high position resolution simultaneously. The sensor principle is based on the generation of a measurement volume consisting of two superposed fan-like interference fringe systems with contrary fringe spacing gradients using wavelength division multiplexing. A flexible and robust measurement system with an all-passive fibre coupled measurement head has been realized employing diffractive and refractive optics. Measurements of tip clearance and rotor vibrations at a transonic centrifugal compressor performed during operation at up to 50 000 rpm (833 Hz) corresponding to 21.7 kHz blade frequency and 586 m s-1 blade tip velocity are presented. The results are in excellent agreement with those of capacitive probes. The mean uncertainty of the position measurement was around 20 µm and, thus, considerably better than for conventional tip clearance probes. Consequently, this sensor is capable of fulfilling the requirements for future active clearance control systems and has great potential for in situ and online tip clearance and vibration measurements at metallic and non-metallic turbine blades with high precision.

  7. Embedded fiber optic ultrasonic sensors and generators

    Science.gov (United States)

    Dorighi, John F.; Krishnaswamy, Sridhar; Achenbach, Jan D.

    1995-04-01

    Ultrasonic sensors and generators based on fiber-optic systems are described. It is shown that intrinsic fiber optic Fabry-Perot ultrasound sensors that are embedded in a structure can be stabilized by actively tuning the laser frequency. The need for this method of stabilization is demonstrated by detecting piezoelectric transducer-generated ultrasonic pulses in the presence of low frequency dynamic strains that are intentionally induced to cause sensor drift. The actively stabilized embedded fiber optic Fabry-Perot sensor is also shown to have sufficient sensitivity to detect ultrasound that is generated in the interior of a structure by means of a high-power optical fiber that pipes energy from a pulsed laser to an embedded generator of ultrasound.

  8. Estimación de evapotranspiración real en trigo con distintas condiciones de estrés hídrico: aplicación de modelos y sensores remotos

    OpenAIRE

    Iglesias, María del Rosario

    2016-01-01

    Tesis (Magister en Aplicaciones Espaciales de Alerta y Respuesta Temprana a Emergencias)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía y Física, 2016. Maestría conjunta con el Instituto de Altos Estudios Espaciales "Mario Gulich"-CONAE El objetivo principal de esta tesis es estimar la evapotranspiración real de un cultivo de trigo, mediante modelos semiempírico, que incorporan datos de sensores remotos y de sensores meteorológicos a campo. También, se corroboró la...

  9. Laser displacement sensor to monitor the layup process of composite laminate production

    Science.gov (United States)

    Miesen, Nick; Groves, Roger M.; Sinke, Jos; Benedictus, Rinze

    2013-04-01

    Several types of flaw can occur during the layup process of prepreg composite laminates. Quality control after the production process checks the end product by testing the specimens for flaws which are included during the layup process or curing process, however by then these flaws are already irreversibly embedded in the laminate. This paper demonstrates the use of a laser displacement sensor technique applied during the layup process of prepreg laminates for in-situ flaw detection, for typical flaws that can occur during the composite production process. An incorrect number of layers and fibre wrinkling are dominant flaws during the process of layup. These and other dominant flaws have been modeled to determine the requirements for an in-situ monitoring during the layup process of prepreg laminates.

  10. Highly Stretchable Potentiometric pH Sensor Fabricated via Laser Carbonization and Machining of Carbon-Polyaniline Composite.

    Science.gov (United States)

    Rahimi, Rahim; Ochoa, Manuel; Tamayol, Ali; Khalili, Shahla; Khademhosseini, Ali; Ziaie, Babak

    2017-03-15

    The development of stretchable sensors has recently attracted considerable attention. These sensors have been used in wearable and robotics applications, such as personalized health-monitoring, motion detection, and human-machine interfaces. Herein, we report on a highly stretchable electrochemical pH sensor for wearable point-of-care applications that consists of a pH-sensitive working electrode and a liquid-junction-free reference electrode, in which the stretchable conductive interconnections are fabricated by laser carbonizing and micromachining of a polyimide sheet bonded to an Ecoflex substrate. This method produces highly porous carbonized 2D serpentine traces that are subsequently permeated with polyaniline (PANI) as the conductive filler, binding material, and pH-sensitive membrane. The experimental and simulation results demonstrate that the stretchable serpentine PANI/C-PI interconnections with an optimal trace width of 0.3 mm can withstand elongations of up to 135% and are robust to more than 12 000 stretch-and-release cycles at 20% strain without noticeable change in the resistance. The pH sensor displays a linear sensitivity of -53 mV/pH (r 2 = 0.976) with stable performance in the physiological range of pH 4-10. The sensor shows excellent stability to applied longitudinal and transverse strains up to 100% in different pH buffer solutions with a minimal deviation of less than ±4 mV. The material biocompatibility is confirmed with NIH 3T3 fibroblast cells via PrestoBlue assays.

  11. Real time detection of exhaled human breath using quantum cascade laser based sensor technology

    Science.gov (United States)

    Tittel, Frank K.; Lewicki, Rafal; Dong, Lei; Liu, Kun; Risby, Terence H.; Solga, Steven; Schwartz, Tim

    2012-02-01

    The development and performance of a cw, TE-cooled DFB quantum cascade laser based sensor for quantitative measurements of ammonia (NH3) and nitric oxide (NO) concentrations present in exhaled breath will be reported. Human breath contains ~ 500 different chemical species, usually at ultra low concentration levels, which can serve as biomarkers for the identification and monitoring of human diseases or wellness states. By monitoring NH3 concentration levels in exhaled breath a fast, non-invasive diagnostic method for treatment of patients with liver and kidney disorders, is feasible. The NH3 concentration measurements were performed with a 2f wavelength modulation quartz enhanced photoacoustic spectroscopy (QEPAS) technique, which is suitable for real time breath measurements, due to the fast gas exchange inside a compact QEPAS gas cell. A Hamamatsu air-cooled high heat load (HHL) packaged CW DFB-QCL is operated at 17.5°C, targeting the optimum interference free NH3 absorption line at 967.35 cm-1 (λ~10.34 μm), with ~ 20 mW of optical power. The sensor architecture includes a reference cell, filled with a 2000 ppmv NH3 :N2 mixture at 130 Torr, which is used for absorption line-locking. A minimum detection limit (1σ) for the line locked NH3 sensor is ~ 6 ppbv (with a 1σ 1 sec time resolution of the control electronics). This NH3 sensor was installed in late 2010 and is being clinically tested at St. Luke's Hospital in Bethlehem, PA.

  12. Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  13. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad

    2016-07-16

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm were operated in pulsed mode, causing a frequency "down-chirp" across two ro-vibrational transitions of carbon monoxide. The down-chirp phenomenon resulted in large spectral tuning (δν ∼2.8cm-1) within a single pulse of each laser at a high pulse repetition frequency (100kHz). The wide tuning range allowed the application of the two-line thermometry technique, thus making the sensor quantitative and calibration-free. The sensor was first tested in non-reactive CO-N2 gas mixtures in the RCM and then applied to cases of n-pentane oxidation. Experiments were carried out for end of compression (EOC) pressures and temperatures ranging 9.21-15.32bar and 745-827K, respectively. Measured EOC temperatures agreed with isentropic calculations within 5%. Temperature rise measured during the first-stage ignition of n-pentane is over-predicted by zero-dimensional kinetic simulations. This work presents, for the first time, highly time-resolved temperature measurements in reactive and non-reactive rapid compression machine experiments. © 2016 Elsevier Ltd.

  14. Interstitial laser photocoagulation in the treatment of liver tumors. Personal technique, short term results and complications in patients with normal and impaired liver function; Fotocoagulazione laser-interstiziale ecoguidata dei tumori maligni del fegato: tecnica personale, risultati immediati e complicanze a breve termine nei pazienti con funzionalita' epatica normale e alterata

    Energy Technology Data Exchange (ETDEWEB)

    Giorgio, A.; Tarantino, L.; De Stefano, G.; Farella, N. [Azienda Ospedaliera D. Cotugno, Naples (Italy). Servizio di Ecografia ed Ecointerventistica; Catalano, O.; Cusati, B. [Ospedale S. Maria delle Grazie, Pozzuoli, NA (Italy). Servizio di Radiologia; Alalia, A. [Azienda Ospedaliera D. Cotugno, Naples (Italy). Servizio di Anestesia e Rianimazione; Del Vescovo, L. [Naples Univ. II, Naples (Italy). Ist. di Radiologia

    2000-04-01

    The work reports the personal experience with interstitial laser photocoagulation in patients with liver tumors (mostly cirrhotics with hepatocellular carcinoma). The aim was to evaluate the short term efficacy of percutaneous interstitial laser photocoagulation in inducing focal ablation of liver tumors and the possible complications in patients with normal and impaired liver function. [Italian] Il presente lavoro riporta l'esperienza personale con l'utilizzazione della fotocoagulazione laser-interstiziale per tumori maligni del fegato, rappresentati in gran parte da epatocarcinomi in cirrosi. Lo scopo e' quello di verificare l'efficacia terapeutica in termini di volume di necrosi e di valutare gli effetti collaterali e le complicanze a breve termine sulla riserva funzionale del fegato e di altri organi, soprattutto nei pazienti con alterata funzionalita' epatica.

  15. Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser

    NARCIS (Netherlands)

    Bernhardi, Edward H.; van der Werf, Kees O; Hollink, Anton J F; Wörhoff, Kerstin; de Ridder, René M; Subramaniam, Vinod; Pollnau, Markus

    An integrated intra-laser-cavity microparticle sensor based on a dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped amorphous aluminum oxide on a silicon substrate is demonstrated. Real-time detection and accurate size measurement of single micro-particles with diameters

  16. 671-nm microsystem diode laser based on portable Raman sensor device for in-situ identification of meat spoilage

    Science.gov (United States)

    Sowoidnich, Kay; Schmidt, Heinar; Schwägele, Fredi; Kronfeldt, Heinz-Detlef

    2011-05-01

    Based on a miniaturized optical bench with attached 671 nm microsystem diode laser we present a portable Raman system for the rapid in-situ characterization of meat spoilage. It consists of a handheld sensor head (dimensions: 210 x 240 x 60 mm3) for Raman signal excitation and collection including the Raman optical bench, a laser driver, and a battery pack. The backscattered Raman radiation from the sample is analyzed by means of a custom-designed miniature spectrometer (dimensions: 200 x 190 x 70 mm3) with a resolution of 8 cm-1 which is fiber-optically coupled to the sensor head. A netbook is used to control the detector and for data recording. Selected cuts from pork (musculus longissimus dorsi and ham) stored refrigerated at 5 °C were investigated in timedependent measurement series up to three weeks to assess the suitability of the system for the rapid detection of meat spoilage. Using a laser power of 100 mW at the sample meat spectra can be obtained with typical integration times of 5 - 10 seconds. The complex spectra were analyzed by the multivariate statistical tool PCA (principal components analysis) to determine the spectral changes occurring during the storage period. Additionally, the Raman data were correlated with reference analyses performed in parallel. In that way, a distinction between fresh and spoiled meat can be found in the time slot of 7 - 8 days after slaughter. The applicability of the system for the rapid spoilage detection of meat and other food products will be discussed.

  17. Recubrimientos superficiales con láseres de diodos de alta potencia

    Directory of Open Access Journals (Sweden)

    Molpeceres, J. L.

    1998-04-01

    Full Text Available Nowadays, high power diode laser systems are available in the market. These systems, based on arrays of small diode lasers, can achieve more than 1 kW of output power and are currently offering new possibilities in the field of laser material processing where CO2 and Nd:YAG lasers were used up to the present. The results obtained in some materials cladding based on cobalt and nickel alloys as additional materials is presented. The instrumental set-up used in these experiments are described.

    La posibilidad de disponer actualmente de láseres de diodos con una potencia de emisión óptica superior a 1 kW permite abordar un gran número de aplicaciones en el ámbito del procesado de materiales con láser, dominado tradicionalmente por los láseres de CO2 y Nd:YAG. En el presente trabajo, se muestra la aplicación de los láseres de diodos de alta potencia al recubrimiento de materiales metálicos con aleaciones de base cobalto y níquel. Se describen las características del sistema empleado y se muestran los resultados obtenidos.

  18. In-situ sequential laser transfer and laser reduction of graphene oxide films

    Science.gov (United States)

    Papazoglou, S.; Petridis, C.; Kymakis, E.; Kennou, S.; Raptis, Y. S.; Chatzandroulis, S.; Zergioti, I.

    2018-04-01

    Achieving high quality transfer of graphene on selected substrates is a priority in device fabrication, especially where drop-on-demand applications are involved. In this work, we report an in-situ, fast, simple, and one step process that resulted in the reduction, transfer, and fabrication of reduced graphene oxide-based humidity sensors, using picosecond laser pulses. By tuning the laser illumination parameters, we managed to implement the sequential printing and reduction of graphene oxide flakes. The overall process lasted only a few seconds compared to a few hours that our group has previously published. DC current measurements, X-Ray Photoelectron Spectroscopy, X-Ray Diffraction, and Raman Spectroscopy were employed in order to assess the efficiency of our approach. To demonstrate the applicability and the potential of the technique, laser printed reduced graphene oxide humidity sensors with a limit of detection of 1700 ppm are presented. The results demonstrated in this work provide a selective, rapid, and low-cost approach for sequential transfer and photochemical reduction of graphene oxide micro-patterns onto various substrates for flexible electronics and sensor applications.

  19. Use of visible-laser-diode fiber optic sensors in the beverage industry and environmental controls

    Science.gov (United States)

    Pham, Van Hoi; Chu, Dinh T.; Bui, Huy; Tran, Viet L.

    1997-01-01

    The fiber-optic refractometer using visible laser diodes with wavelengths of 650 divided by 670 nm for the liquid refractive-index measurement is presented. The refractive- index measures by fiber-optic sensors of the connected configuration for different liquids with refractive indices from 1.33 to 1.5 have given the accuracy of 5.10-3. The fiber-optic refractometer was performanced for the distinguish of the salt or sugar content in the mixtures with range of 10-3 and 5.10-4, respectively. These refractometers are already to use for the sugar control systems of beverage industry and salt-water environment.

  20. Proceedings of the IEEE laser and electro-optics society annual meeting

    International Nuclear Information System (INIS)

    Hudson, M.J.B.; Raney, H.; Raney, D.; Spalaris, C.N.

    1990-01-01

    This book is covered under the following headings: Electro-optic systems; Emerging laser technology; Optical sensors and measurements; Optoelectronics; Semiconductor diode lasers; Solid state lasers; UV and short wavelength; Applied optical diagnostics of semiconductor materials and devices symposium and optical sensors and measurements; and Applied optical diagnostics of semiconductor materials and devices symposium

  1. Development of Micro-welding Technology of Cladding Tube with Temperature Sensor for Nuclear Fuel Irradiation Test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Sung; Lee, C. Y.; Kim, W. K.; Lee, J. W.; Lee, D. Y

    2006-01-15

    Laser welding technology is widely used to fabricate some products of nuclear fuel in the nuclear industry. Especially, micro-laser welding is one of the key technology to be developed to fabricate precise products of fuel irradiation test. We have to secure laser welding technology to perform various instrumentations for fuel irradiation test. The instrumented fuel irradiation test at a research reactor is needed to evaluate the performance of the developed nuclear fuel. The fuel elements can be designed to measure the center line temperature of fuel pellets during the irradiation test by using temperature sensor. The thermal sensor was composed of thermocouple and sensor sheath. Micro-laser welding technology was adopted to seal between seal tube and sensor sheath with thickness of 0.15mm. The soundness of weld area has to be confirmed to prevent fission gas of the fuel from leaking out of the element during the fuel irradiation test. In this study, fundamental data for micro-laser welding technology was proposed to seal temperature sensor sheath of the instrumented fuel element. And, micro-laser welding for dissimilar metals between sensor sheath and seal tube was characterized by investigating welding conditions. Moreover, the micro-laser welding technology is closely related to advanced industry. It is expected that the laser material processing technology will be adopted to various applications in the industry.

  2. Radiation effects on optical components of a laser radar sensor designed for remote metrology in ITER

    International Nuclear Information System (INIS)

    Menon, M.M.; Grann, E.B.; Slotwinski, A.

    1997-09-01

    A frequency modulated laser radar is being developed for in-vessel metrology and viewing of plasma-facing surfaces. Some optical components of this sensor must withstand intense gamma radiation (3 x 10 6 rad/h) during operation. The authors have tested the effect of radiation on a silica core polarization maintaining optical fiber and on TeO 2 crystals at doses up to ∼ 10 9 rad. Additional tests are planned for evaluating the performance of a complete acousto-optic (AO) scanning device. The progress made in these tests is also described

  3. Edge-TCT for the investigation of radiation damaged silicon strip sensors

    Energy Technology Data Exchange (ETDEWEB)

    Feindt, Finn

    2017-02-15

    The edge Transient Current Technique (TCT) is a method for the investigation of silicon sensors. This method requires infrared light from a sub-ns pulsed laser to be focused to a μm-size spot and scanned across the polished cut edge of a sensor. Electron-hole pairs are generated along the light beam in the sensor. These charge carriers drift in the electric field and induce transient currents on the sensor electrodes. The current transients are analyzed as a function of the applied voltage, temperature, absorbed dose and position of the laser-light focus, in order to determine the the drift velocities, electric field and the charge collection in the strip sensor. In the scope of this work, a new edge-TCT setup is commissioned, a procedure for the polishing of the cut edge is implemented and a method to position the focus of the laser light with respect to the sensor is developed. First edge-TCT measurements are performed on non-irradiated, 285 μm thick n-type strip sensors, and the pulse shape and charge collection is studied under different conditions. Furthermore, the prompt current of the transients is extracted, which is the first step towards the determination of the electric field. A new method to measure the attenuation of light in silicon is tested on a non-irradiated sensor and on sensors irradiated with up to a 1 MeV neutron equivalent fluence of 1.14 x 10{sup 15} cm{sup -2}, using laser light with a wavelength of 1052 nm.

  4. Edge-TCT for the investigation of radiation damaged silicon strip sensors

    International Nuclear Information System (INIS)

    Feindt, Finn

    2017-02-01

    The edge Transient Current Technique (TCT) is a method for the investigation of silicon sensors. This method requires infrared light from a sub-ns pulsed laser to be focused to a μm-size spot and scanned across the polished cut edge of a sensor. Electron-hole pairs are generated along the light beam in the sensor. These charge carriers drift in the electric field and induce transient currents on the sensor electrodes. The current transients are analyzed as a function of the applied voltage, temperature, absorbed dose and position of the laser-light focus, in order to determine the the drift velocities, electric field and the charge collection in the strip sensor. In the scope of this work, a new edge-TCT setup is commissioned, a procedure for the polishing of the cut edge is implemented and a method to position the focus of the laser light with respect to the sensor is developed. First edge-TCT measurements are performed on non-irradiated, 285 μm thick n-type strip sensors, and the pulse shape and charge collection is studied under different conditions. Furthermore, the prompt current of the transients is extracted, which is the first step towards the determination of the electric field. A new method to measure the attenuation of light in silicon is tested on a non-irradiated sensor and on sensors irradiated with up to a 1 MeV neutron equivalent fluence of 1.14 x 10"1"5 cm"-"2, using laser light with a wavelength of 1052 nm.

  5. Sistemas de monitorización inteligentes basados en redes de sensores con aplicaciones militares, medioambientales, en domótica, seguridad y seguimiento

    OpenAIRE

    Artés Rodríguez, Antonio

    2008-01-01

    El Grupo de Tratamiento de Señal (Departamento de Teoría de la Señal y Comunicaciones, Universidad Carlos III de Madrid, España), ofrece su experiencia en el desarrollo de sistemas de monitorización basados en redes de sensores. Las principales ventajas de esta tecnología son la reducción de costes, el ahorro de tiempo de proceso y la mayor fiabilidad de los resultados. Se busca cooperación técnica para el desarrollo con financiación interna y externa.

  6. Sensor development and integration for robotized laser welding

    NARCIS (Netherlands)

    Iakovou, D.

    2009-01-01

    Laser welding requires fast and accurate positioning of the laser beam over the seam trajectory. The task of accurate positioning of the laser tools is performed by robotic systems. It is therefore necessary to teach the robot the path it has to follow. Seam teaching is implemented in several ways:

  7. Multilayer Slab Waveguide Distributed Feedback Dye Laser Sensors

    DEFF Research Database (Denmark)

    Vannahme, Christoph; Smith, Cameron; Leung, M.

    2013-01-01

    of DFB lasers. Here, we present a simple yet precise model for calculating the emission wavelength of multilayer DFB lasers. We ¯nd that experimental and calculated wavelength values are in compelling agreement for hybrid nanoimprinted Ormocomp-TiO2 (doped with Pyrromethene 597) ¯rst order DFB lasers [2...

  8. Sensor integration for robotic laser welding processes

    NARCIS (Netherlands)

    Iakovou, D.; Aarts, Ronald G.K.M.; Meijer, J.; Ostendorf, A; Hoult, A.; Lu, Y.

    2005-01-01

    The use of robotic laser welding is increasing among industrial applications, because of its ability to weld objects in three dimensions. Robotic laser welding involves three sub-processes: seam detection and tracking, welding process control, and weld seam inspection. Usually, for each sub-process,

  9. Calibration technology in application of robot-laser scanning system

    Science.gov (United States)

    Ren, YongJie; Yin, ShiBin; Zhu, JiGui

    2012-11-01

    A system composed of laser sensor and 6-DOF industrial robot is proposed to obtain complete three-dimensional (3-D) information of the object surface. Suitable for the different combining ways of laser sensor and robot, a new method to calibrate the position and pose between sensor and robot is presented. By using a standard sphere with known radius as a reference tool, the rotation and translation matrices between the laser sensor and robot are computed, respectively in two steps, so that many unstable factors introduced in conventional optimization methods can be avoided. The experimental results show that the accuracy of the proposed calibration method can be achieved up to 0.062 mm. The calibration method is also implemented into the automated robot scanning system to reconstruct a car door panel.

  10. Integrating Sensor-Collected Intelligence

    Science.gov (United States)

    2008-11-01

    APPENDIX H: ACRONYMS & GLOSSARY OF TERMS______________________________________________ KML Keyhole Markup Language L LADAR Laser Radar LAN Local... close to the sensor as possible. I endorse the Task Force’s findings and recommendations and encourage you to review the report. Dr. William...deeply-buried targets – require that the relevant sensors be in close proximity to the target. The task force discussed the requirements of close -in

  11. Performance evaluation of multi-sensor data fusion technique for ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Multi-sensor data fusion; Test Range application; trajectory .... Kalman filtering technique utilizes the noise statistics of the underlying system under con- ..... Hall D L 1992 Mathematical techniques in multi-sensor data fusion (Boston, MA: ...

  12. Laser light-section sensor automating the production of textile-reinforced composites

    Science.gov (United States)

    Schmitt, R.; Niggemann, C.; Mersmann, C.

    2009-05-01

    Due to their advanced weight-specific mechanical properties, the application of fibre-reinforced plastics (FRP) has been established as a key technology in several engineering areas. Textile-based reinforcement structures (Preform) in particular achieve a high structural integrity due to the multi-dimensional build-up of dry-fibre layers combined with 3D-sewing and further textile processes. The final composite parts provide enhanced damage tolerances through excellent crash-energy absorbing characteristics. For these reasons, structural parts (e.g. frame) will be integrated in next generation airplanes. However, many manufacturing processes for FRP are still involving manual production steps without integrated quality control. The non-automated production implies considerable process dispersion and a high rework rate. Before the final inspection there is no reliable information about the production status. This work sets metrology as the key to automation and thus an economically feasible production, applying a laser light-section sensor system (LLSS) to measure process quality and feed back the results to close control loops of the production system. The developed method derives 3D-measurements from height profiles acquired by the LLSS. To assure the textile's quality a full surface scan is conducted, detecting defects or misalignment by comparing the measurement results with a CAD model of the lay-up. The method focuses on signal processing of the height profiles to ensure a sub-pixel accuracy using a novel algorithm based on a non-linear least-square fitting to a set of sigmoid functions. To compare the measured surface points to the CAD model, material characteristics are incorporated into the method. This ensures that only the fibre layer of the textile's surface is included and gaps between the fibres or overlaying seams are neglected. Finally, determining the uncertainty in measurement according to the GUM-standard proofed the sensor system's accuracy

  13. A laser-optical sensor system for blade vibration detection of high-speed compressors

    Science.gov (United States)

    Neumann, Mathias; Dreier, Florian; Günther, Philipp; Wilke, Ulrich; Fischer, Andreas; Büttner, Lars; Holzinger, Felix; Schiffer, Heinz-Peter; Czarske, Jürgen

    2015-12-01

    Improved efficiency as well as increased lifetime of turbines and compressors are important goals in turbomachinery development. A significant enhancement to accomplish these aims can be seen in online monitoring of the operating parameters of the machines. During the operation of compressors it is of high interest to predict critical events like flutter or stall which can be achieved by observing blade deformations and vibrations. We have developed a laser Doppler distance sensor (LDDS), which is capable of simultaneously measuring the radial blade expansions, the circumferential blade deflections as well as the circumferential velocities of the rotor blade tips. As a result, an increase of blade vibrations is measured before stall at characteristic frequencies. While the detected vibration frequencies and the vibration increase are in agreement with the measurement results of a commercial capacitive blade tip timing system, the measured values of the vibration amplitudes differ by a factor of three. This difference can be mainly attributed to the different measurement locations and to the different measurement approaches. Since the LDDS is applicable to metal as well as ceramic, carbon-fiber and glass-fiber reinforced composite blades, a universally applicable sensor system for stall prediction and status monitoring is presented.

  14. Single-point relative process using Laser-Doppler velocimetry for calibration of flow sensors at temperatures above 100 C

    International Nuclear Information System (INIS)

    March, J.F.

    1996-01-01

    Due to technical difficulties, the calibration of flow sensors of heat meters above 100 C cannot be performed by the gravimetric standard method. A novel method using a laser Doppler velocimeter (LDV) was therefore developed, based on the gravimetric method below 100 C and on Reynolds' similarity law. This method allows a turbine meter to be calibrated as a secondary flowrate standard with a relative uncertainty below 0,2% for temperatures of up to 180 C. (orig.) [de

  15. Laser tests of silicon detectors

    International Nuclear Information System (INIS)

    Dolezal, Zdenek; Escobar, Carlos; Gadomski, Szymon; Garcia, Carmen; Gonzalez, Sergio; Kodys, Peter; Kubik, Petr; Lacasta, Carlos; Marti, Salvador; Mitsou, Vasiliki A.; Moorhead, Gareth F.; Phillips, Peter W.; Reznicek, Pavel; Slavik, Radan

    2007-01-01

    This paper collects experiences from the development of a silicon sensor laser testing setup and from tests of silicon strip modules (ATLAS End-cap SCT), pixel modules (DEPFET) and large-area diodes using semiconductor lasers. Lasers of 1060 and 680 nm wavelengths were used. A sophisticated method of focusing the laser was developed. Timing and interstrip properties of modules were measured. Analysis of optical effects involved and detailed discussion about the usability of laser testing for particle detectors are presented

  16. Characteristics of the Fiber Laser Sensor System Based on Etched-Bragg Grating Sensing Probe for Determination of the Low Nitrate Concentration in Water.

    Science.gov (United States)

    Pham, Thanh Binh; Bui, Huy; Le, Huu Thang; Pham, Van Hoi

    2016-12-22

    The necessity of environmental protection has stimulated the development of many kinds of methods allowing the determination of different pollutants in the natural environment, including methods for determining nitrate in source water. In this paper, the characteristics of an etched fiber Bragg grating (e-FBG) sensing probe-which integrated in fiber laser structure-are studied by numerical simulation and experiment. The proposed sensor is demonstrated for determination of the low nitrate concentration in a water environment. Experimental results show that this sensor could determine nitrate in water samples at a low concentration range of 0-80 ppm with good repeatability, rapid response, and average sensitivity of 3.5 × 10 -3 nm/ppm with the detection limit of 3 ppm. The e-FBG sensing probe integrated in fiber laser demonstrates many advantages, such as a high resolution for wavelength shift identification, high optical signal-to-noise ratio (OSNR of 40 dB), narrow bandwidth of 0.02 nm that enhanced accuracy and precision of wavelength peak measurement, and capability for optical remote sensing. The obtained results suggested that the proposed e-FBG sensor has a large potential for the determination of low nitrate concentrations in water in outdoor field work.

  17. Characteristics of the Fiber Laser Sensor System Based on Etched-Bragg Grating Sensing Probe for Determination of the Low Nitrate Concentration in Water

    Directory of Open Access Journals (Sweden)

    Thanh Binh Pham

    2016-12-01

    Full Text Available The necessity of environmental protection has stimulated the development of many kinds of methods allowing the determination of different pollutants in the natural environment, including methods for determining nitrate in source water. In this paper, the characteristics of an etched fiber Bragg grating (e-FBG sensing probe—which integrated in fiber laser structure—are studied by numerical simulation and experiment. The proposed sensor is demonstrated for determination of the low nitrate concentration in a water environment. Experimental results show that this sensor could determine nitrate in water samples at a low concentration range of 0–80 ppm with good repeatability, rapid response, and average sensitivity of 3.5 × 10−3 nm/ppm with the detection limit of 3 ppm. The e-FBG sensing probe integrated in fiber laser demonstrates many advantages, such as a high resolution for wavelength shift identification, high optical signal-to-noise ratio (OSNR of 40 dB, narrow bandwidth of 0.02 nm that enhanced accuracy and precision of wavelength peak measurement, and capability for optical remote sensing. The obtained results suggested that the proposed e-FBG sensor has a large potential for the determination of low nitrate concentrations in water in outdoor field work.

  18. Study and development of a laser based alignment system for the compact linear collider

    CERN Document Server

    AUTHOR|(CDS)2083149

    The first objective of the PhD thesis is to develop a new type of positioning sensor to align components at micrometre level over 200 m with respect to a laser beam as straight line reference. The second objective is to estimate the measurement accuracy of the total alignment system over 200 m. The context of the PhD thesis is the Compact Linear Collider project, which is a study for a future particle accelerator. The proposed positioning sensor is made of a camera and an open/close shutter. The sensor can measure the position of the laser beam with respect to its own coordinate system. To do a measurement, the shutter closes, a laser spot appears on it, the camera captures a picture of the laser spot and the coordinates of the laser spot centre are reconstructed in the sensor coordinate system with image processing. Such a measurement requires reference targets on the positioning sensor. To reach the rst objective of the PhD thesis, we used laser theory...

  19. Distance Support In-Service Engineering for the High Energy Laser

    Science.gov (United States)

    2015-03-01

    FEL only) o Isoplanatic angle (if available) o Fried coherence length o Object distance o Dwell time o Laser spot size While many of the items...system and the HEL system. Acquisition Sensor Laser Subsystem Beam Shaping Sensor Suile . Range Finder -. Coarse Tracker . Fine Tracker Optical...distribution is unlimited DISTANCE SUPPORT IN-SERVICE ENGINEERING FOR THE HIGH ENERGY LASER by Team Raising HEL from a Distance Cohort 311-133O March

  20. Intraluminal laser atherectomy with ultrasound and electromagnetic guidance

    Science.gov (United States)

    Gregory, Kenton W.; Aretz, H. Thomas; Martinelli, Michael A.; LeDet, Earl G.; Hatch, G. F.; Gregg, Richard E.; Sedlacek, Tomas; Haase, Wayne C.

