WorldWideScience

Sample records for sensor application survey

  1. Resistive flex sensors: a survey

    International Nuclear Information System (INIS)

    Saggio, Giovanni; Riillo, Francesco; Sbernini, Laura; Quitadamo, Lucia Rita

    2016-01-01

    Resistive flex sensors can be used to measure bending or flexing with relatively little effort and a relatively low budget. Their lightness, compactness, robustness, measurement effectiveness and low power consumption make these sensors useful for manifold applications in diverse fields. Here, we provide a comprehensive survey of resistive flex sensors, taking into account their working principles, manufacturing aspects, electrical characteristics and equivalent models, useful front-end conditioning circuitry, and physic-bio-chemical aspects. Particular effort is devoted to reporting on and analyzing several applications of resistive flex sensors, related to the measurement of body position and motion, and to the implementation of artificial devices. In relation to the human body, we consider the utilization of resistive flex sensors for the measurement of physical activity and for the development of interaction/interface devices driven by human gestures. Concerning artificial devices, we deal with applications related to the automotive field, robots, orthosis and prosthesis, musical instruments and measuring tools. The presented literature is collected from different sources, including bibliographic databases, company press releases, patents, master’s theses and PhD theses. (topical review)

  2. Resistive flex sensors: a survey

    Science.gov (United States)

    Saggio, Giovanni; Riillo, Francesco; Sbernini, Laura; Quitadamo, Lucia Rita

    2016-01-01

    Resistive flex sensors can be used to measure bending or flexing with relatively little effort and a relatively low budget. Their lightness, compactness, robustness, measurement effectiveness and low power consumption make these sensors useful for manifold applications in diverse fields. Here, we provide a comprehensive survey of resistive flex sensors, taking into account their working principles, manufacturing aspects, electrical characteristics and equivalent models, useful front-end conditioning circuitry, and physic-bio-chemical aspects. Particular effort is devoted to reporting on and analyzing several applications of resistive flex sensors, related to the measurement of body position and motion, and to the implementation of artificial devices. In relation to the human body, we consider the utilization of resistive flex sensors for the measurement of physical activity and for the development of interaction/interface devices driven by human gestures. Concerning artificial devices, we deal with applications related to the automotive field, robots, orthosis and prosthesis, musical instruments and measuring tools. The presented literature is collected from different sources, including bibliographic databases, company press releases, patents, master’s theses and PhD theses.

  3. Localization in Wireless Sensor Networks: A Survey on Algorithms, Measurement Techniques, Applications and Challenges

    Directory of Open Access Journals (Sweden)

    Anup Kumar Paul

    2017-10-01

    Full Text Available Localization is an important aspect in the field of wireless sensor networks (WSNs that has developed significant research interest among academia and research community. Wireless sensor network is formed by a large number of tiny, low energy, limited processing capability and low-cost sensors that communicate with each other in ad-hoc fashion. The task of determining physical coordinates of sensor nodes in WSNs is known as localization or positioning and is a key factor in today’s communication systems to estimate the place of origin of events. As the requirement of the positioning accuracy for different applications varies, different localization methods are used in different applications and there are several challenges in some special scenarios such as forest fire detection. In this paper, we survey different measurement techniques and strategies for range based and range free localization with an emphasis on the latter. Further, we discuss different localization-based applications, where the estimation of the location information is crucial. Finally, a comprehensive discussion of the challenges such as accuracy, cost, complexity, and scalability are given.

  4. A Survey of Sensor Web Services for the Smart Grid

    Directory of Open Access Journals (Sweden)

    Omar Asad

    2013-03-01

    Full Text Available The broad use ofWireless Sensor Networks (WSN in various fields have resulted in growing demand for advanced data collection and querying mechanisms embedded in the sensor node. Sensor Web Services (SWS have recently emerged as a promising tool to enable external machines to have access to the information collected by public sensor webs. Machine-to-machine interactions or wireless sensor and actor networks can take advantage of this platform-independent technology to develop diverse smart grid applications. In this survey, we first briefly present the state of the art in SWS technology by describing the techniques for customizing web services to fit the sensor node capabilities such as customizing the WSDL file, compressing XML documents and redesigning TCP protocol. Then, we survey the studies that have utilized the SWS technology in smart grid applications. These studies have shown that SWS provide energy management capabilities to the consumers and the utilities, and they are well suited for smart grid integrated smart home solutions.

  5. A Survey on Optimal Signal Processing Techniques Applied to Improve the Performance of Mechanical Sensors in Automotive Applications

    Science.gov (United States)

    Hernandez, Wilmar

    2007-01-01

    In this paper a survey on recent applications of optimal signal processing techniques to improve the performance of mechanical sensors is made. Here, a comparison between classical filters and optimal filters for automotive sensors is made, and the current state of the art of the application of robust and optimal control and signal processing techniques to the design of the intelligent (or smart) sensors that today's cars need is presented through several experimental results that show that the fusion of intelligent sensors and optimal signal processing techniques is the clear way to go. However, the switch between the traditional methods of designing automotive sensors and the new ones cannot be done overnight because there are some open research issues that have to be solved. This paper draws attention to one of the open research issues and tries to arouse researcher's interest in the fusion of intelligent sensors and optimal signal processing techniques.

  6. A Survey on Virtualization of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ga-Won Lee

    2012-02-01

    Full Text Available Wireless Sensor Networks (WSNs are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization.

  7. A Survey on Virtualization of Wireless Sensor Networks

    Science.gov (United States)

    Islam, Md. Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam

    2012-01-01

    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization. PMID:22438759

  8. A survey on virtualization of Wireless Sensor Networks.

    Science.gov (United States)

    Islam, Md Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam

    2012-01-01

    Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization.

  9. A Survey on Optimal Signal Processing Techniques Applied to Improve the Performance of Mechanical Sensors in Automotive Applications

    Directory of Open Access Journals (Sweden)

    Wilmar Hernandez

    2007-01-01

    Full Text Available In this paper a survey on recent applications of optimal signal processing techniques to improve the performance of mechanical sensors is made. Here, a comparison between classical filters and optimal filters for automotive sensors is made, and the current state of the art of the application of robust and optimal control and signal processing techniques to the design of the intelligent (or smart sensors that today’s cars need is presented through several experimental results that show that the fusion of intelligent sensors and optimal signal processing techniques is the clear way to go. However, the switch between the traditional methods of designing automotive sensors and the new ones cannot be done overnight because there are some open research issues that have to be solved. This paper draws attention to one of the open research issues and tries to arouse researcher’s interest in the fusion of intelligent sensors and optimal signal processing techniques.

  10. MULTI SENSOR AND PLATFORMS SETUPS FOR VARIOUS AIRBORNE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    G. Kemper

    2016-06-01

    Full Text Available To combine various sensors to get a system for specific use became popular within the last 10 years. Metric mid format cameras meanwhile reach the 100 MPix and entered the mapping market to compete with the big format sensors. Beside that also other sensors as SLR Cameras provide high resolution and enter the aerial surveying market for orthophoto production or monitoring applications. Flexibility, purchase-costs, size and weight are common aspects to design multi-sensor systems. Some sensors are useful for mapping while others are part of environmental monitoring systems. Beside classical surveying aircrafts also UL Airplanes, Para/Trikes or UAVs make use of multi sensor systems. Many of them are customer specific while other already are frequently used in the market. This paper aims to show some setup, their application, what are the results and what are the pros and cons of them are.

  11. Operating Systems for Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Muhammad Omer Farooq

    2011-05-01

    Full Text Available This paper presents a survey on the current state-of-the-art in Wireless Sensor Network (WSN Operating Systems (OSs. In recent years, WSNs have received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home automation, and environmental monitoring, to name but a few. A WSN is a highly dynamic network because nodes die due to severe environmental conditions and battery power depletion. Furthermore, a WSN is composed of miniaturized motes equipped with scarce resources e.g., limited memory and computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace sensor motes after deployment, therefore a fundamental objective is to optimize the sensor motes’ life time. These characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications. The state-of-the-art in operating systems for WSNs has been examined in terms of the OS Architecture, Programming Model, Scheduling, Memory Management and Protection, Communication Protocols, Resource Sharing, Support for Real-Time Applications, and additional features. These features are surveyed for both real-time and non-real-time WSN operating systems.

  12. Operating systems for wireless sensor networks: a survey.

    Science.gov (United States)

    Farooq, Muhammad Omer; Kunz, Thomas

    2011-01-01

    This paper presents a survey on the current state-of-the-art in Wireless Sensor Network (WSN) Operating Systems (OSs). In recent years, WSNs have received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home automation, and environmental monitoring, to name but a few. A WSN is a highly dynamic network because nodes die due to severe environmental conditions and battery power depletion. Furthermore, a WSN is composed of miniaturized motes equipped with scarce resources e.g., limited memory and computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace sensor motes after deployment, therefore a fundamental objective is to optimize the sensor motes' life time. These characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications. The state-of-the-art in operating systems for WSNs has been examined in terms of the OS Architecture, Programming Model, Scheduling, Memory Management and Protection, Communication Protocols, Resource Sharing, Support for Real-Time Applications, and additional features. These features are surveyed for both real-time and non-real-time WSN operating systems.

  13. Operating Systems for Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Farooq, Muhammad Omer; Kunz, Thomas

    2011-01-01

    This paper presents a survey on the current state-of-the-art in Wireless Sensor Network (WSN) Operating Systems (OSs). In recent years, WSNs have received tremendous attention in the research community, with applications in battlefields, industrial process monitoring, home automation, and environmental monitoring, to name but a few. A WSN is a highly dynamic network because nodes die due to severe environmental conditions and battery power depletion. Furthermore, a WSN is composed of miniaturized motes equipped with scarce resources e.g., limited memory and computational abilities. WSNs invariably operate in an unattended mode and in many scenarios it is impossible to replace sensor motes after deployment, therefore a fundamental objective is to optimize the sensor motes’ life time. These characteristics of WSNs impose additional challenges on OS design for WSN, and consequently, OS design for WSN deviates from traditional OS design. The purpose of this survey is to highlight major concerns pertaining to OS design in WSNs and to point out strengths and weaknesses of contemporary OSs for WSNs, keeping in mind the requirements of emerging WSN applications. The state-of-the-art in operating systems for WSNs has been examined in terms of the OS Architecture, Programming Model, Scheduling, Memory Management and Protection, Communication Protocols, Resource Sharing, Support for Real-Time Applications, and additional features. These features are surveyed for both real-time and non-real-time WSN operating systems. PMID:22163934

  14. Technical Survey on Applications of Wireless Sensor Networks in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Jiang, Jin; Bari, Ataul; Chen, Dongyi; Hashemian, Hash M.

    2014-01-01

    Even though there is no general consensus on using wireless technologies in nuclear power plants, potential applications of wireless sensor networks within nuclear power plants (NPPs) has been investigated. The topics of interests include potential interaction of wireless sensor networks with the sensitive protection equipment, radiation damage of the electronics on board sensor nodes, optimal placement of relay nodes that collect and forward data in the network, and possible applications, such as radiation dose and level monitoring, and equipment condition monitoring. Several wireless sensor networks have been deployed on site of NPPs on a trial basis to perform these tasks. Different aspects of deployment of such wireless sensor networks in NPPs have also been examined. Industrial standards or guidelines for deployment of WSNs in NPPs are also been considered. This paper examines the state of the art of wireless sensor networks in NPPs

  15. Technical Survey on Applications of Wireless Sensor Networks in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jin; Bari, Ataul [University of Western Ontario, Ontario (Canada); Chen, Dongyi [University of Electronic Science and Technology of China, Chengdu (China); Hashemian, Hash M. [AMS Technology Center, Knoxville (United States)

    2014-08-15

    Even though there is no general consensus on using wireless technologies in nuclear power plants, potential applications of wireless sensor networks within nuclear power plants (NPPs) has been investigated. The topics of interests include potential interaction of wireless sensor networks with the sensitive protection equipment, radiation damage of the electronics on board sensor nodes, optimal placement of relay nodes that collect and forward data in the network, and possible applications, such as radiation dose and level monitoring, and equipment condition monitoring. Several wireless sensor networks have been deployed on site of NPPs on a trial basis to perform these tasks. Different aspects of deployment of such wireless sensor networks in NPPs have also been examined. Industrial standards or guidelines for deployment of WSNs in NPPs are also been considered. This paper examines the state of the art of wireless sensor networks in NPPs.

  16. Security Issues in Healthcare Applications Using Wireless Medical Sensor Networks: A Survey

    OpenAIRE

    Hoon-Jae Lee; Pardeep Kumar

    2011-01-01

    Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are ...

  17. Development of Magneto-Resistive Angular Position Sensors for Space Applications

    Science.gov (United States)

    Hahn, Robert; Langendorf, Sven; Seifart, Klaus; Slatter, Rolf; Olberts, Bastian; Romera, Fernando

    2015-09-01

    Magnetic microsystems in the form of magneto- resistive (MR) sensors are firmly established in automobiles and industrial applications. They measure path, angle, electrical current, or magnetic fields. MR technology opens up new sensor possibilities in space applications and can be an enabling technology for optimal performance, high robustness and long lifetime at reasonable costs. In a recent assessment study performed by HTS GmbH and Sensitec GmbH under ESA Contract a market survey has confirmed that space industry has a very high interest in novel, contactless position sensors based on MR technology. Now, a detailed development stage is pursued, to advance the sensor design up to Engineering Qualification Model (EQM) level and to perform qualification testing for a representative pilot space application.The paper briefly reviews the basics of magneto- resistive effects and possible sensor applications and describes the key benefits of MR angular sensors with reference to currently operational industrial and space applications. The results of the assessment study are presented and potential applications and uses of contactless magneto-resistive angular sensors for spacecraft are identified. The baseline mechanical and electrical sensor design will be discussed. An outlook on the EQM development and qualification tests is provided.

  18. Localization Algorithms of Underwater Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Han, Guangjie; Jiang, Jinfang; Shu, Lei; Xu, Yongjun; Wang, Feng

    2012-01-01

    In Underwater Wireless Sensor Networks (UWSNs), localization is one of most important technologies since it plays a critical role in many applications. Motivated by widespread adoption of localization, in this paper, we present a comprehensive survey of localization algorithms. First, we classify localization algorithms into three categories based on sensor nodes’ mobility: stationary localization algorithms, mobile localization algorithms and hybrid localization algorithms. Moreover, we compare the localization algorithms in detail and analyze future research directions of localization algorithms in UWSNs. PMID:22438752

  19. Harvesting Ambient Environmental Energy for Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Gongbo Zhou

    2014-01-01

    Full Text Available In recent years, wireless sensor networks (WSNs have grown dramatically and made a great progress in many applications. But having limited life, batteries, as the power sources of wireless sensor nodes, have restricted the development and application of WSNs which often requires a very long lifespan for better performance. In order to make the WSNs prevalent in our lives, an alternative energy source is required. Environmental energy is an attractive power source, and it provides an approach to make the sensor nodes self-powered with the possibility of an almost infinite lifetime. The goal of this survey is to present a comprehensive review of the recent literature on the various possible energy harvesting technologies from ambient environment for WSNs.

  20. A SURVEY OF SMART ELECTRICAL BOARDS IN UBIQUITOUS SENSOR NETWORKS FOR GEOMATICS APPLICATIONS

    Directory of Open Access Journals (Sweden)

    S. M. R. Moosavi

    2015-12-01

    Full Text Available Nowadays more advanced sensor networks in various fields are developed. There are lots of online sensors spreading around the world. Sensor networks have been used in Geospatial Information Systems (GIS since sensor networks have expanded. Health monitoring, environmental monitoring, traffic monitoring, etc, are the examples of its applications in Geomatics. Sensor network is an infrastructure comprised of sensing (measuring, computing, and communication elements that gives an administrator the ability to instrument, observe, and react to events and phenomena in a specified environment. This paper describes about development boards which can be used in sensor networks and their applications in Geomatics and their role in wireless sensor networks and also a comparison between various types of boards. Boards that are discussed in this paper are Arduino, Raspberry Pi, Beagle board, Cubieboard. The Boards because of their great potential are also known as single board computers. This paper is organized in four phases: First, Reviewing on ubiquitous computing and sensor networks. Second, introducing of some electrical boards. Then, defining some criterions for comparison. Finally, comparing the Ubiquitous boards.

  1. Security issues in healthcare applications using wireless medical sensor networks: a survey.

    Science.gov (United States)

    Kumar, Pardeep; Lee, Hoon-Jae

    2012-01-01

    Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs). Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs.

  2. Security Issues in Healthcare Applications Using Wireless Medical Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Hoon-Jae Lee

    2011-12-01

    Full Text Available Healthcare applications are considered as promising fields for wireless sensor networks, where patients can be monitored using wireless medical sensor networks (WMSNs. Current WMSN healthcare research trends focus on patient reliable communication, patient mobility, and energy-efficient routing, as a few examples. However, deploying new technologies in healthcare applications without considering security makes patient privacy vulnerable. Moreover, the physiological data of an individual are highly sensitive. Therefore, security is a paramount requirement of healthcare applications, especially in the case of patient privacy, if the patient has an embarrassing disease. This paper discusses the security and privacy issues in healthcare application using WMSNs. We highlight some popular healthcare projects using wireless medical sensor networks, and discuss their security. Our aim is to instigate discussion on these critical issues since the success of healthcare application depends directly on patient security and privacy, for ethic as well as legal reasons. In addition, we discuss the issues with existing security mechanisms, and sketch out the important security requirements for such applications. In addition, the paper reviews existing schemes that have been recently proposed to provide security solutions in wireless healthcare scenarios. Finally, the paper ends up with a summary of open security research issues that need to be explored for future healthcare applications using WMSNs.

  3. Game Theory for Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Shi, Hai-Yan; Wang, Wan-Liang; Kwok, Ngai-Ming; Chen, Sheng-Yong

    2012-01-01

    Game theory (GT) is a mathematical method that describes the phenomenon of conflict and cooperation between intelligent rational decision-makers. In particular, the theory has been proven very useful in the design of wireless sensor networks (WSNs). This article surveys the recent developments and findings of GT, its applications in WSNs, and provides the community a general view of this vibrant research area. We first introduce the typical formulation of GT in the WSN application domain. The roles of GT are described that include routing protocol design, topology control, power control and energy saving, packet forwarding, data collection, spectrum allocation, bandwidth allocation, quality of service control, coverage optimization, WSN security, and other sensor management tasks. Then, three variations of game theory are described, namely, the cooperative, non-cooperative, and repeated schemes. Finally, existing problems and future trends are identified for researchers and engineers in the field. PMID:23012533

  4. Game Theory for Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Ngai-Ming Kwok

    2012-07-01

    Full Text Available Game theory (GT is a mathematical method that describes the phenomenon of conflict and cooperation between intelligent rational decision-makers. In particular, the theory has been proven very useful in the design of wireless sensor networks (WSNs. This article surveys the recent developments and findings of GT, its applications in WSNs, and provides the community a general view of this vibrant research area. We first introduce the typical formulation of GT in the WSN application domain. The roles of GT are described that include routing protocol design, topology control, power control and energy saving, packet forwarding, data collection, spectrum allocation, bandwidth allocation, quality of service control, coverage optimization, WSN security, and other sensor management tasks. Then, three variations of game theory are described, namely, the cooperative, non-cooperative, and repeated schemes. Finally, existing problems and future trends are identified for researchers and engineers in the field.

  5. Sensors Applications, Volume 4, Sensors for Automotive Applications

    Science.gov (United States)

    Marek, Jiri; Trah, Hans-Peter; Suzuki, Yasutoshi; Yokomori, Iwao

    2003-07-01

    An international team of experts from the leading companies in this field gives a detailed picture of existing as well as future applications. They discuss in detail current technologies, design and construction concepts, market considerations and commercial developments. Topics covered include vehicle safety, fuel consumption, air conditioning, emergency control, traffic control systems, and electronic guidance using radar and video. Meeting the growing need for comprehensive information on the capabilities, potentials and limitations of modern sensor systems, Sensors Applications is a book series covering the use of sophisticated technologies and materials for the creation of advanced sensors and their implementation in the key areas process monitoring, building control, health care, automobiles, aerospace, environmental technology and household appliances.

  6. Market survey results for alternate sensor communications

    International Nuclear Information System (INIS)

    Rivas, R.R.; White, K.R.; Turnage, L.C.

    1996-02-01

    This document presents the results of a system analysis and market survey of commercially available alarm communication systems for potential use as an alternate sensor communication system. Only those systems that report alarm/sensor information to a central control panel were considered. The communication systems surveyed include wireless radio frequency (RF) systems, spread spectrum systems, fiber optic systems, twisted pair/copper wire, cellular systems, and other types of communication equipment. All systems are commercially available, and most information was obtained by telephone conversations with the manufacturer, personal interviews at security conferences, and countless reviews of the manufacturers' data sheets. Many systems were identified, but only those that met a minimum set of system requirements were included. Other systems that appeared to be applicable usually did not provide adequate data encryption or could not interface directly to the system. While such features could be incorporated using additional hardware, doing so would make the system more expensive and conflict with the idea of purchasing a single unit that meets the minimum set of requirements. Several systems greatly exceed the scope of this project and utilizing such systems would mean investing in more capacity than is really needed

  7. Applications of Wireless Sensor Networks in Marine Environment Monitoring: A Survey

    Science.gov (United States)

    Xu, Guobao; Shen, Weiming; Wang, Xianbin

    2014-01-01

    With the rapid development of society and the economy, an increasing number of human activities have gradually destroyed the marine environment. Marine environment monitoring is a vital problem and has increasingly attracted a great deal of research and development attention. During the past decade, various marine environment monitoring systems have been developed. The traditional marine environment monitoring system using an oceanographic research vessel is expensive and time-consuming and has a low resolution both in time and space. Wireless Sensor Networks (WSNs) have recently been considered as potentially promising alternatives for monitoring marine environments since they have a number of advantages such as unmanned operation, easy deployment, real-time monitoring, and relatively low cost. This paper provides a comprehensive review of the state-of-the-art technologies in the field of marine environment monitoring using wireless sensor networks. It first describes application areas, a common architecture of WSN-based oceanographic monitoring systems, a general architecture of an oceanographic sensor node, sensing parameters and sensors, and wireless communication technologies. Then, it presents a detailed review of some related projects, systems, techniques, approaches and algorithms. It also discusses challenges and opportunities in the research, development, and deployment of wireless sensor networks for marine environment monitoring. PMID:25215942

  8. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  9. Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges

    Science.gov (United States)

    Radi, Marjan; Dezfouli, Behnam; Bakar, Kamalrulnizam Abu; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks. PMID:22368490

  10. Multipath routing in wireless sensor networks: survey and research challenges.

    Science.gov (United States)

    Radi, Marjan; Dezfouli, Behnam; Abu Bakar, Kamalrulnizam; Lee, Malrey

    2012-01-01

    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks.

  11. INS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying.

    Science.gov (United States)

    V Hinüber, Edgar L; Reimer, Christian; Schneider, Tim; Stock, Michael

    2017-04-26

    This paper presents field tests of challenging flight applications obtained with a new family of lightweight low-power INS/GNSS ( inertial navigation system/global satellite navigation system ) solutions based on MEMS ( micro-electro-mechanical- sensor ) machined sensors, being used for UAV ( unmanned aerial vehicle ) navigation and control as well as for aircraft motion dynamics analysis and trajectory surveying. One key is a 42+ state extended Kalman-filter-based powerful data fusion, which also allows the estimation and correction of parameters that are typically affected by sensor aging, especially when applying MEMS-based inertial sensors, and which is not yet deeply considered in the literature. The paper presents the general system architecture, which allows iMAR Navigation the integration of all classes of inertial sensors and GNSS ( global navigation satellite system ) receivers from very-low-cost MEMS and high performance MEMS over FOG ( fiber optical gyro ) and RLG ( ring laser gyro ) up to HRG ( hemispherical resonator gyro ) technology, and presents detailed flight test results obtained under extreme flight conditions. As a real-world example, the aerobatic maneuvers of the World Champion 2016 (Red Bull Air Race) are presented. Short consideration is also given to surveying applications, where the ultimate performance of the same data fusion, but applied on gravimetric surveying, is discussed.

  12. Wireless Sensor Applications in Extreme Aeronautical Environments

    Science.gov (United States)

    Wilson, William C.; Atkinson, Gary M.

    2013-01-01

    NASA aeronautical programs require rigorous ground and flight testing. Many of the testing environments can be extremely harsh. These environments include cryogenic temperatures and high temperatures (greater than 1500 C). Temperature, pressure, vibration, ionizing radiation, and chemical exposure may all be part of the harsh environment found in testing. This paper presents a survey of research opportunities for universities and industry to develop new wireless sensors that address anticipated structural health monitoring (SHM) and testing needs for aeronautical vehicles. Potential applications of passive wireless sensors for ground testing and high altitude aircraft operations are presented. Some of the challenges and issues of the technology are also presented.

  13. A Survey on Sensor Coverage and Visual Data Capturing/Processing/Transmission in Wireless Visual Sensor Networks

    Directory of Open Access Journals (Sweden)

    Florence G. H. Yap

    2014-02-01

    Full Text Available Wireless Visual Sensor Networks (WVSNs where camera-equipped sensor nodes can capture, process and transmit image/video information have become an important new research area. As compared to the traditional wireless sensor networks (WSNs that can only transmit scalar information (e.g., temperature, the visual data in WVSNs enable much wider applications, such as visual security surveillance and visual wildlife monitoring. However, as compared to the scalar data in WSNs, visual data is much bigger and more complicated so intelligent schemes are required to capture/process/ transmit visual data in limited resources (hardware capability and bandwidth WVSNs. WVSNs introduce new multi-disciplinary research opportunities of topics that include visual sensor hardware, image and multimedia capture and processing, wireless communication and networking. In this paper, we survey existing research efforts on the visual sensor hardware, visual sensor coverage/deployment, and visual data capture/ processing/transmission issues in WVSNs. We conclude that WVSN research is still in an early age and there are still many open issues that have not been fully addressed. More new novel multi-disciplinary, cross-layered, distributed and collaborative solutions should be devised to tackle these challenging issues in WVSNs.

  14. A Survey on Multimedia-Based Cross-Layer Optimization in Visual Sensor Networks

    Science.gov (United States)

    Costa, Daniel G.; Guedes, Luiz Affonso

    2011-01-01

    Visual sensor networks (VSNs) comprised of battery-operated electronic devices endowed with low-resolution cameras have expanded the applicability of a series of monitoring applications. Those types of sensors are interconnected by ad hoc error-prone wireless links, imposing stringent restrictions on available bandwidth, end-to-end delay and packet error rates. In such context, multimedia coding is required for data compression and error-resilience, also ensuring energy preservation over the path(s) toward the sink and improving the end-to-end perceptual quality of the received media. Cross-layer optimization may enhance the expected efficiency of VSNs applications, disrupting the conventional information flow of the protocol layers. When the inner characteristics of the multimedia coding techniques are exploited by cross-layer protocols and architectures, higher efficiency may be obtained in visual sensor networks. This paper surveys recent research on multimedia-based cross-layer optimization, presenting the proposed strategies and mechanisms for transmission rate adjustment, congestion control, multipath selection, energy preservation and error recovery. We note that many multimedia-based cross-layer optimization solutions have been proposed in recent years, each one bringing a wealth of contributions to visual sensor networks. PMID:22163908

  15. Pressure Sensor: State of the Art, Design, and Application for Robotic Hand

    Directory of Open Access Journals (Sweden)

    Ahmed M. Almassri

    2015-01-01

    Full Text Available We survey the state of the art in a variety of force sensors for designing and application of robotic hand. Most of the force sensors are examined based on tactile sensing. For a decade, many papers have widely discussed various sensor technologies and transducer methods which are based on microelectromechanical system (MEMS and silicon used for improving the accuracy and performance measurement of tactile sensing capabilities especially for robotic hand applications. We found that transducers and materials such as piezoresistive and polymer, respectively, are used in order to improve the sensing sensitivity for grasping mechanisms in future. This predicted growth in such applications will explode into high risk tasks which requires very precise purposes. It shows considerable potential and significant levels of research attention.

  16. A Survey on Underwater Wireless Sensor Networks: Progresses, Applications, and Challenges

    Directory of Open Access Journals (Sweden)

    Premalatha J.

    2016-01-01

    Full Text Available The endangered underwater species always drew the attention of the scientific society since their disappearance would cause irreplaceable loss. Asia is home to some of the most diverse habitats in the earth, but it is estimated that more than one in four species are endangered. In Underwater, a lot of factors are putting marine life under immense pressure. Extreme population pressure is leading to pollution, over-fishing and the devastation of crucial habitats. Consequently, the numbers of almost all fish are declining and many are already endangered. To help these species to survive, their habitat should be strictly protected. This can be achieved by strictly monitoring them. During this course, several parameters, constraints about the species and its environments are focused. Now, advances in sensor technology facilitate the monitoring of species and their habitat with less expenditure. Indeed, the increasing sophistication of underwater wireless sensors offers chances that enable new challenges in a lot of areas, like surveillance one. This paper endorses the use of sensors for monitoring underwater species endangered in their habitat. This paper further examines the key approaches and challenges in the design and implementation of underwater wireless sensor networks. We summarize major applications and the main phenomena related to acoustic propagation, and discuss how they affect the design and operation of communication systems and networking protocols at various layers.

  17. Software defined wireless sensor networks application opportunities for efficient network management: a survey

    CSIR Research Space (South Africa)

    Modieginyane, KM

    2017-03-01

    Full Text Available Wireless Sensor Networks (WSNs) are commonly used information technologies of modern networking and computing platforms. Today's network computing applications are faced with a high demand of powerful network functionalities. Functional network...

  18. Development and Application of Microfabricated Chemical Gas Sensors For Aerospace Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, A.; Hammond, J.; Makel, D.; hide

    1990-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring and control, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. This paper discusses the needs of space applications and the point-contact sensor technology being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (Nox, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. Demonstration and application these sensor technologies will be described. The demonstrations range from use of a microsystem based hydrogen sensor on the Shuttle to engine demonstration of a nanocrystalline based sensor for NO, detection. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  19. Downhole Applications of Magnetic Sensors.

    Science.gov (United States)

    Gooneratne, Chinthaka P; Li, Bodong; Moellendick, Timothy E

    2017-10-19

    In this paper we present a review of the application of two types of magnetic sensors-fluxgate magnetometers and nuclear magnetic resonance (NMR) sensors-in the oil/gas industry. These magnetic sensors play a critical role in drilling wells safely, accurately and efficiently into a target reservoir zone by providing directional data of the well and acquiring information about the surrounding geological formations. Research into magnetic sensors for oil/gas drilling has not been explored by researchers to the same extent as other applications, such as biomedical, magnetic storage and automotive/aerospace applications. Therefore, this paper aims to serve as an opportunity for researchers to truly understand how magnetic sensors can be used in a downhole environment and to provide fertile ground for research and development in this area. A look ahead, discussing other magnetic sensor technologies that can potentially be used in the oil/gas industry is presented, and what is still needed in order deploy them in the field is also addressed.

  20. Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.

    2002-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  1. Application Of FA Sensor 2

    International Nuclear Information System (INIS)

    Park, Seon Ho

    1993-03-01

    This book introduces FA sensor from basic to making system, which includes light sensor like photo diode and photo transistor, photo electricity sensor, CCD type image sensor, MOS type image sensor, color sensor, cds cell, and optical fiber scope. It also deals with direct election position sensor such as proximity switch, differential motion, linear scale of photo electricity type, and magnet scale, rotary sensor with summary of rotary encoder, rotary encoder types and applications, flow sensor, and sensing technology.

  2. Application of Wireless Sensor Networks to Automobiles

    Science.gov (United States)

    Tavares, Jorge; Velez, Fernando J.; Ferro, João M.

    2008-01-01

    Some applications of Wireless Sensor Networks (WSNs) to the automobile are identified, and the use of Crossbow MICAz motes operating at 2.4 GHz is considered together with TinyOS support. These WSNs are conceived in order to measure, process and supply to the user diverse types of information during an automobile journey. Examples are acceleration and fuel consumption, identification of incorrect tire pressure, verification of illumination, and evaluation of the vital signals of the driver. A brief survey on WSNs concepts is presented, as well as the way the wireless sensor network itself was developed. Calibration curves were produced which allowed for obtaining luminous intensity and temperature values in the appropriate units. Aspects of the definition of the architecture and the choice/implementation of the protocols are identified. Security aspects are also addressed.

  3. Sensor Fusion and Smart Sensor in Sports and Biomedical Applications

    Directory of Open Access Journals (Sweden)

    José Jair Alves Mendes Jr.

    2016-09-01

    Full Text Available The following work presents an overview of smart sensors and sensor fusion targeted at biomedical applications and sports areas. In this work, the integration of these areas is demonstrated, promoting a reflection about techniques and applications to collect, quantify and qualify some physical variables associated with the human body. These techniques are presented in various biomedical and sports applications, which cover areas related to diagnostics, rehabilitation, physical monitoring, and the development of performance in athletes, among others. Although some applications are described in only one of two fields of study (biomedicine and sports, it is very likely that the same application fits in both, with small peculiarities or adaptations. To illustrate the contemporaneity of applications, an analysis of specialized papers published in the last six years has been made. In this context, the main characteristic of this review is to present the largest quantity of relevant examples of sensor fusion and smart sensors focusing on their utilization and proposals, without deeply addressing one specific system or technique, to the detriment of the others.

  4. Wireless Intelligent Sensors Management Application Protocol-WISMAP

    Directory of Open Access Journals (Sweden)

    Antonio Jesus Yuste-Delgado

    2010-09-01

    Full Text Available Although many recent studies have focused on the development of new applications for wireless sensor networks, less attention has been paid to knowledge-based sensor nodes. The objective of this work is the development in a real network of a new distributed system in which every sensor node can execute a set of applications, such as fuzzy ruled-base systems, measures, and actions. The sensor software is based on a multi-agent structure that is composed of three components: management, application control, and communication agents; a service interface, which provides applications the abstraction of sensor hardware and other components; and an application layer protocol. The results show the effectiveness of the communication protocol and that the proposed system is suitable for a wide range of applications. As real world applications, this work presents an example of a fuzzy rule-based system and a noise pollution monitoring application that obtains a fuzzy noise indicator.

  5. Application of inertial sensors for motion analysis

    Directory of Open Access Journals (Sweden)

    Ferenc Soha

    2012-06-01

    Full Text Available This paper presents our results on the application of various inertial sensors for motion analysis. After the introduction of different sensor types (accelerometer, gyroscope, magnetic field sensor, we discuss the possible data collection and transfer techniques using embedded signal processing and wireless data communication methods [1,2]. Special consideration is given to the interpretation of accelerometer readings, which contains both the static and dynamic components, and is affected by the orientation and rotation of the sensor. We will demonstrate the possibility to decompose these components for quasiperiodic motions. Finally we will demonstrate the application of commercially available devices (Wii sensor, Kinect sensor, mobile phone for motion analysis applications.

  6. A Survey of Model-based Sensor Data Acquisition and Management

    OpenAIRE

    Aggarwal, Charu C.; Sathe, Saket; Papaioannou, Thanasis; Jeung, Hoyoung; Aberer, Karl

    2013-01-01

    In recent years, due to the proliferation of sensor networks, there has been a genuine need of researching techniques for sensor data acquisition and management. To this end, a large number of techniques have emerged that advocate model-based sensor data acquisition and management. These techniques use mathematical models for performing various, day-to-day tasks involved in managing sensor data. In this chapter, we survey the state-of-the-art techniques for model-based sensor data acquisition...

  7. A Survey on Data Quality for Dependable Monitoring in Wireless Sensor Networks.

    Science.gov (United States)

    Jesus, Gonçalo; Casimiro, António; Oliveira, Anabela

    2017-09-02

    Wireless sensor networks are being increasingly used in several application areas, particularly to collect data and monitor physical processes. Non-functional requirements, like reliability, security or availability, are often important and must be accounted for in the application development. For that purpose, there is a large body of knowledge on dependability techniques for distributed systems, which provide a good basis to understand how to satisfy these non-functional requirements of WSN-based monitoring applications. Given the data-centric nature of monitoring applications, it is of particular importance to ensure that data are reliable or, more generically, that they have the necessary quality. In this survey, we look into the problem of ensuring the desired quality of data for dependable monitoring using WSNs. We take a dependability-oriented perspective, reviewing the possible impairments to dependability and the prominent existing solutions to solve or mitigate these impairments. Despite the variety of components that may form a WSN-based monitoring system, we give particular attention to understanding which faults can affect sensors, how they can affect the quality of the information and how this quality can be improved and quantified.

  8. Sensor Pods: Multi-Resolution Surveys from a Light Aircraft

    Directory of Open Access Journals (Sweden)

    Conor Cahalane

    2017-02-01

    Full Text Available Airborne remote sensing, whether performed from conventional aerial survey platforms such as light aircraft or the more recent Remotely Piloted Airborne Systems (RPAS has the ability to compliment mapping generated using earth-orbiting satellites, particularly for areas that may experience prolonged cloud cover. Traditional aerial platforms are costly but capture spectral resolution imagery over large areas. RPAS are relatively low-cost, and provide very-high resolution imagery but this is limited to small areas. We believe that we are the first group to retrofit these new, low-cost, lightweight sensors in a traditional aircraft. Unlike RPAS surveys which have a limited payload, this is the first time that a method has been designed to operate four distinct RPAS sensors simultaneously—hyperspectral, thermal, hyper, RGB, video. This means that imagery covering a broad range of the spectrum captured during a single survey, through different imaging capture techniques (frame, pushbroom, video can be applied to investigate different multiple aspects of the surrounding environment such as, soil moisture, vegetation vitality, topography or drainage, etc. In this paper, we present the initial results validating our innovative hybrid system adapting dedicated RPAS sensors for a light aircraft sensor pod, thereby providing the benefits of both methodologies. Simultaneous image capture with a Nikon D800E SLR and a series of dedicated RPAS sensors, including a FLIR thermal imager, a four-band multispectral camera and a 100-band hyperspectral imager was enabled by integration in a single sensor pod operating from a Cessna c172. However, to enable accurate sensor fusion for image analysis, each sensor must first be combined in a common vehicle coordinate system and a method for triggering, time-stamping and calculating the position/pose of each sensor at the time of image capture devised. Initial tests were carried out over agricultural regions with

  9. Downhole Applications of Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Chinthaka P. Gooneratne

    2017-10-01

    Full Text Available In this paper we present a review of the application of two types of magnetic sensors—fluxgate magnetometers and nuclear magnetic resonance (NMR sensors—in the oil/gas industry. These magnetic sensors play a critical role in drilling wells safely, accurately and efficiently into a target reservoir zone by providing directional data of the well and acquiring information about the surrounding geological formations. Research into magnetic sensors for oil/gas drilling has not been explored by researchers to the same extent as other applications, such as biomedical, magnetic storage and automotive/aerospace applications. Therefore, this paper aims to serve as an opportunity for researchers to truly understand how magnetic sensors can be used in a downhole environment and to provide fertile ground for research and development in this area. A look ahead, discussing other magnetic sensor technologies that can potentially be used in the oil/gas industry is presented, and what is still needed in order deploy them in the field is also addressed.

  10. A Survey on Security and Privacy in Emerging Sensor Networks: From Viewpoint of Close-Loop

    Science.gov (United States)

    Zhang, Lifu; Zhang, Heng

    2016-01-01

    Nowadays, as the next generation sensor networks, Cyber-Physical Systems (CPSs) refer to the complex networked systems that have both physical subsystems and cyber components, and the information flow between different subsystems and components is across a communication network, which forms a closed-loop. New generation sensor networks are found in a growing number of applications and have received increasing attention from many inter-disciplines. Opportunities and challenges in the design, analysis, verification and validation of sensor networks co-exists, among which security and privacy are two important ingredients. This paper presents a survey on some recent results in the security and privacy aspects of emerging sensor networks from the viewpoint of the closed-loop. This paper also discusses several future research directions under these two umbrellas. PMID:27023559

  11. Towards the Robotic “Avatar”: An Extensive Survey of the Cooperation between and within Networked Mobile Sensors

    Directory of Open Access Journals (Sweden)

    Aydan M. Erkmen

    2010-09-01

    Full Text Available Cooperation between networked mobile sensors, wearable and sycophant sensor networks with parasitically sticking agents, and also having human beings involved in the loop is the “Avatarization” within the robotic research community, where all networks are connected and where you can connect/disconnect at any time to acquire data from a vast unstructured world. This paper extensively surveys the networked robotic foundations of this robotic biological “Avatar” that awaits us in the future. Cooperation between networked mobile sensors as well as cooperation of nodes within a network are becoming more robust, fault tolerant and enable adaptation of the networks to changing environment conditions. In this paper, we survey and comparatively discuss the current state of networked robotics via their critical application areas and their design characteristics. We conclude by discussing future challenges.

  12. Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications

    International Nuclear Information System (INIS)

    Boon-Brett, L.; Bousek, J.; Black, G.; Moretto, P.; Castello, P.; Huebert, T.; Banach, U.

    2010-01-01

    A market survey has been performed of commercially available hydrogen safety sensors, resulting in a total sample size of 53 sensors from 21 manufacturers. The technical specifications, as provided by the manufacturer, have been collated and are displayed herein as a function of sensor working principle. These specifications comprise measuring range, response and recovery times, ambient temperature, pressure and relative humidity, power consumption and lifetime. These are then compared against known performance targets for both automotive and stationary applications in order to establish in how far current technology satisfies current requirements of sensor end users. Gaps in the performance of hydrogen sensing technologies are thus identified and areas recommended for future research and development. (author)

  13. Coordinating standards and applications for optical water quality sensor networks

    Science.gov (United States)

    Bergamaschi, B.; Pellerin, B.

    2011-01-01

    Joint USGS-CUAHSI Workshop: In Situ Optical Water Quality Sensor Networks; Shepherdstown, West Virginia, 8-10 June 2011; Advanced in situ optical water quality sensors and new techniques for data analysis hold enormous promise for advancing scientific understanding of aquatic systems through measurements of important biogeochemical parameters at the time scales over which they vary. High-frequency and real-time water quality data also provide the opportunity for early warning of water quality deterioration, trend detection, and science-based decision support. However, developing networks of optical sensors in freshwater systems that report reliable and comparable data across and between sites remains a challenge to the research and monitoring community. To address this, the U.S. Geological Survey (USGS) and the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI), convened a 3-day workshop to explore ways to coordinate development of standards and applications for optical sensors, as well as handling, storage, and analysis of the continuous data they produce.

  14. Optical fiber sensors: Systems and applications. Volume 2

    Science.gov (United States)

    Culshaw, Brian; Dakin, John

    State-of-the-art fiber-optic (FO) sensors and their applications are described in chapters contributed by leading experts. Consideration is given to interferometers, FO gyros, intensity- and wavelength-based sensors and optical actuators, Si in FO sensors, point-sensor multiplexing principles, and distributed FO sensor systems. Also examined are chemical, biochemical, and medical sensors; physical and chemical sensors for process control; FO-sensor applications in the marine and aerospace industries; FO-sensor monitoring systems for security and safety, structural integrity, NDE, and the electric-power industry; and the market situation for FO-sensor technology. Diagrams, drawings, graphs, and photographs are provided.

  15. A survey of system architecture requirements for health care-based wireless sensor networks.

    Science.gov (United States)

    Egbogah, Emeka E; Fapojuwo, Abraham O

    2011-01-01

    Wireless Sensor Networks (WSNs) have emerged as a viable technology for a vast number of applications, including health care applications. To best support these health care applications, WSN technology can be adopted for the design of practical Health Care WSNs (HCWSNs) that support the key system architecture requirements of reliable communication, node mobility support, multicast technology, energy efficiency, and the timely delivery of data. Work in the literature mostly focuses on the physical design of the HCWSNs (e.g., wearable sensors, in vivo embedded sensors, et cetera). However, work towards enhancing the communication layers (i.e., routing, medium access control, et cetera) to improve HCWSN performance is largely lacking. In this paper, the information gleaned from an extensive literature survey is shared in an effort to fortify the knowledge base for the communication aspect of HCWSNs. We highlight the major currently existing prototype HCWSNs and also provide the details of their routing protocol characteristics. We also explore the current state of the art in medium access control (MAC) protocols for WSNs, for the purpose of seeking an energy efficient solution that is robust to mobility and delivers data in a timely fashion. Furthermore, we review a number of reliable transport layer protocols, including a network coding based protocol from the literature, that are potentially suitable for delivering end-to-end reliability of data transmitted in HCWSNs. We identify the advantages and disadvantages of the reviewed MAC, routing, and transport layer protocols as they pertain to the design and implementation of a HCWSN. The findings from this literature survey will serve as a useful foundation for designing a reliable HCWSN and also contribute to the development and evaluation of protocols for improving the performance of future HCWSNs. Open issues that required further investigations are highlighted.

  16. A Survey of System Architecture Requirements for Health Care-Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Abraham O. Fapojuwo

    2011-05-01

    Full Text Available Wireless Sensor Networks (WSNs have emerged as a viable technology for a vast number of applications, including health care applications. To best support these health care applications, WSN technology can be adopted for the design of practical Health Care WSNs (HCWSNs that support the key system architecture requirements of reliable communication, node mobility support, multicast technology, energy efficiency, and the timely delivery of data. Work in the literature mostly focuses on the physical design of the HCWSNs (e.g., wearable sensors, in vivo embedded sensors, et cetera. However, work towards enhancing the communication layers (i.e., routing, medium access control, et cetera to improve HCWSN performance is largely lacking. In this paper, the information gleaned from an extensive literature survey is shared in an effort to fortify the knowledge base for the communication aspect of HCWSNs. We highlight the major currently existing prototype HCWSNs and also provide the details of their routing protocol characteristics. We also explore the current state of the art in medium access control (MAC protocols for WSNs, for the purpose of seeking an energy efficient solution that is robust to mobility and delivers data in a timely fashion. Furthermore, we review a number of reliable transport layer protocols, including a network coding based protocol from the literature, that are potentially suitable for delivering end-to-end reliability of data transmitted in HCWSNs. We identify the advantages and disadvantages of the reviewed MAC, routing, and transport layer protocols as they pertain to the design and implementation of a HCWSN. The findings from this literature survey will serve as a useful foundation for designing a reliable HCWSN and also contribute to the development and evaluation of protocols for improving the performance of future HCWSNs. Open issues that required further investigations are highlighted.

  17. A review on nanomechanical resonators and their applications in sensors and molecular transportation

    International Nuclear Information System (INIS)

    Arash, Behrouz; Rabczuk, Timon; Jiang, Jin-Wu

    2015-01-01

    Nanotechnology has opened a new area in science and engineering, leading to the development of novel nano-electromechanical systems such as nanoresonators with ultra-high resonant frequencies. The ultra-high-frequency resonators facilitate wide-ranging applications such as ultra-high sensitive sensing, molecular transportation, molecular separation, high-frequency signal processing, and biological imaging. This paper reviews recent studies on dynamic characteristics of nanoresonators. A variety of theoretical approaches, i.e., continuum modeling, molecular simulations, and multiscale methods, in modeling of nanoresonators are reviewed. The potential application of nanoresonators in design of sensor devices and molecular transportation systems is introduced. The essence of nanoresonator sensors for detection of atoms and molecules with vibration and wave propagation analyses is outlined. The sensitivity of the resonator sensors and their feasibility in detecting different atoms and molecules are particularly discussed. Furthermore, the applicability of molecular transportation using the propagation of mechanical waves in nanoresonators is presented. An extended application of the transportation methods for building nanofiltering systems with ultra-high selectivity is surveyed. The article aims to provide an up-to-date review on the mechanical properties and applications of nanoresonators, and inspire additional potential of the resonators

  18. A review on nanomechanical resonators and their applications in sensors and molecular transportation

    Energy Technology Data Exchange (ETDEWEB)

    Arash, Behrouz; Rabczuk, Timon, E-mail: timon.rabczuk@uni-weimar.de [Institute of Structural Mechanics, Bauhaus Universität Weimar, Marienstr 15, D-99423 Weimar (Germany); Jiang, Jin-Wu [Shanghai Institute of Applied Mathematics and Mechanics, Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072 (China)

    2015-06-15

    Nanotechnology has opened a new area in science and engineering, leading to the development of novel nano-electromechanical systems such as nanoresonators with ultra-high resonant frequencies. The ultra-high-frequency resonators facilitate wide-ranging applications such as ultra-high sensitive sensing, molecular transportation, molecular separation, high-frequency signal processing, and biological imaging. This paper reviews recent studies on dynamic characteristics of nanoresonators. A variety of theoretical approaches, i.e., continuum modeling, molecular simulations, and multiscale methods, in modeling of nanoresonators are reviewed. The potential application of nanoresonators in design of sensor devices and molecular transportation systems is introduced. The essence of nanoresonator sensors for detection of atoms and molecules with vibration and wave propagation analyses is outlined. The sensitivity of the resonator sensors and their feasibility in detecting different atoms and molecules are particularly discussed. Furthermore, the applicability of molecular transportation using the propagation of mechanical waves in nanoresonators is presented. An extended application of the transportation methods for building nanofiltering systems with ultra-high selectivity is surveyed. The article aims to provide an up-to-date review on the mechanical properties and applications of nanoresonators, and inspire additional potential of the resonators.

  19. Nanostructured Metal Oxide Gas Sensors, a Survey of Applications Carried out at SENSOR Lab, Brescia (Italy in the Security and Food Quality Fields

    Directory of Open Access Journals (Sweden)

    Emanuela Gobbi

    2012-12-01

    Full Text Available In this work we report on metal oxide (MOX based gas sensors, presenting the work done at the SENSOR laboratory of the CNR-IDASC and University of Brescia, Italy since the 80s up to the latest results achieved in recent times. In particular we report the strategies followed at SENSOR during these 30 years to increase the performance of MOX sensors through the development of different preparation techniques, from Rheotaxial Growth Thermal Oxidation (RGTO to nanowire technology to address sensitivity and stability, and the development of electronic nose systems and pattern recognition techniques to address selectivity. We will show the obtained achievement in the context of selected applications such as safety and security and food quality control.

  20. Bio-Mimic Optimization Strategies in Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Adnan, Md. Akhtaruzzaman; Razzaque, Mohammd Abdur; Ahmed, Ishtiaque; Isnin, Ismail Fauzi

    2014-01-01

    For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted. PMID:24368702

  1. Bio-mimic optimization strategies in wireless sensor networks: a survey.

    Science.gov (United States)

    Adnan, Md Akhtaruzzaman; Abdur Razzaque, Mohammd; Ahmed, Ishtiaque; Isnin, Ismail Fauzi

    2013-12-24

    For the past 20 years, many authors have focused their investigations on wireless sensor networks. Various issues related to wireless sensor networks such as energy minimization (optimization), compression schemes, self-organizing network algorithms, routing protocols, quality of service management, security, energy harvesting, etc., have been extensively explored. The three most important issues among these are energy efficiency, quality of service and security management. To get the best possible results in one or more of these issues in wireless sensor networks optimization is necessary. Furthermore, in number of applications (e.g., body area sensor networks, vehicular ad hoc networks) these issues might conflict and require a trade-off amongst them. Due to the high energy consumption and data processing requirements, the use of classical algorithms has historically been disregarded. In this context contemporary researchers started using bio-mimetic strategy-based optimization techniques in the field of wireless sensor networks. These techniques are diverse and involve many different optimization algorithms. As far as we know, most existing works tend to focus only on optimization of one specific issue of the three mentioned above. It is high time that these individual efforts are put into perspective and a more holistic view is taken. In this paper we take a step in that direction by presenting a survey of the literature in the area of wireless sensor network optimization concentrating especially on the three most widely used bio-mimetic algorithms, namely, particle swarm optimization, ant colony optimization and genetic algorithm. In addition, to stimulate new research and development interests in this field, open research issues, challenges and future research directions are highlighted.

  2. PREFACE: Sensors and their Applications XIV

    Science.gov (United States)

    Prosser, S. J.; Al-Shamma'a, A. I.

    2007-09-01

    The fourteenth conference in the Sensors and their Applications series took place at the Liverpool John Moores University in Liverpool, UK from 11-13 September 2007. The event was organised by the Instrument Science and Technology Group of the Institute of Physics. Previous conferences in this series were held in Manchester (1983 and 1993), Southampton (1985 and 1998), Cambridge (1987), Canterbury (1989), Edinburgh (1991), Dublin (1995), Glasgow (1997), Cardiff (1999), London (2001), Limerick (2003) and Chatham (2005). The event provided a forum for academic researchers and industrial engineers working in all areas of sensors, instrumentation and measurement to update themselves on the latest technical developments and applications, share knowledge and stimulate new ideas. The third decade of this conference series continues to highlight new technologies and applications as the sensor market benefits from enhanced signal processing power and wireless networking. Through presentation of oral papers, discussions at exhibited posters and informal exchanges of ideas, the conference continues to provide excellent knowledge transfer and networking opportunities. The high quality programme, headlined by notable contributions from invited speakers, included microsensors, automotive sensors, gas sensing, non-destructive inspection, food and healthcare, sensor signal processing, wireless sensing, modelling and imaging techniques. As in previous years, this conference was particularly highlighted by a large number of sensor applications papers. We take this opportunity to thank all of those who have contributed to the event. Our thanks also go to our colleagues in the Instrument Science and Technology Group for their support and encouragement, particularly in the refereeing of papers, and to the Sensors and Instrumentation Knowledge Transfer Network. Special thanks go to Claire Garland from the Conferences Department of the Institute of Physics and the local team at Liverpool

  3. Chemical Gas Sensors for Aeronautic and Space Applications 2

    Science.gov (United States)

    Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.

  4. Chemical Gas Sensors for Aeronautics and Space Applications III

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.; hide

    1999-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  5. Applications of pressure-sensitive dielectric elastomer sensors

    Science.gov (United States)

    Böse, Holger; Ocak, Deniz; Ehrlich, Johannes

    2016-04-01

    Dielectric elastomer sensors for the measurement of compression loads with high sensitivity are described. The basic design of the sensors exhibits two profiled surfaces between which an elastomer film is confined. All components of the sensor were prepared with silicone whose stiffness can be varied in a wide range. Depending on details of the sensor design, various effects contribute to the enhancement of the capacitance. The intermediate elastomer film is stretched upon compression and electrode layers on the elastomer profiles and in the elastomer film approach each other. Different designs of the pressure sensor give rise to very different sensor characteristics in terms of the dependence of electric capacitance on compression force. Due to their inherent flexibility, the pressure sensors can be used on compliant substrates such as seats or beds or on the human body. This gives rise to numerous possible applications. The contribution describes also some examples of possible sensor applications. A glove was equipped with various sensors positioned at the finger tips. When grabbing an object with the glove, the sensors can detect the gripping forces of the individual fingers with high sensitivity. In a demonstrator of the glove equipped with seven sensors, the capacitances representing the gripping forces are recorded on a display. In another application example, a lower limb prosthesis was equipped with a pressure sensor to detect the load on the remaining part of the leg and the load is displayed in terms of the measured capacitance. The benefit of such sensors is to detect an eventual overload in order to prevent possible pressure sores. A third example introduces a seat load sensor system based on four extended pressure sensor mats. The sensor system detects the load distribution of a person on the seat. The examples emphasize the high performance of the new pressure sensor technology.