    1991-05-01

    The MagellanTM coronary laser atherectomy system is described. It uses high- resolution ultrasound imaging and electromagnetic sensing to provide real-time guidance and control of laser therapy in the coronary arteries. The system consists of a flexible catheter, an electromagnetic navigation antenna, a sensor signal processor and a computer for image processing and display. The small, flexible catheter combines an ultrasound transducer and laser delivery optics, aimed at the artery wall, and an electromagnetic receiving sensor. An extra-corporeal electromagnetic transmit antenna, in combination with catheter sensors, locates the position of the ultrasound and laser beams in the artery. Navigation and ultrasound data are processed electronically to produce real-time, transverse, and axial cross-section images of the artery wall at selected locations. By exploiting the ability of ultrasound to image beneath the surface of artery walls, it is possible to identify candidate treatment sites and perform safe radial laser debulking of atherosclerotic plaque with reduced danger of perforation. The utility of the system in plaque identification and ablation is demonstrated with imaging and experimental results.

  1. Seguridad del paciente en la cirugía refractiva con láser Safety of the patients in the refractive surgery with laser

    Directory of Open Access Journals (Sweden)

    Yureisi Labarrere Cruz

    2012-06-01

    Full Text Available Objetivo: Describir aspectos relacionados con la seguridad del paciente en la cirugía refractiva con láser y enumerar las medidas para disminuir el riesgo de complicaciones. Métodos: Se realizó un estudio descriptivo transversal. El universo de estudio y la muestra se conformó por 11 720 ojos correspondientes a 5 955 pacientes que fueron intervenidos de cirugía refractiva con láser de excímeros entre los años 2005 y 2009 en el salón de cirugía refractiva del Instituto Cubano de Oftalmología "Ramón Pando Ferrer". Los datos se presentaron en tablas y gráficos, procesados en el paquete estadístico Statgraph Plus 50. Resultados: El número de ojos operados tuvo un aumento progresivo y su mayor representación en los años 2008 y 2009 (24,5 % y 25,1 %, respectivamente. Las complicaciones representaron 0,74 % del total de ojos intervenidos y con tendencia a la disminución en el tiempo. Conclusión: Existe un aumento en la demanda de la cirugía refractiva por láser en nuestro medio para la corrección de los defectos refractivos. Es necesario cumplir un conjunto de medidas que disminuyen la presencia de complicaciones, así se brinda mayor seguridad al paciente.Objective: To Identify and to describe aspects of the patient's safety in the refractive surgery with laser, as well as the measures to reduce the risk of complications. Methods: A cross-sectional descriptive study was undertaken. The universe of study was the sample of 11 720 eyes from 5 955 patients who had undergone refractive surgery with excímer laser from 2005 to 2009 in Refractive Surgery service of ¨Ramón Pando Ferrer¨ Cuban Institute of Ophthalmology. Data was processed by Statgraph Plus 50 package and presented in charts and graphics. Results: The number of operated eyes progressively increased and the biggest figure was reached in 2008 and 2009, accounting for 24.5% and 25.1% respectively. The complications occurred in 0.74 % of the total of operated eyes, with a

  2. Tactile Sensing From Laser-Ablated Metallized PET Films

    KAUST Repository

    Nag, Anindya

    2016-10-17

    This paper reports the design, fabrication, and implementation of a novel sensor patch developed from commercial polyethylene terephthalate films metallized with aluminum on one side. The aluminum was ablated with laser to form interdigitated electrodes to make sensor prototypes. The interdigitated electrodes were patterned on the substrate with a laser cutter. Characterization of the prototypes was done to determine their operating frequency followed by experimentation. The prototypes have been used as a tactile sensor showing promising results for using these patches in applications with contact pressures considerably lesser than normal human contact pressure.

  3. All-plastic fiber-based pressure sensor

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Lwin, Richard; Leon-Saval, Sergio

    2016-01-01

    We present a feasibility study and a prototype of an all-plastic fiber-based pressure sensor. The sensor is based on long period gratings inscribed for the first time to the best of our knowledge by a CO2 laser in polymethyl methacrylate (PMMA) microstructured fibers and coupled to a pod......-like transducer that converts pressure to strain. The sensor prototype was characterized for pressures up to 150 mbars, and various parameters related to its construction were also characterized in order to enhance sensitivity. We consider this sensor in the context of future applications in endoscopic pressure...... sensors....

  4. Optical fiber powered pressure sensor

    International Nuclear Information System (INIS)

    Schweizer, P.; Neveux, L.; Ostrowsky, D.B.

    1987-01-01

    In the system described, a pressure sensor and its associated electronics are optically powered by a 20 mw laser and a photovoltaic cell via an optical fiber. The sensor is periodically interrogated and sends the measures obtained back to the central unit using an LED and a second fiber. The results obtained as well as the expected evolution will be described

  5. An edge-TCT setup for the investigation of radiation damaged silicon sensors

    Energy Technology Data Exchange (ETDEWEB)

    Feindt, Finn; Scharf, Christian; Garutti, Erika; Klanner, Robert [Institute for Experimental Physics, Hamburg University, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    2016-07-01

    The aim of this work is to measure the electric field, drift velocity and charge collection of electrons and holes in radiation-damaged silicon strip sensors. For this purpose the edge Transient Current Technique (TCT) is employed. In contrast to conventional TCT, this method requires light from a sub-ns pulsed, infrared laser to be focused to a μm-size spot and scanned across the polished edge of a strip sensor. Thus electron-hole pairs are generated at a known depth in the sensor. Electrons and holes drift in the electric field and induce transient currents on the sensor electrodes. The current wave forms are analyzed as a function of the applied voltage and the position of the laser focus in order to determine the electric field, the drift velocities and the charge collection. In this talk the setup and the procedure for polishing the sensor edge are described, and first results, regarding the measurement of the laser light focus are presented.

  6. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya

    2018-01-30

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  7. Development of printed sensors for taste sensing

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas; Kosel, Jü rgen

    2018-01-01

    The paper presents an idea of developing taste sensors using novel printed sensors. The raw materials used for developing the sensors were commercial polymer films. Powered graphene was produced using laser induction technique. This powder was separately transferred to Kapton tapes to developed flexible graphene sensors. The fabricated sensors were tested with different chemicals having specific attributes with the idea to develop a taste sensor. Three different types of chemicals were tested and analyzed to verify the ability of the developed sensor patch to differentiate between the individual chemicals. The initial results have provided a significant platform in the process of developing a fully functionalized taste sensing system.

  8. Utilizing an open-microcavity optoacoustic sensor for spectroscopic determination of methemoglobin concentration

    Science.gov (United States)

    Peterson, Ralph W.; Kadugodinandareddy, Kavya; Karunakaran, Vinitha; Whitney, Casey; Ling, Jian; Ye, Jing Yong

    2015-03-01

    We present a simple, non-destructive photoacoustic spectroscopy method utilizing a unique open-microcavity optoacoustic sensor to measure the concentration ratio of Methemoglobin (MetHb) in an optically scattering medium. Elevated levels of MetHb, present for example in the blood disorder Methemeglobinemia, cannot be detected by conventional pulse oximetry, and may result in inaccurate arterial oxygen saturation measurements. Samples with different ratios of Oxygenated Hemoglobin (HbO2), Deoxygenated Hemoglobin (HHb), and MetHb were obtained and mixed with nanoscale latex beads to present an optical scattering effect. Polymer encapsulated hemoglobin (PEH) samples were also studied. A sample chamber containing 20 μL of each sample was positioned directly underneath our patented optoacoustic sensor. Unlike a piezoelectric transducer, our optoacoustic sensor allows an excitation laser beam from an OPO laser to pass through and be absorbed by the sample to produce a photoacoustic signal. The cavity layer of the optoacoustic sensor is exposed directly to the resulting ultrasound signal, which causes an intensity modulation of a HeNe laser that is used to monitor the resonance condition of the sensor. A probe laser beam is total internally reflected off of the sensor and detected with a fiber-coupled APD detector. Three wavelengths are chosen for our excitation laser based on the absorption peaks and isobestic points of HHb, HbO2, and MetHb. Using established values of the molar extinction coefficients of HbO2, HHb, and MetHb a set of three simultaneous equations can be solved to accurately determine the concentration ratio of MetHb.

  9. Photo-acoustic sensor based on an inexpensive piezoelectric film transducer and an amplitude-stabilized single-mode external cavity diode laser for in vitro measurements of glucose concentration

    Science.gov (United States)

    Bayrakli, Ismail; Erdogan, Yasar Kemal

    2018-06-01

    The present paper focuses on development of a compact photo-acoustic sensor using inexpensive components for glucose analysis. An amplitude-stabilized wavelength-tunable single-mode external cavity diode laser operating around 1050 nm was realized and characterized for the use of laser beam as an excitation light source. In the established setup, a fine tuning range of 9 GHz was achieved. The glucose solution was obtained by diluting D-glucose in sterile water. The acoustic signal generated by the optical excitation was detected via a chip piezoelectric film transducer. A detection limit of 50 mM (900 mg/dl) was achieved. The device may be of great interest for its applications in medicine and health monitoring. The sensor is promising for non-invasive in vivo glucose measurements from interstitial fluid.

  10. Low Power Greenhouse Gas Sensors for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    David J. Lary

    2012-05-01

    Full Text Available We demonstrate compact, low power, lightweight laser-based sensors for measuring trace gas species in the atmosphere designed specifically for electronic unmanned aerial vehicle (UAV platforms. The sensors utilize non-intrusive optical sensing techniques to measure atmospheric greenhouse gas concentrations with unprecedented vertical and horizontal resolution (~1 m within the planetary boundary layer. The sensors are developed to measure greenhouse gas species including carbon dioxide, water vapor and methane in the atmosphere. Key innovations are the coupling of very low power vertical cavity surface emitting lasers (VCSELs to low power drive electronics and sensitive multi-harmonic wavelength modulation spectroscopic techniques. The overall mass of each sensor is between 1–2 kg including batteries and each one consumes less than 2 W of electrical power. In the initial field testing, the sensors flew successfully onboard a T-Rex Align 700E robotic helicopter and showed a precision of 1% or less for all three trace gas species. The sensors are battery operated and capable of fully automated operation for long periods of time in diverse sensing environments. Laser-based trace gas sensors for UAVs allow for high spatial mapping of local greenhouse gas concentrations in the atmospheric boundary layer where land/atmosphere fluxes occur. The high-precision sensors, coupled to the ease-of-deployment and cost effectiveness of UAVs, provide unprecedented measurement capabilities that are not possible with existing satellite-based and suborbital aircraft platforms.

  11. Pulsed Laser Deposition: passive and active waveguides

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Flory, F.; Escoubas, L.

    2009-01-01

    Roč. 34, č. 4 (2009), s. 438-449 ISSN 0268-1900 R&D Projects: GA ČR GA202/06/0216 Institutional research plan: CEZ:AV0Z10100522 Keywords : PLD * pulsed laser deposition * laser ablation * passive waveguides * active waveguides * waveguide laser * sensors * thin films * butane detection Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.384, year: 2009

  12. Electric field measurements with electro-optical sensor

    International Nuclear Information System (INIS)

    Brambilla, R.

    1992-03-01

    When electric field calculations on the surface of electrodes and electrical insulation present difficulties due to complex geometries and diverse dielectric properties, it is sometimes very useful to resort to direct measurements. However, conventional probes, based on the capacitive effect, are not quite suitable for this purpose due to strong perturbations introduced by probes themselves and to difficulties in isolating the sensors from the instrumentation at points of measurement with a high potential. To avoid these difficulties, a measurement system was developed which incorporates a Pockels effect crystal sensor, a moveable HeNe laser beam for signal transmission and beam polarization modulation, and a laser beam analyzer which detects variations in polarization induced by the sensor. This paper describes the key design, operation and performance characteristics of this device

  13. A portable readout system for silicon microstrip sensors

    International Nuclear Information System (INIS)

    Marco-Hernandez, Ricardo

    2010-01-01

    This system can measure the collected charge in one or two microstrip silicon sensors by reading out all the channels of the sensor(s), up to 256. The system is able to operate with different types (p- and n-type) and different sizes (up to 3 cm 2 ) of microstrip silicon sensors, both irradiated and non-irradiated. Heavily irradiated sensors will be used at the Super Large Hadron Collider, so this system can be used to research the performance of microstrip silicon sensors in conditions as similar as possible to the Super Large Hadron Collider operating conditions. The system has two main parts: a hardware part and a software part. The hardware part acquires the sensor signals either from external trigger inputs, in case of a radioactive source setup is used, or from a synchronised trigger output generated by the system, if a laser setup is used. The software controls the system and processes the data acquired from the sensors in order to store it in an adequate format. The main characteristics of the system are described. Results of measurements acquired with n- and p-type detectors using both the laser and the radioactive source setup are also presented and discussed.

  14. Surface Effects in Segmented Silicon Sensors

    OpenAIRE

    Kopsalis, Ioannis

    2017-01-01

    Silicon detectors in Photon Science and Particle Physics require silicon sensors with very demanding specifications. New accelerators like the European X-ray Free Electron Laser (EuXFEL) and the High Luminosity upgrade of the Large Hadron Collider (HL-LHC), pose new challenges for silicon sensors, especially with respect to radiation hardness. High radiation doses and fluences damage the silicon crystal and the SiO2 layers at the surface, thus changing the sensor properties and limiting their...

  15. Microphotonic sensors for the rapid detection of the presence of explosive gas mixtures

    Science.gov (United States)

    McNesby, Kevin L.; Miziolek, Andrzej W.

    2002-02-01

    A first generation, microphotonic sensor for rapid (10 ms response time) measurement of vapors from the hydrocarbon-based fuels JP-8, DF-2, and gasoline has been developed at the U.S. Army Research Laboratory. This sensor is based upon a previously reported laser mixing technique that uses two tunable diode lasers emitting in the near-infrared spectral region to measure concentrations of gases having unstructured absorption spectra. The fiber-mixed laser beam consists of two wavelengths, one of which is absorbed by the fuel vapor, and one of which is not absorbed. By sinusoidally modulating the power of the two lasers at the same frequency but 180 degrees out of phase, a sinusoidal signal is generated at the detector (when the target gas is present in the line of sight). The signal amplitude, measured using standard phase sensitive detection techniques, is proportional to fuel vapor concentration. A second generation sensor, designed to measure the full envelope of the first overtone C-H vibrations in middle distillate fuels is currently being developed. Both sensors are described. Limits of detection using the first generation sensor are reported for vapors of the three fuels studied.

  16. Online NIR diagnostic of laser welding processes and its potential for quality assuring sensor systems

    Science.gov (United States)

    Dorsch, Friedhelm; Braun, Holger; Keβler, Steffen; Pfitzner, Dieter; Rominger, Volker

    2014-02-01

    We have integrated an imaging thermographic sensor into commercial welding optics for observation of the weld zone. Key element of the sensor is an InGaAs-camera that detects the thermal radiation of the welding process in the wavelength range of 1,200 to 1,700 nm. This is well suited to record images of the keyhole, the melt pool and the thermal trace. The sensor was integrated to the welding heads for on-axis observation to minimize the interfering contour to ensure easy adaption to industrial processes. The welding heads used were established industrial-grade TRUMPF optics: a BEO fixed optics with 280 mm focal length, or a TRUMPF PFO-3D scanner optics with 450 mm focal length. We used a TRUMPF TruDisk 16002 16kW-thin disk laser that transmits its power through a 200 μm core diameter light cable. The images were recorded and features of the various process zones were evaluated by image processing. It turns out that almost all weld faults can be clearly detected in the NIR images. Quantitative features like the dimension of the melt pool and the thermal trace can be derived from the captured images. They are correlated to process input parameters as well as to process results. In contrast to observation in the visible spectrum the NIR camera records the melt pool without auxiliary illumination. As an unrivaled attribute of the NIR sensor it supports an online heat flow thermography of the seam and allows identifying missing fusion ("false friends") of lap joints virtually during the welding process. Automated weld fault detection and documentation is possible by online image processing which sets the basis for comprehensive data documentation for quality assurance and traceability.

  17. VIDRIADO CON LÁSER DE Nd: YAG SOBRE AZULEJOS RECUBIERTOS DE BARNICES DE COBALTO CON FRITA BORÁCICA Y SIN FRITA VIDRADO COM Laser De Nd: YAG SOBRE AZULEJOS RECOBERTOS DE VERNIZES DE COBALTO COM FRITA BORÁCICA E SEM FRITA Nd: YAG LASER ENAMELING ON GLAZED TILES COATED WITH COBALT VARNISHES WITH AND WITHOUT BORAX FRIT

    Directory of Open Access Journals (Sweden)

    Maryory Astrid Gómez

    2010-07-01

    Full Text Available Las industrias de materiales cerámicos y arquitectónicos emplean diferentes técnicas de marcado con dos aplicaciones clásicas, para identificación y decoración de piezas elaboradas. La utilización de técnicas láser para estos propósitos se viene implementando de forma creciente, debido a las ventajas que presenta respecto al horneado convencional: la concentración del calor sólo en la zona irradiada, lo que conlleva un menor consumo de energía sin afectar significativamente el resto de la pieza; se obtienen patrones gráficos de alta resolución espacial; permite introducir cambios durante el proceso sin requerir largas paradas, y la generación de residuos es mínima o casi nula. En este estudio se presentan los resultados obtenidos en el vidriado con láser Nd:YAG (l=1064 nm sobre las superficies esmaltadas de azulejos, las cuales fueron previamente recubiertas con pigmento cerámico negro de cobalto y un barniz constituido por este mismo pigmento y frita borácica. Con el láser operando en modo continuo (CW, se marcaron una serie de líneas, cuyo ancho y profundidad evidenciaron una dependencia directa, con la variación de la potencia y velocidad de desplazamiento del haz láser sobre la superficie del azulejo. Finalmente estas líneas vidriadas fueron analizadas por microscopía óptica, espectroscopia de dispersión de energía (EDS y difracción de rayos X.As indústrias de materiais cerâmicos e arquitetônicos empregam diferentes técnicas de marcado com duas aplicações clássicas, para identificação e decorações de peças elaboradas. A utilização de técnicas laser para estes propósitos se vem executando de forma crescente, devido às vantagens que apresenta respeito ao assado convencional: concentração do calor só na zona irradiada, o que comporta um menor consumo de energia sem afetar significativamente o resto da peça; obtêm-se patrões gráficos de alta resolução espacial; permite introduzir mudan

  18. CMOS Active-Pixel Image Sensor With Intensity-Driven Readout

    Science.gov (United States)

    Langenbacher, Harry T.; Fossum, Eric R.; Kemeny, Sabrina

    1996-01-01

    Proposed complementary metal oxide/semiconductor (CMOS) integrated-circuit image sensor automatically provides readouts from pixels in order of decreasing illumination intensity. Sensor operated in integration mode. Particularly useful in number of image-sensing tasks, including diffractive laser range-finding, three-dimensional imaging, event-driven readout of sparse sensor arrays, and star tracking.

  19. Velocimetry using scintillation of a laser beam for a laser-based gas-flux monitor

    Science.gov (United States)

    Kagawa, Naoki; Wada, Osami; Koga, Ryuji

    1999-05-01

    This paper describes a velocimetry system using scintillation of a laser-beam with spatial filters based on sensor arrays for a laser- based gas flux monitor. In the eddy correlation method, gas flux is obtained by mutual relation between the gas density and the flow velocity. The velocimetry system is developed to support the flow velocity monitor portion of the laser-based gas flux monitor with a long span for measurement. In order to sense not only the flow velocity but also the flow direction, two photo diode arrays are arranged with difference of a quarter period of the weighting function between them; the two output signals from the sensor arrays have phase difference of either (pi) /2 or -(pi) /2 depending on the sense of flow direction. In order to obtain the flow velocity and the flow direction instantly, an electronic apparatus built by the authors extracts frequency and phase from crude outputs of the pair of sensors. A feasibility of the velocimetry was confirmed indoors by measurement of the flow- velocity vector of the convection. Measured flow-velocity vector of the upward flow agreed comparatively with results of an ultrasonic anemometer.

  20. Polymer-based blood vessel models with micro-temperature sensors in EVE

    Science.gov (United States)

    Mizoshiri, Mizue; Ito, Yasuaki; Hayakawa, Takeshi; Maruyama, Hisataka; Sakurai, Junpei; Ikeda, Seiichi; Arai, Fumihito; Hata, Seiichi

    2017-04-01

    Cu-based micro-temperature sensors were directly fabricated on poly(dimethylsiloxane) (PDMS) blood vessel models in EVE using a combined process of spray coating and femtosecond laser reduction of CuO nanoparticles. CuO nanoparticle solution coated on a PDMS blood vessel model are thermally reduced and sintered by focused femtosecond laser pulses in atmosphere to write the sensors. After removing the non-irradiated CuO nanoparticles, Cu-based microtemperature sensors are formed. The sensors are thermistor-type ones whose temperature dependences of the resistance are used for measuring temperature inside the blood vessel model. This fabrication technique is useful for direct-writing of Cu-based microsensors and actuators on arbitrary nonplanar substrates.

  1. Development of sensor system built into a robot hand toward environmental monitoring

    International Nuclear Information System (INIS)

    Kaneko, Kenji; Ueshiba, Toshio; Yoshimi, Takashi; Kawai, Yoshihiro; Morisawa, Mitsuharu; Kanehiro, Fumio; Yokoi, Kazuhito

    2015-01-01

    The development of sensor system that is built into a hand of a humanoid robot toward environmental monitoring is presented in this paper. The developed system consists of a color C-MOS camera, a laser projector with a lens distributing a laser light, and a LED projector. The sensor system can activate/disable these components according to the purpose. This paper introduces the design process, pre-experimental results for evaluating components, and the specifications of the developed sensor system together with experimental results. (author)

  2. Sensor-guided threat countermeasure system

    Science.gov (United States)

    Stuart, Brent C.; Hackel, Lloyd A.; Hermann, Mark R.; Armstrong, James P.

    2012-12-25

    A countermeasure system for use by a target to protect against an incoming sensor-guided threat. The system includes a laser system for producing a broadband beam and means for directing the broadband beam from the target to the threat. The countermeasure system comprises the steps of producing a broadband beam and directing the broad band beam from the target to blind or confuse the incoming sensor-guided threat.

  3. Laser-boosted lightcraft technology demonstrator

    Science.gov (United States)

    Richard, J. C.; Morales, C.; Smith, W. L.; Myrabo, L. N.

    1990-01-01

    The detailed description and performance analysis of a 1.4 meter diameter Lightcraft Technology Demonstator (LTD) is presented. The launch system employs a 100 MW-class ground-based laser to transmit power directly to an advanced combined-cycle engine that propels the 120 kg LTD to orbit - with a mass ratio of two. The single-stage-to-orbit (SSTO) LTD machine then becomes an autonomous sensor satellite that can deliver precise, high quality information typical of today's large orbital platforms. The dominant motivation behind this study is to provide an example of how laser propulsion and its low launch costs can induce a comparable order-of-magnitude reduction in sensor satellite packaging costs. The issue is simply one of production technology for future, survivable SSTO aerospace vehicles that intimately share both laser propulsion engine and satellite functional hardware.

  4. Gas Sensing Properties of Metal Doped WO3 Thin Film Sensors Prepared by Pulsed Laser Deposition and DC Sputtering Process

    Science.gov (United States)

    Bhuiyan, Md. Mosharraf Hossain; Ueda, Tsuyoshi; Ikegami, Tomoaki; Ebihara, Kenji

    2006-10-01

    Tungsten trioxide (WO3) thin films gas sensors were prepared by the KrF excimer pulsed laser deposition (PLD) method. The films were prepared on the quartz glass, silicon and also on the Al2O3 sensor substrates with platinum interdigitated electrodes. The effect of doping of the platinum (Pt), palladium (Pd) or gold (Au) on the WO3 thin film was also investigated. These metals were doped to the WO3 thin film by the DC sputtering process during the PLD. The substrate temperature and the oxygen pressure were 400 °C and 100 mTorr, respectively, during the deposition. The films were characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The sensitivity of the prepared sensors to 60 ppm NO gas was examined using the two terminal resistance method in a chamber at atmospheric pressure and operating temperatures of 25-350 °C. The sensitivity of the WO3 thin films doped with Pt, Pd, or Au was found to be higher than that of the undoped WO3 thin film.

  5. A simulator for airborne laser swath mapping via photon counting

    Science.gov (United States)

    Slatton, K. C.; Carter, W. E.; Shrestha, R.

    2005-06-01

    Commercially marketed airborne laser swath mapping (ALSM) instruments currently use laser rangers with sufficient energy per pulse to work with return signals of thousands of photons per shot. The resulting high signal to noise level virtually eliminates spurious range values caused by noise, such as background solar radiation and sensor thermal noise. However, the high signal level approach requires laser repetition rates of hundreds of thousands of pulses per second to obtain contiguous coverage of the terrain at sub-meter spatial resolution, and with currently available technology, affords little scalability for significantly downsizing the hardware, or reducing the costs. A photon-counting ALSM sensor has been designed by the University of Florida and Sigma Space, Inc. for improved topographic mapping with lower power requirements and weight than traditional ALSM sensors. Major elements of the sensor design are presented along with preliminary simulation results. The simulator is being developed so that data phenomenology and target detection potential can be investigated before the system is completed. Early simulations suggest that precise estimates of terrain elevation and target detection will be possible with the sensor design.

  6. Development of pulse laser processing for mounting fiber Bragg grating

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Aikihko; Shimada, Yukihiro; Yonemoto, Yukihiro; Suzuki, Hirokazu; Ishibashi, Hisayoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, 8-1-7 Umebidai Kidugawa Kyoto 619-0215 (Japan); Applied Laser Technology Institute, Tsuruga Head Office, Japan Atomic Energy Agency, 65-20 Kizaki Tsuruga Fukui 914-8585 (Japan); Technical Research and Development Institute, Kumagai Gumi Co., Ltd., 2-1 Tsukudo, Shinjuku Tokyo 162-8557 (Japan)

    2012-07-11

    Pulse laser processing has been developed for the application of industrial plants in monitoring and maintenance. Surface cleaning by nano-second laser ablation was demonstrated for decontamination of oxide layers of Cr contained steel. Direct writing by femtosecond processing induced a Bragg grating in optical fiber to make it a seismic sensor for structural health monitoring. Adhesive cement was used to fix the seismic sensor on the surface of reactor coolant pipe material. Pulse laser processing and its related technologies were presented to overcome the severe accidents of nuclear power plants.

  7. Erbium-doped fiber ring laser with SMS modal interferometer for hydrogen sensing

    Science.gov (United States)

    Zhang, Ya-nan; Zhang, Lebin; Han, Bo; Peng, Huijie; Zhou, Tianmin; Lv, Ri-qing

    2018-06-01

    A hydrogen sensor based on erbium-doped fiber ring laser with modal interferometer is proposed. A single mode-multimode-single mode (SMS) modal interferometer structure coated with Pd/WO3 film is used as the sensing head, due to that it is easy to be fabricated and low cost. The sensing structure is inserted into an erbium-doped fiber ring laser in order to solve the problem of spectral confusion and improve the detection limit of the hydrogen sensor based on the SMS modal interferometer. The SMS sensing structure is acted as a fiber band-pass filter. When hydrogen concentration around the sensor is changed, it will induce the refractive index and strain variations of the Pd/WO3 film, and then shift the resonant spectrum of the SMS modal interferometer as well as the laser wavelength of the fiber ring laser. Therefore, the hydrogen concentration can be measured by monitoring the wavelength shift of the laser, which has high intensity and narrow full width half maximum. Experimental results demonstrate that the sensor has high sensitivity of 1.23 nm/%, low detection limit of 0.017%, good stability and excellent repeatability.

  8. Position control of ECRH launcher mirrors by laser speckle sensor

    International Nuclear Information System (INIS)

    Michelsen, Poul K.; Bindslev, Henrik; Hansen, Rene Skov; Hanson, Steen G.

    2003-01-01

    The planned ECRH system for JET included several fixed and steerable mirrors some of which should have been fixed to the building structure and some to the JET vessel structure. A similar system may be anticipated for ITER and for other fusion devices in the future. In order to have high reproducibility of the ECRH beam direction, it is necessary to know the exact positions of the mirrors. This is not a trivial problem because of thermal expansion of the vessel structures and of the launcher itself and of its support structure, the mechanical load on mirrors and support structures, and the accessibility to the various mirrors. We suggest to use a combination of infrared diagnostic of beam spot positions and a new technique published recently, which is based on a non-contact laser speckle sensor for measuring one- and two-dimensional angular displacement. The method is based on Fourier transforming the scattered field from a single laser beam that illuminates the target. The angular distribution of the light field at the target is linearly mapped onto an array image sensor placed in the Fourier plane. Measuring the displacement of this so-called speckle pattern facilitates the determination of the mirror orientation. Transverse target movement can be measured by observing the speckle movement in the image plane of the object. No special surface treatment is required for surfaces having irregularities of the order of or larger than the wavelength of the incident light. For the JET ECRH launcher it is mainly for the last mirror pointing towards the plasma where the technique may be useful. This mirror has to be steerable in order to reflect the microwave beam in the correct direction towards the plasma. Maximum performance of the microwave heating requires that the beam hits this mirror at its centre and that the mirror is turned in the correct angle. Inaccuracies in the positioning of the pull rods for controlling the mirror turning and thermal effects makes it

  9. Development of an auto-welding system for CRD nozzle repair welds using a 3D laser vision sensor

    International Nuclear Information System (INIS)

    Park, K.; Kim, Y.; Byeon, J.; Sung, K.; Yeom, C.; Rhee, S.

    2007-01-01

    A control rod device (CRD) nozzle attaches to the hemispherical surface of a reactor head with J-groove welding. Primary water stress corrosion cracking (PWSCC) causes degradation in these welds, which requires that these defect areas be repaired. To perform this repair welding automatically on a complicated weld groove shape, an auto-welding system was developed incorporating a laser vision sensor that measures the 3-dimensional (3D) shape of the groove and a weld-path creation program that calculates the weld-path parameters. Welding trials with a J-groove workpiece were performed to establish a basis for developing this auto-welding system. Because the reactor head is placed on a lay down support, the outer-most region of the CRD nozzle has restricted access. Due to this tight space, several parameters of the design, such as size, weight and movement of the auto-welding system, had to be carefully considered. The cross section of the J-groove weld is basically an oval shape where the included angle of the J-groove ranges from 0 to 57 degrees. To measure the complex shape, we used double lasers coupled to a single charge coupled device (CCD) camera. We then developed a program to generate the weld-path parameters using the measured 3D shape as a basis. The program has the ability to determine the first and final welding positions and to calculate all weld-path parameters. An optimized image-processing algorithm was applied to resolve noise interference and diffused reflection of the joint surfaces. The auto-welding system is composed of a 4-axis manipulator, gas tungsten arc welding (GTAW) power supply, an optimized designed and manufactured GTAW torch and a 3D laser vision sensor. Through welding trials with 0 and 38-degree included-angle workpieces with both J-groove and U-groove weld, the performance of this auto-welding system was qualified for field application

  10. A novel method for length of chirped fiber Bragg grating sensor

    Science.gov (United States)

    Li, Zhenwei; Wei, Peng; Liu, Taolin

    2018-03-01

    Length of chirped fiber Bragg grating sensor is very important for detonation velocity. Different from other ways, we proposed a novel method based on the optical frequency domain reflection theory to measure the length of chirped fiber grating sensor in non-contact condition. This method adopts a tunable laser source to provide wavelength scanning laser, which covers the Full Width at Half Maximum of spectrum of the chirped fiber Bragg grating sensor. A Michelson interferometer is used to produce optical interference signal. Finally, the grating's length is attainable by distance domain signal. In theory, length resolution of chirped fiber Bragg grating sensor could be 0.02 mm. We perform a series of length measurement experiments for chirped fiber grating sensor, including comparison experiments with hot-tip method. And the experiment results show that the novel method could accurately measure the length of chirped fiber Bragg grating sensors, and the length differences between the optical frequency domain reflection method and the hot-tip probe method are very small.