  6. Solid state gas sensors. Industrial application

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Maximilian [Siemens AG, Muenchen (Germany). Corporate Technology; Lehmann, Mirko (eds.) [Innovative Sensor Technology (IST) AG, Wattwil (Switzerland)

    2012-11-01

    Written by experts. Richly illustrated. Encourages future research and investments in the fascinating field of gas sensors. Gas sensor products are very often the key to innovations in the fields of comfort, security, health, environment, and energy savings. This compendium focuses on what the research community labels as solid state gas sensors, where a gas directly changes the electrical properties of a solid, serving as the primary signal for the transducer. It starts with a visionary approach to how life in future buildings can benefit from the power of gas sensors. The requirements for various applications, such as for example the automotive industry, are then discussed in several chapters. Further contributions highlight current trends in new sensing principles, such as the use of nanomaterials and how to use new sensing principles for innovative applications in e.g. meteorology. So as to bring together the views of all the different groups needed to produce new gas sensing applications, renowned industrial and academic representatives report on their experiences and expectations in research, applications and industrialisation.

  7. Activity Recognition Using Inertial Sensing for Healthcare, Wellbeing and Sports Applications: A Survey

    NARCIS (Netherlands)

    Avci, A.; Bosch, S.; Marin Perianu, Mihai; Marin Perianu, Raluca; Havinga, Paul J.M.

    This paper surveys the current research directions of activity recognition using inertial sensors, with potential application in healthcare, wellbeing and sports. The analysis of related work is organized according to the five main steps involved in the activity recognition process: preprocessing,

  8. A positioning sensor for tonometric applications

    NARCIS (Netherlands)

    den Besten, C.; den Besten, C.; Bergveld, Piet

    1992-01-01

    In this paper we present a sensor, which is designed for application in a tonometer, an instrument for the measurement of intraocular pressure. The sensor measures diameter and position of a part of the eye globe that is flattened by the tonometer. The sensor principle is based on a change in

  9. Molecular Imprinting of Macromolecules for Sensor Applications.

    Science.gov (United States)

    Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil

    2017-04-19

    Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.

  10. Developing movement recognition application with the use of Shimmer sensor and Microsoft Kinect sensor.

    Science.gov (United States)

    Guzsvinecz, Tibor; Szucs, Veronika; Sik Lányi, Cecília

    2015-01-01

    Nowadays the development of virtual reality-based application is one of the most dynamically growing areas. These applications have a wide user base, more and more devices which are providing several kinds of user interactions and are available on the market. In the applications where the not-handheld devices are not necessary, the potential is that these can be used in educational, entertainment and rehabilitation applications. The purpose of this paper is to examine the precision and the efficiency of the not-handheld devices with user interaction in the virtual reality-based applications. The first task of the developed application is to support the rehabilitation process of stroke patients in their homes. A newly developed application will be introduced in this paper, which uses the two popular devices, the Shimmer sensor and the Microsoft Kinect sensor. To identify and to validate the actions of the user these sensors are working together in parallel mode. For the problem solving, the application is available to record an educational pattern, and then the software compares this pattern to the action of the user. The goal of the current research is to examine the extent of the difference in the recognition of the gestures, how precisely the two sensors are identifying the predefined actions. This could affect the rehabilitation process of the stroke patients and influence the efficiency of the rehabilitation. This application was developed in C# programming language and uses the original Shimmer connecting application as a base. During the working of this application it is possible to teach five-five different movements with the use of the Shimmer and the Microsoft Kinect sensors. The application can recognize these actions at any later time. This application uses a file-based database and the runtime memory of the application to store the saved data in order to reach the actions easier. The conclusion is that much more precise data were collected from the

  11. Chemical Gas Sensors for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.; Liu, C. C.

    1998-01-01

    Chemical sensors often need to be specifically designed (or tailored) to operate in a given environment. It is often the case that a chemical sensor that meets the needs of one application will not function adequately in another application. The more demanding the environment and specialized the requirement, the greater the need to adapt exiting sensor technologies to meet these requirements or, as necessary, develop new sensor technologies. Aerospace (aeronautic and space) applications are particularly challenging since often these applications have specifications which have not previously been the emphasis of commercial suppliers. Further, the chemical sensing needs of aerospace applications have changed over the years to reflect the changing emphasis of society. Three chemical sensing applications of particular interest to the National Aeronautics and Space Administration (NASA) which illustrate these trends are launch vehicle leak detection, emission monitoring, and fire detection. Each of these applications reflects efforts ongoing throughout NASA. As described in NASA's "Three Pillars for Success", a document which outlines NASA's long term response to achieve the nation's priorities in aerospace transportation, agency wide objectives include: improving safety and decreasing the cost of space travel, significantly decreasing the amount of emissions produced by aeronautic engines, and improving the safety of commercial airline travel. As will be discussed below, chemical sensing in leak detection, emission monitoring, and fire detection will help enable the agency to meet these objectives. Each application has vastly different problems associated with the measurement of chemical species. Nonetheless, the development of a common base technology can address the measurement needs of a number of applications.

  12. Novel designs for application specific MEMS pressure sensors.

    Science.gov (United States)

    Fragiacomo, Giulio; Reck, Kasper; Lorenzen, Lasse; Thomsen, Erik V

    2010-01-01

    In the framework of developing innovative microfabricated pressure sensors, we present here three designs based on different readout principles, each one tailored for a specific application. A touch mode capacitive pressure sensor with high sensitivity (14 pF/bar), low temperature dependence and high capacitive output signal (more than 100 pF) is depicted. An optical pressure sensor intrinsically immune to electromagnetic interference, with large pressure range (0-350 bar) and a sensitivity of 1 pm/bar is presented. Finally, a resonating wireless pressure sensor power source free with a sensitivity of 650 KHz/mmHg is described. These sensors will be related with their applications in harsh environment, distributed systems and medical environment, respectively. For many aspects, commercially available sensors, which in vast majority are piezoresistive, are not suited for the applications proposed.

  13. Robust optical sensors for safety critical automotive applications

    Science.gov (United States)

    De Locht, Cliff; De Knibber, Sven; Maddalena, Sam

    2008-02-01

    Optical sensors for the automotive industry need to be robust, high performing and low cost. This paper focuses on the impact of automotive requirements on optical sensor design and packaging. Main strategies to lower optical sensor entry barriers in the automotive market include: Perform sensor calibration and tuning by the sensor manufacturer, sensor test modes on chip to guarantee functional integrity at operation, and package technology is key. As a conclusion, optical sensor applications are growing in automotive. Optical sensor robustness matured to the level of safety critical applications like Electrical Power Assisted Steering (EPAS) and Drive-by-Wire by optical linear arrays based systems and Automated Cruise Control (ACC), Lane Change Assist and Driver Classification/Smart Airbag Deployment by camera imagers based systems.

  14. Chemical Gas Sensors for Aeronautic and Space Applications

    Science.gov (United States)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.

  15. Novel Designs for Application Specific MEMS Pressure Sensors

    Directory of Open Access Journals (Sweden)

    Erik V. Thomsen

    2010-10-01

    Full Text Available In the framework of developing innovative microfabricated pressure sensors, we present here three designs based on different readout principles, each one tailored for a specific application. A touch mode capacitive pressure sensor with high sensitivity (14 pF/bar, low temperature dependence and high capacitive output signal (more than 100 pF is depicted. An optical pressure sensor intrinsically immune to electromagnetic interference, with large pressure range (0–350 bar and a sensitivity of 1 pm/bar is presented. Finally, a resonating wireless pressure sensor power source free with a sensitivity of 650 KHz/mmHg is described. These sensors will be related with their applications in  harsh environment, distributed systems and medical environment, respectively. For many aspects, commercially available sensors, which in vast majority are piezoresistive, are not suited for the applications proposed.

  16. Wearable sensors fundamentals, implementation and applications

    CERN Document Server

    Sazonov, Edward

    2014-01-01

    Written by industry experts, this book aims to provide you with an understanding of how to design and work with wearable sensors. Together these insights provide the first single source of information on wearable sensors that would be a valuable addition to the library of any engineer interested in this field. Wearable Sensors covers a wide variety of topics associated with the development and application of various wearable sensors. It also provides an overview and coherent summary of many aspects of current wearable sensor technology. Both industry professionals and academic researcher

  17. Application of metamaterial concepts to sensors and chipless RFID

    Science.gov (United States)

    Martín, F.; Herrojo, C.; Vélez, P.; Su, L.; Mata-Contreras, J.; Paredes, F.

    2018-02-01

    Several strategies for the implementation of microwave sensors based on the use of metamaterial-inspired resonators are pointed out, and examples of applications, including sensors for dielectric characterization and sensors for the measurement of spatial variables, are provided. It will be also shown that novel microwave encoders for chipless RFID systems with very high data capacity can be implemented. The fields of applications of the devices discussed in this talk include dielectric characterization of solids and liquids, angular velocity sensors for space applications, and near-field chipless RFID systems for secure paper applications, among others.

  18. Miniature sensor suitable for electronic nose applications

    DEFF Research Database (Denmark)

    Pinnaduwage, L. A.; Gehl, A. C.; Allman, S. L.

    2007-01-01

    A major research effort has been devoted over the years for the development of chemical sensors for the detection of chemical and explosive vapors. However, the deployment of such chemical sensors will require the use of multiple sensors probably tens of sensors in a sensor package to achieve sel...... microcantilevers. The sensor can detect parts-per-trillion concentrations of DMMP within 10 s exposure times. The small size of the sensor makes it ideally suited for electronic nose applications. © 2007 American Institute of Physics....

  19. Video sensor architecture for surveillance applications.

    Science.gov (United States)

    Sánchez, Jordi; Benet, Ginés; Simó, José E

    2012-01-01

    This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software) in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%.

  20. Video Sensor Architecture for Surveillance Applications

    Directory of Open Access Journals (Sweden)

    José E. Simó

    2012-02-01

    Full Text Available This paper introduces a flexible hardware and software architecture for a smart video sensor. This sensor has been applied in a video surveillance application where some of these video sensors are deployed, constituting the sensory nodes of a distributed surveillance system. In this system, a video sensor node processes images locally in order to extract objects of interest, and classify them. The sensor node reports the processing results to other nodes in the cloud (a user or higher level software in the form of an XML description. The hardware architecture of each sensor node has been developed using two DSP processors and an FPGA that controls, in a flexible way, the interconnection among processors and the image data flow. The developed node software is based on pluggable components and runs on a provided execution run-time. Some basic and application-specific software components have been developed, in particular: acquisition, segmentation, labeling, tracking, classification and feature extraction. Preliminary results demonstrate that the system can achieve up to 7.5 frames per second in the worst case, and the true positive rates in the classification of objects are better than 80%.

  1. Photoacoustic CO2-Sensor for Automotive Applications

    OpenAIRE

    Huber, J.; Weber, C.; Eberhardt, A.; Wöllenstein, J.

    2016-01-01

    We present a field-tested miniaturized spectroscopic CO2 sensor which is based on the photoacoustic effect. The sensor is developed for automotive applications and considers the requirements for the usage in vehicles. The sensor measures two measurement ranges simultaneously: The monitoring of the indoor air quality and the detection of possible leakages of the coolant in CO2 air-conditioning systems. The sensor consists of a miniaturized innovative photoacoustic sensor unit with integrated e...

  2. Chemical sensors

    International Nuclear Information System (INIS)

    Hubbard, C.W.; Gordon, R.L.

    1987-05-01

    The revolution in analytical chemistry promised by recent developments in the field of chemical sensors has potential for significant positive impact on both research and production activities conducted by and for the Department of Energy. Analyses which were, in the past, performed only with a roomful of expensive equipment can now be performed with miniature solid-state electronic devices or small optical probes. Progress in the development of chemical sensors has been rapid, and the field is currently growing at a great rate. In accordance, Pacific Northwest Laboratory initiated a survey of recent literature so that contributors to active programs in research on analytical methods could be made aware of principles and applications of this new technology. This report presents the results of that survey. The sensors discussed here are divided into three types: micro solid-state devices, optical sensors, and piezoelectric crystal devices. The report is divided into three corresponding sections. The first section, ''Micro Solid-State Devices,'' discusses the design, operation, and application of electronic sensors that are produced in much the same way as standard solid-state electronic devices. The second section, ''Optrodes,'' covers the design and operation of chemical sensors that use fiber optics to detect chemically induced changes in optical properties. The final section, ''Piezoelectric Crystal Detectors,'' discusses two types of chemical sensors that depend on the changes in the properties of an oscillating piezoelectric crystal to detect the presence of certain materials. Advantages and disadvantages of each type of sensor are summarized in each section

  3. Wearable Sensors; Applications, design and implementation

    Science.gov (United States)

    Mukhopadhyay, Subhas Chandra; Islam, Tarikul

    2017-12-01

    With the ability to monitor a vast range of physiological parameters, combined with wireless technology, wireless sensor networks and the Internet of Things, wearable sensors are revolutionising the field of digital health monitoring. In addition to applications in health monitoring, such technology is being used to monitor the state of our living environment and even the quality of our foods and the wellbeing of livestock. Written for scientists, engineers and practitioners by an international collection of authors, this book reviews the fundamentals of wearable sensors, their function, design, fabrication and implementation. Their application and advanced aspects including interface electronics and signal processing for easy interpretation of data, data transmission, data networking, data security, and privacy are also included.

  4. Optical Fibre Pressure Sensors in Medical Applications

    Directory of Open Access Journals (Sweden)

    Sven Poeggel

    2015-07-01

    Full Text Available This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.

  5. Optical Fibre Pressure Sensors in Medical Applications.

    Science.gov (United States)

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-07-15

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas.

  6. Optical Fibre Pressure Sensors in Medical Applications

    Science.gov (United States)

    Poeggel, Sven; Tosi, Daniele; Duraibabu, DineshBabu; Leen, Gabriel; McGrath, Deirdre; Lewis, Elfed

    2015-01-01

    This article is focused on reviewing the current state-of-the-art of optical fibre pressure sensors for medical applications. Optical fibres have inherent advantages due to their small size, immunity to electromagnetic interferences and their suitability for remote monitoring and multiplexing. The small dimensions of optical fibre-based pressure sensors, together with being lightweight and flexible, mean that they are minimally invasive for many medical applications and, thus, particularly suited to in vivo measurement. This means that the sensor can be placed directly inside a patient, e.g., for urodynamic and cardiovascular assessment. This paper presents an overview of the recent developments in optical fibre-based pressure measurements with particular reference to these application areas. PMID:26184228

  7. Development of Green Box sensor module technologies for rail applications

    Energy Technology Data Exchange (ETDEWEB)

    Rey, D.; Breeding, R. [Sandia National Labs., Albuquerque, NM (United States); Hogan, J.; Mitchell, J. [Sandia National Labs., Livermore, CA (United States); McKeen, R.G. [New Mexico Engineering Research Inst., Albuquerque, NM (United States); Brogan, J. [New Mexico Univ., Albuquerque, NM (United States)

    1996-04-01

    Results of a joint Sandia National Laboratories, University of New Mexico, and New Mexico Engineering Research Institute project to investigate an architecture implementing real-time monitoring and tracking technologies in the railroad industry is presented. The work, supported by the New Mexico State Transportation Authority, examines a family of smart sensor products that can be tailored to the specific needs of the user. The concept uses a strap-on sensor package, designed as a value-added component, integrated into existing industry systems and standards. Advances in sensor microelectronics and digital signal processing permit us to produce a class of smart sensors that interpret raw data and transmit inferred information. As applied to freight trains, the sensors` primary purpose is to minimize operating costs by decreasing losses due to theft, and by reducing the number, severity, and consequence of hazardous materials incidents. The system would be capable of numerous activities including: monitoring cargo integrity, controlling system braking and vehicle acceleration, recognizing component failure conditions, and logging sensor data. A cost-benefit analysis examines the loss of revenue resulting from theft, hazardous materials incidents, and accidents. Customer survey data are combined with the cost benefit analysis and used to guide the product requirements definition for a series of specific applications. A common electrical architecture is developed to support the product line and permit rapid product realization. Results of a concept validation, which used commercial hardware and was conducted on a revenue-generating train, are also reported.

  8. Image-based environmental monitoring sensor application using an embedded wireless sensor network.

    Science.gov (United States)

    Paek, Jeongyeup; Hicks, John; Coe, Sharon; Govindan, Ramesh

    2014-08-28

    This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet's built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Cannot Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  9. Image-Based Environmental Monitoring Sensor Application Using an Embedded Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Jeongyeup Paek

    2014-08-01

    Full Text Available This article discusses the experiences from the development and deployment of two image-based environmental monitoring sensor applications using an embedded wireless sensor network. Our system uses low-power image sensors and the Tenet general purpose sensing system for tiered embedded wireless sensor networks. It leverages Tenet’s built-in support for reliable delivery of high rate sensing data, scalability and its flexible scripting language, which enables mote-side image compression and the ease of deployment. Our first deployment of a pitfall trap monitoring application at the James San Jacinto Mountain Reserve provided us with insights and lessons learned into the deployment of and compression schemes for these embedded wireless imaging systems. Our three month-long deployment of a bird nest monitoring application resulted in over 100,000 images collected from a 19-camera node network deployed over an area of 0.05 square miles, despite highly variable environmental conditions. Our biologists found the on-line, near-real-time access to images to be useful for obtaining data on answering their biological questions.

  10. Organic semiconductors in sensor applications

    CERN Document Server

    Malliaras, George; Owens, Róisín

    2008-01-01

    Organic semiconductors offer unique characteristics such as tunability of electronic properties via chemical synthesis, compatibility with mechanically flexible substrates, low-cost manufacturing, and facile integration with chemical and biological functionalities. These characteristics have prompted the application of organic semiconductors and their devices in physical, chemical, and biological sensors. This book covers this rapidly emerging field by discussing both optical and electrical sensor concepts. Novel transducers based on organic light-emitting diodes and organic thin-film transistors, as well as systems-on-a-chip architectures are presented. Functionalization techniques to enhance specificity are outlined, and models for the sensor response are described.

  11. Proceedings of a U.S. Geological Survey pressure-sensor Workshop, Denver, Colorado, July 28-31, 1992

    Science.gov (United States)

    Wilbourn, Sammy L.

    1994-01-01

    The U.S. Geological Survey (USGS) conducted a Pressure Sensor Workshop, oriented toward the measurement of stage in surface waters, in Denver, Colorado, July 28-31, 1992. Twenty attendees from the U.S. Geological Survey and the National Oceanic and Atmospheric Administration gave presentations concerning their experiences with the use of pressure sensors in hydrologic investigations. This report is a compilation of the abstracts of the presentations made at the workshop. Workshop participants concluded that each of the sensors evaluated by the U.S. Geological Survey has strengths and weaknesses. Personnel contemplating the use of pressure sensors discussed at this workshop should contact workshop attendees and consult with them about their experiences with those sensors. The attendees preferred to use stilling wells with float-operated water-level sensors as the primary means for monitoring water levels. However, pressure sensor systems were favored as replacements for mercury manometers and as alternatives to stilling wells at sites where stilling wells are not practical or cost effective.

  12. Genetic Algorithm and its Application in Optimal Sensor Layout

    Directory of Open Access Journals (Sweden)

    Xiang-Yang Chen

    2015-05-01

    Full Text Available This paper aims at the problem of multi sensor station distribution, based on multi- sensor systems of different types as the research object, in the analysis of various types of sensors with different application background, different indicators of demand, based on the different constraints, for all kinds of multi sensor station is studied, the application of genetic algorithms as a tool for the objective function of the models optimization, then the optimal various types of multi sensor station distribution plan, improve the performance of the system, and achieved good military effect. In the field of application of sensor radar, track measuring instrument, the satellite, passive positioning equipment of various types, specific problem, use care indicators and station arrangement between the mathematical model of geometry, using genetic algorithm to get the optimization results station distribution, to solve a variety of practical problems provides useful help, but also reflects the improved genetic algorithm in electronic weapon system based on multi sensor station distribution on the applicability and effectiveness of the optimization; finally the genetic algorithm for integrated optimization of multi sensor station distribution using the good to the training exercise tasks based on actual in, and have achieved good military effect.

  13. Eddy current probe development based on a magnetic sensor array

    International Nuclear Information System (INIS)

    Vacher, F.

    2007-06-01

    This research deals with in the study of the use of innovating magnetic sensors in eddy current non destructive inspection. The author reports an analysis survey of magnetic sensor performances. This survey enables the selection of magnetic sensor technologies used in non destructive inspection. He presents the state-of-the-art of eddy current probes exploiting the qualities of innovating magnetic sensors, and describes the methods enabling the use of these magnetic sensors in non destructive testing. Two main applications of innovating magnetic sensors are identified: the detection of very small defects by means of magneto-resistive sensors, and the detection of deep defects by means of giant magneto-impedances. Based on the use of modelling, optimization, signal processing tools, probes are manufactured for these both applications

  14. Microfabrication and Applications of Opto-Microfluidic Sensors

    Science.gov (United States)

    Zhang, Daiying; Men, Liqiu; Chen, Qiying

    2011-01-01

    A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost. PMID:22163904

  15. Thermoelectric infrared imaging sensors for automotive applications

    Science.gov (United States)

    Hirota, Masaki; Nakajima, Yasushi; Saito, Masanori; Satou, Fuminori; Uchiyama, Makoto

    2004-07-01

    This paper describes three low-cost thermoelectric infrared imaging sensors having a 1,536, 2,304, and 10,800 element thermoelectric focal plane array (FPA) respectively and two experimental automotive application systems. The FPAs are basically fabricated with a conventional IC process and micromachining technologies and have a low cost potential. Among these sensors, the sensor having 2,304 elements provide high responsivity of 5,500 V/W and a very small size with adopting a vacuum-sealed package integrated with a wide-angle ZnS lens. One experimental system incorporated in the Nissan ASV-2 is a blind spot pedestrian warning system that employs four infrared imaging sensors. This system helps alert the driver to the presence of a pedestrian in a blind spot by detecting the infrared radiation emitted from the person"s body. The system can also prevent the vehicle from moving in the direction of the pedestrian. The other is a rearview camera system with an infrared detection function. This system consists of a visible camera and infrared sensors, and it helps alert the driver to the presence of a pedestrian in a rear blind spot. Various issues that will need to be addressed in order to expand the automotive applications of IR imaging sensors in the future are also summarized. This performance is suitable for consumer electronics as well as automotive applications.

  16. Microfabricated Chemical Sensors for Safety and Emission Control Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Chen, L.-Y.; Knight, D.; Liu, C. C.; Wu, Q. H.

    1998-01-01

    Chemical sensor technology is being developed for leak detection, emission monitoring, and fire safety applications. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication (MicroElectroMechanical Systems (MEMS)-based) technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Using these technologies, sensors to measure hydrogen, hydrocarbons, nitrogen oxides, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  17. A Comprehensive Approach to WSN-Based ITS Applications: A Survey

    Directory of Open Access Journals (Sweden)

    Joan Garcia-Haro

    2011-10-01

    Full Text Available In order to perform sensing tasks, most current Intelligent Transportation Systems (ITS rely on expensive sensors, which offer only limited functionality. A more recent trend consists of using Wireless Sensor Networks (WSN for such purpose, which reduces the required investment and enables the development of new collaborative and intelligent applications that further contribute to improve both driving safety and traffic efficiency. This paper surveys the application of WSNs to such ITS scenarios, tackling the main issues that may arise when developing these systems. The paper is divided into sections which address different matters including vehicle detection and classification as well as the selection of appropriate communication protocols, network architecture, topology and some important design parameters. In addition, in line with the multiplicity of different technologies that take part in ITS, it does not consider WSNs just as stand-alone systems, but also as key components of heterogeneous systems cooperating along with other technologies employed in vehicular scenarios.

  18. Combustion Sensors: Gas Turbine Applications

    Science.gov (United States)

    Human, Mel

    2002-01-01

    This report documents efforts to survey the current research directions in sensor technology for gas turbine systems. The work is driven by the current and future requirements on system performance and optimization. Accurate real time measurements of velocities, pressure, temperatures, and species concentrations will be required for objectives such as combustion instability attenuation, pollutant reduction, engine health management, exhaust profile control via active control, etc. Changing combustor conditions - engine aging, flow path slagging, or rapid maneuvering - will require adaptive responses; the effectiveness of such will be only as good as the dynamic information available for processing. All of these issues point toward the importance of continued sensor development. For adequate control of the combustion process, sensor data must include information about the above mentioned quantities along with equivalence ratios and radical concentrations, and also include both temporal and spatial velocity resolution. Ultimately these devices must transfer from the laboratory to field installations, and thus must become low weight and cost, reliable and maintainable. A primary conclusion from this study is that the optics-based sensor science will be the primary diagnostic in future gas turbine technologies.

  19. Low-Temperature Solution Processable Electrodes for Piezoelectric Sensors Applications

    Science.gov (United States)

    Tuukkanen, Sampo; Julin, Tuomas; Rantanen, Ville; Zakrzewski, Mari; Moilanen, Pasi; Lupo, Donald

    2013-05-01

    Piezoelectric thin-film sensors are suitable for a wide range of applications from physiological measurements to industrial monitoring systems. The use of flexible materials in combination with high-throughput printing technologies enables cost-effective manufacturing of custom-designed, highly integratable piezoelectric sensors. This type of sensor can, for instance, improve industrial process control or enable the embedding of ubiquitous sensors in our living environment to improve quality of life. Here, we discuss the benefits, challenges and potential applications of piezoelectric thin-film sensors. The piezoelectric sensor elements are fabricated by printing electrodes on both sides of unmetallized poly(vinylidene fluoride) film. We show that materials which are solution processable in low temperatures, biocompatible and environmental friendly are suitable for use as electrode materials in piezoelectric sensors.

  20. Polymer Optical Fiber Sensor and the Prediction of Sensor Response Utilizing Artificial Neural Networks

    Science.gov (United States)

    Haroglu, Derya

    The global market researches showed that there is a growing trend in the field of polymer optical fiber (POF) and POF sensors. Telecommunications, medicine, defense, aerospace, and automotive are the application areas of fiber optic sensors, where the automotive industry is the most promising application area for innovations in the field of POF sensors. The POF sensors in automobiles are particularly for detection of seat occupancy, and intelligent pedestrian protection systems. This dissertation investigates graded index perfluorinated polymer optical fiber as an intensity modulated intrinsic sensor for application in automotive seat occupancy sensing. Since a fiber optic sensor has a high bandwidth, is small in size, is lightweight, and is immune to electromagnetic interference (EMI) it offers higher performance than that of its electrical based counterparts such as strain gauge, elastomeric bladder, and resistive sensor systems. This makes the fiber optic sensor a potential suitable material for seat occupancy sensing. A textile-based fiber optic sensor was designed to be located in the area beneath the typical seated human's thighs. The pressure interval under which the proposed POF sensor design could perform well was found to be between 0.18 and 0.21 N/cm2, where perfluorinated (PF) graded index (GI) POF (62.5/750 mum) was used as the POF material. In addition, the effect of the automotive seat covering including face material (fabric) and foam backing to the sensor's performance was analyzed. The face fabric structure and the thickness of foam backing were not found to be significant factors to change the sensor results. A research study, survey, was conducted of which purpose was to better understand market demands in terms of sensor performance characteristics for automotive seat weight sensors, as a part of the Quality Function Deployment (QFD) House of Quality analysis. The companies joined the survey agreed on the first 5 most important sensor

  1. Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications

    Science.gov (United States)

    Kos, Anton; Tomažič, Sašo; Umek, Anton

    2016-01-01

    This article studies the suitability of smartphones with built-in inertial sensors for biofeedback applications. Biofeedback systems use various sensors to measure body functions and parameters. These sensor data are analyzed, and the results are communicated back to the user, who then tries to act on the feedback signals. Smartphone inertial sensors can be used to capture body movements in biomechanical biofeedback systems. These sensors exhibit various inaccuracies that induce significant angular and positional errors. We studied deterministic and random errors of smartphone accelerometers and gyroscopes, primarily focusing on their biases. Based on extensive measurements, we determined accelerometer and gyroscope noise models and bias variation ranges. Then, we compiled a table of predicted positional and angular errors under various biofeedback system operation conditions. We suggest several bias compensation options that are suitable for various examples of use in real-time biofeedback applications. Measurements within the developed experimental biofeedback application show that under certain conditions, even uncompensated sensors can be used for real-time biofeedback. For general use, especially for more demanding biofeedback applications, sensor biases should be compensated. We are convinced that real-time biofeedback systems based on smartphone inertial sensors are applicable to many similar examples in sports, healthcare, and other areas. PMID:26927125

  2. Suitability of Smartphone Inertial Sensors for Real-Time Biofeedback Applications.

    Science.gov (United States)

    Kos, Anton; Tomažič, Sašo; Umek, Anton

    2016-02-27

    This article studies the suitability of smartphones with built-in inertial sensors for biofeedback applications. Biofeedback systems use various sensors to measure body functions and parameters. These sensor data are analyzed, and the results are communicated back to the user, who then tries to act on the feedback signals. Smartphone inertial sensors can be used to capture body movements in biomechanical biofeedback systems. These sensors exhibit various inaccuracies that induce significant angular and positional errors. We studied deterministic and random errors of smartphone accelerometers and gyroscopes, primarily focusing on their biases. Based on extensive measurements, we determined accelerometer and gyroscope noise models and bias variation ranges. Then, we compiled a table of predicted positional and angular errors under various biofeedback system operation conditions. We suggest several bias compensation options that are suitable for various examples of use in real-time biofeedback applications. Measurements within the developed experimental biofeedback application show that under certain conditions, even uncompensated sensors can be used for real-time biofeedback. For general use, especially for more demanding biofeedback applications, sensor biases should be compensated. We are convinced that real-time biofeedback systems based on smartphone inertial sensors are applicable to many similar examples in sports, healthcare, and other areas.

  3. Fibre optic strain sensor: examples of applications

    Science.gov (United States)

    Kruszewski, J.; Beblowska, M.; Wrzosek, P.

    2006-03-01

    Construction of strain sensor for application in safety systems has been presented. The device consists of sensor's head and source and detector units. The head is made of polymer fiber bends. Designed sensor could be mounted in monitoring place (e.g. under a floor) and controlled by PC unit or could be used as a portable device for a valuable object protection.

  4. Wireless sensors and sensor networks for homeland security applications.

    Science.gov (United States)

    Potyrailo, Radislav A; Nagraj, Nandini; Surman, Cheryl; Boudries, Hacene; Lai, Hanh; Slocik, Joseph M; Kelley-Loughnane, Nancy; Naik, Rajesh R

    2012-11-01

    New sensor technologies for homeland security applications must meet the key requirements of sensitivity to detect agents below risk levels, selectivity to provide minimal false-alarm rates, and response speed to operate in high throughput environments, such as airports, sea ports, and other public places. Chemical detection using existing sensor systems is facing a major challenge of selectivity. In this review, we provide a brief summary of chemical threats of homeland security importance; focus in detail on modern concepts in chemical sensing; examine the origins of the most significant unmet needs in existing chemical sensors; and, analyze opportunities, specific requirements, and challenges for wireless chemical sensors and wireless sensor networks (WSNs). We further review a new approach for selective chemical sensing that involves the combination of a sensing material that has different response mechanisms to different species of interest, with a transducer that has a multi-variable signal-transduction ability. This new selective chemical-sensing approach was realized using an attractive ubiquitous platform of battery-free passive radio-frequency identification (RFID) tags adapted for chemical sensing. We illustrate the performance of RFID sensors developed in measurements of toxic industrial materials, humidity-independent detection of toxic vapors, and detection of chemical-agent simulants, explosives, and strong oxidizers.

  5. Meso-/Nanoporous Semiconducting Metal Oxides for Gas Sensor Applications

    Directory of Open Access Journals (Sweden)

    Nguyen Duc Hoa

    2015-01-01

    Full Text Available Development and/or design of new materials and/or structures for effective gas sensor applications with fast response and high sensitivity, selectivity, and stability are very important issues in the gas sensor technology. This critical review introduces our recent progress in the development of meso-/nanoporous semiconducting metal oxides and their applications to gas sensors. First, the basic concepts of resistive gas sensors and the recent synthesis of meso-/nanoporous metal oxides for gas sensor applications are introduced. The advantages of meso-/nanoporous metal oxides are also presented, taking into account the crystallinity and ordered/disordered porous structures. Second, the synthesis methods of meso-/nanoporous metal oxides including the soft-template, hard-template, and temple-free methods are introduced, in which the advantages and disadvantages of each synthetic method are figured out. Third, the applications of meso-/nanoporous metal oxides as gas sensors are presented. The gas nanosensors are designed based on meso-/nanoporous metal oxides for effective detection of toxic gases. The sensitivity, selectivity, and stability of the meso-/nanoporous gas nanosensors are also discussed. Finally, some conclusions and an outlook are presented.

  6. Software Updating in Wireless Sensor Networks: A Survey and Lacunae

    Directory of Open Access Journals (Sweden)

    Cormac J. Sreenan

    2013-11-01

    Full Text Available Wireless Sensor Networks are moving out of the laboratory and into the field. For a number of reasons there is often a need to update sensor node software, or node configuration, after deployment. The need for over-the-air updates is driven both by the scale of deployments, and by the remoteness and inaccessibility of sensor nodes. This need has been recognized since the early days of sensor networks, and research results from the related areas of mobile networking and distributed systems have been applied to this area. In order to avoid any manual intervention, the update process needs to be autonomous. This paper presents a comprehensive survey of software updating in Wireless Sensor Networks, and analyses the features required to make these updates autonomous. A new taxonomy of software update features and a new model for fault detection and recovery are presented. The paper concludes by identifying the lacunae relating to autonomous software updates, providing direction for future research.

  7. Applications of fiber optic sensors in concrete structural health monitoring

    Science.gov (United States)

    Dai, Jingyun; Zhang, Wentao; Sun, Baochen; Du, Yanliang

    2007-11-01

    The research of fiber optic extrinsic Fabry-Perot interferometer (EFPI) sensors and their applications in concrete structural health monitoring are presented in this paper. Different types of fiber optic EFPI sensors are designed and fabricated. Experiments are carried out to test the performance of the sensors. The results show that the sensors have good linearity and stability. The applications of the fiber optic EFPI sensors in concrete structural health monitoring are also introduced. Ten fiber optic sensors are embedded into one section of the Liaohe Bridge in Qinghuangdao-Shenyang Railway. Field test demonstrates that the results of fiber optic sensors agree well with conventional strain gauges.

  8. Potential of Wake-Up Radio-Based MAC Protocols for Implantable Body Sensor Networks (IBSN—A Survey

    Directory of Open Access Journals (Sweden)

    Vignesh Raja Karuppiah Ramachandran

    2016-11-01

    Full Text Available With the advent of nano-technology, medical sensors and devices are becoming highly miniaturized. Consequently, the number of sensors and medical devices being implanted to accurately monitor and diagnose a disease is increasing. By measuring the symptoms and controlling a medical device as close as possible to the source, these implantable devices are able to save lives. A wireless link between medical sensors and implantable medical devices is essential in the case of closed-loop medical devices, in which symptoms of the diseases are monitored by sensors that are not placed in close proximity of the therapeutic device. Medium Access Control (MAC is crucial to make it possible for several medical devices to communicate using a shared wireless medium in such a way that minimum delay, maximum throughput, and increased network life-time are guaranteed. To guarantee this Quality of Service (QoS, the MAC protocols control the main sources of limited resource wastage, namely the idle-listening, packet collisions, over-hearing, and packet loss. Traditional MAC protocols designed for body sensor networks are not directly applicable to Implantable Body Sensor Networks (IBSN because of the dynamic nature of the radio channel within the human body and the strict QoS requirements of IBSN applications. Although numerous MAC protocols are available in the literature, the majority of them are designed for Body Sensor Network (BSN and Wireless Sensor Network (WSN. To the best of our knowledge, there is so far no research paper that explores the impact of these MAC protocols specifically for IBSN. MAC protocols designed for implantable devices are still in their infancy and one of their most challenging objectives is to be ultra-low-power. One of the technological solutions to achieve this objective so is to integrate the concept of Wake-up radio (WuR into the MAC design. In this survey, we present a taxonomy of MAC protocols based on their use of Wu

  9. Miniaturised Gravity Sensors for Remote Gravity Surveys.

    Science.gov (United States)

    Middlemiss, R. P.; Bramsiepe, S. G.; Hough, J.; Paul, D. J.; Rowan, S.; Samarelli, A.; Hammond, G.

    2016-12-01

    Gravimetry lets us see the world from a completely different perspective. The ability to measure tiny variations in gravitational acceleration (g), allows one to see not just the Earth's gravitational pull, but the influence of smaller objects. The more accurate the gravimeter, the smaller the objects one can see. Gravimetry has applications in many different fields: from tracking magma moving under volcanoes before eruptions; to locating hidden tunnels. The top commercial gravimeters weigh tens of kg and cost at least $100,000, limiting the situations in which they can be used. By contrast, smart phones use a MEMS (microelectromechanical system) accelerometer that can measure the orientation of the device. These are not nearly sensitive or stable enough to be used for the gravimetry but they are cheap, light-weight and mass-producible. At Glasgow University we have developed a MEMS device with both the stability and sensitivity for useful gravimetric measurements. This was demonstrated by a measurement of the Earth tides - the first time this has been achieved with a MEMS sensor. A gravimeter of this size opens up the possiblility for new gravity imaging modalities. Thousands of gravimeters could be networked over a survey site, storing data on an SD card or communicating wirelessly to a remote location. These devices could also be small enough to be carried by a UAVs: airborne gravity surveys could be carried out at low altitude by mulitple UAVs, or UAVs could be used to deliver ground based gravimeters to remote or inaccessible locations.

  10. A Semantic Sensor Web for Environmental Decision Support Applications

    Science.gov (United States)

    Gray, Alasdair J. G.; Sadler, Jason; Kit, Oles; Kyzirakos, Kostis; Karpathiotakis, Manos; Calbimonte, Jean-Paul; Page, Kevin; García-Castro, Raúl; Frazer, Alex; Galpin, Ixent; Fernandes, Alvaro A. A.; Paton, Norman W.; Corcho, Oscar; Koubarakis, Manolis; De Roure, David; Martinez, Kirk; Gómez-Pérez, Asunción

    2011-01-01

    Sensing devices are increasingly being deployed to monitor the physical world around us. One class of application for which sensor data is pertinent is environmental decision support systems, e.g., flood emergency response. For these applications, the sensor readings need to be put in context by integrating them with other sources of data about the surrounding environment. Traditional systems for predicting and detecting floods rely on methods that need significant human resources. In this paper we describe a semantic sensor web architecture for integrating multiple heterogeneous datasets, including live and historic sensor data, databases, and map layers. The architecture provides mechanisms for discovering datasets, defining integrated views over them, continuously receiving data in real-time, and visualising on screen and interacting with the data. Our approach makes extensive use of web service standards for querying and accessing data, and semantic technologies to discover and integrate datasets. We demonstrate the use of our semantic sensor web architecture in the context of a flood response planning web application that uses data from sensor networks monitoring the sea-state around the coast of England. PMID:22164110

  11. Implementation of a perfect metamaterial absorber into multi-functional sensor applications

    Science.gov (United States)

    Akgol, O.; Karaaslan, M.; Unal, E.; Sabah, C.

    2017-05-01

    Perfect metamaterial absorber (MA)-based sensor applications are presented and investigated in the microwave frequency range. It is also experimentally analyzed and tested to verify the behavior of the MA. Suggested perfect MA-based sensor has a simple configuration which introduces flexibility to sense the dielectric properties of a material and the pressure of the medium. The investigated applications include pressure and density sensing. Besides, numerical simulations verify that the suggested sensor achieves good sensing capabilities for both applications. The proposed perfect MA-based sensor variations enable many potential applications in medical or food technologies.

  12. Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications

    Science.gov (United States)

    Kos, Anton; Tomažič, Sašo; Umek, Anton

    2016-01-01

    Smartphone sensors are being increasingly used in mobile applications. The performance of sensors varies considerably among different smartphone models and the development of a cross-platform mobile application might be a very complex and demanding task. A publicly accessible resource containing real-life-situation smartphone sensor parameters could be of great help for cross-platform developers. To address this issue we have designed and implemented a pilot participatory sensing application for measuring, gathering, and analyzing smartphone sensor parameters. We start with smartphone accelerometer and gyroscope bias and noise parameters. The application database presently includes sensor parameters of more than 60 different smartphone models of different platforms. It is a modest, but important start, offering information on several statistical parameters of the measured smartphone sensors and insights into their performance. The next step, a large-scale cloud-based version of the application, is already planned. The large database of smartphone sensor parameters may prove particularly useful for cross-platform developers. It may also be interesting for individual participants who would be able to check-up and compare their smartphone sensors against a large number of similar or identical models. PMID:27049391

  13. Evaluation of Smartphone Inertial Sensor Performance for Cross-Platform Mobile Applications

    Directory of Open Access Journals (Sweden)

    Anton Kos

    2016-04-01

    Full Text Available Smartphone sensors are being increasingly used in mobile applications. The performance of sensors varies considerably among different smartphone models and the development of a cross-platform mobile application might be a very complex and demanding task. A publicly accessible resource containing real-life-situation smartphone sensor parameters could be of great help for cross-platform developers. To address this issue we have designed and implemented a pilot participatory sensing application for measuring, gathering, and analyzing smartphone sensor parameters. We start with smartphone accelerometer and gyroscope bias and noise parameters. The application database presently includes sensor parameters of more than 60 different smartphone models of different platforms. It is a modest, but important start, offering information on several statistical parameters of the measured smartphone sensors and insights into their performance. The next step, a large-scale cloud-based version of the application, is already planned. The large database of smartphone sensor parameters may prove particularly useful for cross-platform developers. It may also be interesting for individual participants who would be able to check-up and compare their smartphone sensors against a large number of similar or identical models.

  14. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications. PMID:22163865

  15. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    Science.gov (United States)

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  16. An Electronic-Nose Sensor Node Based on a Polymer-Coated Surface Acoustic Wave Array for Wireless Sensor Network Applications

    Directory of Open Access Journals (Sweden)

    Kea-Tiong Tang

    2011-04-01

    Full Text Available This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K2 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN applications.

  17. New tricks with old sensors: Pervasive Technologies for Novel Applications

    International Nuclear Information System (INIS)

    Merrett, Geoff

    2013-01-01

    Sensors are interleaved into society, instrumenting considerable aspects of our lives without our comprehension. Sensors such as the MEMS accelerometer have transitioned from their original domains to applications that they were never conceived for: from games controllers to contextually rotating the screen on your smartphone. Further advances in technologies such as pervasive computing and networked embedded sensing are enabling new applications and smart devices which utilise sensors in new ways. In this presentation I will highlight new trends, applications and research in these fields, and show how ''simple'' sensors are being used in larger connected systems – from assistive technologies to distributed monitoring.

  18. The Application of Metal Oxide Nanomaterials for Chemical Sensor Development

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.

    2007-01-01

    NASA Glenn Research Center (GRC) has been developing miniature chemical sensors for a variety of applications including fire detection, emissions monitoring, fuel leak detection, and environmental monitoring. Smart Lick and Stick sensor technology which integrates a sensor array, electronics, telemetry, and power into one microsystem are being developed. These microsystems require low power consumption for long-term aerospace applications. One approach to decreasing power consumption is the use of nanotechnology. Nanocrystalline tin oxide (SnO2) carbon monoxide (CO) sensors developed previously by this group have been successfully used for fire detection and emissions monitoring. This presentation will briefly review the overall NASA GRC chemical sensor program and discuss our further effort in nanotechnology applications. New carbon dioxide (CO2) sensing material using doped nanocrystalline SnO2 will be discussed. Nanocrystalline SnO2 coated solid electrolyte CO2 sensors and SnO2 nanorod and nanofiber hydrogen (H2) sensors operated at reduced or room temperatures will also be discussed.

  19. Micro-machinable polymer-derived ceramic sensors for high-temperature applications

    Science.gov (United States)

    Liu, Jian; Xu, Chengying; An, Linan

    2010-04-01

    Micro-sensors are highly desired for on-line temperature/pressure monitoring in turbine engines to improve their efficiency and reduce pollution. The biggest challenge for developing this type of sensors is that the sensors have to sustain at extreme environments in turbine engine environments, such as high-temperatures (>800 °C), fluctuated pressure and oxidation/corrosion surroundings. In this paper, we describe a class of sensors made of polymer-derived ceramics (PDCs) for such applications. PDCs have the following advantages over conventional ceramics, making them particularly suitable for these applications: (i) micromachining capability, (ii) tunable electric properties, and (iii) hightemperature capability. Here, we will discuss the materials and their properties in terms of their applications for hightemperature micro-sensors, and microfabrication technologies. In addition, we will also discuss the design of a heat-flux sensor based on polymer-derived ceramics.

  20. Irradiance sensors for solar systems

    Energy Technology Data Exchange (ETDEWEB)

    Storch, A.; Schindl, J. [Oesterreichisches Forschungs- und Pruefzentrum Arsenal GesmbH, Vienna (Austria). Business Unit Renewable Energy

    2004-07-01

    The presented project surveyed the quality of irradiance sensors used for applications in solar systems. By analysing an outdoor measurement, the accuracies of ten commercially available irradiance sensors were evaluated, comparing their results to those of a calibrated Kipp and Zonen pyranometer CM21. Furthermore, as a simple method for improving the quality of the results, for each sensor an irradiance-calibration was carried out and examined for its effectiveness. (orig.)

  1. VIBRATIONAL SPECTROSCOPIC SENSORS Fundamentals, Instrumentation and Applications

    Science.gov (United States)

    Kraft, Martin

    In textbook descriptions of chemical sensors, almost invariably a chemical sensor is described as a combination of a (dumb) transducer and a (smart) recognition layer. The reason for this is that most transducers, while (reasonably) sensitive, have limited analyte specificity. This is in particular true for non-optical, e.g. mass-sensitive or electrochemical systems, but also many optical transducers are as such incapable of distinguishing between different substances. Consequently, to build sensors operational in multicomponent environments, such transducers must be combined with physicochemical, chemical or biochemical recognition systems providing the required analyte specificity. Although advancements have been made in this field over the last years, selective layers are frequently not (yet) up to the demands set by industrial or environmental applications, in particular when operated over prolonged periods of time. Another significant obstacle are cross-sensitivities that may interfere with the analytical accuracy. Together, these limitations restrict the real-world applicability of many otherwise promising chemical sensors.

  2. Standards-Based Wireless Sensor Networking Protocols for Spaceflight Applications

    Science.gov (United States)

    Wagner, Raymond S.

    2010-01-01

    Wireless sensor networks (WSNs) have the capacity to revolutionize data gathering in both spaceflight and terrestrial applications. WSNs provide a huge advantage over traditional, wired instrumentation since they do not require wiring trunks to connect sensors to a central hub. This allows for easy sensor installation in hard to reach locations, easy expansion of the number of sensors or sensing modalities, and reduction in both system cost and weight. While this technology offers unprecedented flexibility and adaptability, implementing it in practice is not without its difficulties. Recent advances in standards-based WSN protocols for industrial control applications have come a long way to solving many of the challenges facing practical WSN deployments. In this paper, we will overview two of the more promising candidates - WirelessHART from the HART Communication Foundation and ISA100.11a from the International Society of Automation - and present the architecture for a new standards-based sensor node for networking and applications research.

  3. Graphene Chemical Sensor for Heliophysics Applications

    Science.gov (United States)

    Sultana, Mahmooda; Herrero, Fred; Khazanov, George

    2013-01-01

    Graphene is a single layer of carbon atoms that offer a unique set of advantages as a chemical sensor due to a number of its inherent properties. Graphene has been explored as a gas sensor for a variety of gases, and molecular sensitivity has been demonstrated by measuring the change in electrical properties due to the adsorption of target species. In this paper, we discuss the development of an array of chemical sensors based on graphene and its relevance to plasma physics due to its sensitivity to radical species such as oxonium, hydron and the corresponding neutrals. We briefly discuss the great impact such sensors will have on a number of heliophysics applications such as ground-based manifestations of space weather.

  4. Molecularly Imprinted Nanomaterials for Sensor Applications

    Science.gov (United States)

    Irshad, Muhammad; Iqbal, Naseer; Mujahid, Adnan; Afzal, Adeel; Hussain, Tajamal; Sharif, Ahsan; Ahmad, Ejaz; Athar, Muhammad Makshoof

    2013-01-01

    Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors. PMID:28348356

  5. Toward Optical Sensors: Review and Applications

    International Nuclear Information System (INIS)

    Sabri, Naseer; Aljunid, S A; Ahmad, R B; Salim, M S; Kamaruddin, R

    2013-01-01

    Recent advances in fiber optics (FOs) and the numerous advantages of light over electronic systems have boosted the utility and demand for optical sensors in various military, industry and social fields. Environmental and atmospheric monitoring, earth and space sciences, industrial chemical processing and biotechnology, law enforcement, digital imaging, scanning, and printing are exemplars of them. The ubiquity of photonic technologies could drive down prices which reduced the cost of optical fibers and lasers. Fiber optic sensors (FOSs) offer a wide spectrum of advantages over traditional sensing systems, such as small size and longer lifetime. Immunity to electromagnetic interference, amenability to multiplexing, and high sensitivity make FOs the sensor technology of choice in several fields, including the healthcare and aerospace sectors. FOSs show reliable and rigid sensing tasks over conventional electrical and electronic sensors. This paper presents an executive review of optical fiber sensors and the most beneficial applications.

  6. Toward Optical Sensors: Review and Applications

    Science.gov (United States)

    Sabri, Naseer; Aljunid, S. A.; Salim, M. S.; Ahmad, R. B.; Kamaruddin, R.

    2013-04-01

    Recent advances in fiber optics (FOs) and the numerous advantages of light over electronic systems have boosted the utility and demand for optical sensors in various military, industry and social fields. Environmental and atmospheric monitoring, earth and space sciences, industrial chemical processing and biotechnology, law enforcement, digital imaging, scanning, and printing are exemplars of them. The ubiquity of photonic technologies could drive down prices which reduced the cost of optical fibers and lasers. Fiber optic sensors (FOSs) offer a wide spectrum of advantages over traditional sensing systems, such as small size and longer lifetime. Immunity to electromagnetic interference, amenability to multiplexing, and high sensitivity make FOs the sensor technology of choice in several fields, including the healthcare and aerospace sectors. FOSs show reliable and rigid sensing tasks over conventional electrical and electronic sensors. This paper presents an executive review of optical fiber sensors and the most beneficial applications.

  7. Fatigue damage sensor and substantitation of its application. Communication 2

    Energy Technology Data Exchange (ETDEWEB)

    Troshchenko, V T; Bojko, V I

    1985-01-01

    Block and random loading is studied for its effect on sensor readings. It is established that variation of electric sensor conductivity for these conditions does not depend on the loading prehistory and may be calculated according to the sensor test results at a regular loading. A general scheme of the sensor application is considered for determining residual part life with allowance for the factors. Effect on a part fatigue resistance when operating conditions of the loading are characterized by a stationary random process. Particular cases of the sensor application are considered coming out from a common scheme.

  8. A body sensor platform for concurrent applications

    NARCIS (Netherlands)

    Bui, T.V.; Verhoeven, R.; Lukkien, J.J.

    2012-01-01

    This paper presents a Body Sensor Platform supporting concurrent applications that share resources and data. Concerns are application isolation, data privacy and platform trustworthiness in view of dynamic loading of applications. A prototype has been built on commercial-off-the-shelf hardware. The

  9. Wireless sensor networks principles, design and applications

    CERN Document Server

    Yang, Shuang-Hua

    2014-01-01

    Wireless Sensor Networks presents the latest practical solutions to the design issues presented in wireless-sensor-network-based systems. Novel features of the text, distributed throughout, include workable solutions, demonstration systems and case studies of the design and application of wireless sensor networks (WSNs) based on the first-hand research and development experience of the author, and the chapters on real applications: building fire safety protection; smart home automation; and logistics resource management. Case studies and applications illustrate the practical perspectives of: ·         sensor node design; ·         embedded software design; ·         routing algorithms; ·         sink node positioning; ·         co-existence with other wireless systems; ·         data fusion; ·         security; ·         indoor location tracking; ·         integrating with radio-frequency identification; and ·         In...

  10. Application of magnetic sensors in automation control

    Energy Technology Data Exchange (ETDEWEB)

    Hou Chunhong [AMETEK Inc., Paoli, PA 19301 (United States); Qian Zhenghong, E-mail: zqian@hdu.edu.cn [Center For Integrated Spintronic Devices (CISD), Hangzhou Dianzi University, Hangzhou, ZJ 310018 (China)

    2011-01-01

    Controls in automation need speed and position feedback. The feedback device is often referred to as encoder. Feedback technology includes mechanical, optical, and magnetic, etc. All advance with new inventions and discoveries. Magnetic sensing as a feedback technology offers certain advantages over other technologies like optical one. With new discoveries like GMR (Giant Magneto-Resistance), TMR (Tunneling Magneto-Resistance) becoming feasible for commercialization, more and more applications will be using advanced magnetic sensors in automation. This paper offers a general review on encoder and applications of magnetic sensors in automation control.

  11. Unconventional applications of conventional intrusion detection sensors

    International Nuclear Information System (INIS)

    Williams, J.D.; Matter, J.C.

    1983-01-01

    A number of conventional intrusion detection sensors exists for the detection of persons entering buildings, moving within a given volume, and crossing a perimeter isolation zone. Unconventional applications of some of these sensors have recently been investigated. Some of the applications which are discussed include detection on the edges and tops of buildings, detection in storm sewers, detection on steam and other types of large pipes, and detection of unauthorized movement within secure enclosures. The enclosures can be used around complicated control valves, electrical control panels, emergency generators, etc

  12. Progress of Mimetic Enzymes and Their Applications in Chemical Sensors.

    Science.gov (United States)

    Yang, Bin; Li, Jianping; Deng, Huan; Zhang, Lianming

    2016-11-01

    The need to develop innovative and reformative approaches to synthesize chemical sensors has increased in recent years because of demands for selectivity, stability, and reproducibility. Mimetic enzymes provide an efficient and convenient method for chemical sensors. This review summarizes the application of mimetic enzymes in chemical sensors. Mimetic enzymes can be classified into five categories: hydrolases, oxidoreductases, transferases, isomerases, and induced enzymes. Potential and recent applications of mimetic enzymes in chemical sensors are reviewed in detail, and the outlook of profound development has been illustrated.

  13. A survey of middleware for sensor and network virtualization.

    Science.gov (United States)

    Khalid, Zubair; Fisal, Norsheila; Rozaini, Mohd

    2014-12-12

    Wireless Sensor Network (WSN) is leading to a new paradigm of Internet of Everything (IoE). WSNs have a wide range of applications but are usually deployed in a particular application. However, the future of WSNs lies in the aggregation and allocation of resources, serving diverse applications. WSN virtualization by the middleware is an emerging concept that enables aggregation of multiple independent heterogeneous devices, networks, radios and software platforms; and enhancing application development. WSN virtualization, middleware can further be categorized into sensor virtualization and network virtualization. Middleware for WSN virtualization poses several challenges like efficient decoupling of networks, devices and software. In this paper efforts have been put forward to bring an overview of the previous and current middleware designs for WSN virtualization, the design goals, software architectures, abstracted services, testbeds and programming techniques. Furthermore, the paper also presents the proposed model, challenges and future opportunities for further research in the middleware designs for WSN virtualization.

  14. A Survey of Middleware for Sensor and Network Virtualization

    Science.gov (United States)

    Khalid, Zubair; Fisal, Norsheila; Rozaini, Mohd.

    2014-01-01

    Wireless Sensor Network (WSN) is leading to a new paradigm of Internet of Everything (IoE). WSNs have a wide range of applications but are usually deployed in a particular application. However, the future of WSNs lies in the aggregation and allocation of resources, serving diverse applications. WSN virtualization by the middleware is an emerging concept that enables aggregation of multiple independent heterogeneous devices, networks, radios and software platforms; and enhancing application development. WSN virtualization, middleware can further be categorized into sensor virtualization and network virtualization. Middleware for WSN virtualization poses several challenges like efficient decoupling of networks, devices and software. In this paper efforts have been put forward to bring an overview of the previous and current middleware designs for WSN virtualization, the design goals, software architectures, abstracted services, testbeds and programming techniques. Furthermore, the paper also presents the proposed model, challenges and future opportunities for further research in the middleware designs for WSN virtualization. PMID:25615737

  15. Pulse oximeter sensor application during neonatal resuscitation: a randomized controlled trial.

    Science.gov (United States)

    Louis, Deepak; Sundaram, Venkataseshan; Kumar, Praveen

    2014-03-01

    This study was done to compare 2 techniques of pulse oximeter sensor application during neonatal resuscitation for faster signal detection. Sensor to infant first (STIF) and then to oximeter was compared with sensor to oximeter first (STOF) and then to infant in ≥28 weeks gestations. The primary outcome was time from completion of sensor application to reliable signal, defined as stable display of heart rate and saturation. Time from birth to sensor application, time taken for sensor application, time from birth to reliable signal, and need to reapply sensor were secondary outcomes. An intention-to-treat analysis was done, and subgroup analysis was done for gestation and need for resuscitation. One hundred fifty neonates were randomized with 75 to each technique. The median (IQR) time from sensor application to detection of reliable signal was longer in STIF group compared with STOF group (16 [15-17] vs. 10 [6-18] seconds; P signal did not differ between the 2 methods (STIF: 61 [52-76] seconds; STOF: 58 [47-73] seconds [P = .09]). Time taken for signal acquisition was longer with STIF than with STOF in both subgroups. In the delivery room setting, the STOF method recognized saturation and heart rate faster than the STIF method. The time from birth to reliable signal was similar with the 2 methods.

  16. Advances in multi-sensor data fusion: algorithms and applications.

    Science.gov (United States)

    Dong, Jiang; Zhuang, Dafang; Huang, Yaohuan; Fu, Jingying

    2009-01-01

    With the development of satellite and remote sensing techniques, more and more image data from airborne/satellite sensors have become available. Multi-sensor image fusion seeks to combine information from different images to obtain more inferences than can be derived from a single sensor. In image-based application fields, image fusion has emerged as a promising research area since the end of the last century. The paper presents an overview of recent advances in multi-sensor satellite image fusion. Firstly, the most popular existing fusion algorithms are introduced, with emphasis on their recent improvements. Advances in main applications fields in remote sensing, including object identification, classification, change detection and maneuvering targets tracking, are described. Both advantages and limitations of those applications are then discussed. Recommendations are addressed, including: (1) Improvements of fusion algorithms; (2) Development of "algorithm fusion" methods; (3) Establishment of an automatic quality assessment scheme.

  17. Using LOTOS for Formalizing Wireless Sensor Network Applications

    Science.gov (United States)

    Rosa, Nelson Souto; Cunha, Paulo Roberto Freire

    2007-01-01

    The number of wireless sensor network (WSN) applications is rapidly increasing and becoming an integral part of sensor nodes. These applications have been widely developed on TinyOS operating system using the nesC programming language. However, due to the tight integration to physical world, limited node power and resources (CPU and memory) and complexity of combining components into an application, to build such applications is not a trivial task. In this context, we present an approach for treating with this complexity adopting a formal description technique, namely LOTOS, for formalising the WSN applications ‘behaviour. The formalisation has three main benefits: better understanding on how the application actually works, checking of desired properties of the application's behaviour, and simulation facilities. In order to illustrate the proposed approach, we apply it to two nesC traditional applications, namely BLink and Sense.

  18. Smart sensor systems for human health breath monitoring applications.

    Science.gov (United States)

    Hunter, G W; Xu, J C; Biaggi-Labiosa, A M; Laskowski, D; Dutta, P K; Mondal, S P; Ward, B J; Makel, D B; Liu, C C; Chang, C W; Dweik, R A

    2011-09-01

    Breath analysis techniques offer a potential revolution in health care diagnostics, especially if these techniques can be brought into standard use in the clinic and at home. The advent of microsensors combined with smart sensor system technology enables a new generation of sensor systems with significantly enhanced capabilities and minimal size, weight and power consumption. This paper discusses the microsensor/smart sensor system approach and provides a summary of efforts to migrate this technology into human health breath monitoring applications. First, the basic capability of this approach to measure exhaled breath associated with exercise physiology is demonstrated. Building from this foundation, the development of a system for a portable asthma home health care system is described. A solid-state nitric oxide (NO) sensor for asthma monitoring has been identified, and efforts are underway to miniaturize this NO sensor technology and integrate it into a smart sensor system. It is concluded that base platform microsensor technology combined with smart sensor systems can address the needs of a range of breath monitoring applications and enable new capabilities for healthcare.

  19. A survey of energy conservation mechanisms for dynamic cluster based wireless sensor networks

    International Nuclear Information System (INIS)

    Enam, R.N.; Tahir, M.; Ahmed, S.; Qureshi, R.

    2018-01-01

    WSN (Wireless Sensor Network) is an emerging technology that has unlimited potential for numerous application areas including military, crisis management, environmental, transportation, medical, home/ city automations and smart spaces. But energy constrained nature of WSNs necessitates that their architecture and communicating protocols to be designed in an energy aware manner. Sensor data collection through clustering mechanisms has become a common strategy in WSN. This paper presents a survey report on the major perspectives with which energy conservation mechanisms has been proposed in dynamic cluster based WSNs so far. All the solutions discussed in this paper focus on the cluster based protocols only.We have covered a vast scale of existing energy efficient protocols and have categorized them in six categories. In the beginning of this paper the fundamentals of the energy constraint issues of WSNs have been discussed and an overview of the causes of energy consumptions at all layers of WSN has been given. Later in this paper several previously proposed energy efficient protocols of WSNs are presented. (author)

  20. A Survey of Energy Conservation Mechanisms for Dynamic Cluster Based Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rabia Noor Enam

    2018-04-01

    Full Text Available WSN (Wireless Sensor Network is an emerging technology that has unlimited potential for numerous application areas including military, crisis management, environmental, transportation, medical, home/ city automations and smart spaces. But energy constrained nature of WSNs necessitates that their architecture and communicating protocols to be designed in an energy aware manner. Sensor data collection through clustering mechanisms has become a common strategy in WSN. This paper presents a survey report on the major perspectives with which energy conservation mechanisms has been proposed in dynamic cluster based WSNs so far. All the solutions discussed in this paper focus on the cluster based protocols only.We have covered a vast scale of existing energy efficient protocols and have categorized them in six categories. In the beginning of this paper the fundamentals of the energy constraint issues of WSNs have been discussed and an overview of the causes of energy consumptions at all layers of WSN has been given. Later in this paper several previously proposed energy efficient protocols of WSNs are presented.

  1. Software Defined Networking for Improved Wireless Sensor Network Management: A Survey.

    Science.gov (United States)

    Ndiaye, Musa; Hancke, Gerhard P; Abu-Mahfouz, Adnan M

    2017-05-04

    Wireless sensor networks (WSNs) are becoming increasingly popular with the advent of the Internet of things (IoT). Various real-world applications of WSNs such as in smart grids, smart farming and smart health would require a potential deployment of thousands or maybe hundreds of thousands of sensor nodes/actuators. To ensure proper working order and network efficiency of such a network of sensor nodes, an effective WSN management system has to be integrated. However, the inherent challenges of WSNs such as sensor/actuator heterogeneity, application dependency and resource constraints have led to challenges in implementing effective traditional WSN management. This difficulty in management increases as the WSN becomes larger. Software Defined Networking (SDN) provides a promising solution in flexible management WSNs by allowing the separation of the control logic from the sensor nodes/actuators. The advantage with this SDN-based management in WSNs is that it enables centralized control of the entire WSN making it simpler to deploy network-wide management protocols and applications on demand. This paper highlights some of the recent work on traditional WSN management in brief and reviews SDN-based management techniques for WSNs in greater detail while drawing attention to the advantages that SDN brings to traditional WSN management. This paper also investigates open research challenges in coming up with mechanisms for flexible and easier SDN-based WSN configuration and management.

  2. Software Defined Networking for Improved Wireless Sensor Network Management: A Survey

    Directory of Open Access Journals (Sweden)

    Musa Ndiaye

    2017-05-01

    Full Text Available Wireless sensor networks (WSNs are becoming increasingly popular with the advent of the Internet of things (IoT. Various real-world applications of WSNs such as in smart grids, smart farming and smart health would require a potential deployment of thousands or maybe hundreds of thousands of sensor nodes/actuators. To ensure proper working order and network efficiency of such a network of sensor nodes, an effective WSN management system has to be integrated. However, the inherent challenges of WSNs such as sensor/actuator heterogeneity, application dependency and resource constraints have led to challenges in implementing effective traditional WSN management. This difficulty in management increases as the WSN becomes larger. Software Defined Networking (SDN provides a promising solution in flexible management WSNs by allowing the separation of the control logic from the sensor nodes/actuators. The advantage with this SDN-based management in WSNs is that it enables centralized control of the entire WSN making it simpler to deploy network-wide management protocols and applications on demand. This paper highlights some of the recent work on traditional WSN management in brief and reviews SDN-based management techniques for WSNs in greater detail while drawing attention to the advantages that SDN brings to traditional WSN management. This paper also investigates open research challenges in coming up with mechanisms for flexible and easier SDN-based WSN configuration and management.

  3. Micro optical sensor systems for sunsensing applications

    Science.gov (United States)

    Leijtens, Johan; de Boom, Kees

    2017-11-01

    Optimum application of micro system technologies allows building small sensor systems that will alter procurement strategies for spacecraft manufacturers. One example is the decreased size and cost for state of the art sunsensors. Integrated sensor systems are being designed which, through use of microsystem technology, are an order of magnitutde smaller than most current sunsensors and which hold due to the large reproducibility through batch manufacturing the promise of drastic price reduction. If the Commercial Of The Shelf (COTS) approach is adopted by satellite manufacturers, this will drastically decrease mass and cost budgets associated with sunsensing applications.

  4. Wireless body sensor networks for health-monitoring applications

    International Nuclear Information System (INIS)

    Hao, Yang; Foster, Robert

    2008-01-01

    Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system. (topical review)

  5. Smart sensors and systems innovations for medical, environmental, and IoT applications

    CERN Document Server

    Yasuura, Hiroto; Liu, Yongpan; Lin, Youn-Long

    2017-01-01

    This book describes the technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoT). The authors provide a multidisciplinary view of sensor technology from materials, process, circuits, and big data domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc. Unlike earlier books on sensors, this book provides a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms. Profiles active research on smart sensors based on CMOS microelectronics; Describes applications of sensors and sensor systems in cyber physical systems, the social information infrastructure in our modern world; Includes coverage of a variety of related information technologies supporting the application of sensors; Discusses the integration of computation, networking, actuation, database...

  6. Data-Centric Knowledge Discovery Strategy for a Safety-Critical Sensor Application

    Directory of Open Access Journals (Sweden)

    Nilamadhab Mishra

    2014-01-01

    Full Text Available In an indoor safety-critical application, sensors and actuators are clustered together to accomplish critical actions within a limited time constraint. The cluster may be controlled by a dedicated programmed autonomous microcontroller device powered with electricity to perform in-network time critical functions, such as data collection, data processing, and knowledge production. In a data-centric sensor network, approximately 3–60% of the sensor data are faulty, and the data collected from the sensor environment are highly unstructured and ambiguous. Therefore, for safety-critical sensor applications, actuators must function intelligently within a hard time frame and have proper knowledge to perform their logical actions. This paper proposes a knowledge discovery strategy and an exploration algorithm for indoor safety-critical industrial applications. The application evidence and discussion validate that the proposed strategy and algorithm can be implemented for knowledge discovery within the operational framework.

  7. Handbook of modern sensors physics, designs, and applications

    CERN Document Server

    Fraden, Jacob

    2016-01-01

    This book presents a comprehensive and up-to-date account of the theory (physical principles), design, and practical implementations of various sensors for scientific, industrial, and consumer applications. This latest edition focuses on the sensing technologies driven by the expanding use of sensors in mobile devices. These new miniature sensors will be described, with an emphasis on smart sensors which have embedded processing systems. The chapter on chemical sensors has also been expanded to present the latest developments. Digital systems, however complex and intelligent they may be, must receive information from the outside world that is generally analog and not electrical. Sensors are interface devices between various physical values and the electronic circuits that "understand" only a language of moving electrical charges. In other words, sensors are the eyes, ears, and noses of silicon chips. Unlike other books on sensors, the Handbook of Modern Sensors is organized according to the measured variables...

  8. Optimized and Executive Survey of Physical Node Capture Attack in Wireless Sensor Network

    OpenAIRE

    Bhavana Butani; Piyush Kumar Shukla; Sanjay Silakari

    2014-01-01

    Wireless sensor networks (WSNs) are novel large-scale wireless networks that consist of distributed, self organizing, low-power, low-cost, tiny sensor devices to cooperatively collect information through infrastructure less wireless networks. These networks are envisioned to play a crucial role in variety of applications like critical military surveillance applications, forest fire monitoring, commercial applications such as building security monitoring, traffic surveillance, habitat monitori...

  9. New Trends on MEMS Sensor Technology for Harsh Environment Applications

    Directory of Open Access Journals (Sweden)

    Patricia M. NIEVA

    2007-10-01

    Full Text Available MEMS and NEMS sensor systems that can operate in the presence of high temperatures, corrosive media, and/or high radiation hold great promise for harsh environment applications. They would reduce weight, improve machine reliability and reduce cost in strategic market sectors such as automotive, avionics, oil well logging, and nuclear power. This paper presents a review of the recent advances in harsh-environment MEMS and NEMS sensors focusing on materials and devices. Special emphasis is put on high-temperature operation. Wide-bandgap semiconductor materials for high temperature applications are discussed from the device point of view. Micro-opto mechanical systems (MOEMS are presented as a new trend for high temperature applications. As an example of a harsh environment MOEMS sensor, a vibration sensor is presented.

  10. Adaptive Information Access in Multiple Applications Support Wireless Sensor Network

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2012-01-01

    Nowadays, due to wide applicability of Wireless Sensor Network (WSN) added by the low cost sensor devices, its popularity among the researchers and industrialists are very much visible. A substantial amount of works can be seen in the literature on WSN which are mainly focused on application...

  11. MEMS Sensor Arrays for Cryogenic Propellant Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — KWJ offers this proposal for a low-power, practical and versatile MEMS sensor platform for NASA applications. The proposed nano-sensor platform is ultra-low power...

  12. Application of Open Garden Sensor on Hydroponic Maintenance Management

    Science.gov (United States)

    Nasution, S.; Siregar, B.; Kurniawan, M.; Pranoto, H.; Andayani, U.; Fahmi, F.

    2018-03-01

    Hydroponic farming system is an agricultural system that uses direct water as a nutrient without using soil as a planting medium. This system allows smallholder farmers to have the opportunity to develop their crop production with less capital. In addition, hydroponic planting has also been widely adapted by individuals as a personal hobby. Application of technology has penetrated various fields including agricultural fields. One of the technologies that can be applied in a hydroponic farming system is the sensor. Sensors are devices that used to convert a physical quantity into a quantity of electricity so that it can be analyse with a certain electrical circuit. In this study, the technology to be applied is wireless sensor technology applied in human life to help get information quickly and accurately. Sensors to be used in this study are pH sensors, conductivity sensors, temperature sensors and humidity. In addition to sensors, the study also involved Arduino technology. Arduino is a microcontroller board that is used to interact with the environment based on programs that have been made. The final results of the application testing show that the system success to display diagram in real-time in an environment from Arduino board to database and web server.

  13. Retirement Applicant Satisfaction Survey Results

    Data.gov (United States)

    Social Security Administration — This dataset contains information about the Retirement Applicant Survey (RAS). The survey measured satisfaction results with the retirement application process. The...

  14. New Sensors for Cultural Heritage Metric Survey: The ToF Cameras

    Directory of Open Access Journals (Sweden)

    Filiberto Chiabrando

    2011-12-01

    Full Text Available ToF cameras are new instruments based on CCD/CMOS sensors which measure distances instead of radiometry. The resulting point clouds show the same properties (both in terms of accuracy and resolution of the point clouds acquired by means of traditional LiDAR devices. ToF cameras are cheap instruments (less than 10.000 € based on video real time distance measurements and can represent an interesting alternative to the more expensive LiDAR instruments. In addition, the limited weight and dimensions of ToF cameras allow a reduction of some practical problems such as transportation and on-site management. Most of the commercial ToF cameras use the phase-shift method to measure distances. Due to the use of only one wavelength, most of them have limited range of application (usually about 5 or 10 m. After a brief description of the main characteristics of these instruments, this paper explains and comments the results of the first experimental applications of ToF cameras in Cultural Heritage 3D metric survey.  The possibility to acquire more than 30 frames/s and future developments of these devices in terms of use of more than one wavelength to overcome the ambiguity problem allow to foresee new interesting applications.

  15. Fiber optic temperature sensors for medical applications

    Science.gov (United States)

    Schaafsma, David T.; Palmer, Gail; Bechtel, James H.

    2003-07-01

    Recent developments in fiber-optic sensor technology have demonstrated the utility of fiber-optic sensors for both medical and industrial applications. Fiber sensors based on fluorescent decay of rare earth doped materials allow rapid and accurate temperature measurement in challenging environments. Here we review the principles of operation of these sensors with a rare earth doped probe material and demonstrate why this material is an excellent choice for these types of sensors. The decay time technique allows accurate temperature determination from two measurements of the fluorescence intensity at a well-defined time interval. With this method, all instrumental and extraneous environmental effect will cancel, thus providing an accurate temperature measurement. Stability data will be presented for the fiber-optic probes. For medical applications, new breakthroughs in RF ablation technology and electro-surgical procedures are being introduced as alternative, less invasive treatment for removal of small tumors and for removal of plaque within arteries as a preventive treatment that avoids open heart surgery. The availability of small diameter temperature probes (230 microns or 450 microns in diameter) offers a whole new scope to temperature measurement. Accurate and reliable temperature monitoring during any laser treatment procedure or RF ablation at the surgical site is critical. Precise, NIST traceable reliable results are needed to prevent overheating or underheating during treatment. In addition, how interventional catheters are used in hyperthermia studies and the advantages to having flexible cables and multiple sensors are discussed. Preliminary data is given from an animal study where temperature was monitored in a pig during an RF study.

  16. Development of Smart Active Layer Sensor (II): Manufacturing and Application

    International Nuclear Information System (INIS)

    Lee, Young Sup; Lee, Sang Il; Kwon, Jae Hwa; Yoon, Dong Jin

    2004-01-01

    This paper is the second part of the study on the development of a smart active layer (SAL) sensor, which consists of two parts. As mentioned in the first paper, structural health monitoring (SHM) is a new technology that is being increasingly applied at the industrial field as a potential approach to improve cost and convenience of structural inspection. Recently, the development of smart sensor is very active for real application. This study has focused on preparation and application study of SAL sensor which is described with regard to the theory and concept of the SAL sensor in the first paper. In order to detect elastic wave, smart piezoelectric sensor, SAL, is fabricated by using a piezoelectric element, shielding layer and protection layer. This protection layer plays an important role in a patched network of distributed piezoelectric sensor and shielding treatment. Four types of SAL sensor are designed/prepared/tested, and these details will be discussed in the paper In this study, SAL sensor ran be feasibly applied to perform structural health monitoring and to detect damage sources which result in elastic waves

  17. A Semantic Sensor Web for Environmental Decision Support Applications

    Directory of Open Access Journals (Sweden)

    Raúl García-Castro

    2011-09-01

    Full Text Available Sensing devices are increasingly being deployed to monitor the physical world around us. One class of application for which sensor data is pertinent is environmental decision support systems, e.g., flood emergency response. For these applications, the sensor readings need to be put in context by integrating them with other sources of data about the surrounding environment. Traditional systems for predicting and detecting floods rely on methods that need significant human resources. In this paper we describe a semantic sensor web architecture for integrating multiple heterogeneous datasets, including live and historic sensor data, databases, and map layers. The architecture provides mechanisms for discovering datasets, defining integrated views over them, continuously receiving data in real-time, and visualising on screen and interacting with the data. Our approach makes extensive use of web service standards for querying and accessing data, and semantic technologies to discover and integrate datasets. We demonstrate the use of our semantic sensor web architecture in the context of a flood response planning web application that uses data from sensor networks monitoring the sea-state around the coast of England.

  18. Design of a lightweight, cost effective thimble-like sensor for haptic applications based on contact force sensors.

    Science.gov (United States)

    Ferre, Manuel; Galiana, Ignacio; Aracil, Rafael

    2011-01-01

    This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i) force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii) the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation.

  19. Design of a Lightweight, Cost Effective Thimble-Like Sensor for Haptic Applications Based on Contact Force Sensors

    Directory of Open Access Journals (Sweden)

    Ignacio Galiana

    2011-12-01

    Full Text Available This paper describes the design and calibration of a thimble that measures the forces applied by a user during manipulation of virtual and real objects. Haptic devices benefit from force measurement capabilities at their end-point. However, the heavy weight and cost of force sensors prevent their widespread incorporation in these applications. The design of a lightweight, user-adaptable, and cost-effective thimble with four contact force sensors is described in this paper. The sensors are calibrated before being placed in the thimble to provide normal and tangential forces. Normal forces are exerted directly by the fingertip and thus can be properly measured. Tangential forces are estimated by sensors strategically placed in the thimble sides. Two applications are provided in order to facilitate an evaluation of sensorized thimble performance. These applications focus on: (i force signal edge detection, which determines task segmentation of virtual object manipulation, and (ii the development of complex object manipulation models, wherein the mechanical features of a real object are obtained and these features are then reproduced for training by means of virtual object manipulation.

  20. Applicant Satisfaction Survey

    Data.gov (United States)

    Office of Personnel Management — The Chief Human Capital Officers developed 3 surveys that asks applicants to assess their satisfaction with the application process on a 1-10 point scale, with 10...

  1. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    Science.gov (United States)

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-01-01

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized. PMID:23974152

  2. Cognitive Radio Wireless Sensor Networks: Applications, Challenges and Research Trends

    Directory of Open Access Journals (Sweden)

    Gyanendra Prasad Joshi

    2013-08-01

    Full Text Available A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  3. Cognitive radio wireless sensor networks: applications, challenges and research trends.

    Science.gov (United States)

    Joshi, Gyanendra Prasad; Nam, Seung Yeob; Kim, Sung Won

    2013-08-22

    A cognitive radio wireless sensor network is one of the candidate areas where cognitive techniques can be used for opportunistic spectrum access. Research in this area is still in its infancy, but it is progressing rapidly. The aim of this study is to classify the existing literature of this fast emerging application area of cognitive radio wireless sensor networks, highlight the key research that has already been undertaken, and indicate open problems. This paper describes the advantages of cognitive radio wireless sensor networks, the difference between ad hoc cognitive radio networks, wireless sensor networks, and cognitive radio wireless sensor networks, potential application areas of cognitive radio wireless sensor networks, challenges and research trend in cognitive radio wireless sensor networks. The sensing schemes suited for cognitive radio wireless sensor networks scenarios are discussed with an emphasis on cooperation and spectrum access methods that ensure the availability of the required QoS. Finally, this paper lists several open research challenges aimed at drawing the attention of the readers toward the important issues that need to be addressed before the vision of completely autonomous cognitive radio wireless sensor networks can be realized.

  4. A Comprehensive Survey on Hierarchical-Based Routing Protocols for Mobile Wireless Sensor Networks: Review, Taxonomy, and Future Directions

    Directory of Open Access Journals (Sweden)

    Nabil Sabor

    2017-01-01

    Full Text Available Introducing mobility to Wireless Sensor Networks (WSNs puts new challenges particularly in designing of routing protocols. Mobility can be applied to the sensor nodes and/or the sink node in the network. Many routing protocols have been developed to support the mobility of WSNs. These protocols are divided depending on the routing structure into hierarchical-based, flat-based, and location-based routing protocols. However, the hierarchical-based routing protocols outperform the other routing types in saving energy, scalability, and extending lifetime of Mobile WSNs (MWSNs. Selecting an appropriate hierarchical routing protocol for specific applications is an important and difficult task. Therefore, this paper focuses on reviewing some of the recently hierarchical-based routing protocols that are developed in the last five years for MWSNs. This survey divides the hierarchical-based routing protocols into two broad groups, namely, classical-based and optimized-based routing protocols. Also, we present a detailed classification of the reviewed protocols according to the routing approach, control manner, mobile element, mobility pattern, network architecture, clustering attributes, protocol operation, path establishment, communication paradigm, energy model, protocol objectives, and applications. Moreover, a comparison between the reviewed protocols is investigated in this survey depending on delay, network size, energy-efficiency, and scalability while mentioning the advantages and drawbacks of each protocol. Finally, we summarize and conclude the paper with future directions.

  5. Industrial wireless sensor networks applications, protocols, and standards

    CERN Document Server

    Güngör, V Çagri

    2013-01-01

    The collaborative nature of industrial wireless sensor networks (IWSNs) brings several advantages over traditional wired industrial monitoring and control systems, including self-organization, rapid deployment, flexibility, and inherent intelligent processing. In this regard, IWSNs play a vital role in creating more reliable, efficient, and productive industrial systems, thus improving companies' competitiveness in the marketplace. Industrial Wireless Sensor Networks: Applications, Protocols, and Standards examines the current state of the art in industrial wireless sensor networks and outline

  6. Piezoresistive Carbon-based Hybrid Sensor for Body-Mounted Biomedical Applications

    Science.gov (United States)

    Melnykowycz, M.; Tschudin, M.; Clemens, F.

    2017-02-01

    For body-mounted sensor applications, the evolution of soft condensed matter sensor (SCMS) materials offer conformability andit enables mechanical compliance between the body surface and the sensing mechanism. A piezoresistive hybrid sensor and compliant meta-material sub-structure provided a way to engineer sensor physical designs through modification of the mechanical properties of the compliant design. A piezoresistive fiber sensor was produced by combining a thermoplastic elastomer (TPE) matrix with Carbon Black (CB) particles in 1:1 mass ratio. Feedstock was extruded in monofilament fiber form (diameter of 300 microns), resulting in a highly stretchable sensor (strain sensor range up to 100%) with linear resistance signal response. The soft condensed matter sensor was integrated into a hybrid design including a 3D printed metamaterial structure combined with a soft silicone. An auxetic unit cell was chosen (with negative Poisson’s Ratio) in the design in order to combine with the soft silicon, which exhibits a high Poisson’s Ratio. The hybrid sensor design was subjected to mechanical tensile testing up to 50% strain (with gauge factor calculation for sensor performance), and then utilized for strain-based sensing applications on the body including gesture recognition and vital function monitoring including blood pulse-wave and breath monitoring. A 10 gesture Natural User Interface (NUI) test protocol was utilized to show the effectiveness of a single wrist-mounted sensor to identify discrete gestures including finger and hand motions. These hand motions were chosen specifically for Human Computer Interaction (HCI) applications. The blood pulse-wave signal was monitored with the hand at rest, in a wrist-mounted. In addition different breathing patterns were investigated, including normal breathing and coughing, using a belt and chest-mounted configuration.

  7. System overview and applications of a panoramic imaging perimeter sensor

    International Nuclear Information System (INIS)

    Pritchard, D.A.

    1995-01-01

    This paper presents an overview of the design and potential applications of a 360-degree scanning, multi-spectral intrusion detection sensor. This moderate-resolution, true panoramic imaging sensor is intended for exterior use at ranges from 50 to 1,500 meters. This Advanced Exterior Sensor (AES) simultaneously uses three sensing technologies (infrared, visible, and radar) along with advanced data processing methods to provide low false-alarm intrusion detection, tracking, and immediate visual assessment. The images from the infrared and visible detector sets and the radar range data are updated as the sensors rotate once per second. The radar provides range data with one-meter resolution. This sensor has been designed for easy use and rapid deployment to cover wide areas beyond or in place of typical perimeters, and tactical applications around fixed or temporary high-value assets. AES prototypes are in development. Applications discussed in this paper include replacements, augmentations, or new installations at fixed sites where topological features, atmospheric conditions, environmental restrictions, ecological regulations, and archaeological features limit the use of conventional security components and systems

  8. Bioinspired Intelligent Algorithm and Its Applications for Mobile Robot Control: A Survey

    Science.gov (United States)

    Ni, Jianjun; Wu, Liuying; Fan, Xinnan; Yang, Simon X.

    2016-01-01

    Bioinspired intelligent algorithm (BIA) is a kind of intelligent computing method, which is with a more lifelike biological working mechanism than other types. BIAs have made significant progress in both understanding of the neuroscience and biological systems and applying to various fields. Mobile robot control is one of the main application fields of BIAs which has attracted more and more attention, because mobile robots can be used widely and general artificial intelligent algorithms meet a development bottleneck in this field, such as complex computing and the dependence on high-precision sensors. This paper presents a survey of recent research in BIAs, which focuses on the research in the realization of various BIAs based on different working mechanisms and the applications for mobile robot control, to help in understanding BIAs comprehensively and clearly. The survey has four primary parts: a classification of BIAs from the biomimetic mechanism, a summary of several typical BIAs from different levels, an overview of current applications of BIAs in mobile robot control, and a description of some possible future directions for research. PMID:26819582

  9. Bioinspired Intelligent Algorithm and Its Applications for Mobile Robot Control: A Survey.

    Science.gov (United States)

    Ni, Jianjun; Wu, Liuying; Fan, Xinnan; Yang, Simon X

    2016-01-01

    Bioinspired intelligent algorithm (BIA) is a kind of intelligent computing method, which is with a more lifelike biological working mechanism than other types. BIAs have made significant progress in both understanding of the neuroscience and biological systems and applying to various fields. Mobile robot control is one of the main application fields of BIAs which has attracted more and more attention, because mobile robots can be used widely and general artificial intelligent algorithms meet a development bottleneck in this field, such as complex computing and the dependence on high-precision sensors. This paper presents a survey of recent research in BIAs, which focuses on the research in the realization of various BIAs based on different working mechanisms and the applications for mobile robot control, to help in understanding BIAs comprehensively and clearly. The survey has four primary parts: a classification of BIAs from the biomimetic mechanism, a summary of several typical BIAs from different levels, an overview of current applications of BIAs in mobile robot control, and a description of some possible future directions for research.

  10. Bioinspired Intelligent Algorithm and Its Applications for Mobile Robot Control: A Survey

    Directory of Open Access Journals (Sweden)

    Jianjun Ni

    2016-01-01

    Full Text Available Bioinspired intelligent algorithm (BIA is a kind of intelligent computing method, which is with a more lifelike biological working mechanism than other types. BIAs have made significant progress in both understanding of the neuroscience and biological systems and applying to various fields. Mobile robot control is one of the main application fields of BIAs which has attracted more and more attention, because mobile robots can be used widely and general artificial intelligent algorithms meet a development bottleneck in this field, such as complex computing and the dependence on high-precision sensors. This paper presents a survey of recent research in BIAs, which focuses on the research in the realization of various BIAs based on different working mechanisms and the applications for mobile robot control, to help in understanding BIAs comprehensively and clearly. The survey has four primary parts: a classification of BIAs from the biomimetic mechanism, a summary of several typical BIAs from different levels, an overview of current applications of BIAs in mobile robot control, and a description of some possible future directions for research.

  11. Evaluations of fiber optic sensors for interior applications

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, M.W.; Malone, T.P.

    1996-02-01

    This report addresses the testing and evaluation of commercial fiber optic intrusion detection systems in interior applications. The applications include laying optical fiber cable above suspended ceilings to detect removal of ceiling tiles, embedding optical fibers inside a tamper or item monitoring blanket that could be placed over an asset, and installing optical fibers on a door to detect movement or penetration. Detection capability of the fiber optic sensors as well as nuisance and false alarm information were focused on during the evaluation. Fiber optic sensor processing, system components, and system setup are described.

  12. Polydimethylsiloxane (PDMS-Based Flexible Resistive Strain Sensors for Wearable Applications

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2018-02-01

    Full Text Available There is growing attention and rapid development on flexible electronic devices with electronic materials and sensing technology innovations. In particular, strain sensors with high elasticity and stretchability are needed for several potential applications including human entertainment technology, human–machine interface, personal healthcare, and sports performance monitoring, etc. This article presents recent advancements in the development of polydimethylsiloxane (PDMS-based flexible resistive strain sensors for wearable applications. First of all, the article shows that PDMS-based stretchable resistive strain sensors are successfully fabricated by different methods, such as the filtration method, printing technology, micromolding method, coating techniques, and liquid phase mixing. Next, strain sensing performances including stretchability, gauge factor, linearity, and durability are comprehensively demonstrated and compared. Finally, potential applications of PDMS-based flexible resistive strain sensors are also discussed. This review indicates that the era of wearable intelligent electronic systems has arrived.

  13. Application of carbon nanotubes flexible strain sensor in smart textiles

    Directory of Open Access Journals (Sweden)

    Qiong CHENG

    2017-10-01

    Full Text Available Smart textiles have not only the necessary functions of daily wear, but also the intelligence. The focus of the current textile materials research is the selection of flexible material. For flexible materials, carbon material is one of the ideal materials for preparing flexible strain gauges. The application of flexible strain sensor prepared by carbon nanotubes as a flexible material in smart textiles is the research content. The research status of carbon nanotubes flexible strain sensor is introduced from the aspects of the structure, properties and application. The characteristics and functions of flexible strain gages prepared with carbon nanotube fibers and carbon nanotube films as flexible materials are discussed in terms of selection, preparation method, performance test and application. At the same time, the advantages and disadvantages of the flexible strain sensor of carbon nanotubes are reviewed from the aspects of preparation difficulty, production cost and practical application effect. High sensitivity with high strain will be a key research direction for carbon nanotube flexible strain sensors.

  14. A mini-UAV VTOL Platform for Surveying Applications

    Directory of Open Access Journals (Sweden)

    Kuldeep Rawat

    2014-05-01

    Full Text Available In this paper we discuss implementation of a mini-Unmanned Aerial Vehicle (UAV vertical take-off and landing (VTOL platform for surveying activities related to highway construction. Recent advances in sensor and communication technologies have allowed scaling sizes of unmanned aerial platforms, and explore them for tasks that are economical and safe over populated or inhabited areas. In highway construction the capability of mini-UAVs to survey in hostile and/or hardly accessible areas can greatly reduce human risks. The project focused on developing a cost effective, remotely controlled, fuel powered mini-UAV VTOL (helicopter platform with certain payload capacity and configuration and demonstrated its use in surveying and monitoring activities required for highway planning and construction. With an on-board flight recorder global positioning system (GPS device, memory storage card, telemetry, inertial navigation sensors, and a video camera the mini-UAV can record flying coordinates and relay live video images to a remote ground receiver and surveyor. After all necessary integration and flight tests were done the mini-UAV helicopter was tested to operate and relay video from the areas where construction was underway. The mini-UAV can provide a platform for a range of sensors and instruments that directly support the operational requirements of transportation sector.

  15. Applications of optical sensors for high-frequency water-quality monitoring and research

    Science.gov (United States)

    Pellerin, Brian

    2015-01-01

    The recent commercial availability of in-situ optical sensors, together with new techniques for data collection and analysis, provides the opportunity to monitor a wide range of water-quality constituents over time scales during which environmental conditions actually change. Traditional approaches for data collection (daily to monthly discrete samples) are often limited by high sample collection, processing, and analytical costs, difficult site access, and logistical challenges, particularly for long-term sampling at a large number of sites. Optical sensors that continuously measure constituents in the environment by absorbance or fluorescence properties (Figure 1) have had a long history of use in oceanography for measuring highly resolved concentrations and fluxes of organic matter, nutrients, and algal material. However, much of the work using commercially-available optical sensors in rivers and streams has taken place in only the last few years. Figure 1. [NOT SHOWN] Optical sensor technology is now sufficiently developed to warrant broader application for research and monitoring in coastal and freshwater systems, and the United States Geological Survey (a U.S. science agency) is now using these sensors in a variety of research and monitoring programs to better understand water quality in-situ and in real-time. Examples are numerous and range from the applications of nitrate sensors for calculating loads to estuaries susceptible to hypoxia (Pellerin et al., 2014) to the use of fluorometers to estimate methymercury fluxes (Bergamaschi et al., 2011) and disinfection byproduct formation (Carpenter et al., 2013). Transmitting these data in real-time provides information that can be used for early trend detection, help identify monitoring gaps critical for water management, and provide science-based decision support across a range of issues related to water quality, freshwater ecosystems, and human health. Despite the value of these sensors, collecting data that

  16. Performance Issues in High Performance Fortran Implementations of Sensor-Based Applications

    Directory of Open Access Journals (Sweden)

    David R. O'hallaron

    1997-01-01

    Full Text Available Applications that get their inputs from sensors are an important and often overlooked application domain for High Performance Fortran (HPF. Such sensor-based applications typically perform regular operations on dense arrays, and often have latency and through put requirements that can only be achieved with parallel machines. This article describes a study of sensor-based applications, including the fast Fourier transform, synthetic aperture radar imaging, narrowband tracking radar processing, multibaseline stereo imaging, and medical magnetic resonance imaging. The applications are written in a dialect of HPF developed at Carnegie Mellon, and are compiled by the Fx compiler for the Intel Paragon. The main results of the study are that (1 it is possible to realize good performance for realistic sensor-based applications written in HPF and (2 the performance of the applications is determined by the performance of three core operations: independent loops (i.e., loops with no dependences between iterations, reductions, and index permutations. The article discusses the implications for HPF implementations and introduces some simple tests that implementers and users can use to measure the efficiency of the loops, reductions, and index permutations generated by an HPF compiler.

  17. Expanding the functionality and applications of nanopore sensors

    Science.gov (United States)

    Venta, Kimberly E.

    Nanopore sensors have developed into powerful tools for single-molecule studies since their inception two decades ago. Nanopore sensors function as nanoscale Coulter counters, by monitoring ionic current modulations as particles pass through a nanopore. While nanopore sensors can be used to study any nanoscale particle, their most notable application is as a low cost, fast alternative to current DNA sequencing technologies. In recent years, signifcant progress has been made toward the goal of nanopore-based DNA sequencing, which requires an ambitious combination of a low-noise and high-bandwidth nanopore measurement system and spatial resolution. In this dissertation, nanopore sensors in thin membranes are developed to improve dimensional resolution, and these membranes are used in parallel with a high-bandwidth amplfier. Using this nanopore sensor system, the signals of three DNA homopolymers are differentiated for the first time in solid-state nanopores. The nanopore noise is also reduced through the addition of a layer of SU8, a spin-on polymer, to the supporting chip structure. By increasing the temporal and spatial resolution of nanopore sensors, studies of shorter molecules are now possible. Nanopore sensors are beginning to be used for the study and characterization of nanoparticles. Nanoparticles have found many uses from biomedical imaging to next-generation solar cells. However, further insights into the formation and characterization of nanoparticles would aid in developing improved synthesis methods leading to more effective and customizable nanoparticles. This dissertation presents two methods of employing nanopore sensors to benet nanoparticle characterization and fabrication. Nanopores were used to study the formation of individual nanoparticles and serve as nanoparticle growth templates that could be exploited to create custom nanoparticle arrays. Additionally, nanopore sensors were used to characterize the surface charge density of anisotropic

  18. PREFACE: Sensors & their Applications XVI

    Science.gov (United States)

    Kyriacou, Panicos; O'Riordan, Alan

    2011-08-01

    This volume records the Proceedings of the sixteenth conference in the biennial Sensors and Their Applications series which took place at the Clarion Hotel, Cork, Ireland between 12-14 September 2011. The conference is organized by the Instrument Science and Technology Group of the Institute of Physics. On this occasion, the conference was hosted by Tyndall National Institute at University College Cork. This year the conference returns to Ireland, having last been held in Limerick in 2003. The conference proceedings record the continuing growth of the sensors community nationally and internationally. The conferences bring together contributions from scientists and engineers from academia, research institutes and industrial establishments, and therefore provide an excellent opportunity for these communities to present and discuss the latest results in the field of sensors, instrumentation and measurement. Amongst the more traditional themes, such as optical sensing, there is growth in new areas such as biomedical sensing and instrumentation, and nanosensing, which is reflected in this volume. Similarly the contribution of modelling and simulation techniques in sensor and instrumentation design and their applications is acknowledged by a session in this area. The sessions across the conference are supported by notable contributions from invited speakers. We would like to thank all of our colleagues in the sensor and instrumentation community who have supported this event by contributing manuscripts. Our thanks also go to Tyndall National Institute for hosting this conference and all the sponsors who, with their generous financial and in-kind contributions, enabled the better organization of this conference. We would also like to thank all the members of the Instrument Science and Technology Group for their support, and in particular for refereeing the submitted manuscripts. We are also pleased to express our thanks to the Conference Department of the Institute of

  19. Study on the Road Traffic Survey System Based on Micro-ferromagnetic Induction Coil Sensor

    Directory of Open Access Journals (Sweden)

    Liang Tong

    2014-05-01

    Full Text Available Road traffic information is the basis of road traffic management and control. Due to the special design of the sensor coil and ferromagnetic core, traffic survey system which uses micro ferromagnetic inductive coil vehicle detector, not only has the features of small size, simple installation and little road surface damage, but also has the advantages of output signal strength, simple signal processing circuit and obvious characteristics for output waveform corresponding vehicle feature. Based on the introduction of the sensor working principle, the construction of hardware and signal processing circuit for the traffic survey system is described in detail in the paper. Combined with the characteristics of the sensor output waveform, adaptive nearest neighbor clustering RBF neural network algorithm used to classify the vehicles is proposed and verified by experimental method. The result has a high vehicle classification rate and demonstrates the feasibility of the system.

  20. Development of a rechargeable optical hydrogen peroxide sensor - sensor design and biological application

    DEFF Research Database (Denmark)

    Koren, Klaus; Jensen, Peter Østrup; Kühl, Michael

    2016-01-01

    and readout strategy, H2O2 can be measured with high spatial (∼500 μm) and temporal (∼30 s) resolution. The sensor has a broad applicability both in complex environmental and biomedical systems, as demonstrated by (i) H2O2 concentration profile measurements in natural photosynthetic biofilms under light....... Quantifying H2O2 within biological samples is challenging and often not possible. Here we present a quasi-reversible fiber-optic sensor capable of measuring H2O2 concentrations ranging from 1-100 μM within different biological samples. Based on a Prussian blue/white redox cycle and a simple sensor recharging...

  1. Applications of Smartphone-Based Sensors in Agriculture: A Systematic Review of Research

    Directory of Open Access Journals (Sweden)

    Suporn Pongnumkul

    2015-01-01

    Full Text Available Smartphones have become a useful tool in agriculture because their mobility matches the nature of farming, the cost of the device is highly accessible, and their computing power allows a variety of practical applications to be created. Moreover, smartphones are nowadays equipped with various types of physical sensors which make them a promising tool to assist diverse farming tasks. This paper systematically reviews smartphone applications mentioned in research literature that utilize smartphone built-in sensors to provide agricultural solutions. The initial 1,500 articles identified through database search were screened based on exclusion criteria and then reviewed thoroughly in full text, resulting in 22 articles included in this review. The applications are categorized according to their agricultural functions. Those articles reviewed describe 12 farming applications, 6 farm management applications, 3 information system applications, and 4 extension service applications. GPS and cameras are the most popular sensors used in the reviewed papers. This shows an opportunity for future applications to utilize other sensors such as accelerometer to provide advanced agricultural solutions.

  2. Fiber Bragg grating sensors for structural and railway applications

    Science.gov (United States)

    Tam, H. Y.; Liu, S. Y.; Guan, B. O.; Chung, W. H.; Chan, T. H.; Cheng, L. K.

    2005-02-01

    Historically, due to the high cost of optical devices, fiber-optics sensor systems were only employed in niche areas where conventional electrical sensors are not suitable. This scenario changed dramatically in the last few years following the explosion of the Internet which caused the rapid expansion of the optical fiber telecommunication industry and substantially driven down the cost of optical components. In recent years, fiber-optic sensors and particularly fiber Bragg grating (FBG) sensors have attracted a lot of interests and are being used in numerous applications. We have conducted several field trials of FBG sensors for railway applications and structural monitoring. About 30 FBG sensors were installed on the rail tracks of Kowloon-Canton Railway Corp. for train identification and speed measurements and the results obtained show that FBG sensors exhibit very good performance and could play a major role in the realization of "Smart Railway". FBG sensors were also installed on Hong Kong's landmark TsingMa Bridge, which is the world longest suspension bridge (2.2 km) that carries both trains and regular road traffic. The trials were carried out with a high-speed (up to 20 kHz) interrogation system based on CCD and also with a interrogation unit that based on scanning optical filter (up to 70 Hz). Forty FBGs sensors were divided into 3 arrays and installed on different parts of the bridge (suspension cable, rocker bearing and truss girders). The objectives of the field trial on the TsingMa Bridge are to monitor the strain of different parts of the bridge under railway load and highway load, and to compare the FBG sensors' performance with conventional resistive strain gauges already installed on the bridge. The measured results show that excellent agreement was obtained between the 2 types of sensors.

  3. A review of wearable sensors and systems with application in rehabilitation

    Directory of Open Access Journals (Sweden)

    Patel Shyamal

    2012-04-01

    Full Text Available Abstract The aim of this review paper is to summarize recent developments in the field of wearable sensors and systems that are relevant to the field of rehabilitation. The growing body of work focused on the application of wearable technology to monitor older adults and subjects with chronic conditions in the home and community settings justifies the emphasis of this review paper on summarizing clinical applications of wearable technology currently undergoing assessment rather than describing the development of new wearable sensors and systems. A short description of key enabling technologies (i.e. sensor technology, communication technology, and data analysis techniques that have allowed researchers to implement wearable systems is followed by a detailed description of major areas of application of wearable technology. Applications described in this review paper include those that focus on health and wellness, safety, home rehabilitation, assessment of treatment efficacy, and early detection of disorders. The integration of wearable and ambient sensors is discussed in the context of achieving home monitoring of older adults and subjects with chronic conditions. Future work required to advance the field toward clinical deployment of wearable sensors and systems is discussed.

  4. Integration and application of optical chemical sensors in microbioreactors.

    Science.gov (United States)

    Gruber, Pia; Marques, Marco P C; Szita, Nicolas; Mayr, Torsten

    2017-08-08

    The quantification of key variables such as oxygen, pH, carbon dioxide, glucose, and temperature provides essential information for biological and biotechnological applications and their development. Microfluidic devices offer an opportunity to accelerate research and development in these areas due to their small scale, and the fine control over the microenvironment, provided that these key variables can be measured. Optical sensors are well-suited for this task. They offer non-invasive and non-destructive monitoring of the mentioned variables, and the establishment of time-course profiles without the need for sampling from the microfluidic devices. They can also be implemented in larger systems, facilitating cross-scale comparison of analytical data. This tutorial review presents an overview of the optical sensors and their technology, with a view to support current and potential new users in microfluidics and biotechnology in the implementation of such sensors. It introduces the benefits and challenges of sensor integration, including, their application for microbioreactors. Sensor formats, integration methods, device bonding options, and monitoring options are explained. Luminescent sensors for oxygen, pH, carbon dioxide, glucose and temperature are showcased. Areas where further development is needed are highlighted with the intent to guide future development efforts towards analytes for which reliable, stable, or easily integrated detection methods are not yet available.

  5. A Survey of Routing Issues and Associated Protocols in Underwater Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Khalid

    2017-01-01

    Full Text Available Underwater wireless sensor networks are a newly emerging wireless technology in which small size sensors with limited energy and limited memory and bandwidth are deployed in deep sea water and various monitoring operations like tactical surveillance, environmental monitoring, and data collection are performed through these tiny sensors. Underwater wireless sensor networks are used for the exploration of underwater resources, oceanographic data collection, flood or disaster prevention, tactical surveillance systems, and unmanned underwater vehicles. Sensor nodes consist of a small memory, a central processing unit, and an antenna. Underwater networks are much different from terrestrial sensor networks as radio waves cannot be used in underwater wireless sensor networks. Acoustic channels are used for communication in deep sea water. Acoustic signals have many limitations, such as limited bandwidth, higher end-to-end delay, network path loss, higher propagation delay, and dynamic topology. Usually, these limitations result in higher energy consumption with a smaller number of packets delivered. The main aim nowadays is to operate sensor nodes having a smaller battery for a longer time in the network. This survey has discussed the state-of-the-art localization based and localization-free routing protocols. Routing associated issues in the area of underwater wireless sensor networks have also been discussed.

  6. Assessment of fiber optic pressure sensors

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Black, C.L.; Farmer, J.P.

    1995-04-01

    This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements

  7. Advances in Multi-Sensor Information Fusion: Theory and Applications 2017.

    Science.gov (United States)

    Jin, Xue-Bo; Sun, Shuli; Wei, Hong; Yang, Feng-Bao

    2018-04-11

    The information fusion technique can integrate a large amount of data and knowledge representing the same real-world object and obtain a consistent, accurate, and useful representation of that object. The data may be independent or redundant, and can be obtained by different sensors at the same time or at different times. A suitable combination of investigative methods can substantially increase the profit of information in comparison with that from a single sensor. Multi-sensor information fusion has been a key issue in sensor research since the 1970s, and it has been applied in many fields. For example, manufacturing and process control industries can generate a lot of data, which have real, actionable business value. The fusion of these data can greatly improve productivity through digitization. The goal of this special issue is to report innovative ideas and solutions for multi-sensor information fusion in the emerging applications era, focusing on development, adoption, and applications.

  8. Advances in Multi-Sensor Information Fusion: Theory and Applications 2017

    Directory of Open Access Journals (Sweden)

    Xue-Bo Jin

    2018-04-01

    Full Text Available The information fusion technique can integrate a large amount of data and knowledge representing the same real-world object and obtain a consistent, accurate, and useful representation of that object. The data may be independent or redundant, and can be obtained by different sensors at the same time or at different times. A suitable combination of investigative methods can substantially increase the profit of information in comparison with that from a single sensor. Multi-sensor information fusion has been a key issue in sensor research since the 1970s, and it has been applied in many fields. For example, manufacturing and process control industries can generate a lot of data, which have real, actionable business value. The fusion of these data can greatly improve productivity through digitization. The goal of this special issue is to report innovative ideas and solutions for multi-sensor information fusion in the emerging applications era, focusing on development, adoption, and applications.

  9. Wireless ad hoc and sensor networks management, performance, and applications

    CERN Document Server

    He, Jing

    2013-01-01

    Although wireless sensor networks (WSNs) have been employed across a wide range of applications, there are very few books that emphasize the algorithm description, performance analysis, and applications of network management techniques in WSNs. Filling this need, Wireless Ad Hoc and Sensor Networks: Management, Performance, and Applications summarizes not only traditional and classical network management techniques, but also state-of-the-art techniques in this area. The articles presented are expository, but scholarly in nature, including the appropriate history background, a review of current

  10. Integrated tracking, classification, and sensor management theory and applications

    CERN Document Server

    Krishnamurthy, Vikram; Vo, Ba-Ngu

    2012-01-01

    A unique guide to the state of the art of tracking, classification, and sensor management. This book addresses the tremendous progress made over the last few decades in algorithm development and mathematical analysis for filtering, multi-target multi-sensor tracking, sensor management and control, and target classification. It provides for the first time an integrated treatment of these advanced topics, complete with careful mathematical formulation, clear description of the theory, and real-world applications. Written by experts in the field, Integrated Tracking, Classification, and Sensor Management provides readers with easy access to key Bayesian modeling and filtering methods, multi-target tracking approaches, target classification procedures, and large scale sensor management problem-solving techniques.

  11. Sensor Web Technology Challenges and Advancements for the Earth Science Decadal Survey Era

    Science.gov (United States)

    Norton, Charles D.; Moe, Karen

    2011-01-01

    This paper examines the Earth science decadal survey era and the role ESTO developed sensor web technologies can contribute to the scientific observations. This includes hardware and software technology advances for in-situ and in-space measurements. Also discussed are emerging areas of importance such as the potential of small satellites for sensor web based observations as well as advances in data fusion critical to the science and societal benefits of future missions, and the challenges ahead.

  12. Research-grade CMOS image sensors for demanding space applications

    Science.gov (United States)

    Saint-Pé, Olivier; Tulet, Michel; Davancens, Robert; Larnaudie, Franck; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Belliot, Pierre

    2017-11-01

    Imaging detectors are key elements for optical instruments and sensors on board space missions dedicated to Earth observation (high resolution imaging, atmosphere spectroscopy...), Solar System exploration (micro cameras, guidance for autonomous vehicle...) and Universe observation (space telescope focal planes, guiding sensors...). This market has been dominated by CCD technology for long. Since the mid- 90s, CMOS Image Sensors (CIS) have been competing with CCDs for more and more consumer domains (webcams, cell phones, digital cameras...). Featuring significant advantages over CCD sensors for space applications (lower power consumption, smaller system size, better radiations behaviour...), CMOS technology is also expanding in this field, justifying specific R&D and development programs funded by national and European space agencies (mainly CNES, DGA, and ESA). All along the 90s and thanks to their increasingly improving performances, CIS have started to be successfully used for more and more demanding applications, from vision and control functions requiring low-level performances to guidance applications requiring medium-level performances. Recent technology improvements have made possible the manufacturing of research-grade CIS that are able to compete with CCDs in the high-performances arena. After an introduction outlining the growing interest of optical instruments designers for CMOS image sensors, this talk will present the existing and foreseen ways to reach high-level electro-optics performances for CIS. The developments of CIS prototypes built using an imaging CMOS process and of devices based on improved designs will be presented.

  13. Application of military uncooled infrared sensors to homeland defense

    Science.gov (United States)

    Hornberger, Chris

    2002-08-01

    During the early 1990's, uncooled microbolometer thermal imaging technology began a journey from Government and corporate laboratories to practical application in addressing military, Government, and commercial customer needs. Today, that transition could arguably be considered complete, punctuated by BAE SYSTEMS' delivery of the 10,000th microbolometer camera on 12 February 2002. While microbolometer developmental research continues to advance the state-of-the-art at an ever increasing pace, uncooled infrared cameras are widely deployed serving society in meaningful ways; from preventative maintenance and process inspection to law enforcement and rescue operations. Following last years terrorist attacks in New York and Virginia, President Bush appointed Governor Ridge to lead federal coordination efforts for defense of the homeland. While uncooled microbolometer sensors served in Homeland Security long before September 2001, it is certain that new applications will be identified for surveillance, security, law enforcement and protection needs. In this paper we will describe advances in military uncooled infrared sensor technology and how these sensors can serve in the role of Homeland Defense. Developments in uncooled sensors that will be described include the rugged performance validation of a thermal weapon sight and head-mounted imager. We will look at those areas of Homeland Defense that are most likely to benefit from the application of uncooled microbolometer thermal imaging sensor technology. These include: a) search & rescue camera systems, b) handheld surveillance systems and c) hands-free camera systems.

  14. Proceedings of the DAE-BRNS theme meeting on advanced chemical sensors and their applications: book of abstracts

    International Nuclear Information System (INIS)

    2012-01-01

    DAE-BRNS theme meeting on advanced chemical sensors and their applications was focussed on chemical sensors for nuclear applications, sensors for environmental and biological systems applications, materials development for sensors applications. Papers relevant to INIS are indexed separately

  15. Benefits of GMR sensors for high spatial resolution NDT applications

    Science.gov (United States)

    Pelkner, M.; Stegemann, R.; Sonntag, N.; Pohl, R.; Kreutzbruck, M.