  11. Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor

    Science.gov (United States)

    Brandstetter, M.; Volgger, L.; Genner, A.; Jungbauer, C.; Lendl, B.

    2013-02-01

    This work reports on a compact sensor for fast and reagent-free point-of-care determination of glucose, lactate and triglycerides in blood serum based on a tunable (1030-1230 cm-1) external-cavity quantum cascade laser (EC-QCL). For simple and robust operation a single beam set-up was designed and only thermoelectric cooling was used for the employed laser and detector. Full computer control of analysis including liquid handling and data analysis facilitated routine measurements. A high optical pathlength (>100 μm) is a prerequisite for robust measurements in clinical practice. Hence, the optimum optical pathlength for transmission measurements in aqueous solution was considered in theory and experiment. The experimentally determined maximum signal-to-noise ratio (SNR) was around 140 μm for the QCL blood sensor and around 50 μm for a standard FT-IR spectrometer employing a liquid nitrogen cooled mercury cadmium telluride (MCT) detector. A single absorption spectrum was used to calculate the analyte concentrations simultaneously by using a partial-least-squares (PLS) regression analysis. Glucose was determined in blood serum with a prediction error (RMSEP) of 6.9 mg/dl and triglycerides with an error of cross-validation (RMSECV) of 17.5 mg/dl in a set of 42 different patients. In spiked serum samples the lactate concentration could be determined with an RMSECV of 8.9 mg/dl.

  12. A Laser Metrology/Viewing System for ITER In-Vessel Inspection

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M.; Dagher, M.A.; Slotwinski, A.

    1997-10-01

    This paper identifies the requirements for a remotely operated precision laser ranging system for the International Thermonuclear Experimental Reactor. The inspection system is used for metrology and viewing, and must be capable of achieving submillimeter accuracy and operation in a reactor vessel that has high gamma radiation, high vacuum, elevated temperature, and magnetic field levels. A coherent, frequency modulated laser radar system is under development to meet these requirements. The metrology/viewing sensor consists of a compact laser-optic module linked through fiberoptics to the laser source and imaging units, located outside the harsh environment. The deployment mechanism is a remotely operated telescopic mast. Gamma irradiation up to 10 7 Gy was conducted on critical sensor components with no significant impact to data transmission, and analysis indicates that critical sensor components can operate in a magnetic field with certain design modifications. Plans for testing key components in a magnetic field are underway

  13. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui

    2017-01-01

    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  14. APLICACIONES DE LA QUÍMICA SUPRAMOLECULAR: SÍNTESIS DE UN SENSOR CON PROPIEDADES FLUORESCENTES EN SOLUCIÓN Y EN FASE SÓLIDA PARA LA DETECCIÓN SELECTIVA DE LITIO

    Directory of Open Access Journals (Sweden)

    Hisila Santacruz Ortega

    2016-06-01

    Full Text Available El presente trabajo reporta la síntesis de un nuevo sensor fluorescente de cadena abierta tipo biscromofórico con grupos éter y aminos como unidades receptoras y naftaleno como unidad indicadora (L1, y la síntesis del ligante (M1 por el método de síntesis orgánica en fase sólida (SOFS soportado en resina de Merrifield el cual presenta una estructura similar a L1; para ambos ligantes se llevaron a cabo estudios de complejación por la técnica de fluorescencia con los metales alcalinos Li+, Na+ y K+. Los estudios de complejación con M1 mostraron un aumento de la fluorescencia en presencia de Li+ y Na+, y una respuesta nula en presencia de K+, mientras que L1 presenta una respuesta incremento de fluorescencia para Li+, con un aumento de 1.2 veces en la intensidad de la banda emisión de monómero y 6 veces en la banda de emisión de excímero; Na+ y K+ no afectan la fluorescencia de L1.

  15. Advanced Sensors for Airborne Magnetic Measurements

    National Research Council Canada - National Science Library

    Bobb, L

    2001-01-01

    Numerous ground tests and platform tests were conducted to evaluate platform integration issues and the performance of the POLATOMIC 2000 magnetometer, a laser-pumped helium-4 total magnetic field sensor...

  16. Recognition of flow in everyday life using sensor agent robot with laser range finder

    Science.gov (United States)

    Goshima, Misa; Mita, Akira

    2011-04-01

    In the present paper, we suggest an algorithm for a sensor agent robot with a laser range finder to recognize the flows of residents in the living spaces in order to achieve flow recognition in the living spaces, recognition of the number of people in spaces, and the classification of the flows. House reform is or will be demanded to prolong the lifetime of the home. Adaption for the individuals is needed for our aging society which is growing at a rapid pace. Home autonomous mobile robots will become popular in the future for aged people to assist them in various situations. Therefore we have to collect various type of information of human and living spaces. However, a penetration in personal privacy must be avoided. It is essential to recognize flows in everyday life in order to assist house reforms and aging societies in terms of adaption for the individuals. With background subtraction, extra noise removal, and the clustering based k-means method, we got an average accuracy of more than 90% from the behavior from 1 to 3 persons, and also confirmed the reliability of our system no matter the position of the sensor. Our system can take advantages from autonomous mobile robots and protect the personal privacy. It hints at a generalization of flow recognition methods in the living spaces.

  17. Dynamic Sensor Interrogation Using Wavelength-Swept Laser with a Polygon-Scanner-Based Wavelength Filter

    Science.gov (United States)

    Kwon, Yong Seok; Ko, Myeong Ock; Jung, Mi Sun; Park, Ik Gon; Kim, Namje; Han, Sang-Pil; Ryu, Han-Cheol; Park, Kyung Hyun; Jeon, Min Yong

    2013-01-01

    We report a high-speed (∼2 kHz) dynamic multiplexed fiber Bragg grating (FBG) sensor interrogation using a wavelength-swept laser (WSL) with a polygon-scanner-based wavelength filter. The scanning frequency of the WSL is 18 kHz, and the 10 dB scanning bandwidth is more than 90 nm around a center wavelength of 1,540 nm. The output from the WSL is coupled into the multiplexed FBG array, which consists of five FBGs. The reflected Bragg wavelengths of the FBGs are 1,532.02 nm, 1,537.84 nm, 1,543.48 nm, 1,547.98 nm, and 1,553.06 nm, respectively. A dynamic periodic strain ranging from 500 Hz to 2 kHz is applied to one of the multiplexed FBGs, which is fixed on the stage of the piezoelectric transducer stack. Good dynamic performance of the FBGs and recording of their fast Fourier transform spectra have been successfully achieved with a measuring speed of 18 kHz. The signal-to-noise ratio and the bandwidth over the whole frequency span are determined to be more than 30 dB and around 10 Hz, respectively. We successfully obtained a real-time measurement of the abrupt change of the periodic strain. The dynamic FBG sensor interrogation system can be read out with a WSL for high-speed and high-sensitivity real-time measurement. PMID:23899934

  18. Laser Megajoule synchronization system

    International Nuclear Information System (INIS)

    Luttmann, M.; Pastor, J.F; Drouet, V.; Prat, M.; Raimbourg, J.; Adolf, A.

    2011-01-01

    This paper describes the synchronisation system under development on the Laser Megajoule (LMJ) in order to synchronize the laser quads on the target to better than 40 ps rms. Our architecture is based on a Timing System (TS) which delivers trigger signals with jitter down to 15 ps rms coupled with an ultra precision timing system with 5 ps rms jitter. In addition to TS, a sensor placed at the target chamber center measures the arrival times of the 3 omega nano joule laser pulses generated by front end shots. (authors)

  19. Monitoring of Moisture in Transformer Oil Using Optical Fiber as Sensor

    OpenAIRE

    S. Laskar; S. Bordoloi

    2013-01-01

    This paper describes an optical fiber sensor and temperature sensor-based instrumentation system to measure the moisture content in transformer oil. The sensor system consists of (i) Diode Laser Source, (ii) a bare and bent multimode fiber as sensor probe, (iii) an LDR as detector, (iv) LM35-based temperature sensor, and (v) microcontroller system having a trained ANN for processing and calibration. The bare and bent optical fiber sensor and the temperature sensor LM35 are used to provide the...

  20. A Quantum Cascade Laser-Based Optical Sensor for Continuous Monitoring of Environmental Methane in Dunkirk (France

    Directory of Open Access Journals (Sweden)

    Rabih Maamary

    2016-02-01

    Full Text Available A room-temperature continuous-wave (CW quantum cascade laser (QCL-based methane (CH4 sensor operating in the mid-infrared near 8 μm was developed for continuous measurement of CH4 concentrations in ambient air. The well-isolated absorption line (7F2,4 ← 8F1,2 of the ν4 fundamental band of CH4 located at 1255.0004 cm−1 was used for optical measurement of CH4 concentration by direct absorption in a White-type multipass cell with an effective path-length of 175 m. A 1σ (SNR = 1 detection limit of 33.3 ppb in 218 s was achieved with a measurement precision of 1.13%. The developed sensor was deployed in a campaign of measurements of time series CH4 concentration on a site near a suburban traffic road in Dunkirk (France from 9th to 22nd January 2013. An episode of high CH4 concentration of up to ~3 ppm has been observed and analyzed with the help of meteorological parameters combined with back trajectory calculation using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT model of NOAA.

  1. Electrodeless excimer laser; Laser a eccimeri senza elettrodi

    Energy Technology Data Exchange (ETDEWEB)

    Lisi, N. [ENEA, Divisione Nuovi Materiali, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    In this paper it is proposed how to build an excimer laser based on an electrodeless discharge (or Dielectric Barrier Discharge). Such laser could operate with a low energy per pulse (<100 mJ) and a high repetition rate (<100 kHz). The most relevant advantage an electrodeless DBD laser is the much longer gas mixture lifetime. This feature could allow the operation of a sealed laser emitting higher average power with respect to commercially available excimer lasers. Such discharge scheme could be advantageous in order to excite the F{sub 2} excimer molecule, whose emission wavelength in the VUV range (157 nm) at high reprate is particularly interesting in the micro-lithography field. [Italian] In questo documento viene proposto come costruire un laser a eccimeri basato su una scarica priva di elettrodi, o Dielectric Barrier Discharge. Tale laser puo' funzionare con una bassa energia per impulso (<100 mJ) ad alta frequenza di ripetizione (<100 kHz). Il vantaggio fondamentale di un laser a DBD e quindi privo di elettrodi e' la vita media della miscela gassosa molto piu' alta che potrebbe permettere alla camera laser di operare sigillata ad una potenza media superiore a quella dei laser a eccimeri attuali. Tale schema di pompaggio potrebbe essere particolarmente vantaggioso per eccitare la molecola eccimero F{sub 2} la cui lunghezza di emissione nel VUV (157 nm) ad elevata frequenza di ripetizione presenta un notevole interesse nel campo della produzione di microcircuiti.

  2. Investigation of laser cleaning on bronze cultural relics

    International Nuclear Information System (INIS)

    Ling, Xiulan; Wang, Gao; Zhang, Chen

    2016-01-01

    The effects of laser cleaning on the corrosion layers of bronze cultural relics were studied using a pulsed fiber laser. The laser cleaning threshold value of the corrosion layers was obtained. It was found that the corrosion layer was removed successfully by employing a laser fluence value of 0.32 J cm −2 and scanning for three times. To obtain experimental evidence, laser con-focal scanning microscopy, scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), laser induced breakdown spectroscopy (LIBS) and laser Raman spectroscopy were employed to investigate the cleaning efficiency of corrosion layers on specimens. (paper)

  3. Monitorización del consumo eléctrico con sensores Waspmote

    OpenAIRE

    Moreno Martín, Fernando

    2015-01-01

    El proyecto consiste en la monitorización del consumo eléctrico de los electrodomésticos de un hogar mediante dispositivos de bajo coste. A este fin se ha seleccionado una plataforma modular open source para construir redes de sensores inalámbricas: Waspmote. Para ello se ha desarrollado una aplicación para esta plataforma que permite tomar muestras de corriente por medio de un sensor y trasmitirlas mediante una red WAN a un ordenador en donde se almacenarán. Así mismo se ha implemen...

  4. Non-invasive characterization and quality assurance of silicon micro-strip detectors using pulsed infrared laser

    Science.gov (United States)

    Ghosh, P.

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.

  5. Sensores de fibra óptica basados en resonancias electromagnéticas

    OpenAIRE

    López Lambás, Sergio

    2011-01-01

    Este trabajo surge como continuación a los trabajos basados en LMR ya realizados con el objetivo de profundizar en el estudio y fabricación de sensores de fibra óptica basados en resonancias electromagnéticas utilizando diferentes materiales y técnicas. En concreto el proyecto perseguirá los siguientes objetivos: Desarrollar sensores de fibra óptica basados en resonancias electromagnéticas con recubrimientos metálicos y su aplicación a la detección de campo magnético. Estudiar y mejorar la fa...

  6. Optical Breath Gas Sensor for Extravehicular Activity Application

    Science.gov (United States)

    Wood, William R.; Casias, Miguel E.; Vakhtin, Andrei B.; Pilgrim, Jeffrey S.; Chullen, Cinda; Falconi, Eric A.; McMillin, Summer

    2013-01-01

    The function of the infrared gas transducer used during extravehicular activity in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires next generation CO2 sensing technology with performance beyond that presently in use on the Space Shuttle/International Space Station extravehicular mobility unit (EMU). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode spectrometer based on wavelength modulation spectroscopy is being developed for this purpose by Vista Photonics, Inc. Two prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The sensors incorporate a laser diode-based CO2 channel that also includes an incidental water vapor (humidity) measurement and a separate oxygen channel using a vertical cavity surface emitting laser. Both prototypes are controlled digitally with a field-programmable gate array/microcontroller architecture. The present development extends and upgrades the earlier hardware to the Advanced PLSS 2.0 test article being constructed and tested at JSC. Various improvements to the electronics and gas sampling are being advanced by this project. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.

  7. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    Science.gov (United States)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  8. Method for laser spot welding monitoring

    Science.gov (United States)

    Manassero, Giorgio

    1994-09-01

    As more powerful solid state laser sources appear on the market, new applications become technically possible and important from the economical point of view. For every process a preliminary optimization phase is necessary. The main parameters, used for a welding application by a high power Nd-YAG laser, are: pulse energy, pulse width, repetition rate and process duration or speed. In this paper an experimental methodology, for the development of an electrooptical laser spot welding monitoring system, is presented. The electromagnetic emission from the molten pool was observed and measured with appropriate sensors. The statistical method `Parameter Design' was used to obtain an accurate analysis of the process parameter that influence process results. A laser station with a solid state laser coupled to an optical fiber (1 mm in diameter) was utilized for the welding tests. The main material used for the experimental plan was zinc coated steel sheet 0.8 mm thick. This material and the related spot welding technique are extensively used in the automotive industry, therefore, the introduction of laser technology in production line will improve the quality of the final product. A correlation, between sensor signals and `through or not through' welds, was assessed. The investigation has furthermore shown the necessity, for the modern laser production systems, to use multisensor heads for process monitoring or control with more advanced signal elaboration procedures.

  9. Gamma and Neutron Irradiation of Semitransparent Amorphous Silicon Sensors

    International Nuclear Information System (INIS)

    Carabe, J.; Fernandez, M. G.; Ferrando, A.; Fuentes, J.; Gandia, J.; Josa, M. I.; Molinero, A.; Oller, J. C.; Arce, P.; Calvo, E.; Figueroa, C. F.; Garcia, N.; Matorras, F.; Rodrigo, T.; Vila, I.; Virto, A. L.; Fenyvesi, A.; Molnar, J.; Sohler, D.

    1999-12-01

    Semitransparent amorphous silicon sensors are key elements for laser light 2D position reconstruction in the CMS multipoint alignment link system. Some of the sensors have to work in very hard radiation environment. We have irradiated with gammas, up to 10 Mrad, and neutrons, up to 10 ''14 cm''-2, two different type of sensors and measured their change in performance. (Author) 10 refs

  10. Compact and portable open-path sensor for simultaneous measurements of atmospheric N2O and CO using a quantum cascade laser.

    Science.gov (United States)

    Tao, Lei; Sun, Kang; Khan, M Amir; Miller, David J; Zondlo, Mark A

    2012-12-17

    A compact and portable open-path sensor for simultaneous detection of atmospheric N(2)O and CO has been developed with a 4.5 μm quantum cascade laser (QCL). An in-line acetylene (C(2)H(2)) gas reference cell allows for continuous monitoring of the sensor drift and calibration in rapidly changing field environments and thereby allows for open-path detection at high precision and stability. Wavelength modulation spectroscopy (WMS) is used to detect simultaneously both the second and fourth harmonic absorption spectra with an optimized dual modulation amplitude scheme. Multi-harmonic spectra containing atmospheric N(2)O, CO, and the reference C(2)H(2) signals are fit in real-time (10 Hz) by combining a software-based lock-in amplifier with a computationally fast numerical model for WMS. The sensor consumes ~50 W of power and has a mass of ~15 kg. Precision of 0.15 ppbv N(2)O and 0.36 ppbv CO at 10 Hz under laboratory conditions was demonstrated. The sensor has been deployed for extended periods in the field. Simultaneous N(2)O and CO measurements distinguished between natural and fossil fuel combustion sources of N(2)O, an important greenhouse gas with poorly quantified emissions in space and time.

  11. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Laboratory

    Science.gov (United States)

    Brewster, L.; Johnston, A.; Howard, R.; Mitchell, J.; Cryan, S.

    2007-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success of the Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-loop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of"pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL

  12. Advanced laser sensing receiver concepts based on FPA technology

    International Nuclear Information System (INIS)

    Jacobson, Phillip L.; Petrin, Roger R.; Jolin, John L.; Foy, Bernard R.; Lowrance, J.L.; Renda, George

    2002-01-01

    The ultimate performance of any remote sensor is ideally governed by the hardware signal-to-noise capability and allowed signal-averaging time. In real-world scenarios, this may not be realizable and the limiting factors may suggest the need for more advanced capabilities. Moving from passive to active remote sensors offers the advantage of control over the illumination source, the laser. Added capabilities may include polarization discrimination, instantaneous imaging, range resolution, simultaneous multi-spectral measurement, or coherent detection. However, most advanced detection technology has been engineered heavily towards the straightforward passive sensor requirements, measuring an integrated photon flux. The need for focal plane array technology designed specifically for laser sensing has been recognized for some time, but advances have only recently made the engineering possible. This paper will present a few concepts for laser sensing receiver architectures, the driving specifications behind those concepts, and test/modeling results of such designs.

  13. High-resolution distributed-feedback fiber laser dc magnetometer based on the Lorentzian force

    International Nuclear Information System (INIS)

    Cranch, G A; Flockhart, G M H; Kirkendall, C K

    2009-01-01

    A low-frequency magnetic field sensor, based on a current-carrying beam driven by the Lorentzian force, is described. The amplitude of the oscillation is measured by a distributed-feedback fiber laser strain sensor attached to the beam. The transduction mechanism of the sensor is derived analytically using conventional beam theory, which is shown to accurately predict the responsivity of a prototype sensor. Excellent linearity and negligible hysteresis are demonstrated. Noise sources in the fiber laser strain sensor are described and thermo-mechanical noise in the transducer is estimated. The prototype sensor achieves a magnetic field resolution of 5 nT Hz for 25 mA of current, which is shown to be close to the predicted thermo-mechanical noise limit of the sensor. The current is supplied optically through a separate optical fiber yielding an electrically passive sensor head

  14. Multi-Sensor Testing for Automated Rendezvous and Docking Sensor Testing at the Flight Robotics Lab

    Science.gov (United States)

    Brewster, Linda L.; Howard, Richard T.; Johnston, A. S.; Carrington, Connie; Mitchell, Jennifer D.; Cryan, Scott P.

    2008-01-01

    The Exploration Systems Architecture defines missions that require rendezvous, proximity operations, and docking (RPOD) of two spacecraft both in Low Earth Orbit (LEO) and in Low Lunar Orbit (LLO). Uncrewed spacecraft must perform automated and/or autonomous rendezvous, proximity operations and docking operations (commonly known as AR&D). The crewed missions may also perform rendezvous and docking operations and may require different levels of automation and/or autonomy, and must provide the crew with relative navigation information for manual piloting. The capabilities of the RPOD sensors are critical to the success ofthe Exploration Program. NASA has the responsibility to determine whether the Crew Exploration Vehicle (CEV) contractor-proposed relative navigation sensor suite will meet the requirements. The relatively low technology readiness level of AR&D relative navigation sensors has been carried as one of the CEV Project's top risks. The AR&D Sensor Technology Project seeks to reduce the risk by the testing and analysis of selected relative navigation sensor technologies through hardware-in-the-Ioop testing and simulation. These activities will provide the CEV Project information to assess the relative navigation sensors maturity as well as demonstrate test methods and capabilities. The first year of this project focused on a series of "pathfinder" testing tasks to develop the test plans, test facility requirements, trajectories, math model architecture, simulation platform, and processes that will be used to evaluate the Contractor-proposed sensors. Four candidate sensors were used in the first phase of the testing. The second phase of testing used four sensors simultaneously: two Marshall Space Flight Center (MSFC) Advanced Video Guidance Sensors (AVGS), a laser-based video sensor that uses retroreflectors attached to the target vehicle, and two commercial laser range finders. The multi-sensor testing was conducted at MSFC's Flight Robotics Laboratory (FRL

  15. Fiber-optic laser sensor for mine detection and verification

    International Nuclear Information System (INIS)

    Bohling, Christian; Scheel, Dirk; Hohmann, Konrad; Schade, Wolfgang; Reuter, Matthias; Holl, Gerhard

    2006-01-01

    What we believe to be a new optical approach for the identification of mines and explosives by analyzing the surface materials and not only bulk is developed. A conventional manually operated mine prodder is upgraded by laser-induced breakdown spectroscopy (LIBS). In situ and real-time information of materials that are in front of the prodder are obtained during the demining process in order to optimize the security aspects and the speed of demining. A Cr4+:Nd3+:YAG microchip laser is used as a seed laser for an ytterbium-fiber amplifier to generate high-power laser pulses at 1064 nm with pulse powers up to Ep=1 mJ, a repetition rate of frep.=2-20 kHz and a pulse duration of tp=620 ps. The recorded LIBS signals are analyzed by applying neural networks for the data analysis

  16. Oscillating flux in petroleum emulsions irradiated with laser; Flujo oscilatorio en emulsiones de petroleo irradiadas con laser

    Energy Technology Data Exchange (ETDEWEB)

    Costa, G. Da; Parra, J.E.; Mosqueda, F. [Departamento de Fisica, Laboratorio de Optica y Fluidos, Universidad Simon Bolivar, Apartado Postal 89000, Caracas 1080-A, (Venezuela)]. e-mail: german@usb.ve; Romanelli, A.; Sicardi-Schifino, A. [Instituto de Fisica, Facultad de Ingenieria, Julio Herrera y Reissig 565, Montevideo, (Uruguay)]. e-mail alejo@fing.edu.uy

    2003-07-01

    Oil-in-water emulsions are irradiated with a Cw laser beam. A floating oil layer grows up in the water free surface. Laser-induced wave propagation in the oil layer gives rise to space-time self-modulation of the reflected light beam. A theoretical model explains main features of observed phenomena. (Author)

  17. Wavefront Measurement for Laser-Guiding Diagnostic

    International Nuclear Information System (INIS)

    Shiraishi, S.; Gonsalves, A.J.; Lin, C.; Nakamura, K.; Osterhoff, J.; Sokollik, T.; van Tilborg, J.; Geddes, C.G.R.; Schroeder, C.B.; Toth, Cs.; Esarey, E.; Leemans, W.P.

    2010-01-01

    The wavefront of a short laser pulse after interaction in a laser-plasma accelerator (LPA) was measured to diagnose laser-guiding quality. Experiments were performed on a 100 TW class laser at the LOASIS facility of LBNL using a hydrogenfilled capillary discharge waveguide. Laser-guiding with a pre-formed plasma channel allows the laser pulse to propagate over many Rayleigh lengths at high intensity and is crucial to accelerate electrons to the highest possible energy. Efficient coupling of laser energy into the plasma is realized when the laser and the channel satisfy a matched guiding condition, in which the wavefront remains flat within the channel. Using a wavefront sensor, the laser-guiding quality was diagnosed based on the wavefront of the laser pulse exiting the plasma channel. This wavefront diagnostic will contribute to achieving controlled, matched guiding in future experiments.

  18. Laser Beam Machining (LBM), State of the Art and New Opportunities

    NARCIS (Netherlands)

    Meijer, J.

    2004-01-01

    An overview is given of the state of the art of laser beam machining in general with special emphasis on applications of short and ultrashort lasers. In laser welding the trend is to apply optical sensors for process control. Laser surface treatment is mostly used to apply corrosion and wear

  19. Optical Fiber Grating based Sensors

    DEFF Research Database (Denmark)

    Michelsen, Susanne

    2003-01-01

    In this thesis differenct optical fiber gratings are used for sensor purposes. If a fiber with a core concentricity error (CCE) is used, a directional dependent bend sensor can be produced. The CCE direction can be determined by means of diffraction. This makes it possible to produce long......-period gratings in a fiber with a CCE direction parallel or perpendicular to the writing direction. The maximal bending sensitivity is independent on the writing direction, but the detailed bending response is different in the two cases. A temperature and strain sensor, based on a long-period grating and two...... sampled gratings, was produced and investigated. It is based on the different temperature and strain response of these gratings. Both a transfer matrix method and an overlap calculation is performed to explain the sensor response. Another type of sensor is based on tuning and modulation of a laser...

  20. LPG based all plastic pressure sensor

    DEFF Research Database (Denmark)

    Bundalo, Ivan-Lazar; Lwin, R.; Leon-Saval, S.

    2015-01-01

    A prototype all-plastic pressure sensor is presented and characterized for potential use as an endoscope. The sensor is based on Long Period Gratings (LPG) inscribed with a CO2 laser in 6-ring microstructured PMMA fiber. Through a latex coated, plastic 3D-printed transducer pod, external pressure...... is converted to longitudinal elongation of the pod and therefore of the fiber containing the LPG. The sensor has been characterised for pressures of up to 160 mBar in an in-house built pressure chamber. Furthermore, the influence of the fiber prestrain, fiber thickness and the effect of different glues...

  1. Integrated lasers for polymer Lab-on-a-Chip systems

    DEFF Research Database (Denmark)

    Mappes, Timo; Vannahme, Christoph; Grosmann, Tobias

    2012-01-01

    We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers.......We develop optical Lab-on-a-Chips on different platforms for marker-based and label-free biophotonic sensor applications. Our chips are based on polymers and fabricated by mass production technologies to integrate microfluidic channels, optical waveguides and miniaturized lasers....

  2. Polymer photonic crystal dye lasers as label free evanescent cell sensors

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Lopacinska, Joanna M.; Jakobsen, Mogens Havsteen

    2009-01-01

    . The lasers are fabricated by combined nanoimprint and photolithography (CNP) in Ormocore hybrid polymer doped with the laser dye Pyrromethene 597. The lasers emit in the chip plane at a wavelength around 595 nm when pumped with 5 ns pulses from a compact frequency doubled Nd:YAG laser. We investigate...

  3. A IR-Femtosecond Laser Hybrid Sensor to Measure the Thermal Expansion and Thermo-Optical Coefficient of Silica-Based FBG at High Temperatures.

    Science.gov (United States)

    Li, Litong; Lv, Dajuan; Yang, Minghong; Xiong, Liangming; Luo, Jie

    2018-01-26

    In this paper, a hybrid sensor was fabricated using a IR-femtosecond laser to measure the thermal expansion and thermo-optical coefficient of silica-based fiber Bragg gratings (FBGs). The hybrid sensor was composed of an inline fiber Fabry-Perot interferometer (FFPI) cavity and a type-II FBG. Experiment results showed that the type-II FBG had three high reflectivity resonances in the wavelength ranging from 1100 to 1600 nm, showing the peaks in 1.1, 1.3 and 1.5 μm, respectively. The thermal expansion and thermo-optical coefficient (1.3 μm, 1.5 μm) of silica-based FBG, under temperatures ranging from 30 to 1100 °C, had been simultaneously calculated by measuring the wavelength of the type-II FBG and FFPI cavity length.

  4. Investigation of the Stability of a Two-Span Bridge with the use of a High-Precision Laser Displacement Sensors

    Science.gov (United States)

    Poddaeva, O.; Churin, P.; Fedosova, A.; Truhanov, S.

    2018-03-01

    Studies of aerodynamics of bridge structures are an actual problem. Such attention is paid to the study of wind influence on bridge structures not at all by chance; a large number of cases of loss of stability of such structures are known under the influence of wind up to their complete destruction. The development of non-contact systems of measuring equipment allows solving this problem with a high level of accuracy and reliability. This article presents the results of experimental studies of wind impact on a two-span bridge using specialized measuring system based on high-precision laser displacement sensors.

  5. Laser spark distribution and ignition system

    Science.gov (United States)

    Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  6. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers

    International Nuclear Information System (INIS)

    Magne, S.

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs

  7. The use of erbium fiber laser relaxation frequency for sensing refractive index and solute concentration of aqueous solutions

    International Nuclear Information System (INIS)

    Arellano-Sotelo, H; Barmenkov, Yu O; Kir'yanov, A V

    2008-01-01

    We report a novel-principle fiber-laser intra-cavity sensor for measuring refractive index and solute concentration of aqueous solutions. The sensor operation is based on a variation of the laser oscillation relaxation frequency (the measured parameter), sensitive to the intra-cavity loss change. The sensor capacity is demonstrated on the example of measurements of sugar concentration in water. A modeling of the sensor operation is presented, allowing its performance optimization

  8. Laser diodes for sensing applications: adaptive cruise control and more

    Science.gov (United States)

    Heerlein, Joerg; Morgott, Stefan; Ferstl, Christian

    2005-02-01

    Adaptive Cruise Controls (ACC) and pre-crash sensors require an intelligent eye which can recognize traffic situations and deliver a 3-dimensional view. Both microwave RADAR and "Light RADAR" (LIDAR) systems are well suited as sensors. In order to utilize the advantages of LIDARs -- such as lower cost, simpler assembly and high reliability -- the key component, the laser diode, is of primary importance. Here, we present laser diodes which meet the requirements of the automotive industry.

  9. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers; Etat de l`art des lasers a fibre, etude d`un laser a fibre dopee ytterbium et spectroscopie laser de fibres dopees

    Energy Technology Data Exchange (ETDEWEB)

    Magne, S

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs.

  10. Progress of optical sensor system for health monitoring of bridges at Chongqing University

    Science.gov (United States)

    Chen, W.; Fu, Y.; Zhu, Y.; Huang, S.

    2005-02-01

    With decades of research experience on optical sensors, Optoelectronic Technology Lab of Chongqing University (OTLCU) has studied on a variety of sensors system designed for practical use in health monitoring. In OTLCU, embedded and surface mounted fiber Fabry-Perot strain sensor has been developed for monitoring the local strain of both concrete and steel truss bridge. Optoelectronic deflect meter, with a group of optical level sensor in a series connected pipe, was developed for deflection monitoring and line shape monitoring of the bridges. Laser deflect meter, with a laser pointer and a sensors array, has been also developed for a dynamic deflection monitoring of the bridges. To monitoring the 2-Dimentional displacement of the bridge, a self-calibrating imaging system was developed. All these sensor systems have been applied in different bridges successfully. This paper briefly describes principle of these optical sensing systems, and also gives some representative results of the system in practical application of bridges.