    2018-04-01

    Magneto resistance sensors like GMR (giant magneto resistance) or TMR (tunnel magneto resistance) are widely used in industrial applications; examples are position measurement and read heads of hard disk drives. However, in case of non-destructive testing (NDT) applications these sensors, although their properties are outstanding like high spatial resolution, high field sensitivity, low cost and low energy consumption, never reached a technical transfer to an application beyond scientific scope. This paper deals with benefits of GMR/TMR sensors in terms of high spatial resolution testing for different NDT applications. The first example demonstrates the preeminent advantages of MR-elements compared with conventional coils used in eddy current testing (ET). The probe comprises one-wire excitation with an array of MR elements. This led to a better spatial resolution in terms of neighboring defects. The second section concentrates on MFL-testing (magnetic flux leakage) with active field excitation during and before testing. The latter illustrated the capability of highly resolved crack detection of a crossed notch. This example is best suited to show the ability of tiny magnetic field sensors for magnetic material characterization of a sample surface. Another example is based on characterization of samples after tensile test. Here, no external field is applied. The magnetization is only changed due to external load and magnetostriction leading to a field signature which GMR sensors can resolve. This gives access to internal changes of the magnetization state of the sample under test.

  16. Disposable soft 3 axis force sensor for biomedical applications.

    Science.gov (United States)

    Chathuranga, Damith Suresh; Zhongkui Wang; Yohan Noh; Nanayakkara, Thrishantha; Hirai, Shinichi

    2015-08-01

    This paper proposes a new disposable soft 3D force sensor that can be used to calculate either force or displacement and vibrations. It uses three Hall Effect sensors orthogonally placed around a cylindrical beam made of silicon rubber. A niobium permanent magnet is inside the silicon. When a force is applied to the end of the cylinder, it is compressed and bent to the opposite side of the force displacing the magnet. This displacement causes change in the magnetic flux around the ratiomatric linear sensors (Hall Effect sensors). By analysing these changes, we calculate the force or displacement in three directions using a lookup table. This sensor can be used in minimal invasive surgery and haptic feedback applications. The cheap construction, bio-compatibility and ease of miniaturization are few advantages of this sensor. The sensor design, and its characterization are presented in this work.

  17. APPLICATIONS OF ACTION CAM SENSORS IN THE ARCHAEOLOGICAL YARD

    Directory of Open Access Journals (Sweden)

    M. Pepe

    2018-05-01

    Full Text Available In recent years, special digital cameras called “action camera” or “action cam”, have become popular due to their low price, smallness, lightness, strength and capacity to make videos and photos even in extreme environment surrounding condition. Indeed, these particular cameras have been designed mainly to capture sport actions and work even in case of dirt, bumps, or underwater and at different external temperatures. High resolution of Digital single-lens reflex (DSLR cameras are usually preferred to be employed in photogrammetric field. Indeed, beyond the sensor resolution, the combination of such cameras with fixed lens with low distortion are preferred to perform accurate 3D measurements; at the contrary, action cameras have small and wide-angle lens, with a lower performance in terms of sensor resolution, lens quality and distortions. However, by considering the characteristics of the action cameras to acquire under conditions that may result difficult for standard DSLR cameras and because of their lower price, these could be taken into consideration as a possible and interesting approach during archaeological excavation activities to document the state of the places. In this paper, the influence of lens radial distortion and chromatic aberration on this type of cameras in self-calibration mode and an evaluation of their application in the field of Cultural Heritage will be investigated and discussed. Using a suitable technique, it has been possible to improve the accuracy of the 3D model obtained by action cam images. Case studies show the quality and the utility of the use of this type of sensor in the survey of archaeological artefacts.

  18. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2011-01-01

    was required for application of the sensor for microbial activity measurement, while biofilm‐colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm‐colonized anode showed linear relationship with BOD content, to up to 250 mg......A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode...

  19. Theory, Instrumentation and Applications of Magnetoelastic Resonance Sensors: A Review

    Science.gov (United States)

    Grimes, Craig A.; Roy, Somnath C.; Rani, Sanju; Cai, Qingyun

    2011-01-01

    Thick-film magnetoelastic sensors vibrate mechanically in response to a time varying magnetic excitation field. The mechanical vibrations of the magnetostrictive magnetoelastic material launch, in turn, a magnetic field by which the sensor can be monitored. Magnetic field telemetry enables contact-less, remote-query operation that has enabled many practical uses of the sensor platform. This paper builds upon a review paper we published in Sensors in 2002 (Grimes, C.A.; et al. Sensors 2002, 2, 294–313), presenting a comprehensive review on the theory, operating principles, instrumentation and key applications of magnetoelastic sensing technology. PMID:22163768

  20. Theory, Instrumentation and Applications of Magnetoelastic Resonance Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Craig A. Grimes

    2011-03-01

    Full Text Available Thick-film magnetoelastic sensors vibrate mechanically in response to a time varying magnetic excitation field. The mechanical vibrations of the magnetostrictive magnetoelastic material launch, in turn, a magnetic field by which the sensor can be monitored. Magnetic field telemetry enables contact-less, remote-query operation that has enabled many practical uses of the sensor platform. This paper builds upon a review paper we published in Sensors in 2002 (Grimes, C.A.; et al. Sensors 2002, 2, 294-313, presenting a comprehensive review on the theory, operating principles, instrumentation and key applications of magnetoelastic sensing technology.

  1. A survey on bio inspired meta heuristic based clustering protocols for wireless sensor networks

    Science.gov (United States)

    Datta, A.; Nandakumar, S.

    2017-11-01

    Recent studies have shown that utilizing a mobile sink to harvest and carry data from a Wireless Sensor Network (WSN) can improve network operational efficiency as well as maintain uniform energy consumption by the sensor nodes in the network. Due to Sink mobility, the path between two sensor nodes continuously changes and this has a profound effect on the operational longevity of the network and a need arises for a protocol which utilizes minimal resources in maintaining routes between the mobile sink and the sensor nodes. Swarm Intelligence based techniques inspired by the foraging behavior of ants, termites and honey bees can be artificially simulated and utilized to solve real wireless network problems. The author presents a brief survey on various bio inspired swarm intelligence based protocols used in routing data in wireless sensor networks while outlining their general principle and operation.

  2. A Study of Wearable Bio-Sensor Technologies and Applications in Healthcare

    Directory of Open Access Journals (Sweden)

    Amir Mehmood

    2017-06-01

    Full Text Available In today’s world the rapid advancements in Micro-Electromechanical Systems (MEMS and Nano technology have improved almost all the aspects of daily life routine with the help of different smart devices such as smart phones, compact electronic devices etc. The prime example of these emerging developments is the development of wireless sensors for healthcare procedures. One kind of these sensors is wearable bio-sensors. In this paper, the technologies of two types of bio-sensors (ECG, EMG are investigated and also compared with traditional ECG, EMG equipment. We have taken SHIMMERTM wireless sensor platform as an example of wearable biosensors technology. We have investigated the systems developed for analysis techniques with SHIMMERTM ECG and EMG wearable bio-sensors and these biosensors are used in continuous remote monitoring. For example, applications in continuous health monitoring of elderly people, critical chronic patients and Fitness & Fatigue observations. Nevertheless, early fall detection in older adults and weak patients, treatment efficacy assessment. This study not only provides the basic concepts of wearable wireless bio-sensors networks (WBSN, but also provides basic knowledge of different sensor platforms available for patient’s remote monitoring. Also various healthcare applications by using bio-sensors are discussed and in last comparison with traditional ECG and EMG is presented.

  3. Application of Photocured Polymer Ion Selective Membranes for Solid-State Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Natalia Abramova

    2015-06-01

    Full Text Available Application of conducting polymers with additional functional groups for a solid contact formation and photocurable membranes as sensitive elements of solid-state chemical sensors is discussed. Problems associated with application of UV-curable polymers for sensors are analyzed. A method of sensor fabrication using copolymerized conductive layer and sensitive membrane is presented and the proof of concept is confirmed by two examples of solid-contact electrodes for Ca ions and pH.

  4. Health care sensor--based systems for point of care monitoring and diagnostic applications: a brief survey.

    Science.gov (United States)

    Tsakalakis, Michail; Bourbakis, Nicolaos G

    2014-01-01

    Continuous, real-time remote monitoring through medical point--of--care (POC) systems appears to draw the interest of the scientific community for healthcare monitoring and diagnostic applications the last decades. Towards this direction a significant merit has been due to the advancements in several scientific fields. Portable, wearable and implantable apparatus may contribute to the betterment of today's healthcare system which suffers from fundamental hindrances. The number and heterogeneity of such devices and systems regarding both software and hardware components, i.e sensors, antennas, acquisition circuits, as well as the medical applications that are designed for, is impressive. Objective of the current study is to present the major technological advancements that are considered to be the driving forces in the design of such systems, to briefly state the new aspects they can deliver in healthcare and finally, the identification, categorization and a first level evaluation of them.

  5. Applications of moisture monitoring using TAUPE-sensors

    International Nuclear Information System (INIS)

    Koeniger, F.

    2007-01-01

    TAUPE as a moisture sensor has been developed in cooperation with Technology Transfer Division in Forschungszentrum Karlsruhe since 1996. These sensors can be used to monitor moisture in a variety of materials, using time domain or frequency domain techniques. Major applications are large area supervision of landfill sealings, determination of the snow water equivalent, e.g. in the project SNOWPOWER for the forecasting of the amount of water for energy production in storage lakes and, as a new project, continuous monitoring of groundwater level in the flood plane of river Rhine. (orig.)

  6. Game Theory Meets Wireless Sensor Networks Security Requirements and Threats Mitigation: A Survey.

    Science.gov (United States)

    Abdalzaher, Mohamed S; Seddik, Karim; Elsabrouty, Maha; Muta, Osamu; Furukawa, Hiroshi; Abdel-Rahman, Adel

    2016-06-29

    We present a study of using game theory for protecting wireless sensor networks (WSNs) from selfish behavior or malicious nodes. Due to scalability, low complexity and disseminated nature of WSNs, malicious attacks can be modeled effectively using game theory. In this study, we survey the different game-theoretic defense strategies for WSNs. We present a taxonomy of the game theory approaches based on the nature of the attack, whether it is caused by an external attacker or it is the result of an internal node acting selfishly or maliciously. We also present a general trust model using game theory for decision making. We, finally, identify the significant role of evolutionary games for WSNs security against intelligent attacks; then, we list several prospect applications of game theory to enhance the data trustworthiness and node cooperation in different WSNs.

  7. Game Theory Meets Wireless Sensor Networks Security Requirements and Threats Mitigation: A Survey

    Directory of Open Access Journals (Sweden)

    Mohamed S. Abdalzaher

    2016-06-01

    Full Text Available We present a study of using game theory for protecting wireless sensor networks (WSNs from selfish behavior or malicious nodes. Due to scalability, low complexity and disseminated nature of WSNs, malicious attacks can be modeled effectively using game theory. In this study, we survey the different game-theoretic defense strategies for WSNs. We present a taxonomy of the game theory approaches based on the nature of the attack, whether it is caused by an external attacker or it is the result of an internal node acting selfishly or maliciously. We also present a general trust model using game theory for decision making. We, finally, identify the significant role of evolutionary games for WSNs security against intelligent attacks; then, we list several prospect applications of game theory to enhance the data trustworthiness and node cooperation in different WSNs.

  8. Wireless sensor network performance metrics for building applications

    Energy Technology Data Exchange (ETDEWEB)

    Jang, W.S. (Department of Civil Engineering Yeungnam University 214-1 Dae-Dong, Gyeongsan-Si Gyeongsangbuk-Do 712-749 South Korea); Healy, W.M. [Building and Fire Research Laboratory, 100 Bureau Drive, Gaithersburg, MD 20899-8632 (United States)

    2010-06-15

    Metrics are investigated to help assess the performance of wireless sensors in buildings. Wireless sensor networks present tremendous opportunities for energy savings and improvement in occupant comfort in buildings by making data about conditions and equipment more readily available. A key barrier to their adoption, however, is the uncertainty among users regarding the reliability of the wireless links through building construction. Tests were carried out that examined three performance metrics as a function of transmitter-receiver separation distance, transmitter power level, and obstruction type. These tests demonstrated, via the packet delivery rate, a clear transition from reliable to unreliable communications at different separation distances. While the packet delivery rate is difficult to measure in actual applications, the received signal strength indication correlated well with the drop in packet delivery rate in the relatively noise-free environment used in these tests. The concept of an equivalent distance was introduced to translate the range of reliability in open field operation to that seen in a typical building, thereby providing wireless system designers a rough estimate of the necessary spacing between sensor nodes in building applications. It is anticipated that the availability of straightforward metrics on the range of wireless sensors in buildings will enable more widespread sensing in buildings for improved control and fault detection. (author)

  9. A low-cost, portable, high-throughput wireless sensor system for phonocardiography applications.

    Science.gov (United States)

    Sa-Ngasoongsong, Akkarapol; Kunthong, Jakkrit; Sarangan, Venkatesh; Cai, Xinwei; Bukkapatnam, Satish T S

    2012-01-01

    This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm × 5 cm × 1 cm), high throughput (6,000 Hz data streaming rate), and low cost ($13 per unit for a 1,000 unit batch) of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2), and is also capable of capturing abnormal heart sounds (S3 and S4) and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60-180 Hz through exercise testing.

  10. A Low-Cost, Portable, High-Throughput Wireless Sensor System for Phonocardiography Applications

    Directory of Open Access Journals (Sweden)

    Akkarapol Sa-ngasoongsong

    2012-08-01

    Full Text Available This paper presents the design and testing of a wireless sensor system developed using a Microchip PICDEM developer kit to acquire and monitor human heart sounds for phonocardiography applications. This system can serve as a cost-effective option to the recent developments in wireless phonocardiography sensors that have primarily focused on Bluetooth technology. This wireless sensor system has been designed and developed in-house using off-the-shelf components and open source software for remote and mobile applications. The small form factor (3.75 cm ´ 5 cm ´ 1 cm, high throughput (6,000 Hz data streaming rate, and low cost ($13 per unit for a 1,000 unit batch of this wireless sensor system make it particularly attractive for phonocardiography and other sensing applications. The experimental results of sensor signal analysis using several signal characterization techniques suggest that this wireless sensor system can capture both fundamental heart sounds (S1 and S2, and is also capable of capturing abnormal heart sounds (S3 and S4 and heart murmurs without aliasing. The results of a denoising application using Wavelet Transform show that the undesirable noises of sensor signals in the surrounding environment can be reduced dramatically. The exercising experiment results also show that this proposed wireless PCG system can capture heart sounds over different heart conditions simulated by varying heart rates of six subjects over a range of 60–180 Hz through exercise testing.

  11. Fatigue damage sensor and substatiation of its application. Communication 1

    International Nuclear Information System (INIS)

    Troshchenko, V.T.; Bojko, V.I.

    1985-01-01

    Basic characteristics are presented for the fatigue damage sensor at regular loading produced according to the technology developed at the Institute of Problems in Strength. It is shown that the sensor application potentialities may be extended at the exoense of using deformation multipliers. Loading frequency, temperature and cycle assymetry are studied for their effect on the sensor readings. It is established that the basic sensor characteristics are not affected by the cycle assymetry in the deformation range studied. Frequency and temperature variation ranges are determined where these parameters have no effect on the sensor readings. Ways for considering the effect of the studied factors, as well as the effect of a part stress concentration on sensor readings are shown when the sensor is applied for predicting a part

  12. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    Directory of Open Access Journals (Sweden)

    Fangming Deng

    2014-05-01

    Full Text Available This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  13. A CMOS Humidity Sensor for Passive RFID Sensing Applications

    Science.gov (United States)

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-01-01

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 μW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs. PMID:24841250

  14. A CMOS humidity sensor for passive RFID sensing applications.

    Science.gov (United States)

    Deng, Fangming; He, Yigang; Zhang, Chaolong; Feng, Wei

    2014-05-16

    This paper presents a low-cost low-power CMOS humidity sensor for passive RFID sensing applications. The humidity sensing element is implemented in standard CMOS technology without any further post-processing, which results in low fabrication costs. The interface of this humidity sensor employs a PLL-based architecture transferring sensor signal processing from the voltage domain to the frequency domain. Therefore this architecture allows the use of a fully digital circuit, which can operate on ultra-low supply voltage and thus achieves low-power consumption. The proposed humidity sensor has been fabricated in the TSMC 0.18 μm CMOS process. The measurements show this humidity sensor exhibits excellent linearity and stability within the relative humidity range. The sensor interface circuit consumes only 1.05 µW at 0.5 V supply voltage and reduces it at least by an order of magnitude compared to previous designs.

  15. Semiconductor device-based sensors for gas, chemical, and biomedical applications

    CERN Document Server

    Ren, Fan

    2011-01-01

    Sales of U.S. chemical sensors represent the largest segment of the multi-billion-dollar global sensor market, which includes instruments for chemical detection in gases and liquids, biosensors, and medical sensors. Although silicon-based devices have dominated the field, they are limited by their general inability to operate in harsh environments faced with factors such as high temperature and pressure. Exploring how and why these instruments have become a major player, Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications presents the latest research, including or

  16. Nanostructured conjugated polymers in chemical sensors: synthesis, properties and applications.

    Science.gov (United States)

    Correa, D S; Medeiros, E S; Oliveira, J E; Paterno, L G; Mattoso, Luiz C

    2014-09-01

    Conjugated polymers are organic materials endowed with a π-electron conjugation along the polymer backbone that present appealing electrical and optical properties for technological applications. By using conjugated polymeric materials in the nanoscale, such properties can be further enhanced. In addition, the use of nanostructured materials makes possible miniaturize devices at the micro/nano scale. The applications of conjugated nanostructured polymers include sensors, actuators, flexible displays, discrete electronic devices, and smart fabric, to name a few. In particular, the use of conjugated polymers in chemical and biological sensors is made feasible owning to their sensitivity to the physicochemical conditions of its surrounding environment, such as chemical composition, pH, dielectric constant, humidity or even temperature. Subtle changes in these conditions bring about variations on the electrical (resistivity and capacitance), optical (absorptivity, luminescence, etc.), and mechanical properties of the conjugated polymer, which can be precisely measured by different experimental methods and ultimately associated with a specific analyte and its concentration. The present review article highlights the main features of conjugated polymers that make them suitable for chemical sensors. An especial emphasis is given to nanostructured sensors systems, which present high sensitivity and selectivity, and find application in beverage and food quality control, pharmaceutical industries, medical diagnosis, environmental monitoring, and homeland security, and other applications as discussed throughout this review.

  17. Applications of Nuclear Magnetic Resonance Sensors to Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Noemi Proietti

    2014-04-01

    Full Text Available In recent years nuclear magnetic resonance (NMR sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported.

  18. A field-deployable, aircraft-mounted sensor for the environmental survey of radionuclides

    International Nuclear Information System (INIS)

    Lepel, E.A.; Geelhood, B.D.; Hensley, W.K.; Quam, W.M.

    1998-01-01

    The Environmental Radionuclide Sensor System (ERSS) 3 is an extremely sensitive sensor, which has been cooperatively developed by Pacific Northwest National Laboratory (PNNL) and Special Technologies Laboratory (STL) for environmental surveys of radionuclides. The ERSS sensors fit in an airborne pod and include twenty High-Purity Germanium (HPGe) detectors for the high-resolution measurement of gamma-ray emitting radionuclides, twenty-four 3 He detectors for possible neutron measurements, and two video cameras for visual correlation. These aerial HPGe sensors provide much better gamma-ray energy resolution than can be obtained with NaI(Tl) detectors. The associated electronics fit into three racks. The system can be powered by the 28 V DC electrical supply of typical aircraft or 120 V AC. The data acquisition hardware is controlled by customized software and a real-time display is provided. Each gamma-ray event is time stamped and stored for later analysis. This paper will present the physical design, discuss the software used to control the system, and provide some examples of its use. (author)

  19. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: a review.

    Science.gov (United States)

    Roriz, Paulo; Carvalho, Lídia; Frazão, Orlando; Santos, José Luís; Simões, José António

    2014-04-11

    In vivo measurement, not only in animals but also in humans, is a demanding task and is the ultimate goal in experimental biomechanics. For that purpose, measurements in vivo must be performed, under physiological conditions, to obtain a database and contribute for the development of analytical models, used to describe human biomechanics. The knowledge and control of the mechanisms involved in biomechanics will allow the optimization of the performance in different topics like in clinical procedures and rehabilitation, medical devices and sports, among others. Strain gages were first applied to bone in a live animal in 40's and in 80's for the first time were applied fibre optic sensors to perform in vivo measurements of Achilles tendon forces in man. Fibre optic sensors proven to have advantages compare to conventional sensors and a great potential for biomechanical and biomedical applications. Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of infection, highly accurate, well correlated, inexpensive and multiplexable. The aim of this review article is to give an overview about the evolution of the experimental techniques applied in biomechanics, from conventional to fibre optic sensors. In the next sections the most relevant contributions of these sensors, for strain and force in biomechanical applications, will be presented. Emphasis was given to report of in vivo experiments and clinical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Adaptive Information Access on Multiple Applications Support Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Tobgay, Sonam; Olsen, Rasmus Løvenstein; Prasad, Ramjee

    2014-01-01

    information is challenged by dynamic nature of information elements. These challenges are more prominent in case of wireless sensor network (WSN) applications, as the information that the sensor node collects are mostly dynamic in nature (say, temperature). Therefore, it is likely that there can be a mismatch...

  1. New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application

    Energy Technology Data Exchange (ETDEWEB)

    John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

    2007-12-31

    Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

  2. Triaxial fiber optic magnetic field sensor for MRI applications

    Science.gov (United States)

    Filograno, Massimo L.; Pisco, Marco; Catalano, Angelo; Forte, Ernesto; Aiello, Marco; Soricelli, Andrea; Davino, Daniele; Visone, Ciro; Cutolo, Antonello; Cusano, Andrea

    2016-05-01

    In this paper, we report a fiber-optic triaxial magnetic field sensor, based on Fiber Bragg Gratings (FBGs) integrated with giant magnetostrictive material, the Terfenol-D. The realized sensor has been designed and engineered for Magnetic Resonance Imaging (MRI) applications. A full magneto-optical characterization of the triaxial sensing probe has been carried out, providing the complex relationship among the FBGs wavelength shift and the applied magnetostatic field vector. Finally, the developed fiber optic sensors have been arranged in a sensor network composed of 20 triaxial sensors for mapping the magnetic field distribution in a MRI-room at a diagnostic center in Naples (SDN), equipped with Positron emission tomography/magnetic resonance (PET/MR) instrumentation. Experimental results reveal that the proposed sensor network can be efficiently used in MRI centers for performing quality assurance tests, paving the way for novel integrated tools to measure the magnetic dose accumulated day by day by MRI operators.

  3. An interfacial stress sensor for biomechanical applications

    International Nuclear Information System (INIS)

    Sundara-Rajan, K; Bestick, A; Rowe, G I; Mamishev, A V; Klute, G K; Ledoux, W R; Wang, H C

    2012-01-01

    This paper presents a capacitive sensor that measures interfacial forces in prostheses and is promising for other biomedical applications. These sensors can be integrated into prosthetic devices to measure both normal and shear stress simultaneously, allowing for the study of prosthetic limb fit, and ultimately for the ability to better adapt prosthetics to individual users. A sensing cell with a 1.0 cm 2 spatial resolution and a measurement range of 0–220 kPa of shear and 0–2 MPa of pressure was constructed. The cell was load tested and found to be capable of isolating the applied shear and pressure forces. This paper discusses the construction of the prototype, the mechanical and electrode design, fabrication and characterization. The work presented is aimed at creating a class of adaptive prosthetic interfaces using a capacitive sensor. (paper)

  4. Diode laser based velocity sensors for industrial applications

    DEFF Research Database (Denmark)

    Iversen, Theis Faber Quist

    is part of a single optical unit, combining an additional optical spatial filter and a transmitter used for beam shaping. The optical unit used in the miniaturized sensor is acting in combination with an application specific integrated circuit (ASIC) fitted with appropriate detector arrays facilitating...... a two dimensional velocity measurement of in-plane translation of a rigid object (surface). Particularly, the beam shaping transmitter optic is redesigned for optimum performance using a Fourier optical diffraction model. Furthermore, a ray tracing model is developed for the receiving part...... and discussed. The observations made outlines possible advantageous properties that may be exploited to develop ultrathin touch sensitive sensors for use as cursor control devices in form-factor critical applications, such as e.g. mobile phones....

  5. The application of unattended ground sensors to stationary targets

    International Nuclear Information System (INIS)

    Sleefe, G.E.; Peglow, S.; Hamrick, R.

    1997-01-01

    The unattended sensing of stationary (i.e. non-mobile) targets is important in applications ranging from counter-proliferation to law enforcement. With stationary targets, sources of seismic, acoustic, and electro-magnetic emissions can potentially be used to detect, identify, and locate the target. Stationary targets have considerably different sensing requirements than the traditional mobile-target unattended ground sensor applications. This paper presents the novel features and requirements of a system for sensing stationary targets. In particular, issues associated with long-listen time signal processing for signal detection, and array processing techniques for signal localization are presented. Example data and signal processing outputs from a stationary target will be used to illustrate these issues. The impact on sensor, electronic signal processing, battery subsystem, and communication requirements will also be discussed. The paper will conclude with a detailed comparison between mobile-target and stationary-target unattended ground sensor architectures

  6. Multi-sensor image fusion and its applications

    CERN Document Server

    Blum, Rick S

    2005-01-01

    Taking another lesson from nature, the latest advances in image processing technology seek to combine image data from several diverse types of sensors in order to obtain a more accurate view of the scene: very much the same as we rely on our five senses. Multi-Sensor Image Fusion and Its Applications is the first text dedicated to the theory and practice of the registration and fusion of image data, covering such approaches as statistical methods, color-related techniques, model-based methods, and visual information display strategies.After a review of state-of-the-art image fusion techniques,

  7. Testing and use of radar water level sensors by the U.S. Geological Survey

    Science.gov (United States)

    Fulford, Janice M.

    2016-01-01

    The United States Geological Survey uses water-level (or stage) measurements to compute streamflow at over 8000 stream gaging stations located throughout the United States (waterwatch.usgs.gov, 2016). Streamflow (or discharge) is computed at five minute to hourly intervals from a relationship between water level and discharge that is uniquely determined for each station. The discharges are posted hourly to WaterWatch (waterwatch. usgs.gov) and are used by water managers to issue flood warnings and manage water supply and by other users of water information to make decisions. The accuracy of the water-level measurement is vital to the accuracy of the computed discharge. Because of the importance of water-level measurements, USGS has an accuracy policy of 0.02 ft or 0.2 percent of reading (whichever is larger) (Sauer and Turnipseed, 2010). Older technologies, such as float and shaft-encoder systems, bubbler systems and submersible pressure sensors, provide the needed accuracy but often require extensive construction to install and are prone to malfunctioning and damage from floating debris and sediment. No stilling wells or orifice lines need to be constructed for radar installations. During the last decade testing by the USGS Hydrologic Instrumentation Facility(HIF) found that radar water-level sensors can provide the needed accuracy for water-level measurements and because the sensor can be easily attached to bridges, reduce the construction required for installation. Additionally, the non-contact sensing of water level minimizes or eliminates damage and fouling from floating debris and sediment. This article is a brief summary of the testing efforts by the USGS HIF and field experiences with models of radar water-level sensors in streamflow measurement applications. Any use of trade names in this article is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  8. Sensors, Volume 4, Thermal Sensors

    Science.gov (United States)

    Scholz, Jorg; Ricolfi, Teresio

    1996-12-01

    'Sensors' is the first self-contained series to deal with the whole area of sensors. It describes general aspects, technical and physical fundamentals, construction, function, applications and developments of the various types of sensors. This volume describes the construction and applicational aspects of thermal sensors while presenting a rigorous treatment of the underlying physical principles. It provides a unique overview of the various categories of sensors as well as of specific groups, e.g. temperature sensors (resistance thermometers, thermocouples, and radiation thermometers), noise and acoustic thermometers, heat-flow and mass-flow sensors. Specific facettes of applications are presented by specialists from different fields including process control, automotive technology and cryogenics. This volume is an indispensable reference work and text book for both specialists and newcomers, researchers and developers.

  9. Survey of utility robotic applications (1990)

    International Nuclear Information System (INIS)

    1991-08-01

    This special report presents the results of a survey to identify areas of usage where utilities have found robotics to be most beneficial. The survey, which was conducted by U/M RUG, an ad hoc robotics group, should be of interest to all utilities interested in proven applications. The survey shows that robotics are finding increasing use in maintenance tasks, and in cleanup applications. Extended usage of precision positioning, dexterity, intelligence and mobility is not yet apparent. Improvements in these areas would greatly aid maintenance applications of robotics. 7 figs

  10. Automatic Fire Detection: A Survey from Wireless Sensor Network Perspective

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2008-01-01

    Automatic fire detection is important for early detection and promptly extinguishing fire. There are ample studies investigating the best sensor combinations and appropriate techniques for early fire detection. In the previous studies fire detection has either been considered as an application of a

  11. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Directory of Open Access Journals (Sweden)

    Scott D. Wolter

    2009-05-01

    Full Text Available Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i Quantum cascade lasers (QCL based photoacoustic (PA systems; ii gold nanoparticles as catalytically active materials in field-effect transistor (FET sensors, and iii functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.

  12. Optical and Electronic NOx Sensors for Applications in Mechatronics

    Science.gov (United States)

    Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A.; Wolter, Scott D.; Brown, April; Ricco, Mario

    2009-01-01

    Current production and emerging NOx sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NOx show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NOx in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NOx sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling. PMID:22412315

  13. Thermal Stability of Magnetic Compass Sensor for High Accuracy Positioning Applications

    OpenAIRE

    Van-Tang PHAM; Dinh-Chinh NGUYEN; Quang-Huy TRAN; Duc-Trinh CHU; Duc-Tan TRAN

    2015-01-01

    Using magnetic compass sensors in angle measurements have a wide area of application such as positioning, robot, landslide, etc. However, one of the most phenomenal that affects to the accuracy of the magnetic compass sensor is the temperature. This paper presents two thermal stability schemes for improving performance of a magnetic compass sensor. The first scheme uses the feedforward structure to adjust the angle output of the compass sensor adapt to the variation of the temperature. The se...

  14. Programming signal processing applications on heterogeneous wireless sensor platforms

    NARCIS (Netherlands)

    Buondonno, L.; Fortino, G.; Galzarano, S.; Giannantonio, R.; Giordano, A.; Gravina, R.; Guerrieri, A.

    2009-01-01

    This paper proposes the SPINE frameworks (SPINE1.x and SPINE2) for the programming of signal processing applications on heterogeneous wireless sensor platforms. In particular, two integrable approaches based on the proposed frameworks are described that allow to develop applications for wireless

  15. Thermal Cameras and Applications

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up...... a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas detection......, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras....

  16. Applications of FBG sensors on telecom satellites

    Science.gov (United States)

    Abad, S.; Araújo, F. M.; Ferreira, L. A.; Pedersen, F.; Esteban, M. A.; McKenzie, I.; Karafolas, N.

    2017-11-01

    Monitoring needs of spacecraft are rapidly increasing due to new and more challenging missions, along with demands to reduce launching costs by minimizing the manufacture, assembly, integration and test time and employing new low weight materials balanced by the need for maximizing system lifetime while maintaining good reliability. Conventional electronic sensors are characterized by their low multiplexing capability and their EMI/RF susceptibility and it is in this scenario that Fiber Optic Sensors (FOS) in general, and more specifically Fiber Bragg Grating (FBG) technology offers important benefits, improving in various ways the already deployed sensing subsystems (e.g. reducing the weight associated with sensor cabling, increasing the number of sensing points) and enabling new monitoring applications that were not possible by using conventional sensing technologies. This work presents the activities performed and the lessons learnt in the frame of ESA's ARTES-5 project "Fiber Optic Sensing Subsystem for Spacecraft Health Monitoring in Telecommunication Satellites". This project finished in July 2009, with the implementation and testing of two different demonstrators employing FBG sensor technology: FBG sensors for temperature monitoring in high voltage environments, and in particular in several parts of electric propulsion subsystems [1], and FBG sensors for thermal monitoring of array-antennas during RF testing [2]. In addition, the contacts performed with different actors within the space community allowed the identification of a special area of interest for the substitution of regular thermocouple instrumentation by FBG technology for thermal vacuum ground testing of satellites.

  17. Fiber Bragg grating sensors in harsh environments: considerations and industrial monitoring applications

    Science.gov (United States)

    Méndez, Alexis

    2017-06-01

    Over the last few years, fiber optic sensors (FOS) have seen an increased acceptance and widespread use in industrial sensing and in structural monitoring in civil, aerospace, marine, oil & gas, composites and other applications. One of the most prevalent types in use today are fiber Bragg grating (FBG) sensors. Historically, FOS have been an attractive solution because of their EM immunity and suitability for use in harsh environments and rugged applications with extreme temperatures, radiation exposure, EM fields, high voltages, water contact, flammable atmospheres, or other hazards. FBG sensors have demonstrated that can operate reliably in many different harsh environment applications but proper type and fabrication process are needed, along with suitable packaging and installation procedure. In this paper, we review the impact that external factors and environmental conditions play on FBG's performance and reliability, and describe the appropriate sensor types and protection requirements suitable for a variety of harsh environment applications in industrial furnaces, cryogenic coolers, nuclear plants, maritime vessels, oil & gas wells, aerospace crafts, automobiles, and others.

  18. Low-Power Wireless Sensor Networks Protocols, Services and Applications

    CERN Document Server

    Suhonen, Jukka; Kaseva, Ville; Hämäläinen, Timo D; Hännikäinen, Marko

    2012-01-01

    Wireless sensor network (WSN) is an ad-hoc network technology comprising even thousands of autonomic and self-organizing nodes that combine environmental sensing, data processing, and wireless networking. The applications for sensor networks range from home and industrial environments to military uses. Unlike the traditional computer networks, a WSN is application-oriented and deployed for a specific task. WSNs are data centric, which means that messages are not send to individual nodes but to geographical locations or regions based on the data content. A WSN node is typically battery powered and characterized by extremely small size and low cost. As a result, the processing power, memory, and energy resources of an individual sensor node are limited. However, the feasibility of a WSN lies on the collaboration between the nodes. A reference WSN node comprises a Micro-Controller Unit (MCU) having few Million Instructions Per Second (MIPS) processing speed, tens of kilobytes program memory, few kilobytes data m...

  19. A Survey on FPGA-Based Sensor Systems: Towards Intelligent and Reconfigurable Low-Power Sensors for Computer Vision, Control and Signal Processing

    Directory of Open Access Journals (Sweden)

    Gabriel J. García

    2014-03-01

    Full Text Available The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc., reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.

  20. A survey on FPGA-based sensor systems: towards intelligent and reconfigurable low-power sensors for computer vision, control and signal processing.

    Science.gov (United States)

    García, Gabriel J; Jara, Carlos A; Pomares, Jorge; Alabdo, Aiman; Poggi, Lucas M; Torres, Fernando

    2014-03-31

    The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.

  1. Microfluidic devices for investigation of biomimetic membranes for sensor and separation applications

    DEFF Research Database (Denmark)

    Pszon-Bartosz, Kamila Justyna

    to microfluidic designs involving protein delivery to biomimetic membranes developed for sensor and separation applications. Finally, an OMP functionality modulation with β-cyclodextrin (β-CD) was shown and revealed the protein potential application as a sensor. Moreover, the β-CD blocker may be used to prevent...... for industrial applications. Among them are the inherent fragility of lipid membranes, the challenge of up-scaling the effective membrane area and the quantification of the protein delivery to the lipid membrane which may determined the biomimetic membrane application. This PhD thesis addresses the above...

  2. Energy Efficient Hierarchical Clustering Approaches in Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Bilal Jan

    2017-01-01

    Full Text Available Wireless sensor networks (WSN are one of the significant technologies due to their diverse applications such as health care monitoring, smart phones, military, disaster management, and other surveillance systems. Sensor nodes are usually deployed in large number that work independently in unattended harsh environments. Due to constraint resources, typically the scarce battery power, these wireless nodes are grouped into clusters for energy efficient communication. In clustering hierarchical schemes have achieved great interest for minimizing energy consumption. Hierarchical schemes are generally categorized as cluster-based and grid-based approaches. In cluster-based approaches, nodes are grouped into clusters, where a resourceful sensor node is nominated as a cluster head (CH while in grid-based approach the network is divided into confined virtual grids usually performed by the base station. This paper highlights and discusses the design challenges for cluster-based schemes, the important cluster formation parameters, and classification of hierarchical clustering protocols. Moreover, existing cluster-based and grid-based techniques are evaluated by considering certain parameters to help users in selecting appropriate technique. Furthermore, a detailed summary of these protocols is presented with their advantages, disadvantages, and applicability in particular cases.

  3. Fully depleted CMOS pixel sensor development and potential applications

    Energy Technology Data Exchange (ETDEWEB)

    Baudot, J.; Kachel, M. [Universite de Strasbourg, IPHC, 23 rue du Loess 67037 Strasbourg (France); CNRS, UMR7178, 67037 Strasbourg (France)

    2015-07-01

    CMOS pixel sensors are often opposed to hybrid pixel sensors due to their very different sensitive layer. In standard CMOS imaging processes, a thin (about 20 μm) low resistivity epitaxial layer acts as the sensitive volume and charge collection is mostly driven by thermal agitation. In contrast, the so-called hybrid pixel technology exploits a thick (typically 300 μm) silicon sensor with high resistivity allowing for the depletion of this volume, hence charges drift toward collecting electrodes. But this difference is fading away with the recent availability of some CMOS imaging processes based on a relatively thick (about 50 μm) high resistivity epitaxial layer which allows for full depletion. This evolution extents the range of applications for CMOS pixel sensors where their known assets, high sensitivity and granularity combined with embedded signal treatment, could potentially foster breakthrough in detection performances for specific scientific instruments. One such domain is the Xray detection for soft energies, typically below 10 keV, where the thin sensitive layer was previously severely impeding CMOS sensor usage. Another application becoming realistic for CMOS sensors, is the detection in environment with a high fluence of non-ionizing radiation, such as hadron colliders. However, when considering highly demanding applications, it is still to be proven that micro-circuits required to uniformly deplete the sensor at the pixel level, do not mitigate the sensitivity and efficiency required. Prototype sensors in two different technologies with resistivity higher than 1 kΩ, sensitive layer between 40 and 50 μm and featuring pixel pitch in the range 25 to 50 μm, have been designed and fabricated. Various biasing architectures were adopted to reach full depletion with only a few volts. Laboratory investigations with three types of sources (X-rays, β-rays and infrared light) demonstrated the validity of the approach with respect to depletion, keeping a

  4. Distributed Sensor Network Software Development Testing through Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Sean M. [Univ. of New Mexico, Albuquerque, NM (United States)

    2003-12-01

    The distributed sensor network (DSN) presents a novel and highly complex computing platform with dif culties and opportunities that are just beginning to be explored. The potential of sensor networks extends from monitoring for threat reduction, to conducting instant and remote inventories, to ecological surveys. Developing and testing for robust and scalable applications is currently practiced almost exclusively in hardware. The Distributed Sensors Simulator (DSS) is an infrastructure that allows the user to debug and test software for DSNs independent of hardware constraints. The exibility of DSS allows developers and researchers to investigate topological, phenomenological, networking, robustness and scaling issues, to explore arbitrary algorithms for distributed sensors, and to defeat those algorithms through simulated failure. The user speci es the topology, the environment, the application, and any number of arbitrary failures; DSS provides the virtual environmental embedding.

  5. Wireless Sensor/Actuator Network Design for Mobile Control Applications

    Directory of Open Access Journals (Sweden)

    Youxian Sung

    2007-10-01

    Full Text Available Wireless sensor/actuator networks (WSANs are emerging as a new generationof sensor networks. Serving as the backbone of control applications, WSANs will enablean unprecedented degree of distributed and mobile control. However, the unreliability ofwireless communications and the real-time requirements of control applications raise greatchallenges for WSAN design. With emphasis on the reliability issue, this paper presents anapplication-level design methodology for WSANs in mobile control applications. Thesolution is generic in that it is independent of the underlying platforms, environment,control system models, and controller design. To capture the link quality characteristics interms of packet loss rate, experiments are conducted on a real WSAN system. From theexperimental observations, a simple yet efficient method is proposed to deal withunpredictable packet loss on actuator nodes. Trace-based simulations give promisingresults, which demonstrate the effectiveness of the proposed approach.

  6. Intelligent Chemical Sensor Systems for In-space Safety Applications

    Science.gov (United States)

    Hunter, G. W.; Xu, J. C.; Neudeck, P. G.; Makel, D. B.; Ward, B.; Liu, C. C.

    2006-01-01

    Future in-space and lunar operations will require significantly improved monitoring and Integrated System Health Management (ISHM) throughout the mission. In particular, the monitoring of chemical species is an important component of an overall monitoring system for space vehicles and operations. For example, in leak monitoring of propulsion systems during launch, inspace, and on lunar surfaces, detection of low concentrations of hydrogen and other fuels is important to avoid explosive conditions that could harm personnel and damage the vehicle. Dependable vehicle operation also depends on the timely and accurate measurement of these leaks. Thus, the development of a sensor array to determine the concentration of fuels such as hydrogen, hydrocarbons, or hydrazine as well as oxygen is necessary. Work has been on-going to develop an integrated smart leak detection system based on miniaturized sensors to detect hydrogen, hydrocarbons, or hydrazine, and oxygen. The approach is to implement Microelectromechanical Systems (MEMS) based sensors incorporated with signal conditioning electronics, power, data storage, and telemetry enabling intelligent systems. The final sensor system will be self-contained with a surface area comparable to a postage stamp. This paper discusses the development of this "Lick and Stick" leak detection system and it s application to In-Space Transportation and other Exploration applications.

  7. Silicon Carbide-Based Hydrogen Gas Sensors for High-Temperature Applications

    Directory of Open Access Journals (Sweden)

    Sangchoel Kim

    2013-10-01

    Full Text Available We investigated SiC-based hydrogen gas sensors with metal-insulator-semiconductor (MIS structure for high temperature process monitoring and leak detection applications in fields such as the automotive, chemical and petroleum industries. In this work, a thin tantalum oxide (Ta2O5 layer was exploited with the purpose of sensitivity improvement, because tantalum oxide has good stability at high temperature with high permeability for hydrogen gas. Silicon carbide (SiC was used as a substrate for high-temperature applications. We fabricated Pd/Ta2O5/SiC-based hydrogen gas sensors, and the dependence of their I-V characteristics and capacitance response properties on hydrogen concentrations were analyzed in the temperature range from room temperature to 500 °C. According to the results, our sensor shows promising performance for hydrogen gas detection at high temperatures.

  8. Ozone Sensor for Application in Medium Voltage Switchboard

    Directory of Open Access Journals (Sweden)

    Letizia De Maria

    2009-01-01

    Full Text Available The application of a new spectroscopic type fiber sensor for ozone detection in electrical components of Medium Voltage (MV network is evaluated. The sensor layout is based on the use of an optical retroreflector, to improve the detection sensitivity, and it was especially designed for detecting in situ rapid changes of ozone concentration. Preliminary tests were performed in a typical MV switchboard. Artificial defects simulated predischarge phenomena arising during real operating conditions. Results are discussed by a comparison with data simultaneously acquired with a standard partial discharge system.

  9. Control systems using modal domain optical fiber sensors for smart structure applications

    Science.gov (United States)

    Lindner, Douglas K.; Reichard, Karl M.

    1991-01-01

    Recently, a new class of sensors has emerged for structural control which respond to environmental changes over a significant gauge length; these sensors are called distributed-effect sensors. These sensors can be fabricated with spatially varying sensitivity to the distributed measurand, and can be configured to measure a variety of structural parameters which can not be measured directly using point sensors. Examples of distributed-effect sensors include piezoelectric film, holographic sensors, and modal domain optical fiber sensors. Optical fiber sensors are particularly attractive for smart structure applications because they are flexible, have low mass, and can easily be embedded directly into materials. In this paper we describe the implementation of weighted modal domain optical fiber sensors. The mathematical model of the modal domain optical fiber sensor model is described and used to derive an expression for the sensor sensitivity. The effects of parameter variations on the sensor sensitivity are demonstrated to illustrate methods of spatially varying the sensor sensitivity.

  10. An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications.

    Science.gov (United States)

    Xiaoyu Zhang; Hanjun Jiang; Lingwei Zhang; Chun Zhang; Zhihua Wang; Xinkai Chen

    2010-02-01

    An energy-efficient application-specific integrated circuit (ASIC) featured with a work-on-demand protocol is designed for wireless body sensor networks (WBSNs) in medical applications. Dedicated for ultra-low-power wireless sensor nodes, the ASIC consists of a low-power microcontroller unit (MCU), a power-management unit (PMU), reconfigurable sensor interfaces, communication ports controlling a wireless transceiver, and an integrated passive radio-frequency (RF) receiver with energy harvesting ability. The MCU, together with the PMU, provides quite flexible communication and power-control modes for energy-efficient operations. The always-on passive RF receiver with an RF energy harvesting block offers the sensor nodes the capability of work-on-demand with zero standby power. Fabricated in standard 0.18-¿m complementary metal-oxide semiconductor technology, the ASIC occupies a die area of 2 mm × 2.5 mm. A wireless body sensor network sensor-node prototype using this ASIC only consumes < 10-nA current under the passive standby mode, and < 10 ¿A under the active standby mode, when supplied by a 3-V battery.

  11. Development of a Smartphone Application to Measure Physical Activity Using Sensor-Assisted Self-Report

    Directory of Open Access Journals (Sweden)

    Genevieve Fridlund Dunton

    2014-02-01

    Full Text Available Introduction: Despite the known advantages of objective physical activity monitors (e.g., accelerometers, these devices have high rates of non-wear, which leads to missing data. Objective activity monitors are also unable to capture valuable contextual information about behavior. Adolescents recruited into physical activity surveillance and intervention studies will increasingly have smartphones, which are miniature computers with built-in motion sensors. Methods: This paper describes the design and development of a smartphone application (app called Mobile Teen that combines objective and self-report assessment strategies through (1 sensor-informed context-sensitive ecological momentary assessment (CS-EMA and (2 sensor-assisted end-of-day recall.Results: The Mobile Teen app uses the mobile phone’s built-in motion sensor to automatically detect likely bouts of phone non-wear, sedentary behavior, and physical activity. The app then uses transitions between these inferred states to trigger CS-EMA self-report surveys measuring the type, purpose, and context of activity in real time. The end of the day recall component of the Mobile Teen app allows users to interactively review and label their own physical activity data each evening using visual cues from automatically-detected major activity transitions from the phone’s built-in motions sensors. Major activity transitions are identified by the app, which cues the user to label that chunk, or period, of time using activity categories.Conclusions: Sensor-driven CS-EMA and end-of-day recall smartphone apps can be used to augment physical activity data collected by objective activity monitors, filling in gaps during non-wear bouts and providing additional real-time data on environmental, social, and emotional correlates of behavior. Smartphone apps such as these have potential for affordable deployment in large scale epidemiological and intervention studies.

  12. A liquid crystal polymer membrane MEMS sensor for flow rate and flow direction sensing applications

    International Nuclear Information System (INIS)

    Kottapalli, A G P; Tan, C W; Olfatnia, M; Miao, J M; Barbastathis, G; Triantafyllou, M

    2011-01-01

    The paper reports the design, fabrication and experimental results of a liquid crystal polymer (LCP) membrane-based pressure sensor for flow rate and flow direction sensing applications. Elaborate experimental testing results demonstrating the sensors' performance as an airflow sensor have been illustrated and validated with theory. MEMS sensors using LCP as a membrane structural material show higher sensitivity and reliability over silicon counterparts. The developed device is highly robust for harsh environment applications such as atmospheric wind flow monitoring and underwater flow sensing. A simple, low-cost and repeatable fabrication scheme has been developed employing low temperatures. The main features of the sensor developed in this work are a LCP membrane with integrated thin film gold piezoresistors deposited on it. The sensor developed demonstrates a good sensitivity of 3.695 mV (ms −1 ) −1 , large operating range (0.1 to >10 ms −1 ) and good accuracy in measuring airflow with an average error of only 3.6% full-scale in comparison with theory. Various feasible applications of the developed sensor have been demonstrated with experimental results. The sensor was tested for two other applications—in clinical diagnosis for breath rate, breath velocity monitoring, and in underwater applications for object detection by sensing near-field spatial flow pressure

  13. Short-Range Noncontact Sensors for Healthcare and Other Emerging Applications: A Review

    Directory of Open Access Journals (Sweden)

    Changzhan Gu

    2016-07-01

    Full Text Available Short-range noncontact sensors are capable of remotely detecting the precise movements of the subjects or wirelessly estimating the distance from the sensor to the subject. They find wide applications in our day lives such as noncontact vital sign detection of heart beat and respiration, sleep monitoring, occupancy sensing, and gesture sensing. In recent years, short-range noncontact sensors are attracting more and more efforts from both academia and industry due to their vast applications. Compared to other radar architectures such as pulse radar and frequency-modulated continuous-wave (FMCW radar, Doppler radar is gaining more popularity in terms of system integration and low-power operation. This paper reviews the recent technical advances in Doppler radars for healthcare applications, including system hardware improvement, digital signal processing, and chip integration. This paper also discusses the hybrid FMCW-interferometry radars and the emerging applications and the future trends.

  14. Scaling up close-range surveys, a challenge for the generalization of as-built data in industrial applications

    Directory of Open Access Journals (Sweden)

    J.-F. Hullo

    2014-06-01

    Full Text Available As-built CAD data reconstructed from Terrestrial Laser Scanner (TLS data are used for more than two decades by Electricité de France (EDF to prepare maintenance operations in its facilities. But today, the big picture is renewed: "as-built virtual reality" must address a huge scale-up to provide data to an increasing number of applications. In this paper, we first present a wide multi-sensor multi-purpose scanning campaign performed in a 10 floor building of a power plant in 2013: 1083 TLS stations (about 40.109 3D points referenced under a 2 cm tolerance and 1025 RGB panoramic images (340.106 pixels per point of view. As expected, this very large survey of high precision measurements in a complex environment stressed sensors and tools that were developed for more favourable conditions and smaller data sets. The whole survey process (tools and methods used from acquisition and processing to CAD reconstruction underwent a detailed follow-up in order to state on the locks to a possible generalization to other buildings. Based on these recent feedbacks, we have highlighted some of these current bottlenecks in this paper: sensors denoising, automation in processes, data validation tools improvements, standardization of formats and (meta- data structures.

  15. Scaling up close-range surveys, a challenge for the generalization of as-built data in industrial applications

    Science.gov (United States)

    Hullo, J.-F.; Thibault, G.

    2014-06-01

    As-built CAD data reconstructed from Terrestrial Laser Scanner (TLS) data are used for more than two decades by Electricité de France (EDF) to prepare maintenance operations in its facilities. But today, the big picture is renewed: "as-built virtual reality" must address a huge scale-up to provide data to an increasing number of applications. In this paper, we first present a wide multi-sensor multi-purpose scanning campaign performed in a 10 floor building of a power plant in 2013: 1083 TLS stations (about 40.109 3D points referenced under a 2 cm tolerance) and 1025 RGB panoramic images (340.106 pixels per point of view). As expected, this very large survey of high precision measurements in a complex environment stressed sensors and tools that were developed for more favourable conditions and smaller data sets. The whole survey process (tools and methods used from acquisition and processing to CAD reconstruction) underwent a detailed follow-up in order to state on the locks to a possible generalization to other buildings. Based on these recent feedbacks, we have highlighted some of these current bottlenecks in this paper: sensors denoising, automation in processes, data validation tools improvements, standardization of formats and (meta-) data structures.

  16. An improved fiber optic pressure and temperature sensor for downhole application

    International Nuclear Information System (INIS)

    Aref, S H; Zibaii, M I; Latifi, H

    2009-01-01

    We report on the fabrication of a high pressure extrinsic Fabry–Perot interferometric (EFPI) fiber optic sensor for downhole applications by using a mechanical transducer. The mechanical transducer has been used for increasing the pressure sensitivity and the possibility of installation of the sensor downhole. The pressure–temperature cross-sensitivity (PTCS) problem has been solved by replacing the reflecting fiber with a metal microwire in the EFPI sensor. In this way the PTCS coefficient of the sensor was decreased from 47.25 psi °C −1 to 7 psi °C −1 . By using a new EFPI design, a temperature sensor was fabricated. Further improvement in the pressure and temperature sensor has been done by developing fabrication technique and signal processing

  17. NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Russell G. May; Tony Peng; Tom Flynn

    2004-12-01

    Accomplishments during the Phase I of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. A matrix of potential fiber optic sensor approaches was derived, and a data set of specifications for high-temperature optical fiber was produced. Several fiber optic sensor configurations, including interferometric (extrinsic and intrinsic Fabry-Perot interferometer), gratings (fiber Bragg gratings and long period gratings), and microbend sensors, were evaluated in the laboratory. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers. Numerical aperture measurements of both clad and unclad sapphire fibers were obtained and used to estimate the reduction in mode volume afforded by the cladding. High-temperature sensors based on sapphire fibers were also investigated. The fabrication of an intrinsic Fabry-Perot cavity within sapphire fibers was attempted by the bulk diffusion of magnesium oxide into short localized segments of longer sapphire fibers. Fourier analysis of the fringes that resulted when the treated fiber was interrogated by a swept laser spectrometer suggested that an intrinsic cavity had been formed in the fiber. Also

  18. Low-Power Silicon-based Thermal Sensors and Actuators for Chemical Applications

    NARCIS (Netherlands)

    Vereshchagina, E.

    2011-01-01

    In the Hot Silicon project low and ultra-low-power Si-based hot surface devices have been developed, i.e. thermal sensors and actuators, for application in catalytic gas micro sensors, micro- and nano- calorimeters. This work include several scientific and technological aspects: • Design and

  19. Development of in-situ radon sensor using plastic scintillator

    International Nuclear Information System (INIS)

    Shitashima, Kiminori

    2009-01-01

    Underwater in-situ radon measurement is important scientific priority for oceanography, especially for survey and monitoring of submarine groundwater discharge (SDG). The high sensitivity and lightweight underwater in-situ radon sensor using NaI(Tl) doped plastic scintillator was developed for application to SDG research. Because NaI(Tl) doped plastic scintillator contacts seawater directly, the plastic scintillator can expect high sensitivity in comparison with NaI(Tl) crystal sealed in a container. In order to improve condensation efficiency of scintillation, the plastic scintillator was processed in funnel form and coated by light-resistant paint. This sensor consists of plastic scintillator, photomultiplier tube, preamplifier unit, high-voltage power supply, data logger and lithium-ion battery, and all parts are stored in a pressure housing (200φx300L). The newly developed underwater in-situ radon sensor was tested at hydrothermal area (underwater hot springs) that the hydrothermal fluid containing high concentration of radon is discharged into seawater. The sensor was operated by a diver, and sensitivity tests and mapping survey for estimation of radon diffusion were carried out. The signals of the radon sensor ranged from 20 to 65 mV, and these signals corresponded with radon concentration of 2 to 12 becquerels per liter. The sensor was able to detect radon to 20 m above the hydrothermal point (seafloor). Since the sensor is small and light-weight, measurement, monitoring and mapping can perform automatically by installing the sensor to an AUV (autonomous underwater vehicle). Furthermore, underwater in-situ radon sensor is expected an application to earthquake prediction and volcanic activity monitoring as well as oceanography and hydrology. (author)

  20. Cost effective spectral sensor solutions for hand held and field applications

    Science.gov (United States)

    Reetz, Edgar; Correns, Martin; Notni, Gunther

    2015-05-01

    Optical spectroscopy is without doubt one of the most important non-contact measurement principles. It is used in a wide range of applications from bio-medical to industrial fields. One recent trend is to miniaturize spectral sensors to address new areas of application. The most common spectral sensor type is based on diffraction gratings, while other types are based on micro mechanical systems (MEMS) or filter technologies. The authors represent the opinion that there is a potentially wide spread field of applications for spectrometers, but the market limits the range of applications since they cannot keep up with targeted cost requirements for consumer products. The present article explains an alternative approach for miniature multichannel spectrometer to enhance robustness for hand held field applications at a cost efficient price point.

  1. Data Centric Sensor Stream Reduction for Real-Time Applications in Wireless Sensor Networks

    Science.gov (United States)

    Aquino, Andre Luiz Lins; Nakamura, Eduardo Freire

    2009-01-01

    This work presents a data-centric strategy to meet deadlines in soft real-time applications in wireless sensor networks. This strategy considers three main aspects: (i) The design of real-time application to obtain the minimum deadlines; (ii) An analytic model to estimate the ideal sample size used by data-reduction algorithms; and (iii) Two data-centric stream-based sampling algorithms to perform data reduction whenever necessary. Simulation results show that our data-centric strategies meet deadlines without loosing data representativeness. PMID:22303145

  2. Integrated multi sensors and camera video sequence application for performance monitoring in archery

    Science.gov (United States)

    Taha, Zahari; Arif Mat-Jizat, Jessnor; Amirul Abdullah, Muhammad; Muazu Musa, Rabiu; Razali Abdullah, Mohamad; Fauzi Ibrahim, Mohamad; Hanafiah Shaharudin, Mohd Ali

    2018-03-01

    This paper explains the development of a comprehensive archery performance monitoring software which consisted of three camera views and five body sensors. The five body sensors evaluate biomechanical related variables of flexor and extensor muscle activity, heart rate, postural sway and bow movement during archery performance. The three camera views with the five body sensors are integrated into a single computer application which enables the user to view all the data in a single user interface. The five body sensors’ data are displayed in a numerical and graphical form in real-time. The information transmitted by the body sensors are computed with an embedded algorithm that automatically transforms the summary of the athlete’s biomechanical performance and displays in the application interface. This performance will be later compared to the pre-computed psycho-fitness performance from the prefilled data into the application. All the data; camera views, body sensors; performance-computations; are recorded for further analysis by a sports scientist. Our developed application serves as a powerful tool for assisting the coach and athletes to observe and identify any wrong technique employ during training which gives room for correction and re-evaluation to improve overall performance in the sport of archery.

  3. Electrospinning cellulose based nanofibers for sensor applications

    Science.gov (United States)

    Nartker, Steven

    2009-12-01

    Bacterial pathogens have recently become a serious threat to the food and water supply. A biosensor based on an electrochemical immunoassay has been developed for detecting food borne pathogens, such as Escherichia coli (E. coli) O157:H7. These sensors consist of several materials including, cellulose, cellulose nitrate, polyaniline and glass fibers. The current sensors have not been optimized in terms of microscale architecture and materials. The major problem associated with the current sensors is the limited concentration range of pathogens that provides a linear response on the concentration conductivity chart. Electrospinning is a process that can be used to create a patterned fiber mat design that will increase the linear range and lower the detection limit of these sensors by improving the microscale architecture. Using the electrospinning process to produce novel mats of cellulose nitrate will offer improved surface area, and the cellulose nitrate can be treated to further improve chemical interactions required for sensor activity. The macro and micro architecture of the sensor is critical to the performance of the sensors. Electrospinning technology can be used to create patterned architectures of nanofibers that will enhance sensor performance. To date electrospinning of cellulose nitrate has not been performed and optimization of the electrospinning process will provide novel materials suitable for applications such as filtration and sensing. The goal of this research is to identify and elucidate the primary materials and process factors necessary to produce cellulose nitrate nanofibers using the electrospinning process that will improve the performance of biosensors. Cellulose nitrate is readily dissolved in common organic solvents such as acetone, tetrahydrofuran (THF) and N,N dimethylformamide (DMF). These solvents can be mixed with other latent solvents such as ethanol and other alcohols to provide a solvent system with good electrospinning behavior

  4. Active photonic sensor communication cable for field application of optical data and power transmission

    Science.gov (United States)

    Suthau, Eike; Rieske, Ralf; Zerna, Thomas

    2014-10-01

    Omitting electrically conducting wires for sensor communication and power supply promises protection for sensor systems and monitored structures against lightning or high voltages, prevention of explosion hazards, and reduction of susceptibility to tampering. The ability to photonically power remote systems opens up the full range of electrical sensors. Power-over-fiber is an attractive option in electromagnetically sensitive environments, particularly for longterm, maintenance-free applications. It can deliver uninterrupted power sufficient for elaborate sensors, data processing or even actuators alongside continuous high speed data communication for remote sensor application. This paper proposes an active photonic sensor communication system, which combines the advantages of optical data links in terms of immunity to electromagnetic interference (EMI), high bandwidth, hardiness against tampering or eavesdropping, and low cable weight with the robustness one has come to expect from industrial or military electrical connectors. An application specific integrated circuit (ASIC) is presented that implements a closed-loop regulation of the sensor power supply to guarantee continuous, reliable data communications while maintaining a highly efficient, adaptive sensor supply scheme. It is demonstrated that the resulting novel photonic sensor communication cable can handle sensors and actuators differing orders of magnitude with respect to power consumption. The miniaturization of the electro-optical converters and driving electronics is as important to the presented development as the energy efficiency of the detached, optically powered sensor node. For this reason, a novel photonic packaging technology based on wafer-level assembly of the laser power converters by means of passive alignment will be disclosed in this paper.

  5. Smartphone and Bluetooth Smart Sensor Usage in IoT Applications

    Directory of Open Access Journals (Sweden)

    Khurshid ALIEV

    2016-06-01

    Full Text Available Bluetooth Low Energy is an interesting short-range radio technology that could be used for connecting tiny devices into the Internet of Things (IoT through gateways or cellular networks. For example, they are widely used in various contexts, from building and home automation to wearables. This paper proposes a method to improve the use of smartphones with a smart wireless sensor network acquisition system through Bluetooth Low Energy (BLE. A new BLE Smart Sensor, which acquires environmental data, was designed and calibration methods were performed. A detailed deviation is calculated between reference sensor and sensor node. The data obtained from laboratory experiments were used to evaluate battery life of the node. An Android application for devices such as Smartphones and Tablets can be used to collect data from a smart sensor, which becomes more accurate.

  6. A Review on Graphene-Based Gas/Vapor Sensors with Unique Properties and Potential Applications

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Da Huang; Zhi Yang; Shusheng Xu; Guili He; Xiaolin Li; Nantao Hu; Guilin Yin; Dannong He; Liying Zhang

    2016-01-01

    Graphene-based gas/vapor sensors have attracted much attention in recent years due to their variety of structures, unique sensing performances, room-temperature working conditions, and tremendous application prospects, etc.Herein, we summarize recent advantages in graphene preparation, sensor construction, and sensing properties of various graphene-based gas/vapor sensors, such as NH3, NO2, H2, CO, SO2, H2S, as well as vapor of volatile organic compounds.The detection mechanisms pertaining to various gases are also discussed. In conclusion part, some existing problems which may hinder the sensor applications are presented. Several possible methods to solve these problems are proposed, for example, conceived solutions, hybrid nanostructures, multiple sensor arrays, and new recognition algorithm.

  7. Optical Imaging Sensors and Systems for Homeland Security Applications

    CERN Document Server

    Javidi, Bahram

    2006-01-01

    Optical and photonic systems and devices have significant potential for homeland security. Optical Imaging Sensors and Systems for Homeland Security Applications presents original and significant technical contributions from leaders of industry, government, and academia in the field of optical and photonic sensors, systems and devices for detection, identification, prevention, sensing, security, verification and anti-counterfeiting. The chapters have recent and technically significant results, ample illustrations, figures, and key references. This book is intended for engineers and scientists in the relevant fields, graduate students, industry managers, university professors, government managers, and policy makers. Advanced Sciences and Technologies for Security Applications focuses on research monographs in the areas of -Recognition and identification (including optical imaging, biometrics, authentication, verification, and smart surveillance systems) -Biological and chemical threat detection (including bios...

  8. Survey on Ranging Sensors and Cooperative Techniques for Relative Positioning of Vehicles

    Directory of Open Access Journals (Sweden)

    Fabian de Ponte Müller

    2017-01-01

    Full Text Available Future driver assistance systems will rely on accurate, reliable and continuous knowledge on the position of other road participants, including pedestrians, bicycles and other vehicles. The usual approach to tackle this requirement is to use on-board ranging sensors inside the vehicle. Radar, laser scanners or vision-based systems are able to detect objects in their line-of-sight. In contrast to these non-cooperative ranging sensors, cooperative approaches follow a strategy in which other road participants actively support the estimation of the relative position. The limitations of on-board ranging sensors regarding their detection range and angle of view and the facility of blockage can be approached by using a cooperative approach based on vehicle-to-vehicle communication. The fusion of both, cooperative and non-cooperative strategies, seems to offer the largest benefits regarding accuracy, availability and robustness. This survey offers the reader a comprehensive review on different techniques for vehicle relative positioning. The reader will learn the important performance indicators when it comes to relative positioning of vehicles, the different technologies that are both commercially available and currently under research, their expected performance and their intrinsic limitations. Moreover, the latest research in the area of vision-based systems for vehicle detection, as well as the latest work on GNSS-based vehicle localization and vehicular communication for relative positioning of vehicles, are reviewed. The survey also includes the research work on the fusion of cooperative and non-cooperative approaches to increase the reliability and the availability.

  9. Microfabricated Chemical Sensors for Aerospace Fire Detection Applications

    Science.gov (United States)

    Hunter, Gary W.; Neudeck, Philip G.; Fralick, Gustave; Thomas, Valarie; Makel, D.; Liu, C. C.; Ward, B.; Wu, Q. H.

    2001-01-01

    The detection of fires on-board commercial aircraft is extremely important for safety reasons. Although dependable fire detection equipment presently exists within the cabin, detection of fire within the cargo hold has been less reliable and susceptible to false alarms. A second, independent method of fire detection to complement the conventional smoke detection techniques, such as the measurement of chemical species indicative of a fire, will help reduce false alarms and improve aircraft safety. Although many chemical species are indicative of a fire, two species of particular interest are CO and CO2. This paper discusses microfabricated chemical sensor development tailored to meet the needs of fire safety applications. This development is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. The individual sensor being developed and their level of maturity will be presented.

  10. Software defined networking for improved wireless sensor network management: a survey

    CSIR Research Space (South Africa)

    Ndiaye, M

    2017-05-01

    Full Text Available Wireless sensor networks (WSNs) are becoming increasingly popular with the advent of the Internet of things (IoT). Various real-world applications of WSNs such as in smart grids, smart farming and smart health would require a potential deployment...

  11. The application of self-validation to wireless sensor networks

    International Nuclear Information System (INIS)

    Collett, Michael A; Cox, Maurice G; Esward, Trevor J; Harris, Peter M; Duta, Mihaela; Henry, Manus P

    2008-01-01

    Self-validation is a valuable tool for extending the operating range of sensing systems and making them more robust. Wireless sensor networks suffer many limitations meaning that their efficacy could be greatly improved by self-validation techniques. We present two independently developed data analysis techniques and demonstrate that they can be applied to a wireless sensor network. Using an acoustic ranging application we demonstrate an improvement of more than ten-fold in the uncertainty of a single measurement where multiple sensor readings are appropriately combined. We also demonstrate that of the two methods for determining a largest consistent subset one is more rigorous in dealing with correlation, and the other more suited to time-series data

  12. Microfabricated electrochemical sensors for combustion applications

    Science.gov (United States)

    Vulcano Rossi, Vitor A.; Mullen, Max R.; Karker, Nicholas A.; Zhao, Zhouying; Kowarz, Marek W.; Dutta, Prabir K.; Carpenter, Michael A.

    2015-05-01

    A new design for the miniaturization of an existing oxygen sensor is proposed based on the application of silicon microfabrication technologies to a cm sized O2 sensor demonstrated by Argonne National Laboratory and The Ohio State University which seals a metal/metal oxide within the structure to provide an integrated oxygen reference. The structural and processing changes suggested will result in a novel MEMS-based device meeting the semiconductor industry standards for cost efficiency and mass production. The MEMS design requires thin film depositions to create a YSZ membrane, palladium oxide reference and platinum electrodes. Pt electrodes are studied under operational conditions ensuring film conductivity over prolonged usage. SEM imaging confirms void formation after extended tests, consistent with the literature. Furthermore, hydrophilic bonding of pairs of silicon die samples containing the YSZ membrane and palladium oxide is discussed in order to create hermetic sealed cavities for oxygen reference. The introduction of tensile Si3N4 films to the backside of the silicon die generates bowing of the chips, compromising bond quality. This effect is controlled through the application of pressure during the initial bonding stages. In addition, KOH etching of the bonded die samples is discussed, and a YSZ membrane that survives the etching step is characterized by Raman spectroscopy.

  13. CMOS capacitive sensors for lab-on-chip applications a multidisciplinary approach

    CERN Document Server

    Ghafar-Zadeh, Ebrahim

    2010-01-01

    The main components of CMOS capacitive biosensors including sensing electrodes, bio-functionalized sensing layer, interface circuitries and microfluidic packaging are verbosely explained in chapters 2-6 after a brief introduction on CMOS based LoCs in Chapter 1. CMOS Capacitive Sensors for Lab-on-Chip Applications is written in a simple pedagogical way. It emphasises practical aspects of fully integrated CMOS biosensors rather than mathematical calculations and theoretical details. By using CMOS Capacitive Sensors for Lab-on-Chip Applications, the reader will have circuit design methodologies,

  14. Development of a 750x750 pixels CMOS imager sensor for tracking applications

    Science.gov (United States)

    Larnaudie, Franck; Guardiola, Nicolas; Saint-Pé, Olivier; Vignon, Bruno; Tulet, Michel; Davancens, Robert; Magnan, Pierre; Corbière, Franck; Martin-Gonthier, Philippe; Estribeau, Magali

    2017-11-01

    Solid-state optical sensors are now commonly used in space applications (navigation cameras, astronomy imagers, tracking sensors...). Although the charge-coupled devices are still widely used, the CMOS image sensor (CIS), which performances are continuously improving, is a strong challenger for Guidance, Navigation and Control (GNC) systems. This paper describes a 750x750 pixels CMOS image sensor that has been specially designed and developed for star tracker and tracking sensor applications. Such detector, that is featuring smart architecture enabling very simple and powerful operations, is built using the AMIS 0.5μm CMOS technology. It contains 750x750 rectangular pixels with 20μm pitch. The geometry of the pixel sensitive zone is optimized for applications based on centroiding measurements. The main feature of this device is the on-chip control and timing function that makes the device operation easier by drastically reducing the number of clocks to be applied. This powerful function allows the user to operate the sensor with high flexibility: measurement of dark level from masked lines, direct access to the windows of interest… A temperature probe is also integrated within the CMOS chip allowing a very precise measurement through the video stream. A complete electro-optical characterization of the sensor has been performed. The major parameters have been evaluated: dark current and its uniformity, read-out noise, conversion gain, Fixed Pattern Noise, Photo Response Non Uniformity, quantum efficiency, Modulation Transfer Function, intra-pixel scanning. The characterization tests are detailed in the paper. Co60 and protons irradiation tests have been also carried out on the image sensor and the results are presented. The specific features of the 750x750 image sensor such as low power CMOS design (3.3V, power consumption<100mW), natural windowing (that allows efficient and robust tracking algorithms), simple proximity electronics (because of the on

  15. Wireless sensor and mobile ad-hoc networks vehicular and space applications

    CERN Document Server

    Al-Fuqaha, Ala

    2015-01-01

    This book describes the practical perspectives in using wireless sensor networks (WSN) to develop real world applications that can be used for space exploration. These applications include sensor interfaces, remote wireless vehicles, space crew health monitoring and instrumentation. The material discusses how applications of WSN originally developed for space travel and exploration are being applied and used in multiple real world applications, allowing for the development of smart systems that have characteristics such as self-healing, self-diagnosis, and emergency healthcare notification. This book also: ·         Discusses how multidisciplinary fields can be implemented in a single application ·         Reviews exhaustively the state-of-the-art research in WSN for space and vehicular applications ·         Covers smart systems that have self-healing, self-diagnosis, and emergency healthcare notification

  16. Wireless Sensor Network –A Survey

    OpenAIRE

    Nirvika Chouhan; P.D.Vyavahare; Rekha Jain

    2013-01-01

    Wireless sensor networks are the networks consisting of large number of small and tiny sensor nodes. The nodes are supplied with limited power, memory and other resources and perform in-network processing. In this paper, various issues are discussed that actually put the limitations in the well working and the life time of the network. In Wireless sensor network, nodes should consume less power, memoryand so data aggregation should be performed. Security is another aspect which should be pres...

  17. Magnetic Field Sensors Based on Giant Magnetoresistance (GMR Technology: Applications in Electrical Current Sensing

    Directory of Open Access Journals (Sweden)

    Càndid Reig

    2009-10-01

    Full Text Available The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR, from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications.

  18. Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters

    Science.gov (United States)

    Giordano, Francesco; Mattei, Gaia; Parente, Claudio; Peluso, Francesco; Santamaria, Raffaele

    2015-01-01

    This paper demonstrates that accurate data concerning bathymetry as well as environmental conditions in shallow waters can be acquired using sensors that are integrated into the same marine vehicle. An open prototype of an unmanned surface vessel (USV) named MicroVeGA is described. The focus is on the main instruments installed on-board: a differential Global Position System (GPS) system and single beam echo sounder; inertial platform for attitude control; ultrasound obstacle-detection system with temperature control system; emerged and submerged video acquisition system. The results of two cases study are presented, both concerning areas (Sorrento Marina Grande and Marechiaro Harbour, both in the Gulf of Naples) characterized by a coastal physiography that impedes the execution of a bathymetric survey with traditional boats. In addition, those areas are critical because of the presence of submerged archaeological remains that produce rapid changes in depth values. The experiments confirm that the integration of the sensors improves the instruments’ performance and survey accuracy. PMID:26729117

  19. Integrating Sensors into a Marine Drone for Bathymetric 3D Surveys in Shallow Waters.

    Science.gov (United States)

    Giordano, Francesco; Mattei, Gaia; Parente, Claudio; Peluso, Francesco; Santamaria, Raffaele

    2015-12-29

    This paper demonstrates that accurate data concerning bathymetry as well as environmental conditions in shallow waters can be acquired using sensors that are integrated into the same marine vehicle. An open prototype of an unmanned surface vessel (USV) named MicroVeGA is described. The focus is on the main instruments installed on-board: a differential Global Position System (GPS) system and single beam echo sounder; inertial platform for attitude control; ultrasound obstacle-detection system with temperature control system; emerged and submerged video acquisition system. The results of two cases study are presented, both concerning areas (Sorrento Marina Grande and Marechiaro Harbour, both in the Gulf of Naples) characterized by a coastal physiography that impedes the execution of a bathymetric survey with traditional boats. In addition, those areas are critical because of the presence of submerged archaeological remains that produce rapid changes in depth values. The experiments confirm that the integration of the sensors improves the instruments' performance and survey accuracy.

  20. Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications.

    Science.gov (United States)

    Zhang, Zhiyang; Wang, Han; Chen, Zhaopeng; Wang, Xiaoyan; Choo, Jaebum; Chen, Lingxin

    2018-08-30

    Plasmonic colorimetric sensors have emerged as a powerful tool in chemical and biological sensing applications due to the localized surface plasmon resonance (LSPR) extinction in the visible range. Among the plasmonic sensors, the most famous sensing mode is the "aggregation" plasmonic colorimetric sensor which is based on plasmon coupling due to nanoparticle aggregation. Herein, this review focuses on the newly-developing plasmonic colorimetric sensing mode - the etching or the growth of metal nanoparticles induces plasmon changes, namely, "non-aggregation" plasmonic colorimetric sensor. This type of sensors has attracted increasing interest because of their exciting properties of high sensitivity, multi-color changes, and applicability to make a test strip. Of particular interest, the test strip by immobilization of nanoparticles on the substrate can avoid the influence of nanoparticle auto-aggregation and increase the simplicity in storage and use. Although there are many excellent reviews available that describe the advance of plasmonic sensors, limited attention has been paid to the plasmonic colorimetric sensors based on etching or growth of metal nanoparticles. This review highlights recent progress on strategies and application of "non-aggregation" plasmonic colorimetric sensors. We also provide some personal insights into current challenges associated with "non-aggregation" plasmonic colorimetric sensors and propose future research directions. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications

    Science.gov (United States)

    Barrias, António; Casas, Joan R.; Villalba, Sergi

    2016-01-01

    The application of structural health monitoring (SHM) systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures’ conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it’s an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS) in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures. PMID:27223289

  2. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications.

    Science.gov (United States)

    Barrias, António; Casas, Joan R; Villalba, Sergi

    2016-05-23

    The application of structural health monitoring (SHM) systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures' conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it's an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS) in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures.

  3. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications

    Directory of Open Access Journals (Sweden)

    António Barrias

    2016-05-01

    Full Text Available The application of structural health monitoring (SHM systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures’ conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it’s an enormous advantage that distributed fiber optic sensing provides to SHM systems. In the past decade, several R & D studies have been performed with the goal of improving the knowledge and developing new techniques associated with the application of distributed optical fiber sensors (DOFS in order to widen the range of applications of these sensors and also to obtain more correct and reliable data. This paper presents, after a brief introduction to the theoretical background of DOFS, the latest developments related with the improvement of these products by presenting a wide range of laboratory experiments as well as an extended review of their diverse applications in civil engineering structures.

  4. Eddy current probe development based on a magnetic sensor array; Developpement d'un imageur magnetique pour le controle non destructif par courants de Foucault

    Energy Technology Data Exchange (ETDEWEB)

    Vacher, F

    2007-06-15

    This research deals with in the study of the use of innovating magnetic sensors in eddy current non destructive inspection. The author reports an analysis survey of magnetic sensor performances. This survey enables the selection of magnetic sensor technologies used in non destructive inspection. He presents the state-of-the-art of eddy current probes exploiting the qualities of innovating magnetic sensors, and describes the methods enabling the use of these magnetic sensors in non destructive testing. Two main applications of innovating magnetic sensors are identified: the detection of very small defects by means of magneto-resistive sensors, and the detection of deep defects by means of giant magneto-impedances. Based on the use of modelling, optimization, signal processing tools, probes are manufactured for these both applications.

  5. On-line chemical sensors for applications in fast reactors

    International Nuclear Information System (INIS)

    Jayaraman, V.

    2015-01-01

    Hydrogen sensors are essential components of fast reactor sodium circuits. These sensors are needed in fast reactors for the immediate detection of any steam leak into sodium during reactor operation which can lead to failure of steam generator. Depending on the operating power of the reactor, sodium-water reaction results in either an increase in dissolved hydrogen level in sodium or an increase in hydrogen content of argon cover gas used above sodium coolant. Hence, on-line monitoring of hydrogen continuously in sodium and cover circuits helps in detection of any steam leak. In the event of accidental leak of high temperature sodium, it reacts with oxygen and moisture in air leading to sodium fires. These fires produce sodium aerosol containing oxides of sodium (Na 2 O and Na 2 O 2 ) and NaOH. For early detection of sodium fires, sensor systems based on sodium ionization detector, pH measurement and modulation of conductivity of graphite films are known in the literature. This presentation deals with the development of on-line sensors for these two applications. A diffusion based sensor using a thin walled nickel coil at 773 K and a sensitive thermal conductivity detector (TCD) has been developed for monitoring hydrogen levels in argon cover gas. This sensor has a lower detection limit of 30 ppm of hydrogen in argon. To extend the detection limit of the sensor, a surface conductivity based sensor has been developed which makes use of a thin film of semi-conducting tin oxide. Integration of this sensor with the TCD, can extend the lower detection limit to 2 ppm of hydrogen in cover gas. Electrochemical sensor based on sodium-beta-alumina has been designed, fabricated and its performance in laboratory and industrial environment was evaluated. This paper presents the logical development of these sensors highlighting their merits and limitations

  6. A Review of Implementing ADC in RFID Sensor

    Directory of Open Access Journals (Sweden)

    M. Zurita

    2016-01-01

    Full Text Available The general considerations to design a sensor interface for passive RFID tags are discussed. This way, power and timing constraints imposed by ISO/IEC 15693 and ISO/IEC 14443 standards to HF RFID tags are explored. A generic multisensor interface is proposed and a survey analysis on the most suitable analog-to-digital converters for passive RFID sensing applications is reported. The most appropriate converter type and architecture are suggested. At the end, a specific sensor interface for carbon nanotube gas sensors is proposed and a brief discussion about its implemented circuits and preliminary results is made.

  7. Fiber optic sensor applications in field testing

    International Nuclear Information System (INIS)

    Perea, J.A.

    1984-01-01

    Fiber optic sensors (F.O.S.) are defined, and the application of this technology to measuring various phenomonon in diverse and hostile environments are discussed. F.O.S. advantages and disavantages both technically and operationally are summarized. Three sensor techniques - intensity, interferometric, and polarization - are then discussed in some detail. General environmental instrumentation and controls that support the Nuclear Weapons Test Program at the Nevada Test Site are discussed next to provide the reader with a basic understanding of the programmatic task. This will aid in recognizing the various difficulties of the traditional measurement techniques at the NTS and the potential advantages that fiber optic measurement systems can provide. An F.O.S. development program is then outlined, depicting a plan to design and fabricate a prototype sensor to be available for field testing by the end of FY84. We conclude with future plans for further development of F.O.S. to measure more of the desired physical parameters for the Test Program, and to eventually become an integral part of an overall measurement and control system

  8. Optical and Electronic NO(x) Sensors for Applications in Mechatronics.

    Science.gov (United States)

    Di Franco, Cinzia; Elia, Angela; Spagnolo, Vincenzo; Scamarcio, Gaetano; Lugarà, Pietro Mario; Ieva, Eliana; Cioffi, Nicola; Torsi, Luisa; Bruno, Giovanni; Losurdo, Maria; Garcia, Michael A; Wolter, Scott D; Brown, April; Ricco, Mario

    2009-01-01

    Current production and emerging NO(x) sensors based on optical and nanomaterials technologies are reviewed. In view of their potential applications in mechatronics, we compared the performance of: i) Quantum cascade lasers (QCL) based photoacoustic (PA) systems; ii) gold nanoparticles as catalytically active materials in field-effect transistor (FET) sensors, and iii) functionalized III-V semiconductor based devices. QCL-based PA sensors for NO(x) show a detection limit in the sub part-per-million range and are characterized by high selectivity and compact set-up. Electrochemically synthesized gold-nanoparticle FET sensors are able to monitor NO(x) in a concentration range from 50 to 200 parts per million and are suitable for miniaturization. Porphyrin-functionalized III-V semiconductor materials can be used for the fabrication of a reliable NO(x) sensor platform characterized by high conductivity, corrosion resistance, and strong surface state coupling.

  9. Piezoelectric materials selection for sensor applications using finite element and multiple attribute decision-making approaches

    Directory of Open Access Journals (Sweden)

    Anuruddh Kumar

    2015-03-01

    Full Text Available This paper examines the selection and performance evaluation of a variety of piezoelectric materials for cantilever-based sensor applications. The finite element analysis method is implemented to evaluate the relative importance of materials properties such as Young's Modulus (E, piezoelectric stress constants (e31, dielectric constant (ε and Poisson's ratio (υ for cantilever-based sensor applications. An analytic hierarchy process (AHP is used to assign weights to the properties that are studied for the sensor structure under study. A technique for order preference by similarity to ideal solution (TOPSIS is used to rank the performance of the piezoelectric materials in the context of sensor voltage outputs. The ranking achieved by the TOPSIS analysis is in good agreement with the results obtained from finite element method simulation. The numerical simulations show that K0.5Na0.5NbO3–LiSbO3 (KNN–LS materials family is important for sensor application. Young's modulus (E is most influencing material's property followed by piezoelectric constant (e31, dielectric constant (ε and Poisson's ratio (υ for cantilever-based piezoelectric sensor applications.

  10. Thermal Stability of Magnetic Compass Sensor for High Accuracy Positioning Applications

    Directory of Open Access Journals (Sweden)

    Van-Tang PHAM

    2015-12-01

    Full Text Available Using magnetic compass sensors in angle measurements have a wide area of application such as positioning, robot, landslide, etc. However, one of the most phenomenal that affects to the accuracy of the magnetic compass sensor is the temperature. This paper presents two thermal stability schemes for improving performance of a magnetic compass sensor. The first scheme uses the feedforward structure to adjust the angle output of the compass sensor adapt to the variation of the temperature. The second scheme increases both the temperature working range and steady error performance of the sensor. In this scheme, we try to keep the temperature of the sensor is stable at the certain value (e.g. 25 oC by using a PID (proportional-integral-derivative controller and a heating/cooling generator. Many experiment scenarios have implemented to confirm the effectivity of these solutions.

  11. Application of zirconia membranes as high-temperature PH sensors

    International Nuclear Information System (INIS)

    Neidrach, L.W.

    1983-01-01

    The zirconia pH sensor behaves much like the classical glass electrode, but it extends the range of measurement to much higher temperatures - about 300 0 vs 120 0 C. It also has virtues over the glass electrode at lower temperatures because of the absence of an ''alkaline error.'' Like the glass electrode, it is insensitive to changes in the redox potential of the environment and, in turn, it exerts no influence on the environment. Such sensors have been finding application in the direct measurement of the pH of geothermal brines, of water in nuclear reactors, and in high-temperature corrosion studies. The sensors can also be used as ''pseudoreference'' electrodes for the measurement of redox and corrosion potentials in high-temperature media

  12. Self-powered wireless disposable sensor for welfare application.

    Science.gov (United States)

    Douseki, Takakuni; Tanaka, Ami

    2013-01-01

    A self-powered urinary incontinence sensor consisting of a flexible urine-activated battery and a wireless transmitter has been developed as an application for wireless biosensor networks. The flexible urine-activated battery is embedded in a disposal diaper and makes possible both the sensing of urine leakage and self-powered operation. An intermittent power-supply circuit that uses an electric double-layer capacitor (EDLC) with a small internal resistance suppresses the supply voltage drop due to the large internal resistance of the battery. This circuit supplies the power to a wireless transmitter. A 315-MHz-band wireless transmitter performs low-power operation. To verify the effectiveness of the circuit scheme, we fabricated a prototype sensor system. When 80 cc of urine is poured onto the diaper, the battery outputs a voltage of 1 V; and the sensor can transmit an ID signal over a distance of 5 m.

  13. Overview of advanced fiber optic sensor equipment for energy production applications

    Science.gov (United States)

    Berthold, John W.; Lopushansky, Richard L.

    2004-12-01

    Over the last several years, fiber optic sensor technology has matured to the point that it is now ready for use in industrial applications. Fiber optic sensors have the potential for significant cost savings to the customer, primarily because installation is straightforward and maintenance is minimal. Substantial improvements in the performance of process control systems are a major benefit that has now been demonstrated and is now understood by many in the energy and petrochemical industries. This paper describes the basic principles and components that make up an industrial fiber optic sensing system, the results of an extensive characterization program performed on Fabry-Perot sensors configured to measure various parameters, the multiplexing approach for a multi-sensor system, data communications options, and potential applications of the technology within the industry. The results of a beta test program performed on a thirty-two channel temperature measurement system are reported also. The test program was conducted in an operating catalyst tube reactor to measure changes in the reactor temperature profile versus time.

  14. Silicon–glass-based single piezoresistive pressure sensors for harsh environment applications

    International Nuclear Information System (INIS)

    San, Haisheng; Zhang, Hong; Zhang, Qiang; Yu, Yuxi; Chen, Xuyuan

    2013-01-01

    Silicon–glass (Si–glass)-based single piezoresistive pressure sensors were designed and fabricated by standard MEMS technology. The single piezoresistive sensing element was designed to be on the lower surface of the silicon diaphragm and be vacuum-sealed in a Si–glass cavity, which form a self-packaging protection structure helpful to the applications of sensors in harsh media. The pressure sensors were fabricated using a Si–glass anodic bonding technique, and the embedded Al feedthrough lines at the Si–glass interface are used to realize the electrical connections between the piezo-sensing element and the electrode-pads, and two larger-size electrode-pads are fabricated for realizing the soldered electrical connection between the sensor and the external circuit. The performance of the pressure sensors was characterized by a pressure test system at different temperature conditions. The temperature compensation was performed by the difference between the output voltage at zero-pressure and the output at operation pressure. The measurement results show that the sensitivity is 24 mV V –1 MPa −1 , the coefficient of sensitivity is 0.14% FS °C –1 , and both the zero-point offset and the temperature coefficient of offset are equal to zero, which are able to meet the commercial application requirements. However, a nonlinearity of 5.2% FS caused by the balloon effect would considerably worsen the accuracy of the pressure sensor. It is suggested to reduce the balloon effect by using a bossed-diaphragm structure in the pressure sensor. (paper)

  15. Multipurpose Electric Potential Sensor for Spacecraft Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The original goal of Phase I was to study the feasibility of developing an electric sensor that can be used for as many NASA sensing applications as possible. During...

  16. RFID Tag as a Sensor - A Review on the Innovative Designs and Applications

    Science.gov (United States)

    Meng, Zhaozong; Li, Zhen

    2016-12-01

    The Radio Frequency Identification (RFID) technology has gained interests in both academia and industry since its invention. In addition to the applications in access control and supply chain, RFID is also a cost-efficient solution for Non-Destructive Testing (NDT) and pervasive monitoring. The battery free RFID tags are used as independent electromagnetic sensors or energy harvesting and data transmission interface of sensor modules for different measurement purposes. This review paper aims to provide a comprehensive overview of the innovative designs and applications of RFID sensor technology with new insights, identify the technical challenges, and outline the future perspectives. With a brief introduction to the fundamentals of RFID measurement, the enabling technologies and recent technical progress are illustrated, followed by an extensive discussion of the novel designs and applications. Then, based on an in-depth analysis, the potential constraints are identified and the envisaged future directions are suggested, including printable/wearable RFID, System-on-Chip (SoC), ultra-low power, etc. The comprehensive discussion of RFID sensor technology will be inspirational and useful for academic and industrial communities in investigating, developing, and applying RFID for various measurement applications.

  17. RFID Tag as a Sensor - A Review on the Innovative Designs and Applications

    Directory of Open Access Journals (Sweden)

    Meng Zhaozong

    2016-12-01

    Full Text Available The Radio Frequency Identification (RFID technology has gained interests in both academia and industry since its invention. In addition to the applications in access control and supply chain, RFID is also a cost-efficient solution for Non-Destructive Testing (NDT and pervasive monitoring. The battery free RFID tags are used as independent electromagnetic sensors or energy harvesting and data transmission interface of sensor modules for different measurement purposes. This review paper aims to provide a comprehensive overview of the innovative designs and applications of RFID sensor technology with new insights, identify the technical challenges, and outline the future perspectives. With a brief introduction to the fundamentals of RFID measurement, the enabling technologies and recent technical progress are illustrated, followed by an extensive discussion of the novel designs and applications. Then, based on an in-depth analysis, the potential constraints are identified and the envisaged future directions are suggested, including printable/wearable RFID, System-on-Chip (SoC, ultra-low power, etc. The comprehensive discussion of RFID sensor technology will be inspirational and useful for academic and industrial communities in investigating, developing, and applying RFID for various measurement applications.

  18. Programmable Solution for Solving Non-linearity Characteristics of Smart Sensor Applications

    Directory of Open Access Journals (Sweden)

    S. Khan

    2007-10-01

    Full Text Available This paper presents a simple but programmable technique to solve the problem of non-linear characteristics of sensors used in more sensitive applications. The nonlinearity of the output response becomes a very sensitive issue in cases where a proportional increase in the physical quantity fails to bring about a proportional increase in the signal measured. The nonlinearity is addressed by using the interpolation method on the characteristics of a given sensor, approximating it to a set of tangent lines, the tangent points of which are recognized in the code of the processor by IF-THEN code. The method suggested here eliminates the use of external circuits for interfacing, and eases the programming burden on the processor at the cost of proportionally reduced memory requirements. The mathematically worked out results are compared with the simulation and experimental results for an IR sensor selected for the purpose and used for level measurement. This work will be of paramount importance and significance in applications where the controlled signal is required to follow the input signal precisely particularly in sensitive robotic applications.

  19. Design and evaluation of a pressure sensor for high temperature nuclear application

    International Nuclear Information System (INIS)

    Yancey, M.E.

    1981-11-01

    The goal of this technical development task was the development of a small eddy-current pressure sensor for use within a high temperature nuclear environment. The sensor is designed for use at pressures and temperatures of up to 17.23 MPa and 650 0 F. The design of the sensor incorporated features to minimize possible errors due to temperature transients present in nuclear applications. This report describes a prototype pressure sensor that was designed, the associated 100 kHz signal conditioning electronics, and the evaluation tests which were conducted

  20. Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks: A Survey

    Directory of Open Access Journals (Sweden)

    Rabindra Bista

    2010-05-01

    Full Text Available Many wireless sensor network (WSN applications require privacy-preserving aggregation of sensor data during transmission from the source nodes to the sink node. In this paper, we explore several existing privacy-preserving data aggregation (PPDA protocols for WSNs in order to provide some insights on their current status. For this, we evaluate the PPDA protocols on the basis of such metrics as communication and computation costs in order to demonstrate their potential for supporting privacy-preserving data aggregation in WSNs. In addition, based on the existing research, we enumerate some important future research directions in the field of privacy-preserving data aggregation for WSNs.

  1. Privacy-preserving data aggregation protocols for wireless sensor networks: a survey.

    Science.gov (United States)

    Bista, Rabindra; Chang, Jae-Woo

    2010-01-01

    Many wireless sensor network (WSN) applications require privacy-preserving aggregation of sensor data during transmission from the source nodes to the sink node. In this paper, we explore several existing privacy-preserving data aggregation (PPDA) protocols for WSNs in order to provide some insights on their current status. For this, we evaluate the PPDA protocols on the basis of such metrics as communication and computation costs in order to demonstrate their potential for supporting privacy-preserving data aggregation in WSNs. In addition, based on the existing research, we enumerate some important future research directions in the field of privacy-preserving data aggregation for WSNs.

  2. Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors

    International Nuclear Information System (INIS)

    Garg, Niti; Mohanty, Ashok; Jin, Rongchao; Lazarus, Nathan; Santhanam, Suresh; Fedder, Gary K; Schultz, Lawrence; Weiss, Lee; Rozzi, Tony R; Snyder, Jay L

    2010-01-01

    The use of gold nanoparticles coated with an organic monolayer of thiol for application in chemiresistive sensors was initiated in the late 1990s; since then, such types of sensors have been widely pursued due to their high sensitivities and reversible responses to volatile organic compounds (VOCs). However, a major issue for chemical sensors based on thiol-capped gold nanoparticles is their poor long-term stability as a result of slow degradation of the monothiol-to-gold bonds. We have devised a strategy to overcome this limitation by synthesizing a more robust system using Au nanoparticles capped by trithiol ligands. Compared to its monothiol counterpart, the new system is significantly more stable and also shows improved sensitivity towards different types of polar or non-polar VOCs. Thus, the trithiol-Au nanosensor shows great promise for use in real world applications.

  3. Robust gold nanoparticles stabilized by trithiol for application in chemiresistive sensors

    Energy Technology Data Exchange (ETDEWEB)

    Garg, Niti; Mohanty, Ashok; Jin, Rongchao [Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Lazarus, Nathan; Santhanam, Suresh; Fedder, Gary K [Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Schultz, Lawrence; Weiss, Lee [Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Rozzi, Tony R; Snyder, Jay L, E-mail: zpx5@cdc.gov, E-mail: fedder@ece.cmu.edu, E-mail: rongchao@andrew.cmu.edu [National Institute for Occupational Safety and Health (NIOSH), Pittsburgh, PA 15236 (United States)

    2010-10-08

    The use of gold nanoparticles coated with an organic monolayer of thiol for application in chemiresistive sensors was initiated in the late 1990s; since then, such types of sensors have been widely pursued due to their high sensitivities and reversible responses to volatile organic compounds (VOCs). However, a major issue for chemical sensors based on thiol-capped gold nanoparticles is their poor long-term stability as a result of slow degradation of the monothiol-to-gold bonds. We have devised a strategy to overcome this limitation by synthesizing a more robust system using Au nanoparticles capped by trithiol ligands. Compared to its monothiol counterpart, the new system is significantly more stable and also shows improved sensitivity towards different types of polar or non-polar VOCs. Thus, the trithiol-Au nanosensor shows great promise for use in real world applications.

  4. Design of a Humidity Sensor Tag for Passive Wireless Applications.

    Science.gov (United States)

    Wu, Xiang; Deng, Fangming; Hao, Yong; Fu, Zhihui; Zhang, Lihua

    2015-10-07

    This paper presents a wireless humidity sensor tag for low-cost and low-power applications. The proposed humidity sensor tag, based on radio frequency identification (RFID) technology, was fabricated in a standard 0.18 μm complementary metal oxide semiconductor (CMOS) process. The top metal layer was deposited to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture, resulting in a flat power conversion efficiency curve. The capacitive sensor interface, based on phase-locked loop (PLL) theory, employs a simple architecture and can work with 0.5 V supply voltage. The measurement results show that humidity sensor tag achieves excellent linearity, hysteresis and stability performance. The total power-dissipation of the sensor tag is 2.5 μW, resulting in a maximum operating distance of 23 m under 4 W of radiation power of the RFID reader.

  5. A CMOS pressure sensor tag chip for passive wireless applications.

    Science.gov (United States)

    Deng, Fangming; He, Yigang; Li, Bing; Zuo, Lei; Wu, Xiang; Fu, Zhihui

    2015-03-23

    This paper presents a novel monolithic pressure sensor tag for passive wireless applications. The proposed pressure sensor tag is based on an ultra-high frequency RFID system. The pressure sensor element is implemented in the 0.18 µm CMOS process and the membrane gap is formed by sacrificial layer release, resulting in a sensitivity of 1.2 fF/kPa within the range from 0 to 600 kPa. A three-stage rectifier adopts a chain of auxiliary floating rectifier cells to boost the gate voltage of the switching transistors, resulting in a power conversion efficiency of 53% at the low input power of -20 dBm. The capacitive sensor interface, using phase-locked loop archietcture, employs fully-digital blocks, which results in a 7.4 bits resolution and 0.8 µW power dissipation at 0.8 V supply voltage. The proposed passive wireless pressure sensor tag costs a total 3.2 µW power dissipation.

  6. Active pixel sensors: The sensor of choice for future space applications

    OpenAIRE

    Leijtens, J.; Theuwissen, A.; Rao, P.R.; Wang, X.; Xie, N.

    2007-01-01

    It is generally known that active pixel sensors (APS) have a number of advantages over CCD detectors if it comes to cost for mass production, power consumption and ease of integration. Nevertheless, most space applications still use CCD detectors because they tend to give better performance and have a successful heritage. To this respect a change may be at hand with the advent of deep sub-micron processed APS imagers (< 0.25-micron feature size). Measurements performed on test structures at t...

  7. Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures

    Science.gov (United States)

    Kang, Donghoon; Kim, Heon-Young; Kim, Dae-Hyun

    2014-07-01

    The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human-robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as αf + ξf and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, αf + ξf has a non-linear dependence on temperature and varies from 6.0 × 10-6 °C-1 (20 °C) to 10.6 × 10-6 °C-1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C.

  8. Applications of micro/nanoparticles in microfluidic sensors: a review.

    KAUST Repository

    Jiang, Yusheng; Wang, Hui; Li, Shunbo; Wen, Weijia

    2014-01-01

    or magnetic composites which have wide applications in sensors, valves and actuators. On the other hand, particles could be manipulated according to their electric and magnetic properties under external electric and magnetic fields when they are travelling

  9. Learning Activity Predictors from Sensor Data: Algorithms, Evaluation, and Applications.

    Science.gov (United States)

    Minor, Bryan; Doppa, Janardhan Rao; Cook, Diane J

    2017-12-01

    Recent progress in Internet of Things (IoT) platforms has allowed us to collect large amounts of sensing data. However, there are significant challenges in converting this large-scale sensing data into decisions for real-world applications. Motivated by applications like health monitoring and intervention and home automation we consider a novel problem called Activity Prediction , where the goal is to predict future activity occurrence times from sensor data. In this paper, we make three main contributions. First, we formulate and solve the activity prediction problem in the framework of imitation learning and reduce it to a simple regression learning problem. This approach allows us to leverage powerful regression learners that can reason about the relational structure of the problem with negligible computational overhead. Second, we present several metrics to evaluate activity predictors in the context of real-world applications. Third, we evaluate our approach using real sensor data collected from 24 smart home testbeds. We also embed the learned predictor into a mobile-device-based activity prompter and evaluate the app for 9 participants living in smart homes. Our results indicate that our activity predictor performs better than the baseline methods, and offers a simple approach for predicting activities from sensor data.

  10. Fiber optic sensors for environmental applications: A brief review

    International Nuclear Information System (INIS)

    Rossabi, J.

    1992-04-01

    Understanding the flow a groundwater quality. This understanding is achieved by measurement of the appropriate chemical and physical subsurface parameters. The ideal measurement would accurately assess a parameter without affecting the parameter or its environment. Fiber optic spectroscopy offers some of the most promising techniques for accurate, non-invasive measurements of environmental parameters. Fiber optic sensors for subsurface applications are currently being developed by several Department of Energy laboratories. Some of these sensors have been successfully deployed in the field and are attaining the goals of accurate, noninvasive, real time measurements in the subsurface

  11. Improved zinc oxide film for gas sensor applications

    Indian Academy of Sciences (India)

    Zinc oxide (ZnO) is a versatile material for different commercial applications such as transparent electrodes, piezoelectric devices, varistors, SAW devices etc because of its high piezoelectric coupling, greater stability of its hexagonal phase and its pyroelectric property. In fact, ZnO is a potential material for gas sensor ...

  12. Fibre gratings for high temperature sensor applications

    Science.gov (United States)

    Canning, J.; Sommer, K.; Englund, M.

    2001-07-01

    Phosphosilicate fibre gratings can be stabilized at temperatures in excess of 500 °C for sensor applications by optimizing thermal and UV presensitization recipes. Furthermore, the use of 193 nm presensitization prevents the formation of OH absorption bands, extending the use of fibre gratings across the entire wavelength spectrum. Gratings for operation at 700 °C retaining up to 70% reflectivity after 30 min are demonstrated.

  13. Network-Capable Application Process and Wireless Intelligent Sensors for ISHM

    Science.gov (United States)

    Figueroa, Fernando; Morris, Jon; Turowski, Mark; Wang, Ray

    2011-01-01

    Intelligent sensor technology and systems are increasingly becoming attractive means to serve as frameworks for intelligent rocket test facilities with embedded intelligent sensor elements, distributed data acquisition elements, and onboard data acquisition elements. Networked intelligent processors enable users and systems integrators to automatically configure their measurement automation systems for analog sensors. NASA and leading sensor vendors are working together to apply the IEEE 1451 standard for adding plug-and-play capabilities for wireless analog transducers through the use of a Transducer Electronic Data Sheet (TEDS) in order to simplify sensor setup, use, and maintenance, to automatically obtain calibration data, and to eliminate manual data entry and error. A TEDS contains the critical information needed by an instrument or measurement system to identify, characterize, interface, and properly use the signal from an analog sensor. A TEDS is deployed for a sensor in one of two ways. First, the TEDS can reside in embedded, nonvolatile memory (typically flash memory) within the intelligent processor. Second, a virtual TEDS can exist as a separate file, downloadable from the Internet. This concept of virtual TEDS extends the benefits of the standardized TEDS to legacy sensors and applications where the embedded memory is not available. An HTML-based user interface provides a visual tool to interface with those distributed sensors that a TEDS is associated with, to automate the sensor management process. Implementing and deploying the IEEE 1451.1-based Network-Capable Application Process (NCAP) can achieve support for intelligent process in Integrated Systems Health Management (ISHM) for the purpose of monitoring, detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, mitigation to maintain operability, and integrated awareness of system health by the operator. It can also support local data collection and storage. This

  14. Accurate and wide field of view MEMS-based sun sensor for industrial applications

    OpenAIRE

    Delgado, Francisco; Quero, J.M.; Garcia Ortega, Juan; López Tarrida, Cristina; Ortega Villasclaras, Pablo Rafael; Bermejo Broto, Sandra

    2012-01-01

    This paper describes the design, fabrication, sim- ulation, and experimental results of an improved miniaturized two-axis sun sensor for industrial applications, created by adapt- ing a technology used previously in satellite applications. The sensor for each axis is composed of six photodiodes integrated in a crystalline-silicon substrate and a layer of cover glass, which is used to protect the silicon and to hold the windows. The high preci...

  15. Evaluation of Application Space Expansion for the Sensor Fish

    Energy Technology Data Exchange (ETDEWEB)

    DeRolph, Christopher R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-02-01

    The Pacific Northwest National Laboratory has developed an instrument known as the sensor fish that can be released into downstream passage routes at hydropower facilities to collect data on the physical conditions that a fish might be exposed to during passage through a turbine. The US Department of Energy Wind and Water Power Program sees value in expanding the sensor fish application space beyond large Kaplan turbines in the northwest United States to evaluate conditions to which a greater variety of fish species are exposed. Development of fish-friendly turbines requires an understanding of both physical passage conditions and biological responses to those conditions. Expanding the use of sensor fish into other application spaces will add to the knowledge base of physical passage conditions and could also enhance the use of sensor fish as a site-specific tool in mitigating potential impacts to fish populations from hydropower. The Oak Ridge National Laboratory (ORNL) National Hydropower Assessment Program (NHAAP) database contains hydropower facility characteristics that, along with national fish distribution data, were used to evaluate potential interactions between fish species and project characteristics related to downstream passage issues. ORNL developed rankings for the turbine types in the NHAAP database in terms of their potential to impact fish through injury or mortality during downstream turbine passage. National-scale fish distributions for 31 key migratory species were spatially intersected with hydropower plant locations to identify facilities where turbines with a high threat to fish injury or mortality overlap with the potential range of a sensitive fish species. A dataset was produced that identifies hydropower facilities where deployment of the sensor fish technology might be beneficial in addressing issues related to downstream fish passage. The dataset can be queried to target specific geographic regions, fish species, license expiration

  16. Recent Advances of MEMS Resonators for Lorentz Force Based Magnetic Field Sensors: Design, Applications and Challenges

    Directory of Open Access Journals (Sweden)

    Agustín Leobardo Herrera-May

    2016-08-01

    Full Text Available Microelectromechanical systems (MEMS resonators have allowed the development of magnetic field sensors with potential applications such as biomedicine, automotive industry, navigation systems, space satellites, telecommunications and non-destructive testing. We present a review of recent magnetic field sensors based on MEMS resonators, which operate with Lorentz force. These sensors have a compact structure, wide measurement range, low energy consumption, high sensitivity and suitable performance. The design methodology, simulation tools, damping sources, sensing techniques and future applications of magnetic field sensors are discussed. The design process is fundamental in achieving correct selection of the operation principle, sensing technique, materials, fabrication process and readout systems of the sensors. In addition, the description of the main sensing systems and challenges of the MEMS sensors are discussed. To develop the best devices, researches of their mechanical reliability, vacuum packaging, design optimization and temperature compensation circuits are needed. Future applications will require multifunctional sensors for monitoring several physical parameters (e.g., magnetic field, acceleration, angular ratio, humidity, temperature and gases.

  17. A CMOS pressure sensor with integrated interface for passive RFID applications

    International Nuclear Information System (INIS)

    Deng, Fangming; He, Yigang; Wu, Xiang; Fu, Zhihui

    2014-01-01

    This paper presents a CMOS pressure sensor with integrated interface for passive RFID sensing applications. The pressure sensor consists of three parts: top electrode, dielectric layer and bottom electrode. The dielectric layer consists of silicon oxide and an air gap. The bottom electrode is made of polysilicon. The gap is formed by sacrificial layer release and the Al vapor process is used to seal the gap and form the top electrode. The sensor interface is based on phase-locked architecture, which allows the use of fully digital blocks. The proposed pressure sensor and interface is fabricated in a 0.18 μm CMOS process. The measurement results show the pressure sensor achieves excellent linearity with a sensitivity of 1.2 fF kPa −1 . The sensor interface consumes only 1.1 µW of power at 0.5 V voltage supply, which is at least an order of magnitude better than state-of-the-art designs. (paper)

  18. Wireless sensor communications and internet connectivity for sensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, M. [Crossbow Technology, Inc., San Jose, CA (United States)

    2001-07-01

    A wireless sensor network architecture is an integrated hardware/software solution that has the potential to change the way sensors are used in a virtually unlimited range of industries and applications. By leveraging Bluetooth wireless technology for low-cost, short-range radio links, wireless sensor networks such as CrossNet{sup TM} enable users to create wireless sensor networks. These wireless networks can link dozens or hundreds of sensors of disparate types and brands with data acquisition/analysis systems, such as handheld devices, internet-enabled laptop or desktop PCs. The overwhelming majority of sensor applications are hard-wired at present, and since wiring is often the most time-consuming, tedious, trouble-prone and expensive aspect of sensor applications, users in many fields will find compelling reasons to adopt the wireless sensor network solution. (orig.)

  19. Single Interdigital Transducer Approach for Gravimetrical SAW Sensor Applications in Liquid Environments

    Directory of Open Access Journals (Sweden)

    Vu Hoa Nguyen

    2017-12-01

    Full Text Available Surface acoustic wave (SAW devices are well known for mass-sensitive sensor applications. In biosensing applications, chemical and biochemically evoked binding processes on surfaces are detected in liquid environments using delay line or resonator sensor configurations, preferably in combination with the appropriate microfluidic devices. All configurations share the common feature of analyzing the transmission characteristic of the propagating SAW. In this paper, a novel SAW-based impedance sensor type is introduced which uses only one interdigital transducer (IDT, simultaneously as the SAW generator and the sensor element. Here, the input port reflection coefficient S11 is measured at the IDT instead of the commonly used S21 transmission forward gain parameter. Thus, a sharp and distinct peak of the S11 spectrum is obtained, enabling a comfortable direct readout of the sensor signal. Proof of the concept was gained by analyzing the specific binding of the 4-mercaptophenylacetic acid gold nanoparticles (MPA–AuNP directly to the IDT surface. The corresponding binding kinetic of the MPA–AuNP on the functionalized gold surface has been analyzed and a sensitivity of 7.4 mΩ nM−1 has been determined.

  20. Wearable sensor glove based on conducting fabric using electrodermal activity and pulse-wave sensors for e-health application.