  11. Study and Development of a Laser Based Alignment System

    CERN Multimedia

    Stern, G

    2014-01-01

    CLIC (Compact Linear Collider) has tight requirements regarding pre-alignment of beam related components: 10 µm accuracy over a sliding window of 200 m along the 20 km of linac. To perform such an alignment, a new system is proposed combining laser beam as straight line reference and camera/shutter assemblies as sensors. The poster describes the alignment system and shows results regarding laser pointing stability with respect to time, shutter type, distance and environment. These results give a frame for future building and calibrating of sensors.

  12. Sensors and sensor systems for guidance and navigation; Proceedings of the Meeting, Orlando, FL, Apr. 2, 3, 1991

    Science.gov (United States)

    Wade, Jack; Tuchman, Avi

    1991-07-01

    The present conference discusses wide field-of-view star-tracker cameras, discrete frequency vs radius reticle trackers, a sensor system for comet approach and landing, a static horizon sensor for a remote-sensing satellite, an improved ring laser gyro navigator, FM reticle trackers in the pupil plane, and the 2D encoding of images via discrete reticles. Also discussed are reduced-cost coil windings for interferometric fiber-optic gyro sensors, the ASTRO 1M space attitude-determination system, passive range-sensor refinement via texture and segmentation, a coherent launch-site atmospheric wind sounder, and a radar-optronic tracking experiment for short and medium range aerial combat. (For individual items see A93-27044 to A93-27046)

  13. Laser-Driven Mini-Thrusters

    International Nuclear Information System (INIS)

    Sterling, Enrique; Lin Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B. Jr.

    2006-01-01

    Laser-driven mini-thrusters were studied using Delrin registered and PVC (Delrin registered is a registered trademark of DuPont) as propellants. TEA CO2 laser (λ = 10.6 μm) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse

  14. Laser-Driven Mini-Thrusters

    Science.gov (United States)

    Sterling, Enrique; Lin, Jun; Sinko, John; Kodgis, Lisa; Porter, Simon; Pakhomov, Andrew V.; Larson, C. William; Mead, Franklin B.

    2006-05-01

    Laser-driven mini-thrusters were studied using Delrin® and PVC (Delrin® is a registered trademark of DuPont) as propellants. TEA CO2 laser (λ = 10.6 μm) was used as a driving laser. Coupling coefficients were deduced from two independent techniques: force-time curves measured with a piezoelectric sensor and ballistic pendulum. Time-resolved ICCD images of the expanding plasma and combustion products were analyzed in order to determine the main process that generates the thrust. The measurements were also performed in a nitrogen atmosphere in order to test the combustion effects on thrust. A pinhole transmission experiment was performed for the study of the cut-off time when the ablation/air breakdown plasma becomes opaque to the incoming laser pulse.

  15. Precision operation of the Nova laser for fusion experiments

    International Nuclear Information System (INIS)

    Caird, J.A.; Ehrlich, R.B.; Hermes, G.L.; Landen, O.L.; Laumann, C.W.; Lerche, R.A.; Miller, J.L.; Murray, J.E.; Nielsen, N.D.; Powell, H.T.; Rushford, M.C.; Saunders, R.L.; Thompson, C.E.; VanArsdall, P.J.; Vann, C.S.; Weiland, T.L.

    1994-01-01

    The operation of a Neodymium glass laser of a special design for fusion experiments is improved by a better pulse synchronization, the gain stabilization, and the laser diagnostics. We used sensor upgrading and antifriction coating of focusing lenses. The pointing accuracy of the Nova laser meets now our goal for precision operation. (AIP) copyright 1994 American Institute of Physics

  16. Development of techniques for fabrication of film probe sensor assembly

    International Nuclear Information System (INIS)

    Moorhead, A.J.

    1982-10-01

    Pulsed laser welding and brazing techniques were developed for fabrication of sensors designed to measure liquid film properties in out-of-reactor safety tests that simulate a loss-of-coolant accident in a pressurized-water nuclear reactor. These sensors were made possible by a unique ceramic-to-metal seal system based on a cermet insulator and a brazing filler metal, both developed at ORNL. This seal system was shown to resist steam to an exposure of at least 100 h at 700 0 C (1292 0 F) and to resist repetitive thermal transients of 300 0 C/s (540 0 F). Procedures were also developed for induction brazing the instrumentation cables to a stainless steel end cap and for laser welding this component to the brazed sensor body itself. Cable end seals and sensor bodies fabricated with these designs and techniques maintained excellent helium leaktightness ( -6 cm 3 /s) after 20 severe thermal shock tests from 500 0 C air into water at 80 0 C

  17. LASIK - Laser Eye Surgery

    Science.gov (United States)

    ... Refractive Surgery Procedures What Is Photorefractive Keratectomy (PRK)? LASIK — Laser Eye Surgery Leer en Español: LASIK—Cirugía ocular con láser ... loss of close-up focusing power. How the LASIK procedure works LASIK is performed while the patient ...

  18. Investigación de la Climatología de la Humedad Atmosférica y su relación con la Sequia en la Costa Peruana utilizando Imágenes de Satélite del Sensor MODIS/TERRA

    OpenAIRE

    Guerrero Salinas, Jhon Brayan

    2015-01-01

    La presente tesis contribuye con información climática de la humedad atmosférica en el Perú y áreas vecinas, con el fin de caracterizar la climatología de la humedad atmosférica y su relación con la sequía en la Costa Peruana. En la investigación se utiliza datos imágenes del sensor MODIS a bordo de los satélites TERRA y AQUA. El estudio considera el territorio entre 0- y 1000-msnm. El indicador de la humedad atmosférica es el vapor de agua, según la WMO. Este parámetro es evaluado en base de...

  19. Fast Optical Hazard Detection for Planetary Rovers Using Multiple Spot Laser Triangulation

    Science.gov (United States)

    Matthies, L.; Balch, T.; Wilcox, B.

    1997-01-01

    A new laser-based optical sensor system that provides hazard detection for planetary rovers is presented. It is anticipated that the sensor can support safe travel at speeds up to 6cm/second for large (1m) rovers in full sunlight on Earth or Mars. The system overcomes limitations in an older design that require image differencing ot detect a laser stripe in full sun.

  20. Dynamically variable spot size laser system

    Science.gov (United States)

    Gradl, Paul R. (Inventor); Hurst, John F. (Inventor); Middleton, James R. (Inventor)

    2012-01-01

    A Dynamically Variable Spot Size (DVSS) laser system for bonding metal components includes an elongated housing containing a light entry aperture coupled to a laser beam transmission cable and a light exit aperture. A plurality of lenses contained within the housing focus a laser beam from the light entry aperture through the light exit aperture. The lenses may be dynamically adjusted to vary the spot size of the laser. A plurality of interoperable safety devices, including a manually depressible interlock switch, an internal proximity sensor, a remotely operated potentiometer, a remotely activated toggle and a power supply interlock, prevent activation of the laser and DVSS laser system if each safety device does not provide a closed circuit. The remotely operated potentiometer also provides continuous variability in laser energy output.

  1. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Fibreoptic distributed temperature sensor with spectral filtration by directional fibre couplers

    Science.gov (United States)

    Kuznetsov, A. G.; Babin, Sergei A.; Shelemba, Ivan S.

    2009-11-01

    We demonstrate a Raman-based all-fibre temperature sensor utilising a pulsed erbium fibre laser. The sensor is made of a standard single-mode telecom fibre, SMF-28, and includes a number of directional couplers as band-pass filters. The temperature profile along a 7-km fibreoptic line is measured with an accuracy of 2oC and a spatial resolution of 10 m. In data processing, we take into account the difference in attenuation between the spectral components of the backscatter signal.

  2. Optical system design with common aperture for mid-infrared and laser composite guidance

    Science.gov (United States)

    Zhang, Xuanzhi; Yang, Zijian; Sun, Ting; Yang, Huamei; Han, Kunye; Hu, Bo

    2017-02-01

    When the field of operation of precision strike missiles is more and more complicated, autonomous seekers will soon encounter serious difficulties, especially with regard to low signature targets and complex scenarios. So the dual-mode sensors combining an imaging sensor with a semi-active laser seeker are conceived to overcome these specific problems. Here the sensors composed a dual field of view mid-infrared thermal imaging camera and a laser range finder have the common optical aperture which produced the minization of seeker construction. The common aperture optical systems for mid-infrared and laser dual-mode guildance have been developed, which could meet the passive middle infrared high-resolution imaging and the active laser high-precision indication and ranging. The optical system had good image quality, and fulfilled the performance requirement of seeker system. The design and expected performance of such a dual-mode optical system will be discussed.

  3. Automatic camera to laser calibration for high accuracy mobile mapping systems using INS

    Science.gov (United States)

    Goeman, Werner; Douterloigne, Koen; Gautama, Sidharta

    2013-09-01

    A mobile mapping system (MMS) is a mobile multi-sensor platform developed by the geoinformation community to support the acquisition of huge amounts of geodata in the form of georeferenced high resolution images and dense laser clouds. Since data fusion and data integration techniques are increasingly able to combine the complementary strengths of different sensor types, the external calibration of a camera to a laser scanner is a common pre-requisite on today's mobile platforms. The methods of calibration, nevertheless, are often relatively poorly documented, are almost always time-consuming, demand expert knowledge and often require a carefully constructed calibration environment. A new methodology is studied and explored to provide a high quality external calibration for a pinhole camera to a laser scanner which is automatic, easy to perform, robust and foolproof. The method presented here, uses a portable, standard ranging pole which needs to be positioned on a known ground control point. For calibration, a well studied absolute orientation problem needs to be solved. In many cases, the camera and laser sensor are calibrated in relation to the INS system. Therefore, the transformation from camera to laser contains the cumulated error of each sensor in relation to the INS. Here, the calibration of the camera is performed in relation to the laser frame using the time synchronization between the sensors for data association. In this study, the use of the inertial relative movement will be explored to collect more useful calibration data. This results in a better intersensor calibration allowing better coloring of the clouds and a more accurate depth mask for images, especially on the edges of objects in the scene.

  4. Coatings of metal substrates assisted by laser radiation

    Directory of Open Access Journals (Sweden)

    Caudevilla, H.

    1998-04-01

    Full Text Available In this contribution, a new way of obtaining ceramic coatings is presented. This method uses precursor suspensions, settled on substrates and in-situ pyrolised with a laser. Different deposition techniques of the ceramic precursors have been tested in order to obtain a homogeneous distribution on the metal substrate before the laser treatment.

    La combinación de recubrimientos utilizando disoluciones de precursores metálicos con la pirólisis asistida por láser, permite obtener una gran diversidad de recubrimientos sobre sustratos de muy distinta naturaleza. Se han realizado estudios, tanto con disoluciones poliméricas, como con disoluciones de tipo sol-gel y pastas obtenidas con técnicas similares, depositadas utilizando métodos convencionales de inmersión y atomización previa a la pirólisis asistida por láser, así como simultánea. En este trabajo se presenta un resumen de los resultados más significativos obtenidos en la realización de recubrimientos sobre sustratos metálicos y cerámicos.

  5. Apparatus and Method for Elimination of Polarization-Induced Fading in Fiber-optic Sensor System

    Science.gov (United States)

    Chan, Hon Man (Inventor); Parker, Jr., Allen R. (Inventor)

    2015-01-01

    The invention is an apparatus and method of eliminating polarization-induced fading in interferometric fiber-optic sensor system having a wavelength-swept laser optical signal. The interferometric return signal from the sensor arms are combined and provided to a multi-optical path detector assembly and ultimately to a data acquisition and processing unit by way of a switch that is time synchronized with the laser scan sweep cycle.

  6. Conductive ink print on PA66 gear for manufacturing condition monitoring sensors

    Science.gov (United States)

    Futagawa, Shintaro; Iba, Daisuke; Kamimoto, Takahiro; Nakamura, Morimasa; Miura, Nanako; Iizuka, Takashi; Masuda, Arata; Sone, Akira; Moriwaki, Ichiro

    2018-03-01

    Failures detection of rotating machine elements, such as gears, is an important issue. The purpose of this study was to try to solve this issue by printing conductive ink on gears to manufacture condition-monitoring sensors. In this work, three types of crack detection sensor were designed and the sprayed conductive ink was directly sintered on polyimide (PI) - coated polyamide (PA) 66 gears by laser. The result showed that it was possible to produce narrow circuit lines of the conductive ink including Ag by laser sintering technique and the complex shape sensors on the lateral side of the PA66 gears, module 1.0 mm and tooth number 48. A preliminary operation test was carried out for investigation of the function of the sensors. As a result of the test, the sensors printed in this work should be effective for detecting cracks at tooth root of the gears and will allow for the development of better equipment and detection techniques for health monitoring of gears.

  7. Robust sensor for turbidity measurement from light scattering and absorbing liquids.

    Science.gov (United States)

    Kontturi, Ville; Turunen, Petri; Uozumi, Jun; Peiponen, Kai-Erik

    2009-12-01

    Internationally standardized turbidity measurements for probing solid particles in liquid are problematic in the case of simultaneous light scattering and absorption. A method and a sensor to determine the turbidity in the presence of light absorption are presented. The developed sensor makes use of the total internal reflection of a laser beam at the liquid-prism interface, and the turbidity is assessed using the concept of laser speckle pattern. Using average filtering in speckle data analyzing the observed dynamic speckle pattern, which is due to light scattering from particles and the static speckle due to stray light of the sensor, can be separated from each other. Good correlation between the standard deviation of dynamic speckle and turbidity value for nonabsorbing and for absorbing liquids was observed. The sensor is suggested, for instance, for the measurement of ill-behaved as well as small-volume turbid liquids in both medicine and process industry.

  8. Monitoring cure properties of out-of-autoclave BMI composites using IFPI sensor

    Science.gov (United States)

    Kaur, Amardeep; Anandan, Sudharshan; Yuan, Lei; Watkins, Steve E.; Chandrashekhara, K.; Xiao, Hai; Phan, Nam

    2016-04-01

    A non-destructive technique for inspection of a Bismaleimide (BMI) composite is presented using an optical fiber sensor. High performance BMI composites are used for Aerospace application for their mechanical strength. They are also used as an alternative to toughened epoxy resins. A femtosecond-laser-inscribed Intrinsic Fabry-Perot Interferometer (IFPI) sensor is used to perform real time cure monitoring of a BMI composite. The composite is cured using the out-of-autoclave (OOA) process. The IFPI sensor was used for in-situ monitoring; different curing stages are analyzed throughout the curing process. Temperature-induced-strain was measured to analyze the cure properties. The IFPI structure comprises of two reflecting mirrors inscribed on the core of the fiber using a femtosecond-laser manufacturing process. The manufacturing process makes the sensor thermally stable and robust for embedded applications. The sensor can withstand very high temperatures of up to 850 °C. The temperature and strain sensitivities of embedded IFPI sensor were measured to be 1.4 pm/μepsilon and 0.6 pm/μepsilon respectively.

  9. Digest of NASA earth observation sensors

    Science.gov (United States)

    Drummond, R. R.

    1972-01-01

    A digest of technical characteristics of remote sensors and supporting technological experiments uniquely developed under NASA Applications Programs for Earth Observation Flight Missions is presented. Included are camera systems, sounders, interferometers, communications and experiments. In the text, these are grouped by types, such as television and photographic cameras, lasers and radars, radiometers, spectrometers, technology experiments, and transponder technology experiments. Coverage of the brief history of development extends from the first successful earth observation sensor aboard Explorer 7 in October, 1959, through the latest funded and flight-approved sensors under development as of October 1, 1972. A standard resume format is employed to normalize and mechanize the information presented.

  10. Prototype of a laser guide star wavefront sensor for the Extremely Large Telescope

    Science.gov (United States)

    Patti, M.; Lombini, M.; Schreiber, L.; Bregoli, G.; Arcidiacono, C.; Cosentino, G.; Diolaiti, E.; Foppiani, I.

    2018-06-01

    The new class of large telescopes, like the future Extremely Large Telescope (ELT), are designed to work with a laser guide star (LGS) tuned to a resonance of atmospheric sodium atoms. This wavefront sensing technique presents complex issues when applied to big telescopes for many reasons, mainly linked to the finite distance of the LGS, the launching angle, tip-tilt indetermination and focus anisoplanatism. The implementation of a laboratory prototype for the LGS wavefront sensor (WFS) at the beginning of the phase study of MAORY (Multi-conjugate Adaptive Optics Relay) for ELT first light has been indispensable in investigating specific mitigation strategies for the LGS WFS issues. This paper presents the test results of the LGS WFS prototype under different working conditions. The accuracy within which the LGS images are generated on the Shack-Hartmann WFS has been cross-checked with the MAORY simulation code. The experiments show the effect of noise on centroiding precision, the impact of LGS image truncation on wavefront sensing accuracy as well as the temporal evolution of the sodium density profile and LGS image under-sampling.

  11. Smart architecture for stable multipoint fiber Bragg grating sensor system

    Science.gov (United States)

    Yeh, Chien-Hung; Tsai, Ning; Zhuang, Yuan-Hong; Huang, Tzu-Jung; Chow, Chi-Wai; Chen, Jing-Heng; Liu, Wen-Fung

    2017-12-01

    In this work, we propose and investigate an intelligent fiber Bragg grating (FBG)-based sensor system in which the proposed stabilized and wavelength-tunable single-longitudinal-mode erbium-doped fiber laser can improve the sensing accuracy of wavelength-division-multiplexing multiple FBG sensors in a longer fiber transmission distance. Moreover, we also demonstrate the proposed sensor architecture to enhance the FBG capacity for sensing strain and temperature, simultaneously.

  12. Estimation of Biomass and Canopy Height in Bermudagrass, Alfalfa, and Wheat Using Ultrasonic, Laser, and Spectral Sensors

    Directory of Open Access Journals (Sweden)

    Jeremy Joshua Pittman

    2015-01-01

    Full Text Available Non-destructive biomass estimation of vegetation has been performed via remote sensing as well as physical measurements. An effective method for estimating biomass must have accuracy comparable to the accepted standard of destructive removal. Estimation or measurement of height is commonly employed to create a relationship between height and mass. This study examined several types of ground-based mobile sensing strategies for forage biomass estimation. Forage production experiments consisting of alfalfa (Medicago sativa L., bermudagrass [Cynodon dactylon (L. Pers.], and wheat (Triticum aestivum L. were employed to examine sensor biomass estimation (laser, ultrasonic, and spectral as compared to physical measurements (plate meter and meter stick and the traditional harvest method (clipping. Predictive models were constructed via partial least squares regression and modeled estimates were compared to the physically measured biomass. Least significant difference separated mean estimates were examined to evaluate differences in the physical measurements and sensor estimates for canopy height and biomass. Differences between methods were minimal (average percent error of 11.2% for difference between predicted values versus machine and quadrat harvested biomass values (1.64 and 4.91 t·ha−1, respectively, except at the lowest measured biomass (average percent error of 89% for harvester and quad harvested biomass < 0.79 t·ha−1 and greatest measured biomass (average percent error of 18% for harvester and quad harvested biomass >6.4 t·ha−1. These data suggest that using mobile sensor-based biomass estimation models could be an effective alternative to the traditional clipping method for rapid, accurate in-field biomass estimation.

  13. Optical Sensors for Post Combustion Control in Electric Arc Furnace Steelmaking (TRP 9851)

    Energy Technology Data Exchange (ETDEWEB)

    Sarah W. Allendorf; David K. Ottesen; Robert W. Green; Donald R. Hardesty; Robert Kolarik; Howard Goodfellow; Euan Evenson; Marshall Khan; Ovidiu Negru; Michel Bonin; Soren Jensen

    2003-12-31

    Working in collaboration with Stantec Global Technologies, Process Metrix Corporation, and The Timken Company, Sandia National Laboratories constructed and evaluated a novel, laser-based off-gas sensor at the electric arc furnace facility of Timken's Faircrest Steel Plant (Canton, Ohio). The sensor is based on a mid-infrared tunable diode laser (TDL), and measures the concentration and temperature of specific gas species present in the off-gas emanating from the EAF. The laser beam is transmitted through the gas stream at the fourth hole of the EAF, and provides a real-time, in situ measurement that can be used for process optimization. Two sets of field tests were performed in parallel with Stantec's extractive probe off-gas system, and the tests confirm the TDL sensor's operation and applicability for electric steel making. The sensor measures real-time, in situ line-of-sight carbon monoxide (CO) concentrations between 5% and 35% CO, and measures off-gas temperature in the range of 1400 to 1900 K. In order to achieve commercial-ready status, future work is required to extend the sensor for simultaneous CO and CO{sub 2} concentration measurements. In addition, long-term endurance tests including process optimization must be completed.

  14. Compact portable QEPAS multi-gas sensor

    Science.gov (United States)

    Dong, Lei; Kosterev, Anatoliy A.; Thomazy, David; Tittel, Frank K.

    2011-01-01

    A quartz-enhanced photoacoustic spectroscopy (QEPAS) based multi-gas sensor was developed to quantify concentrations of carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen chloride (HCl), and carbon dioxide (CO2) in ambient air. The sensor consists of a compact package of dimensions 25cm x 25cm x 10cm and was designed to operate at atmospheric pressure. The HCN, CO2, and HCl measurement channels are based on cw, C-band telecommunication-style packaged, fiber-coupled diode lasers, while the CO channel uses a TO can-packaged Sb diode laser as an excitation source. Moreover, the sensor incorporates rechargeable batteries and can operate on batteries for at least 8 hours. It can also operate autonomously or interact with another device (such as a computer) via a RS232 serial port. Trace gas detection limits of 7.74ppm at 4288.29cm-1 for CO, 450ppb at 6539.11 cm-1 for HCN, 1.48ppm at 5739.26 cm-1 for HCl and 97ppm at 6361.25 cm-1 for CO2 for a 1sec average time, were demonstrated.

  15. A fiber optics sensor for strain and stress management in superconducting accelerator magnets

    International Nuclear Information System (INIS)

    van Oort, J.M.; ten Kate, H.H.J.

    1993-01-01

    A novel cryogenic interferometric fiber optics sensor for the measurement of strain and stress in the coil windings of superconducting accelerator magnets is described. The sensor can operate with two different readout sources, monochromatic laser light and white light respectively. The sensor head is built up as an extrinsic Fabry-Perot interferometer formed with two cleaved fiber surfaces, and can be mounted in several configurations. When read with laser light, the sensor is an extremely sensitive relative strain or temperature detector. When read with white light the absolute strain and pressure can be measured. Results are presented of tests in several configurations at 77 K and 4.2 K, both for the relative and absolute readout method. Finally, the possible use for quench localization using the temperature sensitivity is described

  16. A laser metrology/viewing system for ITER in-vessel inspection

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Herndon, J.N.; Menon, M.M.; Slotwinski, A.; Dagher, M.A.; Yuen, J.L.

    1998-01-01

    This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision surface mapping system. A metrology system capable of achieving sub-millimeter accuracy must operate in a reactor vessel that has high gamma radiation, high vacuum, elevated temperature, and magnetic field. A coherent, frequency modulated laser radar system is under development to meet these requirements. The metrology/viewing sensor consists of a compact laser optics module linked through fiber optics to the laser source and imaging units, located outside the harsh environment. The deployment mechanism is a remotely operated telescopic-mast. Gamma irradiation to 10 7 Gy was conducted on critical sensor components at Oak Ridge National Laboratory, with no significant impact to data transmission, and analysis indicates that critical sensor components can operate in a magnetic field with certain design modifications. Plans for testing key components in a magnetic field are underway. (orig.)

  17. A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser.

    Science.gov (United States)

    Patimisco, Pietro; Borri, Simone; Sampaolo, Angelo; Beere, Harvey E; Ritchie, David A; Vitiello, Miriam S; Scamarcio, Gaetano; Spagnolo, Vincenzo

    2014-05-07

    An innovative quartz enhanced photoacoustic (QEPAS) gas sensing system operating in the THz spectral range and employing a custom quartz tuning fork (QTF) is described. The QTF dimensions are 3.3 cm × 0.4 cm × 0.8 cm, with the two prongs spaced by ∼800 μm. To test our sensor we used a quantum cascade laser as the light source and selected a methanol rotational absorption line at 131.054 cm(-1) (∼3.93 THz), with line-strength S = 4.28 × 10(-21) cm mol(-1). The sensor was operated at 10 Torr pressure on the first flexion QTF resonance frequency of 4245 Hz. The corresponding Q-factor was 74 760. Stepwise concentration measurements were performed to verify the linearity of the QEPAS signal as a function of the methanol concentration. The achieved sensitivity of the system is 7 parts per million in 4 seconds, corresponding to a QEPAS normalized noise-equivalent absorption of 2 × 10(-10) W cm(-1) Hz(-1/2), comparable with the best result of mid-IR QEPAS systems.

  18. A novel method of range measuring for a mobile robot based on multi-sensor information fusion

    International Nuclear Information System (INIS)

    Zhang Yi; Luo Yuan; Wang Jifeng

    2005-01-01

    The traditional measuring range for a mobile robot is based on a sonar sensor. Because of different working environments, it is very difficult to obtain high precision by using just one single method of range measurement. So, a hybrid sonar sensor and laser scanner method is put forward to overcome these shortcomings. A novel fusion model is proposed based on basic theory and a method of information fusion. An optimal measurement result has been obtained with information fusion from different sensors. After large numbers of experiments and performance analysis, a conclusion can be drawn that the laser scanner and sonar sensor method with multi-sensor information fusion have a higher precision than the single method of sonar. It can also be the same with different environments

  19. Microfabrication and Applications of Opto-Microfluidic Sensors

    Science.gov (United States)

    Zhang, Daiying; Men, Liqiu; Chen, Qiying

    2011-01-01

    A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost. PMID:22163904

  20. Multi-parameter sensor based on random fiber lasers

    Directory of Open Access Journals (Sweden)

    Yanping Xu

    2016-09-01

    Full Text Available We demonstrate a concept of utilizing random fiber lasers to achieve multi-parameter sensing. The proposed random fiber ring laser consists of an erbium-doped fiber as the gain medium and a random fiber grating as the feedback. The random feedback is effectively realized by a large number of reflections from around 50000 femtosecond laser induced refractive index modulation regions over a 10cm standard single mode fiber. Numerous polarization-dependent spectral filters are formed and superimposed to provide multiple lasing lines with high signal-to-noise ratio up to 40dB, which gives an access for a high-fidelity multi-parameter sensing scheme. The number of sensing parameters can be controlled by the number of the lasing lines via input polarizations and wavelength shifts of each peak can be explored for the simultaneous multi-parameter sensing with one sensing probe. In addition, the random grating induced coupling between core and cladding modes can be potentially used for liquid medical sample sensing in medical diagnostics, biology and remote sensing in hostile environments.

  1. Rancang Bangun Sistem Pengukur Kecepatan Kendaraan Menggunakan Sensor Magnetik

    Directory of Open Access Journals (Sweden)

    Aris Ramdhani

    2017-06-01

    Full Text Available Data kecepatan kendaran di jalan raya sangat berpengaruh bagi keamanan dan keselamatan pengguna jalan raya. Kemajuan tekhnologi sensor sangat membantu dalam mengukur kecepatan kendaraan dengan otomatis. Metode yang umum dipakai ialah metode dengan menggunakan dua buah rangkaian sensor yang sudah diatur pada jarak tertentu. Sensor digunakan sebagai pendeteksi keberadaan kendaraan. Data kecepatan kendaraan didapatkan dengan mencari selang waktu yang dibutuhkan kendaraan melaju dari sensor pertama menuju sensor kedua. Saat kendaraan melaju melewati sensor maka sinyal keluaran sensor menjadi acuan perhitungan waktu start dan stop. Berbagai jenis sensor yang sudah digunakan ialah sensor LDR, sensor ultrasonic, sensor laser, sensor loop induktif dan sensor kamera. Setiap sensor yang sudah dipergunakan memiliki berbagai jenis kekurangan dalam mendeteksi kendaraan pada jalan raya. Oleh karena itu penulis memunculkan ide baru dengan menggunakan sensor magnetik yang memiliki faktor gangguan eksternal yang rendah. Sensor magnetik yang digunakan ialah sensor Giant MagnetoResistance (GMR. Perancangan sistem pengukur kecepatan kendaraan yang penulis lakukan berupa sebuah prototype. Hasil pengujian sistem pengukur kecepatan kendaraan menggunakan sensor magnetik GMR menunjukan respon yang bagus saat pengujian dilakukan pada jarak 30cm dan 70cm antara dua buah sensor GMR. Data speed of vehicles on the highway are very influential to the security and safety of users of the highway. Advances in sensor technology is very helpful in measuring the speed of vehicles with automatic. A common method used is the method by using two sensor circuit which is set at a certain distance. The sensor is used as a detector for the exixtance of the vehicle. Vehicle speed data obtained by finding the time required vehicles drove from the first sensor to the second sensor. When the vehicle drove past the sensor, the sensor output signal to be a reference calculation start and stop

  2. Sensors: From biosensors to the electronic nose

    Directory of Open Access Journals (Sweden)

    Aparicio, Ramón

    2002-03-01

    Full Text Available The recent advances in sensor devices have allowed the developing of new applications in many technological fields. This review describes the current state-of-the-art of this sensor technology, placing special emphasis on the food applications. The design, technology and sensing mechanism of each type of sensor are analysed. A description of the main characteristics of the electronic nose and electronic tongue (taste sensors is also given. Finally, the applications of some statistical procedures in sensor systems are described briefly.Los recientes avances en los sistemas de sensores han permitido el desarrollo de nuevas aplicaciones en muchos campos tecnológicos. Este artículo de revisión describe el estado actual de esta nueva tecnología, con especial énfasis en las aplicaciones alimentarias. El diseño, la tecnología y el mecanismo sensorial de cada tipo de sensor son analizados en el artículo. También se describen las principales características de la nariz y la lengua electrónica (sensores de sabor. Finalmente, se describe brevemente el uso de algunos procedimientos estadísticos en sistemas de sensores.

  3. Toward Optical Sensors: Review and Applications

    International Nuclear Information System (INIS)

    Sabri, Naseer; Aljunid, S A; Ahmad, R B; Salim, M S; Kamaruddin, R

    2013-01-01

    Recent advances in fiber optics (FOs) and the numerous advantages of light over electronic systems have boosted the utility and demand for optical sensors in various military, industry and social fields. Environmental and atmospheric monitoring, earth and space sciences, industrial chemical processing and biotechnology, law enforcement, digital imaging, scanning, and printing are exemplars of them. The ubiquity of photonic technologies could drive down prices which reduced the cost of optical fibers and lasers. Fiber optic sensors (FOSs) offer a wide spectrum of advantages over traditional sensing systems, such as small size and longer lifetime. Immunity to electromagnetic interference, amenability to multiplexing, and high sensitivity make FOs the sensor technology of choice in several fields, including the healthcare and aerospace sectors. FOSs show reliable and rigid sensing tasks over conventional electrical and electronic sensors. This paper presents an executive review of optical fiber sensors and the most beneficial applications.

  4. Toward Optical Sensors: Review and Applications

    Science.gov (United States)

    Sabri, Naseer; Aljunid, S. A.; Salim, M. S.; Ahmad, R. B.; Kamaruddin, R.