    Science.gov (United States)

    Lee, Youngbum; Lee, Byungwoo; Lee, Myoungho

    2010-03-01

    Improvement of the quality and efficiency of health in medicine, both at home and the hospital, calls for improved sensors that might be included in a common carrier such as a wearable sensor device to measure various biosignals and provide healthcare services that use e-health technology. Designed to be user-friendly, smart clothes and gloves respond well to the end users for health monitoring. This study describes a wearable sensor glove that is equipped with an electrodermal activity (EDA) sensor, pulse-wave sensor, conducting fabric, and an embedded system. The EDA sensor utilizes the relationship between drowsiness and the EDA signal. The EDA sensors were made using a conducting fabric instead of silver chloride electrodes, as a more practical and practically wearable device. The pulse-wave sensor measurement system, which is widely applied in oriental medicinal practices, is also a strong element in e-health monitoring systems. The EDA and pulse-wave signal acquisition module was constructed by connecting the sensor to the glove via a conductive fabric. The signal acquisition module is then connected to a personal computer that displays the results of the EDA and pulse-wave signal processing analysis and gives accurate feedback to the user. This system is designed for a number of applications for the e-health services, including drowsiness detection and oriental medicine.

  1. A Survey on Banknote Recognition Methods by Various Sensors

    Science.gov (United States)

    Lee, Ji Woo; Hong, Hyung Gil; Kim, Ki Wan; Park, Kang Ryoung

    2017-01-01

    Despite a decrease in the use of currency due to the recent growth in the use of electronic financial transactions, real money transactions remain very important in the global market. While performing transactions with real money, touching and counting notes by hand, is still a common practice in daily life, various types of automated machines, such as ATMs and banknote counters, are essential for large-scale and safe transactions. This paper presents studies that have been conducted in four major areas of research (banknote recognition, counterfeit banknote detection, serial number recognition, and fitness classification) in the accurate banknote recognition field by various sensors in such automated machines, and describes the advantages and drawbacks of the methods presented in those studies. While to a limited extent some surveys have been presented in previous studies in the areas of banknote recognition or counterfeit banknote recognition, this paper is the first of its kind to review all four areas. Techniques used in each of the four areas recognize banknote information (denomination, serial number, authenticity, and physical condition) based on image or sensor data, and are actually applied to banknote processing machines across the world. This study also describes the technological challenges faced by such banknote recognition techniques and presents future directions of research to overcome them. PMID:28208733

  2. Enhancing thermal reliability of fiber-optic sensors for bio-inspired applications at ultra-high temperatures

    International Nuclear Information System (INIS)

    Kang, Donghoon; Kim, Heon-Young; Kim, Dae-Hyun

    2014-01-01

    The rapid growth of bio-(inspired) sensors has led to an improvement in modern healthcare and human–robot systems in recent years. Higher levels of reliability and better flexibility, essential features of these sensors, are very much required in many application fields (e.g. applications at ultra-high temperatures). Fiber-optic sensors, and fiber Bragg grating (FBG) sensors in particular, are being widely studied as suitable sensors for improved structural health monitoring (SHM) due to their many merits. To enhance the thermal reliability of FBG sensors, thermal sensitivity, generally expressed as α f + ξ f and considered a constant, should be investigated more precisely. For this purpose, the governing equation of FBG sensors is modified using differential derivatives between the wavelength shift and the temperature change in this study. Through a thermal test ranging from RT to 900 °C, the thermal sensitivity of FBG sensors is successfully examined and this guarantees thermal reliability of FBG sensors at ultra-high temperatures. In detail, α f + ξ f has a non-linear dependence on temperature and varies from 6.0 × 10 −6  °C −1 (20 °C) to 10.6 × 10 −6  °C −1 (650 °C). Also, FBGs should be carefully used for applications at ultra-high temperatures due to signal disappearance near 900 °C. (paper)

  3. Development of Sensor Based Applications for the Android Platform: an Approach Based on Realistic Simulation

    Directory of Open Access Journals (Sweden)

    Pablo CAMPILLO-SÁNCHEZ

    2013-05-01

    Full Text Available Smart phones are equipped with a wide range of sensors (such as GPS, light, accelerometer, gyroscope, etc. and allow users to be connected everywhere. These characteristics offer a rich information source for creating context-aware applications. However, testing these applications in the lab, before their deployment, could become a hard task or impossible because of sensors correlation, too wide testing area or an excessive number of people involved. This work aims to solve these problems carrying out the testing in a simulator, simulating the world in which the application user is immersed into. Tester controls her avatar and the avatar has a simulated smart phone that is connected with the user’s smart phone. Applications under test are installed on the real smart phone and are compiled with a library that replaces standard services of the sensors by others that offer data sensor from the simulator (depending on the simulated smart phone context instead of real world.

  4. Handbook of ultra-wideband short-range sensing theory, sensors, applications

    CERN Document Server

    Sachs, Jürgen

    2013-01-01

    Ranging from the theoretical basis of UWB sensors via implementation issues to applications, this much-needed book bridges the gap between designers and appliers working in civil engineering, biotechnology, medical engineering, robotic, mechanical engineering, safety and homeland security. From the contents: * History * Signal and systems in time and frequency domain * Propagation of electromagnetic waves (in frequency and time domain) * UWB-Principles * UWB-antennas and applicators * Data processing * Applications.

  5. Performance of a novel micro force vector sensor and outlook into its biomedical applications

    Science.gov (United States)

    Meiss, Thorsten; Rossner, Tim; Minamisava Faria, Carlos; Völlmeke, Stefan; Opitz, Thomas; Werthschützky, Roland

    2011-05-01

    For the HapCath system, which provides haptic feedback of the forces acting on a guide wire's tip during vascular catheterization, very small piezoresistive force sensors of 200•200•640μm3 have been developed. This paper focuses on the characterization of the measurement performance and on possible new applications. Besides the determination of the dynamic measurement performance, special focus is put onto the results of the 3- component force vector calibration. This article addresses special advantageous characteristics of the sensor, but also the limits of applicability will be addressed. As for the special characteristics of the sensor, the second part of the article demonstrates new applications which can be opened up with the novel force sensor, like automatic navigation of medical or biological instruments without impacting surrounding tissue, surface roughness evaluation in biomedical systems, needle insertion with tactile or higher level feedback, or even building tactile hairs for artificial organisms.

  6. A survey on the wireless sensor network technology

    International Nuclear Information System (INIS)

    Kim, Jae Hee; Jun, Hyeong Seop; Lee, Jae Cheol; Choi, Yoo Rak

    2007-12-01

    Wireless sensor technology is required in the safety inspection for safety-critical unit of nuclear power plant. This report describes wireless sensor technology related with the project named 'Development of a remote care system of NPP components based on the network and safety database'. This report includes contents of methodology and status of sensor network construction, status of zigbee sensor network, problem of security and sensor battery. Energy harvesting technology will be mentioned on the next report

  7. Survey is based on Synchronized and Asynchronized Approach of MAC Protocols in WSN

    Directory of Open Access Journals (Sweden)

    Soni Chaurasia

    2010-07-01

    Full Text Available A wireless network is made of spatially distributed autonomous devices. These devices are called sensors. The sensor is used for monitoring physical or environmental conditions. The potential application of wireless sensor network is environmental monitoring, healthcare applications and tactical systems. In this paper focus is on the MAC protocol for WSN. Wireless sensor network is deployed for wide range to send and receive data with the help of medium. Here literature survey of MAC protocol based on the synchronized and asynchronized approach is described which is used to meet different objective like access a medium, statistical channel allocation, spectrum utilization

  8. Synthesis, Characterization and Utility of Carbon Nanotube Based Hybrid Sensors in Bioanalytical Applications

    Science.gov (United States)

    Badhulika, Sushmee

    The detection of gaseous analytes and biological molecules is of prime importance in the fields of environmental pollution control, food and water - safety and analysis; and medical diagnostics. This necessitates the development of advanced and improved technology that is reliable, inexpensive and suitable for high volume production. The conventional sensors are often thin film based which lack sensitivity due to the phenomena of current shunting across the charge depleted region when an analyte binds with them. One dimensional (1-D) nanostructures provide a better alternative for sensing applications by eliminating the issue of current shunting due to their 1-D geometries and facilitating device miniaturization and low power operations. Carbon nanotubes (CNTs) are 1-D nanostructures that possess small size, high mechanical strength, high electrical and thermal conductivity and high specific area that have resulted in their wide spread applications in sensor technology. To overcome the issue of low sensitivity of pristine CNTs and to widen their scope, hybrid devices have been fabricated that combine the synergistic properties of CNTs along with materials like metals and conducting polymers (CPs). CPs exhibit electronic, magnetic and optical properties of metals and semiconductors while retaining the processing advantages of polymers. Their high chemical sensitivity, room temperature operation and tunable charge transport properties has made them ideal for use as transducing elements in chemical sensors. In this dissertation, various CNT based hybrid devices such as CNT-conducting polymer and graphene-CNT-metal nanoparticles based sensors have been developed and demonstrated towards bioanalytical applications such as detection of volatile organic compounds (VOCs) and saccharides. Electrochemical polymerization enabled the synthesis of CPs and metal nanoparticles in a simple, cost effective and controlled way on the surface of CNT based platforms thus resulting in

  9. Energy Harvesting - Wireless Sensor Networks for Indoors Applications Using IEEE 802.11

    DEFF Research Database (Denmark)

    Fafoutis, Xenofon; Sørensen, Thomas; Madsen, Jan

    2014-01-01

    The paper investigates the feasibility of using IEEE 802.11 in energy harvesting low-power sensing applications. The investigation is based on a prototype carbon dioxide sensor node that is powered by artificial indoors light. The wireless communication module of the sensor node is based on the RTX......4100 module. RTX4100 incorporates a wireless protocol that duty-cycles the radio while being compatible with IEEE 802.11 access points. The presented experiments demonstrate sustainable operation but indicate a trade-off between the benefits of using IEEE 802.11 in energy harvesting applications...

  10. An Adaptive Sensor Mining Framework for Pervasive Computing Applications

    Science.gov (United States)

    Rashidi, Parisa; Cook, Diane J.

    Analyzing sensor data in pervasive computing applications brings unique challenges to the KDD community. The challenge is heightened when the underlying data source is dynamic and the patterns change. We introduce a new adaptive mining framework that detects patterns in sensor data, and more importantly, adapts to the changes in the underlying model. In our framework, the frequent and periodic patterns of data are first discovered by the Frequent and Periodic Pattern Miner (FPPM) algorithm; and then any changes in the discovered patterns over the lifetime of the system are discovered by the Pattern Adaptation Miner (PAM) algorithm, in order to adapt to the changing environment. This framework also captures vital context information present in pervasive computing applications, such as the startup triggers and temporal information. In this paper, we present a description of our mining framework and validate the approach using data collected in the CASAS smart home testbed.

  11. Integration of amperometric sensors for microchip capillary electrophoresis application

    International Nuclear Information System (INIS)

    Dicorato, F; Moore, E; Glennon, J

    2011-01-01

    Capillary electrophoresis is a technique for the separation and analysis of chemical compounds. Techniques adopted from the microchip technology knowledge have led to recent developments of electrophoresis system with integration on microchip. Microchip Capillary Electrophoresis (μCE) systems offer a series of advantages as easy integration for Lab-on-a-chip applications, high performance, portability, speed, minimal solvent and sample requirements. A new technological challenge aims at the development of an economic modular microchip capillary electrophoresis systems using separable and independent units concerning the sensor. In this project we worked on the development of an interchangeable amperometric sensor in order to provide a solution to such electrode passivation and facilitating the use of tailored sensors for specific analyte detection besides. Fluidic chips have been machined from cyclic olefin polymer pallets (Zeonor) using a micro-injection molding machine.

  12. Integration of amperometric sensors for microchip capillary electrophoresis application

    Energy Technology Data Exchange (ETDEWEB)

    Dicorato, F; Moore, E [Life Sciences Interface Group, Tyndall National Institute, Lee Maltings, Dyke Parade, Cork (Ireland); Glennon, J, E-mail: eric.moore@tyndall.ie [Chemistry Department, University College Cork, College Road, Cork (Ireland)

    2011-08-17

    Capillary electrophoresis is a technique for the separation and analysis of chemical compounds. Techniques adopted from the microchip technology knowledge have led to recent developments of electrophoresis system with integration on microchip. Microchip Capillary Electrophoresis ({mu}CE) systems offer a series of advantages as easy integration for Lab-on-a-chip applications, high performance, portability, speed, minimal solvent and sample requirements. A new technological challenge aims at the development of an economic modular microchip capillary electrophoresis systems using separable and independent units concerning the sensor. In this project we worked on the development of an interchangeable amperometric sensor in order to provide a solution to such electrode passivation and facilitating the use of tailored sensors for specific analyte detection besides. Fluidic chips have been machined from cyclic olefin polymer pallets (Zeonor) using a micro-injection molding machine.

  13. Design of fiber optic based respiratory sensor for newborn incubator application

    Science.gov (United States)

    Dhia, Arika; Devara, Kresna; Abuzairi, Tomy; Poespawati, N. R.; Purnamaningsih, Retno W.

    2018-02-01

    This paper reports the design of respiratory sensor using fiber optic for newborn incubator application. The sensor works based on light intensity losses difference obtained due to thorax movement during respiration. The output of the sensor launched to support electronic circuits to be processed in Arduino Uno microcontroler such that the real-time respiratory rate (breath per minute) can be presented on LCD. Experiment results using thorax expansion of newborn simulator show that the system is able to measure respiratory rate from 10 up to 130 breaths per minute with 0.595% error and 0.2% hysteresis error.

  14. Validation and qualification of surface-applied fibre optic strain sensors using application-independent optical techniques

    International Nuclear Information System (INIS)

    Schukar, Vivien G; Kadoke, Daniel; Kusche, Nadine; Münzenberger, Sven; Gründer, Klaus-Peter; Habel, Wolfgang R

    2012-01-01

    Surface-applied fibre optic strain sensors were investigated using a unique validation facility equipped with application-independent optical reference systems. First, different adhesives for the sensor's application were analysed regarding their material properties. Measurements resulting from conventional measurement techniques, such as thermo-mechanical analysis and dynamic mechanical analysis, were compared with measurements resulting from digital image correlation, which has the advantage of being a non-contact technique. Second, fibre optic strain sensors were applied to test specimens with the selected adhesives. Their strain-transfer mechanism was analysed in comparison with conventional strain gauges. Relative movements between the applied sensor and the test specimen were visualized easily using optical reference methods, digital image correlation and electronic speckle pattern interferometry. Conventional strain gauges showed limited opportunities for an objective strain-transfer analysis because they are also affected by application conditions. (paper)

  15. On Mass Loading and Dissipation Measured with Acoustic Wave Sensors: A Review

    Directory of Open Access Journals (Sweden)

    Marina V. Voinova

    2009-01-01

    Full Text Available We summarize current trends in the analysis of physical properties (surface mass density, viscosity, elasticity, friction, and charge of various thin films measured with a solid-state sensor oscillating in a gaseous or liquid environment. We cover three different types of mechanically oscillating sensors: the quartz crystal microbalance with dissipation (QCM-D monitoring, surface acoustic wave (SAW, resonators and magnetoelastic sensors (MESs. The fourth class of novel acoustic wave (AW mass sensors, namely thin-film bulk acoustic resonators (TFBARs on vibrating membranes is discussed in brief. The paper contains a survey of theoretical results and practical applications of the sensors and includes a comprehensive bibliography.

  16. Sensor Fusion-based Event Detection in Wireless Sensor Networks

    NARCIS (Netherlands)

    Bahrepour, M.; Meratnia, Nirvana; Havinga, Paul J.M.

    2009-01-01

    Recently, Wireless Sensor Networks (WSN) community has witnessed an application focus shift. Although, monitoring was the initial application of wireless sensor networks, in-network data processing and (near) real-time actuation capability have made wireless sensor networks suitable candidate for

  17. Thermal sensor based zinc oxide diode for low temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Ocaya, R.O. [Department of Physics, University of the Free State (South Africa); Al-Ghamdi, Ahmed [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia); El-Tantawy, F. [Department of Physics, Faculty of Science, Suez Canal University, Ismailia (Egypt); Center of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Farooq, W.A. [Department of Physics and Astronomy, College of Science, King Saud University, Riyadh (Saudi Arabia); Yakuphanoglu, F., E-mail: fyhan@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 (Saudi Arabia); Department of Physics, Faculty of Science, Firat University, Elazig, 23169 (Turkey)

    2016-07-25

    The device parameters of Al/p-Si/Zn{sub 1-x}Al{sub x}O-NiO/Al Schottky diode for x = 0.005 were investigated over the 50 K–400 K temperature range using direct current–voltage (I–V) and impedance spectroscopy. The films were prepared using the sol–gel method followed by spin-coating on p-Si substrate. The ideality factor, barrier height, resistance and capacitance of the diode were found to depend on temperature. The calculated barrier height has a mean. Capacitance–voltage (C–V) measurements show that the capacitance decreases with increasing frequency, suggesting a continuous distribution of interface states over the surveyed 100 kHz to 1 MHz frequency range. The interface state densities, N{sub ss}, of the diode were calculated and found to peak as functions of bias and temperature in two temperature regions of 50 K–300 K and 300 K–400 K. A peak value of approximately 10{sup 12}/eV cm{sup 2} was observed around 0.7 V bias for 350 K and at 3 × 10{sup 12}/eVcm{sup 2} around 2.2 V bias for 300 K. The relaxation time was found to average 4.7 μs over all the temperatures, but showing its lowest value of 1.58 μs at 300 K. It is seen that the interface states of the diode is controlled by the temperature. This suggests that Al/p-Si/Zn1-xAlxO-NiO/Al diode can be used as a thermal sensors for low temperature applications. - Highlights: • Al/pSi/Zn1-xAlxO-NiO/Al Schottky diode was fabricated by sol gel method. • The interface state density of the diode is controlled by the temperature. • Zinc oxide based diode can be used as a thermal sensor for low temperature applications.

  18. Distributed electrochemical sensors: recent advances and barriers to market adoption.

    Science.gov (United States)

    Hoekstra, Rafael; Blondeau, Pascal; Andrade, Francisco J

    2018-07-01

    Despite predictions of their widespread application in healthcare and environmental monitoring, electrochemical sensors are yet to be distributed at scale, instead remaining largely confined to R&D labs. This contrasts sharply with the situation for physical sensors, which are now ubiquitous and seamlessly embedded in the mature ecosystem provided by electronics and connectivity protocols. Although chemical sensors could be integrated into the same ecosystem, there are fundamental issues with these sensors in the three key areas of analytical performance, usability, and affordability. Nevertheless, advances are being made in each of these fields, leading to hope that the deployment of automated and user-friendly low-cost electrochemical sensors is on the horizon. Here, we present a brief survey of key challenges and advances in the development of distributed electrochemical sensors for liquid samples, geared towards applications in healthcare and wellbeing, environmental monitoring, and homeland security. As will be seen, in many cases the analytical performance of the sensor is acceptable; it is usability that is the major barrier to commercial viability at this moment. Were this to be overcome, the issue of affordability could be addressed. Graphical Abstract ᅟ.

  19. Motion Sensors and Transducers to Navigate an Intelligent Mechatronic Platform for Outdoor Applications

    Directory of Open Access Journals (Sweden)

    Michail G. PAPOUTSIDAKIS

    2016-03-01

    Full Text Available The initial goal of this project is to investigate if different sensor types and their attached transducers can support everyday human needs. Nowadays, there is a constant need to automate many time consuming applications not only in industrial environments but also in smaller scale applications, therefore robotics is a field that continuously tracks research interest. The area of human assistance by machines in everyday needs, continues to grow and to keep users interest very high. "Mechatronics" differ from Robotics in terms of integrated electronics, the advantage of being easily re-programmable and more over the versatility of hosting all kind of sensor types, sensor networks, transducers and actuators. In this research project, such an integrated autonomous device will be presented, focusing around the use of sensors and their feedback signals for proximity, position, motion, distance, placement and finally navigation. The ultimate sensor type choice for the task as well as all transducers signals management will also be highlighted. An up-to-date technology microcontroller will host all the above information and moreover move the mechatronic platform via motor actuators. The control algorithm which will be designed for the application is responsible for receiving all feedback signals, processing them and safely navigate the system in order to undertake its mission. The project scenario, the necessary electronic equipment and the controller design method will be highlighted in the following paragraphs of this document. Conclusions and results of sensor usage, platform's performance and problems solutions, forms the rest of this paper body.

  20. A Survey on Temperature-Aware Routing Protocols in Wireless Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sangman Moh

    2013-08-01

    Full Text Available The rapid growth of the elderly population in the world and the rising cost of healthcare impose big issues for healthcare and medical monitoring. A Wireless Body Sensor Network (WBSN is comprised of small sensor nodes attached inside, on or around a human body, the main purpose of which is to monitor the functions and surroundings of the human body. However, the heat generated by the node’s circuitry and antenna could cause damage to the human tissue. Therefore, in designing a routing protocol for WBSNs, it is important to reduce the heat by incorporating temperature into the routing metric. The main contribution of this paper is to survey existing temperature-aware routing protocols that have been proposed for WBSNs. In this paper, we present a brief overview of WBSNs, review the existing routing protocols comparatively and discuss challenging open issues in the design of routing protocols.

  1. Sensitivity enhancement using annealed polymer optical fibre based sensors for pressure sensing applications

    DEFF Research Database (Denmark)

    Pospori, A.; Marques, C. A. F.; Saez-Rodriguez, D.

    2016-01-01

    for that investigation was an unexpected behaviour observed in an array of sensors which were used for liquid level monitoring. One sensor exhibited much lower pressure sensitivity and that was the only one that was not annealed. To further investigate the phenomenon, additional sensors were photo...... sensitivity of the devices. This can provide better performing sensors for use in stress, force and pressure sensing applications.......Thermal annealing can be used to induce a permanent negative Bragg wavelength shift for polymer fibre grating sensors and it was originally used for multiplexing purposes. Recently, researchers showed that annealing can also provide additional benefits, such as strain and humidity sensitivity...

  2. Apodization Optimization of FBG Strain Sensor for Quasi-Distributed Sensing Measurement Applications

    Directory of Open Access Journals (Sweden)

    Fahd Chaoui

    2016-01-01

    Full Text Available A novel optimized apodization of Fiber Bragg Grating Sensor (FBGS for quasi-distributed strain sensing applications is developed and introduced in this paper. The main objective of the proposed optimization is to obtain a reflectivity level higher than 90% and a side lobe level around −40 dB, which is suitable for use in quasi-distributed strain sensing application. For this purpose, different design parameters as apodization profile, grating length, and refractive index have been investigated to enhance and optimize the FBGS design. The performance of the proposed apodization has then been compared in terms of reflectivity, side lobe level (SLL, and full width at half maximum (FWHM with apodization profiles proposed by other authors. The optimized sensor is integrated on quasi-distributed sensing system of 8 sensors demonstrating high reliability. Wide strain sensitivity range for each channel has also been achieved in the quasi-distributed system. Results prove the efficiency of the proposed optimization which can be further implemented for any quasi-distributed sensing application.

  3. High Resolution Robust GPS-free Localization for Wireless Sensor Networks and its Applications

    KAUST Repository

    Mirza, Mohammed

    2011-12-12

    In this thesis we investigate the problem of robustness and scalability w.r.t. estimating the position of randomly deployed motes/nodes of a Wireless Sensor Network (WSN) without the help of Global Positioning System (GPS) devices. We propose a few applications of range independent localization algorithms that allow the sensors to actively determine their location with high resolution without increasing the complexity of the hardware or any additional device setup. In our first application we try to present a localized and centralized cooperative spectrum sensing using RF sensor networks. This scheme collaboratively sense the spectrum and localize the whole network efficiently and with less difficulty. In second application we try to focus on how efficiently we can localize the nodes, to detect underwater threats, without the use of beacons. In third application we try to focus on 3-Dimensional localization for LTE systems. Our performance evaluation shows that these schemes lead to a significant improvement in localization accuracy compared to the state-of-art range independent localization schemes, without requiring GPS support.

  4. Optimal sensor configuration for complex systems with application to signal detection in structures

    DEFF Research Database (Denmark)

    Sadegh, Payman; Spall, J. C.

    2000-01-01

    sensor outputs. Secondly, we describe an efficient and practical algorithm to achieve the optimization goals, based on simultaneous perturbation stochastic approximation (SPSA). SPSA avoids the need for detailed modeling of the sensor response by simply relying on observed responses as obtained......The paper considers the problem of sensor configuration for complex systems. The contribution of the paper is twofold. Firstly, we define an appropriate criterion that is based on maximizing overall sensor responses while minimizing redundant information as measured by correlations between multiple...... by limited experimentation with test sensor configurations. We illustrate the application of the approach to optimal placement of acoustic sensors for signal detection in structures. This includes both a computer simulation study for an aluminum plate, and real experimentations on a steel I-beam....

  5. Enabling IoT: Integration of wireless sensor network for healthcare application using Waspmote

    Science.gov (United States)

    Azmi, Noraini; Kamarudin, Latifah Munirah

    2017-03-01

    The number of patients that require medical assistance is increasing each day while staff-patient ratio is not balanced causing issues such as treatment delay and often leads to patient dissatisfaction. Besides that, healthcare devices are getting complex and challenging for it to be handled and interpreted personally by patient. Lack of staff and challenges in operating the medical devices not only affect patient in hospital but also caused problem to home care patients that require full attention and constant monitoring. This urges for a development of new method or technology. At present, Wireless Sensor Network (WSN) is gaining interest as one of the major components in enabling Internet of Things (IoT) since it offers low cost, low power monitoring besides reducing devices dependency on wires or cable. Although, WSN is initially developed for military application, nowadays, it is being integrated into various applications such as environmental monitoring, smart monitoring and agricultural monitoring. The idea of wireless monitoring with low power consumption motivates researchers to discover the possibility of deploying wireless sensor network for mission critical application such as in healthcare applications. This paper presents the details on the design and development of wireless sensor network using Waspmote from Libelium Inc. for mission critical applications such as healthcare applications.

  6. Sensors advancements in modeling, design issues, fabrication and practical applications

    CERN Document Server

    Mukhopadhyay, Subhash Chandra

    2008-01-01

    Sensors are the most important component in any system and engineers in any field need to understand the fundamentals of how these components work, how to select them properly and how to integrate them into an overall system. This book has outlined the fundamentals, analytical concepts, modelling and design issues, technical details and practical applications of different types of sensors, electromagnetic, capacitive, ultrasonic, vision, Terahertz, displacement, fibre-optic and so on. The book: addresses the identification, modeling, selection, operation and integration of a wide variety of se

  7. Mass Tracking with a MEMS-based Gravity Sensor

    Science.gov (United States)

    Pike, W. T.; Mukherjee, A.; Warren, T.; Charalambous, C.; Calcutt, S. B.; Standley, I.

    2017-12-01

    We achieve the first demonstration of the dynamic location of a moving mass using a MEMS sensor to detect gravity. The sensor is based on a microseismometer developed for planetary geophysics. In an updated version of the original Cavendish experiment the noise floor of the sensor, at 0.25 µgal/rtHz, allows the determination of the dynamic gravitational field from the motion of the mass of an oscillating pendulum. Using the determined noise floor we show that this performance should be sufficient for practical subsurface gravity surveying, in particular detection of 50-cm diameter pipes up to 10 m below the surface. Beyond this specific application, this sensor with a mass of less than 250 g per axis represents a new technology that opens up the possibility of drone deloyments for gravity mapping.

  8. Photonic sensor opportunities for distributed and wireless systems in security applications

    Science.gov (United States)

    Krohn, David

    2006-10-01

    There are broad ranges of homeland security sensing applications that can be facilitated by distributed fiber optic sensors and photonics integrated wireless systems. These applications include [1]: Pipeline, (Monitoring, Security); Smart structures (Bridges, Tunnels, Dams, Public spaces); Power lines (Monitoring, Security); Transportation security; Chemical/biological detection; Wide area surveillance - perimeter; and Port Security (Underwater surveillance, Cargo container). Many vital assets which cover wide areas, such as pipeline and borders, are under constant threat of being attacked or breached. There is a rapidly emerging need to be able to provide identification of intrusion threats to such vital assets. Similar problems exit for monitoring the basic infrastructure such as water supply, power utilities, communications systems as well as transportation. There is a need to develop a coordinated and integrated solution for the detection of threats. From a sensor standpoint, consideration must not be limited to detection, but how does detection lead to intervention and deterrence. Fiber optic sensor technology must be compatible with other surveillance technologies such as wireless mote technology to facilitate integration. In addition, the multi-functionality of fiber optic sensors must be expanded to include bio-chemical detection. There have been a number of barriers for the acceptance and broad use of smart fiber optic sensors. Compared to telecommunications, the volume is low. This fact coupled with proprietary and custom specifications has kept the price of fiber optic sensors high. There is a general lack of a manufacturing infrastructure and lack of standards for packaging and reliability. Also, there are several competing technologies; some photonic based and other approaches based on conventional non-photonic technologies.

  9. Human behavior understanding in networked sensing theory and applications of networks of sensors

    CERN Document Server

    Spagnolo, Paolo; Distante, Cosimo

    2014-01-01

    This unique text/reference provides a broad overview of both the technical challenges in sensor network development, and the real-world applications of distributed sensing. Important aspects of distributed computing in large-scale networked sensor systems are analyzed in the context of human behavior understanding, including such topics as systems design tools and techniques, in-network signals, and information processing. Additionally, the book examines a varied range of application scenarios, covering surveillance, indexing and retrieval, patient care, industrial safety, social and ambient

  10. Efficient Security Mechanisms for mHealth Applications Using Wireless Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Prasan Kumar Sahoo

    2012-09-01

    Full Text Available Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme.

  11. Efficient Security Mechanisms for mHealth Applications Using Wireless Body Sensor Networks

    Science.gov (United States)

    Sahoo, Prasan Kumar

    2012-01-01

    Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme. PMID:23112734

  12. Efficient security mechanisms for mHealth applications using wireless body sensor networks.

    Science.gov (United States)

    Sahoo, Prasan Kumar

    2012-01-01

    Recent technological advances in wireless communications and physiological sensing allow miniature, lightweight, ultra-low power, intelligent monitoring devices, which can be integrated into a Wireless Body Sensor Network (WBSN) for health monitoring. Physiological signals of humans such as heartbeats, temperature and pulse can be monitored from a distant location using tiny biomedical wireless sensors. Hence, it is highly essential to combine the ubiquitous computing with mobile health technology using wireless sensors and smart phones to monitor the well-being of chronic patients such as cardiac, Parkinson and epilepsy patients. Since physiological data of a patient are highly sensitive, maintaining its confidentiality is highly essential. Hence, security is a vital research issue in mobile health (mHealth) applications, especially if a patient has an embarrassing disease. In this paper a three tier security architecture for the mHealth application is proposed, in which light weight data confidentiality and authentication protocols are proposed to maintain the privacy of a patient. Moreover, considering the energy and hardware constraints of the wireless body sensors, low complexity data confidential and authentication schemes are designed. Performance evaluation of the proposed architecture shows that they can satisfy the energy and hardware limitations of the sensors and still can maintain the secure fabrics of the wireless body sensor networks. Besides, the proposed schemes can outperform in terms of energy consumption, memory usage and computation time over standard key establishment security scheme.

  13. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Brambley, Michael R.; Haves, Philip; McDonald, Sean C.; Torcellini, Paul; Hansen, David G.; Holmberg, David; Roth, Kurt

    2005-04-13

    Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The other four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.

  14. Semantic interoperability in sensor applications - making sense of sensor data

    NARCIS (Netherlands)

    Brandt, Paul; Basten, Twan; Stuijk, Sander; Bui, Vinh; de Clercq, Paul; Ferreira Pires, Luis; van Sinderen, Marten J.

    Much effort has been spent on the optimization of sensor networks, mainly concerning their performance and power efficiency. Furthermore, open communication protocols for the exchange of sensor data have been developed and widely adopted, making sensor data widely available for software

  15. Application of flexible micro temperature sensor in oxidative steam reforming by a methanol micro reformer.

    Science.gov (United States)

    Lee, Chi-Yuan; Lee, Shuo-Jen; Shen, Chia-Chieh; Yeh, Chuin-Tih; Chang, Chi-Chung; Lo, Yi-Man

    2011-01-01

    Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS) technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM), with the relevant parameters optimized as well.

  16. Application of Flexible Micro Temperature Sensor in Oxidative Steam Reforming by a Methanol Micro Reformer

    Directory of Open Access Journals (Sweden)

    Yi-Man Lo

    2011-02-01

    Full Text Available Advances in fuel cell applications reflect the ability of reformers to produce hydrogen. This work presents a flexible micro temperature sensor that is fabricated based on micro-electro-mechanical systems (MEMS technology and integrated into a flat micro methanol reformer to observe the conditions inside that reformer. The micro temperature sensor has higher accuracy and sensitivity than a conventionally adopted thermocouple. Despite various micro temperature sensor applications, integrated micro reformers are still relatively new. This work proposes a novel method for integrating micro methanol reformers and micro temperature sensors, subsequently increasing the methanol conversion rate and the hydrogen production rate by varying the fuel supply rate and the water/methanol ratio. Importantly, the proposed micro temperature sensor adequately controls the interior temperature during oxidative steam reforming of methanol (OSRM, with the relevant parameters optimized as well.

  17. A sensor monitoring system for telemedicine, safety and security applications

    Science.gov (United States)

    Vlissidis, Nikolaos; Leonidas, Filippos; Giovanis, Christos; Marinos, Dimitrios; Aidinis, Konstantinos; Vassilopoulos, Christos; Pagiatakis, Gerasimos; Schmitt, Nikolaus; Pistner, Thomas; Klaue, Jirka

    2017-02-01

    A sensor system capable of medical, safety and security monitoring in avionic and other environments (e.g. homes) is examined. For application inside an aircraft cabin, the system relies on an optical cellular network that connects each seat to a server and uses a set of database applications to process data related to passengers' health, safety and security status. Health monitoring typically encompasses electrocardiogram, pulse oximetry and blood pressure, body temperature and respiration rate while safety and security monitoring is related to the standard flight attendance duties, such as cabin preparation for take-off, landing, flight in regions of turbulence, etc. In contrast to previous related works, this article focuses on the system's modules (medical and safety sensors and associated hardware), the database applications used for the overall control of the monitoring function and the potential use of the system for security applications. Further tests involving medical, safety and security sensing performed in an real A340 mock-up set-up are also described and reference is made to the possible use of the sensing system in alternative environments and applications, such as health monitoring within other means of transport (e.g. trains or small passenger sea vessels) as well as for remotely located home users, over a wired Ethernet network or the Internet.

  18. A Novel Tactile Sensor with Electromagnetic Induction and Its Application on Stick-Slip Interaction Detection

    Directory of Open Access Journals (Sweden)

    Yanjie Liu

    2016-03-01

    Full Text Available Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems.

  19. A Novel Tactile Sensor with Electromagnetic Induction and Its Application on Stick-Slip Interaction Detection

    Science.gov (United States)

    Liu, Yanjie; Han, Haijun; Liu, Tao; Yi, Jingang; Li, Qingguo; Inoue, Yoshio

    2016-01-01

    Real-time detection of contact states, such as stick-slip interaction between a robot and an object on its end effector, is crucial for the robot to grasp and manipulate the object steadily. This paper presents a novel tactile sensor based on electromagnetic induction and its application on stick-slip interaction. An equivalent cantilever-beam model of the tactile sensor was built and capable of constructing the relationship between the sensor output and the friction applied on the sensor. With the tactile sensor, a new method to detect stick-slip interaction on the contact surface between the object and the sensor is proposed based on the characteristics of friction change. Furthermore, a prototype was developed for a typical application, stable wafer transferring on a wafer transfer robot, by considering the spatial magnetic field distribution and the sensor size according to the requirements of wafer transfer. The experimental results validate the sensing mechanism of the tactile sensor and verify its feasibility of detecting stick-slip on the contact surface between the wafer and the sensor. The sensing mechanism also provides a new approach to detect the contact state on the soft-rigid surface in other robot-environment interaction systems. PMID:27023545

  20. Optical and Electric Multifunctional CMOS Image Sensors for On-Chip Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Kiyotaka Sasagawa

    2010-12-01

    Full Text Available In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing pixels, and designed multifunctional CMOS image sensors that can sense light intensity and electric potential or apply a voltage to an on-chip measurement target. We describe the sensors’ architecture on the basis of the type of electric measurement or imaging functionalities.

  1. Active sensing and its application to sensor node reconfiguration.

    Science.gov (United States)

    Lee, Sooyong

    2014-10-08

    This paper presents a perturbation/correlation-based active sensing method and its application to sensor node configuration for environment monitoring. Sensor networks are widely used as data measurement tools, especially in dangerous environments. For large scale environment monitoring, a large number of nodes is required. For optimal measurements, the placement of nodes is very important. Nonlinear spring force-based configuration is introduced. Perturbation/correlation-based estimation of the gradient is developed and it is much more robust because it does not require any differentiation. An algorithm for tuning the stiffness using the estimated gradient for node reconfiguration is presented. The performance of the proposed algorithm is discussed with simulation results.

  2. Application of the laser scanning confocal microscope in fluorescent film sensor research

    Science.gov (United States)

    Zhang, Hongyan; Liu, Wei-Min; Zhao, Wen-Wen; Dai, Qing; Wang, Peng-Fei

    2010-10-01

    Confocal microscopy offers several advantages over conventional optical microscopy; we show an experimental investigation laser scanning confocal microscope as a tool to be used in cubic boron nitride (cBN) film-based fluorescent sensor research. Cubic boron nitride cBN film sensors are modified with dansyl chloride and rhodamine B isothiocyanate respectively. Fluorescent modification quality on the cubic boron nitride film is clearly express and the sensor ability to Hg2+ cations and pH are investigated in detail. We evidence the rhodamine B isothiocyanate modified quality on cBN surface is much better than that of dansyl chloride. And laser scanning confocal microscope has potential application lighttight fundus film fluorescent sensor research.

  3. Sensor Applications and Data Validation

    Science.gov (United States)

    Wiley, John

    2008-01-01

    The mechanical configuration of automobiles have changed marginally while improvements in sensors and control have dramatically improved engine efficiency, reliability and useful life. The aviation industry has also taken advantage of sensors and control systems to reduce operational costs. Sensors and high fidelity control systems fly planes at levels of performance beyond human capability. Sophisticated environmental controls allow a greater level of comfort and efficiency in our homes. Sensors have given the medical field a better understanding of the human body and the environment in which we live.

  4. Clinical Application of Insertion Force Sensor System for Coil Embolization of Intracranial Aneurysms.

    Science.gov (United States)

    Matsubara, Noriaki; Miyachi, Shigeru; Izumi, Takashi; Yamada, Hiroyuki; Marui, Naoki; Ota, Keisuke; Tajima, Hayato; Shintai, Kazunori; Ito, Masashi; Imai, Tasuku; Nishihori, Masahiro; Wakabayashi, Toshihiko

    2017-09-01

    In endovascular embolization for intracranial aneurysms, it is important to properly control the coil insertion force. However, the force can only be subjectively detected by the subtle feedback experienced by neurointerventionists at their fingertips. The authors envisioned a system that would objectively sense and quantify that force. In this article, coil insertion force was measured in cases of intracranial aneurysm using this sensor, and its actual clinical application was investigated. The sensor consists of a hemostatic valve (Y-connector). A little flexure was intentionally added in the device, and it creates a bend in the delivery wire. The sensor measures the change in the position of the bent wire depending on the insertion force and translates it into a force value. Using this, embolization was performed for 10 unruptured intracranial aneurysms. The sensor adequately recorded the force, and it reflected the operators' usual clinical experience. The presence of the sensor did not affect the procedures. The sensor enabled the operators to objectively note and evaluate the insertion force and better cooperative handling was possible. Additionally, other members of the intervention team shared the information. Force records demonstrated the characteristic patterns according to every stage of coiling (framing, filling, and finishing). The force sensor system adequately measured coil insertion force in intracranial aneurysm coil embolization procedures. The safety of this sensor was demonstrated in clinical application for the limited number of patients. This system is useful adjunct for assisting during coil embolization for an intracranial aneurysm. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Autonomous Aeromagnetic Surveys Using a Fluxgate Magnetometer.

    Science.gov (United States)

    Macharet, Douglas G; Perez-Imaz, Héctor I A; Rezeck, Paulo A F; Potje, Guilherme A; Benyosef, Luiz C C; Wiermann, André; Freitas, Gustavo M; Garcia, Luis G U; Campos, Mario F M

    2016-12-17

    Recent advances in the research of autonomous vehicles have showed a vast range of applications, such as exploration, surveillance and environmental monitoring. Considering the mining industry, it is possible to use such vehicles in the prospection of minerals of commercial interest beneath the ground. However, tasks such as geophysical surveys are highly dependent on specific sensors, which mostly are not designed to be used in these new range of autonomous vehicles. In this work, we propose a novel magnetic survey pipeline that aims to increase versatility, speed and robustness by using autonomous rotary-wing Unmanned Aerial Vehicles (UAVs). We also discuss the development of a state-of-the-art three-axis fluxgate, where our goal in this work was to refine and adjust the sensor topology and coupled electronics specifically for this type of vehicle and application. The sensor was built with two ring-cores using a specially developed stress-annealed CoFeSiB amorphous ribbon, in order to get sufficient resolution to detect concentrations of small ferrous minerals. Finally, we report on the results of experiments performed with a real UAV in an outdoor environment, showing the efficacy of the methodology in detecting an artificial ferrous anomaly.

  6. Assessing Miniaturized Sensor Performance using Supervised Learning, with Application to Drug and Explosive Detection

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne

    of sensors, as the sensors are designed to provide robust and reliable measurements. That means, the sensors are designed to have repeated measurement clusters. Sensor fusion is presented for the sensor based on chemoselective compounds. An array of color changing compounds are handled and in unity they make......This Ph.D. thesis titled “Assessing Miniaturized Sensor Performance using Supervised Learning, with Application to Drug and Explosive Detection” is a part of the strategic research project “Miniaturized sensors for explosives detection in air” funded by the Danish Agency for Science and Technology...... emanated by explosives and drugs, similar to an electronic nose. To evaluate sensor responses a data processing and evaluation pipeline is required. The work presented herein focuses on the feature extraction, feature representation and sensor accuracy. Thus the primary aim of this thesis is twofold...

  7. A Passive Learning Sensor Architecture for Multimodal Image Labeling: An Application for Social Robots

    Directory of Open Access Journals (Sweden)

    Marco A. Gutiérrez

    2017-02-01

    Full Text Available Object detection and classification have countless applications in human–robot interacting systems. It is a necessary skill for autonomous robots that perform tasks in household scenarios. Despite the great advances in deep learning and computer vision, social robots performing non-trivial tasks usually spend most of their time finding and modeling objects. Working in real scenarios means dealing with constant environment changes and relatively low-quality sensor data due to the distance at which objects are often found. Ambient intelligence systems equipped with different sensors can also benefit from the ability to find objects, enabling them to inform humans about their location. For these applications to succeed, systems need to detect the objects that may potentially contain other objects, working with relatively low-resolution sensor data. A passive learning architecture for sensors has been designed in order to take advantage of multimodal information, obtained using an RGB-D camera and trained semantic language models. The main contribution of the architecture lies in the improvement of the performance of the sensor under conditions of low resolution and high light variations using a combination of image labeling and word semantics. The tests performed on each of the stages of the architecture compare this solution with current research labeling techniques for the application of an autonomous social robot working in an apartment. The results obtained demonstrate that the proposed sensor architecture outperforms state-of-the-art approaches.

  8. Carbon Nanotube-Based Ion Selective Sensors for Wearable Applications.

    Science.gov (United States)

    Roy, Soumyendu; David-Pur, Moshe; Hanein, Yael

    2017-10-11

    Wearable electronics offer new opportunities in a wide range of applications, especially sweat analysis using skin sensors. A fundamental challenge in these applications is the formation of sensitive and stable electrodes. In this article we report the development of a wearable sensor based on carbon nanotube (CNT) electrode arrays for sweat sensing. Solid-state ion selective electrodes (ISEs), sensitive to Na + ions, were prepared by drop coating plasticized poly(vinyl chloride) (PVC) doped with ionophore and ion exchanger on CNT electrodes. The ion selective membrane (ISM) filled the intertubular spaces of the highly porous CNT film and formed an attachment that was stronger than that achieved with flat Au, Pt, or carbon electrodes. Concentration of the ISM solution used influenced the attachment to the CNT film, the ISM surface morphology, and the overall performance of the sensor. Sensitivity of 56 ± 3 mV/decade to Na + ions was achieved. Optimized solid-state reference electrodes (REs), suitable for wearable applications, were prepared by coating CNT electrodes with colloidal dispersion of Ag/AgCl, agarose hydrogel with 0.5 M NaCl, and a passivation layer of PVC doped with NaCl. The CNT-based REs had low sensitivity (-1.7 ± 1.2 mV/decade) toward the NaCl solution and high repeatability and were superior to bare Ag/AgCl, metals, carbon, and CNT films, reported previously as REs. CNT-based ISEs were calibrated against CNT-based REs, and the short-term stability of the system was tested. We demonstrate that CNT-based devices implemented on a flexible support are a very attractive platform for future wearable technology devices.

  9. Application of commercial sensor manufacturing methods for NOx/NH3 mixed potential sensors for emissions control

    Energy Technology Data Exchange (ETDEWEB)

    Brosha, Eric L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory; Nelson, Mark A [Los Alamos National Laboratory; Sekhar, Praveen [Los Alamos National Laboratory; Williamson, Todd [Los Alamos National Laboratory; Garzon, Fernando H [Los Alamos National Laboratory

    2009-01-01

    The purpose of this research effort is to develop a low cost on-board Nitrogen Oxide (NO{sub x})/Ammonia (NH{sub 3}) sensor that can not only be used for emissions control but has the potential to improve efficiency through better monitoring of the combustion process and feedback control in both vehicle and stationary systems. Over the past decade, Los AJamos National Laboratory (LANL) has developed a unique class of electrochemical gas sensors for the detection of carbon monoxide, hydrocarbons, hydrogen and nitrogen oxides. These sensors are based on the mixed-potential phenomenon and are a modification of the existing automotive lambda (oxygen) sensor and have the potential to meet the stringent sensitivity, selectivity and stability requirements of an on-board emissions/engine control sensor system. The current state of the art LANL technology is based on the stabilization of the electrochemical interfaces and relies on an externally heated, hand-made, tape cast device. We are now poised to apply our patented sensing principles in a mass production sensor platform that is more suitable for real world engine-out testing such as on dynamometers for vehicle applications and for exhaust-out testing in heavy boilers/SCR systems in power plants. In this present work, our goal is to advance towards commercialization of this technology by packaging the unique LANL sensor design in a standard automotive sensor-type platform. This work is being performed with the help of a leading US technical ceramics firm, utilizing commercial manufacturing techniques. Initial tape cast platforms with screen printed metal oxide and Pt sensor electrodes have shown promising results but also clearly show the need for us to optimize the electrode and electrolyte compositions/morphologies and interfaces of these devices in order to demonstrate a sensitive, selective, and stable NO{sub x} sensor. Our previous methods and routes to preparing stable and reproducible mixed potential sensors

  10. Applications of artificial intelligence to space station: General purpose intelligent sensor interface

    Science.gov (United States)

    Mckee, James W.

    1988-01-01

    This final report describes the accomplishments of the General Purpose Intelligent Sensor Interface task of the Applications of Artificial Intelligence to Space Station grant for the period from October 1, 1987 through September 30, 1988. Portions of the First Biannual Report not revised will not be included but only referenced. The goal is to develop an intelligent sensor system that will simplify the design and development of expert systems using sensors of the physical phenomena as a source of data. This research will concentrate on the integration of image processing sensors and voice processing sensors with a computer designed for expert system development. The result of this research will be the design and documentation of a system in which the user will not need to be an expert in such areas as image processing algorithms, local area networks, image processor hardware selection or interfacing, television camera selection, voice recognition hardware selection, or analog signal processing. The user will be able to access data from video or voice sensors through standard LISP statements without any need to know about the sensor hardware or software.

  11. Whole Wafer Design and Fabrication for the Alignment of Nanostructures for Chemical Sensor Applications

    Science.gov (United States)

    Biaggi-Labiosa, Azlin M.; Hunter, Gary W.

    2013-01-01

    A major objective in aerospace sensor development is to produce sensors that are small in size, easy to batch fabricate and low in cost, and have low power consumption The fabrication of chemical sensors involving nanostructured materials can provide these properties as well as the potential for the development of sensor systems with unique properties and improved performance. However, the fabrication and processing of nanostructures for sensor applications currently is limited in the ability to control their location on the sensor. Currently, our group at NASA Glenn Research Center has demonstrated the controlled placement of nanostructures in sensors using a sawtooth patterned electrode design. With this design the nanostructures are aligned between opposing sawtooth electrodes by applying an alternating current.

  12. Geomembranes with incorporated optical fiber sensors for geotechnical and environmental applications

    International Nuclear Information System (INIS)

    Borns, D.J.

    1997-01-01

    This research covers the development of optical-fiber sensors and the methods to incorporate the sensors within geomembranes during manufacture. Such systems are being developed to monitor the effects of strain on geomembranes including the location of tears. Other possible measurements utilize moisture and fluid-level sensors. Since the use of geomembranes in geotechnical and environmental applications is widespread and monitoring systems are generally lacking, the potential for this technology is significant. For example, a geomembrane-and-sensor system addresses the need to monitor landfill stabilization in general and specifically the behavior of geomembranes used in liner and cover designs. We have demonstrated that glass and plastic fibers can be attached to a geomembrane (1) during extrusion and lamination and (2) by hot shoe welding, glued tape runners, and welded runners. Using these methods, we have manufactured 30 m lengths of geomembrane with continuous optical Fiber across the length. Our preliminary focus has been on strain sensors to monitor landfill subsidence. We have utilized existing and newly developed strain sensors, e.g., microbend, Bragg grating, and adsorption band sensors. These sensors have been installed as arrays into several test membranes at a manufacturing scale (e.g., 3 to 4 m wide). The prototype monitoring systems were installed in laboratory test frames, and the sensors measured the strains across the membranes as they were loaded. We plan to scale these experiments up to the size of landfill cover system using a test cell under construction

  13. Tolerance Towards Sensor Faults: An Application to a Flexible Arm Manipulator

    Directory of Open Access Journals (Sweden)

    Chee Pin Tan

    2006-12-01

    Full Text Available As more engineering operations become automatic, the need for robustness towards faults increases. Hence, a fault tolerant control (FTC scheme is a valuable asset. This paper presents a robust sensor fault FTC scheme implemented on a flexible arm manipulator, which has many applications in automation. Sensor faults affect the system's performance in the closed loop when the faulty sensor readings are used to generate the control input. In this paper, the non-faulty sensors are used to reconstruct the faults on the potentially faulty sensors. The reconstruction is subtracted from the faulty sensors to form a compensated ‘virtual sensor’ and this signal (instead of the normally used faulty sensor output is then used to generate the control input. A design method is also presented in which the FTC scheme is made insensitive to any system uncertainties. Two fault conditions are tested; total failure and incipient faults. Then the scheme robustness is tested by implementing the flexible joint's FTC scheme on a flexible link, which has different parameters. Excellent results have been obtained for both cases (joint and link; the FTC scheme caused the system performance is almost identical to the fault-free scenario, whilst providing an indication that a fault is present, even for simultaneous faults.

  14. 3D printed high performance strain sensors for high temperature applications

    Science.gov (United States)

    Rahman, Md Taibur; Moser, Russell; Zbib, Hussein M.; Ramana, C. V.; Panat, Rahul

    2018-01-01

    Realization of high temperature physical measurement sensors, which are needed in many of the current and emerging technologies, is challenging due to the degradation of their electrical stability by drift currents, material oxidation, thermal strain, and creep. In this paper, for the first time, we demonstrate that 3D printed sensors show a metamaterial-like behavior, resulting in superior performance such as high sensitivity, low thermal strain, and enhanced thermal stability. The sensors were fabricated using silver (Ag) nanoparticles (NPs), using an advanced Aerosol Jet based additive printing method followed by thermal sintering. The sensors were tested under cyclic strain up to a temperature of 500 °C and showed a gauge factor of 3.15 ± 0.086, which is about 57% higher than that of those available commercially. The sensor thermal strain was also an order of magnitude lower than that of commercial gages for operation up to a temperature of 500 °C. An analytical model was developed to account for the enhanced performance of such printed sensors based on enhanced lateral contraction of the NP films due to the porosity, a behavior akin to cellular metamaterials. The results demonstrate the potential of 3D printing technology as a pathway to realize highly stable and high-performance sensors for high temperature applications.

  15. Electrochemistry Experiments to Develop Novel Sensors for Real-World Applications

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2013-08-01

    Full Text Available These novel STEM (Science Technology Engineering and Mathematics Electrochemistry experiments have been designed to increase the integrated science content, pedagogical, and technological knowledge for real-world applications. This study has focused on (1 the fundamental understanding on the relationship of metal oxide films and polymers to electrochemical sensors, and (2 the development of new materials which have great application of electrode materials. Following the inquiry based learning strategy the research students learn to develop and study the electrode surfaces to meet the needs of stability and low detection limits. Recently, new advances in environmental health are revealing the anthropogenic or naturally occurring harmful organic chemicals in sources of water supply expose a great health threat to human and aquatic life. Due to their well-known carcinogenic and lethal properties, the presence of human produced toxic chemicals such as phenol and its derivatives poses a critical threat to human health and aquatic life in such water resources. In order to achieve effective assessment and monitoring of these toxic chemicals there is a need to develop in-situ (electrochemical sensors methods to detect rapidly. Electrochemical sensors have attracted more attention to analytical chemist and electrochemistry engineers due to its simplicity, rapidness and high sensitivity. However, there will be real challenges of achieving successful analysis of chemicals (phenol in the presence of common interferences in water resources, which will be discussed regarding the students challenging learning experiences in developing an electrochemical sensor. The electrochemical sensor developed (TiO2 , ZrO2 or sol-gel mixture TiO2/ZrO2 will be illustrated and the successes will be shown by cyclic voltammetry data in detection of 1,2-dihydroxybenzenes (catechol, dopamine and phenol.

  16. Miniaturised optical sensors for industrial applications

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Hanson, Steen Grüner

    2010-01-01

    . The technology is based on compact and low-cost laser sources such as Vertical Cavity Surface Emitting Lasers (VCSELs). The methods characterise the object motion by speckle translation in the near field (imaging) or far field (optical Fourier transform) by optical spatial filtering velocimetry. The volume...... of the two optical solutions is less than 1 cm3, including the application specific integrated circuit (ASIC), which processes the data and interfaces a PC/Laptop directly via a USB driver. The sensors are designed for working distances of 2 and 12 mm for near field and far field, respectively. We...

  17. Biomimetic membranes for sensor and separation applications

    CERN Document Server

    2012-01-01

    This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. It covers recent advances in developing biomimetic membranes for technological applications with a focus on the use of integral membrane protein mediated transport. It describes the fundamentals of biosensing as well as separation and shows how the two processes work together in biological systems. The book provides an overview of the current state of the art, points to areas that need further investigation and anticipates future directions in the field. Biomimetics is a truly cross-disciplinary approach and this is exemplified by the challenges in mimicking osmotic processes as they occur in nature using aquaporin protein water channels as central building blocks. In the development of a biomimetic sensor/separation technology, both channel and carrier proteins are important and examples of how these may be reconstituted and controlled in biomimetic membranes are ...

  18. Micro-Optical Distributed Sensors for Aero Propulsion Applications

    Science.gov (United States)

    Arnold, S.; Otugen, V.