    2013-04-01

    Recent advances in fiber optics (FOs) and the numerous advantages of light over electronic systems have boosted the utility and demand for optical sensors in various military, industry and social fields. Environmental and atmospheric monitoring, earth and space sciences, industrial chemical processing and biotechnology, law enforcement, digital imaging, scanning, and printing are exemplars of them. The ubiquity of photonic technologies could drive down prices which reduced the cost of optical fibers and lasers. Fiber optic sensors (FOSs) offer a wide spectrum of advantages over traditional sensing systems, such as small size and longer lifetime. Immunity to electromagnetic interference, amenability to multiplexing, and high sensitivity make FOs the sensor technology of choice in several fields, including the healthcare and aerospace sectors. FOSs show reliable and rigid sensing tasks over conventional electrical and electronic sensors. This paper presents an executive review of optical fiber sensors and the most beneficial applications.

  5. Computer modeling of the sensitivity of a laser water vapor sensor to variations in temperature and air speed

    Science.gov (United States)

    Tucker, George F.

    1994-01-01

    Currently, there is disagreement among existing methods of determining atmospheric water vapor concentration at dew-points below -40 C. A major source of error is wall effects which result from the necessity of bringing samples into the instruments. All of these instruments also have response times on the order of seconds. NASA Langley is developing a water vapor sensor which utilizes the absorption of the infrared radiation produced by a diode laser to estimate water vapor concentration. The laser beam is directed through an aircraft window to a retroreflector located on an engine. The reflected beam is detected by an infrared detector located near the laser. To maximize signal to noise, derivative signals are analyzed. By measuring the 2f/DC signal and correcting for ambient temperature, atmospheric pressure and air speed (which results in a Doppler shifting of the laser beam), the water vapor concentration can be retrieved. Since this is an in situ measurement there are no wall effects and measurements can be made at a rate of more than 20 per second. This allows small spatial variations of water vapor to be studied. In order to study the sensitivity of the instrument to variations in temperature and air speed, a computer program which generated the 2f, 3f, 4f, DC and 2f/DC signals of the instrument as a function of temperature, pressure and air speed was written. This model was used to determine the effect of errors in measurement of the temperature and air speed on the measured water vapor concentration. Future studies will quantify the effect of pressure measurement errors, which are expected to be very small. As a result of these studied, a retrieval algorithm has been formulated, and will be applied to data taken during the PEM-West atmospheric science field mission. Spectroscopic studies of the water vapor line used by the instrument will be used to refine this algorithm. To prepare for these studies, several lasers have been studied to determine their

  6. Vision Assisted Laser Scanner Navigation for Autonomous Robots

    DEFF Research Database (Denmark)

    Andersen, Jens Christian; Andersen, Nils Axel; Ravn, Ole

    2008-01-01

    This paper describes a navigation method based on road detection using both a laser scanner and a vision sensor. The method is to classify the surface in front of the robot into traversable segments (road) and obstacles using the laser scanner, this classifies the area just in front of the robot ...

  7. A fiber optic Doppler sensor and its application in debonding detection for composite structures.

    Science.gov (United States)

    Li, Fucai; Murayama, Hideaki; Kageyama, Kazuro; Meng, Guang; Ohsawa, Isamu; Shirai, Takehiro

    2010-01-01

    Debonding is one of the most important damage forms in fiber-reinforced composite structures. This work was devoted to the debonding damage detection of lap splice joints in carbon fiber reinforced plastic (CFRP) structures, which is based on guided ultrasonic wave signals captured by using fiber optic Doppler (FOD) sensor with spiral shape. Interferometers based on two types of laser sources, namely the He-Ne laser and the infrared semiconductor laser, are proposed and compared in this study for the purpose of measuring Doppler frequency shift of the FOD sensor. Locations of the FOD sensors are optimized based on mechanical characteristics of lap splice joint. The FOD sensors are subsequently used to detect the guided ultrasonic waves propagating in the CFRP structures. By taking advantage of signal processing approaches, features of the guided wave signals can be revealed. The results demonstrate that debonding in the lap splice joint results in arrival time delay of the first package in the guided wave signals, which can be the characteristic for debonding damage inspection and damage extent estimation.

  8. Statistical model of intensity noise in con focal fluorescence microscopy images

    International Nuclear Information System (INIS)

    Montereali, R.M.; Almaviva, S.; Franzini, I.; Somma, F.

    2008-01-01

    The visible photoluminescence of aggregate F2 and F3+ color centers in Lithium Fluoride (LiF) thin layers, grown by thermal evaporation on various substrates (either crystalline or not) with different thicknesses, can be efficiently observed by using an optical con focal fluorescence microscope and a laser pump with emission wavelength tuned at about 450 nm. Starting from con focal fluorescence images of uniformly colored LiF samples, an automatic routine for the estimation of photoluminescence intensity noise has been developed at the Solid State Laser Laboratory and Spectroscopy of the ENEA Research Center in Frascati. We reported experimental results about application of that routine to the photoluminescence of LiF thin films, uniformly irradiated with an X-ray tube with energy spectrum centered on the Cu K? emission line (8,03 keV), at the CNR-IFN in Rome, that allow to identify a suitable statistical model for his description [it

  9. Il telerilevamento per la qualità dell'aria L'esperienza SENSORER

    Directory of Open Access Journals (Sweden)

    Marco Folegani

    2012-04-01

    Full Text Available Il monitoraggio della qualità dell'aria con tecniche di telerilevamento è noto da tempo negli ambienti scientifici ma considerato ancora con prudenza e perplessità dalle strutture istituzionali sia per il livello "accademico" delle applicazioni sia per la mancanza di una forte motivazione normativa nell'adottare nuovi metodi di monitoraggio. L'esperienza SENSORER ha l'ambizione di mostrare come si possono superare entrambe queste barriere. The remote sensing for air quality monitoring The SENSORER project.The satellite observations have proven their capabilities for re-mote sensing of atmospheric pollutants such as the Particulate Matter. But the advantage of global coverage, homogeneous quality and a relative good spatial resolution are counterbalanced by the limited temporal resolution and the cloud cover-age. The SENSORER project is just the last example of a web platform that thanks to a combination of satellite data with information from ground based sensors and models overcomes the limitations of each single observation method to provide better pollution maps to make better decisions.

  10. CO2 laser cutting

    CERN Document Server

    Powell, John

    1998-01-01

    The laser has given manufacturing industry a new tool. When the laser beam is focused it can generate one of the world's most intense energy sources, more intense than flames and arcs, though similar to an electron beam. In fact the intensity is such that it can vaporise most known materials. The laser material processing industry has been growing swiftly as the quality, speed and new manufacturing possibilities become better understood. In the fore of these new technologies is the process of laser cutting. Laser cutting leads because it is a direct process substitu­ tion and the laser can usually do the job with greater flexibility, speed and quality than its competitors. However, to achieve these high speeds with high quality con­ siderable know how and experience is required. This information is usually carefully guarded by the businesses concerned and has to be gained by hard experience and technical understanding. Yet in this book John Powell explains in lucid and almost non­ technical language many o...

  11. Active laser radar (lidar) for measurement of corresponding height and reflectance images

    Science.gov (United States)

    Froehlich, Christoph; Mettenleiter, M.; Haertl, F.

    1997-08-01

    For the survey and inspection of environmental objects, a non-tactile, robust and precise imaging of height and depth is the basis sensor technology. For visual inspection,surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent 3D height and 2D reflectance images. The laser radar is an optical-wavelength system, and is comparable to devices built by ERIM, Odetics, and Perceptron, measuring the range between sensor and target surfaces as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to these range sensing devices, the laser radar under consideration is designed for high speed and precise operation in both indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a laser range measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports on design details of the laser radar for surface inspection tasks. It outlines the performance requirements and introduces the measurement principle. The hardware design, including the main modules, such as the laser head, the high frequency unit, the laser beam deflection system, and the digital signal processing unit are discussed.the signal processing unit consists of dedicated signal processors for real-time sensor data preprocessing as well as a sensor computer for high-level image analysis and feature extraction. The paper focuses on performance data of the system, including noise, drift over time, precision, and accuracy with measurements. It discuses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of buildings, monuments

  12. A Compact Ionic Polymer Metal Composite (IPMC System with Inductive Sensor for Closed Loop Feedback

    Directory of Open Access Journals (Sweden)

    Jiaqi Wang

    2015-05-01

    Full Text Available Ionic polymer metal composite (IPMC, of which a low actuating voltage (<5 V, high power efficiency and biocompatibility makes it a proven candidate for low power devices. However, due to its inherent nonlinear behaviour and time-variance, feedback control, as well as reliable sensing means, are required for accurate operations. This paper presents an IPMC actuator implemented with an inductive sensor to enhance the reliability and compactness of the overall device. A practical, low cost and importantly, compact inductive sensor fabricated on a printed circuit board (PCB is proposed here. Target material selections and coil design considerations are discussed. It is experimentally determined that the inductive sensor has comparable performance to a laser sensor. Based on a proportional-integral-derivative (PID control results the inductive sensor has demonstrated to be an alternative to a laser sensor allowing devices using IPMC actuators to be compact.

  13. Modelling and precision of the localization of the robotic mobile platforms for constructions with laser tracker and SmartTrack sensor

    Science.gov (United States)

    Dima, M.; Francu, C.

    2016-08-01

    This paper presents a way to expand the field of use of the laser tracker and SmartTrack sensor localization device used in lately for the localisation of the end effector of the industrial robots to the localization of the mobile construction robots. The research paper presents the equipment along with its characteristics, determines the relationships for the localization coordinates by comparison to the forward kinematics of the industrial robot's spherical arm (positioning mechanism in spherical coordinates) and the orientation mechanism with three revolute axes. In the end of the paper the accuracy of the mobile robot's localization is analysed.

  14. Advances in hybrid optics physical sensors for extreme environments

    Science.gov (United States)

    Riza, Nabeel A.

    2010-04-01

    Highlighted are novel innovations in hybrid optical design physical sensors for extreme environments. Various hybrid design compositions are proposed that are suited for a particular sensor application. Examples includes combining freespace (wireless) and fiber-optics (wired) for gas turbine sensing and combining single crystal and sintered Silicon Carbide (SiC) materials for robust extreme environment Coefficent of Thermal Expansion (CTE) matched frontend probe design. Sensor signal processing also includes the hybrid theme where for example Black-Body radiation thermometry (pyrometry) is combined with laser interferometry to provide extreme temperature measurements. The hybrid theme also operates on the optical device level where a digital optical device such as a Digital Micromirror Device (DMD) is combined with an analog optical device such as an Electronically Controlled Variable Focal Length Lens (ECVFL) to deliver a smart and compressive Three Dimensional (3-D) imaging sensor for remote scene and object shape capture including both ambient light (passive) mode and active laser targeting and receive processing. Within a device level, the hybrid theme also operates via combined analog and digital control such as within a wavelength-coded variable optical delay line. These powerful hybrid design optical sensors have numerous applications in engineering and science applications from the military to the commercial/industrial sectors.

  15. One can achieve anything with a laser: an educational initiative

    Science.gov (United States)

    Davies, Ray K.

    2005-06-01

    Laser Photonics has been highlighted by many as THE Technology of the 21st Century. However, there are few obvious opportunities for students to see a Laser in operation in circumstances beyond some simple low power Laser Interferometry demonstrations, or the use of Laser Pointer Pens. As part of an educational initiative, PION LASER SENSORS within the University of Salford has developed a series of laboratory design and construction Projects that involve both the opportunities for, and the innovative creation of, visually attractive operative applications of low power Laser Photonics. These highly functional Laser Photonics Projects range from the transmission of audio signals to a written alphabetical letter recognition and Braille converter sensor for a visually impaired person; from a Laser speckle eye-sight testing system to a prototype mobile robotic guide for a blind person.; from a novel type of Laser seismograph to an equally novel set of Laser measurement callipers; from a Laser activated pair of walking feet to an optical feedback system to maintain a horizontal surface within a vehicle traversing rough terrain. This type of low power Laser Photonics design and construction Project not only provides the opportunity for students to become involved with some highly creative and innovative laboratory opportunities, but the experience clearly enthuses the students towards many aspects of Physics, Medicine, and Engineering through a sense of personal achievement resulting from a realization of their imaginative thinking sills, combined with their acquired manual skills.

  16. Wireless Occupancy Sensors for Lighting Controls: An Applications Guide for Federal Facility Managers

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-15

    This guide provides federal facility managers with an overview of the energy savings potential of wireless lighting occupancy sensors for various room types, cost considerations, key steps to successful installation of wireless sensors, pros and cons of various technology options, light source considerations, and codes and standards.

  17. Angular Positioning Sensor for Space Mechanisms

    Science.gov (United States)

    Steiner, Nicolas; Chapuis, Dominique

    2013-09-01

    Angular position sensors are used on various rotating mechanisms such as solar array drive mechanisms, antenna pointing mechanisms, scientific instruments, motors or actuators.Now a days, potentiometers and encoders are mainly used for angular measurement purposes. Both of them have their own pros and cons.As alternative, Ruag Space Switzerland Nyon (RSSN) is developing and qualifying two innovative technologies of angular position sensors which offer easy implementation, medium to very high lifetime and high flexibility with regards to the output signal shape/type.The Brushed angular position sensor uses space qualified processes which are already flying on RSSN's sliprings for many years. A large variety of output signal shape can be implemented to fulfill customer requirements (digital, analog, customized, etc.).The contactless angular position sensor consists in a new radiation hard Application Specific Integrated Circuit (ASIC) based on the Hall effect and providing the angular position without complex processing algorithm.

  18. High-power fiber optic cable with integrated active sensors for live process monitoring

    Science.gov (United States)

    Blomster, Ola; Blomqvist, Mats; Bergstrand, Hans; Pålsson, Magnus

    2012-03-01

    In industrial applications using high-brilliance lasers at power levels up to and exceeding 20 kW and similarly direct diode lasers of 10 kW, there is an increasing demand to continuously monitor component status even in passive components such as fiber-optic cables. With fiber-optic cables designed according to the European Automotive Industry fiber standard interface there is room for integrating active sensors inside the connectors. In this paper we present the integrated active sensors in the new Optoskand QD fiber-optic cable designed to handle extreme levels of power losses, and how these sensors can be employed in industrial manufacturing. The sensors include photo diodes for detection of scattered light inside the fiber connector, absolute temperature of the fiber connector, difference in temperature of incoming and outgoing cooling water, and humidity measurement inside the fiber connector. All these sensors are connected to the fiber interlock system, where interlock break enable functions can be activated when measured signals are higher than threshold levels. It is a very fast interlock break system as the control of the signals is integrated in the electronics inside the fiber connector. Also, since all signals can be logged it is possible to evaluate what happened inside the connector before the interlock break instance. The communication to the fiber-optic connectors is via a CAN interface. Thus it is straightforward to develop the existing laser host control to also control the CAN-messages from the QD sensors.

  19. Micro-controller based air pressure monitoring instrumentation system using optical fibers as sensor

    Science.gov (United States)

    Hazarika, D.; Pegu, D. S.

    2013-03-01

    This paper describes a micro-controller based instrumentation system to monitor air pressure using optical fiber sensors. The principle of macrobending is used to develop the sensor system. The instrumentation system consists of a laser source, a beam splitter, two multi mode optical fibers, two Light Dependent Resistance (LDR) based timer circuits and a AT89S8252 micro-controller. The beam splitter is used to divide the laser beam into two parts and then these two beams are launched into two multi mode fibers. One of the multi mode fibers is used as the sensor fiber and the other one is used as the reference fiber. The use of the reference fiber is to eliminate the environmental effects while measuring the air pressure magnitude. The laser beams from the sensor and reference fibers are applied to two identical LDR based timer circuits. The LDR based timer circuits are interfaced to a micro-controller through its counter pins. The micro-controller samples the frequencies of the timer circuits using its counter-0 and counter-1 and the counter values are then processed to provide the measure of air pressure magnitude.

  20. Radiation hardness tests of double-sided 3D strip sensors with passing-through columns

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Betta, Gian-Franco, E-mail: gianfranco.dallabetta@unitn.it [Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, Via Sommarive 9, I-38123 Trento (Italy); INFN TIFPA, Via Sommarive 14, I-38123 Trento (Italy); Betancourt, Christopher [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Boscardin, Maurizio; Giacomini, Gabriele [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive 18, I-38123 Trento (Italy); Jakobs, Karl; Kühn, Susanne [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Lecini, Besnik [Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, Via Sommarive 9, I-38123 Trento (Italy); Mendicino, Roberto [Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, Via Sommarive 9, I-38123 Trento (Italy); INFN TIFPA, Via Sommarive 14, I-38123 Trento (Italy); Mori, Riccardo; Parzefall, Ulrich [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Povoli, Marco [Dipartimento di Ingegneria Industriale, Università degli Studi di Trento, Via Sommarive 9, I-38123 Trento (Italy); Thomas, Maira [Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg (Germany); Zorzi, Nicola [Fondazione Bruno Kessler, Centro per i Materiali e i Microsistemi (FBK-CMM), Via Sommarive 18, I-38123 Trento (Italy)

    2014-11-21

    This paper deals with a radiation hardness study performed on double-sided 3D strip sensors with passing-through columns. Selected results from the characterization of the irradiated sensors with a beta source and a laser setup are reported and compared to pre-irradiation results and to TCAD simulations. The sensor performance in terms of signal efficiency is found to be in good agreement with that of other 3D sensors irradiated at the same fluences and tested under similar experimental conditions. - Highlights: • We report results from 3D silicon strip detectors irradiated up to HL-LHC fluences. • I–V curves, noise, charge collection measurements and laser scans are shown. • In all sensors, signals are distinguished from the noise already at low voltage. • Signal efficiency is in agreement with values expected from the electrode geometry. • Efficiency and spatial uniformity would benefit from higher operation voltages.

  1. Radiation hardness tests of double-sided 3D strip sensors with passing-through columns

    International Nuclear Information System (INIS)

    Dalla Betta, Gian-Franco; Betancourt, Christopher; Boscardin, Maurizio; Giacomini, Gabriele; Jakobs, Karl; Kühn, Susanne; Lecini, Besnik; Mendicino, Roberto; Mori, Riccardo; Parzefall, Ulrich; Povoli, Marco; Thomas, Maira; Zorzi, Nicola

    2014-01-01

    This paper deals with a radiation hardness study performed on double-sided 3D strip sensors with passing-through columns. Selected results from the characterization of the irradiated sensors with a beta source and a laser setup are reported and compared to pre-irradiation results and to TCAD simulations. The sensor performance in terms of signal efficiency is found to be in good agreement with that of other 3D sensors irradiated at the same fluences and tested under similar experimental conditions. - Highlights: • We report results from 3D silicon strip detectors irradiated up to HL-LHC fluences. • I–V curves, noise, charge collection measurements and laser scans are shown. • In all sensors, signals are distinguished from the noise already at low voltage. • Signal efficiency is in agreement with values expected from the electrode geometry. • Efficiency and spatial uniformity would benefit from higher operation voltages

  2. Automated Laser Seeker Performance Evaluation System (ALSPES)

    Data.gov (United States)

    Federal Laboratory Consortium — This facility provides complete open-loop test capability for semi-active laser (SAL) seekers/sensors operating at 1.064 microns. ALSPES provides characterizations...

  3. MAPLE activities and applications in gas sensors

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Remsa, Jan; Kocourek, Tomáš; Kubešová, B.; Schůrek, J.; Myslík, V.

    2011-01-01

    Roč. 105, č. 3 (2011), 643-649 ISSN 0947-8396 Institutional research plan: CEZ:AV0Z10100522 Keywords : MAPLE * gas sensors * biomedicine * thin films Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.630, year: 2011

  4. Selective laser etching or ablation for fabrication of devices

    KAUST Repository

    Buttner, Ulrich

    2017-01-12

    Methods of fabricating devices vial selective laser etching are provided. The methods can include selective laser etching of a portion of a metal layer, e.g. using a laser light source having a wavelength of 1,000 nm to 1,500 nm. The methods can be used to fabricate a variety of features, including an electrode, an interconnect, a channel, a reservoir, a contact hole, a trench, a pad, or a combination thereof. A variety of devices fabricated according to the methods are also provided. In some aspects, capacitive humidity sensors are provided that can be fabricated according to the provided methods. The capacitive humidity sensors can be fabricated with intricate electrodes, e.g. having a fractal pattern such as a Peano curve, a Hilbert curve, a Moore curve, or a combination thereof.

  5. 1st International Conference on Fiber-Optic Rotation Sensors

    CERN Document Server

    Arditty, Hervé

    1982-01-01

    Currently there is considerable interest in the application of optical meth­ ods for the measurement of absolute rotation. Active approaches, so-called ring laser gyros, have been under serious development for at least 15 years. More recently, passive approaches using ring resonators or multi turn fiber interferometers have also demonstrated much pro~ise. The only previous conference devoted exclusively to optical rotation sensors, held in 1978 in San Diego, California, was organized by the Society of Photo-optical Instru­ mentation Engineers(S.P.I.E.J. Although the main emphasis at that conference was on ring laser gyros, a number of papers were also included that described the early development of fiber gyroscopes. Since then the field of fiber optic rotation sensors has grown so rapidly that a conference devoted primarily to this subject was needed. The First International Conference on Fiber-Optic Rotation Sensors was held at the Massachusetts Institute of Technology, Cambridge, Massachusetts, Nove~­ b...

  6. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    Science.gov (United States)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  7. High-sensitivity high-selectivity detection of CWAs and TICs using tunable laser photoacoustic spectroscopy

    Science.gov (United States)

    Pushkarsky, Michael; Webber, Michael; Patel, C. Kumar N.

    2005-03-01

    We provide a general technique for evaluating the performance of an optical sensor for the detection of chemical warfare agents (CWAs) in realistic environments and present data from a simulation model based on a field deployed discretely tunable 13CO2 laser photoacoustic spectrometer (L-PAS). Results of our calculations show the sensor performance in terms of usable sensor sensitivity as a function of probability of false positives (PFP). The false positives arise from the presence of many other gases in the ambient air that could be interferents. Using the L-PAS as it exists today, we can achieve a detection threshold of about 4 ppb for the CWAs while maintaining a PFP of less than 1:106. Our simulation permits us to vary a number of parameters in the model to provide guidance for performance improvement. We find that by using a larger density of laser lines (such as those obtained through the use of tunable semiconductor lasers), improving the detector noise and maintaining the accuracy of laser frequency determination, optical detection schemes can make possible CWA sensors having sub-ppb detection capability with TIC detection.

  8. Basic opto-electronics on silicon for sensor applications

    NARCIS (Netherlands)

    Joppe, J.L.; Bekman, H.H.P.Th.; de Krijger, A.J.T.; Albers, H.; Chalmers, J.; Chalmers, J.D.; Holleman, J.; Ikkink, T.J.; Ikkink, T.; van Kranenburg, H.; Zhou, M.-J.; Zhou, Ming-Jiang; Lambeck, Paul

    1994-01-01

    A general platform for integrated opto-electronic sensor systems on silicon is proposed. The system is based on a hybridly integrated semiconductor laser, ZnO optical waveguides and monolithic photodiodes and electronic circuiry.

  9. INTERFAZ HÁPTICA TIPO GUANTE CON REALIMENTACIÓN VIBRATORIA

    Directory of Open Access Journals (Sweden)

    Mónica Rocío Díaz Tribaldos

    Full Text Available El presente artículo muestra el diseño y construcción de un guante háptico con realimentación vibratoria. El guante construido, llamado Virtual Touch, involucra sensores de flexión con el fin de captar en todo momento el movimiento realizado por la mano, así como pequeños motores de vibración que indican al usuario el contacto con un objeto virtual. Se implementaron dos tipos de software para manejar el dispositivo, primero que todo una aplicación en el ambiente ROS (Robotic Operation System basado en Linux®, y como segunda instancia una aplicación en Windows® utilizando como motor de renderizado gráfico a VTK (The Visualization ToolKit, open source. Las dos aplicaciones muestran el guante virtual que sigue fielmente los movimientos de la mano real, además de que indican claramente el contacto con un objeto virtual. Además, en el caso de la aplicación realizada con VTK, se puede observar la deformación realizada sobre el objeto. Las aplicaciones futuras de este dispositivo son múltiples, entre ellas el diagnóstico médico.

  10. Dempster Shafer Sensor Fusion for Autonomously Driving Vehicles : Association Free Tracking of Dynamic Objects

    OpenAIRE

    Högger, Andreas

    2016-01-01

    Autonomous driving vehicles introduce challenging research areas combining differ-ent disciplines. One challenge is the detection of obstacles with different sensors and the combination of information to generate a comprehensive representation of the environment, which can be used for path planning and decision making.The sensor fusion is demonstrated using two Velodyne multi beam laser scanners, but it is possible to extend the proposed sensor fusion framework for different sensor types. Sensor...

  11. Identifying and tracking pedestrians based on sensor fusion and motion stability predictions.

    Science.gov (United States)

    Musleh, Basam; García, Fernando; Otamendi, Javier; Armingol, José Maria; de la Escalera, Arturo

    2010-01-01

    The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS) applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem) and dense disparity maps and u-v disparity (vision subsystem). Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle.

  12. Identifying and Tracking Pedestrians Based on Sensor Fusion and Motion Stability Predictions

    Directory of Open Access Journals (Sweden)

    Arturo de la Escalera

    2010-08-01

    Full Text Available The lack of trustworthy sensors makes development of Advanced Driver Assistance System (ADAS applications a tough task. It is necessary to develop intelligent systems by combining reliable sensors and real-time algorithms to send the proper, accurate messages to the drivers. In this article, an application to detect and predict the movement of pedestrians in order to prevent an imminent collision has been developed and tested under real conditions. The proposed application, first, accurately measures the position of obstacles using a two-sensor hybrid fusion approach: a stereo camera vision system and a laser scanner. Second, it correctly identifies pedestrians using intelligent algorithms based on polylines and pattern recognition related to leg positions (laser subsystem and dense disparity maps and u-v disparity (vision subsystem. Third, it uses statistical validation gates and confidence regions to track the pedestrian within the detection zones of the sensors and predict their position in the upcoming frames. The intelligent sensor application has been experimentally tested with success while tracking pedestrians that cross and move in zigzag fashion in front of a vehicle.

  13. An IFPI Temperature Sensor Fabricated in an Unstriped Optical Fiber with Self-Strain-Compensation Function

    Directory of Open Access Journals (Sweden)

    Yang Song

    2016-01-01

    Full Text Available This paper describes an intrinsic Fabry-Perot interferometer (IFPI temperature sensor with self-strain-compensation function. The sensor was fabricated on a buffer-intact optical fiber using a femtosecond (fs laser system. The use of fs laser allows the sensor to be fabricated in an optical fiber without the necessity of removing the polymer buffer coating, thus not compromising its mechanical property. The sensor is composed of two cascaded IFPIs in different cavity length of 100 μm and 500 μm, respectively. The shorter IFPI serves as the temperature sensor, while the second IFPI serves as a compensation sensor, which is used to decouple the strain from the raw signal collected by the shorter FPI. The reflection spectrum of sensor, containing both sensory information and compensation information, is collected in wavelength domain and demultiplexed in the Fourier domain of reflection spectrum. An algorithm was developed and successfully implemented to compensate the strain influence on the proposed temperature sensor. The results showed that the proposed sensor structure holds a constant temperature sensitivity of 11.33 pm/°C when strained differently.

  14. Achieving Real-Time Tracking Mobile Wireless Sensors Using SE-KFA

    Science.gov (United States)

    Kadhim Hoomod, Haider, Dr.; Al-Chalabi, Sadeem Marouf M.

    2018-05-01

    Nowadays, Real-Time Achievement is very important in different fields, like: Auto transport control, some medical applications, celestial body tracking, controlling agent movements, detections and monitoring, etc. This can be tested by different kinds of detection devices, which named "sensors" as such as: infrared sensors, ultrasonic sensor, radars in general, laser light sensor, and so like. Ultrasonic Sensor is the most fundamental one and it has great impact and challenges comparing with others especially when navigating (as an agent). In this paper, concerning to the ultrasonic sensor, sensor(s) detecting and delimitation by themselves then navigate inside a limited area to estimating Real-Time using Speed Equation with Kalman Filter Algorithm as an intelligent estimation algorithm. Then trying to calculate the error comparing to the factual rate of tracking. This paper used Ultrasonic Sensor HC-SR04 with Arduino-UNO as Microcontroller.

  15. Chirped laser dispersion spectroscopy for remote open-path trace-gas sensing.

    Science.gov (United States)

    Nikodem, Michal; Wysocki, Gerard

    2012-11-28

    In this paper we present a prototype instrument for remote open-path detection of nitrous oxide. The sensor is based on a 4.53 μm quantum cascade laser and uses the chirped laser dispersion spectroscopy (CLaDS) technique for molecular concentration measurements. To the best of our knowledge this is the first demonstration of open-path laser-based trace-gas detection using a molecular dispersion measurement. The prototype sensor achieves a detection limit down to the single-ppbv level and exhibits excellent stability and robustness. The instrument characterization, field deployment performance, and the advantages of applying dispersion sensing to sensitive trace-gas detection in a remote open-path configuration are presented.

  16. Modeling of a 3D CMOS sensor for time-of-flight measurements

    Science.gov (United States)

    Kuhla, Rico; Hosticka, Bedrich J.; Mengel, Peter; Listl, Ludwig

    2004-02-01

    A solid state 3D-CMOS camera system for direct time-of-flight image acquisition consisting of a CMOS imaging sensor, a laser diode module for active laser pulse illumination and all optics for image forming is presented, including MDSI & CDS algorithms for time-of-flight evaluation from intensity imaging. The investigation is carried out using ideal and real signals. For real signals the narrow infrared laser pulse of the laser diode module and the shutter function of the sensors column circuit were sampled by a new sampling procedure. A discrete sampled shutter function was recorded by using the impulse response of a narrow pulse of FWHM=50ps and an additional delay block with step size of Δτ = 0.25ns. A deterministic system model based on LTI transfer functions was developed. The visual shutter windows give a good understanding of differences between ideal and real output functions of measurement system. Simulations of shutter and laser pulse brought out an extended linear delay domain from MDSI. A stochastic model for the transfer function and photon noise in time domain was developed. We used the model to investigate noise in variation the laser pulse shutter configuration.

  17. A quantum dot-spore nanocomposite pH sensor.

    Science.gov (United States)

    Zhang, Xingya; Li, Zheng; Zhou, Tao; Zhou, Qian; Zeng, Zhiming; Xu, Xiangdong; Hu, Yonggang

    2016-04-01

    A new quantum dot (QD)-based pH sensor design is investigated. The sensor is synthesized based on the self-assembly of green QDs onto treated spores to form QD@spore nanocomposites. The nanocomposites are characterized using laser scanning confocal microscopy, transmission electron microscope, and fluorescence spectroscopy, among others. Fluorescence measurements showed that these nanocomposites are sensitive to pH in a broad pH range of 5.0-10.0. The developed pH sensors have been satisfactorily applied for pH estimation of real samples and are comparable with those of the commercial assay method, indicating the potential practical application of the pH sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Portable Diode Laser Diagnostic System for Collaborative Research on Air-Breathing Combustion

    National Research Council Canada - National Science Library

    Hanson, Ronald

    2003-01-01

    This equipment grant focused on four areas: (1) portable diode laser sensors with new fiber-coupled diode lasers and the support equipment to provide higher power with extended wavelength tuning range and speed; (2...

  19. Using a CO2 laser for PIR-detector spoofing

    NARCIS (Netherlands)

    Schleijpen, R.; Putten, F.J.M. van

    2016-01-01

    This paper presents experimental work on the use of a CO2 laser for triggering of PIR sensors. Pyro-electric InfraRed sensors are often used as motion detectors for detection of moving persons or objects that are warmer than their environment. Apart from uses in the civilian domain, also

  20. Chemical sensors for nuclear industry

    International Nuclear Information System (INIS)

    Gnanasekaran, K.I.