    2003-01-01

    The objective of this research is to develop micro-opto-mechanical system (MOMS)-based sensors for time- and space-resolved measurements of flow properties in aerodynamics applications. The measurement technique we propose uses optical resonances in dielectric micro-spheres that can be excited by radiation tunneling from optical fibers. It exploits the tunneling-induced and morphology-dependent shifts in the resonant frequencies. The shift in the resonant frequency is dependent on the size, shape, and index of refraction of the micro-sphere. A physical change in the environment surrounding a micro-bead can change one or more of these properties of the sphere thereby causing a shift in frequency of resonance. The change of the resonance frequency can be detected with high resolution by scanning a frequency-tunable laser that is coupled into the fiber and observing the transmission spectrum at the output of the fiber. It is expected that, in the future, the measurement concept will lead to a system of distributed micro-sensors providing spatial data resolved in time and space. The present project focuses on the development and demonstration of temperature sensors using the morphology-dependent optical resonances although in the latter part of the work, we will also develop a pressure sensor. During the period covered in this report, the optical and electronic equipment necessary for the experimental work was assembled and the experimental setup was designed for the single sensor temperature measurements. Software was developed for real-time tracking of the optical resonance shifts. Some preliminary experiments were also carried out to detect temperature using a single bead in a water bath.

  19. Performance Evaluation and Community Application of Low-Cost Sensors for Ozone and Nitrogen Dioxide

    Science.gov (United States)

    This study reports on the performance of electrochemical-based low-cost sensors and their use in a community application. CairClip sensors were collocated with federal reference and equivalent methods and operated in a network of sites by citizen scientists (community members) in...

  20. Time-domain fiber loop ringdown sensor and sensor network

    Science.gov (United States)

    Kaya, Malik

    Optical fibers have been mostly used in fiber optic communications, imaging optics, sensing technology, etc. Fiber optic sensors have gained increasing attention for scientific and structural health monitoring (SHM) applications. In this study, fiber loop ringdown (FLRD) sensors were fabricated for scientific, SHM, and sensor networking applications. FLRD biosensors were fabricated for both bulk refractive index (RI)- and surface RI-based DNA sensing and one type of bacteria sensing. Furthermore, the effect of glucose oxidase (GOD) immobilization at the sensor head on sensor performance was evaluated for both glucose and synthetic urine solutions with glucose concentration between 0.1% and 10%. Detection sensitivities of the glucose sensors were achieved as low as 0.05%. For chemical sensing, heavy water, ranging from 97% to 10%, and several elemental solutions were monitored by using the FLRD chemical sensors. Bulk index-based FLRD sensing showed that trace elements can be detected in deionized water. For physical sensing, water and cracking sensors were fabricated and embedded into concrete. A partially-etched single-mode fiber (SMF) was embedded into a concrete bar for water monitoring while a bare SMF without any treatment was directly embedded into another concrete bar for monitoring cracks. Furthermore, detection sensitivities of water and crack sensors were investigated as 10 ml water and 0.5 mm surface crack width, respectively. Additionally fiber loop ringdown-fiber Bragg grating temperature sensors were developed in the laboratory; two sensor units for water, crack, and temperature sensing were deployed into a concrete cube in a US Department of Energy test bed (Miami, FL). Multi-sensor applications in a real concrete structure were accomplished by testing the six FLRD sensors. As a final stage, a sensor network was assembled by multiplexing two or three FLRD sensors in series and parallel. Additionally, two FLRD sensors were combined in series and

  1. Prototyping of a highly performant and integrated piezoresistive force sensor for microscale applications

    International Nuclear Information System (INIS)

    Komati, Bilal; Agnus, Joël; Clévy, Cédric; Lutz, Philippe

    2014-01-01

    In this paper, the prototyping of a new piezoresistive microforce sensor is presented. An original design taking advantage of both the mechanical and bulk piezoresistive properties of silicon is presented, which enables the easy fabrication of a very small, large-range, high-sensitivity with high integration potential sensor. The sensor is made of two silicon strain gauges for which widespread and known microfabrication processes are used. The strain gauges present a high gauge factor which allows a good sensitivity of this force sensor. The dimensions of this sensor are 700 μm in length, 100 μm in width and 12 μm in thickness. These dimensions make its use convenient with many microscale applications, notably its integration in a microgripper. The fabricated sensor is calibrated using an industrial force sensor. The design, microfabrication process and performances of the fabricated piezoresistive force sensor are innovative thanks to its resolution of 100 nN and its measurement range of 2 mN. This force sensor also presents a high signal-to-noise ratio, typically 50 dB when a 2 mN force is applied at the tip of the force sensor. (paper)

  2. Nanowire field-effect transistors for gas sensor applications

    Science.gov (United States)

    Constantinou, Marios

    Sensing BTEX (Benzene, Ethylbenzene, Toluene, Xylene) pollutants is of utmost importance to reduce health risk and ensure public safety. The lack of sensitivity and selectivity of the current gas sensors and the limited number of available technologies in the field of BTEX-sensing raises the demand for the development of high-performance gas sensors for BTEX applications. The scope of this thesis is the fabrication and characterisation of high-quality field-effect transistors (FETs), with functionalised silicon nanowires (SiNWs), for the selective sensing of benzene vs. other BTEX gases. This research addresses three main challenges in SiNW FET-sensor device development: i) controllable and reproducible assembly of high-quality SiNWs for FET sensor devices using the method of dielectrophoresis (DEP), ii) almost complete elimination of harmful hysteresis effect in the SiNW FET current-voltage characteristics induced by surface states using DMF solvent, iii) selective sensing of benzene with up to ppb range of sensitivity using calix[4]arene-derivatives. It is experimentally demonstrated that frequency-controlled DEP is a powerful tool for the selection and collection of semiconducting SiNWs with advanced electrical and morphological properties, from a poly-disperse as-synthesised NWs. The DEP assembly method also leads to a controllable and reproducible fabrication of high-quality NW-based FETs. The results highlight the superiority of DEP, performed at high signal frequencies (5-20 MHz) to selectively assemble only high-quality NWs which can respond to such high DEP frequencies. The SiNW FETs, with NWs collected at high DEP frequencies, have high mobility (≈50 cm2 V-1 s-1), low sub-threshold-swing (≈1.26 V/decade), high on-current (up to 3 mA) and high on/off ratio (106-107). The DEP NW selection is also demonstrated using an industrially scalable method, to allow establishing of NW response characteristics to different DEP frequencies in a very short time

  3. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Hamid Farahani

    2014-04-01

    Full Text Available Humidity measurement is one of the most significant issues in various areas of applications such as instrumentation, automated systems, agriculture, climatology and GIS. Numerous sorts of humidity sensors fabricated and developed for industrial and laboratory applications are reviewed and presented in this article. The survey frequently concentrates on the RH sensors based upon their organic and inorganic functional materials, e.g., porous ceramics (semiconductors, polymers, ceramic/polymer and electrolytes, as well as conduction mechanism and fabrication technologies. A significant aim of this review is to provide a distinct categorization pursuant to state of the art humidity sensor types, principles of work, sensing substances, transduction mechanisms, and production technologies. Furthermore, performance characteristics of the different humidity sensors such as electrical and statistical data will be detailed and gives an added value to the report. By comparison of overall prospects of the sensors it was revealed that there are still drawbacks as to efficiency of sensing elements and conduction values. The flexibility offered by thick film and thin film processes either in the preparation of materials or in the choice of shape and size of the sensor structure provides advantages over other technologies. These ceramic sensors show faster response than other types.

  4. Humidity Sensors Principle, Mechanism, and Fabrication Technologies: A Comprehensive Review

    Science.gov (United States)

    Farahani, Hamid; Wagiran, Rahman; Hamidon, Mohd Nizar

    2014-01-01

    Humidity measurement is one of the most significant issues in various areas of applications such as instrumentation, automated systems, agriculture, climatology and GIS. Numerous sorts of humidity sensors fabricated and developed for industrial and laboratory applications are reviewed and presented in this article. The survey frequently concentrates on the RH sensors based upon their organic and inorganic functional materials, e.g., porous ceramics (semiconductors), polymers, ceramic/polymer and electrolytes, as well as conduction mechanism and fabrication technologies. A significant aim of this review is to provide a distinct categorization pursuant to state of the art humidity sensor types, principles of work, sensing substances, transduction mechanisms, and production technologies. Furthermore, performance characteristics of the different humidity sensors such as electrical and statistical data will be detailed and gives an added value to the report. By comparison of overall prospects of the sensors it was revealed that there are still drawbacks as to efficiency of sensing elements and conduction values. The flexibility offered by thick film and thin film processes either in the preparation of materials or in the choice of shape and size of the sensor structure provides advantages over other technologies. These ceramic sensors show faster response than other types. PMID:24784036

  5. A Self-Referenced Optical Intensity Sensor Network Using POFBGs for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Alberto Tapetado Moraleda

    2014-12-01

    Full Text Available This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG and polymer FBGs (POFBG is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown.

  6. A self-referenced optical intensity sensor network using POFBGs for biomedical applications.

    Science.gov (United States)

    Tapetado Moraleda, Alberto; Sánchez Montero, David; Webb, David J; Vázquez García, Carmen

    2014-12-12

    This work bridges the gap between the remote interrogation of multiple optical sensors and the advantages of using inherently biocompatible low-cost polymer optical fiber (POF)-based photonic sensing. A novel hybrid sensor network combining both silica fiber Bragg gratings (FBG) and polymer FBGs (POFBG) is analyzed. The topology is compatible with WDM networks so multiple remote sensors can be addressed providing high scalability. A central monitoring unit with virtual data processing is implemented, which could be remotely located up to units of km away. The feasibility of the proposed solution for potential medical environments and biomedical applications is shown.

  7. Micro-digital sun sensor: an imaging sensor for space applications

    NARCIS (Netherlands)

    Xie, N.; Theuwissen, A.J.P.; Büttgen, B.; Hakkesteegt, H.C.; Jasen, H.; Leijtens, J.A.P.

    2010-01-01

    Micro-Digital Sun Sensor is an attitude sensor which senses relative position of micro-satellites to the sun in space. It is composed of a solar cell power supply, a RF communication block and an imaging chip which is called APS+. The APS+ integrates a CMOS Active Pixel Sensor (APS) of 512×512

  8. Active pixel sensors: the sensor of choice for future space applications?

    Science.gov (United States)

    Leijtens, Johan; Theuwissen, Albert; Rao, Padmakumar R.; Wang, Xinyang; Xie, Ning

    2007-10-01

    It is generally known that active pixel sensors (APS) have a number of advantages over CCD detectors if it comes to cost for mass production, power consumption and ease of integration. Nevertheless, most space applications still use CCD detectors because they tend to give better performance and have a successful heritage. To this respect a change may be at hand with the advent of deep sub-micron processed APS imagers (< 0.25-micron feature size). Measurements performed on test structures at the University of Delft have shown that the imagers are very radiation tolerant even if made in a standard process without the use of special design rules. Furthermore it was shown that the 1/f noise associated with deep sub-micron imagers is reduced as compared to previous generations APS imagers due to the improved quality of the gate oxides. Considering that end of life performance will have to be guaranteed, limited budget for adding shielding metal will be available for most applications and lower power operations is always seen as a positive characteristic in space applications, deep sub-micron APS imagers seem to have a number of advantages over CCD's that will probably cause them to replace CCD's in those applications where radiation tolerance and low power operation are important

  9. Application of Service Oriented Architecture for Sensors and Actuators in District Heating Substations

    Science.gov (United States)

    Gustafsson, Jonas; Kyusakov, Rumen; Mäkitaavola, Henrik; Delsing, Jerker

    2014-01-01

    Hardwired sensor installations using proprietary protocols found in today's district heating substations limit the potential usability of the sensors in and around the substations. If sensor resources can be shared and re-used in a variety of applications, the cost of sensors and installation can be reduced, and their functionality and operability can be increased. In this paper, we present a new concept of district heating substation control and monitoring, where a service oriented architecture (SOA) is deployed in a wireless sensor network (WSN), which is integrated with the substation. IP-networking is exclusively used from sensor to server; hence, no middleware is needed for Internet integration. Further, by enabling thousands of sensors with SOA capabilities, a System of Systems approach can be applied. The results of this paper show that it is possible to utilize SOA solutions with heavily resource-constrained embedded devices in contexts where the real-time constrains are limited, such as in a district heating substation. PMID:25196165

  10. Preparation and Analysis of Platinum Thin Films for High Temperature Sensor Applications

    Science.gov (United States)

    Wrbanek, John D.; Laster, Kimala L. H.

    2005-01-01

    A study has been made of platinum thin films for application as high temperature resistive sensors. To support NASA Glenn Research Center s high temperature thin film sensor effort, a magnetron sputtering system was installed recently in the GRC Microsystems Fabrication Clean Room Facility. Several samples of platinum films were prepared using various system parameters to establish run conditions. These films were characterized with the intended application of being used as resistive sensing elements, either for temperature or strain measurement. The resistances of several patterned sensors were monitored to document the effect of changes in parameters of deposition and annealing. The parameters were optimized for uniformity and intrinsic strain. The evaporation of platinum via oxidation during annealing over 900 C was documented, and a model for the process developed. The film adhesion was explored on films annealed to 1000 C with various bondcoats on fused quartz and alumina. From this compiled data, a list of optimal parameters and characteristics determined for patterned platinum thin films is given.

  11. Statistical methods of combining information: Applications to sensor data fusion

    Energy Technology Data Exchange (ETDEWEB)

    Burr, T.

    1996-12-31

    This paper reviews some statistical approaches to combining information from multiple sources. Promising new approaches will be described, and potential applications to combining not-so-different data sources such as sensor data will be discussed. Experiences with one real data set are described.

  12. Tablet PC Enabled Body Sensor System for Rural Telehealth Applications

    Directory of Open Access Journals (Sweden)

    Nitha V. Panicker

    2016-01-01

    Full Text Available Telehealth systems benefit from the rapid growth of mobile communication technology for measuring physiological signals. Development and validation of a tablet PC enabled noninvasive body sensor system for rural telehealth application are discussed in this paper. This system includes real time continuous collection of physiological parameters (blood pressure, pulse rate, and temperature and fall detection of a patient with the help of a body sensor unit and wireless transmission of the acquired information to a tablet PC handled by the medical staff in a Primary Health Center (PHC. Abnormal conditions are automatically identified and alert messages are given to the medical officer in real time. Clinical validation is performed in a real environment and found to be successful. Bland-Altman analysis is carried out to validate the wrist blood pressure sensor used. The system works well for all measurements.

  13. An ultra-low-power CMOS temperature sensor for RFID applications

    Energy Technology Data Exchange (ETDEWEB)

    Xu Conghui; Gao Peijun; Che Wenyi; Tan Xi; Yan Na; Min Hao, E-mail: yanna@fudan.edu.c [State Key Laboratory of ASIC and System, Fudan University, Shanghai 201203 (China)

    2009-04-15

    An ultra-low-power CMOS temperature sensor with analog-to-digital readout circuitry for RFID applications was implemented in a 0.18-mum CMOS process. To achieve ultra-low power consumption, an error model is proposed and the corresponding novel temperature sensor front-end with a new double-measure method is presented. Analog-to-digital conversion is accomplished by a sigma-delta converter. The complete system consumes only 26 muA and 1.8 V for continuous operation and achieves an accuracy of +-0.65 deg. C from -20 to 120 deg. C after calibration at one temperature.

  14. An ultra-low-power CMOS temperature sensor for RFID applications

    International Nuclear Information System (INIS)

    Xu Conghui; Gao Peijun; Che Wenyi; Tan Xi; Yan Na; Min Hao

    2009-01-01

    An ultra-low-power CMOS temperature sensor with analog-to-digital readout circuitry for RFID applications was implemented in a 0.18-μm CMOS process. To achieve ultra-low power consumption, an error model is proposed and the corresponding novel temperature sensor front-end with a new double-measure method is presented. Analog-to-digital conversion is accomplished by a sigma-delta converter. The complete system consumes only 26 μA and 1.8 V for continuous operation and achieves an accuracy of ±0.65 deg. C from -20 to 120 deg. C after calibration at one temperature.

  15. Applications of Elpasolites as a Multimode Radiation Sensor

    Science.gov (United States)

    Guckes, Amber

    This study consists of both computational and experimental investigations. The computational results enabled detector design selections and confirmed experimental results. The experimental results determined that the CLYC scintillation detector can be applied as a functional and field-deployable multimode radiation sensor. The computational study utilized MCNP6 code to investigate the response of CLYC to various incident radiations and to determine the feasibility of its application as a handheld multimode sensor and as a single-scintillator collimated directional detection system. These simulations include: • Characterization of the response of the CLYC scintillator to gamma-rays and neutrons; • Study of the isotopic enrichment of 7Li versus 6Li in the CLYC for optimal detection of both thermal neutrons and fast neutrons; • Analysis of collimator designs to determine the optimal collimator for the single CLYC sensor directional detection system to assay gamma rays and neutrons; Simulations of a handheld CLYC multimode sensor and a single CLYC scintillator collimated directional detection system with the optimized collimator to determine the feasibility of detecting nuclear materials that could be encountered during field operations. These nuclear materials include depleted uranium, natural uranium, low-enriched uranium, highly-enriched uranium, reactor-grade plutonium, and weapons-grade plutonium. The experimental study includes the design, construction, and testing of both a handheld CLYC multimode sensor and a single CLYC scintillator collimated directional detection system. Both were designed in the Inventor CAD software and based on results of the computational study to optimize its performance. The handheld CLYC multimode sensor is modular, scalable, low?power, and optimized for high count rates. Commercial?off?the?shelf components were used where possible in order to optimize size, increase robustness, and minimize cost. The handheld CLYC multimode

  16. An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications

    Science.gov (United States)

    Duraibabu, Dinesh Babu; Poeggel, Sven; Omerdic, Edin; Capocci, Romano; Lewis, Elfed; Newe, Thomas; Leen, Gabriel; Toal, Daniel; Dooly, Gerard

    2017-01-01

    A miniature sensor for accurate measurement of pressure (depth) with temperature compensation in the ocean environment is described. The sensor is based on an optical fibre Extrinsic Fabry-Perot interferometer (EFPI) combined with a Fibre Bragg Grating (FBG). The EFPI provides pressure measurements while the Fibre Bragg Grating (FBG) provides temperature measurements. The sensor is mechanically robust, corrosion-resistant and suitable for use in underwater applications. The combined pressure and temperature sensor system was mounted on-board a mini remotely operated underwater vehicle (ROV) in order to monitor the pressure changes at various depths. The reflected optical spectrum from the sensor was monitored online and a pressure or temperature change caused a corresponding observable shift in the received optical spectrum. The sensor exhibited excellent stability when measured over a 2 h period underwater and its performance is compared with a commercially available reference sensor also mounted on the ROV. The measurements illustrates that the EFPI/FBG sensor is more accurate for depth measurements (depth of ~0.020 m). PMID:28218727

  17. Dynamic Sensor Network Reprogramming using SensorScheme

    NARCIS (Netherlands)

    Evers, L.; Havinga, Paul J.M.; Kuper, Jan

    2007-01-01

    Building wireless sensor network applications is a challenging task, and it has become apparent that it is crucial for many sensor networks to be able to load or update the application after deployment. Since communication is a scarce resource and costly in terms of energy, it is important to

  18. Bottom-Up Synthesis and Sensor Applications of Biomimetic Nanostructures

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-01-01

    Full Text Available The combination of nanotechnology, biology, and bioengineering greatly improved the developments of nanomaterials with unique functions and properties. Biomolecules as the nanoscale building blocks play very important roles for the final formation of functional nanostructures. Many kinds of novel nanostructures have been created by using the bioinspired self-assembly and subsequent binding with various nanoparticles. In this review, we summarized the studies on the fabrications and sensor applications of biomimetic nanostructures. The strategies for creating different bottom-up nanostructures by using biomolecules like DNA, protein, peptide, and virus, as well as microorganisms like bacteria and plant leaf are introduced. In addition, the potential applications of the synthesized biomimetic nanostructures for colorimetry, fluorescence, surface plasmon resonance, surface-enhanced Raman scattering, electrical resistance, electrochemistry, and quartz crystal microbalance sensors are presented. This review will promote the understanding of relationships between biomolecules/microorganisms and functional nanomaterials in one way, and in another way it will guide the design and synthesis of biomimetic nanomaterials with unique properties in the future.

  19. A Fuzzy-Based Approach for Sensing, Coding and Transmission Configuration of Visual Sensors in Smart City Applications.

    Science.gov (United States)

    Costa, Daniel G; Collotta, Mario; Pau, Giovanni; Duran-Faundez, Cristian

    2017-01-05

    The advance of technologies in several areas has allowed the development of smart city applications, which can improve the way of life in modern cities. When employing visual sensors in that scenario, still images and video streams may be retrieved from monitored areas, potentially providing valuable data for many applications. Actually, visual sensor networks may need to be highly dynamic, reflecting the changing of parameters in smart cities. In this context, characteristics of visual sensors and conditions of the monitored environment, as well as the status of other concurrent monitoring systems, may affect how visual sensors collect, encode and transmit information. This paper proposes a fuzzy-based approach to dynamically configure the way visual sensors will operate concerning sensing, coding and transmission patterns, exploiting different types of reference parameters. This innovative approach can be considered as the basis for multi-systems smart city applications based on visual monitoring, potentially bringing significant results for this research field.

  20. Design and Implementation of a Laser-Based Ammonia Breath Sensor for Medical Applications

    KAUST Repository

    Owen, Kyle

    2012-06-01

    Laser-based sensors can be used as non-invasive monitoring tools to measure parts per billion (ppb) levels of trace gases. Ammonia sensors are useful for applications in environmental pollutant monitoring, atmospheric and combustion kinetic studies, and medical diagnostics. This sensor was specifically designed to measure ammonia in exhaled breath to be used as a medical diagnostic and monitoring tool, however, it can also be extended for use in other applications. Although ammonia is a naturally occurring species in exhaled breath, abnormally elevated levels can be an indication of adverse medical conditions. Laser-based breath diagnostics have many benefits since they are cost effective, non-invasive, painless, real time monitors. They have the potential to improve the quality of medical care by replacing currently used blood tests and providing immediate feedback to physicians. This sensor utilizes a Quantum Cascade Laser and Wavelength Modulation Spectroscopy with second harmonic normalized by first harmonic detection in a 76 m multi-pass absorption cell to measure ppb levels of ammonia with improved sensitivity over previous sensors. Initial measurements to determine the ammonia absorption line parameters were performed using direct absorption spectroscopy. This is the first experimental study of the ammonia absorption line transitions near 1103.46 cm1 with absorption spectroscopy. The linestrengths were measured with uncertainties less than 10%. The collisional broadening coefficients for each of the ammonia lines with nitrogen, oxygen, water vapor, and carbon dioxide were also measured, many of which had uncertainties less than 5%. The sensor was characterized to show a detectability limit of 10 ppb with an uncertainty of less than 5% at typical breath ammonia levels. Initial breath test results showed that some of the patients with chronic kidney disease had elevated ammonia levels while others had ammonia levels in the same range as expected for healthy

  1. Intrusion detection sensors

    International Nuclear Information System (INIS)

    Williams, J.D.

    1978-07-01

    Intrusion detection sensors are an integral part of most physical security systems. Under the sponsorship of the U.S. Department of Energy, Office of Safeguards and Security, Sandia Laboratories has conducted a survey of available intrusion detection sensors and has tested a number of different sensors. An overview of these sensors is provided. This overview includes (1) the operating principles of each type of sensor, (2) unique sensor characteristics, (3) desired sensor improvements which must be considered in planning an intrusion detection system, and (4) the site characteristics which affect the performance of both exterior and interior sensors. Techniques which have been developed to evaluate various intrusion detection sensors are also discussed

  2. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Directory of Open Access Journals (Sweden)

    Damhuji Rifai

    2016-02-01

    Full Text Available Non-destructive eddy current testing (ECT is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  3. Scintillating-Glass-Fiber neutron sensors, their application and performance for plutonium detection and monitoring

    International Nuclear Information System (INIS)

    Seymour, R.S.; Richardson, B.; Morichi, M.; Bliss, M.; Craig, R.A.; Sunberg, D.S.

    1998-01-01

    Most neutron detection sensors presently employ 3 He gas-filled detectors. Despite their excellent performance and widespread use, there are significant limitations to this technology. A significant alternative neutron sensor utilizing neutron-active material incorporated into a glass scintillator is presented that offers novel commercial sensors not possible or practical with gas tube technology. The scintillating optical fiber permits sensors with a multitude of sizes ranging from devices of a single fiber of 150μm to sensors with tens of thousands of fibers with areas as large as 5m 2 depending on the neutron flux to be measured. A second significant advantage is the use of high-speed electronics that allow a greater dynamic range, not possible with gas detectors. These sensors are flexible, conformable and less sensitive to vibration that optimizes the source-to-detector geometry and provides robust performance in field applications. The glass-fibers are sensitive to both gamma rays and neutrons. However the coincidence electronics are optimized for neutron to gamma ray discrimination allowing very sensitive measurements with a low false-alarm rate. Applications include SNM surveillance, material control and accountability (MC and A), safeguard inspections, Pu health physics / bioassay and environmental characterization. (author)

  4. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  5. Chemical preparation of graphene-based nanomaterials and their applications in chemical and biological sensors.

    Science.gov (United States)

    Jiang, Hongji

    2011-09-05

    Graphene is a flat monolayer of carbon atoms packed tightly into a 2D honeycomb lattice that shows many intriguing properties meeting the key requirements for the implementation of highly excellent sensors, and all kinds of proof-of-concept sensors have been devised. To realize the potential sensor applications, the key is to synthesize graphene in a controlled way to achieve enhanced solution-processing capabilities, and at the same time to maintain or even improve the intrinsic properties of graphene. Several production techniques for graphene-based nanomaterials have been developed, ranging from the mechanical cleavage and chemical exfoliation of high-quality graphene to direct growth onto different substrates and the chemical routes using graphite oxide as a precusor to the newly developed bottom-up approach at the molecular level. The current review critically explores the recent progress on the chemical preparation of graphene-based nanomaterials and their applications in sensors. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Evaluation of a HDR image sensor with logarithmic response for mobile video-based applications

    Science.gov (United States)

    Tektonidis, Marco; Pietrzak, Mateusz; Monnin, David

    2017-10-01

    The performance of mobile video-based applications using conventional LDR (Low Dynamic Range) image sensors highly depends on the illumination conditions. As an alternative, HDR (High Dynamic Range) image sensors with logarithmic response are capable to acquire illumination-invariant HDR images in a single shot. We have implemented a complete image processing framework for a HDR sensor, including preprocessing methods (nonuniformity correction (NUC), cross-talk correction (CTC), and demosaicing) as well as tone mapping (TM). We have evaluated the HDR sensor for video-based applications w.r.t. the display of images and w.r.t. image analysis techniques. Regarding the display we have investigated the image intensity statistics over time, and regarding image analysis we assessed the number of feature correspondences between consecutive frames of temporal image sequences. For the evaluation we used HDR image data recorded from a vehicle on outdoor or combined outdoor/indoor itineraries, and we performed a comparison with corresponding conventional LDR image data.

  7. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  8. Radiation tolerant fiber optic humidity sensors for High Energy Physics applications

    CERN Document Server

    Berruti, Gaia Maria; Cusano, Andrea

    This work is devoted to the development of fiber optic humidity sensors to be applied in high-energy physics applications and in particular in experiments currently running at CERN. The high radiation level resulting from the operation of the accelerator at full luminosity can cause serious performance deterioration of the silicon sensors which are responsible for the particle tracking. To increase their lifetime, the sensors must be kept cold at temperatures below 0 C. At such low temperatures, any condensation risk has to be prevented and a precise thermal and hygrometric control of the air filling and surrounding the tracker detector cold volumes is mandatory. The technologies proposed at CERN for relative humidity monitoring are mainly based on capacitive sensing elements which are not designed with radiation resistance characteristic. In this scenario, fiber optic sensors seem to be perfectly suitable. Indeed, the fiber itself, if properly selected, can tolerate a very high level of radiation, optical fi...

  9. Reliability and Availability Evaluation of Wireless Sensor Networks for Industrial Applications

    Science.gov (United States)

    Silva, Ivanovitch; Guedes, Luiz Affonso; Portugal, Paulo; Vasques, Francisco

    2012-01-01

    Wireless Sensor Networks (WSN) currently represent the best candidate to be adopted as the communication solution for the last mile connection in process control and monitoring applications in industrial environments. Most of these applications have stringent dependability (reliability and availability) requirements, as a system failure may result in economic losses, put people in danger or lead to environmental damages. Among the different type of faults that can lead to a system failure, permanent faults on network devices have a major impact. They can hamper communications over long periods of time and consequently disturb, or even disable, control algorithms. The lack of a structured approach enabling the evaluation of permanent faults, prevents system designers to optimize decisions that minimize these occurrences. In this work we propose a methodology based on an automatic generation of a fault tree to evaluate the reliability and availability of Wireless Sensor Networks, when permanent faults occur on network devices. The proposal supports any topology, different levels of redundancy, network reconfigurations, criticality of devices and arbitrary failure conditions. The proposed methodology is particularly suitable for the design and validation of Wireless Sensor Networks when trying to optimize its reliability and availability requirements. PMID:22368497

  10. Spectroelectrochemistry as a Strategy for Improving Selectivity of Sensors for Security and Defense Applications

    Energy Technology Data Exchange (ETDEWEB)

    Heineman, William R.; Seliskar, Carl J.; Morris, Laura K.; Bryan, Samuel A.

    2012-12-19

    Spectroelectrochemistry provides improved selectivity for sensors by electrochemically modulating the optical signal associated with the analyte. The sensor consists of an optically transparent electrode (OTE) coated with a film that preconcentrates the target analyte. The OTE functions as an optical waveguide for attenuated total reflectance (ATR) spectroscopy, which detects the analyte by absorption. Alternatively, the OTE can serve as the excitation light for fluorescence detection, which is generally more sensitive than absorption. The analyte partitions into the film, undergoes an electrochemical redox reaction at the OTE surface, and absorbs or emits light in its oxidized or reduced state. The change in the optical response associated with electrochemical oxidation or reduction at the OTE is used to quantify the analyte. Absorption sensors for metal ion complexes such as [Fe(CN)6]4- and [Ru(bpy)3]2+ and fluorescence sensors for [Ru(bpy)3]2+ and the polycyclic aromatic hydrocarbon 1-hydroxypyrene have been developed. The sensor concept has been extended to binding assays for a protein using avidin–biotin and 17β-estradiol–anti-estradiol antibodies. The sensor has been demonstrated to measure metal complexes in complex samples such as nuclear waste and natural water. This sensor has qualities needed for security and defense applications that require a high level of selectivity and good detection limits for target analytes in complex samples. Quickly monitoring and designating intent of a nuclear program by measuring the Ru/Tc fission product ratio is such an application.

  11. Wireless sensor networks from theory to applications

    CERN Document Server

    El Emary, Ibrahiem M M

    2013-01-01

    Although there are many books available on WSNs, most are low-level, introductory books. The few available for advanced readers fail to convey the breadth of knowledge required for those aiming to develop next-generation solutions for WSNs. Filling this void, Wireless Sensor Networks: From Theory to Applications supplies comprehensive coverage of WSNs. In order to provide the wide-ranging guidance required, the book brings together the contributions of domain experts working in the various subfields of WSNs worldwide. This edited volume examines recent advances in WSN technologies and consider

  12. Autonomous Aeromagnetic Surveys Using a Fluxgate Magnetometer

    Directory of Open Access Journals (Sweden)

    Douglas G. Macharet

    2016-12-01

    Full Text Available Recent advances in the research of autonomous vehicles have showed a vast range of applications, such as exploration, surveillance and environmental monitoring. Considering the mining industry, it is possible to use such vehicles in the prospection of minerals of commercial interest beneath the ground. However, tasks such as geophysical surveys are highly dependent on specific sensors, which mostly are not designed to be used in these new range of autonomous vehicles. In this work, we propose a novel magnetic survey pipeline that aims to increase versatility, speed and robustness by using autonomous rotary-wing Unmanned Aerial Vehicles (UAVs. We also discuss the development of a state-of-the-art three-axis fluxgate, where our goal in this work was to refine and adjust the sensor topology and coupled electronics specifically for this type of vehicle and application. The sensor was built with two ring-cores using a specially developed stress-annealed CoFeSiB amorphous ribbon, in order to get sufficient resolution to detect concentrations of small ferrous minerals. Finally, we report on the results of experiments performed with a real UAV in an outdoor environment, showing the efficacy of the methodology in detecting an artificial ferrous anomaly.

  13. Chemical sensors for space applications

    Science.gov (United States)

    Bonting, Sjoerd L.

    1992-01-01

    The payload of the Space Station Freedom will include sensors for frequent monitoring of the water recycling process and for measuring the many biochemical parameters related to onboard experiments. This paper describes the sensor technologies and the types of transducers and selectors considered for these sensors. Particular attention is given to such aspects of monitoring of the water recycling process as the types of water use, the sources of water and their hazards, the sensor systems for monitoring, microbial monitoring, and monitoring toxic metals and organics. An approach for monitoring water recycling is suggested, which includes microbial testing with a potentiometric device (which should be in first line of tests), the use of an ion-selective electrode for inorganic ion determinations, and the use of optic fiber techniques for the determination of total organic carbon.

  14. Evaluation of Underwater Adhesives and Friction Coatings for In Situ Attachment of Fiber Optic Sensor System for Subsea Applications

    Science.gov (United States)

    Tang, Henry H.; Le, Suy Q.; Orndoff, Evelyne S.; Smith, Frederick D.; Tapia, Alma S.; Brower, David V.

    2012-01-01

    Integrity and performance monitoring of subsea pipelines and structures provides critical information for managing offshore oil and gas production operation and preventing environmentally damaging and costly catastrophic failure. Currently pipeline monitoring devices require ground assembly and installation prior to the underwater deployment of the pipeline. A monitoring device that could be installed in situ on the operating underwater structures could enhance the productivity and improve the safety of current offshore operation. Through a Space Act Agreement (SAA) between the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) and Astro Technology, Inc. (ATI), JSC provides technical expertise and testing facilities to support the development of fiber optic sensor technologies by ATI. This paper details the first collaboration effort between NASA JSC and ATI in evaluating underwater applicable adhesives and friction coatings for attaching fiber optic sensor system to subsea pipeline. A market survey was conducted to examine different commercial ]off ]the ]shelf (COTS) underwater adhesive systems and to select adhesive candidates for testing and evaluation. Four COTS epoxy based underwater adhesives were selected and evaluated. The adhesives were applied and cured in simulated seawater conditions and then evaluated for application characteristics and adhesive strength. The adhesive that demonstrated the best underwater application characteristics and highest adhesive strength were identified for further evaluation in developing an attachment system that could be deployed in the harsh subsea environment. Various friction coatings were also tested in this study to measure their shear strengths for a mechanical clamping design concept for attaching fiber optic sensor system. A COTS carbide alloy coating was found to increase the shear strength of metal to metal clamping interface by up to 46 percent. This study provides valuable data for

  15. Applications of Ionic Liquids for the Development of Optical Chemical Sensors and Biosensors.

    Science.gov (United States)

    Muginova, Svetlana V; Myasnikova, Dina A; Kazarian, Sergei G; Shekhovtsova, Tatiana N

    2017-01-01

    This paper reviews the primary literature reporting the use of ionic liquids (ILs) in optical sensing technologies. The optical chemical sensors that have been developed with the assistance of ILs are classified according to the type of resultant material. Key aspects of applying ILs in such sensors are revealed and discussed. They include using ILs as solvents for the synthesis of sensor matrix materials; additives in polymer matrices; matrix materials; modifiers of the surfaces; and multifunctional sensor components. The operational principles, design, texture, and analytical characteristics of the offered sensors for determining CO 2 , O 2 , metal ions, CN - , and various organic compounds are critically discussed. The key advantages and disadvantages of using ILs in optical sensing technologies are defined. Finally, the applicability of the described materials for chemical analysis is evaluated, and possibilities for their further modernization are outlined.

  16. Fixed SMRF Sensor Network Application Concepts

    NARCIS (Netherlands)

    Wit, J.J.M. de; Rossum, W.L. van; Smits, F.M.A.; Theije, P.A.M. de; Monni, S.; Huizing, A.G.

    2010-01-01

    Advantages of scalable multifunction RF (SMRF) sensors and networked operation of sensors are well-known. Some advantages are surveillance persistence, multipath resistance, and interference resistance. The particular benefits of applying multifunction RF sensors in a network still need to be

  17. Carbon Nanotube Based Chemical Sensors for Space and Terrestrial Applications

    Science.gov (United States)

    Li, Jing; Lu, Yijiang

    2009-01-01

    A nanosensor technology has been developed using nanostructures, such as single walled carbon nanotubes (SWNTs), on a pair of interdigitated electrodes (IDE) processed with a silicon-based microfabrication and micromachining technique. The IDE fingers were fabricated using photolithography and thin film metallization techniques. Both in-situ growth of nanostructure materials and casting of the nanostructure dispersions were used to make chemical sensing devices. These sensors have been exposed to nitrogen dioxide, acetone, benzene, nitrotoluene, chlorine, and ammonia in the concentration range of ppm to ppb at room temperature. The electronic molecular sensing of carbon nanotubes in our sensor platform can be understood by intra- and inter-tube electron modulation in terms of charge transfer mechanisms. As a result of the charge transfer, the conductance of p-type or hole-richer SWNTs in air will change. Due to the large surface area, low surface energy barrier and high thermal and mechanical stability, nanostructured chemical sensors potentially can offer higher sensitivity, lower power consumption and better robustness than the state-of-the-art systems, which make them more attractive for defense and space applications. Combined with MEMS technology, light weight and compact size sensors can be made in wafer scale with low cost. Additionally, a wireless capability of such a sensor chip can be used for networked mobile and fixed-site detection and warning systems for military bases, facilities and battlefield areas.

  18. Wireless Sensor Networks Data Processing Summary Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Caiyun Huang

    2014-07-01

    Full Text Available As a newly proposed theory, compressive sensing (CS is commonly used in signal processing area. This paper investigates the applications of compressed sensing (CS in wireless sensor networks (WSNs. First, the development and research status of compressed sensing technology and wireless sensor networks are described, then a detailed investigation of WSNs research based on CS are conducted from aspects of data fusion, signal acquisition, signal routing transmission, and signal reconstruction. At the end of the paper, we conclude our survey and point out the possible future research directions.

  19. Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples.

    Science.gov (United States)

    Prats-Alfonso, Elisabet; Abad, Llibertat; Casañ-Pastor, Nieves; Gonzalo-Ruiz, Javier; Baldrich, Eva

    2013-01-15

    This work demonstrates the implementation of iridium oxide films (IROF) grown on silicon-based thin-film platinum microelectrodes, their utilization as a pH sensor, and their successful formatting into a urea pH sensor. In this context, Pt electrodes were fabricated on Silicon by using standard photolithography and lift-off procedures and IROF thin films were growth by a dynamic oxidation electrodeposition method (AEIROF). The AEIROF pH sensor reported showed a super-Nerstian (72.9±0.9mV/pH) response between pH 3 and 11, with residual standard deviation of both repeatability and reproducibility below 5%, and resolution of 0.03 pH units. For their application as urea pH sensors, AEIROF electrodes were reversibly modified with urease-coated magnetic microparticles (MP) using a magnet. The urea pH sensor provided fast detection of urea between 78μM and 20mM in saline solution, in sample volumes of just 50μL. The applicability to urea determination in real urine samples is discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Iron oxide nanoparticles as magnetic relaxation switching (MRSw) sensors: Current applications in nanomedicine.

    Science.gov (United States)

    Alcantara, David; Lopez, Soledad; García-Martin, María Luisa; Pozo, David

    2016-07-01

    Since pioneering work in the early 60s on the development of enzyme electrodes the field of sensors has evolved to different sophisticated technological platforms. Still, for biomedical applications, there are key requirements to meet in order to get fast, low-cost, real-time data acquisition, multiplexed and automatic biosensors. Nano-based sensors are one of the most promising healthcare applications of nanotechnology, and prone to be one of the first to become a reality. From all nanosensors strategies developed, Magnetic Relaxation Switches (MRSw) assays combine several features which are attractive for nanomedical applications such as safe biocompatibility of magnetic nanoparticles, increased sensitivity/specificity measurements, possibility to detect analytes in opaque samples (unresponsive to light-based interferences) and the use of homogeneous setting assay. This review aims at presenting the ongoing progress of MRSw technology and its most important applications in clinical medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. SiC Sensors in Extreme Environments: Real-time Hydrogen Monitoring for Energy Plant Applications

    Science.gov (United States)

    Ghosh, Ruby

    2008-03-01

    Clean, efficient energy production, such as the gasification of coal (syngas), requires physical and chemical sensors for exhaust gas monitoring as well as real-time control of the combustion process. Wide-bandgap semiconducting materials systems can meet the sensing demands in these extreme environments consisting of chemically corrosive gases at high temperature and pressure. We have developed a SiC based micro-sensor for detection of hydrogen containing species with millisecond response at 600 C. The sensor is a Pt-SiO2-SiC device with a dense Pt catalytic sensing film, capable of withstanding months of continuous high temperature operation. The device was characterized in robust sensing module that is compatible with an industrial reactor. We report on the performance of the SiC sensor in a simulated syngas ambient at 370 C containing the common interferants CO2, CH4 and CO [1]. In addition we demonstrate that hours of exposure to >=1000 ppm H2S and 15% water vapor does not degrade the sensor performance. To elucidate the mechanisms responsible for the hydrogen response of the sensor we have modeled the hydrogen adsorptions kinetics at the internal Pt-SiO2 interface, using both the Tempkin and Langmuir isotherms. Under the conditions appropriate for energy plant applications, the response of our sensor is significantly larger than that obtained from ultra-high vacuum electrochemical sensor measurements at high temperatures. We will discuss the role of morphology, at the nano to micro scale, on the enhanced catalytic activity observed for our Pt sensing films in response to a heated hydrogen gas stream at atmospheric pressure. [1] R. Loloee, B. Chorpening, S. Beers & R. Ghosh, Hydrogen monitoring for power plant applications using SiC sensors, Sens. Actuators B:Chem. (2007), doi:10.1016/j.snb.2007.07.118

  2. Backside illuminated CMOS-TDI line scan sensor for space applications

    Science.gov (United States)

    Cohen, Omer; Ofer, Oren; Abramovich, Gil; Ben-Ari, Nimrod; Gershon, Gal; Brumer, Maya; Shay, Adi; Shamay, Yaron

    2018-05-01

    A multi-spectral backside illuminated Time Delayed Integration Radiation Hardened line scan sensor utilizing CMOS technology was designed for continuous scanning Low Earth Orbit small satellite applications. The sensor comprises a single silicon chip with 4 independent arrays of pixels where each array is arranged in 2600 columns with 64 TDI levels. A multispectral optical filter whose spectral responses per array are adjustable per system requirement is assembled at the package level. A custom 4T Pixel design provides the required readout speed, low-noise, very low dark current, and high conversion gains. A 2-phase internally controlled exposure mechanism improves the sensor's dynamic MTF. The sensor high level of integration includes on-chip 12 bit per pixel analog to digital converters, on-chip controller, and CMOS compatible voltage levels. Thus, the power consumption and the weight of the supporting electronics are reduced, and a simple electrical interface is provided. An adjustable gain provides a Full Well Capacity ranging from 150,000 electrons up to 500,000 electrons per column and an overall readout noise per column of less than 120 electrons. The imager supports line rates ranging from 50 to 10,000 lines/sec, with power consumption of less than 0.5W per array. Thus, the sensor is characterized by a high pixel rate, a high dynamic range and a very low power. To meet a Latch-up free requirement RadHard architecture and design rules were utilized. In this paper recent electrical and electro-optical measurements of the sensor's Flight Models will be presented for the first time.

  3. Sandwich node architecture for agile wireless sensor networks for real-time structural health monitoring applications

    Science.gov (United States)

    Wang, Zi; Pakzad, Shamim; Cheng, Liang

    2012-04-01

    In recent years, wireless sensor network (WSN), as a powerful tool, has been widely applied to structural health monitoring (SHM) due to its low cost of deployment. Several commercial hardware platforms of wireless sensor networks (WSN) have been developed and used for structural monitoring applications [1,2]. A typical design of a node includes a sensor board and a mote connected to it. Sensing units, analog filters and analog-to-digital converters (ADCs) are integrated on the sensor board and the mote consists of a microcontroller and a wireless transceiver. Generally, there are a set of sensor boards compatible with the same model of mote and the selection of the sensor board depends on the specific applications. A WSN system based on this node lacks the capability of interrupting its scheduled task to start a higher priority task. This shortcoming is rooted in the hardware architecture of the node. The proposed sandwich-node architecture is designed to remedy the shortcomings of the existing one for task preemption. A sandwich node is composed of a sensor board and two motes. The first mote is dedicated to managing the sensor board and processing acquired data. The second mote controls the first mote via commands. A prototype has been implemented using Imote2 and verified by an emulation in which one mote is triggered by a remote base station and then preempts the running task at the other mote for handling an emergency event.

  4. Polymer temperature sensor for textronic applications

    International Nuclear Information System (INIS)

    Bielska, Sylwia; Sibinski, Maciej; Lukasik, Andrzej

    2009-01-01

    The aim of this paper is to present research work of designing prototype textile sensors dedicated to human body temperature measurements. The sensor construction was especially elaborated to be integrated into protective clothing as a practical realization of intelligent e-textile concept. These types of sensors should be easily incorporable in clothing structures without disturbance of fabric flexibility (Carpi and De Rossi). The construction of the new type functional sensor testing is presented and illustrated by its parameters and thermal characteristics.

  5. Microstructured and Photonic Bandgap Fibers for Applications in the Resonant Bio- and Chemical Sensors

    Directory of Open Access Journals (Sweden)

    Maksim Skorobogatiy

    2009-01-01

    Full Text Available We review application of microstructured and photonic bandgap fibers for designing resonant optical sensors of changes in the value of analyte refractive index. This research subject has recently invoked much attention due to development of novel fiber types, as well as due to development of techniques for the activation of fiber microstructure with functional materials. Particularly, we consider two sensors types. The first sensor type employs hollow core photonic bandgap fibers where core guided mode is confined in the analyte filled core through resonant effect in the surrounding periodic reflector. The second sensor type employs metalized microstructured or photonic bandgap waveguides and fibers, where core guided mode is phase matched with a plasmon propagating at the fiber/analyte interface. In resonant sensors one typically employs fibers with strongly nonuniform spectral transmission characteristics that are sensitive to changes in the real part of the analyte refractive index. Moreover, if narrow absorption lines are present in the analyte transmission spectrum, due to Kramers-Kronig relation this will also result in strong variation in the real part of the refractive index in the vicinity of an absorption line. Therefore, resonant sensors allow detection of minute changes both in the real part of the analyte refractive index (10−6–10−4 RIU, as well as in the imaginary part of the analyte refractive index in the vicinity of absorption lines. In the following we detail various resonant sensor implementations, modes of operation, as well as analysis of sensitivities for some of the common transduction mechanisms for bio- and chemical sensing applications. Sensor designs considered in this review span spectral operation regions from the visible to terahertz.

  6. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  7. PREFACE: Sensors and Their Applications XVII

    Science.gov (United States)

    Bilas, V.; McConnell, G.; Kyriacou, P.

    2013-06-01

    This volume records the Proceedings of the seventeenth conference in the biennial Sensors and Their Applications series that took place at Rixos Libertas, Dubrovnik, Croatia from 16-18 September 2013. The conference is organised by the Instrument Science and Technology Group of the Institute of Physics. The conference was the first organised by the Institute of Physics to be held outside of the UK and Ireland, thus continuing the collaborative and adventurous nature of the meeting. The conference proceedings record the continuing health, diversity and activity of the sensors community worldwide, bringing together contributions from academics and industrial researchers to provide excellent networking opportunities. It is interesting to note some continuing themes such as Optical Sensors and Electromagnetic Sensors, as well as trends in Environmental Sensing and Glacial Monitoring that reflect our changing world, and Sensors in Biology and Medicine that have a growing importance with an ageing population. The conference also accounts for research specialisms and unique strengths from the local community in Croatia, including demining and metal detector sensing. We should like to thank all of our colleagues and friends in the sensor community who have supported this event by contributing manuscripts. Our thanks go also to members of the Technical Programme Committee for their support, and in particular for refereeing the submitted manuscripts. We are also pleased to express our thanks to the Conference Department of the Institute of Physics for their invaluable support in organising this event. We are especially grateful to Dawn Stewart for her responsive and day-to-day handling of this conference, as well as Claire Garland for help in planning and managing this international event. We hope that the conference authors, participants and a wider audience will find these proceedings to be of interest and to serve as a useful reference text. V Bilas, G McConnell and P

  8. Study of robust thin film PT-1000 temperature sensors for cryogenic process control applications

    Science.gov (United States)

    Ramalingam, R.; Boguhn, D.; Fillinger, H.; Schlachter, S. I.; Süßer, M.

    2014-01-01

    In some cryogenic process measurement applications, for example, in hydrogen technology and in high temperature superconductor based generators, there is a need of robust temperature sensors. These sensors should be able to measure the large temperature range of 20 - 500 K with reasonable resolution and accuracy. Thin film PT 1000 sensors could be a choice to cover this large temperature range. Twenty one sensors selected from the same production batch were tested for their temperature sensitivity which was then compared with different batch sensors. Furthermore, the sensor's stability was studied by subjecting the sensors to repeated temperature cycles of 78-525 K. Deviations in the resistance were investigated using ice point calibration and water triple point calibration methods. Also the study of directional oriented intense static magnetic field effects up to 8 Oersted (Oe) were conducted to understand its magneto resistance behaviour in the cryogenic temperature range from 77 K - 15 K. This paper reports all investigation results in detail.

  9. Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context

    Directory of Open Access Journals (Sweden)

    Julie Transon

    2018-01-01

    Full Text Available In the last few decades, researchers have developed a plethora of hyperspectral Earth Observation (EO remote sensing techniques, analysis and applications. While hyperspectral exploratory sensors are demonstrating their potential, Sentinel-2 multispectral satellite remote sensing is now providing free, open, global and systematic high resolution visible and infrared imagery at a short revisit time. Its recent launch suggests potential synergies between multi- and hyper-spectral data. This study, therefore, reviews 20 years of research and applications in satellite hyperspectral remote sensing through the analysis of Earth observation hyperspectral sensors’ publications that cover the Sentinel-2 spectrum range: Hyperion, TianGong-1, PRISMA, HISUI, EnMAP, Shalom, HyspIRI and HypXIM. More specifically, this study (i brings face to face past and future hyperspectral sensors’ applications with Sentinel-2’s and (ii analyzes the applications’ requirements in terms of spatial and temporal resolutions. Eight main application topics were analyzed including vegetation, agriculture, soil, geology, urban, land use, water resources and disaster. Medium spatial resolution, long revisit time and low signal-to-noise ratio in the short-wave infrared of some hyperspectral sensors were highlighted as major limitations for some applications compared to the Sentinel-2 system. However, these constraints mainly concerned past hyperspectral sensors, while they will probably be overcome by forthcoming instruments. Therefore, this study is putting forward the compatibility of hyperspectral sensors and Sentinel-2 systems for resolution enhancement techniques in order to increase the panel of hyperspectral uses.

  10. Contact Patterns in a High School: A Comparison between Data Collected Using Wearable Sensors, Contact Diaries and Friendship Surveys.

    Directory of Open Access Journals (Sweden)

    Rossana Mastrandrea

    Full Text Available Given their importance in shaping social networks and determining how information or transmissible diseases propagate in a population, interactions between individuals are the subject of many data collection efforts. To this aim, different methods are commonly used, ranging from diaries and surveys to decentralised infrastructures based on wearable sensors. These methods have each advantages and limitations but are rarely compared in a given setting. Moreover, as surveys targeting friendship relations might suffer less from memory biases than contact diaries, it is interesting to explore how actual contact patterns occurring in day-to-day life compare with friendship relations and with online social links. Here we make progresses in these directions by leveraging data collected in a French high school and concerning (i face-to-face contacts measured by two concurrent methods, namely wearable sensors and contact diaries, (ii self-reported friendship surveys, and (iii online social links. We compare the resulting data sets and find that most short contacts are not reported in diaries while long contacts have a large reporting probability, and that the durations of contacts tend to be overestimated in the diaries. Moreover, measured contacts corresponding to reported friendship can have durations of any length but all long contacts do correspond to a reported friendship. On the contrary, online links that are not also reported in the friendship survey correspond to short face-to-face contacts, highlighting the difference of nature between reported friendships and online links. Diaries and surveys suffer moreover from a low sampling rate, as many students did not fill them, showing that the sensor-based platform had a higher acceptability. We also show that, despite the biases of diaries and surveys, the overall structure of the contact network, as quantified by the mixing patterns between classes, is correctly captured by both networks of self

  11. Contact Patterns in a High School: A Comparison between Data Collected Using Wearable Sensors, Contact Diaries and Friendship Surveys.

    Science.gov (United States)

    Mastrandrea, Rossana; Fournet, Julie; Barrat, Alain

    2015-01-01

    Given their importance in shaping social networks and determining how information or transmissible diseases propagate in a population, interactions between individuals are the subject of many data collection efforts. To this aim, different methods are commonly used, ranging from diaries and surveys to decentralised infrastructures based on wearable sensors. These methods have each advantages and limitations but are rarely compared in a given setting. Moreover, as surveys targeting friendship relations might suffer less from memory biases than contact diaries, it is interesting to explore how actual contact patterns occurring in day-to-day life compare with friendship relations and with online social links. Here we make progresses in these directions by leveraging data collected in a French high school and concerning (i) face-to-face contacts measured by two concurrent methods, namely wearable sensors and contact diaries, (ii) self-reported friendship surveys, and (iii) online social links. We compare the resulting data sets and find that most short contacts are not reported in diaries while long contacts have a large reporting probability, and that the durations of contacts tend to be overestimated in the diaries. Moreover, measured contacts corresponding to reported friendship can have durations of any length but all long contacts do correspond to a reported friendship. On the contrary, online links that are not also reported in the friendship survey correspond to short face-to-face contacts, highlighting the difference of nature between reported friendships and online links. Diaries and surveys suffer moreover from a low sampling rate, as many students did not fill them, showing that the sensor-based platform had a higher acceptability. We also show that, despite the biases of diaries and surveys, the overall structure of the contact network, as quantified by the mixing patterns between classes, is correctly captured by both networks of self-reported contacts and

  12. Capability assessment and challenges for quantum technology gravity sensors for near surface terrestrial geophysical surveying

    Science.gov (United States)

    Boddice, Daniel; Metje, Nicole; Tuckwell, George

    2017-11-01

    Geophysical surveying is widely used for the location of subsurface features. Current technology is limited in terms of its resolution (thus size of features it can detect) and penetration depth and a suitable technique is needed to bridge the gap between shallow near surface investigation using techniques such as EM conductivity mapping and GPR commonly used to map the upper 5 m below ground surface, and large features at greater depths detectable using conventional microgravity (> 5 m below ground surface). This will minimise the risks from unknown features buried in and conditions of the ground during civil engineering work. Quantum technology (QT) gravity sensors potentially offer a step-change in technology for locating features which lie outside of the currently detectable range in terms of size and depth, but that potential is currently unknown as field instruments have not been developed. To overcome this, a novel computer simulation was developed for a large range of different targets of interest. The simulation included realistic noise modelling of instrumental, environmental and location sources of noise which limit the accuracy of current microgravity measurements, in order to assess the potential capability of the new QT instruments in realistic situations and determine some of the likely limitations on their implementation. The results of the simulations for near surface features showed that the new technology is best employed in a gradiometer configuration as opposed to the traditional single sensor gravimeter used by current instruments due to the ability to suppress vibrational environmental noise effects due to common mode rejection between the sensors. A significant improvement in detection capability of 1.5-2 times was observed, putting targets such as mineshafts into the detectability zone which would be a major advantage for subsurface surveying. Thus this research, for the first time, has demonstrated clearly the benefits of QT gravity

  13. A highly sensitive CMOS digital Hall sensor for low magnetic field applications.

    Science.gov (United States)

    Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li

    2012-01-01

    Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ± 2 mT magnetic field and output a digital Hall signal in a wide temperature range from -40 °C to 120 °C.