    2012-01-01

    Development of chemical sensors for detection of gases at trace levels for applications in nuclear industry will be highlighted. The sensors have to be highly sensitive, reliable and rugged with long term stability to operate in harsh industrial environment. Semiconductor and solid electrolyte based electrochemical sensors satisfy the requirements. Physico-chemical aspects underlying the development of H 2 sensors in sodium and in cover gas circuit of the Fast breeder reactors for its smooth functioning, NH 3 and H 2 S sensors for use in Heavy water production industries and NO x sensors for spent fuel reprocessing plants will be presented. Development of oxygen sensors to monitor the oxygen level in the reactor containments and sodium sensors for detection of sodium leakages will also be discussed. The talk will focus the general aspects of identification of the sensing material for the respective analyte species, development of suitable chemical route for preparing them as fine powders, the need for configuring them in thick film or thin film geometries and their performance. Pulsed laser deposition method, an elegant technique to prepare the high quality thin films of multicomponent oxides is demonstrated for preparation of nanostructured thin films of complex oxides and its use in tailoring the morphology of the complex sensing material in the desired form by optimizing the in-situ growth conditions. (author)

  1. Optical feedback-induced light modulation for fiber-based laser ablation.

    Science.gov (United States)

    Kang, Hyun Wook

    2014-11-01

    Optical fibers have been used as a minimally invasive tool in various medical fields. However, due to excessive heat accumulation, the distal end of a fiber often suffers from severe melting or devitrification, leading to the eventual fiber failure during laser treatment. In order to minimize thermal damage at the fiber tip, an optical feedback sensor was developed and tested ex vivo. Porcine kidney tissue was used to evaluate the feasibility of optical feedback in terms of signal activation, ablation performance, and light transmission. Testing various signal thresholds demonstrated that 3 V was relatively appropriate to trigger the feedback sensor and to prevent the fiber deterioration during kidney tissue ablation. Based upon the development of temporal signal signatures, full contact mode rapidly activated the optical feedback sensor possibly due to heat accumulation. Modulated light delivery induced by optical feedback diminished ablation efficiency by 30% in comparison with no feedback case. However, long-term transmission results validated that laser ablation assisted with optical feedback was able to almost consistently sustain light delivery to the tissue as well as ablation efficiency. Therefore, an optical feedback sensor can be a feasible tool to protect optical fiber tips by minimizing debris contamination and delaying thermal damage process and to ensure more efficient and safer laser-induced tissue ablation.

  2. All-electronic suppression of mode hopping noise in diode lasers

    DEFF Research Database (Denmark)

    Bager, L.

    1990-01-01

    A simple all-electronic stabilization scheme is presented for suppression of external-cavity mode-hopping noise in diode lasers. This excess noise is generated when the laser is subjected to optical feedback and may degrade the overall performance of optical systems including sensors. Suppression...

  3. Direct Metal Laser Sintering: A Digitised Metal Casting Technology

    OpenAIRE

    Venkatesh, K. Vijay; Nandini, V. Vidyashree

    2013-01-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  4. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  5. Hybrid organic semiconductor lasers for bio-molecular sensing.

    Science.gov (United States)

    Haughey, Anne-Marie; Foucher, Caroline; Guilhabert, Benoit; Kanibolotsky, Alexander L; Skabara, Peter J; Burley, Glenn; Dawson, Martin D; Laurand, Nicolas

    2014-01-01

    Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.

  6. Diode laser based velocity sensors for industrial applications

    DEFF Research Database (Denmark)

    Iversen, Theis Faber Quist

    is part of a single optical unit, combining an additional optical spatial filter and a transmitter used for beam shaping. The optical unit used in the miniaturized sensor is acting in combination with an application specific integrated circuit (ASIC) fitted with appropriate detector arrays facilitating...... a two dimensional velocity measurement of in-plane translation of a rigid object (surface). Particularly, the beam shaping transmitter optic is redesigned for optimum performance using a Fourier optical diffraction model. Furthermore, a ray tracing model is developed for the receiving part...... and discussed. The observations made outlines possible advantageous properties that may be exploited to develop ultrathin touch sensitive sensors for use as cursor control devices in form-factor critical applications, such as e.g. mobile phones....

  7. Results on photon and neutron irradiation of semitransparent amorphous-silicon sensors

    CERN Document Server

    Carabe, J; Ferrando, A; Fuentes, J; Gandia, J J; Josa-Mutuberria, I; Molinero, A; Oller, J C; Arce, P; Calvo, E; Figueroa, C F; García, N; Matorras, F; Rodrigo, T; Vila, I; Virto, A L; Fenyvesi, A; Molnár, J; Sohler, D

    2000-01-01

    Semitransparent amorphous-silicon sensors are basic elements for laser 2D position reconstruction in the CMS multipoint alignment link system. Some of the sensors have to work in a very hard radiation environment. Two different sensor types have been irradiated with /sup 60/Co photons (up to 100 kGy) and fast neutrons (up to 10/sup 15 / cm/sup -2/), and the subsequent change in their performance has been measured. (13 refs).

  8. A flexible calibration method for laser displacement sensors based on a stereo-target

    International Nuclear Information System (INIS)

    Zhang, Jie; Sun, Junhua; Liu, Zhen; Zhang, Guangjun

    2014-01-01

    Laser displacement sensors (LDSs) are widely used in online measurement owing to their characteristics of non-contact, high measurement speed, etc. However, existing calibration methods for LDSs based on the traditional triangulation measurement model are time-consuming and tedious to operate. In this paper, a calibration method for LDSs based on a vision measurement model of the LDS is presented. According to the constraint relationships of the model parameters, the calibration is implemented by freely moving a stereo-target at least twice in the field of view of the LDS. Both simulation analyses and real experiments were conducted. Experimental results demonstrate that the calibration method achieves an accuracy of 0.044 mm within the measurement range of about 150 mm. Compared to traditional calibration methods, the proposed method has no special limitation on the relative position of the LDS and the target. The linearity approximation of the measurement model in the calibration is not needed, and thus the measurement range is not limited in the linearity range. It is easy and quick to implement the calibration for the LDS. The method can be applied in wider fields. (paper)

  9. Remote Laser Evaporative Molecular Absorption Spectroscopy Sensor System

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a sensor system capable of remotely probing the molecular composition of cold solar system targets (asteroids, comets, planets, moons), such as from a...

  10. Small-scale heat detection using catalytic microengines irradiated by laser

    Science.gov (United States)

    Liu, Zhaoqian; Li, Jinxing; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Mei, Yongfeng

    2013-01-01

    We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection.We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32494f

  11. Laser-deposited thin films for butane detection

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Kocourek, Tomáš; Flory, F.; Escoubas, L.; Mazingue, T.; Myslík, V.; Vrňata, M.; Fryček, R.; Vysloužil, F.

    2006-01-01

    Roč. 16, č. 2 (2006), s. 217-222 ISSN 1054-660X R&D Projects: GA AV ČR(CZ) IAA1010110; GA ČR(CZ) GA104/03/0406 Grant - others:NANOPHOS(XE) IST-2001-39112 Institutional research plan: CEZ:AV0Z10100522 Keywords : laser deposition * gas sensor * mode spectroscopy Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.516, year: 2006

  12. Progress in metal-insulator-metal waveguide lasers at near-infrared wavelengths

    NARCIS (Netherlands)

    Marell, M.J.H.; Hill, M.T.

    2009-01-01

    Strong light con¯nement can be achieved in metallic cavities which can con¯ne light to volumes with dimensions considerably smaller than the wavelength of light. It was commonly believed, however, that the high losses in metals are prohibitive for laser peration in metallic nano-cavities. Recently

  13. MULTI SENSOR AND PLATFORMS SETUPS FOR VARIOUS AIRBORNE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    G. Kemper

    2016-06-01

    Full Text Available To combine various sensors to get a system for specific use became popular within the last 10 years. Metric mid format cameras meanwhile reach the 100 MPix and entered the mapping market to compete with the big format sensors. Beside that also other sensors as SLR Cameras provide high resolution and enter the aerial surveying market for orthophoto production or monitoring applications. Flexibility, purchase-costs, size and weight are common aspects to design multi-sensor systems. Some sensors are useful for mapping while others are part of environmental monitoring systems. Beside classical surveying aircrafts also UL Airplanes, Para/Trikes or UAVs make use of multi sensor systems. Many of them are customer specific while other already are frequently used in the market. This paper aims to show some setup, their application, what are the results and what are the pros and cons of them are.

  14. Bio-Inspired Micromechanical Directional Acoustic Sensor

    Science.gov (United States)

    Swan, William; Alves, Fabio; Karunasiri, Gamani

    Conventional directional sound sensors employ an array of spatially separated microphones and the direction is determined using arrival times and amplitudes. In nature, insects such as the Ormia ochracea fly can determine the direction of sound using a hearing organ much smaller than the wavelength of sound it detects. The fly's eardrums are mechanically coupled, only separated by about 1 mm, and have remarkable directional sensitivity. A micromechanical sensor based on the fly's hearing system was designed and fabricated on a silicon on insulator (SOI) substrate using MEMS technology. The sensor consists of two 1 mm2 wings connected using a bridge and to the substrate using two torsional legs. The dimensions of the sensor and material stiffness determine the frequency response of the sensor. The vibration of the wings in response to incident sound at the bending resonance was measured using a laser vibrometer and found to be about 1 μm/Pa. The electronic response of the sensor to sound was measured using integrated comb finger capacitors and found to be about 25 V/Pa. The fabricated sensors showed good directional sensitivity. In this talk, the design, fabrication and characteristics of the directional sound sensor will be described. Supported by ONR and TDSI.

  15. Sensor de temperatura para sistemas microelectromecánicos y procedimiento de fabricación

    OpenAIRE

    Vázquez Villalabeitia, Manuel; Kolesar, Vladimir

    2014-01-01

    El objeto de la invención es un sensor de temperatura con estructura cilíndrica y constituido por un material compuesto, que comprende un núcleo metálico y al menos un recubrimiento sobre dicho núcleo metálico con la característica de presentar una asimetría radial en cualquier sección transversal de la estructura. Constituye igualmente un objeto de la presente invención un procedimiento de fabricación del sensor de temperatura basado en la solidificación rápida del núcleo metálico en el ...

  16. Augmented reality in laser laboratories

    Science.gov (United States)

    Quercioli, Franco

    2018-05-01

    Laser safety glasses block visibility of the laser light. This is a big nuisance when a clear view of the beam path is required. A headset made up of a smartphone and a viewer can overcome this problem. The user looks at the image of the real world on the cellphone display, captured by its rear camera. An unimpeded and safe sight of the laser beam is then achieved. If the infrared blocking filter of the smartphone camera is removed, the spectral sensitivity of the CMOS image sensor extends in the near infrared region up to 1100 nm. This substantial improvement widens the usability of the device to many laser systems for industrial and medical applications, which are located in this spectral region. The paper describes this modification of a phone camera to extend its sensitivity beyond the visible and make a true augmented reality laser viewer.

  17. Effects of laser beam propagation and saturation on the spatial shape of sodium laser guide stars.

    Science.gov (United States)

    Marc, Fabien; Guillet de Chatellus, Hugues; Pique, Jean-Paul

    2009-03-30

    The possibility to produce diffraction-limited images by large telescopes through Adaptive Optics is closely linked to the precision of measurement of the position of the guide star on the wavefront sensor. In the case of laser guide stars, many parameters can lead to a strong distortion on the shape of the LGS spot. Here we study the influence of both the saturation of the sodium layer excited by different types of lasers, the spatial quality of the laser mode at the ground and the influence of the atmospheric turbulence on the upward propagation of the laser beam. Both shape and intensity of the LGS spot are found to depend strongly on these three effects with important consequences on the precision on the wavefront analysis.

  18. Laser sensor for monitoring radioactive contamination

    Science.gov (United States)

    Kascheev, S. V.; Elizarov, V. V.; Grishkanich, A. S.; Bespalov, V. G.; Vasiev, S. K.; Zhevlakov, A. P.

    2014-11-01

    Remote laser spectroscopy availability for airborne search of radionuclides polution has been examined. Experiments were carried out under the CARS circuit. The method of remote detection a radionuclide in atmosphere from container burial places and in places of recycling the fuel waste of the atomic power station is elaborated. Preliminary results of investigation show the real possibility to register of leakage of a radionuclide with concentration at level of 1012÷1013 cm-3 on a safe distance from the infected object.

  19. Design challenges of a tunable laser interrogator for geo-stationary communication satellites

    Science.gov (United States)

    Ibrahim, Selwan K.; Honniball, Arthur; McCue, Raymond; Todd, Michael; O'Dowd, John A.; Sheils, David; Voudouris, Liberis; Farnan, Martin; Hurni, Andreas; Putzer, Philipp; Lemke, Norbert; Roner, Markus

    2017-09-01

    Recently optical sensing solutions based on fiber Bragg grating (FBG) technology have been proposed for temperature monitoring in telecommunication satellite platforms with an operational life time beyond 15 years in geo-stationary orbit. Developing radiation hardened optical interrogators designed to be used with FBG sensors inscribed in radiation tolerant fibers offer the capabilities of multiplexing multiple sensors on the same fiber and reducing the overall weight by removing the copper wiring harnesses associated with electrical sensors. Here we propose the use of a tunable laser based optical interrogator that uses a semiconductor MG-Y type laser that has no moving parts and sweeps across the C-band wavelength range providing optical power to FBG sensors and optical wavelength references such as athermal Etalons and Gas Cells to guarantee stable operation of the interrogator over its targeted life time in radiation exposed environments. The MG-Y laser was calibrated so it remains in a stable operation mode which ensures that no mode hops occur due to aging of the laser, and/or thermal or radiation effects. The key optical components including tunable laser, references and FBGs were tested for radiation tolerances by emulating the conditions on a geo-stationary satellite including a Total Ionizing Dose (TID) radiation level of up to 100 krad for interrogator components and 25 Mrad for FBGs. Different tunable laser control, and signal processing algorithms have been designed and developed to fit within specific available radiation hardened FPGAs to guarantee operation of a single interrogator module providing at least 1 sample per second measurement capability across engineering model system developed in the frame of an ESA-ARTES program and is planned to be deployed as a flight demonstrator on-board the German Heinrich Hertz geo-stationary satellite.

  20. Optical improvement for laser material processing

    Energy Technology Data Exchange (ETDEWEB)

    Bosman, J.; De Keijzer, M.A.; De Kok, C.J.G.M. [ECN Engineering and Services, Petten (Netherlands); Molenaar, R.; Kettelarij, H.

    2010-05-15

    The use of laser technology enables flexibility and new concepts for example solar cell production but also optical moulds. The reason why laser technology is used in these cases is not the laser system itself but the ability to tailor this type of energy to the demands of the production processes. To ensure the full potential of the laser technology it can be improved by adding optical elements like polarizer, cameras, lenses and sensors. Two of these extra optical elements are presented here. First laser pulse energy attenuation. This is used to increase the controllability of laser processes. And second a new camera optic that enables integrated alignment with respect to features on the product. This last option enables marking on existing features and automated compensation of scanner drift. These camera systems can be used for micro welding of polymers and repair of existing markings in moulds.

  1. Las redes de sensores inalámbricos y el internet de las cosas

    Directory of Open Access Journals (Sweden)

    Alejandro Cama

    2012-01-01

    Full Text Available El Internet de las cosas (IoT percibe un mundo donde los dispositivos que lo conforman pueden ser identificados en el Internet y está creciendo a un ritmo acelerado con nuevos dispositivos que se van conectando. En este sentido, las redes de sensores inalámbricos juegan un papel importante para incrementar la ubicuidad de las redes con dispositivos inteligentes de bajo costo y fácil implementación, con estándares como IEEE 802.15.4 en la capa física, 6LoWPAN en la capa de red, y RPL como protocolo de enrutamiento, que se integran en el concepto de IoT para traer nuevas experiencias en las actividades de la vida diaria, como por ejemplo en aplicaciones para hogares y oficinas confortables, salud, vigilancia del medio ambiente y ciudades inteligentes. En el presente artículo se relacionará a la red de sensores inalámbricos con el Internet de las cosas a través de estándares y protocolos.

  2. Sensitive Mid-IR Laser Sensor Development and Mass Spectrometric Measurements in Shock Tube and Flames

    KAUST Repository

    Alquaity, Awad

    2016-11-01

    With global emission regulations becoming stringent, development of new combustion technologies that meet future emission regulations is essential. In this vein, this dissertation presents the application of sensitive diagnostic tools to validate and improve chemical kinetic mechanisms that play a fundamental role in the design of new combustion technologies. First, a novel high sensitivity laser-based sensor with a wide frequency tuning range (900 – 1000 cm-1) was developed utilizing pulsed cavity ringdown spectroscopy (CRDS) technique. The novel laser-based sensor was illustrated by measuring trace amounts of multiple combustion intermediates, namely ethylene, propene, allene, and 1-butene in a static cell at ambient conditions. Subsequently, pulsed CRDS technique was utilized to develop an ultra-fast, high sensitivity diagnostic to monitor trace concentrations of ethylene in shock tube pyrolysis experiments. This diagnostic represented the first ever successful application of CRDS technique to transient species measurements in a shock tube. The high sensitivity and fast time response (10μs) diagnostic may be utilized for measuring other key neutrals and radicals which are crucial in the oxidation chemistry of practical fuels. Secondly, a quadrupole mass spectrometer (QMS) was employed to measure relative cation mole fractions in atmospheric and low-pressure (30 Torr) flames of methane/oxygen diluted in argon. Lean, stoichiometric and rich flames were 4 examined to evaluate the dependence of ion chemistry on flame stoichiometry. Spatial distribution of cations was compared with predictions of an existing ion chemistry model. Based on the extensive measurements carried out in this work, modifications were suggested to improve the ion chemistry model to enhance the fidelity of such mechanisms. In-depth understanding of flame ion chemistry is vital to model the interaction of flames with electric fields and thereby pave the way to enable active combustion control

  3. Enamel-Caries Prevention Using Two Applications of Fluoride-Laser Sequence.

    Science.gov (United States)

    Noureldin, Amal; Quintanilla, Ines; Kontogiorgos, Elias; Jones, Daniel

    2016-03-01

    Studies demonstrated a significant synergism between fluoride and laser in reduction of enamel solubility. However, minimal research has focused on testing the sequence of their application and no other research investigated the preventive effect of repeated applications of a combined treatment. This study investigated the effect of two applications of fluoride-laser sequence on the resistance of sound enamel to cariogenic challenge compared to one-time application. Sixty enamel slabs were cut from 10 human incisors, ground flat, polished and coated with nail varnish except a 2 x 2 mm window. Specimens were randomly assigned into five groups of 12 specimens; (CON-) negative-control received no treatment, (CON+) positive-control received pH challenge, (FV) treated with M fluoride varnish, (F-L1) one-application fluoride-varnish followed by CO2 laser-treatment (short-pulsed 10.6 µm, 2.4J/ cm2, 10HZ, 10sec), and (F-L2) two-applications of fluoride varnish-laser treatment. Specimens were left in distilled water for one day between applications. Except CON-, all groups were submitted to pH cycling for 9-days (8 demin/ remin + 1 day remineralisation bath) at 37°C. Enamel demineralization was quantitatively evaluated by measurement of Knoop surface-microhardness (SM H) (50-grams/10 seconds). Data were analyzed using one-way ANOVA (p ≤ 0.05) followed by Duncan's Multiple Range Test. Within the limitations of this study, it was found that one or two applications of fluoride-laser sequence significantly improved resistance of the sound enamel surface to acid attack compared to FV-treated group. Although the two applications of fluoride-laser sequence (F-L1 and F-L2) showed higher SMH values, significant resistance to demineralization was only obtained with repeated applications.

  4. Surface-enhanced Raman fiberoptic sensors for remote monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Stokes, D.L.; Alarie, J.P.; Vo-Dinh, T. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.

    1995-09-01

    A new sensor design for remote surface-enhanced Raman scattering (SERS) measurements has been developed for environmental applications. The design features the modification of an optical fiber using layers of alumina microparticles and silver coatings for inducing the SERS effect at the sensing probe. A single fiber carries both the laser excitation and the SERS signal radiation, keeping optical parameters at the remote tip simple and consistent. The small tip size achievable with this configuration also demonstrates potential of this new design as a microsensor for in-situ measurement in microenvironments. Details of sensor tip fabrication and optical system design are described. SERS spectra of aqueous environmental samples acquired in-situ using the SERS sensor are also presented to illustrate the effectiveness of the SERS sensor.

  5. Modulador-Demodulador ASK con codificación Manchester implementado en un microcontrolador PIC

    OpenAIRE

    Tarifa Amaya, Ariel; Del Risco Sánchez, Arnaldo; Cruz Hurtado, Juan Carlos

    2012-01-01

    Se presenta el diseño de un Modulador-Demodulador Digital ASK con codificación Manchester implementado en el firmware de un microcontrolador PIC 18F4455, utilizando el estándar de baja frecuencia (LF) el cual maneja valores de 125kHz. Este modulador-demodulador se utiliza en la implementación de una etiqueta RFID activa. Transmite a solicitud de un dispositivo lector el valor de temperatura de un sensor y su identificador. El dispositivo lector, controla la comunicación con la etiqueta. Según...

  6. Analysis and experimental kinematics of a skid-steering wheeled robot based on a laser scanner sensor.

    Science.gov (United States)

    Wang, Tianmiao; Wu, Yao; Liang, Jianhong; Han, Chenhao; Chen, Jiao; Zhao, Qiteng

    2015-04-24

    Skid-steering mobile robots are widely used because of their simple mechanism and robustness. However, due to the complex wheel-ground interactions and the kinematic constraints, it is a challenge to understand the kinematics and dynamics of such a robotic platform. In this paper, we develop an analysis and experimental kinematic scheme for a skid-steering wheeled vehicle based-on a laser scanner sensor. The kinematics model is established based on the boundedness of the instantaneous centers of rotation (ICR) of treads on the 2D motion plane. The kinematic parameters (the ICR coefficient , the path curvature variable and robot speed ), including the effect of vehicle dynamics, are introduced to describe the kinematics model. Then, an exact but costly dynamic model is used and the simulation of this model's stationary response for the vehicle shows a qualitative relationship for the specified parameters and . Moreover, the parameters of the kinematic model are determined based-on a laser scanner localization experimental analysis method with a skid-steering robotic platform, Pioneer P3-AT. The relationship between the ICR coefficient and two physical factors is studied, i.e., the radius of the path curvature and the robot speed . An empirical function-based relationship between the ICR coefficient of the robot and the path parameters is derived. To validate the obtained results, it is empirically demonstrated that the proposed kinematics model significantly improves the dead-reckoning performance of this skid-steering robot.

  7. Laser-assisted growth of carbon nanotubes on laser-patterned substrates and inside sealed micro-channels

    NARCIS (Netherlands)

    Burgt, Y. van de; Bellouard, Y.

    2014-01-01

    Carbon nanotube assemblies can be used for specific applications such as sensors and filters. We present a method and proof-of-concept to directly grow vertically-aligned carbon nanotube structures within sealed enclosures by means of a feedback-controlled laser-assisted chemical vapor deposition

  8. Conteo de personas con un sensor RGBD comercial

    Directory of Open Access Journals (Sweden)

    M. Castrillón-Santan

    2014-07-01

    Full Text Available Resumen: En este trabajo se demuestra que la información de profundidad proporcionada por una cámara RGBD comercial de bajo coste, es una fuente fiable de datos para realizar de forma robusta el conteo automático de personas. La adopción de una configuración de vista cenital reduce la complejidad del problema, al mismo tiempo que permite preservar la privacidad de las personas moni- torizadas. Para llevar a cabo el estudio experimental se han considerado dos técnicas propias del campo de análisis de imágenes 2D trasladadas al contexto de imágenes de profundidad. Las pruebas evaluaron su rendimiento con v́ıdeos reales sin restricciones de iluminación, incluyendo episodios de iluminación cambiante o muy baja. En este conjunto experimental se realizó la detección, seguimiento y análisis de patrones de comportamiento de las personas que cruzaban el campo de visión. Los resultados obtenidos alcanzan una tasa de acierto próxima al 95%, superando los obtenidos con técnicas actuales basadas exclusivamente en información visual. Estos resultados sugieren la utilidad del uso de información de profundidad en esta tarea particular. Abstract: In this paper, we prove that depth information provided by a consumer depth camera is a reliable data source to perform ro- bust people counting. The adoption of a top view configuration reduces the space problem complexity for this task, while pre- serving privacy. Two different background subtraction approaches for color images are transferred to this context and tested in real video to perform detection, tracking, and behavioral pat- terns analysis of subjects crossing the field of view. The results achieved in an experimental setup with real video reported a TPR over 95%, beating robust GMM background subtraction based only on the visual cue. The results suggest the benefits of the depth cue for this particular task. Palabras clave: Conteo de personas, c

  9. Signal development in silicon sensors used for radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Julian

    2010-08-15

    This work investigates the charge collection properties in silicon sensors. In order to perform the investigations a setup for measurements utilizing the Transient Current Technique (TCT) has been designed and built. Optical lasers with different wavelengths and short pulses (FWHM<100 ps) have been used to create charge carriers in the sensor volume. A new parameterization of charge carrier mobilities in bulk silicon as function of electric field and temperature was derived for two different crystal orientations from investigations on pad sensors with low charge carrier densities. In the course of these investigations a simulation program for current pulses was developed. The program simulates current pulses, which are induced by drift and diffusion of charge carriers for pad sensors, and approximately for strip and pixel sensors. The simulation program could be used to describe the current pulses of irradiated sensors. Additionally, using the simulation program, it was shown that impact ionization is a possible reason for the recently reported charge multiplication effects in highly irradiated sensors. The central topic of this work is the investigation of effects of high charge carrier densities, so called plasma effects. In this work plasma effects were created by focusing the lasers. The measurements of the plasma efffects on pad sensors were used as reference measurements for simulations performed by WIAS in Berlin. It was shown that using charge transport models accepted in literature, the observed plasma effects cannot be described. Measurements on strip sensors were performed with regards to the detector development for the European XFEL. Measurements of peak currents and charge collection times as function of photon intensity and applied bias voltage allowed the determination of optimum operation parameters of the Adaptive Gain Integration Pixel Detector (AGIPD), which will be used at the European XFEL. Utilizing position sensitive measurements on strip

  10. Signal development in silicon sensors used for radiation detection

    International Nuclear Information System (INIS)

    Becker, Julian

    2010-08-01

    This work investigates the charge collection properties in silicon sensors. In order to perform the investigations a setup for measurements utilizing the Transient Current Technique (TCT) has been designed and built. Optical lasers with different wavelengths and short pulses (FWHM<100 ps) have been used to create charge carriers in the sensor volume. A new parameterization of charge carrier mobilities in bulk silicon as function of electric field and temperature was derived for two different crystal orientations from investigations on pad sensors with low charge carrier densities. In the course of these investigations a simulation program for current pulses was developed. The program simulates current pulses, which are induced by drift and diffusion of charge carriers for pad sensors, and approximately for strip and pixel sensors. The simulation program could be used to describe the current pulses of irradiated sensors. Additionally, using the simulation program, it was shown that impact ionization is a possible reason for the recently reported charge multiplication effects in highly irradiated sensors. The central topic of this work is the investigation of effects of high charge carrier densities, so called plasma effects. In this work plasma effects were created by focusing the lasers. The measurements of the plasma efffects on pad sensors were used as reference measurements for simulations performed by WIAS in Berlin. It was shown that using charge transport models accepted in literature, the observed plasma effects cannot be described. Measurements on strip sensors were performed with regards to the detector development for the European XFEL. Measurements of peak currents and charge collection times as function of photon intensity and applied bias voltage allowed the determination of optimum operation parameters of the Adaptive Gain Integration Pixel Detector (AGIPD), which will be used at the European XFEL. Utilizing position sensitive measurements on strip

  11. Low-noise magnetic observatory variometer with race-track sensors

    International Nuclear Information System (INIS)

    Janošek, M; Petrucha, V; Vlk, M

    2016-01-01

    We present a low-noise, high-stability observatory magnetometer with race-track sensors, as developed by the Czech Technical University in Prague for National Observatory of Athens. As opposed to the standard instruments, we used our novel race-track fluxgate sensors with planar oval core which were cut by state-of-the art pico-second UV-laser. The noise performance of the complete electronics and sensor chain is below 6 pT/√Hz @ 1 Hz. The electronics uses 24-bit 200-Hz A/D converter with simultaneous sampling and all digital processing is done in FPGA. The variometer with the sensors mounted on a MACOR cube has been successfully calibrated by scalar method. (paper)

  12. Assessment of sensors and aircraft for oil spill remote sensing

    International Nuclear Information System (INIS)

    Fingas, M.F.; Fruhwirth, M.

    1993-01-01

    Environment Canada has assessed sensors and aircraft suitable for remote sensing, particularly the capability of sensors to detect oil and to discriminate oil from background targets. The assessment was based on past experience and technical considerations. The first sensor recommended for use is an infrared camera or an IR/UV system. This recommendation is based on the system's ability to detect oil and discriminate this from the background, and the low cost of these sensors. The laser fluorosensor is recommended as the second device, as it is the only unit capable of positively discriminating oil on water, among weeds, and in sediment or beach material. Cameras operating in the visible region of the spectrum are recommended for two functions: documentation and providing background or location imagery for other sensors. Imaging radars, be they SAR or SLAR, are recommended for long-range searches or for oil spill work at night or when fog is present. Radars are expensive and require dedicated aircraft. Passive microwave devices are currently being developed but have not been proven as an alternative to radar or for measuring slick thickness. A laser based thickness sensor is under development. Satellite systems were also assessed. Satellite sensors operating in the visible spectrum have only limited application to major oil spills. New radar sensors show limited potential. The major limitation of any satellite system is the limited coverage time that is a function of its orbit. A study of aircraft and aircraft modifications was carried out to catalog aircraft modifications necessary to operate oil spill remote sensors. A potential user could select modifications that are already approved and thus save the high costs of aircraft modification design. The modifications already approved in Canada and the US for a given aircraft provide criteria for the selection of an aircraft

  13. La iridotomía periférica con Nd YAG láser en el síndrome de dispersión pigmentaria/glaucoma pigmentario Nd YAG laser peripheral iridotomy in the pigment dispersion syndrome/pigmentary glaucoma

    Directory of Open Access Journals (Sweden)

    Francisco García González

    2002-06-01

    Full Text Available En 13 ojos con diagnóstico de síndrome de dispersión pigmentaria y 5 con glaucoma pigmentario, inicialmente se evaluaron la presión intraocular, los signos de dispersión pigmentaria, la relación excavación-papila y las alteraciones del campo visual; se realizó iridotomía periférica Nd YAG láser en los ojos con este síndrome y trabeculectomía a los que presentaban glaucoma pigmentario. Se chequearon cada 4 meses hasta 24 meses. Once ojos con iris cóncavo mostraron aplanamiento del iris y 2 con iris convexos no variaron con la iridotomía láser; en los 18 ojos disminuyeron evidentemente los signos de dispersión pigmentaria y la presión intraocular permaneció estable, la cual mejoró en los tratados con la trabeculectomía. En el síndrome de dispersión pigmentaria es muy frecuente la configuración cóncava del iris; la iridotomía lo aplana y evita el roce iridozonular, disminuyendo la dispersión y deposición de pigmento que prevendría el aumento de la presión intraocular y el glaucoma pigmentario.The intraocular pressure, the signs of pigment dispersion, the excavation-papilla relation and the alterations of the visual field were initially evaluated in 13 eyes with diagnosis of pigment dispersion syndrome and 5 with pigmentary glaucoma. Nd YAG laser perypheral iridotomy was performed in patients with this syndrome, whereas those who presented pigmentary glaucoma underwent trabeculectomy. They were checked every 4 months up to 24 months. 11 eyes with concave iris showed flattening of the iris and 2 with convex iris did not vary with laser iridotomy. An evident reduction of the signs of pigment dispersion was observed in the 18 eyes. The intraocular pressure remained stable and it improved in those treated with trabeculectomy. In the pigment dispersion syndrome it is very frequent the concave configuration of the iris; the iridotomy flattens it and avoids the iridozonular friction, reducing the dispersion and deposition of

  14. Calibration of displacement sensors up to 300 µm with nanometre accuracy and direct traceability to a primary standard of length

    NARCIS (Netherlands)

    Haitjema, H.; Schellekens, P.H.J.; Wetzels, S.F.C.L.

    2000-01-01

    A new class of sensor has recently appeared: nanometre sensors. These sensors are characterized by nanometre or sub-nanometre resolution and an uncertainty of a few nanometres over a range of at least several micrometres. Instruments such as capacitive or inductive sensors, laser interferometers,

  15. Diseño, Implementación y Verificación de un Sensor de Temperatura CMOS de Bajo Coste y Alta Funcionalidad

    OpenAIRE

    Artés García, Antonio

    2007-01-01

    En este proyecto, se presenta un sensor de temperatura integrado CMOS basado en la medida de una variable secundaria, cuyo valor es dependiente de la temperatura, como es el tiempo de subida que presenta una señal eléctrica en sus flancos de subida. Con el objetivo de reducir coste y potencia consumida, el sensor integrado de temperatura propuesto genera un pulso con un ancho proporcional a la temperatura medida. Este sensor para realizar la medida elimina la necesidad de tener una señal que ...

  16. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form...

  17. Typical effects of laser dazzling CCD camera

    Science.gov (United States)

    Zhang, Zhen; Zhang, Jianmin; Shao, Bibo; Cheng, Deyan; Ye, Xisheng; Feng, Guobin

    2015-05-01

    In this article, an overview of laser dazzling effect to buried channel CCD camera is given. The CCDs are sorted into staring and scanning types. The former includes the frame transfer and interline transfer types. The latter includes linear and time delay integration types. All CCDs must perform four primary tasks in generating an image, which are called charge generation, charge collection, charge transfer and charge measurement. In camera, the lenses are needed to input the optical signal to the CCD sensors, in which the techniques for erasing stray light are used. And the electron circuits are needed to process the output signal of CCD, in which many electronic techniques are used. The dazzling effects are the conjunct result of light distribution distortion and charge distribution distortion, which respectively derive from the lens and the sensor. Strictly speaking, in lens, the light distribution is not distorted. In general, the lens are so well designed and fabricated that its stray light can be neglected. But the laser is of much enough intensity to make its stray light obvious. In CCD image sensors, laser can induce a so large electrons generation. Charges transfer inefficiency and charges blooming will cause the distortion of the charge distribution. Commonly, the largest signal outputted from CCD sensor is restricted by capability of the collection well of CCD, and can't go beyond the dynamic range for the subsequent electron circuits maintaining normal work. So the signal is not distorted in the post-processing circuits. But some techniques in the circuit can make some dazzling effects present different phenomenon in final image.

  18. Miniaturised optical sensors for industrial applications

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Hanson, Steen Grüner

    2010-01-01

    . The technology is based on compact and low-cost laser sources such as Vertical Cavity Surface Emitting Lasers (VCSELs). The methods characterise the object motion by speckle translation in the near field (imaging) or far field (optical Fourier transform) by optical spatial filtering velocimetry. The volume...... of the two optical solutions is less than 1 cm3, including the application specific integrated circuit (ASIC), which processes the data and interfaces a PC/Laptop directly via a USB driver. The sensors are designed for working distances of 2 and 12 mm for near field and far field, respectively. We...

  19. Graphene devices based on laser scribing technology

    Science.gov (United States)

    Qiao, Yan-Cong; Wei, Yu-Hong; Pang, Yu; Li, Yu-Xing; Wang, Dan-Yang; Li, Yu-Tao; Deng, Ning-Qin; Wang, Xue-Feng; Zhang, Hai-Nan; Wang, Qian; Yang, Zhen; Tao, Lu-Qi; Tian, He; Yang, Yi; Ren, Tian-Ling

    2018-04-01

    Graphene with excellent electronic, thermal, optical, and mechanical properties has great potential applications. The current devices based on graphene grown by micromechanical exfoliation, chemical vapor deposition (CVD), and thermal decomposition of silicon carbide are still expensive and inefficient. Laser scribing technology, a low-cost and time-efficient method of fabricating graphene, is introduced in this review. The patterning of graphene can be directly performed on solid and flexible substrates. Therefore, many novel devices such as strain sensors, acoustic devices, memory devices based on laser scribing graphene are fabricated. The outlook and challenges of laser scribing technology have also been discussed. Laser scribing may be a potential way of fabricating wearable and integrated graphene systems in the future.

  20. Contribución al desarrollo de sensores de temperatura y redes de sensores en tecnología de fibra óptica

    OpenAIRE

    Madruga Saavedra, Francisco Javier

    2006-01-01

    Este trabajo de tesis recoge las contribuciones aportadas en el campo de los sensores de fibra óptica en tres ámbitos de trabajo. Un sistema sensor de alta temperatura sin contacto con transductores de fibras ópticas de sílice se ha presentado. Dos topologías de "ojo abierto" y "ojo cerrado" y un algoritmo de decodificación "pirometría de banda dual" propuesto en este trabajo son las novedosas aportaciones presentadas. El sistema ha sido validado en laboratorio y en pruebas de campo de forma ...

  1. Contribución al desarrollo de sensores de temperatura y redes de sensores en tecnología de fibra óptica

    OpenAIRE

    Madruga Saavedra, Francisco Javier

    2008-01-01

    RESUMEN: Este trabajo de tesis recoge las contribuciones aportadas en el campo de los sensores de fibra óptica en tres ámbitos de trabajo. Un sistema sensor de alta temperatura sin contacto con transductores de fibras ópticas de sílice se ha presentado. Dos topologías de "ojo abierto" y "ojo cerrado" y un algoritmo de decodificación "pirometría de banda dual" propuesto en este trabajo son las novedosas aportaciones presentadas. El sistema ha sido validado en laboratorio y en pruebas de campo ...

  2. 8TH International Laser Physics Workshop Lphys󈨧 Budapest, July 2-6, 1999, Program

    Science.gov (United States)

    1999-07-05

    Gerhard J. MUller (Germany) Rudolf Steiner (Germany) Symposium Status and Future Directions of High-Power Laser Installations Co-Chairs: See Leang...Sciences, Kazan. Russia I.A. Shcherbakov General Physics Institute. Russian Academy of Sciences. Moscow, Russia R. Steiner Institute of Laser Technologies...14.50-15.15 R. Steiner , A. Pohl, A. Bentele, T. Meier (Ulm, Germany) Laser Doppler sensor for laser assisted injection 30 SEMINAR 5 --- LASER METHODS IN

  3. High power VCSELs for miniature optical sensors

    Science.gov (United States)

    Geske, Jon; Wang, Chad; MacDougal, Michael; Stahl, Ron; Follman, David; Garrett, Henry; Meyrath, Todd; Snyder, Don; Golden, Eric; Wagener, Jeff; Foley, Jason

    2010-02-01

    Recent advances in Vertical-cavity Surface-emitting Laser (VCSEL) efficiency and packaging have opened up alternative applications for VCSELs that leverage their inherent advantages over light emitting diodes and edge-emitting lasers (EELs), such as low-divergence symmetric emission, wavelength stability, and inherent 2-D array fabrication. Improvements in reproducible highly efficient VCSELs have allowed VCSELs to be considered for high power and high brightness applications. In this talk, Aerius will discuss recent advances with Aerius' VCSELs and application of these VCSELs to miniature optical sensors such as rangefinders and illuminators.

  4. On-chip microparticle detection and sizing using a dual-wavelength waveguide laser

    NARCIS (Netherlands)

    Bernhardi, Edward; van der Werf, Kees; Hollink, Anton; Worhoff, Kerstin; de Ridder, R.M.; Subramaniam, Vinod; Pollnau, Markus

    An integrated intra-laser-cavity microparticle sensor based on a dual-phase-shift, dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped aluminium oxide is presented. Single micro-particles with diameters ranging between 1 μm and 20 μm are detected.

  5. Calorimeters for diagnosis of laser-fusion experiments

    International Nuclear Information System (INIS)

    Gunn, S.R.

    1976-01-01

    A variety of calorimeters have been developed for measuring ions, x-rays, and scattered radiation emanating from laser-pulse-imploded fusion targets. The ion and x-ray calorimeters use metal or glass absorbers to reflect or transmit most of the scattered laser radiation; the versions using metal absorbers also incorporate a differential construction to compensate for the fraction of the scattered laser radiation that is absorbed. The scattered-radiation calorimeters use colored glass to absorb the radiation and a transparent glass shield to remove ions and x rays. Most of the calorimeters use commercial semiconductor thermoelectric modules as the temperature sensors

  6. A novel optical gating method for laser gated imaging

    Science.gov (United States)

    Ginat, Ran; Schneider, Ron; Zohar, Eyal; Nesher, Ofer

    2013-06-01

    For the past 15 years, Elbit Systems is developing time-resolved active laser-gated imaging (LGI) systems for various applications. Traditional LGI systems are based on high sensitive gated sensors, synchronized to pulsed laser sources. Elbit propriety multi-pulse per frame method, which is being implemented in LGI systems, improves significantly the imaging quality. A significant characteristic of the LGI is its ability to penetrate a disturbing media, such as rain, haze and some fog types. Current LGI systems are based on image intensifier (II) sensors, limiting the system in spectral response, image quality, reliability and cost. A novel propriety optical gating module was developed in Elbit, untying the dependency of LGI system on II. The optical gating module is not bounded to the radiance wavelength and positioned between the system optics and the sensor. This optical gating method supports the use of conventional solid state sensors. By selecting the appropriate solid state sensor, the new LGI systems can operate at any desired wavelength. In this paper we present the new gating method characteristics, performance and its advantages over the II gating method. The use of the gated imaging systems is described in a variety of applications, including results from latest field experiments.

  7. Ninth International Conference on Wireless Communication and Sensor Networks

    CERN Document Server

    Tiwari, Murlidhar; Arora, Anish

    2014-01-01

    Wireless communication and sensor networks would form the backbone to create pervasive and ubiquitous environments that would have profound influence on the society and thus are important to the society. The wireless communication technologies and wireless sensor networks would encompass a wide range of domains such as HW devices such as motes, sensors and associated instrumentation, actuators, transmitters, receivers, antennas, etc., sensor network aspects such as topologies, routing algorithms, integration of heterogeneous network elements and topologies, designing RF devices and systems for energy efficiency and reliability etc. These sensor networks would provide opportunity to continuously and in a distributed manner monitor the environment and generate the necessary warnings and actions. However most of the developments have been demonstrated only in controlled and laboratory environments. So we are yet to see those powerful, ubiquitous applications for the benefit of the society. The conference and con...

  8. U.S. Coast Guard oil spill remote sensing : preliminary laser fluorosensor studies

    International Nuclear Information System (INIS)

    Fant, J.W.; Hansen, K.A.

    2005-01-01

    Maritime oil spill events are costly and damaging to the environment. Nearly 40 per cent of ship sourced spills occurring in the last 25 years have involved medium to heavy grade fuel oils. There is, therefore, an immediate need to detect and track subsurface oil spills, particularly as heavy and weathered oil can sink below the surface during a spill and often becomes problematic to detect, track and recover. The United States Coast Guard has limited capabilities to detect and track an oil spill, especially in poor weather. This paper discussed research and assessment efforts focused on laser fluorosensor technology. Testing of 3 independent laser fluorosensing systems was conducted to determine sensing depth capabilities and sensor shortcomings in ideal conditions. Studies included the detection and collection of laser induced fluorescence spectra at the surface as well as at various depths down to 5 metres in both daylight and night-time environments. The sensors were tested to assess their capabilities to meet the Coast Guard's oil sensor and operational requirements. Three sensors were tested by the Coast Guard at the Ohmsett National Oil Response Test Facility: the Airborne Oceanographic Lidar (AOL-3), a light detection and ranging system (lidar) to measure biological and physical oceanographic features developed by the National Aeronautics and Space Administration (NASA); the Fluorescent Lidar Spectrometer (FLS) lidar, developed by Laser Diagnostic Instruments International Inc. of Canada; and the Ultraviolet Biological Trigger Lidar, developed by Science and Engineering Services, Inc. (SESI) to detect and discriminate bio-warfare agent aerosols for the United States Army. The 3 fluorometers exhibited the ability to detect oil both on and below the water's surface. There were differences in the peak locations in the spectrum for the same oils among the lasers tested. It was also noted that all the systems had the capability of detecting oil in a night

  9. Test and fabrication of piezoresistive sensors for contact pressure measurement

    Directory of Open Access Journals (Sweden)

    Diego Andrés Valle-Lopera

    2017-01-01

    Full Text Available El uso de sensores de presión de contacto se ha popularizado en diferentes disciplinas de la ingeniería en los últimos años. Se utilizan en la caracterización de llantas para vehículos, rodamientos, túneles de viento, diseño de prótesis, análisis ergonómicos, entre otras áreas. Estos sensores, son diseñados con materiales que poseen ciertas propiedades tales como piezoelectricidad, piezorresistencia y capacitancia variable; sin embargo, la característica más usada es la piezorresistencia. En este artículo se describe la fabricación de tres sensores de presión diferentes usando materiales piezorresistivos. Adicionalmente, se realizó un estudio técnico comparativo incluyendo un sensor comercial usado como punto de referencia con el fin de seleccionar el material idóneo para medir presión por contacto. La repetibilidad y la histéresis de cada sensor fueron evaluadas en una prueba de respuesta a la carga realizada varias veces. También se llevó a cabo una prueba de desviación en el tiempo para evaluar estabilidad de la medición de un peso muerto. Los materiales como la tela o tinta piezoresistiva muestran ser adecuados para aplicaciones en las que haya deformación y se necesite de sensores flexibles, el Velostat es el menos preciso pero adecuado para aplicaciones básicas y en las cuales no se necesite de mucha resolución. Finalmente se presentan recomendaciones respecto al tipo de material que se debe utilizar en sensores de presión para diversas aplicaciones en ingeniería en general y en el campo biomédico en particular.

  10. QUALITY ASSESSMENT AND COMPARISON OF SMARTPHONE AND LEICA C10 LASER SCANNER BASED POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    B. Sirmacek

    2016-06-01

    Full Text Available 3D urban models are valuable for urban map generation, environment monitoring, safety planning and educational purposes. For 3D measurement of urban structures, generally airborne laser scanning sensors or multi-view satellite images are used as a data source. However, close-range sensors (such as terrestrial laser scanners and low cost cameras (which can generate point clouds based on photogrammetry can provide denser sampling of 3D surface geometry. Unfortunately, terrestrial laser scanning sensors are expensive and trained persons are needed to use them for point cloud acquisition. A potential effective 3D modelling can be generated based on a low cost smartphone sensor. Herein, we show examples of using smartphone camera images to generate 3D models of urban structures. We compare a smartphone based 3D model of an example structure with a terrestrial laser scanning point cloud of the structure. This comparison gives us opportunity to discuss the differences in terms of geometrical correctness, as well as the advantages, disadvantages and limitations in data acquisition and processing. We also discuss how smartphone based point clouds can help to solve further problems with 3D urban model generation in a practical way. We show that terrestrial laser scanning point clouds which do not have color information can be colored using smartphones. The experiments, discussions and scientific findings might be insightful for the future studies in fast, easy and low-cost 3D urban model generation field.

  11. Quality Assessment and Comparison of Smartphone and Leica C10 Laser Scanner Based Point Clouds

    Science.gov (United States)

    Sirmacek, Beril; Lindenbergh, Roderik; Wang, Jinhu

    2016-06-01

    3D urban models are valuable for urban map generation, environment monitoring, safety planning and educational purposes. For 3D measurement of urban structures, generally airborne laser scanning sensors or multi-view satellite images are used as a data source. However, close-range sensors (such as terrestrial laser scanners) and low cost cameras (which can generate point clouds based on photogrammetry) can provide denser sampling of 3D surface geometry. Unfortunately, terrestrial laser scanning sensors are expensive and trained persons are needed to use them for point cloud acquisition. A potential effective 3D modelling can be generated based on a low cost smartphone sensor. Herein, we show examples of using smartphone camera images to generate 3D models of urban structures. We compare a smartphone based 3D model of an example structure with a terrestrial laser scanning point cloud of the structure. This comparison gives us opportunity to discuss the differences in terms of geometrical correctness, as well as the advantages, disadvantages and limitations in data acquisition and processing. We also discuss how smartphone based point clouds can help to solve further problems with 3D urban model generation in a practical way. We show that terrestrial laser scanning point clouds which do not have color information can be colored using smartphones. The experiments, discussions and scientific findings might be insightful for the future studies in fast, easy and low-cost 3D urban model generation field.

  12. Single mode dye-doped polymer photonic crystal lasers

    DEFF Research Database (Denmark)

    Christiansen, Mads Brøkner; Buss, Thomas; Smith, Cameron

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode...... emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e. g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be -0.045 or -0...

  13. Study of a high-precision SAW-MOEMS strain sensor with laser optics

    International Nuclear Information System (INIS)

    Liu, Xinwei; Chen, Shufen; Zou, Zhengfeng; Fu, Lei; Meng, Yanbin; Li, Honglang

    2015-01-01

    A novel structure design of a surface acoustic wave (SAW) micro-optic-electro-mechanical-system (MOEMS) strain sensor with a light readout unit is presented in this paper. By measuring the polarization intensity ratio of the TE/TM mode outputted from the waveguide, the strain produced from an object can be measured precisely. The basic working principle of the SAW MOEMS strain sensor is introduced and the mathematical model of the strain sensor system is established. The SAW characteristics effected by the strain sensor are mathematically deduced. The coupling coefficient between the SAW modes and light modes can be calculated based on the theory of coupling modes. The conversion coefficient of polarized light modes is obtained. Due to the restrictions of the specific parameters of the device, the level of technology and the material characteristics, the sensitivity of the strain sensor system is calculated through simulation as 0.1 με, with a dynamic range of 0 ∼ ±50 με. (paper)

  14. Surface emitting ring quantum cascade lasers for chemical sensing

    Science.gov (United States)

    Szedlak, Rolf; Hayden, Jakob; Martín-Mateos, Pedro; Holzbauer, Martin; Harrer, Andreas; Schwarz, Benedikt; Hinkov, Borislav; MacFarland, Donald; Zederbauer, Tobias; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Acedo, Pablo; Lendl, Bernhard; Strasser, Gottfried

    2018-01-01

    We review recent advances in chemical sensing applications based on surface emitting ring quantum cascade lasers (QCLs). Such lasers can be implemented in monolithically integrated on-chip laser/detector devices forming compact gas sensors, which are based on direct absorption spectroscopy according to the Beer-Lambert law. Furthermore, we present experimental results on radio frequency modulation up to 150 MHz of surface emitting ring QCLs. This technique provides detailed insight into the modulation characteristics of such lasers. The gained knowledge facilitates the utilization of ring QCLs in combination with spectroscopic techniques, such as heterodyne phase-sensitive dispersion spectroscopy for gas detection and analysis.

  15. Red de sensores y el Internet de las cosas

    OpenAIRE

    GONZÁLEZ DAZA, ENRIQUE

    2015-01-01

    [ES] Este proyecto consiste en el estudio y realización de una red de sensores conectados de forma permanente a internet, los cuales nos ofrecerán una serie de servicios como puede ser lecturas de diversos sensores ofreciéndonos dichos datos para poder procesarlos de la manera deseada o permitirnos el uso de actuadores para poder interactuar de forma remota con el mundo real. Esto sería muy útil, por ejemplo en entornos industriales donde podríamos disponer de datos referent...

  16. Note: Reliable and non-contact 6D motion tracking system based on 2D laser scanners for cargo transportation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Keun, E-mail: ykkim@handong.edu [Department of Mechanical and Control Engineering, Handong Global University, Pohang (Korea, Republic of); Kim, Kyung-Soo [Department of Mechanical Engineering, KAIST, Daejeon 305-701 (Korea, Republic of)

    2014-10-15

    Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.

  17. Photoacoustic Spectroscopy with Quantum Cascade Lasers for Trace Gas Detection

    Directory of Open Access Journals (Sweden)

    Gaetano Scamarcio

    2006-10-01

    Full Text Available Various applications, such as pollution monitoring, toxic-gas detection, noninvasive medical diagnostics and industrial process control, require sensitive and selectivedetection of gas traces with concentrations in the parts in 109 (ppb and sub-ppb range.The recent development of quantum-cascade lasers (QCLs has given a new aspect toinfrared laser-based trace gas sensors. In particular, single mode distributed feedback QCLsare attractive spectroscopic sources because of their excellent properties in terms of narrowlinewidth, average power and room temperature operation. In combination with these lasersources, photoacoustic spectroscopy offers the advantage of high sensitivity and selectivity,compact sensor platform, fast time-response and user friendly operation. This paper reportsrecent developments on quantum cascade laser-based photoacoustic spectroscopy for tracegas detection. In particular, different applications of a photoacoustic trace gas sensoremploying a longitudinal resonant cell with a detection limit on the order of hundred ppb ofozone and ammonia are discussed. We also report two QC laser-based photoacousticsensors for the detection of nitric oxide, for environmental pollution monitoring andmedical diagnostics, and hexamethyldisilazane, for applications in semiconductormanufacturing process.

  18. Wavelength-Agile Optical Sensor for Exhaust Plume and Cryogenic Fluid Interrogation

    Science.gov (United States)

    Sanders, Scott T.; Chiaverini, Martin J.; Gramer, Daniel J.

    2004-01-01

    Two optical sensors developed in UW-Madison labs were evaluated for their potential to characterize rocket engine exhaust plumes and liquid oxygen (LOX) fluid properties. The plume sensor is based on wavelength-agile absorption spectroscopy A device called a chirped white pulse emitter (CWPE) is used to generate the wavelength agile light, scanning, for example, 1340 - 1560 nm every microsecond. Properties of the gases in the rocket plume (for example temperature and water mole fraction) can be monitored using these wavelength scans. We have performed preliminary tests in static gas cells, a laboratory GOX/GH2 thrust chamber, and a solid-fuel hybrid thrust chamber, and these initial tests demonstrate the potential of the CWPE for monitoring rocket plumes. The LOX sensor uses an alternative to wavelength agile sensing: two independent, fixed-wavelength lasers are combined into a single fiber. One laser is absorbed by LOX and the other not: by monitoring the differential transmission the LOX concentration in cryogenic feed lines can be inferred. The sensor was successful in interrogating static LOX pools in laboratory tests. Even in ice- and bubble-laden cryogenic fluids, LOX concentrations were measured to better than 1% with a 3 microsec time constant.

  19. Modulador-Demodulador ASK con codificación Manchester implementado en un microcontrolador PIC

    Directory of Open Access Journals (Sweden)

    Ariel Tarifa Amaya

    2012-12-01

    Full Text Available Se presenta el diseño de un Modulador-Demodulador Digital ASK con codificación Manchester implementado en el firmware de un microcontrolador PIC 18F4455, utilizando el estándar de baja frecuencia (LF el cual maneja valores de 125kHz. Este modulador-demodulador se utiliza en la implementación de una etiqueta RFID activa. Transmite a solicitud de un dispositivo lector el valor de temperatura de un sensor y su identificador. El dispositivo lector, controla la comunicación con la etiqueta. Según la literatura especializada no se reporta un sistema similar.

  20. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Directory of Open Access Journals (Sweden)

    Scott D. Wolter

    2009-05-01

    Full Text Available Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i Quantum cascade lasers (QCL based photoacoustic (PA systems; ii gold nanoparticles as catalytically active materials in field-effect transistor (FET sensors, and iii functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.

  1. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Science.gov (United States)

    Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A.; Wolter, Scott D.; Brown, April; Ricco, Mario

    2009-01-01

    Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling. PMID:22412315

  2. Developing maintenance technologies for FBR's heat exchanger units by advanced laser processing

    International Nuclear Information System (INIS)

    Nishimura, Akihiko; Shimada, Yukihiro

    2011-01-01

    Laser processing technologies were developed for the purpose of maintenance of FBR's heat exchanger units. Ultrashort laser processing fabricated fiber Bragg grating sensor for seismic monitoring. Fiber laser welding with a newly developed robot system repair cracks on inner wall of heat exchanger tubes. Safety operation of the heat exchanger units will be improved by the advanced laser processing technologies. These technologies are expected to be applied to the maintenance for the next generation FBRs. (author)

  3. EVALUACIÓN DEL DESEMPEÑO EN REDES INALÁMBRICAS DE SENSORES MEJORADAS CON AGENTES MÓVILES AVALIAÇÃO DO DESEMPENHO EN REDES DE SENSORES SEM FIO MELHORADAS COM AGENTES MÓVEIS PERFORMANCE EVALUATION OF WIRELESS SENSOR NETWORKS IMPROVED WITH MOBILE AGENTS

    Directory of Open Access Journals (Sweden)

    Alcides Montoya

    2012-06-01

    Full Text Available La reconfiguración, reprogramación y despliegue de nuevas tareas computacionales en redes inalámbricas de sensores es un problema no resuelto satisfactoriamente en la actualidad. Este artículo propone la evaluación del desempeño en redes inalámbricas de sensores mejoradas con agentes móviles inteligentes como mecanismo de reprogramación autónoma. El método utilizado para la evaluación del desempeño se fundamenta en la medida del consumo de energía durante el proceso de migración de los agentes móviles inteligentes entre los nodos sensores y en el cálculo del tiempo de convergencia de la red, definido como el tiempo que tarda la red en pasar de un estado a otro; en los experimentos se refiere al retardo durante el cambio del tiempo de muestreo para toda la red. La solución más eficiente, que fue probada y evaluada en una red inalámbrica formada por 40 nodos que detectan fugas de amoniaco en tiempo real, determinó que el punto clave consiste en disminuir el consumo de energía producto de las confirmaciones y retransmisiones innecesarias de datos y procedimientos, desde los nodos sensores hasta la estación base. Este hecho representa, además de la disminución en el consumo energético, un ahorro significativo en el tiempo de convergencia de la red.A reconfiguração, reprogramação e implantação de novas tarefas computacionais em redes de sensores sem fio é um problema não resolvido de modo satisfatório na atualidade. Este artigo propõe a avaliação do desempenho em redes de sensores sem fio melhoradas com agentes móveis inteligentes como mecanismo de reprogramação autônoma. O método utilizado para a avaliação do desempenho fundamenta-se na medida do consumo de energia durante o processo de migração dos agentes móveis inteligentes entre os nós sensores e no cálculo do tempo de convergência da rede, definido como o tempo que demora a rede de passar de um estado a outro; nos experimentos se refere ao

  4. Applications of a Mid-IR Quantum Cascade Laser in Gas Sensing Research

    KAUST Repository

    Sajid, Muhammad Bilal

    2015-05-01

    Laser absorption based sensors are extensively used in a variety of gas sensing areas such as combustion, atmospheric research, human breath analysis, and high resolution infrared spectroscopy. Quantum cascade lasers have recently emerged as high resolution, high power laser sources operating in mid infrared region and can have wide tunability range. These devices provide an opportunity to access stronger fundamental and combination vibrational bands located in mid infrared region than previously accessible weaker overtone vibrational bands located in near infrared region. Spectroscopic region near 8 µm contains strong vibrational bands of methane, acetylene, hydrogen peroxide, water vapor and nitrous oxide. These molecules have important applications in a wide range of applications. This thesis presents studies pertaining to spectroscopy and combustion applications. Advancements in combustion research are imperative to achieve lower emissions and higher efficiency in practical combustion devices such as gas turbines and engines. Accurate chemical kinetic models are critical to achieve predictive models which contain several thousand reactions and hundreds of species. These models need highly reliable experimental data for validation and improvements. Shock tubes are ideal devices to obtain such information. A shock tube is a homogenous, nearly constant volume, constant pressure, adiabatic and 0-D reactor. In combination with laser absorption sensors, shock tubes can be used to measure reaction rates and species time histories of several intermediates and products formed during pyrolysis and oxidation of fuels. This work describes measurement of the decomposition rate of hydrogen peroxide which is an important intermediate species controlling reactivity of combustion system in the intermediate temperature range. Spectroscopic parameters (linestrengths, broadening coefficients and temperature dependent coefficients) are determined for various transitions of

  5. Design and development of long-period grating sensors for ...

    Indian Academy of Sciences (India)

    Raja Ramanna Centre for Advanced Technology, Indore 450 213. ∗ e-mail: ... Home built CO2 laser (Max power 20 Watt) is focused onto .... Claus R O 1997 Temperature-insensitive and strain insensitive long-period grating sensors for smart.

  6. Microprocessing of ITO and a-Si thin films using ns laser sources

    Science.gov (United States)

    Molpeceres, C.; Lauzurica, S.; Ocaña, J. L.; Gandía, J. J.; Urbina, L.; Cárabe, J.

    2005-06-01

    Selective ablation of thin films for the development of new photovoltaic panels and sensoring devices based on amorphous silicon (a-Si) is an emerging field, in which laser micromachining systems appear as appropriate tools for process development and device fabrication. In particular, a promising application is the development of purely photovoltaic position sensors. Standard p-i-n or Schottky configurations using transparent conductive oxides (TCO), a-Si and metals are especially well suited for these applications, appearing selective laser ablation as an ideal process for controlled material patterning and isolation. In this work a detailed study of laser ablation of a widely used TCO, indium-tin-oxide (ITO), and a-Si thin films of different thicknesses is presented, with special emphasis on the morphological analysis of the generated grooves. Excimer (KrF, λ = 248 nm) and DPSS lasers (λ = 355 and λ = 1064 nm) with nanosecond pulse duration have been used for material patterning. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) techniques have been applied for the characterization of the ablated grooves. Additionally, process parametric windows have been determined in order to assess this technology as potentially competitive to standard photolithographic processes. The encouraging results obtained, with well-defined ablation grooves having thicknesses in the order of 10 µm both in ITO and in a-Si, open up the possibility of developing a high-performance double Schottky photovoltaic matrix position sensor.

  7. A Quantum Cascade Laser-Based CO Sensor for Fire Warning, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Maxion Technologies, Inc. (Maxion) proposes to develop and field test a Carbon Monoxide (CO)-sensor prototype for post fire cleanup and CO detection. The sensor will...

  8. Continued Optical Sensor Operations in a Laser Environment

    Science.gov (United States)

    2012-10-01

    laser aperture), efficiency (i.e., high ratio of output power to input power), low jitter (i.e., high reproducibility from 6 pulse to pulse), and...Services Committee House of Representatives (Washington, DC: GAO, November 2004); and Lindsay Peacock and Alexander Von Rosenbach, eds., Jane’s World

  9. Au nanoparticle-based sensor for apomorphine detection in plasma

    Directory of Open Access Journals (Sweden)

    Chiara Zanchi

    2015-11-01

    Full Text Available Artificially roughened gold surfaces with controlled nanostructure produced by pulsed laser deposition have been investigated as sensors for apomorphine detection aiming at clinical application. The use of such gold surfaces has been optimized using aqueous solutions of apomorphine in the concentration range between 3.3 × 10−4 M and 3.3 × 10−7 M. The experimental parameters have been investigated and the dynamic concentration range of the sensor has been assessed by the selection of two apomorphine surface enhanced Raman scattering (SERS peaks. The sensor behavior used to detect apomorphine in unfiltered human blood plasma is presented and discussed.