  14. The LLL algorithm survey and applications

    CERN Document Server

    Nguyen, Phong Q

    2010-01-01

    The first book to offer a comprehensive view of the LLL algorithm, this text surveys computational aspects of Euclidean lattices and their main applications. It includes many detailed motivations, explanations and examples.

  15. Engineering carbon nanomaterials for future applications: energy and bio-sensor

    Science.gov (United States)

    Das, Santanu; Lahiri, Indranil; Kang, Chiwon; Choi, Wonbong

    2011-06-01

    This paper presents our recent results on carbon nanomaterials for applications in energy storage and bio-sensor. More specifically: (i) A novel binder-free carbon nanotubes (CNTs) structure as anode in Li-ion batteries. The interfacecontrolled CNT structure, synthesized through a two-step chemical vapor deposition (CVD) and directly grown on copper current collector, showed very high specific capacity - almost three times as that of graphite, excellent rate capability. (ii) A large scale graphene film was grown on Cu foil by thermal chemical vapor deposition and transferred to various substrates including PET, glass and silicon by using hot press lamination and etching process. The graphene/PET film shows high quality, flexible transparent conductive structure with unique electrical-mechanical properties; ~88.80 % light transmittance and ~ 100 Ω/sq sheet resistance. We demonstrate application of graphene/PET film as flexible and transparent electrode for field emission displays. (iii) Application of individual carbon nanotube as nanoelectrode for high sensitivity electrochemical sensor and device miniaturization. An individual CNT is split into a pair of nanoelectrodes with a gap between them. Single molecular-level detection of DNA hybridization was studied. Hybridization of the probe with its complementary strand results in an appreciable change in the electrical output signal.

  16. Applications of micro/nanoparticles in microfluidic sensors: a review.

    KAUST Repository

    Jiang, Yusheng

    2014-04-21

    This paper reviews the applications of micro/nanoparticles in microfluidics device fabrication and analytical processing. In general, researchers have focused on two properties of particles--electric behavior and magnetic behavior. The applications of micro/nanoparticles could be summarized on the chip fabrication level and on the processing level. In the fabrication of microfluidic chips (chip fabrication level), particles are good additives in polydimethylsiloxane (PDMS) to prepare conductive or magnetic composites which have wide applications in sensors, valves and actuators. On the other hand, particles could be manipulated according to their electric and magnetic properties under external electric and magnetic fields when they are travelling in microchannels (processing level). Researchers have made a great progress in preparing modified PDMS and investigating the behaviors of particles in microchannels. This article attempts to present a discussion on the basis of particles applications in microfluidics.

  17. UAV MULTISPECTRAL SURVEY TO MAP SOIL AND CROP FOR PRECISION FARMING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    G. Sona

    2016-06-01

    Full Text Available New sensors mounted on UAV and optimal procedures for survey, data acquisition and analysis are continuously developed and tested for applications in precision farming. Procedures to integrate multispectral aerial data about soil and crop and ground-based proximal geophysical data are a recent research topic aimed to delineate homogeneous zones for the management of agricultural inputs (i.e., water, nutrients. Multispectral and multitemporal orthomosaics were produced over a test field (a 100 m x 200 m plot within a maize field, to map vegetation and soil indices, as well as crop heights, with suitable ground resolution. UAV flights were performed in two moments during the crop season, before sowing on bare soil, and just before flowering when maize was nearly at the maximum height. Two cameras, for color (RGB and false color (NIR-RG images, were used. The images were processed in Agisoft Photoscan to produce Digital Surface Model (DSM of bare soil and crop, and multispectral orthophotos. To overcome some difficulties in the automatic searching of matching points for the block adjustment of the crop image, also the scientific software developed by Politecnico of Milan was used to enhance images orientation. Surveys and image processing are described, as well as results about classification of multispectral-multitemporal orthophotos and soil indices.

  18. Manufacturing technology of integrated textile-based sensor networks for in situ monitoring applications of composite wind turbine blades

    Science.gov (United States)

    Haentzsche, Eric; Mueller, Ralf; Huebner, Matthias; Ruder, Tristan; Unger, Reimar; Nocke, Andreas; Cherif, Chokri

    2016-10-01

    Based on in situ strain sensors consisting of piezo-resistive carbon filament yarns (CFYs), which have been successfully integrated into textile reinforcement structures during their textile-technological manufacturing process, a continuous load of fibre-reinforced plastic (FRP) components has been realised. These sensors are also suitable for structural health monitoring (SHM) applications. The two-dimensional sensor layout is made feasible by the usage of a modular warp yarn path manipulation unit. Using a functional model of a small wind turbine blade in thermoset composite design, the sensor function for basic SHM applications (e.g. static load monitoring) are demonstrated. Any mechanical loads along the pressure or suction side of the wind turbine blade can be measured and calculated via a correlative change in resistance of the CFYs within the textile reinforcement plies. Performing quasi-static load tests on both tensile specimen and full-scale wind turbine blade, elementary results have been obtained concerning electro-mechanical behaviour and spatial resolution of global and even local static stresses according to the CFY sensor integration length. This paper demonstrates the great potential of textile-based and textile-technological integrated sensors in reinforcement structures for future SHM applications of FRPs.

  19. Customizable Optical Force Sensor for Fast Prototyping and Cost-Effective Applications.

    Science.gov (United States)

    Díez, Jorge A; Catalán, José M; Blanco, Andrea; García-Perez, José V; Badesa, Francisco J; Gacía-Aracil, Nicolás

    2018-02-07

    This paper presents the development of an optical force sensor architecture directed to prototyping and cost-effective applications, where the actual force requirements are still not well defined or the most suitable commercial technologies would highly increase the cost of the device. The working principle of this sensor consists of determining the displacement of a lens by measuring the distortion of a refracted light beam. This lens is attached to an elastic interface whose elastic constant is known, allowing the estimation of the force that disturbs the optical system. In order to satisfy the requirements of the design process in an inexpensive way, this sensor can be built by fast prototyping technologies and using non-optical grade elements. To deal with the imperfections of this kind of manufacturing procedures and materials, four fitting models are proposed to calibrate the implemented sensor. In order to validate the system, two different sensor implementations with measurement ranges of ±45 N and ±10 N are tested with the proposed models, comparing the resulting force estimation with respect to an industrial-grade load cell. Results show that all models can estimate the loads with an error of about 6% of the measurement range.

  20. Customizable Optical Force Sensor for Fast Prototyping and Cost-Effective Applications

    Directory of Open Access Journals (Sweden)

    Jorge A. Díez

    2018-02-01

    Full Text Available This paper presents the development of an optical force sensor architecture directed to prototyping and cost-effective applications, where the actual force requirements are still not well defined or the most suitable commercial technologies would highly increase the cost of the device. The working principle of this sensor consists of determining the displacement of a lens by measuring the distortion of a refracted light beam. This lens is attached to an elastic interface whose elastic constant is known, allowing the estimation of the force that disturbs the optical system. In order to satisfy the requirements of the design process in an inexpensive way, this sensor can be built by fast prototyping technologies and using non-optical grade elements. To deal with the imperfections of this kind of manufacturing procedures and materials, four fitting models are proposed to calibrate the implemented sensor. In order to validate the system, two different sensor implementations with measurement ranges of ±45 N and ±10 N are tested with the proposed models, comparing the resulting force estimation with respect to an industrial-grade load cell. Results show that all models can estimate the loads with an error of about 6% of the measurement range.

  1. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    Science.gov (United States)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  2. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  3. Multifuctional integrated sensors (MFISES).

    Energy Technology Data Exchange (ETDEWEB)

    Homeijer, Brian D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roozeboom, Clifton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and the real world applications of the sensors systems.

  4. Highly Sensitive Reentrant Cavity-Microstrip Patch Antenna Integrated Wireless Passive Pressure Sensor for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Fei Lu

    2017-01-01

    Full Text Available A novel reentrant cavity-microstrip patch antenna integrated wireless passive pressure sensor was proposed in this paper for high temperature applications. The reentrant cavity was analyzed from aspects of distributed model and equivalent lumped circuit model, on the basis of which an optimal sensor structure integrated with a rectangular microstrip patch antenna was proposed to better transmit/receive wireless signals. In this paper, the proposed sensor was fabricated with high temperature resistant alumina ceramic and silver metalization with weld sealing, and it was measured in a hermetic metal tank with nitrogen pressure loading. It was verified that the sensor was highly sensitive, keeping stable performance up to 300 kPa with an average sensitivity of 981.8 kHz/kPa at temperature 25°C, while, for high temperature measurement, the sensor can operate properly under pressure of 60–120 kPa in the temperature range of 25–300°C with maximum pressure sensitivity of 179.2 kHz/kPa. In practical application, the proposed sensor is used in a method called table lookup with a maximum error of 5.78%.

  5. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    Science.gov (United States)

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  6. RF energy harvesting and transport for wireless autonomous sensor network applications

    NARCIS (Netherlands)

    Keyrouz, S.; Visser, H.J.

    2013-01-01

    "RF Energy Harvesting and Transport for Wireless Autonomous Sensor Network Applications: Principles and Requirements" - For wireless energy transfer over longer distances, the far-field transfer of RF energy may be used. We make a distinction between harvesting RF energy from signals present in the

  7. Various on-chip sensors with microfluidics for biological applications.

    Science.gov (United States)

    Lee, Hun; Xu, Linfeng; Koh, Domin; Nyayapathi, Nikhila; Oh, Kwang W

    2014-09-12

    In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV) and greater depth of field (DOF). As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC) testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.

  8. Developing a New Wireless Sensor Network Platform and Its Application in Precision Agriculture

    Science.gov (United States)

    Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro

    2011-01-01

    Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of “smart dust” offer great advantages due to their small size, low power consumption, easy integration and support for “green” applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network. PMID:22346622

  9. Developing a new wireless sensor network platform and its application in precision agriculture.

    Science.gov (United States)

    Aquino-Santos, Raúl; González-Potes, Apolinar; Edwards-Block, Arthur; Virgen-Ortiz, Raúl Alejandro

    2011-01-01

    Wireless sensor networks are gaining greater attention from the research community and industrial professionals because these small pieces of "smart dust" offer great advantages due to their small size, low power consumption, easy integration and support for "green" applications. Green applications are considered a hot topic in intelligent environments, ubiquitous and pervasive computing. This work evaluates a new wireless sensor network platform and its application in precision agriculture, including its embedded operating system and its routing algorithm. To validate the technological platform and the embedded operating system, two different routing strategies were compared: hierarchical and flat. Both of these routing algorithms were tested in a small-scale network applied to a watermelon field. However, we strongly believe that this technological platform can be also applied to precision agriculture because it incorporates a modified version of LORA-CBF, a wireless location-based routing algorithm that uses cluster-based flooding. Cluster-based flooding addresses the scalability concerns of wireless sensor networks, while the modified LORA-CBF routing algorithm includes a metric to monitor residual battery energy. Furthermore, results show that the modified version of LORA-CBF functions well with both the flat and hierarchical algorithms, although it functions better with the flat algorithm in a small-scale agricultural network.

  10. RFID Tag as a Sensor - A Review on the Innovative Designs and Applications

    OpenAIRE

    Meng, Zhaozong; Li, Zhen

    2016-01-01

    The Radio Frequency Identification (RFID) technology has gained interests in both academia and industry since its invention. In addition to the applications in access control and supply chain, RFID is also a cost-efficient solution for Non-Destructive Testing (NDT) and pervasive monitoring. The battery free RFID tags are used as independent electromagnetic sensors or energy harvesting and data transmission interface of sensor modules for different measurement purposes. This review paper aims ...

  11. Design and Optimization of a Low Power Pressure Sensor for Wireless Biomedical Applications

    Directory of Open Access Journals (Sweden)

    J. Sosa

    2015-01-01

    (ADC are designed, optimized, and integrated in the same substrate using a commercial 1 μm CMOS technology. As result of the optimization, we obtained a digital sensor with high sensitivity, low noise (0.002 μV/Hz, and low power consumption (358 μW. Finally, the piezoresistance noise does not affect the pressure sensor application since its value is lower than half least significant bit (LSB of the ADC.

  12. Application of portable in situ UV fluorescence sensors in natural and engineered aquatic systems.

    Science.gov (United States)

    Fox, Bethany; Rushworth, Cathy; Atrridge, John

    2016-04-01

    Natural organic matter (NOM) is ubiquitous throughout aquatic systems. This heterogeneous mixture of organic matter is central for aquatic ecosystems and, both local and global, biogeochemical cycling. Improvements in technology and data analysis has allowed for advances in the understanding and characterisation of aquatic organic matter. However, much of the technological expansions have focussed on benchtop instruments. In recent years, there has been interest in the continued development of portable in situ sensors for monitoring NOM characteristics within a wide range of applications, spanning both natural and engineered systems. The UviLux (Chelsea Technologies Group Ltd., UK) is an in situ portable UV fluorescence sensor that can be configured to monitor a range of NOM in aquatic systems, as well as anthropogenic inputs such as polycyclic aromatic hydrocarbons (PAH) and optical brighteners. Here we will focus on the use of the Tryptophan and CDOM UviLux sensors across a variety of applications in both natural systems, such as rivers and leachate into groundwater, and engineered systems, including drinking water and waste water treatment. Recent work has focused on standardising the fluorescence output across the UviLux range of sensors, reporting data in quinine sulphate units (QSU), which enables the output from two different fluorometers to be directly compared both to each other, and to bench-top data. A key advantage of deploying multiple sensors is the ability to fingerprint the fluorescence, by providing, for example, a Tryptophan/CDOM ratio. From the data collected, the ratio of the different fluorescence regions has been shown to provide more robust in situ data and help identify true temporal variations and patterns across multiple applications and sampling locations.

  13. Survey of Applications of Complex Event Processing (CEP in Health Domain

    Directory of Open Access Journals (Sweden)

    Nadeem Mahmood

    2017-12-01

    Full Text Available It is always difficult to manipulate the production of huge amount of data which comes from multiple sources and to extract meaningful information to make appropriate decisions. When data comes from various input resources, to get required streams of events form this complex input network, the one of the strong functionality of Business Intelligence (BI the Complex Event Processing (CEP is the appropriate solution for the above mention problems. Real time processing, pattern matching, stream processing, big data management, sensor data processing and many more are the application areas of CEP. Health domain itself is a multi-dimension domain such as hospital supply chain, OPD management, disease diagnostic, In-patient, out-patient management, and emergency care etc. In this paper, the main focus is to discuss the application areas of Complex Event Processing (CEP in health domain by using sensor device, such that how CEP manipulate health data set events coming from sensor devices such as blood pressure, heart rate, fall detection, sugar level, temperature or any other vital signs and how this systems respond to these events as quickly as possible. Different existing models and application using CEP are discussed and summarized according to different characteristics.

  14. Handheld multi-channel LAPS device as a transducer platform for possible biological and chemical multi-sensor applications

    International Nuclear Information System (INIS)

    Wagner, Torsten; Molina, Roberto; Yoshinobu, Tatsuo; Kloock, Joachim P.; Biselli, Manfred; Canzoneri, Michelangelo; Schnitzler, Thomas; Schoening, Michael J.

    2007-01-01

    The light-addressable potentiometric sensor is a promising technology platform for multi-sensor applications and lab-on-chip devices. However, many prior LAPS developments suffer from their lack in terms of non-portability, insufficient robustness, complicate handling, etc. Hence, portable and robust LAPS-based measurement devices have been investigated by the authors recently. In this work, a 'chip card'-based light-addressable potentiometric sensor system is presented. The utilisation of ordinary 'chip cards' allows an easy handling of different sensor chips for a wide range of possible applications. The integration of the electronic and the mechanical set-up into a single reader unit results in a compact design with the benefits of portability and low required space. In addition, the presented work includes a new multi-frequency measurement procedure, based on an FFT algorithm, which enables the simultaneous real-time measurement of up to 16 sensor spots. The comparison between the former batch-LAPS and the new FFT-based LAPS set-up will be presented. The immobilisation of biological cells (CHO: Chinese hamster ovary) demonstrates the possibility to record their metabolic activity with 16 measurement spots on the same chip. Furthermore, a Cd 2+ -selective chalcogenide-glass layer together with a pH-sensitive Ta 2 O 5 layer validates the use of the LAPS for chemical multi-sensor applications

  15. MyHealthAssistant: an event-driven middleware for multiple medical applications on a smartphone-mediated body sensor network.

    Science.gov (United States)

    Seeger, Christian; Van Laerhoven, Kristof; Buchmann, Alejandro

    2015-03-01

    An ever-growing range of wireless sensors for medical monitoring has shown that there is significant interest in monitoring patients in their everyday surroundings. It however remains a challenge to merge information from several wireless sensors and applications are commonly built from scratch. This paper presents a middleware targeted for medical applications on smartphone-like platforms that relies on an event-based design to enable flexible coupling with changing sets of wireless sensor units, while posing only a minor overhead on the resources and battery capacity of the interconnected devices. We illustrate the requirements for such middleware with three different healthcare applications that were deployed with our middleware solution, and characterize the performance with energy consumption, overhead caused for the smartphone, and processing time under real-world circumstances. Results show that with sensing-intensive applications, our solution only minimally impacts the phone's resources, with an added CPU utilization of 3% and a memory usage under 7 MB. Furthermore, for a minimum message delivery ratio of 99.9%, up to 12 sensor readings per second are guaranteed to be handled, regardless of the number of applications using our middleware.

  16. ShakeNet: a portable wireless sensor network for instrumenting large civil structures

    Science.gov (United States)

    Kohler, Monica D.; Hao, Shuai; Mishra, Nilesh; Govindan, Ramesh; Nigbor, Robert

    2015-08-03

    We report our findings from a U.S. Geological Survey (USGS) National Earthquake Hazards Reduction Program-funded project to develop and test a wireless, portable, strong-motion network of up to 40 triaxial accelerometers for structural health monitoring. The overall goal of the project was to record ambient vibrations for several days from USGS-instrumented structures. Structural health monitoring has important applications in fields like civil engineering and the study of earthquakes. The emergence of wireless sensor networks provides a promising means to such applications. However, while most wireless sensor networks are still in the experimentation stage, very few take into consideration the realistic earthquake engineering application requirements. To collect comprehensive data for structural health monitoring for civil engineers, high-resolution vibration sensors and sufficient sampling rates should be adopted, which makes it challenging for current wireless sensor network technology in the following ways: processing capabilities, storage limit, and communication bandwidth. The wireless sensor network has to meet expectations set by wired sensor devices prevalent in the structural health monitoring community. For this project, we built and tested an application-realistic, commercially based, portable, wireless sensor network called ShakeNet for instrumentation of large civil structures, especially for buildings, bridges, or dams after earthquakes. Two to three people can deploy ShakeNet sensors within hours after an earthquake to measure the structural response of the building or bridge during aftershocks. ShakeNet involved the development of a new sensing platform (ShakeBox) running a software suite for networking, data collection, and monitoring. Deployments reported here on a tall building and a large dam were real-world tests of ShakeNet operation, and helped to refine both hardware and software. 

  17. JSC Wireless Sensor Network Update

    Science.gov (United States)

    Wagner, Robert

    2010-01-01

    Sensor nodes composed of three basic components... radio module: COTS radio module implementing standardized WSN protocol; treated as WSN modem by main board main board: contains application processor (TI MSP430 microcontroller), memory, power supply; responsible for sensor data acquisition, pre-processing, and task scheduling; re-used in every application with growing library of embedded C code sensor card: contains application-specific sensors, data conditioning hardware, and any advanced hardware not built into main board (DSPs, faster A/D, etc.); requires (re-) development for each application.

  18. Taste sensor; Mikaku sensor

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K. [Kyushu University, Fukuoka (Japan)

    1998-03-05

    This paper introduces a taste sensor having a lipid/polymer membrane to work as a receptor of taste substances. The paper describes the following matters: this sensor uses a hollow polyvinyl chloride rod filled with KCl aqueous solution, and placed with silver and silver chloride wires, whose cross section is affixed with a lipid/polymer membrane as a lipid membrane electrode to identify taste from seven or eight kinds of response patterns of electric potential output from the lipid/polymer membrane; measurements of different substances presenting acidic taste, salty taste, bitter taste, sweet taste and flavor by using this sensor identified clearly each taste (similar response is shown to a similar taste even if the substances are different); different responses are indicated on different brands of beers; from the result of measuring a great variety of mineral waters, a possibility was suggested that this taste sensor could be used for water quality monitoring sensors; and application of this taste sensor may be expected as a maturation control sensor for Japanese sake (wine) and miso (bean paste) manufacturing. 2 figs., 1 tab.

  19. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Quinn, Edward L. [Technology Resources, Dana Point, CA (United States); Mauck, Jerry L. [Technology Resources, Dana Point, CA (United States); Bockhorst, Richard M. [Technology Resources, Dana Point, CA (United States)

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  20. Security and privacy issues in wireless sensor networks for healthcare applications.

    Science.gov (United States)

    Al Ameen, Moshaddique; Liu, Jingwei; Kwak, Kyungsup

    2012-02-01

    The use of wireless sensor networks (WSN) in healthcare applications is growing in a fast pace. Numerous applications such as heart rate monitor, blood pressure monitor and endoscopic capsule are already in use. To address the growing use of sensor technology in this area, a new field known as wireless body area networks (WBAN or simply BAN) has emerged. As most devices and their applications are wireless in nature, security and privacy concerns are among major areas of concern. Due to direct involvement of humans also increases the sensitivity. Whether the data gathered from patients or individuals are obtained with the consent of the person or without it due to the need by the system, misuse or privacy concerns may restrict people from taking advantage of the full benefits from the system. People may not see these devices safe for daily use. There may also possibility of serious social unrest due to the fear that such devices may be used for monitoring and tracking individuals by government agencies or other private organizations. In this paper we discuss these issues and analyze in detail the problems and their possible measures.

  1. Synthesis of Graphene-Based Sensors and Application on Detecting SF6 Decomposing Products: A Review

    Directory of Open Access Journals (Sweden)

    Xiaoxing Zhang

    2017-02-01

    Full Text Available Graphene-based materials have aroused enormous focus on a wide range of engineering fields because of their unique structure. One of the most promising applications is gas adsorption and sensing. In electrical engineering, graphene-based sensors are also employed as detecting devices to estimate the operation status of gas insulated switchgear (GIS. This paper reviews the main synthesis methods of graphene, gas adsorption, and sensing mechanism of its based sensors, as well as their applications in detecting SF6 decomposing products, such as SO2, H2S, SO2F2, and SOF2, in GIS. Both theoretical and experimental researches on gas response of graphene-based sensors to these typical gases are summarized. Finally, the future research trend about graphene synthesis technique and relevant perspective are also given.

  2. 40 CFR 1065.215 - Pressure transducers, temperature sensors, and dewpoint sensors.

    Science.gov (United States)

    2010-07-01

    ... sensors, and dewpoint sensors. 1065.215 Section 1065.215 Protection of Environment ENVIRONMENTAL... Measurement of Engine Parameters and Ambient Conditions § 1065.215 Pressure transducers, temperature sensors, and dewpoint sensors. (a) Application. Use instruments as specified in this section to measure...

  3. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  4. MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey

    Science.gov (United States)

    Han, Ruisong; Yang, Wei; You, Kaiming

    2016-01-01

    Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed. PMID:27999258

  5. MB-OFDM-UWB Based Wireless Multimedia Sensor Networks for Underground Coalmine: A Survey.

    Science.gov (United States)

    Han, Ruisong; Yang, Wei; You, Kaiming

    2016-12-16

    Safety production of coalmines is a task of top priority which plays an important role in guaranteeing, supporting and promoting the continuous development of the coal industry. Since traditional wireless sensor networks (WSNs) cannot fully meet the requirements of comprehensive environment monitoring of underground coalmines, wireless multimedia sensor networks (WMSNs), enabling the retrieval of multimedia information, are introduced to realize fine-grained and precise environment surveillance. In this paper, a framework for designing underground coalmine WMSNs based on Multi-Band Orthogonal Frequency-Division Multiplexing Ultra-wide Band (MB-OFDM-UWB) is presented. The selection of MB-OFDM-UWB wireless transmission solution is based on the characteristics of underground coalmines. Network structure and design challenges are analyzed first, which is the foundation for further discussion. Then, key supporting technologies and open research areas in different layers are surveyed, and we provide a detailed literature review of the state of the art strategies, algorithms and general solutions in these issues. Finally, other research issues like localization, information processing, and network management are discussed.

  6. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications.

    Science.gov (United States)

    Park, Jongsung; Kim, Ji-Kwan; Patil, Swati J; Park, Jun-Kyu; Park, SuA; Lee, Dong-Weon

    2016-06-02

    This paper describes the fabrication and characterization of a wireless pressure sensor for smart stent applications. The micromachined pressure sensor has an area of 3.13 × 3.16 mm² and is fabricated with a photosensitive SU-8 polymer. The wireless pressure sensor comprises a resonant circuit and can be used without the use of an internal power source. The capacitance variations caused by changes in the intravascular pressure shift the resonance frequency of the sensor. This change can be detected using an external antenna, thus enabling the measurement of the pressure changes inside a tube with a simple external circuit. The wireless pressure sensor is capable of measuring pressure from 0 mmHg to 230 mmHg, with a sensitivity of 0.043 MHz/mmHg. The biocompatibility of the pressure sensor was evaluated using cardiac cells isolated from neonatal rat ventricular myocytes. After inserting a metal stent integrated with the pressure sensor into a cardiovascular vessel of an animal, medical systems such as X-ray were employed to consistently monitor the condition of the blood vessel. No abnormality was found in the animal blood vessel for approximately one month. Furthermore, a biodegradable polymer (polycaprolactone) stent was fabricated with a 3D printer. The polymer stent exhibits better sensitivity degradation of the pressure sensor compared to the metal stent.

  7. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jongsung Park

    2016-06-01

    Full Text Available This paper describes the fabrication and characterization of a wireless pressure sensor for smart stent applications. The micromachined pressure sensor has an area of 3.13 × 3.16 mm2 and is fabricated with a photosensitive SU-8 polymer. The wireless pressure sensor comprises a resonant circuit and can be used without the use of an internal power source. The capacitance variations caused by changes in the intravascular pressure shift the resonance frequency of the sensor. This change can be detected using an external antenna, thus enabling the measurement of the pressure changes inside a tube with a simple external circuit. The wireless pressure sensor is capable of measuring pressure from 0 mmHg to 230 mmHg, with a sensitivity of 0.043 MHz/mmHg. The biocompatibility of the pressure sensor was evaluated using cardiac cells isolated from neonatal rat ventricular myocytes. After inserting a metal stent integrated with the pressure sensor into a cardiovascular vessel of an animal, medical systems such as X-ray were employed to consistently monitor the condition of the blood vessel. No abnormality was found in the animal blood vessel for approximately one month. Furthermore, a biodegradable polymer (polycaprolactone stent was fabricated with a 3D printer. The polymer stent exhibits better sensitivity degradation of the pressure sensor compared to the metal stent.

  8. Emerging sensor and I and C technologies for nuclear power plants

    International Nuclear Information System (INIS)

    Korsah, K.; Wood, R. T.; Freer, E.; Antonescu, C.

    2006-01-01

    This paper presents the findings from a survey of emerging technologies in the field of instrumentation and controls (I and C). The survey findings give an overview of the state-of-the-art in selected technology focus areas for industrial, research, or scientific applications that are relevant to nuclear power plant I and C systems, and discuss potential regulatory impact for safety-related applications. Four technology focus areas are selected for review: Sensors and Measurement Systems; Radiation Hardness of Microprocessors and other Integrated Circuits; Diagnostics and Prognostics Systems; and High-Integrity Software. It is concluded that, while there have been considerable advances in digital I and C hardware, advances in software engineering have not kept pace with hardware. The authors anticipate advances in hardware (e.g., more accurate sensors, sophisticated on-line diagnostics, advances in rad-hard electronics) to influence some regulatory revisions (e.g., surveillance requirements, margins, calibration intervals). However, the state-of-the-art in software engineering has not advanced enough to warrant significant changes in the current position in software review requirements. (authors)

  9. Fabry-Perot Interferometer Performance as Temperature Sensor for Use in Electrical Power System Applications

    Directory of Open Access Journals (Sweden)

    Sanjoy Mandal

    2007-09-01

    Full Text Available Transfer function model of the loss less Fabry-Perot cavity (FPI, developed in Z-domain is presented in this paper. Frequency response analysis of the model was carried out in MATLAB environment to explain the behavior of the interferometer and its potential as temperature sensor was studied. Analysis reveals a highly sensitive temperature sensor that can be used in electrical engineering power system applications.

  10. On Applicability of Network Coding Technique for 6LoWPAN-based Sensor Networks.

    Science.gov (United States)

    Amanowicz, Marek; Krygier, Jaroslaw

    2018-05-26

    In this paper, the applicability of the network coding technique in 6LoWPAN-based sensor multihop networks is examined. The 6LoWPAN is one of the standards proposed for the Internet of Things architecture. Thus, we can expect the significant growth of traffic in such networks, which can lead to overload and decrease in the sensor network lifetime. The authors propose the inter-session network coding mechanism that can be implemented in resource-limited sensor motes. The solution reduces the overall traffic in the network, and in consequence, the energy consumption is decreased. Used procedures take into account deep header compressions of the native 6LoWPAN packets and the hop-by-hop changes of the header structure. Applied simplifications reduce signaling traffic that is typically occurring in network coding deployments, keeping the solution usefulness for the wireless sensor networks with limited resources. The authors validate the proposed procedures in terms of end-to-end packet delay, packet loss ratio, traffic in the air, total energy consumption, and network lifetime. The solution has been tested in a real wireless sensor network. The results confirm the efficiency of the proposed technique, mostly in delay-tolerant sensor networks.

  11. Application of Sensor Technology for the Efficient Positioningand Assembling of Ship Blocks

    Directory of Open Access Journals (Sweden)

    Sangdon Lee

    2010-09-01

    Full Text Available This paper proposes the application of sensor technology to assemble ship blocks efficiently. A sensor-based monitoring system is designed and implemented to improve shipbuilding productivity by reducing the labor cost for the adjustment of adequate positioning between ship blocks during pre-erection or erection stage. For the real-time remote monitoring of relative distances between two ship blocks, sensor nodes are applied to measure the distances between corresponding target points on the blocks. Highly precise positioning data can be transferred to a monitoring server via wireless network, and analyzed to support the decision making which needs to determine the next construction process; further adjustment or seam welding between the ship blocks. The developed system is expected to put to practical use, and increase the productivity during ship blocks assembly.

  12. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications.

    Science.gov (United States)

    Antolín, Diego; Medrano, Nicolás; Calvo, Belén; Pérez, Francisco

    2017-02-14

    This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN) communications protocol, which as a first approach measures CO₂ concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.

  13. A Wearable Wireless Sensor Network for Indoor Smart Environment Monitoring in Safety Applications

    Directory of Open Access Journals (Sweden)

    Diego Antolín

    2017-02-01

    Full Text Available This paper presents the implementation of a wearable wireless sensor network aimed at monitoring harmful gases in industrial environments. The proposed solution is based on a customized wearable sensor node using a low-power low-rate wireless personal area network (LR-WPAN communications protocol, which as a first approach measures CO2 concentration, and employs different low power strategies for appropriate energy handling which is essential to achieving long battery life. These wearables nodes are connected to a deployed static network and a web-based application allows data storage, remote control and monitoring of the complete network. Therefore, a complete and versatile remote web application with a locally implemented decision-making system is accomplished, which allows early detection of hazardous situations for exposed workers.

  14. The Application of RPL Routing Protocol in Low Power Wireless Sensor and Lossy Networks

    Directory of Open Access Journals (Sweden)

    Xun Yang

    2014-05-01

    Full Text Available With the continuous development of computer information technology, wireless sensor has been successfully changed the mode of human life, at the same time, as one of the technologies continues to improve the future life, how to better integration with the RPL routing protocols together become one of research focuses in the current climate. This paper start from the wireless sensor network, briefly discusses the concept, followed by systematic exposition of RPL routing protocol developed background, relevant standards, working principle, topology and related terms, and finally explore the RPL routing protocol in wireless sensor low power lossy network applications.

  15. Fiber optic sensors for nuclear power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Kasinathan, Murugesan; Sosamma, Samuel; BabuRao, Chelamchala; Murali, Nagarajan; Jayakumar, Tammana [Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu-603102 (India)

    2012-05-17

    Studies have been carried out for application of Raman Distributed Temperature Sensor (RDTS) in Nuclear Power Plants (NPP). The high temperature monitoring in sodium circuits of Fast Breeder Reactor (FBR) is important. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in the surrounding insulation in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. The suitability of RDTS for detecting defects in ACSR overhead power cable, is also demonstrated.

  16. Invisible magnetic sensors

    Science.gov (United States)

    Mach-Batlle, Rosa; Navau, Carles; Sanchez, Alvaro

    2018-04-01

    Sensing magnetic fields is essential in many applications in biomedicine, transportation, or smart cities. The distortion magnetic sensors create in response to the field they are detecting may hinder their use, for example, in applications requiring dense packaging of sensors or accurately shaped field distributions. For sensing electromagnetic waves, cloaking shells that reduce the scattering of sensors have been introduced. However, the problem of making a magnetic sensor undetectable remains unsolved. Here, we present a general strategy on how to make a sensor magnetically invisible while keeping its ability to sense. The sensor is rendered undetectable by surrounding it with a spherical shell having a tailored magnetic permeability. Our method can be applied to arbitrary shaped magnetic sensors in arbitrary magnetic fields. The invisibility can be made exact when the sensor is spherical and the probed field is uniform. A metasurface composed of superconducting pieces is presented as a practical realization of the ideal invisibility shell.

  17. Design and application of star map simulation system for star sensors

    Science.gov (United States)

    Wu, Feng; Shen, Weimin; Zhu, Xifang; Chen, Yuheng; Xu, Qinquan

    2013-12-01

    Modern star sensors are powerful to measure attitude automatically which assure a perfect performance of spacecrafts. They achieve very accurate attitudes by applying algorithms to process star maps obtained by the star camera mounted on them. Therefore, star maps play an important role in designing star cameras and developing procession algorithms. Furthermore, star maps supply significant supports to exam the performance of star sensors completely before their launch. However, it is not always convenient to supply abundant star maps by taking pictures of the sky. Thus, star map simulation with the aid of computer attracts a lot of interests by virtue of its low price and good convenience. A method to simulate star maps by programming and extending the function of the optical design program ZEMAX is proposed. The star map simulation system is established. Firstly, based on analyzing the working procedures of star sensors to measure attitudes and the basic method to design optical system by ZEMAX, the principle of simulating star sensor imaging is given out in detail. The theory about adding false stars and noises, and outputting maps is discussed and the corresponding approaches are proposed. Then, by external programming, the star map simulation program is designed and produced. Its user interference and operation are introduced. Applications of star map simulation method in evaluating optical system, star image extraction algorithm and star identification algorithm, and calibrating system errors are presented completely. It was proved that the proposed simulation method provides magnificent supports to the study on star sensors, and improves the performance of star sensors efficiently.

  18. A New Miniaturized Inkjet Printed Solid State Electrolyte Sensor for Applications in Life Support Systems - First Results

    Science.gov (United States)

    Hill, Christine; Stefanos Fasoulas, -; Eberhart, Martin; Berndt, Felix

    New generations of integrated closed loop systems will combine life support systems (incl. biological components) and energy systems such as fuel cell and electrolysis systems. Those systems and their test beds also contain complex safety sensor monitoring systems. Especially in fuel cells and electrolysis systems, the hydrogen and oxygen flows and exchange into other areas due to diffusion processes or leaks need to be monitored. Knowledge of predominant gas concentrations at all times is essential to avoid explosive gas mixtures. Solid state electrolyte sensors are promising for use as safety sensors. They have already been developed and produced at various institutes, but the power consumption for heating an existing solid state electrolyte sensor element still lies between 1 to 1.5 W and the operational readiness still takes about 20 to 30 s. This is partially due to the current manufacturing process for the solid state electrolyte sensor elements that is based on screen printing technology. However this technology has strong limitations in flexibility of the layout and re-designs. It is therefore suitable for mass production, but not for a flexible development and the production of specific individual sensors, e.g. for space applications. Moreover a disadvantage is the relatively high material consumption, especially in combination with the sensors need of expensive noble metal and ceramic pastes, which leads to a high sensor unit price. The Inkjet technology however opens up completely new possibilities in terms of dimensions, geometries, structures, morphologies and materials of sensors. This new approach is capable of printing finer high-resolution layers without the necessity of meshes or masks for patterning. Using the Inkjet technology a design change is possible at any time on the CAD screen. Moreover the ink is only deposited where it is needed. Custom made sensors, as they are currently demanded in space sensor applications, are thus realized simply

  19. A portable non-contact displacement sensor and its application of lens centration error measurement

    Science.gov (United States)

    Yu, Zong-Ru; Peng, Wei-Jei; Wang, Jung-Hsing; Chen, Po-Jui; Chen, Hua-Lin; Lin, Yi-Hao; Chen, Chun-Cheng; Hsu, Wei-Yao; Chen, Fong-Zhi

    2018-02-01

    We present a portable non-contact displacement sensor (NCDS) based on astigmatic method for micron displacement measurement. The NCDS are composed of a collimated laser, a polarized beam splitter, a 1/4 wave plate, an aspheric objective lens, an astigmatic lens and a four-quadrant photodiode. A visible laser source is adopted for easier alignment and usage. The dimension of the sensor is limited to 115 mm x 36 mm x 56 mm, and a control box is used for dealing with signal and power control between the sensor and computer. The NCDS performs micron-accuracy with +/-30 μm working range and the working distance is constrained in few millimeters. We also demonstrate the application of the NCDS for lens centration error measurement, which is similar to the total indicator runout (TIR) or edge thickness difference (ETD) of a lens measurement using contact dial indicator. This application has advantage for measuring lens made in soft materials that would be starched by using contact dial indicator.

  20. Various On-Chip Sensors with Microfluidics for Biological Applications

    Directory of Open Access Journals (Sweden)

    Hun Lee

    2014-09-01

    Full Text Available In this paper, we review recent advances in on-chip sensors integrated with microfluidics for biological applications. Since the 1990s, much research has concentrated on developing a sensing system using optical phenomena such as surface plasmon resonance (SPR and surface-enhanced Raman scattering (SERS to improve the sensitivity of the device. The sensing performance can be significantly enhanced with the use of microfluidic chips to provide effective liquid manipulation and greater flexibility. We describe an optical image sensor with a simpler platform for better performance over a larger field of view (FOV and greater depth of field (DOF. As a new trend, we review consumer electronics such as smart phones, tablets, Google glasses, etc. which are being incorporated in point-of-care (POC testing systems. In addition, we discuss in detail the current optical sensing system integrated with a microfluidic chip.

  1. Low-Cost Inkjet-Printed Wireless Sensor Nodes for Environmental and Health Monitoring Applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2016-11-01

    Increase in population and limited resources have created a growing demand for a futuristic living environment where technology enables the efficient utilization and management of resources in order to increase quality of life. One characteristic of such a society, which is often referred to as a ‘Smart City’, is that the people are well informed about their physiological being as well as the environment around them, which makes them better equipped to handle crisis situations. There is a need, therefore, to develop wireless sensors which can provide early warnings and feedback during calamities such as floods, fires, and industrial leaks, and provide remote health care facilities. For these situations, low-cost sensor nodes with small form factors are required. For this purpose, the use of a low-cost, mass manufacturing technique such as inkjet printing can be beneficial due to its digitally controlled additive nature of depositing material on a variety of substrates. Inkjet printing can permit economical use of material on cheap flexible substrates that allows for the development of miniaturized freeform electronics. This thesis describes how low-cost, inkjet-printed, wireless sensors have been developed for real-time monitoring applications. A 3D buoyant mobile wireless sensor node has been demonstrated that can provide early warnings as well as real-time data for flood monitoring. This disposable paper-based module can communicate while floating in water up to a distance of 50 m, regardless of its orientation in the water. Moreover, fully inkjet-printed sensors have been developed to monitor temperature, humidity and gas levels for wireless environmental monitoring. The sensors are integrated and packaged using 3D inkjet printing technology. Finally, in order to demonstrate the benefits of such wireless sensor systems for health care applications, a low-cost, wearable, wireless sensing system has been developed for chronic wound monitoring. The system

  2. Development of a FBG vortex flow sensor for high-temperature applications

    NARCIS (Netherlands)

    Cheng, L.K.; Schiferli, W.; Nieuwland, R.A.; Franzen, A.; Boer, J.J. den; Jansen, T.H.

    2011-01-01

    A robust fibre optic flow sensor has been developed to measure liquid or gas flows at ambient temperatures up to 300°C and pressures up to 100 bar. While such environmental conditions are typical in pressurized steam systems in the oil and gas industry (downhole and surface), wider applications are

  3. A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks.

    Science.gov (United States)

    Effatparvar, Mehdi; Dehghan, Mehdi; Rahmani, Amir Masoud

    2016-09-01

    Wireless body area sensor network is a special purpose wireless sensor network that, employing wireless sensor nodes in, on, or around the human body, makes it possible to measure biological parameters of a person for specific applications. One of the most fundamental concerns in wireless body sensor networks is accurate routing in order to send data promptly and properly, and therefore overcome some of the challenges. Routing protocols for such networks are affected by a large number of factors including energy, topology, temperature, posture, the radio range of sensors, and appropriate quality of service in sensor nodes. Since energy is highly important in wireless body area sensor networks, and increasing the network lifetime results in benefiting greatly from sensor capabilities, improving routing performance with reduced energy consumption presents a major challenge. This paper aims to study wireless body area sensor networks and the related routing methods. It also presents a thorough, comprehensive review of routing methods in wireless body area sensor networks from the perspective of energy. Furthermore, different routing methods affecting the parameter of energy will be classified and compared according to their advantages and disadvantages. In this paper, fundamental concepts of wireless body area sensor networks are provided, and then the advantages and disadvantages of these networks are investigated. Since one of the most fundamental issues in wireless body sensor networks is to perform routing so as to transmit data precisely and promptly, we discuss the same issue. As a result, we propose a classification of the available relevant literature with respect to the key challenge of energy in the routing process. With this end in view, all important papers published between 2000 and 2015 are classified under eight categories including 'Mobility-Aware', 'Thermal-Aware', 'Restriction of Location and Number of Relays', 'Link-aware', 'Cluster- and Tree

  4. Sensors - technology and application. Sensoren - Technologie und Anwendung

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The development of sensors could not keep pace with the progress made in microelectronics. The monolithic integration of sensor and signal processing circuits was realised in some cases. More development is needed though before they can be applied in microelectronics, household appliances and automobiles. Descriptions are supplied of: new materials and technologies for sensors, sensor systems, sensors for mechanical parameters, temperatures, chemical paramters and sensors on magnetic basis.

  5. Principles of survey development for telemedicine applications.

    Science.gov (United States)

    Demiris, George

    2006-01-01

    Surveys can be used in the evaluation of telemedicine applications but they must be properly designed, consistent and accurate. The purpose of the survey and the resources available will determine the extent of testing that a survey instrument should undergo prior to its use. The validity of an instrument is the correspondence between what is being measured and what was intended to be measured. The reliability of an instrument describes the 'consistency' or 'repeatability' of the measurements made with it. Survey instruments should be designed and tested following basic principles of survey development. The actual survey administration also requires consideration, for example data collection and processing, as well as the interpretation of the findings. Surveys are of two different types. Either they are self-administered, or they are administered by interview. In the latter case, they may be administered by telephone or in a face-to-face meeting. It is important to design a survey instrument based on a detailed definition of what it intends to measure and to test it before administering it to the larger sample.

  6. State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation.

    Science.gov (United States)

    Sansoni, Giovanna; Trebeschi, Marco; Docchio, Franco

    2009-01-01

    3D imaging sensors for the acquisition of three dimensional (3D) shapes have created, in recent years, a considerable degree of interest for a number of applications. The miniaturization and integration of the optical and electronic components used to build them have played a crucial role in the achievement of compactness, robustness and flexibility of the sensors. Today, several 3D sensors are available on the market, even in combination with other sensors in a "sensor fusion" approach. An importance equal to that of physical miniaturization has the portability of the measurements, via suitable interfaces, into software environments designed for their elaboration, e.g., CAD-CAM systems, virtual renders, and rapid prototyping tools. In this paper, following an overview of the state-of-art of 3D imaging sensors, a number of significant examples of their use are presented, with particular reference to industry, heritage, medicine, and criminal investigation applications.

  7. 3D CAPTURING PERFORMANCES OF LOW-COST RANGE SENSORS FOR MASS-MARKET APPLICATIONS

    Directory of Open Access Journals (Sweden)

    G. Guidi

    2016-06-01

    Full Text Available Since the advent of the first Kinect as motion controller device for the Microsoft XBOX platform (November 2010, several similar active and low-cost range sensing devices have been introduced on the mass-market for several purposes, including gesture based interfaces, 3D multimedia interaction, robot navigation, finger tracking, 3D body scanning for garment design and proximity sensors for automotive. However, given their capability to generate a real time stream of range images, these has been used in some projects also as general purpose range devices, with performances that for some applications might be satisfying. This paper shows the working principle of the various devices, analyzing them in terms of systematic errors and random errors for exploring the applicability of them in standard 3D capturing problems. Five actual devices have been tested featuring three different technologies: i Kinect V1 by Microsoft, Structure Sensor by Occipital, and Xtion PRO by ASUS, all based on different implementations of the Primesense sensor; ii F200 by Intel/Creative, implementing the Realsense pattern projection technology; Kinect V2 by Microsoft, equipped with the Canesta TOF Camera. A critical analysis of the results tries first of all to compare them, and secondarily to focus the range of applications for which such devices could actually work as a viable solution.

  8. Application of Wireless Sensor and Actuator Networks to Achieve Intelligent Microgrids: A Promising Approach towards a Global Smart Grid Deployment

    Directory of Open Access Journals (Sweden)

    Alvaro Llaria

    2016-02-01

    Full Text Available Smart Grids (SGs constitute the evolution of the traditional electrical grid towards a new paradigm, which should increase the reliability, the security and, at the same time, reduce the costs of energy generation, distribution and consumption. Electrical microgrids (MGs can be considered the first stage of this evolution of the grid, because of the intelligent management techniques that must be applied to assure their correct operation. To accomplish this task, sensors and actuators will be necessary, along with wireless communication technologies to transmit the measured data and the command messages. Wireless Sensor and Actuator Networks (WSANs are therefore a promising solution to achieve an intelligent management of MGs and, by extension, the SG. In this frame, this paper surveys several aspects concerning the application of WSANs to manage MGs and the electrical grid, as well as the communication protocols that could be applied. The main concerns regarding the SG deployment are also presented, including future scenarios where the interoperability of different generation technologies must be assured.

  9. Overview of Fiber-Optical Sensors

    Science.gov (United States)

    Depaula, Ramon P.; Moore, Emery L.

    1987-01-01

    Design, development, and sensitivity of sensors using fiber optics reviewed. State-of-the-art and probable future developments of sensors using fiber optics described in report including references to work in field. Serves to update previously published surveys. Systems incorporating fiber-optic sensors used in medical diagnosis, navigation, robotics, sonar, power industry, and industrial controls.

  10. Flexible Sensors for Pressure Therapy: Effect of Substrate Curvature and Stiffness on Sensor Performance.

    Science.gov (United States)

    Khodasevych, Iryna; Parmar, Suresh; Troynikov, Olga

    2017-10-20

    Flexible pressure sensors are increasingly being used in medical and non-medical applications, and particularly in innovative health monitoring. Their efficacy in medical applications such as compression therapy depends on the accuracy and repeatability of their output, which in turn depend on factors such as sensor type, shape, pressure range, and conformability of the sensor to the body surface. Numerous researchers have examined the effects of sensor type and shape, but little information is available on the effect of human body parameters such as support surfaces' curvature and the stiffness of soft tissues on pressure sensing performance. We investigated the effects of body parameters on the performance of pressure sensors using a custom-made human-leg-like test setup. Pressure sensing parameters such as accuracy, drift and repeatability were determined in both static (eight hours continuous pressure) and dynamic (10 cycles of pressure application of 30 s duration) testing conditions. The testing was performed with a focus on compression therapy application for venous leg ulcer treatments, and was conducted in a low-pressure range of 20-70 mmHg. Commercially available sensors manufactured by Peratech and Sensitronics were used under various loading conditions to determine the influence of stiffness and curvature. Flat rigid, flat soft silicone and three cylindrical silicone surfaces of radii of curvature of 3.5 cm, 5.5 cm and 6.5 cm were used as substrates under the sensors. The Peratech sensor averaged 94% accuracy for both static and dynamic measurements on all substrates; the Sensitronics sensor averaged 88% accuracy. The Peratech sensor displayed moderate variations and the Sensitronics sensor large variations in output pressure readings depending on the underlying test surface, both of which were reduced markedly by individual pressure calibration for surface type. Sensor choice and need for calibration to surface type are important considerations for

  11. Photon-counting image sensors

    CERN Document Server

    Teranishi, Nobukazu; Theuwissen, Albert; Stoppa, David; Charbon, Edoardo

    2017-01-01

    The field of photon-counting image sensors is advancing rapidly with the development of various solid-state image sensor technologies including single photon avalanche detectors (SPADs) and deep-sub-electron read noise CMOS image sensor pixels. This foundational platform technology will enable opportunities for new imaging modalities and instrumentation for science and industry, as well as new consumer applications. Papers discussing various photon-counting image sensor technologies and selected new applications are presented in this all-invited Special Issue.

  12. Gait Analysis Using Wearable Sensors

    Directory of Open Access Journals (Sweden)

    Hutian Feng

    2012-02-01

    Full Text Available Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications.

  13. Gait Analysis Using Wearable Sensors

    Science.gov (United States)

    Tao, Weijun; Liu, Tao; Zheng, Rencheng; Feng, Hutian

    2012-01-01

    Gait analysis using wearable sensors is an inexpensive, convenient, and efficient manner of providing useful information for multiple health-related applications. As a clinical tool applied in the rehabilitation and diagnosis of medical conditions and sport activities, gait analysis using wearable sensors shows great prospects. The current paper reviews available wearable sensors and ambulatory gait analysis methods based on the various wearable sensors. After an introduction of the gait phases, the principles and features of wearable sensors used in gait analysis are provided. The gait analysis methods based on wearable sensors is divided into gait kinematics, gait kinetics, and electromyography. Studies on the current methods are reviewed, and applications in sports, rehabilitation, and clinical diagnosis are summarized separately. With the development of sensor technology and the analysis method, gait analysis using wearable sensors is expected to play an increasingly important role in clinical applications. PMID:22438763

  14. A survey of recent applications of TRIGA research reactors

    International Nuclear Information System (INIS)

    Chesworth, R.H.

    1972-01-01

    Some relatively recent, somewhat novel, or unusual applications in the United States were surveyed. Several specific applications will be discussed briefly. They are divided into the major areas of nondestructive testing, medical applications, activation analysis, and special testing

  15. Smart Optoelectronic Sensors and Intelligent Sensor Systems

    Directory of Open Access Journals (Sweden)

    Sergey Y. YURISH

    2012-03-01

    Full Text Available Light-to-frequency converters are widely used in various optoelectronic sensor systems. However, a further frequency-to-digital conversion is a bottleneck in such systems due to a broad frequency range of light-to-frequency converters’ outputs. This paper describes an effective OEM design approach, which can be used for smart and intelligent sensor systems design. The design is based on novel, multifunctional integrated circuit of Universal Sensors & Transducers Interface especially designed for such sensor applications. Experimental results have confirmed an efficiency of this approach and high metrological performances.

  16. An equivalent circuit model of supercapacitors for applications in wireless sensor networks

    Science.gov (United States)

    Yang, Hengzhao; Zhang, Ying

    2011-04-01

    Energy harvesting technologies have been extensively researched to develop long-lived wireless sensor networks. To better utilize the harvested energy, various energy storage systems are proposed. A simple circuit model is developed to describe supercapacitor behavior, which uses two resistor-capacitor branches with different time constants to characterize the charging and redistribution processes, and a variable leakage resistance (VLR) to characterize the self-discharge process. The voltage and temperature dependence of the VLR values is also discussed. Results show that the VLR model is more accurate than the energy recursive equation (ERE) models for short term wireless sensor network applications.

  17. Surveying multidisciplinary aspects in real-time distributed coding for Wireless Sensor Networks.

    Science.gov (United States)

    Braccini, Carlo; Davoli, Franco; Marchese, Mario; Mongelli, Maurizio

    2015-01-27

    Wireless Sensor Networks (WSNs), where a multiplicity of sensors observe a physical phenomenon and transmit their measurements to one or more sinks, pertain to the class of multi-terminal source and channel coding problems of Information Theory. In this category, "real-time" coding is often encountered for WSNs, referring to the problem of finding the minimum distortion (according to a given measure), under transmission power constraints, attainable by encoding and decoding functions, with stringent limits on delay and complexity. On the other hand, the Decision Theory approach seeks to determine the optimal coding/decoding strategies or some of their structural properties. Since encoder(s) and decoder(s) possess different information, though sharing a common goal, the setting here is that of Team Decision Theory. A more pragmatic vision rooted in Signal Processing consists of fixing the form of the coding strategies (e.g., to linear functions) and, consequently, finding the corresponding optimal decoding strategies and the achievable distortion, generally by applying parametric optimization techniques. All approaches have a long history of past investigations and recent results. The goal of the present paper is to provide the taxonomy of the various formulations, a survey of the vast related literature, examples from the authors' own research, and some highlights on the inter-play of the different theories.

  18. Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Robert H. Morris

    2014-11-01

    Full Text Available Magnetic Resonance finds countless applications, from spectroscopy to imaging, routinely in almost all research and medical institutions across the globe. It is also becoming more frequently used for specific applications in which the whole instrument and system is designed for a dedicated application. With beginnings in borehole logging for the petro-chemical industry Magnetic Resonance sensors have been applied to fields as varied as online process monitoring for food manufacture and medical point of care diagnostics. This great diversity is seeing exciting developments in magnetic resonance sensing technology published in application specific journals where they are often not seen by the wider sensor community. It is clear that there is enormous interest in magnetic resonance sensors which represents a significant growth area. The aim of this special edition of Sensors was to address the wide distribution of relevant articles by providing a forum to disseminate cutting edge research in this field in a single open source publication.[...

  19. Sensors for Entertainment.

    Science.gov (United States)

    Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon

    2016-07-15

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on "Sensors for Entertainment", developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  20. Sensors for Entertainment

    OpenAIRE

    Fabrizio Lamberti; Andrea Sanna; Jon Rokne

    2016-01-01

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on ?Sensors for Entertainment?, developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.