  10. Tactile Sensing From Laser-Ablated Metallized PET Films

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas Chandra; Kosel, Jü rgen

    2016-01-01

    This paper reports the design, fabrication, and implementation of a novel sensor patch developed from commercial polyethylene terephthalate films metallized with aluminum on one side. The aluminum was ablated with laser to form interdigitated

  11. 3D YAG laser cutting robot. 3 jigen YAG laser setsudan robot

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Y. (Matsushita Electric Industrial Co. Ltd., Osaka (Japan))

    1991-11-01

    The present status was introduced of three-dimensional processing by the YAG laser multi-articulation robot to introduce the focusing system. The lowering in locus accuracy of multi-articulation robot is caused by the accuracy and time of computation to interpolate the locus, response characteristics of servo system, and calibration problem of mechanical/structural system. Also as low in output power of laser, it has problem in focusing the energy in the radiating optical system. A focusing system, high in response velocity, is necessary in the processor to use the optical fiber in the optical transfer system. As processing and measuring at an identical spot, the present system can integrate the detection use electrode and nozzle so as to use an electrostatic capacity type sensor, high in response frequency. To avoid the interference with jig, etc., the nozzle of radiating unit was integrated with the detection use electrode so that development was made of height sensor, capable of executing the three-dimensional processing. The present robot is characterized by a standardized equipment of control system with a sliding shaft, independent of the operational shaft properly of robot in order to be exclusively used for the focusing. 9 figs.

  12. Brazing of sensors for high-temperature steam instrumentation systems

    International Nuclear Information System (INIS)

    Moorhead, A.J.; Morgan, C.S.; Woodhouse, J.J.; Reed, R.W.

    1981-01-01

    Procedures are developed for brazing a ceramic-to-metal seal and for laser welding of sensor subassemblies into tube walls, induction brazing thermocouples through a tube wall, and furnace brazing triaxial cables, thermocouples, and a vent tube to a guide tube

  13. Multipoint sensor based on fiber Bragg gratings

    International Nuclear Information System (INIS)

    Mendez-Zepeda, O; Munoz-Aguirre, S; Beltran-Perez, G; Castillo-Mixcoatl, J

    2011-01-01

    In some control and industrial measurement systems of physical variables (pressure, temperature, flow, etc) it is necessary one system and one sensor to control each process. On the other hand, there are systems such as PLC (Programmable Logic Control), which can process several signals simultaneously. However it is still necessary to use one sensor for each variable. Therefore, in the present work the use of a multipoint sensor to solve such problem has been proposed. The sensor consists of an optical fiber laser with two Fabry-Perot cavities constructed using fiber Bragg gratings (FBG). In the same system is possible to measure changes in two variables by detecting the intermodal separation frequency of each cavity and evaluate their amplitudes. The intermodal separation frequency depends on each cavity length. The sensor signals are monitored through an oscilloscope or a PCI card and after that acquired by PC, where they are analyzed and displayed. Results of the evaluation of the intermodal frequency separation peak amplitude behavior with FBG stretching are presented.

  14. Laser-induced forward transfer of single-walled carbon nanotubes

    Science.gov (United States)

    Palla-Papavlu, A.; Dinescu, M.; Wokaun, A.; Lippert, T.

    2014-10-01

    The objective of this work is the application of laser-induced forward transfer (LIFT) for the fabrication of chemiresistor sensors. The receiver substrate is an array with metal electrodes and the active materials placed by LIFT are single-walled carbon nanotubes (SWCNT). The functionality of such sensors depends on the geometry of the active material onto the metallic electrodes. First the best geometry for the sensing materials and electrodes was determined, including the optimization of the process parameters for printing uniform pixels of SWCNT onto the sensor electrodes. The sensors were characterized in terms of their sensing characteristics, i.e., upon exposure to ammonia, proving the feasibility of LIFT.

  15. Laser system for testing radiation imaging detector circuits

    Science.gov (United States)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  16. Low-resistance strip sensors for beam-loss event protection

    International Nuclear Information System (INIS)

    Ullán, M.; Benítez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.; Lacasta, C.; Soldevila, U.; García, C.; Fadeyev, V.; Wortman, J.; DeFilippis, J.; Shumko, M.; Grillo, A.A; Sadrozinski, H.F.-W.

    2014-01-01

    AC-coupled silicon strip sensors can be damaged in case of a beam loss due to the possibility of a large charge accumulation in the bulk, developing very high voltages across the coupling capacitors which can destroy them. Punch-through structures are currently used to avoid this problem helping to evacuate the accumulated charge as large voltages are developing. Nevertheless, previous experiments, performed with laser pulses, have shown that these structures can become ineffective in relatively long strips. The large value of the implant resistance can effectively isolate the “far” end of the strip from the punch-through structure leading to large voltages. We present here our developments to fabricate low-resistance strip sensors to avoid this problem. The deposition of a conducting material in contact with the implants drastically reduces the strip resistance, assuring the effectiveness of the punch-through structures. First devices have been fabricated with this new technology. Initial results with laser tests show the expected reduction in peak voltages on the low resistivity implants. Other aspects of the sensor performance, including the signal formation, are not affected by the new technology

  17. Caracterización de las cirugías palpebrales con láser de CO2 Characterization of the eyelid surgery with CO2 laser

    Directory of Open Access Journals (Sweden)

    Lázara Kenia Ramírez García

    2012-06-01

    Full Text Available Objetivo: Determinar la caracterización de las cirugías palpebrales con láser de CO2. Métodos: Estudio observacional, descriptivo, longitudinal prospectivo, cuya muestra estuvo constituida por 93 pacientes (136 ojos operados con láser de dióxido de carbono en el Servicio de Oculoplastia del Instituto Cubano de Oftalmología "Ramón Pando Ferrer" desde enero a octubre de 2009. Resultados: Según el sexo, 40 eran femeninos y 53 masculinos. Por edad, de 20 a 39 años, 9,7 %; de 40 a 59, 15 %; de 60 a 79, 48,4 %; y más de 80 años, 23,7 %. La piel tipo I se presentó en el 53,8 % de los pacientes, el tipo II en 33,3 %. El láser se utilizó como instrumento de corte y coagulación en la dermatochalasis (31,6 % y en el ectropión (20,6 %. Como escáner en 11 queratosis seborreicas. El 94,6 % no mostró complicaciones, solo 5 pacientes. Conclusiones: Este equipo se utilizó en múltiples afecciones anexiales. La técnica quirúrgica transcutánea predominó en más de la mitad de los pacientes con dermatochalasis y la fijación cantal externa en las anomalías de posición. Las complicaciones fueron mínimas y la retracción cicatrizal fue la más frecuente.Objective: To determine the behavior of eyelid surgery with CO2 laser. Methods: A prospective, longitudinal, observational and descriptive study whose sample consisted of 136 eyes from 93 patients, who underwent carbon dioxide laser surgery at the oculoplasty service of "Ramón Pando Ferrer" Cuban Institute of Ophthalmology from January to October, 2009. Results: Of the total number of patients, 40 were females and 53 males; 9.7% aged 20 to 39 years, 15% aged 40 to 59 years; 48.4 % were 60 to 79 years and 23.7% over 80 years. Skin type I was present in 50 patients (53,8 %, and type II in 33,3 % of cases. C02 laser was used for cutting and coagulation in dermatochalasis, accounting for 31.6% and in ectropion for 20,6 %. As a scanner it was used in 11 seborrheic keratoses. No complications

  18. Oil spill remote sensing sensors and aircraft

    International Nuclear Information System (INIS)

    Fingas, M.; Fruhwirth, M.; Gamble, L.

    1992-01-01

    The most common form of remote sensing as applied to oil spills is aerial remote sensing. The technology of aerial remote sensing, mainly from aircraft, is reviewed along with aircraft-mounted remote sensors and aircraft modifications. The characteristics, advantages, and limitations of optical techniques, infrared and ultraviolet sensors, fluorosensors, microwave and radar sensors, and slick thickness sensors are discussed. Special attention is paid to remote sensing of oil under difficult circumstances, such as oil in water or oil on ice. An infrared camera is the first sensor recommended for oil spill work, as it is the cheapest and most applicable device, and is the only type of equipment that can be bought off-the-shelf. The second sensor recommended is an ultraviolet and visible-spectrum device. The laser fluorosensor offers the only potential for discriminating between oiled and un-oiled weeds or shoreline, and for positively identifying oil pollution on ice and in a variety of other situations. However, such an instrument is large and expensive. Radar, although low in priority for purchase, offers the only potential for large-area searches and foul-weather remote sensing. Most other sensors are experimental or do not offer good potential for oil detection or mapping. 48 refs., 8 tabs

  19. Optical sensor for real-time weld defect detection

    Science.gov (United States)

    Ancona, Antonio; Maggipinto, Tommaso; Spagnolo, Vincenzo; Ferrara, Michele; Lugara, Pietro M.

    2002-04-01

    In this work we present an innovative optical sensor for on- line and non-intrusive welding process monitoring. It is based on the spectroscopic analysis of the optical VIS emission of the welding plasma plume generated in the laser- metal interaction zone. Plasma electron temperature has been measured for different chemical species composing the plume. Temperature signal evolution has been recorded and analyzed during several CO2-laser welding processes, under variable operating conditions. We have developed a suitable software able to real time detect a wide range of weld defects like crater formation, lack of fusion, excessive penetration, seam oxidation. The same spectroscopic approach has been applied for electric arc welding process monitoring. We assembled our optical sensor in a torch for manual Gas Tungsten Arc Welding procedures and tested the prototype in a manufacturing industry production line. Even in this case we found a clear correlation between the signal behavior and the welded joint quality.

  20. Estimación de la fuerza de contacto para el control de robots manipuladores con movimientos restringidos

    Directory of Open Access Journals (Sweden)

    Javier Gámez García

    2007-01-01

    Full Text Available Resumen: En aquellas operaciones robóticas en las que un robot manipulador interactúa con su entorno resulta de extremada importancia poder controlar la fuerza que aquél ejerce sobre este. Con este objetivo, se suele colocar habitualmente un sensor de fuerza en la muñeca del manipulador, cerrando de esta forma el lazo de control. En lo que se refiere a estos sensores, uno de los principales problemas que plantean es que sus medidas están influenciadas no sólo por las fuerzas de contacto, sino también por las fuerzas relacionadas con la dinámica de la herramienta del manipulador, es decir, las fuerzas de inercia. En este artículo se presenta un nuevo estimador de la fuerza de contacto consistente en la integración de la información de sensores de fuerza, posición y aceleración. Además, se describe un procedimiento de calibración automático ‘plugand-play’ para la identificación y ajuste de los parámetros de este observador. Tanto el observador de la fuerza de contacto como el procedimiento de calibración automático han sido verificados experimentalmente en un robot industrial ABB con arquitectura software abierta. Palabras clave: Control de fuerza en robots manipuladores, Fusión sensorial, Observadores, Calibración Automática

  1. Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions.

    Science.gov (United States)

    Tao, Lu-Qi; Wang, Dan-Yang; Tian, He; Ju, Zhen-Yi; Liu, Ying; Pang, Yu; Chen, Yuan-Quan; Yang, Yi; Ren, Tian-Ling

    2017-06-22

    Conventional strain sensors rarely have both a high gauge factor and a large strain range simultaneously, so they can only be used in specific situations where only a high sensitivity or a large strain range is required. However, for detecting human motions that include both subtle and large motions, these strain sensors can't meet the diverse demands simultaneously. Here, we come up with laser patterned graphene strain sensors with self-adapted and tunable performance for the first time. A series of strain sensors with either an ultrahigh gauge factor or a preferable strain range can be fabricated simultaneously via one-step laser patterning, and are suitable for detecting all human motions. The strain sensors have a GF of up to 457 with a strain range of 35%, or have a strain range of up to 100% with a GF of 268. Most importantly, the performance of the strain sensors can be easily tuned by adjusting the patterns of the graphene, so that the sensors can meet diverse demands in both subtle and large motion situations. The graphene strain sensors show significant potential in applications such as wearable electronics, health monitoring and intelligent robots. Furthermore, the facile, fast and low-cost fabrication method will make them possible and practical to be used for commercial applications in the future.

  2. A flexible slip sensor using triboelectric nanogenerator approach

    Science.gov (United States)

    Wang, Xudong; Liang, Jiaming; Xiao, Yuxiang; Wu, Yichuan; Deng, Yang; Wang, Xiaohao; Zhang, Min

    2018-03-01

    With the rapid development of robotic technology, tactile sensors for robots have gained great attention from academic and industry researchers. Tactile sensors for slip detection are essential for human-like steady control in dexterous robot hand. In this paper, we propose and demonstrate a flexible slip sensor based on triboelectric nanogenerator with a seesaw structure. The sensor is composed of two porous PDMS layers separated by an inverted trapezoid structure with a height of 500 μm. In order to customize the sensitivity of the sensor, porous PDMS was fabricated by mixing PDMS with deionized water thoroughly and then removing water with heat. Laser-induced porous graphene and aluminium are served as the pair of contact materials. To detect slip from different directions, two sets of the electrode pair were used. Experimental results show a distinct difference between static state and the moment when a slip happens was detected. In addition, the output voltage of the sensors increased as the increase of slip velocity from 0.25 mm/s to 2.5 mm/s. The flexible slip sensor proposed here shows the potential applications in smart robotics and prosthesis.

  3. Single mode dye-doped polymer photonic crystal lasers

    International Nuclear Information System (INIS)

    Christiansen, Mads B; Buß, Thomas; Smith, Cameron L C; Petersen, Sidsel R; Jørgensen, Mette M; Kristensen, Anders

    2010-01-01

    Dye-doped polymer photonic crystal (PhC) lasers fabricated by combined nanoimprint and photolithography are studied for their reproducibility and stability characteristics. We introduce a phase shift in the PhC lattice that substantially improves the yield of single wavelength emission. Single mode emission and reproducibility of laser characteristics are important if the lasers are to be mass produced in, e.g., optofluidic sensor chips. The fabrication yield is above 85% with highly reproducible wavelengths (within 0.5%), and the temperature dependence on the wavelength is found to be −0.045 or −0.066 nm K -1 , depending on the material

  4. Laser-self-mixing interferometry for mechatronics applications.

    Science.gov (United States)

    Ottonelli, Simona; Dabbicco, Maurizio; De Lucia, Francesco; di Vietro, Michela; Scamarcio, Gaetano

    2009-01-01

    We report on the development of an all-interferometric optomechatronic sensor for the detection of multi-degrees-of-freedom displacements of a remote target. The prototype system exploits the self-mixing technique and consists only of a laser head, equipped with six laser sources, and a suitably designed reflective target. The feasibility of the system was validated experimentally for both single or multi-degrees-of-freedom measurements, thus demonstrating a simple and inexpensive alternative to costly and bulky existing systems.

  5. Ubiquitous Total Station Development using Smartphone, RSSI and Laser Sensor providing service to Ubi-GIS

    Directory of Open Access Journals (Sweden)

    M. A. Shoushtari

    2014-10-01

    Full Text Available The growing trend in technological advances and Micro Electro Mechanical Systems (MEMS has targeted for intelligent human lives. Accordingly, Ubiquitous Computing Approach was proposed by Mark Weiser. This paper proposes an ubiquitous surveying solution in Geometrics and surveying field. Ubiquitous Surveying provides cost-effective, smart and available surveying techniques while traditional surveying equipment are so expensive and have small availability specially in indoor and daily surveying jobs. In order to have a smart surveying instrument, different information technology methods and tools like Triangle method, Received Signal Strength Indicator (RSSI method and laser sensor are used. These new ways in combine with surveying equations introduces a modern surveying equipment called Ubi-Total Station that also employed different sensors embedded in smartphone and mobile stand. RSSI-based localization and Triangle method technique are easy and well known methods to predict the position of an unknown node in indoor environments whereas additional measures are required for a sufficient accuracy. In this paper the main goal is to introduce the Ubiquitous Total Station as a development in smart and ubiquitous GIS. In order to public use of the surveying equipment, design and implementation of this instrument has been done. Conceptual model of Smartphone-based system is designed for this study and based on this model, an Android application as a first sample is developed. Finally the evaluations shows that absolute errors in X and Y calculation are 0.028 and 0.057 meter respectively. Also RMSE of 0.26 was calculated in RSSI method for distance measurement. The high price of traditional equipment and their requirement for professional surveyors has given way to intelligent surveying. In the suggested system, smartphones can be used as tools for positioning and coordinating geometric information of objects.

  6. Laser-induced nanostructures on a polymer irradiated through a contact mask

    Energy Technology Data Exchange (ETDEWEB)

    Neděla, O. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Slepička, P., E-mail: petr.slepicka@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic); Malý, J.; Štofík, M. [Department of Biology, Faculty of Science, J.E. Purkyně University, 400 96 Usti nad Labem (Czech Republic); Švorčík, V. [Department of Solid State Engineering, Institute of Chemical Technology, 166 28 Prague (Czech Republic)

    2014-12-01

    Highlights: • The unique nanopatterning method of PEN was proposed. • Laser treatment through micrometer slit was utilized. • Dimensions of nanostructures can be precisely controlled. • Laser treatment changes the PEN surface chemistry and morphology (sensor applications). - Abstract: The nanopatterning method applied through micrometer slit for polyethylene naphthalate (PEN) substrate was proposed in this paper. Surface roughness, formation of nanoscale ripple-like structures and the dependence of their dimensions on the value of laser fluence was determined by atomic force and laser confocal microscopy, and compared with values obtained from samples irradiated directly (without a contact mask) under similar conditions. The morphology of the unirradiated surface of the substrate in between the slits is also studied, as well as the morphology of the transitional area between the irradiated and unirradiated surface. Thin layer of gold was deposited on selected samples. Chemical composition of the surface was determined from XPS spectra. The potential application of this research can be found predominantly in the field of selective sensor applications, where the designated area for the consecutive grafting procedures is of great importance.

  7. [The pros and cons of femtosecond laser-assisted cataract surgery].

    Science.gov (United States)

    Li, Z H; Ye, Z

    2016-02-01

    Femtosecond laser-assisted cataract surgery (FLACS) is known as an innovative new technology. Compared with traditional surgical approach, FLACS is more accurate, more predictable and less energy used. However, in the current stage of development, there still may be intraoperative and postoperative complications, or even serious complications. FLACS has obvious advantages in certain surgical steps, but there are still clear disadvantages, so it still cannot completely replace the traditional phacoemulsification surgery.

  8. On-chip microparticle detection and sizing using a dual-wavelength waveguide laser

    NARCIS (Netherlands)

    Bernhardi, Edward H.; van der Werf, Kees O; Hollink, Anton J F; Worhoff, Kerstin; De Ridder, Rene M.; Subramaniam, Vinod; Pollnau, Markus

    2013-01-01

    An integrated intra-laser-cavity microparticle sensor based on a dual-phase-shift, dual-wavelength distributed-feedback channel waveguide laser in Al2O3:Yb3+ is presented. Real-time detection and accurate size measurement of single microparticles with diameters ranging between 1 μm and 20 μm are

  9. Preliminary test of an ultrasonic liquid film sensor for high-temperature steam-water two-phase flow experiments

    International Nuclear Information System (INIS)

    Aoyama, Goro; Nagayoshi, Takuji; Baba, Atsushi

    2014-01-01

    A prototype liquid film sensor for high-temperature steam-water experiments has been developed. The sensor shape simulates a boiling water reactor (BWR) fuel rod. The pulse-echo method can be utilized to measure the thickness of the liquid film covering the sensor surface. A piezoelectric element is soldered onto the inside of the sensor casing which consists of two curved casing pieces. After the piezoelectric element is attached, the two casing pieces are laser welded together. It is confirmed that the temperature rise at the time of the laser welding does not influence soldering of the piezoelectric element. The pressure proof test shows that the sensor can be used at a high-pressure condition of 7 MPa. Simple air-water experiments are done at atmospheric pressure to confirm the liquid film thickness can be measured with the sensor. The fluctuation of the liquid film thickness is satisfactorily captured with the sensor. The minimum and maximum thicknesses are 0.084 and 0.180 mm, respectively. The amplitude of the waveform at 286°C is predicted by the calculation based on the acoustic impedance. It is expected that the sensor is able to measure the liquid film thickness even at BWR operating conditions. (author)

  10. Urinary incontinence monitoring system using laser-induced graphene sensors

    KAUST Repository

    Nag, Anindya; Mukhopadhyay, Subhas; Kosel, Jü rgen

    2017-01-01

    from low-cost commercial polyimide (PI) polymers. The graphene was manually transferred to a commercial tape, which was used as sensor patch for experimentation. Salt solutions with different concentrations were tested to determine the most sensitive

  11. Performance Analysis of the Microsoft Kinect Sensor for 2D Simultaneous Localization and Mapping (SLAM Techniques

    Directory of Open Access Journals (Sweden)

    Kamarulzaman Kamarudin

    2014-12-01

    Full Text Available This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM techniques (i.e., Gmapping and Hector SLAM using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS. The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect’s depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks.

  12. Laser Propulsion - Is it another myth or a real potential?

    International Nuclear Information System (INIS)

    Cook, Joung R.

    2008-01-01

    This paper discusses different principles of inducing propulsive power using lasers and examines the performance limits along with pros and cons with respect to different space propulsion applications: satellite launching, orbital transfer, space debris clearing, satellite propulsion, and space travels. It concludes that a use of electrical propulsion, in conjunction with laser power beaming, is the most feasible application with technological and economic advantages for commercial use within the next decades

  13. Multi-sensors multi-baseline mapping system for mobile robot using stereovision camera and laser-range device

    Directory of Open Access Journals (Sweden)

    Mohammed Faisal

    2016-06-01

    Full Text Available Countless applications today are using mobile robots, including autonomous navigation, security patrolling, housework, search-and-rescue operations, material handling, manufacturing, and automated transportation systems. Regardless of the application, a mobile robot must use a robust autonomous navigation system. Autonomous navigation remains one of the primary challenges in the mobile-robot industry; many control algorithms and techniques have been recently developed that aim to overcome this challenge. Among autonomous navigation methods, vision-based systems have been growing in recent years due to rapid gains in computational power and the reliability of visual sensors. The primary focus of research into vision-based navigation is to allow a mobile robot to navigate in an unstructured environment without collision. In recent years, several researchers have looked at methods for setting up autonomous mobile robots for navigational tasks. Among these methods, stereovision-based navigation is a promising approach for reliable and efficient navigation. In this article, we create and develop a novel mapping system for a robust autonomous navigation system. The main contribution of this article is the fuse of the multi-baseline stereovision (narrow and wide baselines and laser-range reading data to enhance the accuracy of the point cloud, to reduce the ambiguity of correspondence matching, and to extend the field of view of the proposed mapping system to 180°. Another contribution is the pruning the region of interest of the three-dimensional point clouds to reduce the computational burden involved in the stereo process. Therefore, we called the proposed system multi-sensors multi-baseline mapping system. The experimental results illustrate the robustness and accuracy of the proposed system.

  14. DESARROLLO DE UN PENETRÓMETRO INTEGRADO CON TECNOLOGÍA GPS-RTK PARA LA GENERACIÓN DE MAPAS DE RESISTENCIA A LA PENETRACIÓN DEL SUELO

    Directory of Open Access Journals (Sweden)

    Santos Gabriel Campos Magaña

    2015-04-01

    Full Text Available La agricultura de precisión requiere información precisa acerca de las propiedades del suelo para optimizar la aplicación de insumos y satisfacer necesidades específicas de los cultivos. En particular, la resistencia a la penetración (RP que es un factor que mide la compactación del suelo, la cual limita el crecimiento de las raíces y el rendimiento del cultivo, lo cual requiere ubicar y cuantificar el valor de RP. El presente trabajo describe el desarrollo de un penetrómetro integrado con dos sensores (resistencia y profundidad aplicados junto con tecnología de Posicionamiento Cinemátio en Tiempo Real-Sistema de Posicionamiento Global para Agricultura (RTK-AgGPS para la generación de mapas de diagnóstico de capas compactadas. El primer sensor fue desarrollado para la medición de la RP utilizando un transductor de anillo simple con capacidad de hasta 9 MPa, con una sensibilidad de 13.5 Nm V-1 y un coeficiente de correlación de 99.6% entre la fuerza aplicada y el voltaje de salida. El segundo sensor, se adecuó para determinar la profundidad de RP con un desplazamiento de trabajo máximo de 0.60 m, con una sensibilidad de 258.5 mm V-1 y un coeficiente de correlación de 100% entre la profundidad de penetración y voltaje de salida. Para la evaluación en campo, se construyó un carro porta-sensores acoplado al enganche del tractor para el accionamiento del actuador hidráulico del penetrómetro. Se realizó un muestreo sistemático de 30 puntos utilizando la tecnología RTK-GPS obteniendo los valores y localización geo referenciada de RP con una precisión de 0.025 m en una profundidad de trabajo hasta de 0.40 m, esto permitió la generación de mapas de diagnóstico de la RP empleando un Sistema de Información Geográfica para tres profundidades diferentes de 0.20, 0.30 y 0.40 m.

  15. Optical Graphene Gas Sensors Based on Microfibers: A Review

    Directory of Open Access Journals (Sweden)

    Yu Wu

    2018-03-01

    Full Text Available Graphene has become a bridge across optoelectronics, mechanics, and bio-chemical sensing due to its unique photoelectric characteristics. Moreover, benefiting from its two-dimensional nature, this atomically thick film with full flexibility has been widely incorporated with optical waveguides such as fibers, realizing novel photonic devices including polarizers, lasers, and sensors. Among the graphene-based optical devices, sensor is one of the most important branch, especially for gas sensing, as rapid progress has been made in both sensing structures and devices in recent years. This article presents a comprehensive and systematic overview of graphene-based microfiber gas sensors regarding many aspects including sensing principles, properties, fabrication, interrogating and implementations.

  16. Temperature measurement distributed on a building by fiber optic BOTDA sensor

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Choi, Man Yong; Lee, Seung Seok

    2002-01-01

    We have focused on the development of a fiber optic BOTDA (Brillouin Optical Time Domain Analysis) sensor system in order to measure temperature distributed on large structures. Also, we present a feasibility study of the fiber optic sensor to monitor the distributed temperature on a building construction. A fiber optic BOTDA sensor system, which has a capability of measuring the temperature distribution, attempted over several kilometers of long fiber paths. This simple fiber optic sensor system employs a laser diode and two electro-optic modulators. The optical fiber of the length of 1400 m was installed on the surfaces of the building. The change of the distributed temperature on the building construction was well measured by this fiber optic sensor. The temperature changed normally up to 4 degrees C through one day.

  17. A new fiber optic sensor for inner surface roughness measurement

    Science.gov (United States)

    Xu, Xiaomei; Liu, Shoubin; Hu, Hong

    2009-11-01

    In order to measure inner surface roughness of small holes nondestructively, a new fiber optic sensor is researched and developed. Firstly, a new model for surface roughness measurement is proposed, which is based on intensity-modulated fiber optic sensors and scattering modeling of rough surfaces. Secondly, a fiber optical measurement system is designed and set up. Under the help of new techniques, the fiber optic sensor can be miniaturized. Furthermore, the use of micro prism makes the light turn 90 degree, so the inner side surface roughness of small holes can be measured. Thirdly, the fiber optic sensor is gauged by standard surface roughness specimens, and a series of measurement experiments have been done. The measurement results are compared with those obtained by TR220 Surface Roughness Instrument and Form Talysurf Laser 635, and validity of the developed fiber optic sensor is verified. Finally, precision and influence factors of the fiber optic sensor are analyzed.

  18. A fast high-precision six-degree-of-freedom relative position sensor

    Science.gov (United States)

    Hughes, Gary B.; Macasaet, Van P.; Griswold, Janelle; Sison, Claudia A.; Lubin, Philip; Meinhold, Peter; Suen, Jonathan; Brashears, Travis; Zhang, Qicheng; Madajian, Jonathan

    2016-03-01

    Lasers are commonly used in high-precision measurement and profiling systems. Some laser measurement systems are based on interferometry principles, and others are based on active triangulation, depending on requirements of the application. This paper describes an active triangulation laser measurement system for a specific application wherein the relative position of two fixed, rigid mechanical components is to be measured dynamically with high precision in six degrees of freedom (DOF). Potential applications include optical systems with feedback to control for mechanical vibration, such as target acquisition devices with multiple focal planes. The method uses an array of several laser emitters mounted on one component. The lasers are directed at a reflective surface on the second component. The reflective surface consists of a piecewise-planar pattern such as a pyramid, or more generally a curved reflective surface such as a hyperbolic paraboloid. The reflected spots are sensed at 2-dimensional photodiode arrays on the emitter component. Changes in the relative position of the emitter component and reflective surface will shift the location of the reflected spots within photodiode arrays. Relative motion in any degree of freedom produces independent shifts in the reflected spot locations, allowing full six-DOF relative position determination between the two component positions. Response time of the sensor is limited by the read-out rate of the photodiode arrays. Algorithms are given for position determination with limits on uncertainty and sensitivity, based on laser and spot-sensor characteristics, and assuming regular surfaces. Additional uncertainty analysis is achievable for surface irregularities based on calibration data.

  19. Dense range map reconstruction from a versatile robotic sensor system with an active trinocular vision and a passive binocular vision.

    Science.gov (United States)

    Kim, Min Young; Lee, Hyunkee; Cho, Hyungsuck

    2008-04-10

    One major research issue associated with 3D perception by robotic systems is the creation of efficient sensor systems that can generate dense range maps reliably. A visual sensor system for robotic applications is developed that is inherently equipped with two types of sensor, an active trinocular vision and a passive stereo vision. Unlike in conventional active vision systems that use a large number of images with variations of projected patterns for dense range map acquisition or from conventional passive vision systems that work well on specific environments with sufficient feature information, a cooperative bidirectional sensor fusion method for this visual sensor system enables us to acquire a reliable dense range map using active and passive information simultaneously. The fusion algorithms are composed of two parts, one in which the passive stereo vision helps active vision and the other in which the active trinocular vision helps the passive one. The first part matches the laser patterns in stereo laser images with the help of intensity images; the second part utilizes an information fusion technique using the dynamic programming method in which image regions between laser patterns are matched pixel-by-pixel with help of the fusion results obtained in the first part. To determine how the proposed sensor system and fusion algorithms can work in real applications, the sensor system is implemented on a robotic system, and the proposed algorithms are applied. A series of experimental tests is performed for a variety of configurations of robot and environments. The performance of the sensor system is discussed in detail.

  20. Proximity Operations and Docking Sensor Development

    Science.gov (United States)

    Howard, Richard T.; Bryan, Thomas C.; Brewster, Linda L.; Lee, James E.

    2009-01-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) has been under development for the last three years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in spot mode out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. 12 Parts obsolescence issues prevent the construction of more AVGS units, and the next generation sensor was updated to allow it to support the CEV and COTS programs. The flight proven AR&D sensor has been redesigned to update parts and add additional capabilities for CEV and COTS with the development of the Next Generation AVGS at the Marshall Space Flight Center. The obsolete imager and processor are being replaced with new radiation tolerant parts. In addition, new capabilities include greater sensor range, auto ranging capability, and real-time video output. This paper presents some sensor hardware trades, use of highly integrated laser components, and addresses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements