WorldWideScience

Sample records for sensitive microgel colloids

  1. Small-Angle Neutron Scattering Study of Structural Changes in Temperature-Sensitive Microgel Colloids

    Stieger, M.A.; Richtering, W.; Pedersen, J.S.; Lindner, P.

    2004-01-01

    The structure of temperature-sensitive poly(N-isopropylacrylamide) microgels in dilute suspension was investigated by means of small-angle neutron scattering. A direct modeling expression for the scattering intensity distribution was derived which describes very well the experimental data at all

  2. Alginate microgels loaded with temperature sensitive liposomes for magnetic resonance imageable drug release and microgel visualization

    Van Elk, Merel; Lorenzato, Cyril; Ozbakir, Burcin; Oerlemans, Chris; Storm, Gert; Nijsen, Frank; Deckers, Roel; Vermonden, Tina; Hennink, Wim E.

    2015-01-01

    The objective of this study was to prepare and characterize alginate microgels loaded with temperature sensitive liposomes, which release their payload after mild hyperthermia. It is further aimed that by using these microgels both the drug release and the microgel deposition can be visualized by

  3. Super-resolution optical microscopy resolves network morphology of smart colloidal microgels.

    Bergmann, Stephan; Wrede, Oliver; Huser, Thomas; Hellweg, Thomas

    2018-02-14

    We present a new method to resolve the network morphology of colloidal particles in an aqueous environment via super-resolution microscopy. By localization of freely diffusing fluorophores inside the particle network we can resolve the three dimensional structure of one species of colloidal particles (thermoresponsive microgels) without altering their chemical composition through copolymerization with fluorescent monomers. Our approach utilizes the interaction of the fluorescent dye rhodamine 6G with the polymer network to achieve an indirect labeling. We calculate the 3D structure from the 2D images and compare the structure to previously published models for the microgel morphology, e.g. the fuzzy sphere model. To describe the differences in the data an extension of this model is suggested. Our method enables the tailor-made fabrication of colloidal particles which are used in various applications, such as paints or cosmetics, and are promising candidates for drug delivery, smart surface coatings, and nanocatalysis. With the precise knowledge of the particle morphology an understanding of the underlying structure-property relationships for various colloidal systems is possible.

  4. Carbohydrate polymer based pH-sensitive IPN microgels: Synthesis, characterization and drug release characteristics

    Eswaramma, S.; Reddy, N. Sivagangi; Rao, K.S.V. Krishna

    2017-01-01

    pH-sensitive interpenetrating polymer network (IPN) microgels of chitosan (CS) and guargum-g-poly((2-dimethylamino)ethylmethacrylate) (GG-g-PDMAEMA) were developed by emulsion crosslinking method using glutaraldehyde as a crosslinker. In this regard, primarily guargum (GG) is grafted with (2-dimethylamino)ethylmethacrylate (DMAEMA) followed by blended with CS to prepare various microgel formulations. These microgels were treated as responsive drug carriers for an anticancer agent, 5-fluorouracil (5-FU). The maximum % encapsulation efficiency was found to be 81. Fourier transform infrared analysis was used to investigate the formation of graft copolymer (GG-g-PDMAEMA), chemical structure of microgels as well as the chemical interactions of drug molecules with the polymer matrix. The surface morphological studies and average particle size were examined by scanning electron microscopy. The average size of microgels is 130 ± 20 μm. Thermal behavior and molecular distribution of 5-FU within the polymer matrix were confirmed from thermogravimetric analysis and X-ray diffraction experiments. The pH-sensitive swelling behavior of IPN microgels was investigated in different pH solutions. To study the release profile of 5-FU, in vitro release profiles were performed in both pH 1.2 and 7.4. The release kinetics showed pH- dependent drug release and IPN microgels exhibited an excellent controlled release pattern for 5-FU over a period of more than 24 h. The release mechanism was analyzed by evaluating the release data using different empirical equations. - Highlights: • poly((2-dimethylamino)ethylmethacrylate) was grafted on to guargum backbone. • pH-responsive IPN microgels were developed from chitosan and graft copolymer. • Microgels were treated as responsive drug carriers for an anticancer agent, 5-fluorouracil. • Swelling and drug release studies were greatly dependent on pH.

  5. Carbohydrate polymer based pH-sensitive IPN microgels: Synthesis, characterization and drug release characteristics

    Eswaramma, S. [Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516003 (India); Reddy, N. Sivagangi [Advanced Nanomaterials Lab, Department of Polymer Science and Engineering, Pusan National University, Busan, 46241 (Korea, Republic of); Rao, K.S.V. Krishna, E-mail: ksvkr@yogivemanauniversity.ac.in [Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516003 (India)

    2017-07-01

    pH-sensitive interpenetrating polymer network (IPN) microgels of chitosan (CS) and guargum-g-poly((2-dimethylamino)ethylmethacrylate) (GG-g-PDMAEMA) were developed by emulsion crosslinking method using glutaraldehyde as a crosslinker. In this regard, primarily guargum (GG) is grafted with (2-dimethylamino)ethylmethacrylate (DMAEMA) followed by blended with CS to prepare various microgel formulations. These microgels were treated as responsive drug carriers for an anticancer agent, 5-fluorouracil (5-FU). The maximum % encapsulation efficiency was found to be 81. Fourier transform infrared analysis was used to investigate the formation of graft copolymer (GG-g-PDMAEMA), chemical structure of microgels as well as the chemical interactions of drug molecules with the polymer matrix. The surface morphological studies and average particle size were examined by scanning electron microscopy. The average size of microgels is 130 ± 20 μm. Thermal behavior and molecular distribution of 5-FU within the polymer matrix were confirmed from thermogravimetric analysis and X-ray diffraction experiments. The pH-sensitive swelling behavior of IPN microgels was investigated in different pH solutions. To study the release profile of 5-FU, in vitro release profiles were performed in both pH 1.2 and 7.4. The release kinetics showed pH- dependent drug release and IPN microgels exhibited an excellent controlled release pattern for 5-FU over a period of more than 24 h. The release mechanism was analyzed by evaluating the release data using different empirical equations. - Highlights: • poly((2-dimethylamino)ethylmethacrylate) was grafted on to guargum backbone. • pH-responsive IPN microgels were developed from chitosan and graft copolymer. • Microgels were treated as responsive drug carriers for an anticancer agent, 5-fluorouracil. • Swelling and drug release studies were greatly dependent on pH.

  6. Preparation of SMART wound dressings based on colloidal microgels and textile fibres

    Cornelius, Victoria J.; Majcen, Natasa; Snowden, Martin J.; Mitchell, John C.; Voncina, Bojana

    2007-01-01

    Wound dressings and other types of wound healing technologies are experiencing fast-paced development and rapid growth. As the population ages, demand will continue to rise for advanced dressings used to treat chronic wounds, such as pressure ulcers, venous stasis ulcers, and diabetic ulcers. Moist wound dressings, which facilitate natural wound healing in a cost-effective manner, will be increasingly important. In commercially available hydrogel / gauze wound dressings the gel swells to adsorb wound excreta and provide an efficient non adhesive particle barrier. An alternative to hydrogels are microgels. Essentially discrete colloidal gel particles, as a result of their very high surface area to volume ratio compared to bulk gels, they have a much faster response to external stimuli such as temperature or pH. In response to either an increase or decrease in solvent quality these porous networks shrink and swell reversibly. When swollen the interstitial regions within the polymer matrix are available for further chemistry; such as the incorporation of small molecules. The reversible shrinking and swelling as a function of external stimuli provides a novel drug release system. As the environmental conditions of a wound change over its lifetime, tending to increase in pH if there is an infection combining these discrete polymeric particles with a substrate such as cotton, results in a smart wound dressing.

  7. ILC (ionic liquid colloids) based on p(4-VP) (poly(4-vinyl pyridine)) microgels: Synthesis, characterization and use in hydrogen production

    Sahiner, Nurettin; Turhan, Tugce; Lyon, L. Andrew

    2014-01-01

    In this study for the first time p(4-VP) (poly(4-vinyl pyridine)) colloidal ionic liquid particles derived from 4-VP (4-vinyl pyridine) are reported, used in the preparation of a catalyst system by loading metal salts such as CoCl 2 and NiCl 2 from ethyl alcohol solutions into the modified p(4-VP) particles, and used for hydrogen generation from NaOH-free hydrolysis of NaBH 4 . Colloidal ionic liquids containing 0.054 mmol Co and Ni were used in NaOH-free hydrolysis of 0.30 g NaBH 4 in 50 mL water at 40 °C and 1000 rpm mixing rate. The reaction rates relating to hydrolysis of NaBH 4 were 3148 (mL H 2 ) (min) −1 (g of Co) −1 for Co, and 1803 (mL H 2 ) (min) −1 (g of Ni) −1 for Ni. The effect of metal loading time, NaBH 4 concentration, temperature, and kinetic parameters were also investigated. The activation energy, enthalpy, and activation entropy for the reaction of NaBH 4 in the presence of the colloidal dicationic catalyst system were calculated as 43.98 kJ/mol, 40.38 kJ/mol, and −178.22 J/mol.K, respectively. - Highlights: • Microgel Ionic liquid colloid reactors for H 2 production. • P(4-VP) microgel ILC (ionic liquid colloid). • Modified microgel for green energy. • Ionic liquid microgel embedding metals salts NaBH 4 hydrolysis. • Ionic liquid microgel catalyst systems

  8. Dynamics of a thermo-responsive microgel colloid near to the glass transition

    Di, Xiaojun; Peng, Xiaoguang; McKenna, Gregory B.

    2014-02-01

    In a previous study, we used diffusing wave spectroscopy (DWS) to investigate the aging signatures of a thermo-sensitive colloidal glass and compared them with those of molecular glasses from the perspective of the Kovacs temperature-jump, volume recovery experiments [X. Di, K. Z. Win, G. B. McKenna, T. Narita, F. Lequeux, S. R. Pullela, and Z. Cheng, Phys. Rev. Lett. 106, 095701 (2011)]. In order to further look into the glassy behavior of colloidal systems, we have synthesized a new core/shell particle with lower temperature sensitivity and studied the aging signatures of concentrated systems, again following Kovacs' protocol. Similar signatures of aging to those observed previously were seen in this new system. Moreover, a systematic study of the temperature dependence of the dynamics of the new system for different weight concentrations was performed and the dynamic fragility index m was determined. We have also explored the use of the properties determined from the DWS measurements to obtain macroscopic rheological parameters - storage modulus G'(ω) and loss modulus G″(ω) - using a generalized Stokes-Einstein approach. The micro-rheological and macro-rheological values are in reasonable agreement.

  9. Isothermal titration calorimetric studies of the acid-base properties of poly(N-isopropylacrylamide-co-4-vinylpyridine) cationic polyelectrolyte colloidal microgels

    Seidel, J.; Pinkrah, V.T.; Mitchell, J.C.; Chowdhry, B.Z.; Snowden, M.J.

    2004-01-01

    Isothermal titration calorimetry (ITC) and potentiometric titration were used to study the protonation properties of the 4-vinylpyridine (4-VP) moiety in cationic poly(N-isopropylacrylamide-co-4-vinylpyridine) colloidal microgels [poly(NIPAM-co-4-VP)]. Calorimetric pH titrations were performed using microgels of different 4-VP content and the influence of ionic strength and counter ions have been examined. The calorimetric titration output consists of several thermal contributions reflecting the complex nature of the interactions in the aqueous microgel dispersions. In contrast to the potentiometric results, the calorimetric titration data could not be completely described by a theoretical model solely taking into account protonation equilibria. Deviations from the proposed model correlate with swelling or shrinking of the gel particles. The calorimetric results also reveal a pronounced counter-ion effect of perchlorate compared to chloride ions. In the presence of perchlorate ions, small secondary thermal effects accompany protonation of the 4-VP moiety due, in part, to kinetically limited conformational changes in the co-polymer microgel

  10. Modifications of alkaline microgel electrophoresis for sensitive detection of DNA damage

    Singh, N.P.; Stephens, R.E.; Schneider, E.L.

    1994-01-01

    The alkaline microgel electrophoresis technique was modified to achieve a substantial increase in sensitivity for the detection of radiation-induced DNA damage in human lymphocytes. This increased sensitivity was achieved through: (1) the addition of free radical scavengers to the electrophoresis solution to reduce DNA damage generated during alkaline unwinding and electrophoresis; (2) the modification of the electrophoresis unit to achieve a more uniform electric field; (3) the use of YOYO-1, a DNA dye, producing fluorescence 500-fold more intense than ethidium bromide; and (4) the introduction of an image analysis system for the quantitation of DNA migration. In human lymphocytes, these modifications have resulted in an increased sensitivity of several fold, allowing the detection of DNA damage in the range of 50 mGy. (author)

  11. Sensitive chemical neutron dosimetry using silver colloids

    Brede, O.; Boes, J.; Hoesselbarth, B.

    1982-01-01

    The radiation-induced formation of silver colloid was checked for its use as a sensitive dosimeter for neutron irradiation. For non-monoenergetic pulsed neutron irradiation in the Dubna IBR-30 reactor, the colloid dosimeter was found to be suitable to indicate the chemical neutron effect, i.e., to determine the sum concentration of the primary particles of water radiolysis: esub(aq)sup(-), OH and H. (author)

  12. Temperature-Invariant Aqueous Microgels as Hosts for Biomacromolecules.

    Mastour Tehrani, Sepehr; Lu, Yijie; Guerin, Gerald; Soleimani, Mohsen; Pichugin, Dmitry; Winnik, Mitchell A

    2015-10-12

    Immobilization of enzymes on solid supports has been widely used to improve enzyme recycling, enzyme stability, and performance. We are interested in using aqueous microgels (colloidal hydrogels) as carriers for enzymes used in high-temperature reactions. These microgels should maintain their volume and colloidal stability in aqueous media up to 100 °C to serve as thermo-stable supports for enzymes. For this purpose, we prepared poly(N-hydroxyethyl acrylamide) (PHEAA) microgels via a two-step synthesis. First, we used precipitation polymerization in water to synthesize colloidal poly(diethylene glycol-ethyl ether acrylate) (PDEGAC) particles as a precursor. PDEGAC forms solvent swollen microgels in organic solvents such as methanol and dioxane and in water at temperatures below 15 °C. In the second step, these PDEGAC particles were transformed to PHEAA microgels through aminolysis in dioxane with ethanolamine and a small amount of ethylenediamine. Dynamic laser scattering studies confirmed that the colloidal stability of microgels was maintained during the aminolysis in dioxane and subsequent transfer to water. Characterization of the PHEAA microgels indicated about 9 mol % of primary amino groups. These provide functionality for bioconjugation. As proof-of-concept experiments, we attached the enzyme horseradish peroxidase (HRP) to these aqueous microgels through (i) N-(3-(dimethylamino)propyl)-N'-ethylcarbodiimide hydrochloride (EDC) coupling to the carboxylated microgels or (ii) bis-aryl hydrazone (BAH) coupling to microgels functionalized with 6-hydrazinonicotinate acetone (PHEAA-HyNic). Our results showed that HRP maintained its catalytic activity after covalent attachment (87% for EDC coupling, 96% for BAH coupling). The microgel enhanced the stability of the enzyme to thermal denaturation. For example, the residual activity of the microgel-supported enzyme was 76% after 330 min of annealing at 50 °C, compared to only 20% for the free enzyme under these

  13. Microgel mechanics in biomaterial design.

    Saxena, Shalini; Hansen, Caroline E; Lyon, L Andrew

    2014-08-19

    The field of polymeric biomaterials has received much attention in recent years due to its potential for enhancing the biocompatibility of systems and devices applied to drug delivery and tissue engineering. Such applications continually push the definition of biocompatibility from relatively straightforward issues such as cytotoxicity to significantly more complex processes such as reducing foreign body responses or even promoting/recapitulating natural body functions. Hydrogels and their colloidal analogues, microgels, have been and continue to be heavily investigated as viable materials for biological applications because they offer numerous, facile avenues in tailoring chemical and physical properties to approach biologically harmonious integration. Mechanical properties in particular are recently coming into focus as an important manner in which biological responses can be altered. In this Account, we trace how mechanical properties of microgels have moved into the spotlight of research efforts with the realization of their potential impact in biologically integrative systems. We discuss early experiments in our lab and in others focused on synthetic modulation of particle structure at a rudimentary level for fundamental drug delivery studies. These experiments elucidated that microgel mechanics are a consequence of polymer network distribution, which can be controlled by chemical composition or particle architecture. The degree of deformability designed into the microgel allows for a defined response to an imposed external force. We have studied deformation in packed colloidal phases and in translocation events through confined pores; in all circumstances, microgels exhibit impressive deformability in response to their environmental constraints. Microgels further translate their mechanical properties when assembled in films to the properties of the bulk material. In particular, microgel films have been a large focus in our lab as building blocks for self

  14. Shear-Induced Phase Separation in Aqueous Polymer Solutions: Temperature-Sensitive Microgels and Linear Polymer Chains

    Stieger, M.A.; Richtering, W.

    2003-01-01

    The influence of shear flow on the phase separation of aqueous poly(N-isopropylacrylamide) (PNiPAM) microgel suspensions was investigated by means of rheo-turbidity and rheo-small angle neutron scattering (rheo-SANS) and compared to the behavior of linear PNiPAM macromolecules. The rheological

  15. Counterion-induced swelling of ionic microgels

    Denton, Alan R.; Tang, Qiyun

    2016-10-01

    Ionic microgel particles, when dispersed in a solvent, swell to equilibrium sizes that are governed by a balance between electrostatic and elastic forces. Tuning of particle size by varying external stimuli, such as pH, salt concentration, and temperature, has relevance for drug delivery, microfluidics, and filtration. To model swelling of ionic microgels, we derive a statistical mechanical theorem, which proves exact within the cell model, for the electrostatic contribution to the osmotic pressure inside a permeable colloidal macroion. Applying the theorem, we demonstrate how the distribution of counterions within an ionic microgel determines the internal osmotic pressure. By combining the electrostatic pressure, which we compute via both Poisson-Boltzmann theory and molecular dynamics simulation, with the elastic pressure, modeled via the Flory-Rehner theory of swollen polymer networks, we show how deswelling of ionic microgels with increasing concentration of particles can result from a redistribution of counterions that reduces electrostatic pressure. A linearized approximation for the electrostatic pressure, which proves remarkably accurate, provides physical insight and greatly eases numerical calculations for practical applications. Comparing with experiments, we explain why soft particles in deionized suspensions deswell upon increasing concentration and why this effect may be suppressed at higher ionic strength. The failure of the uniform ideal-gas approximation to adequately account for counterion-induced deswelling below close packing of microgels is attributed to neglect of spatial variation of the counterion density profile and the electrostatic pressure of incompletely neutralized macroions.

  16. Microgel polymer composite fibres

    Kehren, Dominic

    2014-01-01

    In this thesis some novel ideas and advancements in the field of polymer composite fibres, specifically microgel-based polymer composite fibres have been achieved. The main task was to investigate and understand the electrospinning process of microgels and polymers and the interplay of parameter influences, in order to fabricate reproducible and continuously homogenous composite fibres. The main aim was to fabricate a composite material which combines the special properties of polymer fibres ...

  17. Magnetic microgels for drug targeting applications: Physical–chemical properties and cytotoxicity evaluation

    Turcu, Rodica, E-mail: rodica.turcu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca (Romania); Craciunescu, Izabell [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, 400293 Cluj-Napoca (Romania); Garamus, Vasil M. [Helmholtz-Zentrum Geesthacht, Zentrum für Material- und Küstenforschung GmbH, 21502 Geesthacht (Germany); Janko, Christina; Lyer, Stefan; Tietze, Rainer; Alexiou, Christoph [ENT-Department, Else Kröner-Fresenius Stiftung-Professorship, Section for Experimental Oncology and Nanomedicine (SEON), University Hospital Erlangen (Germany); Vekas, Ladislau, E-mail: vekas@acad-tim.tm.edu.ro [Romanian Academy-Timisoara Branch, CFATR, Laboratory of Magnetic Fluids, Mihai Viteazul Street 24, 300223 Timisoara (Romania)

    2015-04-15

    Magnetoresponsive microgels with high saturation magnetization values have been obtained by a strategy based on the miniemulsion method using high colloidal stability organic carrier ferrofluid as primary material. Hydrophobic nanoparticles Fe{sub 3}O{sub 4}/oleic acid are densely packed into well-defined spherical nanoparticle clusters coated with polymers with sizes in the range 40–350 nm. Physical–chemical characteristics of magnetic microgels were investigated by TEM, SAXS, XPS and VSM measurements with the focus on the structure–properties relationship. The impact of magnetic microgels loaded with anticancer drug mitoxantrone (MTO) on the non-adherent human T cell leukemia line Jurkat was investigated in multiparameter flow cytometry. We showed that both MTO and microgel-loaded MTO penetrate into cells and both induce apoptosis and later secondary necrosis in a time- and dose dependent manner. In contrast, microgels without MTO are not cytotoxic in the corresponding concentrations. Our results show that MTO-loaded microgels are promising structures for application in magnetic drug targeting. - Highlights: • Densely packed spherical clusters of magnetic nanoparticles were obtained. • High magnetization microgels with superparamagnetic behavior are reported. • The facile and reproducible synthesis procedure applied is easy to be up-scaled. • The toxicity tests show that magnetic microgels are not cytotoxic. • We show that mitoxantrone loaded microgels induce death of Jurkat cells.

  18. Evidence of a low temperature dynamical transition in concentrated PNIPAM microgels

    Zanatta, Marco; Tavagnacco, Letizia; Buratti, Elena; Bertoldo, Monica; Natali, Francesca; Chiessi, Ester; Orecchini, Andrea; Zaccarelli, Emanuela

    2018-01-01

    The occurrence of a dynamical transition at low temperature has been reported in a large number of different proteins. Here we provide the first observation of a "protein-like" dynamical transition in a non-biological aqueous environment. To this aim we exploit the popular colloidal system of poly-N-isopropylacrylamide (PNIPAM) microgels, extending their investigation to unprecedentedly high concentrations. Thanks to the heterogeneous polymeric architecture of the microgels, water crystalliza...

  19. Controlled Synthesis and Fluorescence Tracking of Highly Uniform Poly(N-isopropylacrylamide) Microgels.

    Virtanen, Otto L J; Purohit, Ashvini; Brugnoni, Monia; Wöll, Dominik; Richtering, Walter

    2016-09-08

    Stimuli-sensitive poly(N-isopropylacrylamide) (PNIPAM) microgels have various prospective practical applications and uses in fundamental research. In this work, we use single particle tracking of fluorescently labeled PNIPAM microgels as a showcase for tuning microgel size by a rapid non-stirred precipitation polymerization procedure. This approach is well suited for prototyping new reaction compositions and conditions or for applications that do not require large amounts of product. Microgel synthesis, particle size and structure determination by dynamic and static light scattering are detailed in the protocol. It is shown that the addition of functional comonomers can have a large influence on the particle nucleation and structure. Single particle tracking by wide-field fluorescence microscopy allows for an investigation of the diffusion of labeled tracer microgels in a concentrated matrix of non-labeled microgels, a system not easily investigated by other methods such as dynamic light scattering.

  20. Internal structure and swelling behaviour of in silico microgel particles

    Rovigatti, Lorenzo; Gnan, Nicoletta; Zaccarelli, Emanuela

    2018-01-01

    Microgels are soft colloids that, by virtue of their polymeric nature, can react to external stimuli such as temperature or pH by changing their size. The resulting swelling/deswelling transition can be exploited in fundamental research as well as for many diverse practical applications, ranging from art restoration to medicine. Such an extraordinary versatility stems from the complex internal structure of the individual microgels, each of which is a crosslinked polymer network. Here we employ a recently-introduced computational method to generate realistic microgel configurations and look at their structural properties, both in real and Fourier space, for several temperatures across the volume phase transition as a function of the crosslinker concentration and of the confining radius employed during the ‘in-silico’ synthesis. We find that the chain-length distribution of the resulting networks can be analytically predicted by a simple theoretical argument. In addition, we find that our results are well-fitted to the fuzzy-sphere model, which correctly reproduces the density profile of the microgels under study.

  1. Swelling, Structure, and Phase Stability of Soft, Compressible Microgels

    Denton, Alan R.; Urich, Matthew

    Microgels are soft colloidal particles that swell when dispersed in a solvent. The equilibrium particle size is governed by a delicate balance of osmotic pressures, which can be tuned by varying single-particle properties and externally controlled conditions, such as temperature, pH, ionic strength, and concentration. Because of their tunable size and ability to encapsulate dye or drug molecules, microgels have practical relevance for biosensing, drug delivery, carbon capture, and filtration. Using Monte Carlo simulation, we model suspensions of microgels that interact via Hertzian elastic interparticle forces and can expand or contract via trial size changes governed by the Flory-Rehner free energy of cross-linked polymer gels. We analyze the influence of particle compressibility and size fluctuations on bulk structural and thermal properties by computing swelling ratios, radial distribution functions, static structure factors, osmotic pressures, and freezing densities. With increasing density, microgels progressively deswell and their intrinsic polydispersity broadens, while compressibility acts to forestall crystallization. This work was supported by the National Science Foundation under Grant No. DMR- 1106331.

  2. Sensitivity analyses of a colloid-facilitated contaminant transport model for unsaturated heterogeneous soil conditions.

    Périard, Yann; José Gumiere, Silvio; Rousseau, Alain N.; Caron, Jean

    2013-04-01

    Certain contaminants may travel faster through soils when they are sorbed to subsurface colloidal particles. Indeed, subsurface colloids may act as carriers of some contaminants accelerating their translocation through the soil into the water table. This phenomenon is known as colloid-facilitated contaminant transport. It plays a significant role in contaminant transport in soils and has been recognized as a source of groundwater contamination. From a mechanistic point of view, the attachment/detachment of the colloidal particles from the soil matrix or from the air-water interface and the straining process may modify the hydraulic properties of the porous media. Šimůnek et al. (2006) developed a model that can simulate the colloid-facilitated contaminant transport in variably saturated porous media. The model is based on the solution of a modified advection-dispersion equation that accounts for several processes, namely: straining, exclusion and attachement/detachement kinetics of colloids through the soil matrix. The solutions of these governing, partial differential equations are obtained using a standard Galerkin-type, linear finite element scheme, implemented in the HYDRUS-2D/3D software (Šimůnek et al., 2012). Modeling colloid transport through the soil and the interaction of colloids with the soil matrix and other contaminants is complex and requires the characterization of many model parameters. In practice, it is very difficult to assess actual transport parameter values, so they are often calibrated. However, before calibration, one needs to know which parameters have the greatest impact on output variables. This kind of information can be obtained through a sensitivity analysis of the model. The main objective of this work is to perform local and global sensitivity analyses of the colloid-facilitated contaminant transport module of HYDRUS. Sensitivity analysis was performed in two steps: (i) we applied a screening method based on Morris' elementary

  3. Photoelastic colloidal gel for a high-sensitivity strain sensor

    Pan, Hui; Chen, Zhixin; Zhu, Shenmin; Jiang, Chun; Zhang, Di

    2018-04-01

    Nanoparticles, having the ability to self-assemble into an ordered structure in their suspensions, analogous to liquid crystals, have attracted extensive attention. Herein, we report a new type of colloidal gel with an ordered crystal structure assembled from 1D and 2D nanoparticles. The material has high elasticity and, more interestingly, it shows significant photoelasticity. Its refractive index can be tuned under external stress and exhibits an ultra-wide dynamic range (Δn) of the order of 10-2. Due to the large Δn, the material shows an extremely high strain sensibility of 720 nm/ɛ, an order of magnitude higher than the reported ones.

  4. Optimization Strategies for Responsivity Control of Microgel Assisted Lab-On-Fiber Optrodes

    Martino Giaquinto

    2018-04-01

    Full Text Available Integrating multi-responsive polymers such as microgels onto optical fiber tips, in a controlled fashion, enables unprecedented functionalities to Lab-on-fiber optrodes. The creation of a uniform microgel monolayer with a specific coverage factor is crucial for enhancing the probes responsivity to a pre-defined target parameter. Here we report a reliable fabrication strategy, based on the dip coating technique, for the controlled realization of microgel monolayer onto unconventional substrates, such as the optical fiber tip. The latter was previously covered by a plasmonic nanostructure to make it sensitive to superficial environment changes. Microgels have been prepared using specific Poly(N-isopropylacrylamide-based monomers that enable bulky size changes in response to both temperature and pH variations. The formation of the microgel monolayer is efficiently controlled through the selection of suitable operating pH, temperature and concentration of particle dispersions used during the dipping procedure. The effect of each parameter has been evaluated, and the validity of our procedure is confirmed by means of both morphological and optical characterizations. We demonstrate that when the coverage factor exceeds 90%, the probe responsivity to microgels swelling/collapsing is significantly improved. Our study opens new paradigms for the development of engineered microgels assisted Lab-on-Fiber probes for biochemical applications.

  5. Tuning smart microgel swelling and responsive behavior through strong and weak polyelectrolyte pair assembly.

    Costa, Eunice; Lloyd, Margaret M; Chopko, Caroline; Aguiar-Ricardo, Ana; Hammond, Paula T

    2012-07-03

    The layer-by-layer (LbL) assembly of polyelectrolyte pairs on temperature and pH-sensitive cross-linked poly(N-isopropylacrylamide)-co-(methacrylic acid), poly(NIPAAm-co-MAA), microgels enabled a fine-tuning of the gel swelling and responsive behavior according to the mobility of the assembled polyelectrolyte (PE) pair and the composition of the outermost layer. Microbeads with well-defined morphology were initially prepared by synthesis in supercritical carbon dioxide. Upon LbL assembly of polyelectrolytes, interactions between the multilayers and the soft porous microgel led to differences in swelling and thermoresponsive behavior. For the weak PE pairs, namely poly(L-lysine)/poly(L-glutamic acid) and poly(allylamine hydrochloride)/poly(acrylic acid), polycation-terminated microgels were less swollen and more thermoresponsive than native microgel, whereas polyanion-terminated microgels were more swollen and not significantly responsive to temperature, in a quasi-reversible process with consecutive PE assembly. For the strong PE pair, poly(diallyldimethylammonium chloride)/poly(sodium styrene sulfonate), the differences among polycation and polyanion-terminated microgels are not sustained after the first PE bilayer due to extensive ionic cross-linking between the polyelectrolytes. The tendencies across the explored systems became less noteworthy in solutions with larger ionic strength due to overall charge shielding of the polyelectrolytes and microgel. ATR FT-IR studies correlated the swelling and responsive behavior after LbL assembly on the microgels with the extent of H-bonding and alternating charge distribution within the gel. Thus, the proposed LbL strategy may be a simple and flexible way to engineer smart microgels in terms of size, surface chemistry, overall charge and permeability.

  6. Non-Covalent Microgel Particles Containing Functional Payloads: Coacervation of PEG-Based Triblocks via Microfluidics.

    Wang, Cynthia X; Utech, Stefanie; Gopez, Jeffrey D; Mabesoone, Mathijs F J; Hawker, Craig J; Klinger, Daniel

    2016-07-06

    Well-defined microgel particles were prepared by combining coacervate-driven cross-linking of ionic triblock copolymers with the ability to control particle size and encapsulate functional cargos inherent in microfluidic devices. In this approach, the efficient assembly of PEO-based triblock copolymers with oppositely charged end-blocks allows for bioinspired cross-linking under mild conditions in dispersed aqueous droplets. This strategy enables the integration of charged cargos into the coacervate domains (e.g., the loading of anionic model compounds through electrostatic association with cationic end-blocks). Distinct release profiles can be realized by systematically varying the chemical nature of the payload and the microgel dimensions. This mild and noncovalent assembly method represents a promising new approach to tunable microgels as scaffolds for colloidal biomaterials in therapeutics and regenerative medicine.

  7. Characterization of different substituted carboxymethyl starch microgels and their interactions with lysozyme.

    Bao Zhang

    Full Text Available A carboxymethyl starch (CMS microgel system was prepared for the control of uptaking and releasing proteins (lysozyme. The physicochemical properties of microgels in various degrees of substitution (DS were determined by thermal gravimetric analysis (TGA, swelling degree, and rheological analysis. The microgel particle size mostly ranged from 25 µm to 45 µm. The result obtained from the TGA studies indicated that carboxymethylation decreased the thermal stability of starch, but crosslinking increased the thermal stability of CMS. The CMS microgels showed typical pH sensitivity, and the swelling degree of microgel increased with the increasing of DS and pH, because of the large amounts of carboxyl group ionization. The samples (2.25% could behave as viscoelastic solids since the storage modulus was larger than the loss modulus over the entire frequency range. The protein uptake increased with increasing pH and DS at low salt concentration. The optimal pH shifted to lower pH with increasing ionic strength. The saturated protein uptake decreased with increasing ionic strength at each pH. The protein was easily released from the microgel with high pH and high salt concentration.

  8. Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses

    Chen, K.; Manning, M.L.; Yunker, P.J.; Ellenbroek, W.G.; Zhang, Zexin; Liu, Andrea J.; Yodh, A.G.

    2011-01-01

    We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance

  9. Structure and osmotic pressure of ionic microgel dispersions

    Hedrick, Mary M. [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States); Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050 (United States); Chung, Jun Kyung; Denton, Alan R., E-mail: alan.denton@ndsu.edu [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States)

    2015-01-21

    We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute both macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions.

  10. Structure and osmotic pressure of ionic microgel dispersions

    Hedrick, Mary M.; Chung, Jun Kyung; Denton, Alan R.

    2015-01-01

    We investigate structural and thermodynamic properties of aqueous dispersions of ionic microgels—soft colloidal gel particles that exhibit unusual phase behavior. Starting from a coarse-grained model of microgel macroions as charged spheres that are permeable to microions, we perform simulations and theoretical calculations using two complementary implementations of Poisson-Boltzmann (PB) theory. Within a one-component model, based on a linear-screening approximation for effective electrostatic pair interactions, we perform molecular dynamics simulations to compute macroion-macroion radial distribution functions, static structure factors, and macroion contributions to the osmotic pressure. For the same model, using a variational approximation for the free energy, we compute both macroion and microion contributions to the osmotic pressure. Within a spherical cell model, which neglects macroion correlations, we solve the nonlinear PB equation to compute microion distributions and osmotic pressures. By comparing the one-component and cell model implementations of PB theory, we demonstrate that the linear-screening approximation is valid for moderately charged microgels. By further comparing cell model predictions with simulation data for osmotic pressure, we chart the cell model’s limits in predicting osmotic pressures of salty dispersions

  11. Effective Interactions between Multilayered Ionic Microgels

    Clemens Hanel

    2014-12-01

    Full Text Available Using a one-component reduction formalism, we calculate the effective interactions and the counterion density profiles for microgels that feature a multilayered shell structure. We follow a strategy that involves second order perturbation theory and obtain analytical expressions for the effective interactions by modeling the layers of the particles as linear superpostion of homogeneously charged spheres. The general method is applied to the important case of core–shell microgels and compared with the well-known results for a microgel that can be approximated by a macroscopic, and homogeneously charged, spherical macroion.

  12. Highly stable and degradable multifunctional microgel for self-regulated insulin delivery under physiological conditions

    Zhang, Xinjie; Lü, Shaoyu; Gao, Chunmei; Chen, Chen; Zhang, Xuan; Liu, Mingzhu

    2013-06-01

    The response to glucose, pH and temperature, high drug loading capacity, self-regulated drug delivery and degradation in vivo are simultaneously probable by applying a multifunctional microgel under a rational design in a colloid chemistry method. Such multifunctional microgels are fabricated with N-isopropylacrylamide (NIPAAm), (2-dimethylamino)ethyl methacrylate (DMAEMA) and 3-acrylamidephenylboronic acid (AAPBA) through a precipitation emulsion method and cross-linked by reductive degradable N,N'-bis(arcyloyl)cystamine (BAC). This novel kind of microgel with a narrow size distribution (~250 nm) is suitable for diabetes because it can adapt to the surrounding medium of different glucose concentrations over a clinically relevant range (0-20 mM), control the release of preloaded insulin and is highly stable under physiological conditions (pH 7.4, 0.15 M NaCl, 37 °C). When synthesized multifunctional microgels regulate drug delivery, they gradually degrade as time passes and, as a result, show enhanced biocompatibility. This exhibits a new proof-of-concept for diabetes treatment that takes advantage of the properties of each building block from a multifunctional micro-object. These highly stable and versatile multifunctional microgels have the potential to be used for self-regulated therapy and monitoring of the response to treatment, or even simultaneous diagnosis as nanobiosensors.The response to glucose, pH and temperature, high drug loading capacity, self-regulated drug delivery and degradation in vivo are simultaneously probable by applying a multifunctional microgel under a rational design in a colloid chemistry method. Such multifunctional microgels are fabricated with N-isopropylacrylamide (NIPAAm), (2-dimethylamino)ethyl methacrylate (DMAEMA) and 3-acrylamidephenylboronic acid (AAPBA) through a precipitation emulsion method and cross-linked by reductive degradable N,N'-bis(arcyloyl)cystamine (BAC). This novel kind of microgel with a narrow size

  13. Improved performance of colloidal CdSe quantum dot-sensitized solar cells by hybrid passivation.

    Huang, Jing; Xu, Bo; Yuan, Chunze; Chen, Hong; Sun, Junliang; Sun, Licheng; Agren, Hans

    2014-11-12

    A hybrid passivation strategy is employed to modify the surface of colloidal CdSe quantum dots (QDs) for quantum dot-sensitized solar cells (QDSCs), by using mercaptopropionic acid (MPA) and iodide anions through a ligand exchange reaction in solution. This is found to be an effective way to improve the performance of QDSCs based on colloidal QDs. The results show that MPA can increase the coverage of the QDs on TiO2 electrodes and facilitate the hole extraction from the photoxidized QDs, and simultaneously, that the iodide anions can remedy the surface defects of the CdSe QDs and thus reduce the recombination loss in the device. This hybrid passivation treatment leads to a significant enhancement of the power conversion efficiency of the QDSCs by 41%. Furthermore, an optimal ratio of iodide ions to MPA was determined for favorable hybrid passivation; results show that excessive iodine anions are detrimental to the loading of the QDs. This study demonstrates that the improvement in QDSC performance can be realized by using a combination of different functional ligands to passivate the QDs, and that ligand exchange in solution can be an effective approach to introduce different ligands.

  14. Microgel-based surface modifying system for stimuli-responsive functional finishing of cotton

    Kulkarni, A.N.; Tourrette, A.; Warmoeskerken, Marinus; Jocic, D.

    2010-01-01

    An innovative strategy for functional finishing of textile materials is based on the incorporation of a thin layer of surface modifying systems (SMS) in the form of stimuli-sensitive microgels or hydrogels. Since the copolymerization of poly(N-isopropylacrylamide) with an ionizable polymer, such as

  15. Theory of the Thermal Diffusion of Microgel Particles in Highly Compressed Suspensions

    Sokoloff, Jeffrey; Maloney, Craig; Ciamarra, Massimo; Bi, Dapeng

    One amazing property of microgel colloids is the ability of the particles to thermally diffuse, even when they are compressed to a volume well below their swollen state volume, despite the fact that they are surrounded by and pressed against other particles. A glass transition is expected to occur when the colloid is sufficiently compressed for diffusion to cease. It is proposed that the diffusion is due to the ability of the highly compressed particles to change shape with little cost in free energy. It will be shown that most of the free energy required to compress microgel particles is due to osmotic pressure resulting from either counterions or monomers inside of the gel, which depends on the particle's volume. There is still, however, a cost in free energy due to polymer elasticity when particles undergo the distortions necessary for them to move around each other as they diffuse through the compressed colloid, even if it occurs at constant volume. Using a scaling theory based on simple models for the linking of polymers belonging to the microgel particles, we examine the conditions under which the cost in free energy needed for a particle to diffuse is smaller than or comparable to thermal energy, which is a necessary condition for particle diffusion. Based on our scaling theory, we predict that thermally activated diffusion should be possible when the mean number of links along the axis along which a distortion occurs is much larger than N 1 / 5, where Nis the mean number of monomers in a polymer chain connecting two links in the gel.

  16. Colloidal graphene quantum dots incorporated with a Cobalt electrolyte in a dye sensitized solar cell

    Lim, Hyuna

    The utilization of sun light as a renewable energy source has been pursued for a long time, but the ultimate goal of developing inexpensive and highly efficient photovoltaic devices remains elusive. To address this problem, colloidal graphene quantum dots (GQDs) were synthesized and used as a new sensitizer in dye sensitized solar cells (DSCs). Not only do the GQDs have a well-defined structure, but their large absorptivity, tunable bandgap, and size- and functional group-dependent redox potentials make them promising candidates for photovoltaic applications. Because volatile organic solvents in electrolyte solutions hinder long-term use and mass production of DSC devices, imidazolium based ionic liquids (ILs) were investigated. Cobalt-bipyridine complexes were successfully synthesized and characterized for use as new redox shuttles in DSCs. In the tested DSCs, J-V (current density-voltage) curves illustrate that the short circuit current and fill factor decrease significantly as the active area in the TiO2 photo anode increases. Dark current measurement indicated that the diode factor is bigger than one, which is different from the conventional p-n junction type solar cells, due to the high efficiency of photoelectron injection. The variation of the diode factor in dark and in light would show various types of recombination behaviors in DSCs. The performance of the DSC stained by GQDs incorporated with the cobalt redox couple was tested, but further study to improve the efficiency and to understand photochemical reaction in the DSCs is needed.

  17. Ultrasensitive microchip based on smart microgel for real-time online detection of trace threat analytes.

    Lin, Shuo; Wang, Wei; Ju, Xiao-Jie; Xie, Rui; Liu, Zhuang; Yu, Hai-Rong; Zhang, Chuan; Chu, Liang-Yin

    2016-02-23

    Real-time online detection of trace threat analytes is critical for global sustainability, whereas the key challenge is how to efficiently convert and amplify analyte signals into simple readouts. Here we report an ultrasensitive microfluidic platform incorporated with smart microgel for real-time online detection of trace threat analytes. The microgel can swell responding to specific stimulus in flowing solution, resulting in efficient conversion of the stimulus signal into significantly amplified signal of flow-rate change; thus highly sensitive, fast, and selective detection can be achieved. We demonstrate this by incorporating ion-recognizable microgel for detecting trace Pb(2+), and connecting our platform with pipelines of tap water and wastewater for real-time online Pb(2+) detection to achieve timely pollution warning and terminating. This work provides a generalizable platform for incorporating myriad stimuli-responsive microgels to achieve ever-better performance for real-time online detection of various trace threat molecules, and may expand the scope of applications of detection techniques.

  18. A transparent flexible z-axis sensitive multi-touch panel based on colloidal ITO nanocrystals.

    Sangeetha, N M; Gauvin, M; Decorde, N; Delpech, F; Fazzini, P F; Viallet, B; Viau, G; Grisolia, J; Ressier, L

    2015-08-07

    Bottom-up fabrication of a flexible multi-touch panel prototype based on transparent colloidal indium tin oxide (ITO) nanocrystal (NC) films is presented. A series of 7% Sn(4+) doped ITO NCs protected by oleate, octanoate and butanoate ligands are synthesized and characterized by a battery of techniques including, high resolution transmission electron microscopy, X-ray diffraction, (1)H, (13)C and (119)Sn nuclear magnetic resonance spectroscopy, and the related diffusion ordered spectroscopy. Electrical resistivities of transparent films of these NCs assembled on flexible polyethylene terephthalate substrates by convective self-assembly from their suspension in toluene decrease with the ligand length, from 220 × 10(3) for oleate ITO to 13 × 10(3)Ω cm for butanoate ITO NC films. A highly transparent, flexible touch panel based on a matrix of strain gauges derived from the least resistive film of 17 nm butanoate ITO NCs sensitively detects the lateral position (x, y) of the touch as well as its intensity over the z-axis. Being compatible with a stylus or bare/gloved finger, a larger version of this module may be readily implemented in upcoming flexible screens, enabling navigation capabilities over all three axes, a feature highly desired by the display industry.

  19. Stability of poly(N-isopropylacrylamide-co-acrylic acid polymer microgels under various conditions of temperature, pH and salt concentration

    Zahoor H. Farooqi

    2017-03-01

    Full Text Available This research article describes the colloidal stability of poly(N-isopropylacrylamide-co-acrylic acid [P(NIPAM-co-AAc] polymer microgels with different acrylic acid contents in aqueous medium under various conditions of temperature, pH and sodium chloride concentrations. Three samples of multi-responsive P(NIPAM-co-AAc polymer microgels were synthesized using different amounts of acrylic acid by free radical emulsion polymerization. Dynamic laser light scattering was used to investigate the responsive behavior and stability of the prepared microgels under various conditions of pH, temperature and ionic strength. The microgels were found to be stable at all pH values above the pKa value of acrylic acid moiety in the temperature range from 15 to 60 °C in the presence and absence of sodium chloride. Increase in temperature, salt concentration and decrease in pH causes aggregation and decreases the stability of microgels due to the decrease in hydrophilicity.

  20. Soft microgel particles at fluid interfaces

    Deshmukh, Omkar

    2015-01-01

    We investigate the use of soft microgel particles based on a thermosensitive poly- mer, poly-N-isopropylacrylamide (PNIPAM) to stabilize a fluid interface. We also study the effect of temperature on the adsorption kinetics and the interfacial behaviour of these particles on air-water and oil-water

  1. Spontaneous deswelling of pNIPAM microgels at high concentrations

    Gasser, Urs; Scotti, Andrea; Herman, Emily S.; Pelaez-Fernandez, Miguel; Han, Jun; Menzel, Andreas; Lyon, L. Andrew; Fernandez-Nieves, Alberto

    Polydisperse suspensions of pNIPAM microgel particles show a unique, spontaneous particle deswelling behavior. Beyond a critical concentration, the largest microgels deswell and thereby reduce the polydispersity of the suspension. We have recently unraveled the mechanism of this spontaneous, selective deswelling. pNIPAM microgels carry charged sulfate groups originating from the ammonium persulfate starter used in particle synthesis. Most of the ammonium counterions are trapped close to the microgel surface, but a fraction of them escapes the electrostatic attraction and contributes to the osmotic pressure of the suspension. The counterion clouds of neighboring particles progressively overlap with increasing volume fraction, leading to an increase of free counterions and the osmotic pressure outside but not inside the microgel particles. We find particles to deswell when the resulting osmotic pressure difference between the inside and the outside becomes larger their bulk modulus. For pNIPAM microgels synthesized with the same protocol, the largest particles are the softest and deswell first.

  2. Structure of Microgels with Debye–Hückel Interactions

    Hideki Kobayashi; Roland G. Winkler

    2014-01-01

    The structural properties of model microgel particles are investigated by molecular dynamics simulations applying a coarse-grained model. A microgel is comprised of a regular network of polymers internally connected by tetra-functional cross-links and with dangling ends at its surface. The self-avoiding polymers are modeled as bead-spring linear chains. Electrostatic interactions are taken into account by the Debye–Hückel potential. The microgels exhibit a quite uniform density under bad solv...

  3. Three-Dimensional Cell Behavior in Microgels

    Bhattacharjee, Tapomoy; Palmer, Glyn; Ghivizzani, Steven; Keselowsky, Benjamin; Sawyer, W. Gregory; Angelini, Thomas

    The number of dimensions in which particles can freely move strongly influences the collective behavior that emerges from their individual fluctuations. Thus, in 2D systems of cells in petri-dishes, our growing understanding of collective migration may be insufficient to explain cell behavior in 3D tissues. To study cell behavior in 3D, polymer scaffolds are used. Contemporary designs of 3D cell growth scaffolds enable cell migration and proliferative expansion by incorporating of degradable motifs. Matrix degradation creates space for cells to move and proliferate. However, different cell types and experimental conditions require the design of different scaffolds to optimize degradation with specific cell behaviors. By contrast, liquid like solids made from packed microgels can yield under cell generated stresses, allowing for cell motion without the need for scaffold degradation. Moreover, the use of microgels as 3D culture media allows arranging cells in arbitrary structures, harvesting cells, and delivering drugs and nutrients. Preliminary data describing cell behavior in 3D microgel culture will be presented. This material is based on work supported by the National Science Foundation under Grant No. DMR-1352043.

  4. Glucose-mediated catalysis of Au nanoparticles in microgels.

    Wu, Qingshi; Cheng, Han; Chang, Aiping; Xu, Wenting; Lu, Fan; Wu, Weitai

    2015-11-18

    The catalytic activity of Au nanoparticles in phenylboronic acid-containing polymer microgels can be tuned through the swelling-deswelling transition of the microgels in response to changes in glucose concentration. Upon adding glucose, the model catalytic reduction of hydrophilic 4-nitrophenol is accelerated, while the reduction of relatively more hydrophobic nitrobenzene slows down.

  5. Colloidal Sb2S3 Nanocrystals: Synthesis, Characterization and Fabrication of Solid-State Semiconductor Sensitized Solar Cell

    Abulikemu, Mutalifu

    2015-12-26

    Inorganic nanocrystals composed of earth-abundant and non-toxic elements are crucial to fabricated sustainable photovoltaic devices in large scale. In this study, various-shaped and different phases of antimony sulfide nanocrystals, which is composed of non-scarce and non-toxic elements, are synthesized using hot-injection colloidal method. The effect of various synthetic parameters on the final morphology is explored. Also, foreign ion (Chlorine) effects on the morphology of Sb2S3 nanocrystals have been observed. Structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using as-prepared nanocrystals. We achieved promising power conversion efficiencies of 1.48%.

  6. Colloidal Sb2S3 Nanocrystals: Synthesis, Characterization and Fabrication of Solid-State Semiconductor Sensitized Solar Cell

    Abulikemu, Mutalifu; Del Gobbo, Silvano; Anjum, Dalaver H.; Malik, Mohammad A; Bakr, Osman

    2015-01-01

    Inorganic nanocrystals composed of earth-abundant and non-toxic elements are crucial to fabricated sustainable photovoltaic devices in large scale. In this study, various-shaped and different phases of antimony sulfide nanocrystals, which is composed of non-scarce and non-toxic elements, are synthesized using hot-injection colloidal method. The effect of various synthetic parameters on the final morphology is explored. Also, foreign ion (Chlorine) effects on the morphology of Sb2S3 nanocrystals have been observed. Structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using as-prepared nanocrystals. We achieved promising power conversion efficiencies of 1.48%.

  7. Conformational Aspects of High Content Packing of Antimicrobial Peptides in Polymer Microgels

    Singh, Shalini; Datta, Aritreyee; Borro, Bruno C

    2017-01-01

    Successful use of microgels as delivery systems of antimicrobial peptides (AMPs) requires control of factors determining peptide loading and release to/from the microgels as well as of membrane interactions of both microgel particles and released peptides. Addressing these, we here investigate ef...

  8. Dependency of plasmon resonance sensitivity of colloidal gold nanoparticles on the identity of surrounding ionic media

    Mehrdel, B.; Aziz, A. Abdul

    2018-03-01

    The plasmon resonance sensitivity of gold nanoparticles (AuNPs) in sodium chloride (NaCl) liquid in near-infrared to the visible spectral region was investigated. The correlation between NaCl concentration and refractive index was analyzed using concentration dependency and Lorenz-Lorenz methods. The first derivative method was applied to the measured absorption spectra to quantitatively evaluate the plasmon resonance sensitivity. To understand the influence of the identity of the surrounding medium on the plasmon resonance sensitivity, experiments were repeated by replacing NaCl with sodium hydroxide (NaOH), followed by phosphate buffered saline (PBS). Experimental results showed that NaCl is the most effective ionic surrounding medium, which gives prominent plasmon resonance response. AuNPs size can have a significant influence on the plasmon resonance sensitivity. For tiny AuNPs (∼10 nm AuNPs), the plasmon resonance is insensitive to the identity of the surrounding medium due to their low cross-section value.

  9. Colloidal organization

    Okubo, Tsuneo

    2015-01-01

    Colloidal Organization presents a chemical and physical study on colloidal organization phenomena including equilibrium systems such as colloidal crystallization, drying patterns as an example of a dissipative system and similar sized aggregation. This book outlines the fundamental science behind colloid and surface chemistry and the findings from the author's own laboratory. The text goes on to discuss in-depth colloidal crystallization, gel crystallization, drying dissipative structures of solutions, suspensions and gels, and similar-sized aggregates from nanosized particles. Special emphas

  10. Glass transition of soft colloids

    Philippe, Adrian-Marie; Truzzolillo, Domenico; Galvan-Myoshi, Julian; Dieudonné-George, Philippe; Trappe, Véronique; Berthier, Ludovic; Cipelletti, Luca

    2018-04-01

    We explore the glassy dynamics of soft colloids using microgels and charged particles interacting by steric and screened Coulomb interactions, respectively. In the supercooled regime, the structural relaxation time τα of both systems grows steeply with volume fraction, reminiscent of the behavior of colloidal hard spheres. Computer simulations confirm that the growth of τα on approaching the glass transition is independent of particle softness. By contrast, softness becomes relevant at very large packing fractions when the system falls out of equilibrium. In this nonequilibrium regime, τα depends surprisingly weakly on packing fraction, and time correlation functions exhibit a compressed exponential decay consistent with stress-driven relaxation. The transition to this novel regime coincides with the onset of an anomalous decrease in local order with increasing density typical of ultrasoft systems. We propose that these peculiar dynamics results from the combination of the nonequilibrium aging dynamics expected in the glassy state and the tendency of colloids interacting through soft potentials to refluidize at high packing fractions.

  11. Tuning the bridging attraction between large hard particles by the softness of small microgels.

    Luo, Junhua; Yuan, Guangcui; Han, Charles C

    2016-09-20

    In this study, the attraction between large hard polystyrene (PS) spheres is studied by using three types of small microgels as bridging agents. One is a purely soft poly(N-isopropylacrylamide) (PNIPAM) microgel, the other two have a non-deformable PS hard core surrounded by a soft PNIPAM shell but are different in the core-shell ratio. The affinity for bridging the large PS spheres is provided and thus affected by the PNIPAM constituent in the microgels. The bridging effects caused by the microgels can be indirectly incorporated into their influence on the effective attraction interaction between the large hard spheres, since the size of the microgels is very small in comparison to the size of the PS hard spheres. At a given volume fraction of large PS spheres, they behave essentially as hard spheres in the absence of small microgels. By gradually adding the microgels, the large spheres are connected to each other through the bridging of small particles until the attraction strength reaches a maximum value, after which adding more small particles slowly decreases the effective attraction strength and eventually the large particles disperse individually when saturated adsorption is achieved. The aggregation and gelation behaviors triggered by these three types of small microgels are compared and discussed. A way to tune the strength and range of the short-range attractive potential via changing the softness of bridging microgels (which can be achieved either by using core-shell microgels or by changing the temperature) is proposed.

  12. Injectable and microporous scaffold of densely-packed, growth factor-encapsulating chitosan microgels.

    Riederer, Michael S; Requist, Brennan D; Payne, Karin A; Way, J Douglas; Krebs, Melissa D

    2016-11-05

    In this work, an emulsion crosslinking method was developed to produce chitosan-genipin microgels which acted as an injectable and microporous scaffold. Chitosan was characterized with respect to pH by light scattering and aqueous titration. Microgels were characterized with swelling, light scattering, and rheometry of densely-packed microgel solutions. The results suggest that as chitosan becomes increasingly deprotonated above the pKa, repulsive forces diminish and intermolecular attractions cause pH-responsive chain aggregation; leading to microgel-microgel aggregation as well. The microgels with the most chitosan and least cross-linker showed the highest yield stress and a storage modulus of 16kPa when condensed as a microgel paste at pH 7.4. Two oppositely-charged growth factors could be encapsulated into the microgels and endothelial cells were able to proliferate into the 3D microgel scaffold. This work motivates further research on the applications of the chitosan microgel scaffold as an injectable and microporous scaffold in regenerative medicine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A Highly Sensitive Nonenzymatic Glucose Biosensor Based on the Regulatory Effect of Glucose on Electrochemical Behaviors of Colloidal Silver Nanoparticles on MoS₂†.

    Anderson, Kash; Poulter, Benjamin; Dudgeon, John; Li, Shu-En; Ma, Xiang

    2017-08-05

    A novel and highly sensitive nonenzymatic glucose biosensor was developed by nucleating colloidal silver nanoparticles (AgNPs) on MoS₂. The facile fabrication method, high reproducibility (97.5%) and stability indicates a promising capability for large-scale manufacturing. Additionally, the excellent sensitivity (9044.6 μA mM -1 cm -2 ), low detection limit (0.03 μM), appropriate linear range of 0.1-1000 μM, and high selectivity suggests that this biosensor has a great potential to be applied for noninvasive glucose detection in human body fluids, such as sweat and saliva.

  14. Multi-responsive ionic liquid emulsions stabilized by microgels

    Monteillet, H.; Workamp, M.; Li, X.; Schuur, Boelo; Kleijn, J.M.; Leermakers, F.; Sprakel, J.

    2014-01-01

    We present a complete toolbox to use responsive ionic liquid (IL) emulsions for extraction purposes. IL emulsions stabilized by responsive microgels are shown to allow rapid extraction and reversible breaking and re-emulsification. Moreover, by using a paramagnetic ionic liquid, droplets can be

  15. Structure of Microgels with Debye–Hückel Interactions

    Hideki Kobayashi

    2014-05-01

    Full Text Available The structural properties of model microgel particles are investigated by molecular dynamics simulations applying a coarse-grained model. A microgel is comprised of a regular network of polymers internally connected by tetra-functional cross-links and with dangling ends at its surface. The self-avoiding polymers are modeled as bead-spring linear chains. Electrostatic interactions are taken into account by the Debye–Hückel potential. The microgels exhibit a quite uniform density under bad solvent conditions with a rather sharp surface. With increasing Debye length, structural inhomogeneities appear, their surface becomes fuzzy and, at very large Debye lengths, well defined again. Similarly, the polymer conformations change from a self-avoiding walk to a rod-like behavior. Thereby, the average polymer radius of gyration follows a scaling curve in terms of polymer length and persistence length, with an asymptotic rod-like behavior for swollen microgels and self-avoiding walk behavior for weakly swollen gel particles.

  16. Silver nanoparticles fabricated hybrid microgels for optical and catalytic study

    Siddiq, M.; Shah, L.A.; Ambreen, J.; Sayed, M.

    2016-01-01

    In this work different compositions of smart poly(N-isopropylacrylamide-vinylacetic acid-acrylamide) poly(NIPAM-VAA-AAm) microgels with different vinyl acetic acid (VAA) contents have been synthesized successfully by conventional free radical emulsion polymerization. Silver metal nanoparticles (NPs) were fabricated inside the microgels network by insitu reduction method using sodium borohydride (NaBH/sub 4/) as reducing agent. The confirmation of polymerization and entrapment of metal NPs were carried out by FT-IR spectroscopy. Dynamic laser light scattering (DLLS) technique was used for calculating average hydrodynamic diameter of microgel particles. The optical properties of silver NPs were studied by UV-Visible spectroscopy at various conditions of pH and temperature. The hybrid microgels show red shift and increase in intensity of surface plasmon resonance (SPR) band with the increase in temperature and decrease in pH of the medium. The synthesized materials were used as catalysts in the reduction process and it was found that the catalyst composed of high amount of VAA shows enhanced catalytic activity. The apparent rate constant (k/sub app/) for catalyst composed of 12 percent VAA was doubled (5.6*10/sup -3/ sec/sup -1/) as compared to 4 percent VAA containing catalyst (2.8*10/sup -3/ sec/sup -1/). (author)

  17. Novel lipid-based dermal microgels of Neobacin

    Frank

    2015-03-18

    Mar 18, 2015 ... phobic character to the freely water soluble neomycin sulphate to enhance its permeation through the skin for better drug release. To improve adhesivity, convenience and moist-driven wound healing devoid of scabbing, we therefore, encapsulated the SMSLMs into Carbopol 940® hydrogels (microgels).

  18. Mobility of lysozyme inside oxidized starch polymer microgels

    Li, Y.; Kleijn, J.M.; Cohen Stuart, M.A.; Slaghek, T.; Timmermans, J.; Norde, W.

    2011-01-01

    The aim of this paper is to determine the mobility of protein molecules inside oxidized potato starch polymer (OPSP) microgel particles (spherical, 10-20 m in diameter). This provides relevant information for controlled uptake and release applications of such systems. The mobility of Alexa-488

  19. Comprehensive Study of Microgel Electrode for On-Chip Electrophoretic Cell Sorting

    Hattori, Akihiro; Yasuda, Kenji

    2010-06-01

    We have developed an on-chip cell sorting system and microgel electrode for applying electrostatic force in microfluidic pathways in the chip. The advantages of agarose electrodes are 1) current-driven electrostatic force generation, 2) stability against pH change and chemicals, and 3) no bubble formation caused by electrolysis. We examined the carrier ion type and concentration dependence of microgel electrode impedance, and found that CoCl2 has less than 1/10 of the impedance from NaCl, and the reduction of the impedance of NaCl gel electrode was plateaued at 0.5 M. The structure control of the microgel electrode exploiting the surface tension of sol-state agarose was also introduced. The addition of 1% (w/v) trehalose into the microgel electrode allowed the frozen storage of the microgel electrode chip. The experimental results demonstrate the potential of our system and microgel electrode for practical applications in microfluidic chips.

  20. Effect of Extreme Cold Treatment on Morphology and Behavior of Hydrogels and Microgels (Poster Session)

    2017-08-20

    capable of better managing a soldier’s comfort by regulating moisture and thermal properties • Hydrogel or microgel textile coatings are of interest...to understand the effect of cold temperature ( down to -80 ° C) on hydrogel and microgel particles properties and response to thermal stimuli • We...determine water uptake post freezing Sweat EFFECTS ON WATER UPTAKE PRELIMINARY MICROGEL THERMAL STUDIES MORPHOLOGY POST FREEZING PAA PEG PNIPAAm BEFORE AFTER

  1. Active colloids

    Aranson, Igor S

    2013-01-01

    A colloidal suspension is a heterogeneous fluid containing solid microscopic particles. Colloids play an important role in our everyday life, from food and pharmaceutical industries to medicine and nanotechnology. It is useful to distinguish two major classes of colloidal suspensions: equilibrium and active, i.e., maintained out of thermodynamic equilibrium by external electric or magnetic fields, light, chemical reactions, or hydrodynamic shear flow. While the properties of equilibrium colloidal suspensions are fairly well understood, active colloids pose a formidable challenge, and the research is in its early exploratory stage. One of the most remarkable properties of active colloids is the possibility of dynamic self-assembly, a natural tendency of simple building blocks to organize into complex functional architectures. Examples range from tunable, self-healing colloidal crystals and membranes to self-assembled microswimmers and robots. Active colloidal suspensions may exhibit material properties not present in their equilibrium counterparts, e.g., reduced viscosity and enhanced self-diffusivity, etc. This study surveys the most recent developments in the physics of active colloids, both in synthetic and living systems, with the aim of elucidation of the fundamental physical mechanisms governing self-assembly and collective behavior. (physics of our days)

  2. Bio-inspired intelligent evaporation modulation in a thermo-sensitive nanogel colloid solution for self-thermoregulation.

    Huang, Zhi; Liu, Kang; Feng, Yanhui; Zhou, Jun; Zhang, Xinxin

    2017-06-28

    Intelligent evaporation and temperature modulation plays an important role in self-regulation of living organisms and many industrial applications. Here we demonstrate that a poly(N-isopropylacrylamide) (PNIPAM) nanogel colloid solution can spontaneously and intelligently modulate its evaporation rate with temperature variation, which has a larger evaporation rate than distilled water at a temperature higher than its lower critical solution temperature (LCST) and a smaller evaporation rate at a temperature lower than its LCST. It performs just like human skin. Theoretical analysis based on the thermodynamic derivation reveals that the evaporation rate transition around the LCST may originate from the saturated vapor pressure transition caused by the status transformation of the PNIPAM additives. An intelligent thermoregulation system based on the PNIPAM colloid solution is also demonstrated, illustrating its potential for intelligent temperature control and acting as an artificial skin.

  3. Colloidal dispersions of conducting copolymers of aniline and p-phenylenediamine for films with enhanced conductometric sensitivity to temperature

    Li, Yu; Bober, Patrycja; Trchová, Miroslava; Stejskal, Jaroslav

    2017-01-01

    Roč. 5, č. 7 (2017), s. 1668-1674 ISSN 2050-7526 R&D Projects: GA ČR(CZ) GP14-05568P Institutional support: RVO:61389013 Keywords : colloids * polyaniline * poly(p-phenylenediamine) Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 5.256, year: 2016

  4. Application of drug selective electrode in the drug release study of pH-responsive microgels.

    Tan, Jeremy P K; Tam, Kam C

    2007-03-12

    The colloidal phenomenon of soft particles is becoming an important field of research due to the growing interest in using polymeric system in drug delivery. Previous studies have focused on techniques that require intermediate process step such as dialysis or centrifugation, which introduces additional errors in obtaining the diffusion kinetic data. In this study, a drug selective electrode was used to directly measure the concentration of procaine hydrochloride (PrHy) released from methacrylic acid-ethyl acrylate (MAA-EA) microgel, thereby eliminating the intermediate process step. PrHy selective membrane constructed using a modified poly (vinyl chloride) (PVC) membrane and poly (ethylene-co-vinyl acetate-co-carbon monoxide) as plasticizer exhibited excellent reproducibility and stability. The response was reproducible at pH of between 3 to 8.5 and the selectivity coefficients against various organic and inorganic cations were evaluated. Drug release was conducted using the drug electrode under different pHs and the release rate increased with pH. The release behavior of the system under different pH exhibited obvious gradient release characteristics.

  5. Surface-bound microgels - From physicochemical properties to biomedical applications

    Nyström, Lina; Malmsten, Martin

    2016-01-01

    Microgels offer robust and facile approaches for surface modification, as well as opportunities to introduce biological functionality by loading such structures with bioactive agents, e.g., in the context of drug delivery, functional biomaterials, and biosensors. As such, they provide a versatile...... and covalent grafting in dilute systems, to directed self-assembly, multilayer structures, and composites, as well as loading an release of drugs and other cargo molecules into/from such systems, and biomedical applications of these....

  6. Colloidal glasses

    First page Back Continue Last page Overview Graphics. Colloidal glasses. Glassy state is attained when system fails to reach equilibrium due to crowding of constituent particles. In molecular glasses, glassy state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the ...

  7. Detecting irradiation of seeds using microgel electrophoresis (a collaborative trial)

    Cerda, H.; Haine, H.E.; Jones, J.L.

    1995-06-01

    Preservation of certain foods by irradiation is permitted in the United Kingdom. However, all irradiated foods must be labelled as such, to ensure consumer choice. To help enforce labelling, a variety of methods have been developed for distinguishing between irradiated and non-irradiated foods. In preliminary trials, microgel electrophoresis -a simple method of assessing DNA damage - has shown considerable promise in this respect. This report describes microgel electrophoresis, and details results obtained in a blind trial carried out in collaboration with the Swedish University of Agricultural Sciences. Microgel electrophoresis facilitates analysis of the leakage of DNA from cells extracted from food material. In irradiated samples, the DNA is fragmented and will leak from cells in an electric current. This leakage can be seen as a 'comet' when the stained gel is viewed with a microscope. The size and shape of the comet can be used to estimate the irradiation dose administered to the sample. In non-irradiated samples the DNA is less fragmented, will tend not to leak from the cells and will not form a comet. (author)

  8. Antimicrobial lysozyme-containing starch microgel to target and inhibit amylase-producing microorganisms

    Li, Y.; Kadam, S.; Abee, T.; Slaghek, T.M.; Timmermans, J.W.; Cohen Stuart, M.A.; Norde, W.; Kleijn, M.J.

    2012-01-01

    The aim of this study is to determine the release of lysozyme from oxidized starch microgels and subsequently test its antimicrobial activity. The gels are made of oxidized potato starch polymers, which are chemically cross-linked by sodium trimetaphosphate (STMP). The microgel is negatively charged

  9. The antimicrobial sensitivity of Streptococcus mutans and Streptococcus sangius to colloidal solutions of different nanoparticles applied as mouthwashes

    Farzaneh Ahrari

    2015-01-01

    Full Text Available Background: Metal nanoparticles have been recently applied in dentistry because of their antibacterial properties. This study aimed to evaluate antibacterial effects of colloidal solutions containing zinc oxide (ZnO, copper oxide (CuO, titanium dioxide (TiO 2 and silver (Ag nanoparticles on Streptococcus mutans and Streptococcus sangius and compare the results with those of chlorhexidine and sodium fluoride mouthrinses. Materials and Methods: After adding nanoparticles to a water-based solution, six groups were prepared. Groups I to IV included colloidal solutions containing nanoZnO, nanoCuO, nanoTiO 2 and nanoAg, respectively. Groups V and VI consisted of 2.0% sodium fluoride and 0.2% chlorhexidine mouthwashes, respectively as controls. We used serial dilution method to find minimum inhibitory concentrations (MICs and with subcultures obtained minimum bactericidal concentrations (MBCs of the solutions against S. mutans and S. sangius. The data were analyzed by analysis of variance and Duncan test and P < 0.05 was considered as significant. Results: The sodium fluoride mouthrinse did not show any antibacterial effect. The nanoTiO 2 -containing solution had the lowest MIC against both microorganisms and also displayed the lowest MBC against S. mutans (P < 0.05. The colloidal solutions containing nanoTiO 2 and nanoZnO showed the lowest MBC against S. sangius (P < 0.05. On the other hand, chlorhexidine showed the highest MIC and MBC against both streptococci (P < 0.05. Conclusion: The nanoTiO 2 -containing mouthwash proved to be an effective antimicrobial agent and thus it can be considered as an alternative to chlorhexidine or sodium fluoride mouthrinses in the oral cavity provided the lack of cytotoxic and genotoxic effects on biologic tissues.

  10. Applications in the oil sands industry for Particlear{sup R} silica microgel

    Moffett, B. [DuPont Chemical Solutions Enterprise, Wilmington, DE (United States)

    2009-07-01

    This presentation demonstrated the use of Particlear{sup R} silica microgel in the oil sands industry. The silica-based coagulant is an amorphous silicon dioxide microgel solution. The surface area of a football field can be obtained using 2.7 grams of the substance. The coagulation mechanism is achieved by charge neutralization and inter-particle bridging. The microgel is manufactured at the point of use from commodity chemicals, water, and carbon dioxide (CO{sub 2}). Applications for the microgel include potable water treatment, paper retention, and animal processing wastewater. In the oil sands industry, Particlear{sup R} can be used in tailings flocculation, thickened tailings drying, steam assisted gravity drainage (SAGD) water treatment, and enhanced bitumen recovery. It was concluded that the microgel can be used in many oil sands processing and liquid-solid separation processes in order to remove dissolved solids and organics and increase the rate of solids dewatering. tabs., figs.

  11. Silver nanoparticles containing hybrid polymer microgels with tunable surface plasmon resonance and catalytic activity

    Ajmal, Muhammad; Siddiq, Mohammad [Quaid-I-Azam University, Islamabad (Pakistan); Farooqi, Zahoor Hussain [University of the Punjab, Lahore (Pakistan)

    2013-11-15

    Multi-responsive poly(N-isopropylacrylamide-methacrylic acid-acrylamide) [P(NIPAM-MAA-AAm)] copolymer microgel was prepared by free radical emulsion polymerization. Silver nanoparticles were fabricated inside the microgel network by in-situ reduction of silver nitrate. Swelling and deswelling behavior of the pure microgels was studied under various conditions of pH and temperature using dynamic light scattering. A red shift was observed in surface plasmon resonance wavelength of Ag nanoparticles with pH induced swelling of hybrid microgel. The catalytic activity of the hybrid system was investigated by monitoring the reduction of p-nitrophenol under different conditions of temperature and amount of catalysts. For this catalytic reaction a time delay of 8 to 10min was observed at room temperature, which was reduced to 2 min at high temperature due to swelling of microgels, which facilitated diffusion of reactants to catalyst surface and increased rate of reaction.

  12. Colloidal GdVO4:Eu3+@SiO2 nanocrystals for highly selective and sensitive detection of Cu2+ ions

    Liang, Yanjie; Noh, Hyeon Mi; Park, Sung Heum; Choi, Byung Chun; Jeong, Jung Hyun

    2018-03-01

    Nowadays, in view of health and safety demands, the controlled design of selective and sensitive sensors for Cu2+ detection is of considerable importance. Therefore, we construct herein core-shell colloidal GdVO4:Eu3+@SiO2 nanocrystals (NCs) as optical sensor for the detection of Cu2+, which were synthesized by a facile hydrothermal reaction and encapsulated with a uniform layer of ultrathin silica through a sol-gel strategy. The NCs present strong red emission due to energy transfer from VO43- groups to Eu3+ when exciting with ultraviolet (UV) light. This intense red emission from Eu3+ could be selectively quenched in the presence of Cu2+ in comparison to other metal ions and the limit of detection is as low as 80 nM in aqueous solution. It is revealed that the spectral overlap between the emission band of NCs and the absorption of Cu2+ accounts for this intriguing luminescence behavior. The detection ability is highly reversible by the addition of ethylenediaminetetraacetic acid (EDTA) with the recovery of almost 100% of the original luminescence. The luminescence quenching and recovery processes can be performed repeatedly with good sensing ability. These remarkable performances allow the colloidal GdVO4:Eu3+@SiO2 NCs a promising fluorescence chemosensor for detecting Cu2+ ions in aqueous solution.

  13. Bulk and interfacial stresses in suspensions of soft and hard colloids

    Truzzolillo, D; Roger, V; Dupas, C; Cipelletti, L; Mora, S

    2015-01-01

    We explore the influence of particle softness and internal structure on both the bulk and interfacial rheological properties of colloidal suspensions. We probe bulk stresses by conventional rheology, by measuring the flow curves, shear stress versus strain rate, for suspensions of soft, deformable microgel particles and suspensions of near hard-sphere-like silica particles. A similar behaviour is seen for both kinds of particles in suspensions at concentrations up to the random close packing volume fraction, in agreement with recent theoretical predictions for sub-micron colloids. Transient interfacial stresses are measured by analyzing the patterns formed by the interface between the suspensions and their solvent, due to a generalized Saffman–Taylor hydrodynamic instability. At odds with the bulk behaviour, we find that microgels and hard particle suspensions exhibit vastly different interfacial stress properties. We propose that this surprising behaviour results mainly from the difference in particle internal structure (polymeric network for microgels versus compact solid for the silica particles), rather than softness alone. (paper)

  14. Efficiency Enhanced Colloidal Mn-Doped Type II Core/Shell ZnSe/CdS Quantum Dot Sensitized Hybrid Solar Cells

    A. Jamshidi

    2015-01-01

    Full Text Available Colloidal Mn-doped ZnSe/CdS core/shell quantum dots (QDs are synthesized for the first time and employed as a strategy to boost the power conversion efficiency of quantum dot sensitized solar cells. By using Mn-doping as a band gap engineering tool for core/shell QDs an effective improvement of absorption spectra could be obtained. The mid-states generated by a proper Mn content alleviate carrier separation and enhance the electron injection rate, thus facilitating electron transport to the TiO2 substrate. It is demonstrated that a device constructed with 0.25% Mn-doped ZnSe/CdS leads to an enhancement of the electron injection rate and power conversion efficiency by 4 times and 1.3, respectively.

  15. The synthesis of desired functional groups on PEI microgel particles for biomedical and environmental applications

    Sahiner, Nurettin; Demirci, Sahin; Sahiner, Mehtap; Al-Lohedan, Hamad

    2015-11-01

    Polyethyleneimine (PEI) microgels were synthesized by micro emulsion polymerization technique and converted to positively charged forms by chemical treatments with various modifying agents with different functional groups, such as 2-bromoethanol (-OH), 4-bromobutyronitrile (-CN), 2-bromoethylamine hydrobromide (-NH2), and glycidol (-OH). The functionalization of PEI microgels was confirmed by FT-IR, TGA and zeta potential measurements. Furthermore, a second modification of the modified PEI microgels was induced on 4-bromo butyronitrile-modified PEI microgels (PEI-CN) by amidoximation, to generate new functional groups on the modified PEI microgels. The PEI and modified PEI microgels were also tested for their antimicrobial effects against various bacteria such as Bacillus subtilis ATCC 6633, Escherichia coli ATCC 8739 and Staphylococcus aureus ATCC 25323. Moreover, the PEI-based particles were used for removal of organic dyes such as methyl orange (MO) and congo red (CR). The absorption capacity of PEI-based microgels increased with modification from 101.8 mg/g to 218.8 mg/g with 2-bromoethylamine, 216.2 m/g with 1-bromoethanol, and 224.5 mg/g with 4-bromobutyronitrile for MO. The increase in absorption for CR dyes was from 347.3 mg/g to 390.4 mg/g with 1-bromoethanol, 399.6 mg/g with glycidol, and 349.9 mg/g with 4-bromobutyronitrile.

  16. Polyelectrolyte Complex Inclusive Biohybrid Microgels for Tailoring Delivery of Copigmented Anthocyanins.

    Tan, Chen; B Celli, Giovana; Lee, Michelle; Licker, Jonathan; Abbaspourrad, Alireza

    2018-05-14

    This study fabricated a novel biohybrid microgel containing polysaccharide-based polyelectrolyte complexes (PECs) for anthocyanins. Herein, anthocyanins were encapsulated into PECs composed of chondroitin sulfate and chitosan, followed by incorporation into alginate microgels using emulsification/internal gelation method. We demonstrated that PECs incorporation strongly affected the properties of microgels, dependent on the polysaccharide concentration and pH in which they were fabricated. The dense internal network surrounded by an alginate shell was clearly visualized in cross-sectioned PECs-microgels. Stability studies carried out under varying ionic strength and pH conditions demonstrated the stimuli-responsiveness of the PECs-microgels. Additionally, the presence of PECs conferred microgels with high rigidity during freeze-drying and excellent reconstitution capacity upon rehydration. These observations were attributed to the modulation of electrostatic and hydrogen-bonding cross-linking between PECs and the alginate gel matrix and suggest the PECs inclusive microgels hold promise as delivery vehicles for the controlled release of hydrophilic bioactive compounds.

  17. Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects.

    McClements, David Julian

    2017-02-01

    Biopolymer microgels have considerable potential for their ability to encapsulate, protect, and release bioactive components. Biopolymer microgels are small particles (typically 100nm to 1000μm) whose interior consists of a three-dimensional network of cross-linked biopolymer molecules that traps a considerable amount of solvent. This type of particle is also sometimes referred to as a nanogel, hydrogel bead, biopolymer particles, or microsphere. Biopolymer microgels are typically prepared using a two-step process involving particle formation and particle gelation. This article reviews the major constituents and fabrication methods that can be used to prepare microgels, highlighting their advantages and disadvantages. It then provides an overview of the most important characteristics of microgel particles (such as size, shape, structure, composition, and electrical properties), and describes how these parameters can be manipulated to control the physicochemical properties and functional attributes of microgel suspensions (such as appearance, stability, rheology, and release profiles). Finally, recent examples of the utilization of biopolymer microgels to encapsulate, protect, or release bioactive agents, such as pharmaceuticals, nutraceuticals, enzymes, flavors, and probiotics is given. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Role of microgel formation in scavenging of chromophoric dissolved organic matter and heavy metals in a river-sea system

    Shiu, Ruei-Feng [Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Lee, Chon-Lin, E-mail: linnohc@fac.nsysu.edu.tw [Department of Marine Environment and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Department of Public Health, College of Health Science, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan (China); Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan (China)

    2017-04-15

    Highlights: • Different types of DOC polymers forming microgel were compared. • The assembly effectiveness of marine DOC was much higher than riverine DOC. • Types and sources of DOC polymers may control the aquatic microgel abundance. • An alternative route for CDOM and heavy metals removal is presented. • Ecological risk and fate assessments of pollutants may consider the microgel phase. - Abstract: We use riverine and marine dissolved organic carbon (DOC) polymers to examine their aggregation behavior, and to evaluate the roles of microgel formation in scavenging of chromophoric dissolved organic matter (CDOM) and heavy metals in a river-sea system. Our results indicate that riverine and marine microgels did not exhibit very much difference in size and self-assembly curve; however, the assembly effectiveness ([microgel]/DOC) of marine samples was much higher than riverine. Instead of concentration of DOC, other factors such as types and sources of DOC polymers may control the microgel abundance in aquatic environments. After filtering water samples (microgels removed), the CDOM and selected metals (Cu, Ni, Mn) in the filtrate were quantified. CDOM and metals were concurrently removed to an extent via DOC polymer re-aggregation, which also suggested that the microgels had sequestering capability in CDOM and metals. This finding provides an alternative route for CDOM and heavy metals removal from the water column. As such the process of re-aggregation into microgels should then be considered besides traditional phase partitioning in the assessment of the ecological risk and fate of hazardous materials.

  19. Role of microgel formation in scavenging of chromophoric dissolved organic matter and heavy metals in a river-sea system

    Shiu, Ruei-Feng; Lee, Chon-Lin

    2017-01-01

    Highlights: • Different types of DOC polymers forming microgel were compared. • The assembly effectiveness of marine DOC was much higher than riverine DOC. • Types and sources of DOC polymers may control the aquatic microgel abundance. • An alternative route for CDOM and heavy metals removal is presented. • Ecological risk and fate assessments of pollutants may consider the microgel phase. - Abstract: We use riverine and marine dissolved organic carbon (DOC) polymers to examine their aggregation behavior, and to evaluate the roles of microgel formation in scavenging of chromophoric dissolved organic matter (CDOM) and heavy metals in a river-sea system. Our results indicate that riverine and marine microgels did not exhibit very much difference in size and self-assembly curve; however, the assembly effectiveness ([microgel]/DOC) of marine samples was much higher than riverine. Instead of concentration of DOC, other factors such as types and sources of DOC polymers may control the microgel abundance in aquatic environments. After filtering water samples (microgels removed), the CDOM and selected metals (Cu, Ni, Mn) in the filtrate were quantified. CDOM and metals were concurrently removed to an extent via DOC polymer re-aggregation, which also suggested that the microgels had sequestering capability in CDOM and metals. This finding provides an alternative route for CDOM and heavy metals removal from the water column. As such the process of re-aggregation into microgels should then be considered besides traditional phase partitioning in the assessment of the ecological risk and fate of hazardous materials.

  20. Single-cell microgel electrophoresis: an in vitro assay of radiosensitivity

    Deeley, J.O.T.; Moore, J.L.

    1993-01-01

    The results obtained by a microgel electrophoresis are comparable to conventional gel electrophoresis and elution techniques (Singh et al, 1989), DNA precipitation, alkali unwinding and cell clonogenicity assays (Olive et al, 1990). Since single cells are assessed, microgel electrophoresis is particularly appropriate for end-points such as the intercell variation in response. The simplicity, low cost and rapidity of microgel electrophoresis compared with other assays makes it particularly attractive for assessing the effects on DNA of radiation and other genotoxic agents on the general population. (Author)

  1. Colloidal nanocrystal ZnO- and TiO2-modified electrodes sensitized with chlorophyll a and carotenoids: a photoelectrochemical study

    Petrella, Andrea; Cosma, Pinalysa; Lucia Curri, M.; Rochira, Sergio; Agostiano, Angela

    2011-01-01

    Heterostructures formed of films of organic-capped ZnO and TiO 2 nanocrystals (both with the size of ca. 6 nm) and photosynthetic pigments were prepared and characterized. The surface of optically transparent electrodes (Indium Tin Oxide) was modified with nanocrystals and prepared by colloidal synthetic routes. The nanostructured electrodes were sensitized by a mixture of chlorophyll a and carotenoids. The characterization of the hybrid structures, carried out by means of steady-state optical measurements, demonstrated such class of dyes able to extend the photoresponse of the large band-gap semiconductors. The charge-transfer processes between the components of the heterojunction were investigated, and photoelectrochemical measurements taken on the sensitized ZnO and TiO 2 nanocrystals electrodes elucidated the photoactivity of the heterojunctions as a function of the dyes and of the red–ox mediator used in solution. The effect of methyl viologen as different red–ox mediator was also evaluated in order to show its effect on the heterojunction photoactivity. The overall results contributed to describe the photoelectrochemical potential of the investigated heterojunctions, highlighting a higher response of the dye-sensitized ZnO nanocrystals, and then provided the TiO 2 -modified counterparts.

  2. Colloidal nematostatics

    V.M. Pergamenshchik

    2010-01-01

    Full Text Available We give a review of the theory of large distance colloidal interaction via the nematic director field. The new area of nematic colloidal systems (or nematic emulsions has been guided by the analogy between the colloidal nematostatics and electrostatics. The elastic charge density representation of the colloidal nematostatics [V.M. Pergamenshchik, V.O. Uzunova, Eur. Phys. J. E, 2007, 23, 161; Phys. Rev. E, 2007, 76, 011707] develops this analogy at the level of charge density and Coulomb interaction. The analogy is shown to lie in common mathematics based on the solutions of Laplace equation. However, the 3d colloidal nematostatics substantially differs from electrostatics both in its mathematical structure and physical implications. The elastic charge is a vector fully determined by the torque exerted upon colloid, the role of Gauss' theorem is played by conservation of the torque components. Elastic multipoles consist of two tensors (dyads. Formulas for the elastic multipoles, the Coulomb-like, dipole-dipole, and quadrupole-quadrupole pair interaction potentials are derived and illustrated by particular examples. Based on the tensorial structure, we list possible types of elastic dipoles and quadrupoles. An elastic dipole is characterized by its isotropic strength, anisotropy, chirality, and its longitudinal component. An elastic quadrupole can be uniaxial and biaxial. Relation between the multipole type and its symmetry is discussed, sketches of some types of multipoles are given. Using the mirror image method of electrostatics as a guiding idea, we develop the mirror image method in nematostatics for arbitrary director tilt at the wall. The method is applied to the charge-wall and dipole-wall interaction.

  3. Radioactive colloids

    Bergqvist, L.

    1987-01-01

    Different techniques for the characterization of radioactive colloids, used in nuclear medicine, have been evaluated and compared. Several radioactive colloids have been characterized in vitro and in vivo and tested experimentally. Colloid biokinetics following interstitial or intravenous injection were evaluated with a scintillation camera technique. Lymphoscintigraphy with a Tc-99-labelled antimony sulphur colloid was performed in 32 patients with malignant melanoma in order to evaluate the technique. Based on the biokinetic results, absorbed doses in tissues and organs were calculated. The function of the reticuloendothelial system has been evaluated in rats after inoculation with tumour cells. Microfiltration and photon correlation spectroscopy were found to be suitable in determining activity-size and particle size distributions, respectively. Maximal lymph node uptake following subcutaneous injection was found to correspond to a colloid particle size between 10 and 50 nm. Lymphoscintigraphy was found to be useful in the study of lymphatic drainage from the primary tumour site in patients with malignant melanoma on the trunk. Quantitative analysis of ilio-inguinal lymph node uptake in patients with malignant melanoma on the lower extremities was, however, found to be of no value for the detection of metastatic disease in lymph nodes. High absorbed doses may be received in lymph nodes (up to 1 mGy/MBq) and at the injection site (about 10 mGy/MBq). In an experimental study it was found that the relative colloid uptake in bone marrow and spleen depended on the total number of intravenously injected particles. This may considerably affect the absorbed dose in these organs. (author)

  4. Radiolytic Syntheses of Nanoparticles and Inorganic-Polymer Hybrid Microgels

    Chen, Q.; Shi, J.; Zhao, R.; Shen, X.

    2010-01-01

    In the second year of the project, we have gotten progress mainly in two directions. Firstly, for the first time, Prussian blue (PB) nanoparticles (NPs) were successfully synthesized by the partly radiolytic reduction of Fe3+ and Fe(CN)63 in the presence of poly(N-vinyl pyrrolidine) (PVP) under N2 atmospheres at room temperature. With the increase of the concentration of PVP, the size and the size distribution of the synthesized quasi-spherical PB NPs decreased obviously, leading to a hypsochromic shift on their peak position of the characteristic absorption. In the experiment, we further found that the smaller ones have a larger capacity to Cs+, suggesting that the application of PB NPs in curing thallotoxicosis may decrease the usage of PB for the patient to great extent. Secondly, through a series of preliminary experiments, we got a clear picture about the one-step radiolytic preparation of inorganic-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by surfactant-free emulsion polymerization. Besides, unpurified N-carbamothioylmethacrylamide was synthesized via the methacrylation of thiourea. These created favorable conditions for the one-step synthesis of metal sulfide-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by -irradiation and surfactant-free emulsion polymerization. (author)

  5. Radiolytic Syntheses of Nanoparticles and Inorganic-Polymer Hybrid Microgels

    Chen, Q.; Shi, J.; Zhao, R.; Shen, X., E-mail: qdchen@pku.edu.cn [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, No. 5, Yiheyuan Load, Haidian District Beijing 100871 (China)

    2010-07-01

    In the second year of the project, we have gotten progress mainly in two directions. Firstly, for the first time, Prussian blue (PB) nanoparticles (NPs) were successfully synthesized by the partly radiolytic reduction of Fe3+ and Fe(CN)63 in the presence of poly(N-vinyl pyrrolidine) (PVP) under N2 atmospheres at room temperature. With the increase of the concentration of PVP, the size and the size distribution of the synthesized quasi-spherical PB NPs decreased obviously, leading to a hypsochromic shift on their peak position of the characteristic absorption. In the experiment, we further found that the smaller ones have a larger capacity to Cs+, suggesting that the application of PB NPs in curing thallotoxicosis may decrease the usage of PB for the patient to great extent. Secondly, through a series of preliminary experiments, we got a clear picture about the one-step radiolytic preparation of inorganic-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by surfactant-free emulsion polymerization. Besides, unpurified N-carbamothioylmethacrylamide was synthesized via the methacrylation of thiourea. These created favorable conditions for the one-step synthesis of metal sulfide-poly(methacrylic acid-co-methyl methacrylate) hybrid microgels by -irradiation and surfactant-free emulsion polymerization. (author)

  6. Swelling of radiation crosslinked acrylamide-based microgels and their potential applications

    Abd El-Rehim, H.A. [National Center for Radiation Research and Technology, Atomic Energy Authority, P.O. Box 29 Nasr City, Cairo (Egypt)]. E-mail: ha_rehim@hotmail.com

    2005-10-01

    Crosslinked polyacrylamide PAAm and acrylamide-Na-acrylate P(AAm-Na-AAc) microgels were prepared by electron beam irradiation. It was found that the dose required for crosslinking depends on the polymer moisture content, so that the dose to obtain PAAm of maximum gel fraction was over 40 and 20 kGy for dry and moist PAAm, respectively. The structural changes in irradiated PAAm were investigated using FTIR and SEM. The swelling property of such microgels in distilled water and real urine solution was determined and crosslinked polymers reached their equilibrium swelling state in a few minutes. As the gel content and crosslinking density decrease, the swelling of the microgels increases. The ability of the microgels to absorb and retain large amount of solutions suggested their possible uses in horticulture and in hygienic products such as disposable diapers.

  7. Swelling of radiation crosslinked acrylamide-based microgels and their potential applications

    Abd El-Rehim, H.A.

    2005-01-01

    Crosslinked polyacrylamide PAAm and acrylamide-Na-acrylate P(AAm-Na-AAc) microgels were prepared by electron beam irradiation. It was found that the dose required for crosslinking depends on the polymer moisture content, so that the dose to obtain PAAm of maximum gel fraction was over 40 and 20 kGy for dry and moist PAAm, respectively. The structural changes in irradiated PAAm were investigated using FTIR and SEM. The swelling property of such microgels in distilled water and real urine solution was determined and crosslinked polymers reached their equilibrium swelling state in a few minutes. As the gel content and crosslinking density decrease, the swelling of the microgels increases. The ability of the microgels to absorb and retain large amount of solutions suggested their possible uses in horticulture and in hygienic products such as disposable diapers

  8. Colloidal superballs

    Rossi, L.

    2012-01-01

    This thesis is organized in four parts as follows. Part 1 focuses on the synthetic aspects of the colloidal model systems that will be used throughout the work described in this thesis. In Chapter 2 we describe synthetic procedures for the preparation of polycrystalline hematite superballs and

  9. Preparation and ion sensing property of the self-assembled microgels by QCM

    Cao Zheng

    2018-03-01

    Full Text Available The polyanion polystyrene sulfonate (PSS, the polycation poly (allylamine hydrochloride (PAH, and the anionic poly (N-isopropylacrylamide-co-acrylic acid [P(NIPAM-co-AA] microgels were self-assembled onto the polyethylene imine (PEI adsorbed gold surfaces of quartz crystal microbalance (QCM because of the electrostatic attractions. The interactions of various metal particles including Ca2+, Bi3+, Cu2+, Zn2+, Ni2+, Sn2+, Co2+, and Cd2+ with the obtained PEI/PSS/PAH/microgel layer in aqueous solutions were evaluated by QCM. The PEI/PSS/PAH/Microgel covered QCM sensor demonstrates the lowest detection limit of 0.1 ppm in aqueous solutions and the obviously linear connection between the frequency response and Ni2+ concentration from 0.1 to 20 ppm, which is due to the complexation of Ni2+ with the carboxyl groups of microgels. Atomic force microscopy (AFM was used to reveal the morphology and stability of the self-assembled polyelectrolyte/microgel layer before and after adsorbing heavy metal ions. These self-assembled materials of polyelectrolyte/microgel layer will be helpful for manufacturing ion-selective materials for separation and identification purposes.

  10. Measurement of correlations between low-frequency vibrational modes and particle rearrangements in quasi-two-dimensional colloidal glasses.

    Chen, Ke; Manning, M L; Yunker, Peter J; Ellenbroek, Wouter G; Zhang, Zexin; Liu, Andrea J; Yodh, A G

    2011-09-02

    We investigate correlations between low-frequency vibrational modes and rearrangements in two-dimensional colloidal glasses composed of thermosensitive microgel particles, which readily permit variation of the sample packing fraction. At each packing fraction, the particle displacement covariance matrix is measured and used to extract the vibrational spectrum of the "shadow" colloidal glass (i.e., the particle network with the same geometry and interactions as the sample colloid but absent damping). Rearrangements are induced by successive, small reductions in the packing fraction. The experimental results suggest that low-frequency quasilocalized phonon modes in colloidal glasses, i.e., modes that present low energy barriers for system rearrangements, are spatially correlated with rearrangements in this thermal system.

  11. Core/shell colloidal quantum dot exciplex states for the development of highly efficient quantum-dot-sensitized solar cells.

    Wang, Jin; Mora-Seró, Iván; Pan, Zhenxiao; Zhao, Ke; Zhang, Hua; Feng, Yaoyu; Yang, Guang; Zhong, Xinhua; Bisquert, Juan

    2013-10-23

    Searching suitable panchromatic QD sensitizers for expanding the light-harvesting range, accelerating charge separation, and retarding charge recombination is an effective way to improve power conversion efficiency (PCE) of quantum-dot-sensitized solar cells (QDSCs). One possible way to obtain a wide absorption range is to use the exciplex state of a type-II core/shell-structured QDs. In addition, this system could also provide a fast charge separation and low charge-recombination rate. Herein, we report on using a CdTe/CdSe type-II core/shell QD sensitizer with an absorption range extending into the infrared region because of its exciplex state, which is covalently linked to TiO2 mesoporous electrodes by dropping a bifunctional linker molecule mercaptopropionic acid (MPA)-capped QD aqueous solution onto the film electrode. High loading and a uniform distribution of QD sensitizer throughout the film electrode thickness have been confirmed by energy dispersive X-ray (EDX) elemental mapping. The accelerated electron injection and retarded charge-recombination pathway in the built CdTe/CdSe QD cells in comparison with reference CdSe QD-based cells have been confirmed by impedance spectroscopy, fluorescence decay, and intensity-modulated photocurrent/photovoltage spectroscopy (IMPS/IMVS) analysis. With the combination of the high QD loading and intrinsically superior optoelectronic properties of type-II core/shell QD (wide absorption range, fast charge separation, and slow charge recombination), the resulting CdTe/CdSe QD-based regenerative sandwich solar cells exhibit a record PCE of 6.76% (J(sc) = 19.59 mA cm(-2), V(oc) = 0.606 V, and FF = 0.569) with a mask around the active film under a full 1 sun illumination (simulated AM 1.5), which is the highest reported to date for liquid-junction QDSCs.

  12. Influence of temperature on the formation and encapsulation of gold nanoparticles using a temperature-sensitive template

    Noel Peter Bengzon Tan

    2015-12-01

    Full Text Available This data article describes the synthesis of temperature-sensitive and amine-rich microgel particle as a dual reductant and template to generate smart gold/polymer nanocomposite particle. TEM images illustrate the influence of reaction temperature on the formation and in-site encapsulation of gold nanoparticles using the temperature-sensitive microgel template. Thermal stability of the resultant gold/polymer composite particles was also examined.

  13. Microgels produced using microfluidic on-chip polymer blending for controlled released of VEGF encoding lentivectors.

    Madrigal, Justin L; Sharma, Shonit N; Campbell, Kevin T; Stilhano, Roberta S; Gijsbers, Rik; Silva, Eduardo A

    2018-03-15

    Alginate hydrogels are widely used as delivery vehicles due to their ability to encapsulate and release a wide range of cargos in a gentle and biocompatible manner. The release of encapsulated therapeutic cargos can be promoted or stunted by adjusting the hydrogel physiochemical properties. However, the release from such systems is often skewed towards burst-release or lengthy retention. To address this, we hypothesized that the overall magnitude of burst release could be adjusted by combining microgels with distinct properties and release behavior. Microgel suspensions were generated using a process we have termed on-chip polymer blending to yield composite suspensions of a range of microgel formulations. In this manner, we studied how alginate percentage and degradation relate to the release of lentivectors. Whereas changes in alginate percentage had a minimal impact on lentivector release, microgel degradation led to a 3-fold increase, and near complete release, over 10 days. Furthermore, by controlling the amount of degradable alginate present within microgels the relative rate of release can be adjusted. A degradable formulation of microgels was used to deliver vascular endothelial growth factor (VEGF)-encoding lentivectors in the chick chorioallantoic membrane (CAM) assay and yielded a proangiogenic response in comparison to the same lentivectors delivered in suspension. The utility of blended microgel suspensions may provide an especially appealing platform for the delivery of lentivectors or similarly sized therapeutics. Genetic therapeutics hold considerable potential for the treatment of diseases and disorders including ischemic cardiovascular diseases. To realize this potential, genetic vectors must be precisely and efficiently delivered to targeted regions of the body. However, conventional methods of delivery do not provide sufficient spatial and temporal control. Here, we demonstrate how alginate microgels provide a basis for developing systems for

  14. A NASBA on microgel-tethered molecular-beacon microarray for real-time microbial molecular diagnostics.

    Ma, Y; Dai, X; Hong, T; Munk, G B; Libera, M

    2016-12-19

    Despite their many advantages and successes, molecular beacon (MB) hybridization probes have not been extensively used in microarray formats because of the complicating probe-substrate interactions that increase the background intensity. We have previously shown that tethering to surface-patterned microgels is an effective means for localizing MB probes to specific surface locations in a microarray format while simultaneously maintaining them in as water-like an environment as possible and minimizing probe-surface interactions. Here we extend this approach to include both real-time detection together with integrated NASBA amplification. We fabricate small (∼250 μm × 250 μm) simplex, duplex, and five-plex assays with microarray spots of controllable size (∼20 μm diameter), position, and shape to detect bacteria and fungi in a bloodstream-infection model. The targets, primers, and microgel-tethered probes can be combined in a single isothermal reaction chamber with no post-amplification labelling. We extract total RNA from clinical blood samples and differentiate between Gram-positive and Gram-negative bloodstream infection in a duplex assay to detect RNA- amplicons. The sensitivity based on our current protocols in a simplex assay to detect specific ribosomal RNA sequences within total RNA extracted from S. aureus and E. coli cultures corresponds to tens of bacteria per ml. We furthermore show that the platform can detect RNA- amplicons from synthetic target DNA with 1 fM sensitivity in sample volumes that contain about 12 000 DNA molecules. These experiments demonstrate an alternative approach that can enable rapid and real-time microarray-based molecular diagnostics.

  15. Crystallization of DNA-coated colloids

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  16. Colloid migration in porous media

    Hunt, J.R.; McDowell-Boyer; Sitar, N.

    1985-01-01

    Retention of radionuclides for long periods near waste repositories depends upon multiple barriers, one of which is adsorption to immobile solid surfaces. Since small particles and colloidal matter have high adsorption capacities per unit mass and can be mobile in subsurface flows, colloidal transport of waste components requires analysis. Theories for predicting colloid migration through porous media have been developed in the filtration literature. The applicability of filtration theories for predicting particle and colloid transport. Emphasis is on suspended matter much smaller than pore sizes, where physical and chemical forces control migration rather than size dependent physical straining. In general, experimentally verifiable theories exist for particle filtration by clean media, and a sensitivity analysis is possible on particle and media properties and fluid flow rate. When particle aggregates accumulate within pores, media permeability decreases, resulting in flow field alteration and possible radionuclide isolation. An analysis of the limited experimental data available indicates that present theories cannot predict long-term colloid transport when permeability reduction occurs. The coupling of colloid attachment processes and the hydrologic flow processes requires more extensive laboratory field research than has currently been carried out. An emphasis on the fundamental mechanisms is necessary to enhance long-term predictability

  17. Effective electrostatic interactions among charged thermo-responsive microgels immersed in a simple electrolyte

    González-Mozuelos, P. [Departamento de Física, Cinvestav del I. P. N., Av. Instituto Politécnico Nacional 2508, Mexico, Distrito Federal, C. P. 07360 (Mexico)

    2016-02-07

    This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact description of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short

  18. High throughput generation and trapping of individual agarose microgel using microfluidic approach

    Shi, Yang; Gao, Xinghua; Chen, Longqing; Zhang, Min; Ma, Jingyun; Zhang, Xixiang; Qin, Jianhua

    2013-01-01

    Microgel is a kind of biocompatible polymeric material, which has been widely used as micro-carriers in materials synthesis, drug delivery and cell biology applications. However, high-throughput generation of individual microgel for on-site analysis in a microdevice still remains a challenge. Here, we presented a simple and stable droplet microfluidic system to realize high-throughput generation and trapping of individual agarose microgels based on the synergetic effect of surface tension and hydrodynamic forces in microchannels and used it for 3-D cell culture in real-time. The established system was mainly composed of droplet generators with flow focusing T-junction and a series of array individual trap structures. The whole process including the independent agarose microgel formation, immobilization in trapping array and gelation in situ via temperature cooling could be realized on the integrated microdevice completely. The performance of this system was demonstrated by successfully encapsulating and culturing adenoid cystic carcinoma (ACCM) cells in the gelated agarose microgels. This established approach is simple, easy to operate, which can not only generate the micro-carriers with different components in parallel, but also monitor the cell behavior in 3D matrix in real-time. It can also be extended for applications in the area of material synthesis and tissue engineering. © 2013 Springer-Verlag Berlin Heidelberg.

  19. Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering.

    Jiang, Yanjiao; Chen, Jing; Deng, Chao; Suuronen, Erik J; Zhong, Zhiyuan

    2014-06-01

    Hydrogels, microgels and nanogels have emerged as versatile and viable platforms for sustained protein release, targeted drug delivery, and tissue engineering due to excellent biocompatibility, a microporous structure with tunable porosity and pore size, and dimensions spanning from human organs, cells to viruses. In the past decade, remarkable advances in hydrogels, microgels and nanogels have been achieved with click chemistry. It is a most promising strategy to prepare gels with varying dimensions owing to its high reactivity, superb selectivity, and mild reaction conditions. In particular, the recent development of copper-free click chemistry such as strain-promoted azide-alkyne cycloaddition, radical mediated thiol-ene chemistry, Diels-Alder reaction, tetrazole-alkene photo-click chemistry, and oxime reaction renders it possible to form hydrogels, microgels and nanogels without the use of potentially toxic catalysts or immunogenic enzymes that are commonly required. Notably, unlike other chemical approaches, click chemistry owing to its unique bioorthogonal feature does not interfere with encapsulated bioactives such as living cells, proteins and drugs and furthermore allows versatile preparation of micropatterned biomimetic hydrogels, functional microgels and nanogels. In this review, recent exciting developments in click hydrogels, microgels and nanogels, as well as their biomedical applications such as controlled protein and drug release, tissue engineering, and regenerative medicine are presented and discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Polymer Conformations in Ionic Microgels in the Presence of Salt: Theoretical and Mesoscale Simulation Results

    Hideki Kobayashi

    2017-01-01

    Full Text Available We investigate the conformational properties of polymers in ionic microgels in the presence of salt ions by molecular dynamics simulations and analytical theory. A microgel particle consists of coarse-grained linear polymers, which are tetra-functionally crosslinked. Counterions and salt ions are taken into account explicitly, and charge-charge interactions are described by the Coulomb potential. By varying the charge interaction strength and salt concentration, we characterize the swelling of the polyelectrolytes and the charge distribution. In particular, we determine the amount of trapped mobile charges inside the microgel and the Debye screening length. Moreover, we analyze the polymer extension theoretically in terms of the tension blob model taking into account counterions and salt ions implicitly by the Debye–Hückel model. Our studies reveal a strong dependence of the amount of ions absorbed in the interior of the microgel on the electrostatic interaction strength, which is related to the degree of the gel swelling. This implies a dependence of the inverse Debye screening length κ on the ion concentration; we find a power-law increase of κ with the Coulomb interaction strength with the exponent 3 / 5 for a salt-free microgel and an exponent 1 / 2 for moderate salt concentrations. Additionally, the radial dependence of polymer conformations and ion distributions is addressed.

  1. In Situ Cross-Linking of Stimuli-Responsive Hemicellulose Microgels during Spray Drying

    2015-01-01

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼1–4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications. PMID:25630464

  2. High throughput generation and trapping of individual agarose microgel using microfluidic approach

    Shi, Yang

    2013-02-28

    Microgel is a kind of biocompatible polymeric material, which has been widely used as micro-carriers in materials synthesis, drug delivery and cell biology applications. However, high-throughput generation of individual microgel for on-site analysis in a microdevice still remains a challenge. Here, we presented a simple and stable droplet microfluidic system to realize high-throughput generation and trapping of individual agarose microgels based on the synergetic effect of surface tension and hydrodynamic forces in microchannels and used it for 3-D cell culture in real-time. The established system was mainly composed of droplet generators with flow focusing T-junction and a series of array individual trap structures. The whole process including the independent agarose microgel formation, immobilization in trapping array and gelation in situ via temperature cooling could be realized on the integrated microdevice completely. The performance of this system was demonstrated by successfully encapsulating and culturing adenoid cystic carcinoma (ACCM) cells in the gelated agarose microgels. This established approach is simple, easy to operate, which can not only generate the micro-carriers with different components in parallel, but also monitor the cell behavior in 3D matrix in real-time. It can also be extended for applications in the area of material synthesis and tissue engineering. © 2013 Springer-Verlag Berlin Heidelberg.

  3. In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying.

    Zhao, Weifeng; Nugroho, Robertus Wahyu N; Odelius, Karin; Edlund, Ulrica; Zhao, Changsheng; Albertsson, Ann-Christine

    2015-02-25

    Chemical cross-linking during spray drying offers the potential for green fabrication of microgels with a rapid stimuli response and good blood compatibility and provides a platform for stimuli-responsive hemicellulose microgels (SRHMGs). The cross-linking reaction occurs rapidly in situ at elevated temperature during spray drying, enabling the production of microgels in a large scale within a few minutes. The SRHMGs with an average size range of ∼ 1-4 μm contain O-acetyl-galactoglucomannan as a matrix and poly(acrylic acid), aniline pentamer (AP), and iron as functional additives, which are responsive to external changes in pH, electrochemical stimuli, magnetic field, or dual-stimuli. The surface morphologies, chemical compositions, charge, pH, and mechanical properties of these smart microgels were evaluated using scanning electron microscopy, IR, zeta potential measurements, pH evaluation, and quantitative nanomechanical mapping, respectively. Different oxidation states were observed when AP was introduced, as confirmed by UV spectroscopy and cyclic voltammetry. Systematic blood compatibility evaluations revealed that the SRHMGs have good blood compatibility. This bottom-up strategy to synthesize SRHMGs enables a new route to the production of smart microgels for biomedical applications.

  4. Modelling pH-Optimized Degradation of Microgel-Functionalized Polyesters

    Lisa Bürgermeister

    2016-01-01

    Full Text Available We establish a novel mathematical model to describe and analyze pH levels in the vicinity of poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate-co-N-vinylimidazole (VCL/AAEM/VIm microgel-functionalized polymers during biodegradation. Biodegradable polymers, especially aliphatic polyesters (polylactide/polyglycolide/polycaprolactone homo- and copolymers, have a large range of medical applications including delivery systems, scaffolds, or stents for the treatment of cardiovascular diseases. Most of those applications are limited by the inherent drop of pH level during the degradation process. The combination of polymers with VCL/AAEM/VIm-microgels, which aims at stabilizing pH levels, is innovative and requires new mathematical models for the prediction of pH level evaluation. The mathematical model consists of a diffusion-reaction PDE system for the degradation including reaction rate equations and diffusion of acidic degradation products into the vicinity. A system of algebraic equations is coupled to the degradation model in order to describe the buffering action of the microgel. The model is validated against the experimental pH-monitored biodegradation of microgel-functionalized polymer foils and is available for the design of microgel-functionalized polymer components.

  5. Patterned Colloidal Photonic Crystals.

    Hou, Jue; Li, Mingzhu; Song, Yanlin

    2018-03-01

    Colloidal photonic crystals (PCs) have been well developed because they are easy to prepare, cost-effective, and versatile with regards to modification and functionalization. Patterned colloidal PCs contribute a novel approach to constructing high-performance PC devices with unique structures and specific functions. In this review, an overview of the strategies for fabricating patterned colloidal PCs, including patterned substrate-induced assembly, inkjet printing, and selective immobilization and modification, is presented. The advantages of patterned PC devices are also discussed in detail, for example, improved detection sensitivity and response speed of the sensors, control over the flow direction and wicking rate of microfluidic channels, recognition of cross-reactive molecules through an array-patterned microchip, fabrication of display devices with tunable patterns, well-arranged RGB units, and wide viewing-angles, and the ability to construct anti-counterfeiting devices with different security strategies. Finally, the perspective of future developments and challenges is presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Removal of Chromophoric Dissolved Organic Matter and Heavy Metals in a River-Sea System: Role of Aquatic Microgel Formation

    Shiu, R. F.; Lee, C. L.

    2016-12-01

    Dissolved organic carbon (DOC) polymers are complex and poorly understood mixture of organic macromolecules in environment system. Portions of these polymers spontaneously form microgels that play key roles in many biogeochemical reactions, including mediating aggregation processes, element cycling, and pollutant mobility. However, the detailed interaction of microgels-heterogeneous materials in aquatic systems is still lacking. Insight into the interaction between surrounding materials and microgels from different types of aquatic DOC polymers are extremely important, as it is crucial in determining the fate and transport of these materials. Here, we use riverine and marine DOC polymers to examine their aggregation behavior, and to evaluate the roles of microgel formation in scavenging of chromophoric dissolved organic matter (CDOM) and heavy metals in a river-sea system. Our results indicate that riverine and marine microgels did not exhibit too much difference in size ( 3-5 μm) and self-assembly curve; however, the assembly effectiveness ([microgel]/DOC) of marine samples was much higher than riverine. Instead of concentration of DOC, other factors such as types and sources of DOC polymers may control the microgel abundance in aquatic environments. After filtering water samples (microgels removed), the CDOM and selected metals (Cu, Ni, Mn) in the filtrate were quantified. CDOM and metals were concurrently removed to an extent via DOC polymer re-aggregation, which also suggested that the microgels had the sequestering capability in CDOM and metals. This finding provides an alternative route for CDOM and heavy metals removal from the water column. As such the process of re-aggregation into microgels should then be considered besides traditional phase partitioning in the assessment of the ecological risk and fate of pollutant.

  7. Investigation on the structure of temperature-responsive N-isopropylacrylamide microgels containing a new hydrophobic crosslinker

    G. Roshan Deen

    2015-12-01

    Full Text Available Temperature-responsive poly(N-isopropylacrylamide microgels crosslinked with a new hydrophobic chemical crosslinker was prepared by surfactant-mediated precipitation emulsion polymerization. The temperature-responsive property of the microgel and the influence of the crosslinker on the swelling behaviour was studied systematically by light scattering and small-angle X-ray scattering (SAXS. The radius of gyration (Rg and the hydrodynamic radius (Rh of the microgels decreased with increase in temperature due to the volume-phase transition from a swollen to a collapsed state. The ratio of Rg/Rh below the transition temperature was lower than that of hard-spheres due to the lower crosslinking density of the microgels. The SAXS data were analysed by a model in which the microgels were modelled as core-shell particles with a graded interface. The model at intermediate temperatures included a central core and a more diffuse outer layer describing pending polymer chains with a low crosslinking density. In the fully swollen state, the microgels were modelled with a single component with a broad graded surface. In the collapsed state, they were modelled as homogeneous and relatively compact particles. The polymer volume fraction inside the microgel was also derived based on the model and was found to increase with increase in the temperature as a result of collapse of the microgel to compact particles. The polymer volume fraction in the core of the microgel in the collapsed state was about 60% which is higher than that of similar microgels crosslinked with hydrophilic and flexible crosslinkers.

  8. Anisotropic Model Colloids

    van Kats, C.M.

    2008-01-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are

  9. Colloid Transport and Retention

    Yuan, Hao; Shapiro, Alexander

    2012-01-01

    related to historical prospective, synthesis, characterization, theoretical modeling and application of unique class of colloidal materials starting from colloidal gold to coated silica colloid and platinum, titania colloids. This book is unique in its design, content, providing depth of science about...

  10. EDITORIAL: Colloidal suspensions Colloidal suspensions

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  11. Fabrication of antibody-loaded microgels using microfluidics and thiol-ene photoclick chemistry.

    Gregoritza, Manuel; Abstiens, Kathrin; Graf, Moritz; Goepferich, Achim M

    2018-06-01

    Reducing burst effects, providing controlled release, and safeguarding biologics against degradation are a few of several highly attractive applications for microgels in the field of controlled release. However, the incorporation of proteins into microgels without impairing stability is highly challenging. In this proof of concept study, the combination of microfluidics and thiol-ene photoclick chemistry was evaluated for the fabrication of antibody-loaded microgels with narrow size distribution. Norbornene-modified eight-armed poly(ethylene glycol) with an average molecular mass of 10,000 Da, 20,000 Da, or 40,000 Da were prepared as macromonomers for microgel formation. For functionalization, either hydrolytically cleavable ester or stable amide bonds were used. A microfluidic system was employed to generate precursor solution droplets containing macromonomers, the cross-linker dithiothreitol and the initiator Eosin-Y. Irradiation with visible light was used to trigger thiol-ene reactions which covalently cross-linked the droplets. For all bond-types, molecular masses, and concentrations gelation was very rapid (<20 s) and a plateau for the complex shear modulus was reached after only 5 min. The generated microgels had a rod-like shape and did not show considerable cellular toxicity. Stress conditions during the fabrication process were simulated and it could be shown that fabrication did not impair the activity of the model proteins lysozyme and bevacizumab. It was confirmed that the average hydrogel network mesh size was similar or smaller than the hydrodynamic diameter of bevacizumab which is a crucial factor for restricting diffusion and delaying release. Finally, microgels were loaded with bevacizumab and a sustained release over a period of 30 ± 4 and 47 ± 7 days could be achieved in vitro. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Classifying and Analyzing 3d Cell Motion in Jammed Microgels

    Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas

    Soft granular polyelectrolyte microgels swell in liquid cell growth media to form a continuous elastic solid that can easily transition between solid to fluid state under a low shear stress. Such Liquid-like solids (LLS) have recently been used to create 3D cellular constructs as well as to support, culture and harvest cells in 3D. Current understanding of cell migration mechanics in 3D was established from experiments performed in natural and synthetic polymer networks. Spatial variation in network structure and the transience of degradable gels limit their usefulness in quantitative cell mechanics studies. By contrast, LLS growth media approximates a homogeneous continuum, enabling tractable cell mechanics measurements to be performed in 3D. Here, we introduce a process to understand and classify cytotoxic T cell motion in 3D by studying cellular motility in LLS media. General classification of T cell motion can be achieved with a very traditional statistical approach: the cell's mean squared displacement (MSD) as a function of delay time. We will also use Langevin approaches combined with the constitutive equations of the LLS medium to predict the statistics of T cell motion. National Science Foundation under Grant No. DMR-1352043.

  13. Role of microgel formation in scavenging of chromophoric dissolved organic matter and heavy metals in a river-sea system.

    Shiu, Ruei-Feng; Lee, Chon-Lin

    2017-04-15

    We use riverine and marine dissolved organic carbon (DOC) polymers to examine their aggregation behavior, and to evaluate the roles of microgel formation in scavenging of chromophoric dissolved organic matter (CDOM) and heavy metals in a river-sea system. Our results indicate that riverine and marine microgels did not exhibit very much difference in size and self-assembly curve; however, the assembly effectiveness ([microgel]/DOC) of marine samples was much higher than riverine. Instead of concentration of DOC, other factors such as types and sources of DOC polymers may control the microgel abundance in aquatic environments. After filtering water samples (microgels removed), the CDOM and selected metals (Cu, Ni, Mn) in the filtrate were quantified. CDOM and metals were concurrently removed to an extent via DOC polymer re-aggregation, which also suggested that the microgels had sequestering capability in CDOM and metals. This finding provides an alternative route for CDOM and heavy metals removal from the water column. As such the process of re-aggregation into microgels should then be considered besides traditional phase partitioning in the assessment of the ecological risk and fate of hazardous materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Two-dimensional assemblies of soft repulsive colloids confined at fluid interfaces

    Isa, L.; Buttinoni, I.; Fernandez-Rodriguez, M. A.; Vasudevan, S. A.

    2017-07-01

    Colloidal systems are an excellent example of a materials class for which interrogating fundamental questions leads to answers of direct applied relevance. In our group, we in particular focus on two-dimensional assemblies of micro- and nano-particles confined at the interface between two fluids, e.g., oil-water. Here, we review our work on systems interacting through soft repulsive forces of different origin, i.e., electrostatic and steric. By starting from the paradigmatic case of charged colloids at an interface, we show how they are both offering great opportunities as model systems to investigate the structural and mechanical response of materials and as versatile patterning tools for surface nanostructuring. We then move to the case of deformable particles interacting via steric contacts. We first examine microgel particles, which we also demonstrate as very promising models for structural investigations and robust elements for tunable nanolithography. We conclude by briefly discussing the case of particles comprising a hard inorganic core and a deformable polymer shell, which maintain some of the advantageous features of microgel particles, but also enable the realization of two-dimensional functional materials. This article offers our perspective on a very active field of research, where many interesting developments are expected in the near future. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  15. Glass transition and aging in dense suspensions of thermosensitive microgel particles

    Purnomo, E.H; van den Ende, Henricus T.M.; Vanapalli Veera, V.S.A.R.; Vanapalli, Srinivas; Mugele, Friedrich Gunther

    2008-01-01

    We report a thermosensitive microgel suspension that can be tuned reversibly between the glass state at low temperature and the liquid state at high temperature. Unlike hard spheres, we find that the glass transition for these suspensions is governed by both the volume fraction and the softness of

  16. Poly (N-isopropylacrylamide Microgel-Based Optical Devices for Sensing and Biosensing

    Molla R. Islam

    2014-05-01

    Full Text Available Responsive polymer-based materials have found numerous applications due to their ease of synthesis and the variety of stimuli that they can be made responsive to. In this review, we highlight the group’s efforts utilizing thermoresponsive poly (N-isopropylacrylamide (pNIPAm microgel-based optical devices for various sensing and biosensing applications.

  17. Poly(N-isopropylacrylamide-co-methacrylic acid microgel stabilized copper nanoparticles for catalytic reduction of nitrobenzene

    Farooqi Zahoor H.

    2015-09-01

    Full Text Available Poly(N-isopropylacrylamide-co-methacrylic acid microgels [p(NIPAM-co-MAAc] were synthesized by precipitation polymerization of N-isopropylacrylamide and methacrylic acid in aqueous medium. These microgels were characterized by dynamic light scattering and Fourier transform infrared spectroscopy. These microgels were used as micro-reactors for in situ synthesis of copper nanoparticles using sodium borohydride (NaBH4 as reducing agent. The hybrid microgels were used as catalysts for the reduction of nitrobenzene in aqueous media. The reaction was performed with different concentrations of cat­alyst and reducing agent. A linear relationship was found between apparent rate constant (kapp and amount of catalyst. When the amount of catalyst was increased from 0.13 to 0.76 mg/mL then kapp was increased from 0.03 to 0.14 min-1. Activation parameters were also determined by performing reaction at two different temperatures. The catalytic process has been discussed in terms of energy of activation, enthalpy of activation and entropy of activation. The synthesized particles were found to be stable even after 14 weeks and showed catalytic activity for the reduction of nitrobenzene.

  18. Microbial Activation of Bacillus subtilis-Immobilized Microgel Particles for Enhanced Oil Recovery.

    Son, Han Am; Choi, Sang Koo; Jeong, Eun Sook; Kim, Bohyun; Kim, Hyun Tae; Sung, Won Mo; Kim, Jin Woong

    2016-09-06

    Microbially enhanced oil recovery involves the use of microorganisms to extract oil remaining in reservoirs. Here, we report fabrication of microgel particles with immobilized Bacillus subtilis for application to microbially enhanced oil recovery. Using B. subtilis isolated from oil-contaminated soils in Myanmar, we evaluated the ability of this microbe to reduce the interfacial tension at the oil-water interface via production of biosurfactant molecules, eventually yielding excellent emulsification across a broad range of the medium pH and ionic strength. To safely deliver B. subtilis into a permeable porous medium, in this study, these bacteria were physically immobilized in a hydrogel mesh of microgel particles. In a core flooding experiment, in which the microgel particles were injected into a column packed with silica beads, we found that these particles significantly increased oil recovery in a concentration-dependent manner. This result shows that a mesh of microgel particles encapsulating biosurfactant-producing microorganisms holds promise for recovery of oil from porous media.

  19. Microgels for long-term storage of vitamins for extended spaceflight

    Schroeder, R.

    2018-02-01

    Biocompatible materials that can encapsulate large amounts of nutrients while protecting them from degrading environmental influences are highly desired for extended manned spaceflight. In this study, alkaline-degradable microgels based on poly(N-vinylcaprolactam) (PVCL) were prepared and analysed with their regard to stabilise retinol which acts as a model vitamin (vitamin A1). It was investigated whether the secondary crosslinking of the particles with a polyphenol can prevent the isomerisation of biologically active all-trans retinol to biologically inactive cis-trans retinol. Both loading with retinol and secondary crosslinking of the particles was performed at room temperature to prevent an early degradation of the vitamin. This study showed that PVCL microgels drastically improve the water solubility of hydrophobic retinol. Additionally, it is demonstrated that the highly crosslinked microgel particles in aqueous solution can be utilised to greatly retard the light- and temperature-induced isomerisation process of retinol by a factor of almost 100 compared to pure retinol stored in ethanol. The use of microgels offers various advantages over other drug delivery systems as they exhibit enhanced biocompatibility and superior aqueous solubility.

  20. Thermosensitive microgels of poly-n-isopropylacrylamide for drug carriers - practical approach to synthesis

    Musial, W.; Pluta, J.; Michálek, Jiří

    2015-01-01

    Roč. 72, č. 3 (2015), s. 409-422 ISSN 0001-6837 Institutional support: RVO:61389013 Keywords : microgel * N-isopropylacrylamide * emulsion polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.877, year: 2015 http://www.ptfarm.pl/pub/File/Acta_Poloniae/2015/3/409.pdf

  1. Preparation and characterization of oxidized starch polymer microgels for encapsulation and controlled release of functional ingredients

    Li, Y.; Vries, R. de; Slaghek, T.; Timmermans, J.; Cohen Stuart, M.A.; Norde, W.

    2009-01-01

    A novel biocompatible and biodegradable microgel system has been developed for controlled uptake and release of especially proteins. It contains TEMPO-oxidized potato starch polymers, which are chemically cross-linked by sodium trimetaphosphate (STMP). Physical chemical properties have been

  2. Hyaluronan microgel as a potential carrier for protein sustained delivery by tailoring the crosslink network

    Luo, Chunhong [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Zhao, Jianhao, E-mail: jhzhao@jnu.edu.cn [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China); Tu, Mei; Zeng, Rong; Rong, Jianhua [Department of Materials Science and Engineering, College of Science and Engineering, Jinan University, Guangzhou 510632 (China); Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 510632 (China)

    2014-03-01

    Hyaluronan (HA) microgels with different crosslink network, i.e. HGPs-1, HGPs-1.5, HGPs-3, HGPs-6 and HGPs-15, were synthesized using divinyl sulfone (DVS) as the crosslinker in an inverse microemulsion system for controlling the sustained delivery of bovine serum albumin (BSA). With increasing the crosslinker content, the average particle size slightly increased from 1.9 ± 0.3 μm to 3.6 ± 0.5 μm by dynamic laser scattering analysis. However, the crosslinker content had no significant effect on the morphology of HA microgels by scanning and transmission electron microscopes. Fourier transform infrared spectroscopy and elemental analysis proved more sulfur participated in the crosslink reaction when raising the crosslinker amount. The water swelling test confirmed the increasing crosslink density with the crosslinker content by calculating the average molecular weight between two crosslink points to be 8.25 ± 2.51 × 10{sup 5}, 1.26 ± 0.43 × 10{sup 5}, 0.96 ± 0.09 × 10{sup 5}, 0.64 ± 0.03 × 10{sup 5}, and 0.11 ± 0.01 × 10{sup 5} respectively. The degradation of HA microgels by hyaluronidase slowed down by enhancing the crosslink density, only about 5% of HGPs-15 was degraded as opposed to over 90% for HGPs-1. BSA loading had no obvious influence on the surface morphology of HA microgels but seemed to induce their aggregation. The increase of crosslink density decreased the BSA loading capacity but facilitated its long-term sustained delivery. When the molar ratio of DVS to repeating unit of HA reached 3 or higher, similar delivery profiles were obtained. Among all these HA microgels, HGPs-3 was the optimal carrier for BSA sustained delivery in this system because it possessed both high BSA loading capacity and long-term delivery profile simultaneously. - Highlights: • HA microgels with different crosslink densities were prepared. • The crosslinker content had little effect on the morphology and size of HA microgels. • The crosslink density

  3. Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment.

    Liu, Guoqiang; Liu, Zhilu; Li, Na; Wang, Xiaolong; Zhou, Feng; Liu, Weimin

    2014-11-26

    We report the fabrication of poly(3-sulfopropyl methacrylate potassium salt) (PSPMK) brushes grafted poly(N-isopropylacrylamide) (PNIPAAm) microgels and their potential as artificial synovial fluid for biomimetic aqueous lubrication and arthritis treatment. The negatively charged PSPMK brushes and thermosensitive PNIPAAm microgels play water-based hydration lubrication and temperature-triggered drug release, respectively. Under soft friction pairs, an ultralow coefficient of friction was achieved, while the hairy thermosensitive microgels showed a desirable temperature-triggered drugs release performance. Such a soft charged hairy microgel offers great possibility for designing intelligent synovial fluid. What is more, the combination of lubrication and drug loading capabilities enables the large clinical potential of novel soft hairy nanoparticles as synthetic joint lubricant fluid in arthritis treatment.

  4. Catalysis by metallic nanoparticles in solution: Thermosensitive microgels as nanoreactors

    Roa, Rafael; Angioletti-Uberti, Stefano; Lu, Yan; Dzubiella, Joachim; Piazza, Francesco; Ballauff, Matthias

    2018-01-01

    Metallic nanoparticles have been used as catalysts for various reactions, and the huge literature on the subject is hard to overlook. In many applications, the nanoparticles must be affixed to a colloidal carrier for easy handling during catalysis. These "passive carriers" (e.g., dendrimers) serve for a controlled synthesis of the nanoparticles and prevent coagulation during catalysis. Recently, hybrids from nanoparticles and polymers have been developed that allow us to change the catalytic ...

  5. Characterization of Complex Colloidal Suspensions

    Seaman, J. C.; Guerin, M.; Jackson, B. P.; Ranville, J. M.

    2003-04-01

    Surface chemical reactions play a major role in controlling contaminant fate and transport in the subsurface environment. Recent field and laboratory evidence suggests that mobile soil and groundwater colloids may facilitate the migration of sparingly soluble groundwater contaminants. Colloidal suspensions collected in the field or generated in laboratory column experiments tend to be fairly dilute in nature and comprised of relatively small particulates (reserved for studying ideal systems to the characterization of mobile colloids. However, many of these analytical techniques, including total/selective dissolution methods, dynamic light scattering, micro-electrophoresis, streaming potential, and even scanning electron microscopy (SEM), can be biased in of larger size fractions, and therefore, extremely sensitive to sampling, storage, and fractionation artifacts. In addition, surface modifiers such as sorbed oxides or organics can alter particulate appearance, composition, and behavior when compared to synthetic analogues or mineral standards. The current presentation will discuss the limitations and inherent biases associated with a number of analytical characterization techniques that are commonly applied to the study of mobile soil and groundwater colloids, including field flow fractionation (FFF) and acoustic based methods that have only recently become available.

  6. Saturated Zone Colloid Transport

    H. S. Viswanathan

    2004-01-01

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R col is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R col that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k att , and detachment rate constants, k det , of colloids to the fracture surface have been measured for the fractured volcanics, and separate R col uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly

  7. Quantitative uptake of colloidal particles by cell cultures

    Feliu, Neus [Department of Physics, Philipps University Marburg, Marburg (Germany); Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm (Sweden); Hühn, Jonas; Zyuzin, Mikhail V.; Ashraf, Sumaira; Valdeperez, Daniel; Masood, Atif [Department of Physics, Philipps University Marburg, Marburg (Germany); Said, Alaa Hassan [Department of Physics, Philipps University Marburg, Marburg (Germany); Physics Department, Faculty of Science, South Valley University (Egypt); Escudero, Alberto [Department of Physics, Philipps University Marburg, Marburg (Germany); Instituto de Ciencia de Materiales de Sevilla, CSIC — Universidad de Sevilla, Seville (Spain); Pelaz, Beatriz [Department of Physics, Philipps University Marburg, Marburg (Germany); Gonzalez, Elena [Department of Physics, Philipps University Marburg, Marburg (Germany); University of Vigo, Vigo (Spain); Duarte, Miguel A. Correa [University of Vigo, Vigo (Spain); Roy, Sathi [Department of Physics, Philipps University Marburg, Marburg (Germany); Chakraborty, Indranath [Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, IL (United States); Lim, Mei L.; Sjöqvist, Sebastian [Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm (Sweden); Jungebluth, Philipp [Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg (Germany); Parak, Wolfgang J., E-mail: wolfgang.parak@physik.uni-marburg.de [Department of Physics, Philipps University Marburg, Marburg (Germany); CIC biomaGUNE, San Sebastian (Spain)

    2016-10-15

    The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids

  8. CO2-Switchable Membranes Prepared by Immobilization of CO2-Breathing Microgels.

    Zhang, Qi; Wang, Zhenwu; Lei, Lei; Tang, Jun; Wang, Jianli; Zhu, Shiping

    2017-12-20

    Herein, we report the development of a novel CO 2 -responsive membrane system through immobilization of CO 2 -responsive microgels into commercially available microfiltration membranes using a method of dynamic adsorption. The microgels, prepared from soap-free emulsion polymerization of CO 2 -responsive monomer 2-(diethylamino)ethyl methacrylate (DEA), can be reversibly expanded and shrunken upon CO 2 /N 2 alternation. When incorporated into the membranes, this switching behavior was preserved and further led to transformation between microfiltration and ultrafiltration membranes, as indicated from the dramatic changes on water flux and BSA rejection results. This CO 2 -regulated performance switching of membranes was caused by the changes of water transportation channel, as revealed from the dynamic water contact angle tests and SEM observation. This work represents a simple yet versatile strategy for making CO 2 -responsive membranes.

  9. Structural and interaction parameters of thermosensitive native α-elastin biohybrid microgel

    Balaceanu, Andreea; Singh, Smriti; Demco, Dan E.; Möller, Martin

    2014-09-01

    The structural and water interaction parameters for native, α-elastin biohybrid microgel crosslinked with hydrophilic and hydrophobic crosslinkers are obtained from the volume phase transition temperature behaviour, 1H high-resolution magic-angle sample spinning transverse magnetization relaxation NMR, and modified Flory-Rehner swelling theory. Firstly, considering a homogeneous morphology the number of subchains in the biohybrid microgel, the residual water in deswollen state as a function of crosslink density and the temperature dependence of the Flory biopolymer-water interaction parameters are reported for the biohybrid microgels prepared with hydrophilic (PEG-DGE) and hydrophobic (BS3) crosslinkers. The Flory-Rehner classical approach is subsequently modified taking into account the heterogeneities observed by NMR transverse relaxation measurements. Two differently mobile regions are determined, a hydrophobic domain and a crosslinking domain with relative reduced mobility. For the first time, the influence of chain mobility on the Flory interaction parameter is investigated through a modified Flory state equation. The contributions of amino-acids located in the hydrophobic and crosslinking domains in the polypeptide sequence are separated while analyzing the biopolymer-water interaction.

  10. On prilled Nanotubes-in-Microgel Oral Systems for protein delivery.

    de Kruif, Jan Kendall; Ledergerber, Gisela; Garofalo, Carla; Fasler-Kan, Elizaveta; Kuentz, Martin

    2016-04-01

    Newly discovered active macromolecules are highly promising for therapy, but poor bioavailability hinders their oral use. Microencapsulation approaches, such as protein prilling into microspheres, may enable protection from gastrointestinal (GI) enzymatic degradation. This would increase bioavailability mainly for local delivery to GI lumen or mucosa. This work's purpose was to design a novel architecture, namely a Nanotubes-in-Microgel Oral System, by prilling for protein delivery. Halloysite nanotubes (HNT) were selected as orally acceptable clay particles and their lumen was enlarged by alkaline etching. This chemical modification increased the luminal volume to a mean of 216.3 μL g(-1) (+40.8%). After loading albumin as model drug, the HNT were entrapped in microgels by prilling. The formation of Nanoparticles-in-Microsphere Oral System (NiMOS) yielded entrapment efficiencies up to 63.2%. NiMOS shape was spherical to toroidal, with a diameter smaller than 320 μm. Release profiles depended largely on the employed system and HNT type. Protein stability was determined throughout prilling and after in vitro enzymatic degradation. Prilling did not harm protein structure, and NiMOS demonstrated higher enzymatic protection than pure nanotubes or microgels, since up to 82% of BSA remained unscathed after in vitro digestion. Therefore, prilled NiMOS was shown to be a promising and flexible multi-compartment system for oral (local) macromolecular delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Analysis of colloid transport

    Travis, B.J.; Nuttall, H.E.

    1985-01-01

    The population balance methodology is described and applied to the transport and capture of polydispersed colloids in packed columns. The transient model includes particle growth, capture, convective transport, and dispersion. We also follow the dynamic accumulation of captured colloids on the solids. The multidimensional parabolic partial differential equation was solved by a recently enhanced method of characteristics technique. This computational technique minimized numerical dispersion and is computationally very fast. The FORTRAN 77 code ran on a VAX-780 in less than a minute and also runs on an IBM-AT using the Professional FORTRAN compiler. The code was extensively tested against various simplified cases and against analytical models. The packed column experiments by Saltelli et al. were re-analyzed incorporating the experimentally reported size distribution of the colloid feed material. Colloid capture was modeled using a linear size dependent filtration function. The effects of a colloid size dependent filtration factor and various initial colloid size distributions on colloid migration and capture were investigated. Also, we followed the changing colloid size distribution as a function of position in the column. Some simple arguments are made to assess the likelihood of colloid migration at a potential NTS Yucca Mountain waste disposal site. 10 refs., 3 figs., 1 tab

  12. Colloid process engineering

    Peukert, Wolfgang; Rehage, Heinz; Schuchmann, Heike

    2015-01-01

    This book deals with colloidal systems in technical processes and the influence of colloidal systems by technical processes. It explores how new measurement capabilities can offer the potential for a dynamic development of scientific and engineering, and examines the origin of colloidal systems and its use for new products. The future challenges to colloidal process engineering are the development of appropriate equipment and processes for the production and obtainment of multi-phase structures and energetic interactions in market-relevant quantities. The book explores the relevant processes and for controlled production and how they can be used across all scales.

  13. UZ Colloid Transport Model

    McGraw, M.

    2000-01-01

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  14. Synthesis, characterization and fabrication of copper nanoparticles in N-isopropylacrylamide based co-polymer microgels for degradation of p-nitrophenol

    Farooqi Zahoor H.

    2015-03-01

    Full Text Available Poly(N-isopropylacrylamide-co-acrylic acid [P(NIPAM-co-AAc] microgels were synthesized by precipitation polymerization. Copper nanoparticles were successfully fabricated inside the microgels by in-situ reduction of copper ions in an aqueous medium. The microgels were characterized by Fourier Transform Infrared Spectroscopy (FT-IR and Dynamic Light Scattering (DLS. Hydrodynamic radius of P(NIPAM-co-AAc microgel particles increased with an increase in pH in aqueous medium at 25 °C. Copper-poly(N-isopropylacrylamide-co-acrylic acid [Cu-P(NIPAM-co-AAc] hybrid microgels were used as a catalyst for the reduction of 4-nitrophenol (4-NP. Effect of temperature, concentration of sodium borohydride (NaBH4 and catalyst dosage on the value of apparent rate constant (kapp for catalytic reduction of 4-NP in the presence of Cu-P(NIPAM-co-AAc hybrid microgels were investigated by UV-Vis spectrophotometry. It was found that the value of kapp for catalytic reduction of 4-NP in the presence of Cu-P(NIPAM-co-AAc hybrid microgel catalyst increased with an increase in catalyst dosage, temperature and concentration of NaBH4 in aqueous medium. The results were discussed in terms of diffusion of reactants towards catalyst surface and swelling-deswelling of hybrid microgels.

  15. Interface colloidal robotic manipulator

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  16. Saturated Zone Colloid Transport

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  17. Grimsel colloid exercise

    Degueldre, C.; Longworth, G.; Vilks, P.

    1989-11-01

    The Grimsel Colloid Exercise was an intercomparison exercise which consisted of an in situ sampling phase followed by a colloid characterisation step. The goal of this benchmark exercise, which involved 12 laboratories, was to evaluate both sampling and characterisation techniques with emphasis on the colloid specific size distribution. The sampling phase took place at the Grimsel Test Site between February 1 and 13, 1988 and the participating groups produced colloid samples using the following methods: 1. Cross-flow ultrafiltration with production of membranes loaded with colloids. 2. Tangential diaultrafiltration and production of colloid concentrates. 3. Filtrates produced by each group. 4. Unfiltered water was also collected by PSI in glass bottles, under controlled anaerobic conditions, and by the other sampling groups in various plastic bottles. In addition, on-line monitoring of pH, χ, [O-2] and T of the water and of [O-2] in the atmosphere of the sampling units was carried out routinely. All samples were shipped according to the CoCo Club scheme for characterisation, with emphasis on the size distribution. The exercise differentiates the colloid samples produced on site from those obtained after transfer of the fluid samples to the laboratories. The colloid concentration and size distribution can be determined by scanning electron microscopy (SEM), gravimetry (GRAV), chemical analysis of fluid samples after micro/ultrafiltration (MF/UF) and by transmission single particle counting (PC). The colloid concentration can also be evaluated by transmission electron microscopy (TEM), static and dynamic light scattering (SLS,DLS) and by laser-induced photoacoustic spectroscopy (LPAS). The results are discussed on the basis of the detection limit, lateral resolution and counting conditions of the technique (precision) as well as sample preparation, artefact production and measurement optimisation (accuracy). A good agreement between size distribution results was

  18. Clusters in attractive colloids

    Coniglio, A [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cintia 80126 Naples (Italy); Arcangelis, L de [Dipartimento di Ingegneria dell' Informazione and CNISM II Universita di Napoli, Aversa (CE) (Italy); Candia, A de [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cintia 80126 Naples (Italy); Gado, E Del [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cintia 80126 Naples (Italy); Fierro, A [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cintia 80126 Naples (Italy); Sator, N [Laboratoire de Physique Theorique de la Matiere Condensee, Universite Pierre et Marie Curie-Paris6, UMR (CNRS) 7600 Case 121, 4 Place Jussieu 75252 Paris Cedex 05 (France)

    2006-09-13

    We discuss how the anomalous increase of the viscosity in colloidal systems with short-range attraction can be related to the formation of long-living clusters. Based on molecular dynamics and Monte Carlo numerical simulations of different models, we propose a similar picture for colloidal gelation at low and intermediate volume fractions. On this basis, we analyze the distinct role played by the formation of long-living bonds and the crowding of the particles in the slow dynamics of attractive colloidal systems.

  19. Colloids in Biotechnology

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  20. Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers

    Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto; Barker, Thomas H.

    2017-01-01

    In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels.

  1. Engineering complex tissue-like microgel arrays for evaluating stem cell differentiation

    Guermani, Enrico; Shaki, Hossein; Mohanty, Soumyaranjan

    2016-01-01

    Development of tissue engineering scaffolds with native-like biology and microarchitectures is a prerequisite for stem cell mediated generation of off-the-shelf-tissues. So far, the field of tissue engineering has not full-filled its grand potential of engineering such combinatorial scaffolds...... for engineering functional tissues. This is primarily due to the many challenges associated with finding the right microarchitectures and ECM compositions for optimal tissue regeneration. Here, we have developed a new microgel array to address this grand challenge through robotic printing of complex stem cell...... platform will be used for high-throughput identification of combinatorial and native-like scaffolds for tissue engineering of functional organs....

  2. Liquid crystal colloids

    Muševič, Igor

    2017-01-01

    This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which de...

  3. Liquid Crystal Colloids

    Smalyukh, Ivan I.

    2018-03-01

    Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.

  4. Filtration of polydispersed colloids

    Nuttall, H.E.

    1988-01-01

    In this study, the dynamic microscopic form of the population balance model is applied to the problem of polydispersed particle capture in one spatial diffusion. This mathematical modeling approach can be applied to the difficult and potentially important problem of particulate (radiocolloid) transport in the groundwater surrounding a nuclear waste disposal site. To demonstrate the population balance methodology, the equations were developed and used to investigate transport and capture of polydispersed colloids in packed columns. Modeling simulations were compared to experimental column data. The multidimensional form of the population balance equation was used to analyze the transport and capture of polydispersed colloids. A numerical model was developed to describe transport of polydispersed colloids through a one-dimensional porous region. The effects of various size distributions were investigated in terms of capture efficiency. For simulating the column data, it was found by trial and error that as part of the population balance model a linear size dependent filtration function gave a good fit to the measured colloid concentration profile. The effects of constant versus size dependent filtration coefficients were compared and the differences illustrated by the calculated colloid profile within the column. Also observed from the model calculations was the dramatically changing liquid-phase colloid-size distribution which was plotted as a function of position down the column. This modeling approach was excellent for describing and understanding microscopic filtration in porous media

  5. Polyester textile functionalization through incorporation of pH/thermo-responsive microgels. Part II: polyester functionalization and characterization

    Glampedaki, P.; Calvimontes, A.; Dutschk, Victoria; Warmoeskerken, Marinus

    2012-01-01

    A new approach to functionalize the surface of polyester textiles is described in this study. Functionalization was achieved by incorporating pH/temperature-responsive polyelectrolyte microgels into the textile surface layer using UV irradiation. The aim of functionalization was to regulate

  6. Centering Single Cells in Microgels via Delayed Crosslinking Supports Long-Term 3D Culture by Preventing Cell Escape

    Kamperman, Tom; Henke, Sieger; Visser, Claas Willem; Karperien, Marcel; Leijten, Jeroen

    2017-01-01

    Single-cell-laden microgels support physiological 3D culture conditions while enabling straightforward handling and high-resolution readouts of individual cells. However, their widespread adoption for long-term cultures is limited by cell escape. In this work, it is demonstrated that cell escape is

  7. Actinide colloid generation in groundwater

    Kim, J.I.

    1990-05-01

    The progress made in the investigation of actinide colloid generation in groundwaters is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudocolloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC project MIRAGE II, particularly, to research area: complexation and colloids. (orig.)

  8. Synthesis and characterization of magnetite nanoparticles encapsulated in a bovine hemoglobin microgel

    Mody, Puja J.

    This study shows the successful synthesis and characterization of a novel material that is composed of iron oxide particles within a protein gel. During the synthesis, bovine hemoglobin surrounds the forming Fe 3O4 nanoparticles, resulting in a biocompatible hydrogel, which has the potential to be used as a targeted drug delivery vehicle and as an MRI contrast agent. The structure, size, and thermal stability of these hydrogel complexes were analyzed using a range of techniques. Powder x-ray diffraction and infrared spectroscopy indicated the presence of Fe3O 4 and hemoglobin without significant interactions between particles in the solid state. Microscopy analysis determined the average size of these microgel complexes to be 4-9 mum2 in area (˜2-3 mum in diameter), and DSC analysis indicated that none of the microgels exhibited a denaturing or unfolding transition below 54°C regardless of the iron: hemoglobin ratio. Initial testing has been performed on the ability of these materials to act as magnetically activated drug delivery vehicles. Other pertinent tests (for magnetic properties and MRI applicability) are currently proceeding at external labs.

  9. Near-Infrared-Light-Responsive Magnetic DNA Microgels for Photon- and Magneto-Manipulated Cancer Therapy.

    Wang, Yitong; Wang, Ling; Yan, Miaomiao; Dong, Shuli; Hao, Jingcheng

    2017-08-30

    Functional DNA molecules have been introduced into polymer-based nanocarrier systems to incorporate chemotherapy drugs for cancer therapy. Here is the first report of dual-responsive microgels composed of a core of Au nanorods and a shell of magnetic ionic liquid and DNA moieties in the cross-linking network simultaneously, as effective drug delivery vectors. TEM images indicated a magnetic polymer shell has an analogous "doughnut" shape which loosely surround the AuNRs core. When irradiated with a near-infrared-light (near-IR) laser, Au nanorods are the motors which convert the light to heat, leading to the release of the encapsulated payloads with high controllability. DNA acts not only as a cross-linker agent, but also as a gatekeeper to regulate the release of drugs. The internalization study and MTT assay confirm that these core-shell DNA microgels are excellent candidates which can enhance the cytotoxicity of cancer cells controlled by near-IR laser and shield the high toxicity of chemotherapeutic agents to improve the killing efficacy of chemotherapeutic agents efficiently in due course.

  10. Self-Assembly of Colloidal Photonic Crystals of PS@PNIPAM Nanoparticles and Temperature-Responsive Tunable Fluorescence.

    Yuan, Shuai; Ge, Fengyan; Yang, Xue; Guang, Shanyi

    2016-11-01

    A strategy for significantly enhancing fluorescence is developed based on the coupling of optical properties of colloidal photonic crystals (CPCs) with responsive microgel. In this paper, thermoresponsive microgel PNIPAM was employed for the fabrication of core-shell structure. The core-shell PS@PNIPAM nanoparticles (NPs) are then assembled to CPCs by a vertical deposition method. Subsequently, the novel functional material (RhB/CPCs) can be prepared by depositing fluorescent dye molecules (RhB) on the top of PS@PNIPAM CPCs. We obtained an increase in the fluorescent intensity up to 15-fold and 22-fold compared with RhB on the glass slid and the uneven film. Due to the unique responsive shrinking properties of PNIPAM shell, the amplifying fluorescence behavior of CPCs can be well tuned by varying the temperature. In contrast to RhB on the glass slid, a 15-fold and 12-fold fluorescence enhancement can be observed when the temperature of RhB/CPCs was 20 °C and 50 °C, respectively. The mechanism on enhancement fluorescence of tunable CPCs can be achieved by measurements of thermoresponsive properties. The results indicate that the responsive fluorescence-amplifying method based on CPCs made with responsive core-shell NPs has a potential application for the development of efficient fluorescence sensors.

  11. Applications of UV/Vis Spectroscopy in Characterization and Catalytic Activity of Noble Metal Nanoparticles Fabricated in Responsive Polymer Microgels: A Review.

    Begum, Robina; Farooqi, Zahoor H; Naseem, Khalida; Ali, Faisal; Batool, Madeeha; Xiao, Jianliang; Irfan, Ahmad

    2018-11-02

    Noble metal nanoparticles loaded smart polymer microgels have gained much attention due to fascinating combination of their properties in a single system. These hybrid systems have been extensively used in biomedicines, photonics, and catalysis. Hybrid microgels are characterized by using various techniques but UV/Vis spectroscopy is an easily available technique for characterization of noble metal nanoparticles loaded microgels. This technique is widely used for determination of size and shape of metal nanoparticles. The tuning of optical properties of noble metal nanoparticles under various stimuli can be studied using UV/Vis spectroscopic method. Time course UV/Vis spectroscopy can also be used to monitor the kinetics of swelling and deswelling of microgels and hybrid microgels. Growth of metal nanoparticles in polymeric network or growth of polymeric network around metal nanoparticle core can be studied by using UV/Vis spectroscopy. This technique can also be used for investigation of various applications of hybrid materials in catalysis, photonics, and sensing. This tutorial review describes the uses of UV/Vis spectroscopy in characterization and catalytic applications of responsive hybrid microgels with respect to recent research progress in this area.

  12. A novel pulsed drug-delivery system: polyelectrolyte layer-by-layer coating of chitosan–alginate microgels

    Zhou GC

    2013-02-01

    Full Text Available Guichen Zhou,1,2,* Ying Lu,1,* He Zhang,1,* Yan Chen,1 Yuan Yu,1 Jing Gao,1 Duxin Sun,3 Guoqing Zhang,2 Hao Zou,1 Yanqiang Zhong1 1Department of Pharmaceutical Science, Second Military Medical University, Shanghai, People's Republic of China; 2Department of Pharmacy, East Hospital of Hepatobiliary Surgery, Shanghai, People's Republic of China; 3Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA*These authors contributed equally to this workPurpose: The aim of this report was to introduce a novel “core-membrane” microgel drug-delivery device for spontaneously pulsed release without any external trigger.Methods: The microgel core was prepared with alginate and chitosan. The semipermeable membrane outside the microgel was made of polyelectrolytes including polycation poly(allylamine hydrochloride and sodium polystyrene sulfonate. The drug release of this novel system was governed by the swelling pressure of the core and the rupture of the outer membrane.Results: The size of the core-membrane microgel drug-delivery device was 452.90 ± 2.71 µm. The surface charge depended on the layer-by-layer coating of polyelectrolytes, with zeta potential of 38.6 ± 1.4 mV. The confocal microscope exhibited the layer-by-layer outer membrane and inner core. The in vitro release profile showed that the content release remained low during the first 2.67 hours. After this lag time, the cumulative release increased to 80% in the next 0.95 hours, which suggested a pulsed drug release. The in vivo drug release in mice showed that the outer membrane was ruptured at approximately 3 to 4 hours, as drug was explosively released.Conclusion: These data suggest that the encapsulated substance in the core-membrane microgel delivery device can achieve a massive drug release after outer membrane rupture. This device was an effective system for pulsed drug delivery.Keywords: polyelectrolyte, chitosan–alginate, microgels, layer-by-layer, pulsed

  13. Medical applications of colloids

    Matijevic, Egon

    2008-01-01

    The first book of its type on the medical and biomedical applications of colloids, although there are some related titles on different topicsDiscusses the effects of uniform particles in drug formulations and releaseEvaluates particle transport and deposition in the human body.

  14. Simulation of dense colloids

    Herrmann, H.J.; Harting, J.D.R.; Hecht, M.; Ben-Naim, E.

    2008-01-01

    We present in this proceeding recent large scale simulations of dense colloids. On one hand we simulate model clay consisting of nanometric aluminum oxide spheres in water using realistic DLVO potentials and a combination of MD and SRD. We find pronounced cluster formation and retrieve the shear

  15. The Silicon:Colloidal Quantum Dot Heterojunction

    Masala, Silvia; Adinolfi, Valerio; Sun, Jon Paul; Del Gobbo, Silvano; Voznyy, Oleksandr; Kramer, Illan J.; Hill, Ian G.; Sargent, Edward H.

    2015-01-01

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Silicon:Colloidal Quantum Dot Heterojunction

    Masala, Silvia

    2015-10-13

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Aqueous Lubrication, Structure and Rheological Properties of Whey Protein Microgel Particles.

    Sarkar, Anwesha; Kanti, Farah; Gulotta, Alessandro; Murray, Brent S; Zhang, Shuying

    2017-12-26

    Aqueous lubrication has emerged as an active research area in recent years due to its prevalence in nature in biotribological contacts and its enormous technological soft-matter applications. In this study, we designed aqueous dispersions of biocompatible whey-protein microgel particles (WPM) (10-80 vol %) cross-linked via disulfide bonding and focused on understanding their rheological, structural and biotribological properties (smooth polydimethylsiloxane (PDMS) contacts, R a ball bearings", the latter supported by negligible change in size and microstructure of the WPM particles after tribology. An ultralow boundary friction coefficient, μ ≤ 0.03 was achieved using WPM between O 2 plasma-treated hydrophilic PDMS contacts coated with bovine submaxillary mucin (water contact angle 47°), and electron micrographs revealed that the WPM particles spread effectively as a layer of particles even at low ϕ∼ 10%, forming a lubricating load-bearing film that prevented the two surfaces from true adhesive contact. However, above an optimum volume fraction, μ increased in HL+BSM surfaces due to the interpenetration of particles that possibly impeded effective rolling, explaining the slight increase in friction. These effects are reflected in the highly shear thinning nature of the WPM dispersions themselves plus the tendency for the apparent viscosity to fall as dispersions are forced to very high volume fractions. The present work demonstrates a novel approach for providing ultralow friction in soft polymeric surfaces using proteinaceous microgel particles that satisfy both load bearing and kinematic requirements. These findings hold great potential for designing biocompatible particles for aqueous lubrication in numerous soft matter applications.

  18. Impact of Redox Reactions on Colloid Transport in Saturated Porous Media: An Example of Ferrihydrite Colloids Transport in the Presence of Sulfide.

    Liao, Peng; Yuan, Songhu; Wang, Dengjun

    2016-10-18

    Transport of colloids in the subsurface is an important environmental process with most research interests centered on the transport in chemically stable conditions. While colloids can be formed under dynamic redox conditions, the impact of redox reactions on their transport is largely overlooked. Taking the redox reactions between ferrihydrite colloids and sulfide as an example, we investigated how and to what extent the redox reactions modulated the transport of ferrihydrite colloids in anoxic sand columns over a range of environmentally relevant conditions. Our results reveal that the presence of sulfide (7.8-46.9 μM) significantly decreased the breakthrough of ferrihydrite colloids in the sand column. The estimated travel distance of ferrihydrite colloids in the absence of sulfide was nearly 7-fold larger than that in the presence of 46.9 μM sulfide. The reduced breakthrough was primarily attributed to the reductive dissolution of ferrihydrite colloids by sulfide in parallel with formation of elemental sulfur (S(0)) particles from sulfide oxidation. Reductive dissolution decreased the total mass of ferrihydrite colloids, while the negatively charged S(0) decreased the overall zeta potential of ferrihydrite colloids by attaching onto their surfaces and thus enhanced their retention in the sand. Our findings provide novel insights into the critical role of redox reactions on the transport of redox-sensitive colloids in saturated porous media.

  19. Evaluation of the liver scintigraphy with /sup 99m/Tc-Sn-colloid. II. C Clinical studies by comparison with /sup 198/Au-colloid

    Kimura, K; Nishimura, T; Takeda, H; Furukawa, T [Osaka Univ. (Japan). Faculty of Medicine; Kajiya, Fumihiko

    1975-08-01

    Clinical significance of the liver scintigraphy with sup(99m)Tc-Sn-colloid was evaluated in comparison with those with /sup 198/Au-colloid. The liver scintigrams with sup(99m)Tc-Sn-colloid and /sup 198/Au-colloid were done in 36 cases of various hepatic diseases and RI accumulation curves in the liver and the spleen, and the blood disapearance curves were also obtained. The conclusions were as follows. The liver scintigrams with sup(99m)Tc-Sn-colloid proved to be more sensitive in the detection of tumors, especially, in the lower margin, left lobe and superficial layers of the liver than those with /sup 198/Au-colloid. In all cases, including normal and cirrhotic subjects, visualizations of the spleen were seen on the scintigrams with sup(99m)Tc-Sn-colloid. In diffuse hepatic diseases, comparing both radiopharmaceuticals, the splenic accumulations were studied qualitatively and quantitatively. As a result, the ratio (spleen/liver) was thought to be useful for the differentiation of diffuse hepatic diseases concerned with splenic function and/or size. It was also shown that sup(99m)Tc-Sn-colloid was useful as a spleen scanning agent. The Tl/2 in the liver accumulation curves with sup(99m)Tc-Sn-colloid were not as clearly differentiated in the various hepatic diseases as those with /sup 198/Au-colloid where those indexes were useful in the evaluation of liver functions.

  20. Protein adsorption and cell adhesion on nanoscale bioactive coatings formed from poly(ethylene glycol) and albumin microgels

    Scott, Evan A.; Nichols, Michael D.; Cordova, Lee H.; George, Brandon J.; Jun, Young-Shin; Elbert, Donald L.

    2008-01-01

    Late-term thrombosis on drug-eluting stents is an emerging problem that might be addressed using extremely thin, biologically-active hydrogel coatings. We report a dip-coating strategy to covalently link poly(ethylene glycol) (PEG) to substrates, producing coatings with crosslinked microgels and deviation from Flory-Stockmayer theory. Before macrogelation, the reacting solutions were diluted and incubated with nucleophile-functionalized surfaces. Using optical waveguide lightmode spectroscopy (OWLS) and quartz crystal microbalance with dissipation (QCM-D), we identified a highly hydrated, protein-resistant layer with a thickness of approximately 75 nm. Atomic force microscopy in buffered water revealed the presence of coalesced spheres of various sizes but with diameters less than about 100 nm. Microgel-coated glass or poly(ethylene terephthalate) exhibited reduced protein adsorption and cell adhesion. Cellular interactions with the surface could be controlled by using different proteins to cap unreacted vinylsulfone groups within the coating. PMID:18771802

  1. Flocking ferromagnetic colloids.

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S

    2017-02-01

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks).

  2. Colloid migration in fractured media

    Hunt, J.R.

    1989-01-01

    Field studies at the Nevada Test Site by researchers at Lawrence Livermore National Laboratory have demonstrated that radionuclides are being transported by colloidal material suspended in groundwater. This observation is counter to most predictions from contaminant transport models because the models assume adsorbed species are immobile. The purpose of this research is to quantify the transport processes for colloidal materials and develop the mechanistic understanding necessary to predict radionuclide transport in fractured media. There were three areas of investigation during this year that have addressed these issues: chemical control of colloid deposition on clean mineral surfaces, colloid accumulation on fracture surfaces, and the influence of deposited colloids on colloid and tracer migration. 7 refs

  3. Introduced materials and colloid formation: A report on the current state of knowledge

    Meike, A.; Wittwer, C.

    1993-11-01

    This paper reviews potential sources of colloids and enhanced adsorption of radionuclides that may stem from materials introduced into a repository setting. Three major sources of colloids are examined: metals, cements, and organics. The sensitivity of colloids to chemical species, pH, time, temperature, radiolysis, redox state, gradients of the aforementioned variables, and microbial activity is shown. The authors consider these influences on colloid formation and sorption with respect to introduced materials. They also discuss areas that have not been addressed but may have consequences in a repository setting

  4. Evaluation of the liver scintigraphy with sup(99m)Tc-Sn-colloid, 2

    Kimura, Kazufumi; Nishimura, Tsunehiko; Takeda, Hiroshi; Furukawa, Toshiyuki; Kajiya, Fumihiko.

    1975-01-01

    Clinical significance of the liver scintigraphy with sup(99m)Tc-Sn-colloid was evaluated in comparison with those with 198 Au-colloid. The liver scintigrams with sup(99m)Tc-Sn-colloid and 198 Au-colloid were done in 36 cases of various hepatic diseases and RI accumulation curves in the liver and the spleen, and the blood disapearance curves were also obtained. The conclusions were as follows. The liver scintigrams with sup(99m)Tc-Sn-colloid proved to be more sensitive in the detection of tumors, especially, in the lower margin, left lobe and superficial layers of the liver than those with 198 Au-colloid. In all cases, including normal and cirrhotic subjects, visualizations of the spleen were seen on the scintigrams with sup(99m)Tc-Sn-colloid. In diffuse hepatic diseases, comparing both radiopharmaceuticals, the splenic accumulations were studied qualitatively and quantitatively. As a result, the ratio (spleen/liver) was thought to be useful for the differentiation of diffuse hepatic diseases concerned with splenic function and/or size. It was also shown that sup(99m)Tc-Sn-colloid was useful as a spleen scanning agent. The Tl/2 in the liver accumulation curves with sup(99m)Tc-Sn-colloid were not as clearly differentiated in the various hepatic diseases as those with 198 Au-colloid where those indexes were useful in the evaluation of liver functions. (auth.)

  5. Polymers and colloids

    Schurtenberger, P.

    1996-01-01

    A wealth of structural information from colloid and polymer solutions on a large range of length scales can be obtained using small angle neutron scattering (SANS) experiments. After a general introduction to the field of soft condensed matter, I shall give a few selected examples on how SANS combined with suitable contrast variation schemes can be used to extract information on the size and conformation of polymer coils in solution and in the melt, and on the local structure and flexibility of polymerlike micelles and microemulsions. (author) 8 figs., tabs., 44 refs

  6. Polymers and colloids

    Schurtenberger, P [ETH Zurich, Inst. fuer Polymere, Zurich (Switzerland)

    1996-11-01

    A wealth of structural information from colloid and polymer solutions on a large range of length scales can be obtained using small angle neutron scattering (SANS) experiments. After a general introduction to the field of soft condensed matter, I shall give a few selected examples on how SANS combined with suitable contrast variation schemes can be used to extract information on the size and conformation of polymer coils in solution and in the melt, and on the local structure and flexibility of polymerlike micelles and microemulsions. (author) 8 figs., tabs., 44 refs.

  7. Microrheology of colloidal systems

    Puertas, A M; Voigtmann, T

    2014-01-01

    Microrheology was proposed almost twenty years ago as a technique to obtain rheological properties in soft matter from the microscopic motion of colloidal tracers used as probes, either freely diffusing in the host medium, or subjected to external forces. The former case is known as passive microrheology, and is based on generalizations of the Stokes–Einstein relation between the friction experienced by the probe and the host-fluid viscosity. The latter is termed active microrheology, and extends the measurement of the friction coefficient to the nonlinear-response regime of strongly driven probes. In this review article, we discuss theoretical models available in the literature for both passive and active microrheology, focusing on the case of single-probe motion in model colloidal host media. A brief overview of the theory of passive microrheology is given, starting from the work of Mason and Weitz. Further developments include refined models of the host suspension beyond that of a Newtonian-fluid continuum, and the investigation of probe-size effects. Active microrheology is described starting from microscopic equations of motion for the whole system including both the host-fluid particles and the tracer; the many-body Smoluchowski equation for the case of colloidal suspensions. At low fluid densities, this can be simplified to a two-particle equation that allows the calculation of the friction coefficient with the input of the density distribution around the tracer, as shown by Brady and coworkers. The results need to be upscaled to agree with simulations at moderate density, in both the case of pulling the tracer with a constant force or dragging it at a constant velocity. The full many-particle equation has been tackled by Fuchs and coworkers, using a mode-coupling approximation and the scheme of integration through transients, valid at high densities. A localization transition is predicted for a probe embedded in a glass-forming host suspension. The

  8. Liquid crystal boojum-colloids

    Tasinkevych, M; Silvestre, N M; Telo da Gama, M M

    2012-01-01

    Colloidal particles dispersed in a liquid crystal (LC) lead to distortions of the director field. The distortions are responsible for long-range effective colloidal interactions whose asymptotic behaviour is well understood. The short-distance behaviour depends on the structure and dynamics of the topological defects nucleated near the colloidal particles and a full nonlinear theory is required to describe it. Spherical colloidal particles with strong planar degenerate anchoring nucleate a pair of antipodal surface topological defects, known as boojums. We use the Landau-de Gennes theory to resolve the mesoscopic structure of the boojum cores and to determine the pairwise colloidal interactions. We compare the results in three (3D) and two (2D) spatial dimensions for spherical and disc-like colloidal particles, respectively. The corresponding free energy functionals are minimized numerically using finite elements with adaptive meshes. Boojums are always point-like in 2D, but acquire a rather complex structure in 3D, which depends on the combination of the anchoring potential, the radius of the colloid, the temperature and the LC elastic anisotropy. We identify three types of defect cores in 3D that we call single, double and split-core boojums, and investigate the associated structural transitions. The split-core structure is favoured by low temperatures, strong anchoring and small twist to splay or bend ratios. For sufficiently strong anchoring potentials characterized by a well-defined uniaxial minimum, the split-core boojums are the only stable configuration. In the presence of two colloidal particles, we observe substantial re-arrangements of the inner defects in both 3D and 2D. These re-arrangements lead to qualitative changes in the force-distance profile when compared to the asymptotic quadrupole-quadrupole interaction. In line with the experimental results, the presence of the defects prevents coalescence of the colloidal particles in 2D, but not in 3D

  9. Actinide colloid generation in groundwater. Part 2

    Kim, J.I.

    1991-01-01

    The progress made in the investigation of actinide colloid generation in groundwater is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudo colloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC Mirage II project, in particular the complexation and colloids research area

  10. Pharmacology of colloids and crystalloids.

    Griffel, M I; Kaufman, B S

    1992-04-01

    We have attempted to review body fluid distribution by compartments so that the reader understands the physiology of ICF and ECF, and the relationship between interstitial and intravascular fluids. Crystalloids such as NS and RL are distributed to the ECF, whereas colloids primarily remain intravascular for longer periods. Although effective, crystalloids tend to require larger volumes for infusion, and edema remains a problem. Colloids as a group are extremely effective volume expanders, but none is ideal. Albumin, hetastarch, dextran, and the less commonly used colloids each have significant toxicities that must be considered when using them. Intelligent choices can be made to optimize use of these fluids.

  11. Manipulating colloids with charges and electric fields

    Leunissen, M. E.

    2007-02-01

    useful colloidal structures. Besides modifying the particle charge, we employed the sensitivity of colloids to ‘external fields’ to manipulate the structure and dynamics of our suspensions. In particular, we used an electric field, in which the particles acquired a dipole moment. The induced dipole-dipole interactions gave rise to uniquely different crystalline and non-crystalline structures, due to their anisotropic nature. We explored the phase behavior as a function of the particle concentration, the electric field strength and the field geometry, and showed how one can rapidly switch from one structure to another. The latter is particularly interesting for applications. Finally, we also studied much weaker, inhomogeneous electric fields. In this case, the dipole moment of the particles was too small to change the phase behavior, but large enough to induce dielectrophoretic motion, driving the particles to the areas with the lowest field strength. We demonstrated how this can be used to manipulate the local particle concentration inside a sealed sample, on a time scale of minutes-weeks. The combination with real-time confocal microscopy allowed us to follow all particle rearrangements during the densification. Such controlled compression is of interest to colloidal model studies and the fabrication of high-quality crystals for applications. After all, for all suspensions the particle concentration is one of the most important factors determining the behavior.

  12. Driving dynamic colloidal assembly using eccentric self-propelled colloids

    Ma, Zhan; Lei, Qun-li; Ni, Ran

    2017-01-01

    Designing protocols to dynamically direct the self-assembly of colloidal particles has become an important direction in soft matter physics because of the promising applications in fabrication of dynamic responsive functional materials. Here using computer simulations, we found that in the mixture of passive colloids and eccentric self-propelled active particles, when the eccentricity and self-propulsion of active particles are high enough, the eccentric active particles can push passive coll...

  13. Frost Heave in Colloidal Soils

    Peppin, Stephen; Majumdar, Apala; Style, Robert; Sander, Graham

    2011-01-01

    We develop a mathematical model of frost heave in colloidal soils. The theory accountsfor heave and consolidation while not requiring a frozen fringe assumption. Two solidificationregimes occur: a compaction regime in which the soil consolidates

  14. Effects of Culture Substrate Made of Poly(N-isopropylacrylamide-co-acrylic acid Microgels on Osteogenic Differentiation of Mesenchymal Stem Cells

    Zhuojun Dai

    2016-09-01

    Full Text Available Poly(N-isopropylacrylamide (PNIPAM-based polymers and gels are widely known and studied for their thermoresponsive property. In the biomaterials category, they are regarded as a potential cell culture substrate, not only because of their biocompatibility, but also their special character of allowing controlled detachment of cells via temperature stimulus. Previous research about PNIPAM-based substrates mostly concentrated on their effects in cell adhesion and proliferation. In this study, however, we investigate the influence of the PNIPAM-based substrate on the differentiation capacity of stem cells. Especially, we choose P(NIPAM-AA microgels as a culture dish coating and mesenchymal stem cells (MSCs are cultured on top of the microgels. Interestingly, we find that the morphology of MSCs changes remarkably on a microgel-coated surface, from the original spindle form to a more stretched and elongated cell shape. Accompanied by the alternation in morphology, the expression of several osteogenesis-related genes is elevated even without inducing factors. In the presence of full osteogenic medium, MSCs on a microgel substrate show an enhancement in the expression level of osteopontin and alizarin red staining signals, indicating the physical property of substrate has a direct effect on MSCs differentiation.

  15. Stimuli-responsive poly(N-vinylcaprolactam-co-2-methoxyethyl acrylate) core–shell microgels: facile synthesis, modulation of surface properties and controlled internalisation into cells†

    Melle, A.; Balaceanu, A.; Kather, M.; Wu, Yaodong; Gau, E.; Sun, W.; Huang, Xiaobin; Shi, X; Karperien, Hermanus Bernardus Johannes; Pich, A.

    2016-01-01

    Herein we report the synthesis of biocompatible stimuli-responsive core–shell microgels consisting of a poly(N-vinylcaprolactam) (PVCL) core and a poly(2-methoxyethyl acrylate) (PMEA) corona via one-step surfactant-free precipitation copolymerization. The copolymerization process was investigated by

  16. Tacticity-Dependent Interchain Interactions of Poly(N-Isopropylacrylamide in Water: Toward the Molecular Dynamics Simulation of a Thermoresponsive Microgel

    Gaio Paradossi

    2017-04-01

    Full Text Available The discovery that the lower critical solution temperature (LCST of poly(N-Isopropylacrylamide (PNIPAM in water is affected by the tacticity opens the perspective to tune the volume phase transition temperature of PNIPAM microgels by changing the content of meso dyads in the polymer network. The increased hydrophobicity of isotactic-rich PNIPAM originates from self-assembly processes in aqueous solutions also below the LCST. The present work aims to detect the characteristics of the pair interaction between polymer chains, occurring in a concentration regime close to the chain overlap concentration, by comparing atactic and isotactic-rich PNIPAM solutions. Using atomistic molecular dynamics simulations, we successfully modelled the increased association ability of the meso-dyad-rich polymer in water below the LCST, and gain information on the features of the interchain junctions as a function of tacticity. Simulations carried out above the LCST display the PNIPAM transition to the insoluble state and do not detect a relevant influence of stereochemistry on the structure of the polymer ensemble. The results obtained at 323 K provide an estimate of the swelling ratio of non-stereocontrolled PNIPAM microgels which is in agreement with experimental findings for microgels prepared with low cross-linker/monomer feed ratios. This study represents the first step toward the atomistic modelling of PNIPAM microgels with a controlled tacticity.

  17. Characterization of colloids in groundwater

    Kim, J.I.; Buckau, G.; Klenze, R.

    1987-07-01

    Natural colloids in the Gorleben aquifer systems have been investigated as for their chemical composition, quantification and size distribution. Humic substances appear to be the major organic materials in these groundwaters, generating humic colloids which are analysed to be humic acid (and fulvic acid) loaded with a large number of trace heavy metal ions. These metal ions include natural homologues of actinides and some fission products in trivalent, tetravalent and hexavalent state. Concentrations of trivalent and tetravalent heavy metal ions are linearly correlated with the dissolved organic carbon (DDC) concentration in different groundwaters. The DOC is found to be present as humic colloids. The Am 3+ ions introduced in such a groundwater readily undergo the generation of its pseudocolloids through sorption or ion exchange reactions with humic colloids. The chemical behaviour of Am(III), being similar to the trivalent metal ions, e.g. Fe 3+ , REE etc. found in natural colloids, has been investigated by laser induced photoacoustic spectroscopy (LPAS). Groundwaters from Ispra, Markham Clinton and Felslabor Grimsel. Bidistilled water and one of Gorleben groundwaters, Gohy 1011, are taken for the purpose of comparison. This groundwater contains the least amount of natural colloids of all Gorleben groundwaters hitherto investigated. An indirect quantification is made by comparison of the LPAS results with experiment from Latex solution. (orig./IRB)

  18. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair.

    Das, Anusuya; Barker, Daniel A; Wang, Tiffany; Lau, Cheryl M; Lin, Yong; Botchwey, Edward A

    2014-01-01

    In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid) (PLAGA) microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2) improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P) receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3) via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1) mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy.

  19. Delivery of bioactive lipids from composite microgel-microsphere injectable scaffolds enhances stem cell recruitment and skeletal repair.

    Anusuya Das

    Full Text Available In this study, a microgel composed of chitosan and inorganic phosphates was used to deliver poly(lactic-co-glycolic acid (PLAGA microspheres loaded with sphingolipid growth factor FTY720 to critical size cranial defects in Sprague Dawley rats. We show that sustained release of FTY720 from injected microspheres used alone or in combination with recombinant human bone morphogenic protein-2 (rhBMP2 improves defect vascularization and bone formation in the presence and absence of rhBMP2 as evaluated by quantitative microCT and histological measurements. Moreover, sustained delivery of FTY720 from PLAGA and local targeting of sphingosine 1-phosphate (S1P receptors reduces CD45+ inflammatory cell infiltration, promotes endogenous recruitment of CD29+CD90+ bone progenitor cells and enhances the efficacy of rhBMP2 from chitosan microgels. Companion in vitro studies suggest that selective activation of sphingosine receptor subtype-3 (S1P3 via FTY720 treatment induces smad-1 phosphorylation in bone-marrow stromal cells. Additionally, FTY720 enhances stromal cell-derived factor-1 (SDF-1 mediated chemotaxis of CD90+CD11B-CD45- bone progenitor cells in vitro after stimulation with rhBMP2. We believe that use of such small molecule delivery formulations to recruit endogenous bone progenitors may be an attractive alternative to exogenous cell-based therapy.

  20. Colloid remediation in groundwater by polyelectrolyte capture

    Nuttall, H.E.; Rao, S.; Jain, R.

    1992-01-01

    This paper describes an ongoing study to characterize groundwater colloids, to understand the geochemical factors affecting colloid transport in groundwater, and to develop an in-situ colloid remediation process. The colloids and suspended particulate matter used in this study were collected from a perched aquifer site that has radiation levels several hundred times the natural background and where previous researchers have measured and reported the presence of radiocolloids containing plutonium and americium. At this site, radionuclides have spread over several kilometers. Inorganic colloids collected from water samples are characterized with respect to concentration, mineralogy, size distribution, electrophoretic mobility (zeta potential), and radioactivity levels. Presented are the methods used to investigate the physiochemical factors affecting colloid transport and the preliminary analytical results. Included below are a description of a colloid transport model and the corresponding computational code, water analyses, characterization of the inorganic colloids, and a conceptual description of a process for in-situ colloid remediation using the phenomenon of polyelectrolyte capture

  1. Adsorption, immobilization, and activity of beta-glucosidase on different soil colloids.

    Yan, Jinlong; Pan, Genxing; Li, Lianqing; Quan, Guixiang; Ding, Cheng; Luo, Ailan

    2010-08-15

    For a better understanding of enzyme stabilization and the subsequent catalytic process in a soil environment, the adsorption, immobilization, and activity of beta-glucosidase on various soil colloids from a paddy soil were studied. The calculated parameters maximum adsorption capacity (q(0)) for fine soil colloids ranged from 169.6 to 203.7 microg mg(-1), which was higher than coarse soil colloids in the range of 81.0-94.6 microg mg(-1), but the lower adsorption affinity (K(L)) was found on fine soil colloids. The percentages of beta-glucosidase desorbed from external surfaces of the coarse soil colloids (27.6-28.5%) were higher than those from the fine soil colloids (17.5-20.2%). Beta-glucosidase immobilized on the coarse inorganic and organic soil colloids retained 72.4% and 69.8% of activity, respectively, which indicated the facilitated effect of soil organic matter in the inhibition of enzyme activity. The residual activity for the fine soil clay is 79-81%. After 30 days of storage at 40 degrees C the free beta-glucosidase retained 66.2% of its initial activity, whereas the soil colloidal particle-immobilized enzyme retained 77.1-82.4% of its activity. The half-lives of free beta-glucosidase appeared to be 95.9 and 50.4 days at 25 and 40 degrees C. Immobilization of beta-glucosidase on various soil colloids enhanced the thermal stability at all temperatures, and the thermal stability was greatly affected by the affinity between the beta-glucosidase molecules and the surface of soil colloidal particles. Due to the protective effect of supports, soil colloidal particle-immobilized enzymes were less sensitive to pH and temperature changes than free enzymes. Data obtained in this study are helpful for further research on the enzymatic mechanisms in carbon cycling and soil carbon storage. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Wave oscillations in colloid oxyhydrates wave oscillations in colloid oxyhydrates

    Sucharev, Yuri I

    2010-01-01

    The importance of coherent chemistry, that is, the chemistry of periodic oscillatory processes, is increasing at a rapid rate in specific chemical disciplines. While being perfectly understood and highly developed in the fields of physical chemistry, chemical physics and biological chemistry, the periodic developmental paradigm of processes and phenomena still remains poorly developed and misunderstood in classical inorganic chemistry and related branches, such as colloid chemistry. The probability is that we miss subtle colloid chemical phenomena that could be of utmost importance if taken into consideration when catalysis or adsorption is involved. The author here reveals all of the astonishing vistas that periodic wave paradigms open up to researchers in certain colloid chemical systems, and will doubtless stimulate researchers to look at them in a new light.Review from Book News Inc.: Coherent chemistry, the chemistry of periodical oscillatory processes, is well established in physical chemistry, chemical...

  3. The radiation chemistry of colloids

    Sellers, R.M.

    1976-08-01

    One of the most important problems associated with water cooled reactors is the accumulation on the pipework of radio-active deposits. These are formed from corrosion products which become activated during their passage through the reactor core. The first step of the activation process involves the deposition of the corrosion products, which are present as either colloidal or particulate matter, onto surfaces in the reactor core, i.e. within the radiation zone. A review of the literature on the effect of radiation on colloids is presented. Particular emphasis is given to the dependence of colloidal parameters such as particle size, turbidity and electrophoretic mobility on radiation dose. Most of the data available is of a qualitative nature only. Evidence is presented that colloids of iron are affected (in some cases precipitated) by radiation, and it is suggested that this process plays a part in the deposition of corrosion products in nuclear reactor cores. The bulk of the information available can be rationalized in terms of the radiation chemistry of aqueous solutions, and the interaction of the radicals produced with the atoms or molecules at the surface of the colloidal particles. This approach is very successful in explaining the variation of the mean particle size of monodisperse sulphur hydrosols with dose, for which quantitative experimental data are available. (author)

  4. Crack formation and prevention in colloidal drops

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  5. Colloid Thrusters, Physics, Fabrication and Performance

    Martinez-Sanchez, Manuel; Akinwande, Akintunde I

    2005-01-01

    ... discovered pure ionic mode, the microfabrication in Silicon of two types of arrays of colloid or electrospray emitters, and the development of a quantitative theory for the colloidal regime (no ions...

  6. Entropy favours open colloidal lattices

    Mao, Xiaoming; Chen, Qian; Granick, Steve

    2013-03-01

    Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.

  7. Colloid Release from Soil Aggregates

    Vendelboe, Anders Lindblad; Møldrup, Per; Schjønning, Per

    2012-01-01

    The content of water-dispersible colloids (WDC) has a major impact on soil functions and structural stability. In addition, the presence of mobile colloids may increase the risk of colloid-facilitated transport of strongly sorbing environmental contaminants. The WDC content was measured in 39 soils......, using laser diffraction, by agitating the samples using a wet-dispersion unit. This approach eliminated the need for long sedimentation times required by the more classical end-over-end shaking approach and provided information about the time-dependent release of WDC. The total clay content of the soils...... ranged from 0.1 to 0.44 kg kg−1. The WDC content was measured on air-dry and moist 1- to 2-mm aggregates. The WDC content at a reference time was highly correlated to the total clay content (r > 0.91, P soils. Only for two sites was the WDC content correlated to the content of clay...

  8. COLLOIDS IN SEPTIC TANK EFFLUENT AND THEIR INFLUENCE ON FILTER PERMEABILITY

    Marcin Spychała

    2015-09-01

    Full Text Available The aim of the study was to evaluate the content of colloids in septic tank effluent and their impact on textile filter permeability. Measurements were performed on septic tank effluent without suspended solids but containing colloids and without colloids - including only dissolved substances (filtered by micro-filters and centrifuged. The study was conducted on unclogged and clogged textile filter coupons. During the study the following measurements were determined: turbidity, chemical oxygen demand and hydraulic conductivity of textile filter coupons. The colloid size range was assumed to be less than 1.2 microns according to the literature. Despite the relatively low content in the septic tank effluent the colloids played an important role in the clogging process. Both the filtering media, filled with low (unclogged and high content of biomass (clogged were sensitive to the clogging process of colloid acceleration due to the possibility of small diameter pore closure and oxygen access termination. Moreover, small size pores were probably sensitive to closing or bridging by small size colloidal particles.

  9. Colloidal phytosterols: synthesis, characterization and bioaccessibility

    Rossi, L.; Seijen ten Hoorn, J.W.M.; Melnikov, S.M.; Velikov, K.P.

    2010-01-01

    We demonstrate the synthesis of phytosterol colloidal particles using a simple food grade method based on antisolvent precipitation in the presence of a non-ionic surfactant. The resulting colloidal particles have a rod-like shape with some degree of crystallinity. The colloidal dispersions display

  10. Self-Assembly of Faceted Colloidal Particles

    Gantapara, A.P.

    2015-01-01

    A colloidal dispersion consists of insoluble microscopic particles that are suspended in a solvent. Typically, a colloid is a particle for which at least one of its dimension is within the size range of a nanometer to a micron. Due to collisions with much smaller solvent molecules, colloids perform

  11. Colloid formation during waste glass corrosion

    Mertz, C.J.; Buck, E.C.; Fortner, J.A.; Bates, J.K.

    1996-01-01

    The long-term behavior of nuclear waste glass in a geologic repository may require a technical consideration of the role of colloids in the release and transport of radionuclides. The neglect of colloidal properties in assessing the near- and far-field migration behavior of actinides may lead to significant underestimates and poor predictions of biosphere exposure from high-level waste (HLW) disposal. Existing data on colloid-facilitated transport suggests that radionuclide migration may be enhanced, but the importance of colloids is not adequately assessed. Indeed, the occurrence of radionuclide transport, attributed to colloidal species, has been reported at Mortandad Canyon, Los Alamos and at the Nevada Test Site; both unsaturated regions are similar to the proposed HLW repository at Yucca Mountain. Although some developments have been made on understanding the transport characteristics of colloids, the characterization of colloids generated from the corrosion of the waste form has been limited. Colloids are known to incorporate radionuclides either from hydrolysis of dissolved species (real colloids) or from adsorption of dissolved species onto existing groundwater colloids (pseudocolloids); however, these colloids may be considered secondary and solubility limited when compared to the colloids generated during glass alteration

  12. Bonding assembled colloids without loss of colloidal stability

    Vutukuri, H.R.; Stiefelhagen, J.C.P.; Vissers, T; Imhof, A.; van Blaaderen, A.

    2012-01-01

    In recent years the diversity of self-assembled colloidal structures has strongly increased, as it is fueled by a wide range of applications in materials science and also in soft condensed-matter physics.[1–4] Some potential applications include photonic bandgap (PBG) crystals, materials for

  13. Preparation of colloidal gold for staining proteins electrotransferred onto nitrocellulose membranes.

    Yamaguchi, K; Asakawa, H

    1988-07-01

    This paper describes a simple method of preparing colloidal gold for staining protein blots. Colloidal gold was prepared from 0.005 or 0.01% HAuCl4 by the addition of formalin as a reductant and potassium hydroxide. Staining of small cell carcinoma tissue extract blotted onto nitrocellulose membranes with this colloidal gold solution resulted in the appearance of a large number of clear wine-red bands. The sensitivity of gold staining was 60 times higher than that of Coomassie brilliant blue staining and almost comparable to that of silver staining of proteins in polyacrylamide gel. The sensitivity of this method was also satisfactory in comparison with that of enzyme immunoblotting. The colloidal gold prepared by this method is usable for routine work.

  14. Measurements of colloid concentrations in the fracture zone, Aespoe Hard Rock Laboratory, Sweden

    Ledin, A.; Dueker, A.; Karlsson, Stefan; Allard, B.

    1995-06-01

    The applicability of light scattering in combination with photon correlation spectroscopy (PCS) for determination of concentration and size distribution of colloidal matter in a deep groundwater was tested in situ and on-line. Well-defined reference colloids of Fe 2 O 3 , Al(OH) 3 , SiO 2 , kaolinite, illite and a high molecular humic acid in aqueous media were used as model substances for calibration of the PCS instrument. The intensity of scattered light was found to be dependent on the composition of the colloids. The colloid concentration in the rather saline groundwater was below the detection limit for the PCS equipment used, which corresponds to a colloid concentration not higher than 0.5 mg/l and probably below 0.1 mg/l according to the measurements on-line and in situ at Aespoe and in comparison to the calibrations performed with reference colloids. The results clearly demonstrated that the stability, concentration and composition of a colloid-size suspended phase in the anoxic groundwater with high content of Fe(II), like the one in Aespoe, is extremely sensitive to exposure to atmospheric conditions during sample handling and preparation. Diffusion of air into the closed measuring cuvette was enough to alter the colloid content significantly within 6 hours. A particle fraction with the size distribution in the range 170-700 nm was formed within 45 min when air was allowed to diffuse into the aqueous phase from the air filled upper part of the cuvette. The corresponding time to generate a significant colloid precipitate was less than 1 min when a stream of air was bubbled through the water samples. The precipitated colloid phase consisted of a mixture of ferric (hydr)oxide and calcium carbonate in all three cases. 53 refs, 8 figs, 2 tabs

  15. Colloid properties in groundwaters from crystalline formations

    Degueldre, C.A.

    1994-09-01

    Colloids are present in all groundwaters. The role they may play in the migration of safety-relevant radionuclides in the geosphere therefore must be studied. Colloid sampling and characterisation campaigns have been carried out in Switzerland. On the bases of the results from studies in the Grimsel area, Northern Switzerland and the Black Forest, as well as those obtained by other groups concerned with crystalline waters, a consistent picture is emerging. The groundwater colloids in crystalline formations are predominantly comprised of phyllosilicates and silica originating from the aquifer rock. Under constant hydrogeochemical conditions, the colloid concentration is not expected to exceed 100 ng.ml -1 when the calcium concentration is greater than 10 -4 . However, under transient chemical or physical conditions, such as geothermal or tectonic activity, colloid generation may be enhanced and the colloid concentration may reach 10 μg.ml -1 or more, if both the calcium and sodium concentrations are low. In the Nagra Crystalline Reference Water the expected colloid concentration is -1 . This can be compared, for example, to a colloid concentration of about 10 ng.ml -1 found in Zurzach water. The small colloid concentration in the reference water is a consequence of an attachment factor for clay colloids (monmorillonite) close to 1. A model indicates that at pH 8, the nuclide partition coefficients between water and colloid (K p ) must be smaller than 10 7 ml.g -1 if sorption takes place by surface complexation on colloids, = AIOH active groups forming the dominant sorption sites. This pragmatic model is based on the competition between the formation of nuclide hydroxo complexes in solution and their sorption on colloids. Experimental nuclide sorption data on colloids are compared with those obtained by applying this model. For a low colloid concentration, a sorption capacity of the order of 10 -9 M and reversible surface complexation, their presence in the

  16. Microbial effects on colloidal agglomeration

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs

  17. A short textbook of colloid chemistry

    Jirgensons, B

    1962-01-01

    A Short Textbook of Colloid Chemistry, Second Revised Edition details the factual aspect of colloid chemistry that includes the basic facts, established empirical and mathematical relationships, and practical applications. The chapters of the title are organized into two parts. In the first part, the text discusses the general concepts of colloid chemistry, such as the history and scope, basic terms, and basic methods in experiment with colloids. Part Two covers the technical aspect of colloid chemistry, such as the optical properties, electrical properties, and viscosity. The book will be of

  18. Glass/Jamming Transition in Colloidal Aggregation

    Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.

  19. Design of asymmetric particles containing a charged interior and a neutral surface charge: comparative study on in vivo circulation of polyelectrolyte microgels.

    Chen, Kai; Xu, Jing; Luft, J Christopher; Tian, Shaomin; Raval, Jay S; DeSimone, Joseph M

    2014-07-16

    Lowering the modulus of hydrogel particles could enable them to bypass in vivo physical barriers that would otherwise filter particles with similar size but higher modulus. Incorporation of electrolyte moieties into the polymer network of hydrogel particles to increase the swelling ratio is a straightforward and quite efficient way to decrease the modulus. In addition, charged groups in hydrogel particles can also help secure cargoes. However, the distribution of charged groups on the surface of a particle can accelerate the clearance of particles. Herein, we developed a method to synthesize highly swollen microgels of precise size with near-neutral surface charge while retaining interior charged groups. A strategy was employed to enable a particle to be highly cross-linked with very small mesh size, and subsequently PEGylated to quench the exterior amines only without affecting the internal amines. Acidic degradation of the cross-linker allows for swelling of the particles to microgels with a desired size and deformability. The microgels fabricated demonstrated extended circulation in vivo compared to their counterparts with a charged surface, and could potentially be utilized in in vivo applications including as oxygen carriers or nucleic acid scavengers.

  20. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  1. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    Chaieb, Saharoui; Mughal, Asad Jahangir

    2015-01-01

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  2. Magnetic Assisted Colloidal Pattern Formation

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  3. Statistical Physics of Colloidal Dispersions.

    Canessa, E.

    Available from UMI in association with The British Library. Requires signed TDF. This thesis is concerned with the equilibrium statistical mechanics of colloidal dispersions which represent useful model systems for the study of condensed matter physics; namely, charge stabilized colloidal dispersions and polymer stabilized colloidal dispersions. A one-component macroparticle approach is adopted in order to treat the macroscopic and microscopic properties of these systems in a simple and comprehensive manner. The thesis opens with the description of the nature of the colloidal state before reviewing some basic definitions and theory in Chapter II. In Chapter III a variational theory of phase equilibria based on the Gibbs-Bogolyobov inequality is applied to sterically stabilized colloidal dispersions. Hard spheres are chosen as the reference system for the disordered phases while an Einstein model is used for the ordered phases. The new choice of pair potential, taken for mathematical convenience, is a superposition of two Yukawa functions. By matching a double Yukawa potential to the van der Waals attractive potential at different temperatures and introducing a purely temperature dependent coefficient to the repulsive part, a rich variety of observed phase separation phenomena is qualitatively described. The behaviour of the potential is found to be consistent with a small decrease of the polymer layer thickness with increasing temperature. Using the same concept of a collapse transition the non-monotonic second virial coefficient is also explained and quantified. It is shown that a reduction of the effective macroparticle diameter with increasing temperature can only be partially examined from the point of view of a (binary-) polymer solution theory. This chapter concludes with the description of the observed, reversible, depletion flocculation behaviour. This is accomplished by using the variational formalism and by invoking the double Yukawa potential to allow

  4. Simulation of bentonite colloid migration through granite

    Rosicka, Dana; Hokr, Milan

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: Colloidal bentonite particles generate at the interface of buffer and host rock in spent nuclear fuel repository due to an erosion process and migrate through granite by the water flow. Stability of these colloids and their migration possibilities have been studied on account of radionuclide transport possibility as colloid could carry adsorbed radionuclides in groundwater through granite. That is why a simulation of bentonite colloid migration in the surrounding of a repository might be requested. According to chemical condition as ionic strength and pH, the colloidal particles coagulate into clusters and that influence the migration of particles. The coagulation kinetics of natural bentonite colloids were experimentally studied in many articles, for example by light scattering techniques. We created a model of coagulation of bentonite colloids and simulation of a chosen experiment with use of the multicomponent reactive transport equation. The coagulation model describes clustering of particles due to attractive van der Waals forces as result of collision of particles due to heat fluctuation and different velocity of particles during sedimentation and velocity gradient of water flow. Next, the model includes influence of repulsive electrostatic forces among colloidal particles leading to stability of particles provided high surface charge of colloids. In the model, each group of clusters is transported as one solution component and the kinetics of coagulation are implemented as reactions between the components: a shift of particles among groups of particles with similar migration properties, according to size of the clusters of colloids. The simulation of migration of bentonite colloid through granite using the coagulation model was calibrated according to experiment results. On the basis of the simulation, one can estimate the basic processes that occur during bentonite colloid

  5. CTCN: Colloid transport code -- nuclear

    Jain, R.

    1993-01-01

    This report describes the CTCN computer code, designed to solve the equations of transient colloidal transport of radionuclides in porous and fractured media. This Fortran 77 package solves systems of coupled nonlinear differential-algebraic equations with a wide range of boundary conditions. The package uses the Method of Lines technique with a special section which forms finite-difference discretizations in up to four spatial dimensions to automatically convert the system into a set of ordinary differential equations. The CTCN code then solves these equations using a robust, efficient ODE solver. Thus CTCN can be used to solve population balance equations along with the usual transport equations to model colloid transport processes or as a general problem solver to treat up to four-dimensional differential-algebraic systems

  6. THE COLLOIDAL BEHAVIOR OF EDESTIN

    Hitchcock, David I.

    1922-01-01

    1. It has been shown by titration experiments that the globulin edestin behaves like an amphoteric electrolyte, reacting stoichiometrically with acids and bases. 2. The potential difference developed between a solution of edestin chloride or acetate separated by a collodion membrane from an acid solution free from protein was found to be influenced by salt concentration and hydrogen ion concentration in the way predicted by Donnan's theory of membrane equilibrium. 3. The osmotic pressure of such edestin-acid salt solutions was found to be influenced by salt concentration and by hydrogen ion concentration in the same way as is the potential difference. 4. The colloidal behavior of edestin is thus completely analogous to that observed by Loeb with gelatin, casein, and egg albumin, and may be explained by Loeb's theory of colloidal behavior, which is based on the idea that proteins react stoichiometrically as amphoteric electrolytes and on Donnan's theory of membrane equilibrium. PMID:19871959

  7. Colloidal quantum dot photodetectors

    Konstantatos, Gerasimos

    2011-05-01

    We review recent progress in light sensors based on solution-processed materials. Spin-coated semiconductors can readily be integrated with many substrates including as a post-process atop CMOS silicon and flexible electronics. We focus in particular on visible-, near-infrared, and short-wavelength infrared photodetectors based on size-effect-tuned semiconductor nanoparticles made using quantum-confined PbS, PbSe, Bi 2S3, and In2S3. These devices have in recent years achieved room-temperature D values above 1013 Jones, while fully-depleted photodiodes based on these same materials have achieved MHz response combined with 1012 Jones sensitivities. We discuss the nanoparticle synthesis, the materials processing, integrability, temperature stability, physical operation, and applied performance of this class of devices. © 2010 Elsevier Ltd. All rights reserved.

  8. Kinetically guided colloidal structure formation

    Hecht, Fabian M.; Bausch, Andreas R.

    2016-01-01

    The well-studied self-organization of colloidal particles is predicted to result in a variety of fascinating applications. Yet, whereas self-assembly techniques are extensively explored, designing and producing mesoscale-sized objects remains a major challenge, as equilibration times and thus structure formation timescales become prohibitively long. Asymmetric mesoscopic objects, without prior introduction of asymmetric particles with all its complications, are out of reach––due to the underl...

  9. Implant materials modified by colloids

    Zboromirska-Wnukiewicz Beata

    2016-03-01

    Full Text Available Recent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.

  10. FEBEX bentonite colloid stability in ground water

    Seher, H.; Schaefer, T.; Geckeis, H. [Inst. fuer Nukleare Entsorgung (INE), Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)]. e-mail: holger.seher@ine.fzk .de; Fanghaenel, T. [Ruprecht-Karls-Univ. Heidelberg, Physikalisch-Chemisches In st., D-69120 Heidelberg (Germany)

    2007-06-15

    Coagulation experiments are accomplished to identify the geochemical conditions for the stability of Febex bentonite colloids in granite ground water. The experiments are carried out by varying pH, ionic strength and type of electrolyte. The dynamic light scattering technique (photon correlation spectroscopy) is used to measure the size evolution of the colloids with time. Agglomeration rates are higher in MgCl{sub 2} and CaCl{sub 2} than in NaCl solution. Relative agglomeration rates follow approximately the Schulze-Hardy rule. Increasing agglomeration rates at pH>8 are observed in experiments with MgCl{sub 2} and CaCl{sub 2} which are, however, caused by coprecipitation phenomena. Bentonite colloid stability fields derived from the colloid agglomeration experiments predict low colloid stabilization in granite ground water taken from Aespoe, Sweden, and relatively high colloid stability in Grimsel ground water (Switzerland)

  11. Preparation of radioactive colloidal gold 198Au

    Cammarosano, S.A.

    1979-01-01

    The preparation with simple equipment of radioactive colloidal gold of particle size about approximately 300 A from seed colloid stabilized by gelatine is described. Some physico-chemical parameters which can affect the process of formation of these colloidal particles are analysed; particle size has been meassured with an electron microscope. The colloid stability has been studied as a function of dilution, age and pH. Nucleation and growth of radioactive colloidal gold have been studied using spectrophotometry. Absorption spectra of the two ones are presented and compared. Quality control of the production process is verified through measurement of parameters, such as radioactive and radiochemical purity and biological distribution in laboratorial animals. This distribution was evalusted for rats injected endovenously with the gold colloidal solution.(Author) [pt

  12. Simulating colloid hydrodynamics with lattice Boltzmann methods

    Cates, M E; Stratford, K; Adhikari, R; Stansell, P; Desplat, J-C; Pagonabarraga, I; Wagner, A J

    2004-01-01

    We present a progress report on our work on lattice Boltzmann methods for colloidal suspensions. We focus on the treatment of colloidal particles in binary solvents and on the inclusion of thermal noise. For a benchmark problem of colloids sedimenting and becoming trapped by capillary forces at a horizontal interface between two fluids, we discuss the criteria for parameter selection, and address the inevitable compromise between computational resources and simulation accuracy

  13. Hydrodynamic interactions in active colloidal crystal microrheology

    Weeber, R; Harting, JDR Jens

    2012-01-01

    In dense colloids it is commonly assumed that hydrodynamic interactions do not play a role. However, a found theoretical quantification is often missing. We present computer simulations that are motivated by experiments where a large colloidal particle is dragged through a colloidal crystal. To qualify the influence of long-ranged hydrodynamics, we model the setup by conventional Langevin dynamics simulations and by an improved scheme with limited hydrodynamic interactions. This scheme signif...

  14. Conductivity maximum in a charged colloidal suspension

    Bastea, S

    2009-01-27

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  15. Colloidal paradigm in supercapattery electrode systems

    Chen, Kunfeng; Xue, Dongfeng

    2018-01-01

    Among decades of development, electrochemical energy storage systems are now sorely in need of a new design paradigm at the nano size and ion level to satisfy the higher energy and power demands. In this review paper, we introduce a new colloidal electrode paradigm for supercapattery that integrates multiple-scale forms of matter, i.e. ion clusters, colloidal ions, and nanosized materials, into one colloid system, coupled with multiple interactions, i.e. electrostatic, van der Waals forces, and chemical bonding, thus leading to the formation of many redox reactive centers. This colloidal electrode not only keeps the original ionic nature in colloidal materials, but also creates a new attribute of high electroactivity. Colloidal supercapattery is a perfect application example of the novel colloidal electrode, leading to higher specific capacitance than traditional electrode materials. The high electroactivity of the colloidal electrode mainly comes from the contribution of exposed reactive centers, owing to the confinement effect of carbon and a binder matrix. Systematic and thorough research on the colloidal system will significantly promote the development of fundamental science and the progress of advanced energy storage technology.

  16. Colloid Titration--A Rapid Method for the Determination of Charged Colloid.

    Ueno, Keihei; Kina, Ken'yu

    1985-01-01

    "Colloid titration" is a volumetric method for determining charged polyelectrolytes in aqueous solutions. The principle of colloid titration, reagents used in the procedure, methods of endpoint detection, preparation of reagent solutions, general procedure used, results obtained, and pH profile of colloid titration are considered. (JN)

  17. The use of synthetic Zn-/Ni-labeled montmorillonite colloids as a natural bentonite marker

    Huber, F.; Heck, S.; Hoess, P.; Bouby, M.; Schaefer, T.; Truche, L.; Brendle, J.

    2012-01-01

    Document available in extended abstract form only. Quantification of bentonite erosion rates/colloid release rates and the colloid attachment under unfavourable conditions for clay colloids is frequently based on the detection of the alumino-silicate building blocks and accompanied by relative high analytical uncertainties due to the presence of high background concentrations in the groundwater. In situ experiments planned at the Grimsel Test Site (CH) in the frame of the Colloid Formation and Migration (CFM) project foresee the emplacement of a compacted bentonite source and determination of the bentonite erosion rate under near-natural flow conditions. To univocally differentiate between the natural background colloid concentration and the eroded bentonite an irreversible labeling of the bentonite colloid source placed in a granite fracture would greatly improve their detection and reduce the analytical uncertainty. It is thought to use an admixture to label the natural bentonite. Therefore, the characteristics as erosion behavior, colloid stability and radionuclide sorption/reversibility behavior have to be studied and compared. Here, we focus on the radionuclide sorption reversibility. Synthetic montmorillonite containing structurally bound Zn and Ni in its octahedral layer was used within this study. Actually, Zn and Ni are good candidates to determine more accurately the colloid concentration as the ICP-MS sensitivity is at least one order of magnitude higher and the Zn and Ni background concentrations found in natural ground waters (e.g. Grimsel ground water, GGW) are very low. In the present study, the colloids are first separated and characterized by AsFlFFF-ICP-MS. Then, they are used to perform radionuclide reversibility kinetic experiments similar to those already published under anoxic conditions and room temperature. The aim is to compare the results obtained with those already available on natural FEBEX bentonite derived colloids. The size

  18. Colloid transport in dual-permeability media

    Leij, Feike J.; Bradford, Scott A.

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.

  19. Fabricating colloidal crystals and construction of ordered nanostructures

    Sun Zhiqiang

    2006-01-01

    Full Text Available AbstractColloidal crystals of polymeric or inorganic microspheres are of extensive interest due to their potential applications in such as sensing, optics, photonic bandgap and surface patterning. The article highlights a set of approaches developed in our group, which are efficient to prepare colloidal crystals with ordered voids, patterned colloidal crystals on non-planar surfaces, heterogeneous colloidal crystals of different building blocks, colloidal crystals composed of non-spherical polyhedrons, and colloidal crystals of non-close-packed colloidal microspheres in particular. The use of these colloidal crystals as templates for different microstructures range from nanoscale to micron-scale is also summarized.

  20. Thermoresponsive microgels containing trehalose as soft matrices for 3D cell culture.

    Burek, Małgorzata; Waśkiewicz, Sylwia; Lalik, Anna; Student, Sebastian; Bieg, Tadeusz; Wandzik, Ilona

    2017-01-31

    A series of thermoresponsive glycomicrogels with trehalose in the cross-links or with trehalose in the cross-links and as pending moieties was synthesized. These materials were obtained by surfactant-free precipitation copolymerization of N-isopropylacrylamide and various amounts of trehalose monomers. The resultant particles showed a spherical shape and a submicrometer hydrodynamic size with a narrow size distribution. At 25 °C, glycomicrogels in solutions with physiological ionic strength formed stable colloids, which further gelled upon heating to physiological temperature forming a macroscopic hydrogel with an interconnected porous structure. These extremely soft matrices with dynamic storage modulus in the range of 9-70 Pa were examined in 3D culture systems for HeLa cell culture in comparison to traditional 2D mode. They showed relatively low syneresis over time, especially when glycomicrogels with a high content of hydrophilic trehalose were used as building blocks. An incorporated pending trehalose composed of two α,α'-1,1'-linked d-glucose moieties was used with the intention of providing multivalent interactions with glucose transporters (GLUTs) expressed on the cell surface. A better cell viability was observed when a soft hydrogel with the highest content of trehalose and the lowest syneresis was used as a matrix compared to a 2D control assay.

  1. Frost Heave in Colloidal Soils

    Peppin, Stephen

    2011-01-01

    We develop a mathematical model of frost heave in colloidal soils. The theory accountsfor heave and consolidation while not requiring a frozen fringe assumption. Two solidificationregimes occur: a compaction regime in which the soil consolidates to accommodate the ice lenses, and a heave regime during which liquid is sucked into the consolidated soil from an external reservoir, and the added volume causes the soil to heave. The ice fraction is found to vary inversely with thefreezing velocity V , while the rate of heave is independent of V , consistent with field and laboratoryobservations. © 2011 Society for Industrial and Applied Mathematics.

  2. Colloids or artefacts? A TVO/SKB cooperation project in Olkiluoto, Finland

    Laaksoharju, M.; Vuorinen, U.; Snellman, M.; Helenius, J.; Allard, B.; Pettersson, C.; Hinkkanen, H.

    1993-12-01

    TVO (Teollisuuden Voima Oy, Finland) initiated a co-operative task with SKB (Swedish Nuclear Fuel and Waste Management Co.) to critically evaluate colloid sampling methods at the test site in Olkiluoto, SW Finland. Three different colloid sampling methods were compared when sampling borehole OL-KR1 at 613-618 m depth. One possible way to make a conservative in-situ colloid estimation is to omit the contribution from calcite precipitation which is considered to be the main artefact. When this is made the inorganic colloid content (size 1-1000 nm) in Olkiluoto is 184 ±177 ppb consisting of clay minerals, silica, pyrite, goethite and magnesium oxide; the concentration of organic substances are around 100 ppb. The in-situ colloid concentration seems to be low which is in good agreement with experiences from years of sampling in similar environment and depths. The exercise shows the many difficulties encountered when sampling colloids. Small error in the planning, pump rate selection, a lack of precautionary measures, artefact sensitivity of the method etc have a tendency to affect significantly the results on the measured ppb colliod level

  3. Colloid cysts of the third ventricle

    Pina, J.I.; Medrano, J.; Benito, J.L. de; Lasierra, R.; Lopez, S.; Fernandez, J.A.; Villavieja, J.L.

    1994-01-01

    Colloid cysts (CC) are uncommon cystic endo dermal tumors located in the roof of the third ventricle. The clinical features depend on their capacity for obstructing the foramen of Monro, which results in univentricular or biventricular hydrocephalus. We present three cases of colloid cysts of the third ventricle, diagnosed by CT, reviewing their diagnostic, clinical and pathological features

  4. Colloidal assemblies modified by ion irradiation

    Snoeks, E.; Blaaderen, A. van; Dillen, T. van; Kats, C.M. van; Velikov, K.P.; Brongersma, M.L.; Polman, A.

    2001-01-01

    Spherical SiO2 and ZnS colloidal particles show a dramatic anisotropic plastic deformation under 4 MeV Xe ion irradiation, that changes their shape into oblate into oblate ellipsional, with an aspect ratio that can be precisely controlled by the ion fluence. The 290 nm and 1.1 um diameter colloids

  5. The electrostatic interaction between interfacial colloidal particles

    Hurd, A. J.

    1985-11-01

    The electrostatic interaction between charged, colloidal particles trapped at an air-water interface is considered using linearised Poisson-Boltzmann results for point particles. In addition to the expected screened-Coulomb contribution, which decays exponentially, an algebraic dipole-dipole interaction occurs that may account for long-range interactions in interfacial colloidal systems.

  6. Manipulating colloids with charges and electric fields

    Leunissen, M.E.

    2007-01-01

    This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their

  7. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts

    Wolthoorn, Anke; Temminghoff, Erwin J.M.; Riemsdijk, Willem H. van

    2004-01-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater to make the water potable. In a groundwater system with pH > 7, subsurface aeration results in a non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove Fe in situ, the formation of non-mobile Fe precipitate is the desired result. In addition to this intended effect, subsurface aeration may also strongly enhance the microbiological removal of NH 4 in the purification station. A hypothesis is that mobile Fe colloids may be the link between subsurface aeration and the positive effect on the microbiological removal of NH 4 . The objective of this study is to characterise the mobile Fe colloids and to derive a synthetic substitute for the naturally formed Fe colloids in order to be able to apply the Fe colloids as a management tool to enhance the removal of NH 4 in the process of producing drinking water from groundwater. At a purification station in The Netherlands natural Fe colloids from an aerated well were sampled. Furthermore, eight synthetic Fe colloids were prepared by oxidising synthetic solutions differing in elemental composition. The colloids were analysed using chemical analysis and electron microscopy (SEM and SEM-EDAX). The Fe colloids sampled in the field contained Fe, Ca, Na, PO 4 and Mn. Also in the synthetic Fe colloids PO 4 , Ca, Na and Mn were the most important elements next to Fe. Phosphate and dissolved organic C strongly influenced the morphology of the synthetic Fe colloids. When both the elemental composition and the morphology of the Fe colloids are taken into account, the synthetic Fe colloids formed in the synthetic solution containing Fe, Mn, PO 4 , SiO 4 and dissolved organic matter best match the Fe colloids from the field

  8. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts

    Wolthoorn, Anke; Temminghoff, Erwin J.M.; Riemsdijk, Willem H. van

    2004-09-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater to make the water potable. In a groundwater system with pH > 7, subsurface aeration results in a non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove Fe in situ, the formation of non-mobile Fe precipitate is the desired result. In addition to this intended effect, subsurface aeration may also strongly enhance the microbiological removal of NH{sub 4} in the purification station. A hypothesis is that mobile Fe colloids may be the link between subsurface aeration and the positive effect on the microbiological removal of NH{sub 4}. The objective of this study is to characterise the mobile Fe colloids and to derive a synthetic substitute for the naturally formed Fe colloids in order to be able to apply the Fe colloids as a management tool to enhance the removal of NH{sub 4} in the process of producing drinking water from groundwater. At a purification station in The Netherlands natural Fe colloids from an aerated well were sampled. Furthermore, eight synthetic Fe colloids were prepared by oxidising synthetic solutions differing in elemental composition. The colloids were analysed using chemical analysis and electron microscopy (SEM and SEM-EDAX). The Fe colloids sampled in the field contained Fe, Ca, Na, PO{sub 4} and Mn. Also in the synthetic Fe colloids PO{sub 4}, Ca, Na and Mn were the most important elements next to Fe. Phosphate and dissolved organic C strongly influenced the morphology of the synthetic Fe colloids. When both the elemental composition and the morphology of the Fe colloids are taken into account, the synthetic Fe colloids formed in the synthetic solution containing Fe, Mn, PO{sub 4}, SiO{sub 4} and dissolved organic matter best match the Fe colloids from the field.

  9. Colloid transport in saturated porous media: Elimination of attachment efficiency in a new colloid transport model

    Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.; Ryan, Joseph N.

    2013-01-01

    A colloid transport model is introduced that is conceptually simple yet captures the essential features of colloid transport and retention in saturated porous media when colloid retention is dominated by the secondary minimum because an electrostatic barrier inhibits substantial deposition in the primary minimum. This model is based on conventional colloid filtration theory (CFT) but eliminates the empirical concept of attachment efficiency. The colloid deposition rate is computed directly from CFT by assuming all predicted interceptions of colloids by collectors result in at least temporary deposition in the secondary minimum. Also, a new paradigm for colloid re-entrainment based on colloid population heterogeneity is introduced. To accomplish this, the initial colloid population is divided into two fractions. One fraction, by virtue of physiochemical characteristics (e.g., size and charge), will always be re-entrained after capture in a secondary minimum. The remaining fraction of colloids, again as a result of physiochemical characteristics, will be retained “irreversibly” when captured by a secondary minimum. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of the initial colloid population that will be retained “irreversibly” upon interception by a secondary minimum, and (2) the rate at which reversibly retained colloids leave the secondary minimum. These two parameters were correlated to the depth of the Derjaguin-Landau-Verwey-Overbeek (DLVO) secondary energy minimum and pore-water velocity, two physical forces that influence colloid transport. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport.

  10. Magnetoresponsive conductive colloidal suspensions with magnetized carbon nanotubes

    Abdalla, Ahmed M. [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Abdel Fattah, Abdel Rahman [Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Ghosh, Suvojit [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Puri, Ishwar K., E-mail: ikpuri@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada); Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, Canada L8S 4L7 (Canada)

    2017-01-01

    We synthesize a novel and hitherto unreported class of colloidal suspensions for which the dispersed phase, which consists of multiwall carbon nanotubes (MWNTs) decorated with magnetic nanoparticles (MNPs), is both magnetoresponsive and electrically conductive. Synthesis of the dispersed phase merges processes for producing ferrofluids and magnetic MWNTs (mMWNTs). We explore means to tune the properties of these magnetic conductive colloids (MCCs) by varying the (1) MNP material composition, and (2) MNP:MWNT (w/w) magnetization weight ratio (γ). The mMWNTs are examined using XRD, TEM, EDX and SQUID and MCCs are by measuring their zeta potential and electric conductivity. Magnetite (Fe{sub 3}O{sub 4}) MNPs, which possess a high Curie temperature, produce mMWNTs with high saturation magnetization that respond relatively weakly to temperature variations. Mn{sub 0.2}Cu{sub 0.2}Zn{sub 0.6}Fe{sub 2}O{sub 4} and Cu{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4} MNPs with lower Curie temperatures are more sensitive to changing temperature. Increasing the MNP Cu content improves the electric conductivity of the corresponding MCC while increasing γ enhances its magnetic response. After γ is raised above a threshold value, mMWNT decoration on the CNT surface becomes nonuniform since the MNPs now agglomerate perpendicular to the nanotube surface. These colloidal suspensions are a promising new class of material that can be manipulated with a magnetic field to tune their electrical conductivity. - Highlights: ●We synthesize a novel and hitherto unreported class of colloidal suspensions. ●These colloidal suspensions are both magnetoresponsive and electrically conductive. ●The dispersed phase consists of MWNTs decorated with different magnetic nanoparticles. ●These colloids have enhanced magnetic response and electric conductivity (up to 169.5 mS cm{sup −1}). ●It is a promising new class of material that can be manipulated with a magnetic field.

  11. Recommendations for plutonium colloid size determination

    Kosiewicz, S.T.

    1984-02-01

    This report presents recommendations for plutonium colloid size determination and summarizes a literature review, discussions with other researchers, and comments from equipment manufacturers. Four techniques suitable for plutonium colloid size characterization are filtration and ultrafiltration, gel permeation chromatography, diffusion methods, and high-pressure liquid chromatography (conditionally). Our findings include the following: (1) Filtration and ultrafiltration should be the first methods used for plutonium colloid size determination because they can provide the most rapid results with the least complicated experimental arrangement. (2) After expertise has been obtained with filtering, gel permeation chromatography should be incorporated into the colloid size determination program. (3) Diffusion methods can be used next. (4) High-pressure liquid chromatography will be suitable after appropriate columns are available. A plutonium colloid size characterization program with filtration/ultrafiltration and gel permeation chromatography has been initiated

  12. Colloid-Associated Radionuclide Concentration Limits: ANL

    Mertz, C.

    2000-01-01

    The purpose and scope of this report is to describe the analysis of available colloidal data from waste form corrosion tests at Argonne National Laboratory (ANL) to extract characteristics of these colloids that can be used in modeling their contribution to the source term for sparingly soluble radioelements (e.g., Pu). Specifically, the focus is on developing a useful description of the following waste form colloid characteristics: (1) composition, (2) size distribution, and (3) quantification of the rate of waste form colloid generation. The composition and size distribution information are intended to support analysis of the potential transport of the sparingly soluble radionuclides associated with the waste form colloids. The rate of colloid generation is intended to support analysis of the waste form colloid-associated radionuclide concentrations. In addressing the above characteristics, available data are interpreted to address mechanisms controlling colloid formation and stability. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M and O 2000). Because the end objective is to support the source term modeling we have organized the conclusions into two categories: (1) data analysis conclusions and (2) recommendations for colloid source term modeling. The second category is included to facilitate use of the conclusions from the data analysis in the abstraction of a colloid source term model. The data analyses and conclusions that are presented in this report are based on small-scale laboratory tests conducted on a limited number of waste glass compositions and spent fuel types

  13. Injectable perlecan domain 1-hyaluronan microgels potentiate the cartilage repair effect of BMP2 in a murine model of early osteoarthritis

    Srinivasan, Padma P; McCoy, Sarah Y; Yang Weidong; Farach-Carson, Mary C; Kirn-Safran, Catherine B; Jha, Amit K; Jia Xinqiao

    2012-01-01

    The goal of this study was to use bioengineered injectable microgels to enhance the action of bone morphogenetic protein 2 (BMP2) and stimulate cartilage matrix repair in a reversible animal model of osteoarthritis (OA). A module of perlecan (PlnD1) bearing heparan sulfate (HS) chains was covalently immobilized to hyaluronic acid (HA) microgels for the controlled release of BMP2 in vivo. Articular cartilage damage was induced in mice using a reversible model of experimental OA and was treated by intra-articular injection of PlnD1-HA particles with BMP2 bound to HS. Control injections consisted of BMP2-free PlnD1-HA particles, HA particles, free BMP2 or saline. Knees dissected following these injections were analyzed using histological, immunostaining and gene expression approaches. Our results show that knees treated with PlnD1-HA/BMP2 had lesser OA-like damage compared to control knees. In addition, the PlnD1-HA/BMP2-treated knees had higher mRNA levels encoding for type II collagen, proteoglycans and xylosyltransferase 1, a rate-limiting anabolic enzyme involved in the biosynthesis of glycosaminoglycan chains, relative to control knees (PlnD1-HA). This finding was paralleled by enhanced levels of aggrecan in the articular cartilage of PlnD1-HA/BMP2-treated knees. Additionally, decreases in the mRNA levels encoding for cartilage-degrading enzymes and type X collagen were seen relative to controls. In conclusion, PlnD1-HA microgels constitute a formulation improvement compared to HA for efficient in vivo delivery and stimulation of proteoglycan and cartilage matrix synthesis in mouse articular cartilage. Ultimately, PlnD1-HA/BMP2 may serve as an injectable therapeutic agent for slowing or inhibiting the onset of OA after knee injury.

  14. Quantum-dot-sensitized solar cells fabricated by the combined process of the direct attachment of colloidal CdSe quantum dots having a ZnS glue layer and spray pyrolysis deposition.

    Im, Sang Hyuk; Lee, Yong Hui; Seok, Sang Il; Kim, Sung Woo; Kim, Sang-Wook

    2010-12-07

    We were able to attach CdSe quantum dots (QDs) having a ZnS inorganic glue layer directly to a mesoporous TiO(2) (mp-TiO(2)) surface by spray coating and thermal annealing. Quantum-dot-sensitized solar cells based on CdSe QDs having ZnS as the inorganic glue layer could easily transport generated charge carriers because of the intimate bonding between CdSe and mp-TiO(2). The application of spray pyrolysis deposition (SPD) to obtain additional CdSe layers improved the performance characteristics to V(oc) = 0.45 V, J(sc) = 10.7 mA/cm(2), fill factor = 35.8%, and power conversion efficiency = 1.7%. Furthermore, ZnS post-treatment improved the device performance to V(oc) = 0.57 V, J(sc) = 11.2 mA/cm(2), fill factor = 35.4%, and power conversion efficiency = 2.2%.

  15. Hepatobiliary scintigraphy with 99Tcsup(m)-HIDA and 99Tcsup(m)-sulphur colloid

    Pedersen, S.A.; Oster-Jorgensen, E.; Schoubye, J.; Odense Univ.

    1980-01-01

    The results of a study comparing the ability of 99 Tcsup(m)-sulphur colloid and 99 Tcsup(m)- HIDA to demonstrate circumsribed defects and obstruction of the biliary flow to the intestines are reported. As regards focal liver diseases, colloid scintigraphy (SC) had a nosographic sensitivity and specificity of 0.87 and 0.85, respectively. The corresponding figures for the HIDA scintigraphy were 0.40 and 0.92. Concerning the diagnosis of extrahepatic obstrtuction, sulphur colloid scintigraphy had a nosographic sensitivity and specificity of 0.31 and 0.94. The corresponding figures for HIDA scintigraphy were 0.69 and 0.84. The most frequent cause of false results was pattern of hepatocellular disease in sulphur colloid scans in patients with a longstanding biliary onbstruction. The second most frequent error was due to circumscribed defects in SC as well as in HIDA scans in patients with obstructive diseases and a high value of serum bilirubin. A third source of error was the pattern of an obstruction in HIDA scans in patients with focal diseases. The significance of the star pattern the sulphur colloid scan in patients with obstruction is stressed, as the significance of this pattern not has been evaluated previously. It is concluded that the two different scintigraphic methods are complementary tools in the examination of patients with liver diseases. (orig.) [de

  16. The physics of the colloidal glass transition.

    Hunter, Gary L; Weeks, Eric R

    2012-06-01

    As one increases the concentration of a colloidal suspension, the system exhibits a dramatic increase in viscosity. Beyond a certain concentration, the system is said to be a colloidal glass; structurally, the system resembles a liquid, yet motions within the suspension are slow enough that it can be considered essentially frozen. For several decades, colloids have served as a valuable model system for understanding the glass transition in molecular systems. The spatial and temporal scales involved allow these systems to be studied by a wide variety of experimental techniques. The focus of this review is the current state of understanding of the colloidal glass transition, with an emphasis on experimental observations. A brief introduction is given to important experimental techniques used to study the glass transition in colloids. We describe features of colloidal systems near and in glassy states, including increases in viscosity and relaxation times, dynamical heterogeneity and ageing, among others. We also compare and contrast the glass transition in colloids to that in molecular liquids. Other glassy systems are briefly discussed, as well as recently developed synthesis techniques that will keep these systems rich with interesting physics for years to come.

  17. The physics of the colloidal glass transition

    Hunter, Gary L; Weeks, Eric R

    2012-01-01

    As one increases the concentration of a colloidal suspension, the system exhibits a dramatic increase in viscosity. Beyond a certain concentration, the system is said to be a colloidal glass; structurally, the system resembles a liquid, yet motions within the suspension are slow enough that it can be considered essentially frozen. For several decades, colloids have served as a valuable model system for understanding the glass transition in molecular systems. The spatial and temporal scales involved allow these systems to be studied by a wide variety of experimental techniques. The focus of this review is the current state of understanding of the colloidal glass transition, with an emphasis on experimental observations. A brief introduction is given to important experimental techniques used to study the glass transition in colloids. We describe features of colloidal systems near and in glassy states, including increases in viscosity and relaxation times, dynamical heterogeneity and ageing, among others. We also compare and contrast the glass transition in colloids to that in molecular liquids. Other glassy systems are briefly discussed, as well as recently developed synthesis techniques that will keep these systems rich with interesting physics for years to come. (review article)

  18. Towards conducting inks: Polypyrrole–silver colloids

    Omastová, Mária; Bober, Patrycja; Morávková, Zuzana; Peřinka, Nikola; Kaplanová, Marie; Syrový, Tomáš; Hromádková, Jiřina; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Graphical abstract: - Highlights: • Composite colloidal particles combining conducting polymer and metal have been prepared. • Conducting colloids are suitable for printing applications. • Polypyrrole/silver colloids are prepared in a single reaction step. • The conductivity control is discussed and still needs improvement. - Abstract: The oxidation of pyrrole with silver nitrate in the presence of suitable water-soluble polymers yields composite polypyrrole–silver colloids. The polypyrrole–silver nanoparticles stabilized with poly(N-vinylpyrrolidone) have a typical size around 350 nm and polydispersity index 0.20, i.e. a moderate polydispersity in size. Similar results have been obtained with poly(vinyl alcohol) as stabilizer. The effect of stabilizer concentration on the particle size is marginal. In the present study, several types of stabilizers have been tested in addition to currently used poly(N-vinylpyrrolidone). Transmission electron microscopy and optical microscopy revealed the gemini morphology of polypyrrole and silver colloidal nanoparticles and confirmed their size and size-distribution determined by dynamic light scattering. The use of colloidal dispersions provides an efficient tool for the UV–vis and FT Raman spectroscopic characterization of polypyrrole, including the transition between polypyrrole salt and corresponding polypyrrole base. The dispersions were used for the preparation of coatings on polyethylene terephthalate foils, and the properties for polypyrrole–silver composites have been compared with those produced from polypyrrole colloids alone

  19. Influences on physicians' choices of intravenous colloids.

    Miletin, Michael S; Stewart, Thomas E; Norton, Peter G

    2002-07-01

    Controversy over the optimal intravenous fluid for volume resuscitation continues unabated. Our objectives were to characterize the demographics of physicians who prescribe intravenous colloids and determine factors that enter into their decision to choose a colloid. Questionnaire with 61 items. Ten percent ( n = 364) of frequent intravenous fluid prescribers in the province of Ontario, Canada. The response rate was 74%. Colloid use in the past year was reported by 79% of the responding physicians. Important reasons for choosing a colloid included blood loss and manipulation of oncotic pressure. Physicians tended to prefer either albumin or pentastarch, but no important reasons were found for choosing between the two. Albumin with or without crystalloid was preferred in 5/13 scenarios by more than 50% of the respondents, whereas pentastarch was not favored by more than 50% of respondents in any scenario. Physicians practising in critical care areas and teaching hospitals generally preferred pentastarch to albumin. Physicians reporting pentastarch as representing greater than 90% of total colloid use were more likely to have been visited by a drug detailer for pentastarch than those who used less synthetic colloid (54 vs 22%, p distribution. Although albumin appeared to be preferred in more clinical niches, most physicians did not state reasons for choosing between products. Marketing, specialty, location of practice and clinical scenario appear to play significant roles in the utilization of colloid products.

  20. Phosphate binding by natural iron-rich colloids in streams

    Baken, S.; Moens, C.; Griffioen, J.J.; Smolders, E.

    2016-01-01

    Phosphorus (P) in natural waters may be bound to iron (Fe) bearing colloids. However, the natural variation in composition and P binding strength of these colloids remain unclear. We related the composition of "coarse colloids" (colloids in the 0.1-1.2 μm size range) in 47 Belgian streams to the

  1. Cracking in Drying Colloidal Films

    Singh, Karnail B.; Tirumkudulu, Mahesh S.

    2007-05-01

    It has long been known that thick films of colloidal dispersions such as wet clays, paints, and coatings crack under drying. Although capillary stresses generated during drying have been recently identified as the cause for cracking, the existence of a maximum crack-free film thickness that depends on particle size, rigidity, and packing has not been understood. Here, we identify two distinct regimes for crack-free films based on the magnitude of compressive strain at the maximum attainable capillary pressure and show remarkable agreement of measurements with our theory. We anticipate our results to not only form the basis for design of coating formulations for the paints, coatings, and ceramics industry but also assist in the production of crack-free photonic band gap crystals.

  2. Colloidal QDs-polymer nanocomposites

    Gordillo, H.; Suárez, I.; Rodríguez-Cantó, P.; Abargues, R.; García-Calzada, R.; Chyrvony, V.; Albert, S.; Martínez-Pastor, J.

    2012-04-01

    Nanometer-size colloidal semiconductor nanocrystals, or Quantum Dots (NQD), are very prospective active centers because their light emission is highly efficient and temperature-independent. Nanocomposites based on the incorporation of QDs inside a polymer matrix are very promising materials for application in future photonic devices because they combine the properties of QDs with the technological feasibility of polymers. In the present work some basic applications of these new materials have been studied. Firstly, the fabrication of planar and linear waveguides based on the incorporation of CdS, CdSe and CdTe in PMMA and SU-8 are demonstrated. As a result, photoluminescence (PL) of the QDs are coupled to a waveguide mode, being it able to obtain multicolor waveguiding. Secondly, nanocomposite films have been evaluated as photon energy down-shifting converters to improve the efficiency of solar cells.

  3. Carbon Nanomaterials as Antibacterial Colloids

    Michael Maas

    2016-07-01

    Full Text Available Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials.

  4. Colloidal CdSe Quantum Rings.

    Fedin, Igor; Talapin, Dmitri V

    2016-08-10

    Semiconductor quantum rings are of great fundamental interest because their non-trivial topology creates novel physical properties. At the same time, toroidal topology is difficult to achieve for colloidal nanocrystals and epitaxially grown semiconductor nanostructures. In this work, we introduce the synthesis of luminescent colloidal CdSe nanorings and nanostructures with double and triple toroidal topology. The nanorings form during controlled etching and rearrangement of two-dimensional nanoplatelets. We discuss a possible mechanism of the transformation of nanoplatelets into nanorings and potential utility of colloidal nanorings for magneto-optical (e.g., Aharonov-Bohm effect) and other applications.

  5. Hydrodynamic interactions in active colloidal crystal microrheology.

    Weeber, R; Harting, J

    2012-11-01

    In dense colloids it is commonly assumed that hydrodynamic interactions do not play a role. However, a found theoretical quantification is often missing. We present computer simulations that are motivated by experiments where a large colloidal particle is dragged through a colloidal crystal. To qualify the influence of long-ranged hydrodynamics, we model the setup by conventional Langevin dynamics simulations and by an improved scheme with limited hydrodynamic interactions. This scheme significantly improves our results and allows to show that hydrodynamics strongly impacts the development of defects, the crystal regeneration, as well as the jamming behavior.

  6. Characterization of natural groundwater colloids at Palmottu

    Vuorinen, U.; Kumpulainen, H.

    1993-01-01

    Characterization of groundwater colloids (size range from 2 nm to 500 nm) in the Palmottu natural analogue (for radioactive waste disposal in Finland) area was continued by sampling another drill hole, 346, at three depths. Results evaluated so far indicate the presence of both organic and inorganic colloids. In terms of chemical composition and morphology, the inorganic colloids differ from those found in previous studies. According to SEM/EDS and STEM/EDS they mostly contain Ca and are spherical in shape. At this stage further characterization and evaluation of results is provisional and does not allow very accurate conclusions to be drawn

  7. Quantum-size colloid metal systems

    Roldugin, V.I.

    2000-01-01

    In the review dealing with quantum-dimensional metallic colloid systems the methods of preparation, electronic, optical and thermodynamic properties of metal nanoparticles and thin films are considered, the effect of ionizing radiation on stability of silver colloid sols and existence of a threshold radiation dose affecting loss of stability being discussed. It is shown that sol stability loss stems from particles charge neutralization due to reduction of sorbed silver ions induced by radiation, which results in destruction of double electric layer on colloid particles boundary [ru

  8. Optimizing colloidal nanocrystals for applications

    Sytnyk, M.

    2015-01-01

    In the scientific literature colloidal nanocrystals are presented as promising materials for multiple applications, in areas covering optoelectronics, photovoltaics, spintronics, catalysis, and bio-medicine. On the marked are, however, only a very limited number of examples found, indeed implementing colloidal nanocrystals. Thus the scope of this thesis was to modify nanocrystals and to tune their properties to fulfill specific demands. While some modifications could be achieved by post synthetic treatments, one key problem of colloidal nanocrystals, hampering there widespread application is the toxicity of their constituents. To develop nanocrystals from non-toxic materials has been a major goal of this thesis as well. Roughly, the results in this thesis could be subdivided into three parts: (i) the development of ion exchange methods to tailor the properties of metallic and metal-oxide based nanocrystal heterostructures, (ii), the synthesis of semiconductor nanocrystals from non-toxic materials, and (iii) the characterization of the nanocrystals by measurements of their morphology, chemical composition, magnetic-, optical-, and electronic properties. In detail, the thesis is subdivided into an introductory chapter, 4 chapters reporting on scientific results, a chapter reporting the used methods, and the conclusions. The 4 chapters devoted to the scientific results correspond to manuscripts, which are either currently in preparation, or have been published in highly ranked scientific journals such as NanoLetters (chapter 2), ACS Nano (chapter 4), or JACS (chapter 5). Thus, these chapters provide also an extra introduction and conclusion section, as well as separate reference lists. Chapter 2 describes a cation exchange process which is used to tune and improve the magnetic properties of different iron-oxide based colloidal nanocrystal-heterostructures. The superparamagnetic blocking temperature, magnetic remanence, and coercivity is tuned by replacing Fe2+ by Co2

  9. Colloid-Facilitated Transport of Radionuclides through the Vadose Zone

    Flury, Markus; Harsh, James B.; Zachara, John M.; McCarthy, John F.; Lichtner, Peter C.

    2006-01-01

    This project seeks to improve the basic understanding of the role of colloids in facilitating the transport of contaminants in the vadose zone. We focus on three major thrusts: (1) thermodynamic stability and mobility of colloids formed by reactions of sediments with highly alkaline tank waste solutions, (2) colloid-contaminant interactions, and (3) in-situ colloid mobilization and colloid facilitated contaminant transport occurring in both contaminated and uncontaminated Hanford sediments

  10. Experimental evidence of colloids and nanoparticles presence from 25 waste leachates

    Hennebert, Pierre, E-mail: pierre.hennebert@ineris.fr [INERIS – Institut National de l’Environnement Industriel et des Risques, Domaine du Petit Arbois BP33, F-13545 Aix-en-Provence (France); Avellan, Astrid; Yan, Junfang [INERIS – Institut National de l’Environnement Industriel et des Risques, Domaine du Petit Arbois BP33, F-13545 Aix-en-Provence (France); Aguerre-Chariol, Olivier [INERIS, Parc Technologique ALATA, BP No. 2, 60550 Verneuil en Halatte (France)

    2013-09-15

    Highlights: • This work is the first assessment of colloids in waste leachates. • Analytical methods are proposed and discussed. • All the waste have at least one element in colloidal form, and some elements are always colloidal. • Man-made nanoparticles are observed. • It can change the interpretation of leachate elemental concentration. - Abstract: The potential colloids release from a large panel of 25 solid industrial and municipal waste leachates, contaminated soil, contaminated sediments and landfill leachates was studied. Standardized leaching, cascade filtrations and measurement of element concentrations in the microfiltrate (MF) and ultrafiltrate (UF) fraction were used to easily detect colloids potentially released by waste. Precautions against CO{sub 2} capture by alkaline leachates, or bacterial re-growth in leachates from wastes containing organic matter should be taken. Most of the colloidal particles were visible by transmission electron microscopy with energy dispersion spectrometry (TEM–EDS) if their elemental MF concentration is greater than 200 μg l{sup −1}. If the samples are dried during the preparation for microscopy, neoformation of particles can occur from the soluble part of the element. Size distribution analysis measured by photon correlation spectroscopy (PCS) were frequently unvalid, particularly due to polydispersity and/or too low concentrations in the leachates. A low sensitivity device is required, and further improvement is desirable in that field. For some waste leachates, particles had a zeta potential strong enough to remain in suspension. Mn, As, Co, Pb, Sn, Zn had always a colloidal form (MF concentration/UF concentration > 1.5) and total organic carbon (TOC), Fe, P, Ba, Cr, Cu, Ni are partly colloidal for more than half of the samples). Nearly all the micro-pollutants (As, Ba, Co, Cr, Cu, Mo, Ni, Pb, Sb, Sn, V and Zn) were found at least once in colloidal form greater than 100 μg l{sup −1}. In particular

  11. Grimsel colloid exercise, an international intercomparison exercise on the sampling and characterization of groundwater colloids

    Degueldre, C.

    1990-01-01

    The Grimsel colloid exercise was an intercomparison exercise which consisted of an in situ sampling phase followed by a colloid characterization step. The goal of this benchmark exercise, which involved 12 laboratories, was to evaluate both sampling and characterization techniques with emphasis on the colloid specific size distribution. The sampling phase took place at the Grimsel test site between 1 and 13 February 1988 and the participating groups produced colloid samples using various methods. This work was carried out within the Community COCO Club, as a component of the Mirage project (second phase)

  12. Linear Optical Properties of Gold Colloid

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  13. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions

    Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens

    2018-04-01

    A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute interactions are implemented using a pseudopotential model. The Nernst-Planck equation, describing the kinetics of dissolved ion species, is solved using a finite difference discretization based on the link-flux method. The colloids are resolved on the lattice and coupled to the hydrodynamics and electrokinetics through appropriate boundary conditions. We present the first full integration of these three elements. The model is validated by comparing with known analytic solutions of ionic distributions at fluid interfaces, dielectric droplet deformations, and the electrophoretic mobility of colloidal suspensions. Its possibilities are explored by considering various physical systems, such as breakup of charged and neutral droplets and colloidal dynamics at either planar or spherical fluid interfaces.

  14. Suspensions of colloidal particles and aggregates

    Babick, Frank

    2016-01-01

    This book addresses the properties of particles in colloidal suspensions. It has a focus on particle aggregates and the dependency of their physical behaviour on morphological parameters. For this purpose, relevant theories and methodological tools are reviewed and applied to selected examples. The book is divided into four main chapters. The first of them introduces important measurement techniques for the determination of particle size and interfacial properties in colloidal suspensions. A further chapter is devoted to the physico-chemical properties of colloidal particles—highlighting the interfacial phenomena and the corresponding interactions between particles. The book’s central chapter examines the structure-property relations of colloidal aggregates. This comprises concepts to quantify size and structure of aggregates, models and numerical tools for calculating the (light) scattering and hydrodynamic properties of aggregates, and a discussion on van-der-Waals and double layer interactions between ...

  15. Structural properties of dendrimer-colloid mixtures

    Lenz, Dominic A; Blaak, Ronald; Likos, Christos N

    2012-01-01

    We consider binary mixtures of colloidal particles and amphiphilic dendrimers of the second generation by means of Monte Carlo simulations. By using the effective interactions between monomer-resolved dendrimers and colloids, we compare the results of simulations of mixtures stemming from a full monomer-resolved description with the effective two-component description at different densities, composition ratios, colloid diameters and interaction strengths. Additionally, we map the two-component system onto an effective one-component model for the colloids in the presence of the dendrimers. Simulations based on the resulting depletion potentials allow us to extend the comparison to yet another level of coarse graining and to examine under which conditions this two-step approach is valid. In addition, a preliminary outlook into the phase behavior of this system is given. (paper)

  16. Dynamics and Rheology of Soft Colloidal Glasses

    Wen, Yu Ho; Schaefer, Jennifer L.; Archer, Lynden A.

    2015-01-01

    © 2015 American Chemical Society. The linear viscoelastic (LVE) spectrum of a soft colloidal glass is accessed with the aid of a time-concentration superposition (TCS) principle, which unveils the glassy particle dynamics from in-cage rattling

  17. Thermal Jamming of a Colloidal Glass

    Agarwal, Praveen; Srivastava, Samanvaya; Archer, Lynden A.

    2011-01-01

    We investigate the effect of temperature on structure and dynamics of a colloidal glass created by tethering polymers to the surface of inorganic nanoparticles. Contrary to the conventional assumption, an increase in temperature slows down glassy

  18. Mobility of radioactive colloidal particles in groundwater

    Nuttall, H.E.; Long, R.L.

    1993-01-01

    Radiocolloids are a major factor in the rapid migration of radioactive waste in groundwater. For at least two Los Alamos National Laboratory (LANL) sites, researchers have shown that groundwater colloidal particles were responsible for the rapid transport of radioactive waste material in groundwater. On an international scale, a review of reported field observations, laboratory column studies, and carefully collected field samples provides compelling evidence that colloidal particles enhance both radioactive and toxic waste migration. The objective of this project is to understand and predict colloid-contaminant migration through fundamental mathematical models, water sampling, and laboratory experiments and use this information to develop an effective and scientifically based colloid immobilization strategy. The article focuses on solving the suspected radiocolloid transport problems at LANL's Mortandad Canyon site. (author) 6 figs., 5 tabs., 18 refs

  19. Crust formation in drying colloidal suspensions

    Style, R. W.; Peppin, S. S. L.

    2010-01-01

    and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model

  20. Colloidal Quantum Dot Photovoltaics: A Path Forward

    Kramer, Illan J.; Sargent, Edward H.

    2011-01-01

    spectrum. CQD materials' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements

  1. Safety and efficacy of personal care products containing colloidal oatmeal

    Criquet M

    2012-11-01

    Full Text Available Maryline Criquet,1 Romain Roure,1 Liliane Dayan,2 Virginie Nollent,1 Christiane Bertin11Johnson & Johnson Santé Beauté France, Issy les Moulineaux, 2Independent consultant dermatologist, Paris, FranceBackground: Colloidal oatmeal is a natural ingredient used in the formulation of a range of personal care products for relief of skin dryness and itchiness. It is also used as an adjunctive product in atopic dermatitis. The safety of personal care products used on vulnerable skin is of particular importance and the risk of developing further skin irritations and/or allergies should be minimized.Methods: In a series of studies, we tested the safety of personal care products containing oatmeal (creams, cleansers, lotions by assessing their irritant/allergenic potential on repeat insult patch testing, in safety-in-use and ocular studies using subjects with nonsensitive and sensitive skin. We also tested the skin moisturizing and repair properties of an oatmeal-containing skin care product for dry skin.Results: We found that oatmeal-containing personal care products had very low irritant potential as well as a very low allergenic sensitization potential. Low-level reactions were documented in 1.0% of subjects during the induction phase of repeat insult patch testing; one of 2291 subjects developed a persistent but doubtful low-level reaction involving edema during the challenge phase in repeat insult patch testing. No allergies were reported by 80 subjects after patch testing after in-use application. Sustained skin moisturizing was documented in subjects with dry skin that lasted up to 2 weeks after product discontinuation.Conclusion: Our results demonstrate that colloidal oatmeal is a safe and effective ingredient in personal care products. No allergies were reported by consumers of 445,820 products sold during a 3-year period.Keywords: Avena sativa, colloids, protective agents, atopic dermatitis, irritant dermatitis, allergenic dermatitis, skin

  2. Plasmonic Colloidal Nanoantennas for Tip-Enhanced Raman Spectrocopy

    Dill, Tyler J.

    Plasmonic nanoantennas that a support localized surface plasmon resonance (LSPR) are capable of confining visible light to subwavelength dimensions due to strong electromagnetic field enhancement at the probe tip. Nanoantenna enable optical methods such as tip-enhanced Raman spectroscopy (TERS), a technique that uses scanning probe microscopy tips to provide chemical information with nanoscale spatial resolution and single-molecule sensitivities. The LSPR supported by the probe tip is extremely sensitive to the nanoscale morphology of the nanoantenna. Control of nanoscale morphology is notoriously difficult to achieve, resulting in TERS probes with poor reproducibility. In my thesis, I demonstrate high-performance, predictable, and broadband nanospectroscopy probes that are fabricated by self-assembly. Shaped metal nanoparticles are organized into dense layers and deposited onto scanning probe tips. When coupled to a metal substrate, these probes support a strong optical resonance in the gap between the substrate and the probe, producing dramatic field enhancements. I show through experiment and electromagnetic modeling that close-packed but electrically isolated nanoparticles are electromagnetically coupled. Hybridized LSPRs supported by self-assembled nanoparticles with a broadband optical response, giving colloidal nanoantenna a high tolerance for geometric variation resulting from fabrication. I find that coupled nanoparticles act as a waveguide, transferring energy from many neighboring nanoparticles towards the active TERS apex. I also use surface-enhanced Raman spectroscopy (SERS) to characterize the effects of nanoparticle polydispersity and gap height on the Raman enhancement. These colloidal probes have consistently achieved dramatic Raman enhancements in the range of 108-109 with sub-50 nm spatial resolution. Furthermore, in contrast to other nanospectroscopy probes, these colloidal probes can be fabricated in a scalable fashion with a batch

  3. Colloidal Silver Not Approved for Treating Animals

    Bagley, Clell V, DVM

    1997-01-01

    FDA has received reports that products containing colloidal silver are being promoted for use in the treatment of mastitis and other serious disease conditions of dairy cattle, as well as for various conditions of companion animals. For example, FDA’s Center for Veterinary Medicine has received reports from the Agency's regional milk specialists and State inspectors that colloidal silver products have been found on some dairy farms. Also, recent articles in some farm newspapers and journals p...

  4. Au, Ag and Au:Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates

    M. Vinod

    2014-12-01

    Full Text Available Chemically pure colloidal suspensions of gold and silver nanoparticles were synthesized using pulsed laser ablation. The dependence of laser fluence on the surface plasmon characteristics of the nanoparticles was investigated. Au:Ag colloidal suspensions were prepared by mixing highly monodisperse Au and Ag nanocolloids. The plasmon band of these mixtures was found to be highly sensitive to Au:Ag concentration ratio and wavelength of the laser beam used in the ablation process. The Au:Ag mixture consists of almost spherical shaped nanostructures with a tendency to join with adjacent ones. The surface enhanced Raman scattering activity of the Au, Ag and Au:Ag colloidal suspensions was tested using crystal violet as probe molecules. Enhancement in Raman signal obtained with Au:Ag substrates was found to be promising and strongly depends on its plasmon characteristics.

  5. The colloidal thyroxine (T4) ring as a novel biomarker of perchlorate exposure in the African clawed frog Xenopus laevis

    Hu, F.; Sharma, Bibek; Mukhi, S.; Patino, R.; Carr, J.A.

    2006-01-01

    The purpose of this study was to determine if changes in colloidal thyroxine (T4) immunoreactivity can be used as a biomarker of perchlorate exposure in amphibian thyroid tissue. Larval African clawed frogs (Xenopus laevis) were exposed to 0, 1, 8, 93, and 1131 ??g perchlorate/l for 38 and 69 days to cover the normal period of larval development and metamorphosis. The results of this study confirmed the presence of an immunoreactive colloidal T4 ring in thyroid follicles of X. laevis and demonstrated that the intensity of this ring is reduced in a concentration-dependent manner by perchlorate exposure. The smallest effective concentration of perchlorate capable of significantly reducing colloidal T4 ring intensity was 8 ??g perchlorate/l. The intensity of the immunoreactive colloidal T4 ring is a more sensitive biomarker of perchlorate exposure than changes in hind limb length, forelimb emergence, tail resorption, thyrocyte hypertrophy, or colloid depletion. We conclude that the colloidal T4 ring can be used as a sensitive biomarker of perchlorate-induced thyroid disruption in amphibians. ?? Copyright 2006 Oxford University Press.

  6. Optical tweezers with 2.5 kHz bandwidth video detection for single-colloid electrophoresis

    Otto, Oliver; Gutsche, Christof; Kremer, Friedrich; Keyser, Ulrich F.

    2008-02-01

    We developed an optical tweezers setup to study the electrophoretic motion of colloids in an external electric field. The setup is based on standard components for illumination and video detection. Our video based optical tracking of the colloid motion has a time resolution of 0.2ms, resulting in a bandwidth of 2.5kHz. This enables calibration of the optical tweezers by Brownian motion without applying a quadrant photodetector. We demonstrate that our system has a spatial resolution of 0.5nm and a force sensitivity of 20fN using a Fourier algorithm to detect periodic oscillations of the trapped colloid caused by an external ac field. The electrophoretic mobility and zeta potential of a single colloid can be extracted in aqueous solution avoiding screening effects common for usual bulk measurements.

  7. Electron transport in gold colloidal nanoparticle-based strain gauges

    Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M.; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence

    2013-03-01

    A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the ‘regular island array model’ that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy EC. This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the EC values of these 14 nm NPs cannot be neglected in determining the β values.

  8. Colloid-Facilitated Transport of Radionuclides Through The Vadose Zone

    Markus Flury; James B. Harsh; John F. McCarthy' Peter C. Lichtner; John M. Zachara

    2007-01-01

    The main purpose of this project was to advance the basic scientific understanding of colloid and colloid-facilitated Cs transport of radionuclides in the vadose zone. We focused our research on the hydrological and geochemical conditions beneath the leaking waste tanks at the USDOE Hanford reservation. Specific objectives were (1) to determine the lability and thermodynamic stability of colloidal materials, which form after reacting Hanford sediments with simulated Hanford Tank Waste, (2) to characterize the interactions between colloidal particles and contaminants, i.e., Cs and Eu, (3) to determine the potential of Hanford sediments for in situ mobilization of colloids, (4) to evaluate colloid-facilitated radionuclide transport through sediments under unsaturated flow, (5) to implement colloid-facilitated contaminant transport mechanisms into a transport model, and (6) to improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for clean-up procedures and long-term risk assessment

  9. Crystallization in polydisperse colloidal suspensions

    Martin, S.; Bryant, G.; Van Megen, W.

    2004-01-01

    Full text: Crystallization and glass formation in colloidal hard spheres has been a very active area of research over the last 15-20 years. For most of this time particle polydispersity has been considered to be a minor concern in these studies. However, over the last few years an increasing number of simulations, theoretical work and experiments have shown that consideration of the polydispersity is critical in understanding these phenomena. In this paper we provide an overview of recent crystallization studies on particles with two very different particle size distributions. These particles exhibit very different equilibrium crystal structures and crystallization kinetics. Based on these measurements and time lapse photographs, we propose a growth mechanism whereby crystallization occurs in conjunction with a local fractionation process near the crystal-fluid interface, which significantly alters the kinetics of crystallite nucleation and growth. This fractionation effect becomes more significant as polydispersity or skewness increases. The unusual crystal structures observed are explained using a schematic model that explains the structure in terms of stacks of planes, which are unregistered due to a high incidence of stacking faults caused by the incorporation of a large number of small particles

  10. Colloid transport in model fracture filling materials

    Wold, S.; Garcia-Garcia, S.; Jonsson, M.

    2010-12-01

    Colloid transport in model fracture filling materials Susanna Wold*, Sandra García-García and Mats Jonsson KTH Chemical Science and Engineering Royal Institute of Technology, SE-100 44 Stockholm, Sweden *Corresponding author: E-mail: wold@kth.se Phone: +46 8 790 6295 In colloid transport in water-bearing fractures, the retardation depends on interactions with the fracture surface by sorption or filtration. These mechanisms are difficult to separate. A rougher surface will give a larger area available for sorption, and also when a particle is physically hindered, it approaches the surface and enables further sorption. Sorption can be explained by electrostatics were the strongest sorption on minerals always is observed at pH below pHpzc (Filby et al., 2008). The adhesion of colloids to mineral surfaces is related to the surface roughness according to a recent study (Darbha et al., 2010). There is a large variation in the characteristics of water-bearing fractures in bedrock in terms of aperture distribution, flow velocity, surface roughness, mineral distributions, presence of fracture filling material, and biological and organic material, which is hard to implement in modeling. The aim of this work was to study the transport of negatively charged colloids in model fracture filling material in relation to flow, porosity, mineral type, colloid size, and surface charge distribution. In addition, the impact on transport of colloids of mixing model fracture filling materials with different retention and immobilization capacities, determined by batch sorption experiments, was investigated. The transport of Na-montmorillonite colloids and well-defined negatively charged latex microspheres of 50, 100, and 200 nm diameter were studied in either columns containing quartz or quartz mixed with biotite. The ionic strength in the solution was exclusively 0.001 and pH 6 or 8.5. The flow rates used were 0.002, 0.03, and 0.6 mL min-1. Sorption of the colloids on the model fracture

  11. Molecular Recognition in the Colloidal World.

    Elacqua, Elizabeth; Zheng, Xiaolong; Shillingford, Cicely; Liu, Mingzhu; Weck, Marcus

    2017-11-21

    Colloidal self-assembly is a bottom-up technique to fabricate functional nanomaterials, with paramount interest stemming from programmable assembly of smaller building blocks into dynamic crystalline domains and photonic materials. Multiple established colloidal platforms feature diverse shapes and bonding interactions, while achieving specific orientations along with short- and long-range order. A major impediment to their universal use as building blocks for predesigned architectures is the inability to precisely dictate and control particle functionalization and concomitant reversible self-assembly. Progress in colloidal self-assembly necessitates the development of strategies that endow bonding specificity and directionality within assemblies. Methodologies that emulate molecular and polymeric three-dimensional (3D) architectures feature elements of covalent bonding, while high-fidelity molecular recognition events have been installed to realize responsive reconfigurable assemblies. The emergence of anisotropic 'colloidal molecules', coupled with the ability to site-specifically decorate particle surfaces with supramolecular recognition motifs, has facilitated the formation of superstructures via directional interactions and shape recognition. In this Account, we describe supramolecular assembly routes to drive colloidal particles into precisely assembled architectures or crystalline lattices via directional noncovalent molecular interactions. The design principles are based upon the fabrication of colloidal particles bearing surface-exposed functional groups that can undergo programmable conjugation to install recognition motifs with high fidelity. Modular and versatile by design, our strategy allows for the introduction and integration of molecular recognition principles into the colloidal world. We define noncovalent molecular interactions as site-specific forces that are predictable (i.e., feature selective and controllable complementary bonding partners

  12. Thermophoretic torque in colloidal particles with mass asymmetry

    Olarte-Plata, Juan; Rubi, J. Miguel; Bresme, Fernando

    2018-05-01

    We investigate the response of anisotropic colloids suspended in a fluid under a thermal field. Using nonequilibrium molecular dynamics computer simulations and nonequilibrium thermodynamics theory, we show that an anisotropic mass distribution inside the colloid rectifies the rotational Brownian motion and the colloids experience transient torques that orient the colloid along the direction of the thermal field. This physical effect gives rise to distinctive changes in the dependence of the Soret coefficient with colloid mass, which features a maximum, unlike the monotonic increase of the thermophoretic force with mass observed in homogeneous colloids.

  13. Colloid chemistry: available sorption models and the question of colloid adhesion

    Grauer, R.

    1990-05-01

    A safety analysis of a radioactive waste repository should consider the possibility of nuclide transport by colloids. This would involve describing the sorption properties of the colloids and their transport in porous and fissured media. This report deals with a few selected aspects of the chemistry of this complex subject. Because the mechanisms of ion adsorption onto surfaces are material-specific, increased attention should be paid to identifying the material constitution of aquatic colloids. Suitable models already exist for describing reversible adsorption; these models describe sorption using mass action equations. The surface coordination model, developed for hydrous oxide surfaces, allows a uniform approach to be adopted for different classes of materials. This model is also predictive and has been applied successfully to natural systems. From the point of view of nuclide transport by colloids, irreversible sorption represents the most unfavourable situation. There is virtually no information available on the extent of reversibility and on the desorption kinetics of important nuclide/colloid combinations. Experimental investigations are therefore necessary in this respect. The only question considered in connection with colloid transport and its modelling is that of colloid sticking. Natural colloids, and the surfaces of the rock on which they may be collected, generally have negative surface charges so that colloid sticking will be difficult. The DLVO theory contains an approach for calculating the sticking factor from the surface potentials of the solid phases and the ionic strength of the water. However, it has been shown that this theory is inapplicable because of inherent shortcomings which lead to completely unrealistic predictions. The sticking probability of colloids should therefore be determined experimentally for systems which correspond as closely as possible to reality. (author) 66 figs., 12 tabs., 204 refs

  14. Extraordinary Hall-effect in colloidal magnetic nanoparticle films

    Ben Gur, Leah; Tirosh, Einat [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Segal, Amir [School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Markovich, Gil, E-mail: gilmar@post.tau.ac.il [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Gerber, Alexander, E-mail: gerber@post.tau.ac.il [School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel)

    2017-03-15

    Colloidal nickel nanoparticles (NPs) coated with polyvinylpyrrolidone (PVP) were synthesized. The nanoparticle dispersions were deposited on substrates and dried under mild heating to form conductive films. The films exhibited very small coercivity, nearly metallic conductivity, and a significant extraordinary Hall effect signal. This method could be useful for preparing simple, printed magnetic field sensors with the advantage of relatively high sensitivity around zero magnetic field, in contrast to magnetoresistive sensors, which have maximal field sensitivity away from zero magnetic field. - Highlights: • Ni nanoparticle ink capable of forming conductive films on drying. • The Ni nanoparticle films exhibit significant extraordinary Hall effect. • This system could be used for preparing printed magnetic field sensors integrated in 3D printed structures.

  15. Equilibrium and kinetic models for colloid release under transient solution chemistry conditions.

    Bradford, Scott A; Torkzaban, Saeed; Leij, Feike; Simunek, Jiri

    2015-10-01

    We present continuum models to describe colloid release in the subsurface during transient physicochemical conditions. Our modeling approach relates the amount of colloid release to changes in the fraction of the solid surface area that contributes to retention. Equilibrium, kinetic, equilibrium and kinetic, and two-site kinetic models were developed to describe various rates of colloid release. These models were subsequently applied to experimental colloid release datasets to investigate the influence of variations in ionic strength (IS), pH, cation exchange, colloid size, and water velocity on release. Various combinations of equilibrium and/or kinetic release models were needed to describe the experimental data depending on the transient conditions and colloid type. Release of Escherichia coli D21g was promoted by a decrease in solution IS and an increase in pH, similar to expected trends for a reduction in the secondary minimum and nanoscale chemical heterogeneity. The retention and release of 20nm carboxyl modified latex nanoparticles (NPs) were demonstrated to be more sensitive to the presence of Ca(2+) than D21g. Specifically, retention of NPs was greater than D21g in the presence of 2mM CaCl2 solution, and release of NPs only occurred after exchange of Ca(2+) by Na(+) and then a reduction in the solution IS. These findings highlight the limitations of conventional interaction energy calculations to describe colloid retention and release, and point to the need to consider other interactions (e.g., Born, steric, and/or hydration forces) and/or nanoscale heterogeneity. Temporal changes in the water velocity did not have a large influence on the release of D21g for the examined conditions. This insensitivity was likely due to factors that reduce the applied hydrodynamic torque and/or increase the resisting adhesive torque; e.g., macroscopic roughness and grain-grain contacts. Our analysis and models improve our understanding and ability to describe the amounts

  16. Saturated Zone Colloid-Facilitated Transport

    Wolfsberg, A.; Reimus, P.

    2001-01-01

    The purpose of the Saturated Zone Colloid-Facilitated Transport Analysis and Modeling Report (AMR), as outlined in its Work Direction and Planning Document (CRWMS MandO 1999a), is to provide retardation factors for colloids with irreversibly-attached radionuclides, such as plutonium, in the saturated zone (SZ) between their point of entrance from the unsaturated zone (UZ) and downgradient compliance points. Although it is not exclusive to any particular radionuclide release scenario, this AMR especially addresses those scenarios pertaining to evidence from waste degradation experiments, which indicate that plutonium and perhaps other radionuclides may be irreversibly attached to colloids. This report establishes the requirements and elements of the design of a methodology for calculating colloid transport in the saturated zone at Yucca Mountain. In previous Total Systems Performance Assessment (TSPA) analyses, radionuclide-bearing colloids were assumed to be unretarded in their migration. Field experiments in fractured tuff at Yucca Mountain and in porous media at other sites indicate that colloids may, in fact, experience retardation relative to the mean pore-water velocity, suggesting that contaminants associated with colloids should also experience some retardation. Therefore, this analysis incorporates field data where available and a theoretical framework when site-specific data are not available for estimating plausible ranges of retardation factors in both saturated fractured tuff and saturated alluvium. The distribution of retardation factors for tuff and alluvium are developed in a form consistent with the Performance Assessment (PA) analysis framework for simulating radionuclide transport in the saturated zone. To improve on the work performed so far for the saturated-zone flow and transport modeling, concerted effort has been made in quantifying colloid retardation factors in both fractured tuff and alluvium. The fractured tuff analysis used recent data

  17. Sorption behavior of cesium onto bentonite colloid

    Iijima, Kazuki; Masuda, Tsuguya; Tomura, Tsutomu

    2004-01-01

    It is considered that bentonite colloid might be generated from bentonite which will be used as buffer material in geological disposal system, and can facilitate the migration of radionuclides by means of sorption. In order to examine this characteristic, sorption and desorption experiments of Cs onto bentonite colloid were carried out to obtain its distribution coefficient (Kd) and information on the reversibility of its sorption. In addition, particle size distribution and shape of colloid were investigated and their effect on the sorption behavior was discussed. Kds for Cs were around 20 m 3 /kg for sorption and 30 m 3 /kg for desorption, in which sorbed Cs was desorbed by 8.4x10 -4 mol/l of NaCl solution. These values did not show any dependencies on Cs concentration and duration of sorption and desorption. The first 20% of sorbed Cs was desorbed reversibly at least. Most of colloidal particles were larger than 200 nm and TEM micrographs showed they had only several sheets of the clay crystal. Obtained Kds for colloidal bentonite were larger than those for powdered bentonite. This can be caused by difference of competing ions in the solution, characteristics of contained smectite, or sorption site density. (author)

  18. colloidal radiogold in malig at effusio sand early ovaria carcinoma

    the radical treatment of ovarian cancer, particularly in early cases, and that colloidal .... radio-active patient treated with colloidal radiogold hould at all times work .... night nurses would receive the following amounts of stray gamma radiation (in ...

  19. Inorganic passivation and doping control in colloidal quantum dot photovoltaics

    Hoogland, Sjoerd H.; Ip, Alex; Thon, Susanna; Voznyy, Oleksandr; Tang, Jiang; Liu, Huan; Zhitomirsky, David; Debnath, Ratan K.; Levina, Larissa; Rollny, Lisa R.; Fischer, Armin H.; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, E. H.

    2012-01-01

    We discuss strategies to reduce midgap trap state densities in colloidal quantum dot films and requirements to control doping type and magnitude. We demonstrate that these improvements result in colloidal quantum dot solar cells with certified 7.0% efficiency.

  20. A general approach for monodisperse colloidal perovskites, Chemistry of Materials

    Demirors, A.F.; Imhof, A.

    2009-01-01

    We describe a novel general method for synthesizing monodisperse colloidal perovskite particles at room temperature by postsynthesis addition of metal hydroxides to amorphous titania colloids. In previous work, we used titania particles to synthesize homogenously mixed silica-titania composite

  1. Vector assembly of colloids on monolayer substrates

    Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve

    2017-06-01

    The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.

  2. Manipulating semiconductor colloidal stability through doping.

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2014-10-10

    The interface between a doped semiconductor material and electrolyte solution is of considerable fundamental interest, and is relevant to systems of practical importance. Both adjacent domains contain mobile charges, which respond to potential variations. This is exploited to design electronic and optoelectronic sensors, and other enabling semiconductor colloidal materials. We show that the charge mobility in both phases leads to a new type of interaction between semiconductor colloids suspended in aqueous electrolyte solutions. This interaction is due to the electrostatic response of the semiconductor interior to disturbances in the external field upon the approach of two particles. The electrostatic repulsion between two charged colloids is reduced from the one governed by the charged groups present at the particles surfaces. This type of interaction is unique to semiconductor particles and may have a substantial effect on the suspension dynamics and stability.

  3. Shape-shifting colloids via stimulated dewetting

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-01-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly. PMID:27426418

  4. Colloid and interface chemistry for nanotechnology

    Kralchevsky, Peter; Ravera, Francesca

    2016-01-01

    Colloid and interface science dealt with nanoscale objects for nearly a century before the term nanotechnology was coined. An interdisciplinary field, it bridges the macroscopic world and the small world of atoms and molecules. Colloid and Interface Chemistry for Nanotechnology is a collection of manuscripts reflecting the activities of research teams that have been involved in the networking project Colloid and Interface Chemistry for Nanotechnology (2006-2011), Action D43, the European Science Foundation. The project was a part of the intergovernmental framework for Cooperation in Science and Technology (COST), allowing the coordination of nationally funded research across Europe. With contributions by leading experts, this book covers a wide range of topics. Chapters are grouped into three sections: "Nanoparticle Synthesis and Characterization," "New Experimental Tools and Interpretation," and "Nanocolloidal Dispersions and Interfaces." The topics covered belong to six basic research areas: (1) The synthes...

  5. Colloid-templated multisectional porous polymeric fibers.

    Song, Jung Hun; Kretzschmar, Ilona

    2008-10-07

    A fabrication method for porous polymeric fibers (PPFs) is reported. We show that a multisectional colloidal crystal can be assembled within a microcapillary by alternating dipping into colloidal solutions of varying size. Subsequent infiltration with curable polymer and washing with suitable solvents results in porous fibers with a cylindrical cross section. Along the length of the fiber, alternating sections of controlled length, pore size, and pore size distribution exist. These fibers present interesting materials for neural scaffolding, catalysis, and possibly photonics if produced with a high degree of crystallinity. The surface pores and bulk porosity of the fibers are characterized by variable-pressure scanning electron microscopy (vp-SEM). Careful analysis shows that the surface pores vary with the colloidal template diameter and polymer infiltration time.

  6. Colloid migration in groundwaters: Geochemical interactions of radionuclides with natural colloids. Final report

    Kim, J.J.; Longworth, G.; Hasler, S.E.; Gardiner, M.; Fritz, P.; Klotz, D.; Lazik, D.; Wolf, M.; Geyer, S.; Alexander, J.L.; Read, D.; Thomas, J.B.

    1994-08-01

    In this joint research programme the significance of groundwater colloids in far field radionuclide migration has been studied. The characterization, quantification and theoretical interpretation of colloid-borne transport phenomena for radionuclides were the main objectives of this research programme. Groundwaters, colloids and sediments were sampled from aquifer system overlying a saltdome in the Gorleben area in northern Germany and were characterized by various analytical methods (ICP-MS, ICP-AES, neutron activation analysis (NAA), DOC-Analyser, HPIC, potentiometric titration). Different natural isotopes ( 2 H, 3 H, 13 C, 14 C, 18 O, 34 S, U/Th decay series) were determined and their ratios were compared with one another in the order to ascertain the provenance of the groundwater colloids. The investigated groundwaters contain substantial amounts of colloids mainly composed of humic and fulvic acids loaded with various metal ions. The chemical interaction of radionuclide ions of various oxidation states (Am, Eu, for M(III), Th, Pu for M(IV), Np for M(V) and U for M(VI)) with groundwater colloids was investigated in order to elucidate the colloid facilitated migration behaviour of actinides in a given aquifer system. Transport process studies with generated pseudocolloids of radionuclides in various oxidation states were undertaken in scaled column experiments, pre-equilibrated with colloid rich Gorleben groundwater. A modelling programme was developed to predict chemical transport of radionuclides in the presence of humic colloids using a modified version of the CHEMTARD code. Modelling predictions have generated acceptable results for Eu, Am and U and poorer agreement between experimental and modelling results for Th and Np as a result of more limited data. (orig.)

  7. Colloid migration in groundwaters: Geochemical interactions of radionuclides with natural colloids. Final report

    Kim, J.J. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Delakowitz, B. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Zeh, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Probst, T. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Lin, X. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Ehrlicher, U. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Schauer, C. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Ivanovich, M. [AEA Environment and Energy, Harwell (United Kingdom); Longworth, G. [AEA Environment and Energy, Harwell (United Kingdom); Hasler, S.E. [AEA Environment and Energy, Harwell (United Kingdom); Gardiner, M. [AEA Decommissioning and Radwaste, Harwell (United Kingdom); Fritz, P. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Klotz, D. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Lazik, D. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Wolf, M. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Geyer, S. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Alexander, J.L. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom); Read, D. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom); Thomas, J.B. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom)

    1994-08-01

    In this joint research programme the significance of groundwater colloids in far field radionuclide migration has been studied. The characterization, quantification and theoretical interpretation of colloid-borne transport phenomena for radionuclides were the main objectives of this research programme. Groundwaters, colloids and sediments were sampled from aquifer system overlying a saltdome in the Gorleben area in northern Germany and were characterized by various analytical methods (ICP-MS, ICP-AES, neutron activation analysis (NAA), DOC-Analyser, HPIC, potentiometric titration). Different natural isotopes ({sup 2}H, {sup 3}H, {sup 13}C, {sup 14}C, {sup 18}O, {sup 34}S, U/Th decay series) were determined and their ratios were compared with one another in the order to ascertain the provenance of the groundwater colloids. The investigated groundwaters contain substantial amounts of colloids mainly composed of humic and fulvic acids loaded with various metal ions. The chemical interaction of radionuclide ions of various oxidation states (Am, Eu, for M(III), Th, Pu for M(IV), Np for M(V) and U for M(VI)) with groundwater colloids was investigated in order to elucidate the colloid facilitated migration behaviour of actinides in a given aquifer system. Transport process studies with generated pseudocolloids of radionuclides in various oxidation states were undertaken in scaled column experiments, pre-equilibrated with colloid rich Gorleben groundwater. A modelling programme was developed to predict chemical transport of radionuclides in the presence of humic colloids using a modified version of the CHEMTARD code. Modelling predictions have generated acceptable results for Eu, Am and U and poorer agreement between experimental and modelling results for Th and Np as a result of more limited data. (orig.)

  8. Size effects of solvent molecules on the phase behavior and effective interaction of colloidal systems with the bridging attraction

    Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun

    2016-01-01

    There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter’s two-component sticky hard sphere model with a Percus–Yevick closure to solve the Ornstein–Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms. (paper)

  9. Size effects of solvent molecules on the phase behavior and effective interaction of colloidal systems with the bridging attraction.

    Chen, Jie; Wang, Xuewu; Kline, Steven R; Liu, Yun

    2016-11-16

    There has been much recent research interest towards understanding the phase behavior of colloidal systems interacting with a bridging attraction, where the small solvent particles and large solute colloidal particles can be reversibly associated with each other. These systems show interesting phase behavior compared to the more widely studied depletion attraction systems. Here, we use Baxter's two-component sticky hard sphere model with a Percus-Yevick closure to solve the Ornstein-Zernike equation and study the size effect on colloidal systems with bridging attractions. The spinodal decomposition regions, percolation transition boundaries and binodal regions are systematically investigated as a function of the relative size of the small solvent and large solute particles as well as the attraction strength between the small and large particles. In the phase space determined by the concentrations of small and large particles, the spinodal and binodal regions form isolated islands. The locations and shapes of the spinodal and binodal regions sensitively depend on the relative size of the small and large particles and the attraction strength between them. The percolation region shrinks by decreasing the size ratio, while the binodal region slightly expands with the decrease of the size ratio. Our results are very important in understanding the phase behavior for a bridging attraction colloidal system, a model system that provides insight into oppositely charged colloidal systems, protein phase behavior, and colloidal gelation mechanisms.

  10. Characterization of magnetic colloids by means of magnetooptics

    Baraban, Larysa; Erbe, Artur; Leiderer, Paul

    2007-01-01

    A new, efficient method for the characterization of magnetic colloids based on the Faraday effect is proposed. According to the main principles of this technique, it is possible to detect the stray magnetic field of the colloidal particles induced inside the magnetooptical layer. The magnetic properties of individual particles can be determined providing measurements in a wide range of magnetic fields. The magnetization curves of capped colloids and paramagnetic colloids were measured by mean...

  11. Active structuring of colloidal armour on liquid drops

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Fossum, Jon Otto

    2013-01-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-fieldassisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a...

  12. Electrostatic Self-Assembly of Au Nanoparticles onto Thermosensitive Magnetic Core-Shell Microgels for Thermally Tunable and Magnetically Recyclable Catalysis.

    Liu, Guoqiang; Wang, Daoai; Zhou, Feng; Liu, Weimin

    2015-06-01

    A facile route to fabricate a nanocomposite of Fe3O4@poly[N-isopropylacrylamide (NIPAM)-co-2-(dimethylamino)ethyl methacrylate (DMAEMA)]@Au (Fe3O4@PND@Au) is developed for magnetically recyclable and thermally tunable catalysis. The negatively charged Au nanoparticles with an average diameter of 10 nm are homogeneously loaded onto positively charged thermoresponsive magnetic core-shell microgels of Fe3O4@poly(NIPAM-co-DMAEMA) (Fe3O4@PND) through electrostatic self-assembly. This type of attachment offers perspectives for using charged polymeric shell on a broad variety of nanoparticles to immobilize the opposite-charged nanoparticles. The thermosensitive PND shell with swollen or collapsed properties can be as a retractable Au carrier, thereby tuning the aggregation or dispersion of Au nanoparticles, which leads to an increase or decrease of catalytic activity. Therefore, the catalytic activity of Fe3O4@PND@Au can be modulated by the volume transition of thermosensitive microgel shells. Importantly, the mode of tuning the aggregation or dispersion of Au nanoparticles using a thermosensitive carrier offers a novel strategy to adjust and control the catalytic activity, which is completely different with the traditional regulation mode of controlling the diffusion of reactants toward the catalytic Au core using the thermosensitive poly(N-isopropylacrylamide) network as a nanogate. Concurrent with the thermally tunable catalysis, the magnetic susceptibility of magnetic cores enables the Fe3O4@PND@Au nanocomposites to be capable of serving as smart nanoreactors for thermally tunable and magnetically recyclable catalysis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Dynamics of colloidal particles in ice

    Spannuth, Melissa

    2011-01-01

    We use x-ray photon correlation spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high particle density, where some of the colloids were forced into contact and formed disordered aggregates. The particles in these high density regions underwent ballistic motion, with a characteristic velocity that increased with temperature. This ballistic motion is coupled with both stretched and compressed exponential decays of the intensity autocorrelation function. We suggest that this behavior could result from ice grain boundary migration. © 2011 American Institute of Physics.

  14. Colloidal assemblies modified by ion irradiation

    Snoeks, E.; Blaaderen, A. van; Dillen, T. van; Kats, C.M. van; Velikov, K.P.; Brongersma, M.L.; Polman, A.

    2001-01-01

    Spherical SiO2 and ZnS colloidal particles show a dramatic anisotropic plastic deformation under 4 MeV Xe ion irradiation, that changes their shape into oblate into oblate ellipsional, with an aspect ratio that can be precisely controlled by the ion fluence. The 290 nm and 1.1 um diameter colloids were deposited on a Si substrate and irradiated at 90 K, using fluences in the range 3*10^(13)-8*10^(14) cm^(-2). The transverse particle diameter shows a linear increase with ion fluence, while the...

  15. Separation of plutonium oxide nanoparticles and colloids

    Wilson, Richard E.; Skanthakumar, S.; Soderholm, L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL (United States)

    2011-11-18

    Oil and vinegar: Colloidal plutonium is an important component of Pu aqueous speciation. Pu colloids are problematic in nuclear separations and are a potential transport vector in the environment. Using a mixture of n-octanol and trichloroacetic acid a selective and reversible separation of these particles can be achieved by exploiting their surface reactivity (Li{sub 2}[Pu{sub 38}O{sub 56}Cl{sub 42}(H{sub 2}O){sub 20}].15H{sub 2}O). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Separation of plutonium oxide nanoparticles and colloids

    Wilson, Richard E.; Skanthakumar, S.; Soderholm, L. [Argonne National Laboratory, IL (United States). Chemical Sciences and Engineering Division

    2011-11-18

    Colloidal plutonium is an important component of Pu aqueous speciation. Pu colloids are problematic in nuclear separations and are a potential transport vector in the environment. Using a mixture of n-octanol and trichloroacetic acid a selective and reversible separation of these particles can be achieved by exploiting their surface reactivity. [German] Kolloidales Plutonium ist ein wichtiger Bestandteil in waessrigen Pu-Bereitungen. Pu-Kolloide sind problematisch bei der Wiederaufbereitung von Kernmaterial und bilden einen potenziellen Transportvektor in die Umwelt. Mit einem Loesungsmittelgemisch aus n-Octanol und Trichloressigsaeure gelingt die selektive und reversible Trennung dieser Partikel durch Ausnutzung ihrer Oberflaechenreaktivitaet.

  17. Measuring the osmotic pressure of active colloids

    Wang, Michael; Soni, Vishal; Magkiriadou, Sofia; Ferrari, Melissa; Youssef, Mina; Driscoll, Michelle; Sacanna, Stefano; Chaikin, Paul; Irvine, William

    We study the behavior of a system of colloidal spinners, consisting of weakly magnetic colloids driven by a rotating magnetic field. First the particles are allowed to sediment to an equilibrium density profile in a gravitational field, from which we measure the equilibrium equation of state. By spinning the particles at various frequencies, we introduce activity into the system through the hydrodynamic interactions between particles. We observe that the activity expands the sedimentation profile to a new steady state, from which we measure the pressure as a function of the density and activity. We compare the effects of activity on the pressure and mean-squared displacement of spinners and tracer particles.

  18. Colloid cyst in pituitary gland: a case report

    Koo, Hee Youn; Lee, Myung Jun; Lee, Chang Joon; Yoo, Jeong Hyun

    2001-01-01

    Colloid cyst is a congenital lesion which is thought to be derived from the primitive neuro epithelium, and is most frequently located in the anterior half of the third ventricle. Colloid cysts rarely occur in the pituitary gland, and we describe a case of pituitary colloid cyst, including the CT, MRI and pathologic findings

  19. Interplay between Colloids and Interfaces : Emulsions, Foams and Microtubes

    de Folter, J.W.J.

    2013-01-01

    The central theme of this thesis is the interplay between colloids and interfaces. The adsorption of colloids at fluid-fluid interfaces is the main topic and covers Chapters 2-6. Pickering emulsions where colloidal particles act as emulsion stabilizers in the absence of surfactants are studied in a

  20. Clustering and self-assembly in colloidal systems

    Smallenburg, F.

    2012-01-01

    A colloidal dispersion consists of small particles called colloids, typically tens of nanometers to a few micrometers in size, suspended in a solvent. Due to collisions with the much smaller particles in the solvent, colloids perform Brownian motion: randomly directed movements that cause the

  1. Colloid mobilization and transport during capillary fringe fluctuations.

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L

    2014-07-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead-filled column. We studied four specific conditions: (1) colloids suspended in the aqueous phase, (2) colloids attached to the glass beads in an initially wet porous medium, (3) colloids attached to the glass beads in an initially dry porous medium, and (4) colloids suspended in the aqueous phase with the presence of a static air bubble. Confocal images confirmed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively charged colloids did not attach to static air-bubbles, but hydrophobic negatively charged and hydrophilic positively charged colloids did. Our results demonstrate that capillary fringe fluctuations are an effective means for colloid mobilization.

  2. A general method to coat colloidal particles with titiana

    Demirors, A.F.; van Blaaderen, A.; Imhof, A.

    2010-01-01

    We describe a general one-pot method for coating colloidal particles with amorphous titania. Various colloidal particles such as silica particles, large silver colloids, gibbsite platelets, and polystyrene spheres were successfully coated with a titania shell. Although there are several ways of

  3. Shape recognition of microbial cells by colloidal cell imprints

    Borovicka, J.; Stoyanov, S.D.; Paunov, V.N.

    2013-01-01

    We have engineered a class of colloids which can recognize the shape and size of targeted microbial cells and selectively bind to their surfaces. These imprinted colloid particles, which we called "colloid antibodies", were fabricated by partial fragmentation of silica shells obtained by templating

  4. Sampling and analysis of groundwater colloids. A literature review

    Takala, M.; Manninen, P.

    2006-03-01

    The purpose of this literature study was to give basic information of colloids: their formation, colloid material, sampling and characterisation of groundwater colloids. Colloids are commonly refereed to as particles in the size range of 1 nm to 1000 nm. They are defined as a suspension of solid material in a liquid that does not appear to separate even after a long period of time. Colloids can be formed from a variety of inorganic or organic material. Inorganic colloids in natural groundwaters are formed by physical fragmentation of the host rock or by precipitation. The water chemistry strongly controls the stability of colloids. The amount of colloid particles in a solution tends to decrease with the increasing ionic strength of the solution. Increases in pH and organic material tend to increase the stability of colloids. The mobility of colloids in a porous medium is controlled mainly by groundwater movement, sedimentation, diffusion and interception. Factors controlling sampling artefacts are oxygen diffusion: leads to e.g. calcite precipitation, pumping rates and filtering techniques. Efforts to minimise artefact formation should be taken if the scope of the sampling programme is to study the colloid particles. The colloid phase size distribution can be determined by light scattering systems, laser induced break down or by single particle analysis using SEM micrographs. Elemental compositions can be analysed with EDS spectrometry from single colloid particles. Bulk compositions of the colloid phase can be analysed with e.g. ICP-MS analyser. The results of this study can be used as guidelines for groundwater colloid samplings. Recommendations for future work are listed in the conclusions of this report. (orig.)

  5. Pore water colloid properties in argillaceous sedimentary rocks.

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  6. Physical aging and structural recovery in a colloidal glass subjected to volume-fraction jump conditions

    Peng, Xiaoguang; McKenna, Gregory B.

    2016-04-01

    of the colloidal dispersions is also examined in the equilibrium state and we find that the dynamic fragility index m is sensitive to the degree of softness of the soft colloidal dispersion, indicating that soft colloids make stronger glasses. Finally, we compare the present results with prior findings for similar thermoresponsive systems obtained with diffusing wave spectroscopy and discuss similarities and differences.

  7. Prospects of Colloidal Copper Chalcogenide Nanocrystals

    van der Stam, W.; Berends, A.C.; de Mello-Donega, Celso

    2016-01-01

    Over the past few years, colloidal copper chalcogenide nanocrystals (NCs) have emerged as promising alternatives to conventional Cd and Pb chalcogenide NCs. Owing to their wide size, shape, and composition tunability, Cu chalcogenide NCs hold great promise for several applications, such as

  8. Mesoscopic electrohydrodynamic simulations of binary colloidal suspensions

    Rivas, Nicolas; Frijters, Stefan; Pagonabarraga, Ignacio; Harting, Jens

    2018-01-01

    A model is presented for the solution of electrokinetic phenomena of colloidal suspensions in fluid mixtures. We solve the discrete Boltzmann equation with a Bhatnagar-Gross-Krook collision operator using the lattice Boltzmann method to simulate binary fluid flows. Solvent-solvent and solvent-solute

  9. Towards conducting inks: polypyrrole-silver colloids

    Omastová, M.; Bober, Patrycja; Morávková, Zuzana; Peřinka, N.; Kaplanová, M.; Syrový, T.; Hromádková, Jiřina; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Roč. 122, 10 March (2014), s. 296-302 ISSN 0013-4686 R&D Projects: GA TA ČR TE01020022; GA ČR(CZ) GA13-00270S Institutional support: RVO:61389013 Keywords : conducting inks * polypyrrole * colloids Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 4.504, year: 2014

  10. Solid colloids with surface-mobile linkers

    Van der Meulen, Stef A J; Helms, Gesa; Dogterom, Marileen

    2015-01-01

    In this report we review the possibilities of using colloids with surface mobile linkers for the study of colloidal self-assembly processes. A promising route to create systems with mobile linkers is the use of lipid (bi-)layers. These lipid layers can be either used in the form of vesicles or as coatings for hard colloids and emulsion droplets. Inside the lipid bilayers molecules can be inserted via membrane anchors. Due to the fluidity of the lipid bilayer, the anchored molecules remain mobile. The use of different lipid mixtures even allows creating Janus-like particles that exhibit directional bonding if linkers are used which have a preference for a certain lipid phase. In nature mobile linkers can be found e.g. as receptors in cells. Therefore, towards the end of the review, we also briefly address the possibility of using colloids with surface mobile linkers as model systems to mimic cell–cell interactions and cell adhesion processes. (topical review)

  11. Random packing of colloids and granular matter

    Wouterse, A.

    2008-01-01

    This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials

  12. Purification of rhamnolipid using colloidal magnetic nanoparticles ...

    Phospholipid-coated colloidal magnetic nanoparticles with mean magnetite core size of 9 nm are shown to be effective ion exchange media for the recovery and purification of Rhaminolipid from culture mixtures. These particles have high adsorption capacity for purification (an order of magnitude larger than the best ...

  13. Colloidal nanophotonics: the emerging technology platform.

    Gaponenko, Sergey; Demir, Hilmi Volkan; Seassal, Christian; Woggon, Ulrike

    2016-01-25

    Dating back to decades or even centuries ago, colloidal nanophotonics during the last ten years rapidly extends towards light emitting devices, lasers, sensors and photonic circuitry to manifest itself as an emerging technology platform rather than an entirely academic research field.

  14. Sodium caseinate stabilized zein colloidal particles.

    Patel, Ashok R; Bouwens, Elisabeth C M; Velikov, Krassimir P

    2010-12-08

    The present work deals with the preparation and stabilization of zein colloidal particles using sodium caseinate as electrosteric stabilizer. Colloidal particles with well-defined size range (120-150 nm) and negative surface potential (-29 to -47 mV) were obtained using a simple antisolvent precipitation method. Due to the presence of caseinate, the stabilized colloidal particles showed a shift of isoelectric point (IEP) from 6.0 to around pH 5.0 and thus prevent the aggregation of zein near its native IEP (pH 6.2). The particles also showed good stability to varying ionic strength (15 mM-1.5 M NaCl). Furthermore, stabilized particles retained the property of redispersibility after drying. In vitro protein hydrolysis study confirmed that the presence of caseinate did not alter the digestibility of zein. Such colloidal particles could potentially serve as all-natural delivery systems for bioactive molecules in food, pharmaceutical, and agricultural formulations.

  15. Self-assembly of patchy colloidal dumbbells

    Avvisati, Guido|info:eu-repo/dai/nl/407630198; Vissers, Teun|info:eu-repo/dai/nl/304829943; Dijkstra, Marjolein|info:eu-repo/dai/nl/123538807

    2015-01-01

    We employ Monte Carlo simulations to investigate the self-assembly of patchy colloidal dumbbells interacting via a modified Kern-Frenkel potential by probing the system concentration and dumbbell shape. We consider dumbbells consisting of one attractive sphere with diameter sigma(1) and one

  16. Patchy particles made by colloidal fusion

    Gong, Zhe; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2017-10-01

    Patches on the surfaces of colloidal particles provide directional information that enables the self-assembly of the particles into higher-order structures. Although computational tools can make quantitative predictions and can generate design rules that link the patch motif of a particle to its internal microstructure and to the emergent properties of the self-assembled materials, the experimental realization of model systems of particles with surface patches (or `patchy' particles) remains a challenge. Synthetic patchy colloidal particles are often poor geometric approximations of the digital building blocks used in simulations and can only rarely be manufactured in sufficiently high yields to be routinely used as experimental model systems. Here we introduce a method, which we refer to as colloidal fusion, for fabricating functional patchy particles in a tunable and scalable manner. Using coordination dynamics and wetting forces, we engineer hybrid liquid-solid clusters that evolve into particles with a range of patchy surface morphologies on addition of a plasticizer. We are able to predict and control the evolutionary pathway by considering surface-energy minimization, leading to two main branches of product: first, spherical particles with liquid surface patches, capable of forming curable bonds with neighbouring particles to assemble robust supracolloidal structures; and second, particles with a faceted liquid compartment, which can be cured and purified to yield colloidal polyhedra. These findings outline a scalable strategy for the synthesis of patchy particles, first by designing their surface patterns by computer simulation, and then by recreating them in the laboratory with high fidelity.

  17. Continuous separation of colloidal particles using dielectrophoresis.

    Yunus, Nurul Amziah Md; Nili, Hossein; Green, Nicolas G

    2013-04-01

    Dielectrophoresis is the movement of particles in nonuniform electric fields and has been of interest for application to manipulation and separation at and below the microscale. This technique has the advantages of being noninvasive, nondestructive, and noncontact, with the movement of particle achieved by means of electric fields generated by miniaturized electrodes and microfluidic systems. Although the majority of applications have been above the microscale, there is increasing interest in application to colloidal particles around a micron and smaller. This paper begins with a review of colloidal and nanoscale dielectrophoresis with specific attention paid to separation applications. An innovative design of integrated microelectrode array and its application to flow-through, continuous separation of colloidal particles is then presented. The details of the angled chevron microelectrode array and the test microfluidic system are then discussed. The variation in device operation with applied signal voltage is presented and discussed in terms of separation efficiency, demonstrating 99.9% separation of a mixture of colloidal latex spheres. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Colloidal models. A bit of history

    Lyklema, J.

    2015-01-01

    This paper offers an anthology on developments in colloid and interface science emphasizing themes that may be of direct or indirect interest to Interfaces Against Pollution. Topics include the determination of Avogadro’s number, development in the insight into driving forces for double layer

  19. Dynamics of Colloids Confined in Microcylinders

    Ghosh, Somnath; Wijnperle, Daniël; Mugele, Friedrich Gunther; Duits, Michael H.G.

    2016-01-01

    We studied both global and local effects of cylindrical confinement on the diffusive behavior of hard sphere (HS) colloids. Using confocal scanning laser microscopy (CSLM) and particle tracking, we measured the mean squared displacement (MSD) of 1 micron sized silica particles in water–glycerol.

  20. Active colloidal propulsion over a crystalline surface

    Choudhury, Udit; Straube, Arthur V.; Fischer, Peer; Gibbs, John G.; Höfling, Felix

    2017-12-01

    We study both experimentally and theoretically the dynamics of chemically self-propelled Janus colloids moving atop a two-dimensional crystalline surface. The surface is a hexagonally close-packed monolayer of colloidal particles of the same size as the mobile one. The dynamics of the self-propelled colloid reflects the competition between hindered diffusion due to the periodic surface and enhanced diffusion due to active motion. Which contribution dominates depends on the propulsion strength, which can be systematically tuned by changing the concentration of a chemical fuel. The mean-square displacements (MSDs) obtained from the experiment exhibit enhanced diffusion at long lag times. Our experimental data are consistent with a Langevin model for the effectively two-dimensional translational motion of an active Brownian particle in a periodic potential, combining the confining effects of gravity and the crystalline surface with the free rotational diffusion of the colloid. Approximate analytical predictions are made for the MSD describing the crossover from free Brownian motion at short times to active diffusion at long times. The results are in semi-quantitative agreement with numerical results of a refined Langevin model that treats translational and rotational degrees of freedom on the same footing.

  1. Growth and Interaction of Colloid Nuclei

    Lam, Michael-Angelo; Khusid, Boris; Meyer, William; Kondic, Lou

    2017-11-01

    We study evolution of colloid systems under zero-gravity conditions. In particular, we focus on the regime where there is a coexistence between a liquid and a solid state. Under zero gravity, the dominating process in the bulk of the fluid phase and the solid phase is diffusion. At the moving solid/liquid interface, osmotic pressure is balanced by surface tension, as well as balancing fluxes (conservation of mass) with the kinematics of nuclei growth (Wilson-Frenkel law). Due to the highly nonlinear boundary condition at the moving boundary, care has to be taken when performing numerical simulations. In this work, we present a nonlinear model for colloid nuclei growth. Numerical simulations using a finite volume method are compared with asymptotic analysis of the governing equation and experimental results for nuclei growth. Novel component in our numerical simulations is the inclusion of nonlinear (collective) diffusion terms that depend on the chemical potentials of the colloid in the solid and fluid phase. The results include growth and dissolution of a single colloidal nucleus, as well as evolution of multiple interacting nuclei. Supported by NASA Grant No. NNX16AQ79G.

  2. Cubic colloids : Synthesis, functionalization and applications

    Castillo, S.I.R.

    2015-01-01

    This thesis is a study on cubic colloids: micron-sized cubic particles with rounded corners (cubic superballs). Owing to their shape, particle packing for cubes is more efficient than for spheres and results in fascinating phase and packing behavior. For our cubes, the particle volume fraction when

  3. Size determinations of plutonium colloids using autocorrelation photon spectroscopy

    Triay, I.R.; Rundberg, R.S.; Mitchell, A.J.; Ott, M.A.; Hobart, D.E.; Palmer, P.D.; Newton, T.W.; Thompson, J.L.

    1989-01-01

    Autocorrelation Photon Spectroscopy (APS) is a light-scattering technique utilized to determine the size distribution of colloidal suspensions. The capabilities of the APS methodology have been assessed by analyzing colloids of known sizes. Plutonium(IV) colloid samples were prepared by a variety of methods including: dilution; peptization; and alpha-induced auto-oxidation of Pu(III). The size of theses Pu colloids was analyzed using APS. The sizes determined for the Pu colloids studied varied from 1 to 370 nanometers. 7 refs., 5 figs., 3 tabs

  4. Radiolytic reduction reaction of colloidal silver bromide solution

    Oya, Yasuhisa; Zushi, Takehiro; Hasegawa, Kunihiko; Matsuura, Tatsuo.

    1995-01-01

    The reduction reaction of colloidal silver bromide (AgBr 3 ) 2- in nitrous oxide gas saturated solution of some alcohols: methanol, ethanol, 2-propanol and 2-methyl-2-propanol by γ-irradiation was studied spectrophotometrically in order to elucidate the mechanism of the formation of colloidal silver bromide (AgBr 3 ) 3- at ambient temperature. The amount of colloidal silver bromide formed increases in the order: i-PrOH, EtOH, MeOH. In t-BuOH, colloidal silver bromide did not form. The relative reactivities of alcohols for colloidal silver bromide was also studied kinetically. (author)

  5. Pore water colloid properties in argillaceous sedimentary rocks

    Degueldre, Claude, E-mail: c.degueldre@lancaster.ac.uk [Engineering Department, University of Lancaster, LA1 4YW Lancaster (United Kingdom); ChiAM & Institute of Environment, University of Geneva, 1211 Genève 4, Swizerland (Switzerland); Earlier, NES, Paul Scherrer Institute, 5232 Villigen (Switzerland); Cloet, Veerle [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  6. Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules.

    Morphew, Daniel; Shaw, James; Avins, Christopher; Chakrabarti, Dwaipayan

    2018-03-27

    Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications.

  7. Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors.

    Gao, Yirong; Mou, Fangzhi; Feng, Yizheng; Che, Shengping; Li, Wei; Xu, Leilei; Guan, Jianguo

    2017-07-12

    In this work, we propose and demonstrate a dynamic colloidal molecule that is capable of moving autonomously and performing swift, reversible, and in-place assembly dissociation in a high accuracy by manipulating a TiO 2 /Pt Janus micromotor with light irradiation. Due to the efficient motion of the TiO 2 /Pt Janus motor and the light-switchable electrostatic interactions between the micromotor and colloidal particles, the colloidal particles can be captured and assembled one by one on the fly, subsequently forming into swimming colloidal molecules by mimicking space-filling models of simple molecules with central atoms. The as-demonstrated dynamic colloidal molecules have a configuration accurately controlled and stabilized by regulating the time-dependent intensity of UV light, which controls the stop-and-go motion of the colloidal molecules. The dynamic colloidal molecules are dissociated when the light irradiation is turned off due to the disappearance of light-switchable electrostatic interaction between the motor and the colloidal particles. The strategy for the assembly of dynamic colloidal molecules is applicable to various charged colloidal particles. The simulated optical properties of a dynamic colloidal molecule imply that the results here may provide a novel approach for in-place building functional microdevices, such as microlens arrays, in a swift and reversible manner.

  8. Colloid suspension stability and transport through unsaturated porous media

    McGraw, M.A.; Kaplan, D.I.

    1997-04-01

    Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media

  9. Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation

    Sukhovatkin, V.

    2009-06-18

    Multiexciton generation (MEG) has been indirectly observed in colloidal quantum dots, both in solution and the solid state, but has not yet been shown to enhance photocurrent in an optoelectronic device. Here, we report a class of solution-processed photoconductive detectors, sensitive in the ultraviolet, visible, and the infrared, in which the internal gain is dramatically enhanced for photon energies Ephoton greater than 2.7 times the quantum-confined bandgap Ebandgap. Three thin-film devices with different quantum-confined bandgaps (set by the size of their constituent lead sulfide nanoparticles) show enhancement determined by the bandgap-normalized photon energy, Ephoton/Ebandgap, which is a clear signature of MEG. The findings point to a valuable role for MEG in enhancing the photocurrent in a solid-state optoelectronic device. We compare the conditions on carrier excitation, recombination, and transport for photoconductive versus photovoltaic devices to benefit from MEG.

  10. Scattering from correlations in colloidal systems

    Hayter, J.B.

    1984-01-01

    Colloidal suspensions typically exhibit spatial correlations over distances of order 10-10 4 A, corresponding either to the size of individual particles (e.g., polymer chains, surfactant micelles) or to the range of interaction between particles (e.g., charged polymer lattices at low ionic strength). Apart from having fundamental intrinsic interest, such systems are also extremely useful as model systems with which to study, for example, non-Newtonian hydrodynamics, since temporal correlations are generally much longer lived (10 -8 -10 -3 sec) than those found in simple atomic or small molecular systems (10 -13 -10 -10 sec). Colloids have long been the subject of macroscopic phenomenological research (on rheological properties, for example), but it is only recently that microscopic light, x-ray and neutron scattering techniques have been applied to their study, in large part because of theoretical difficulties in understanding the scattering from dense liquid-like systems of interacting particles. For spherical colloids, such theoretical problems have now been largely overcome, and for anisotropic colloids experimental techniques are being developed which circumvent the intractable theoretical areas. This paper will first review some static light and small-angle neutron scattering (SANS) results on colloidal suspensions, both at equilibrium and in steady-state non-equilibrium situations, and will then discuss some dynamic measurements on polymer solutions and melts made using the neutron spin-echo (NSE) technique. Emphasis is placed on experiments which have a possible counterpart in synchrotron radiation studies. In particular, NSE extends the results of photon correlation spectroscopy (PCS) to larger momentum transfers and shorter time-scales than are available with visible light, and the extension of PCS to short wavelength on a synchrotron source would be of similar fundamental interest

  11. Modeling of Hydrodynamic Chromatography for Colloid Migration in Fractured Rock

    Li Shihhai; Jen, C.-P.

    2001-01-01

    The role of colloids in the migration of radionuclides in the geosphere has been emphasized in the performance assessment of high-level radioactive waste disposal. The literature indicates that the colloid velocity may not be equal to the velocity of groundwater owing to hydrodynamic chromatography. A theoretical model for hydrodynamic chromatography of colloid migration in the fracture is proposed in the present work. In this model, the colloids are treated as nonreactive and the external forces acting on colloidal particles are considered including the inertial force, the van der Waals attractive force, and the electrical double-layer repulsive force, as well as the gravitational force. A fully developed concentration profile for colloids is obtained to elucidate migration behavior for colloids in the fracture. The effects of parameters governing these forces and the aperture of the fracture are determined using a theoretical model

  12. Active structuring of colloidal armour on liquid drops

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon

    2013-06-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets.

  13. Development of colloidal gold immunochromatographic strips for detection of Riemerella anatipestifer.

    Wanwan Hou

    Full Text Available Riemerella anatipestifer is one of the most important bacterial pathogen of ducks and causes a contagious septicemia. R. anatipestifer infection causes serositis syndromes similar to other bacterial infections in ducks, including infection by Escherichia coli, Salmonella enterica and Pasteurella multocida. Clinically differentiating R. anatipestifer infections from other bacterial pathogen infections is usually difficult. In this study, MAb 1G2F10, a monoclonal antibody against R. anatipestifer GroEL, was used to develop a colloidal gold immunochromatographic strip. Colloidal gold particles were prepared by chemical synthesis to an average diameter of 20 ± 5.26 nm by transmission electron microscope imaging. MAb 1G2F10 was conjugated to colloidal gold particles and the formation of antibody-colloidal gold conjugates was monitored by UV/Vis spectroscopy. Immunochromatographic strips were assembled in regular sequence through different accessories sticked on PVC plate. Strips specifically detected R. anatipestifer within 10 min, but did not detect E. coli, S. enterica and P. multocida. The detection limit for R. anatipestifer was 1 × 10(6 colony forming units, which was 500 times higher than a conventional agglutination test. Accuracy was 100% match to multiplex PCR. Assay stability and reproducibility were excellent after storage at 4°C for 6 months. The immunochromatographic strips prepared in this study offer a specific, sensitive, and rapid detection method for R. anatipestifer, which is of great importance for the prevention and control of R. anatipestifer infections.

  14. Tuning plasmons layer-by-layer for quantitative colloidal sensing with surface-enhanced Raman spectroscopy.

    Anderson, William J; Nowinska, Kamila; Hutter, Tanya; Mahajan, Sumeet; Fischlechner, Martin

    2018-04-19

    Surface-enhanced Raman spectroscopy (SERS) is well known for its high sensitivity that emerges due to the plasmonic enhancement of electric fields typically on gold and silver nanostructures. However, difficulties associated with the preparation of nanostructured substrates with uniform and reproducible features limit reliability and quantitation using SERS measurements. In this work we use layer-by-layer (LbL) self-assembly to incorporate multiple functional building blocks of collaborative assemblies of nanoparticles on colloidal spheres to fabricate SERS sensors. Gold nanoparticles (AuNPs) are packaged in discrete layers, effectively 'freezing nano-gaps', on spherical colloidal cores to achieve multifunctionality and reproducible sensing. Coupling between layers tunes the plasmon resonance for optimum SERS signal generation to achieve a 10 nM limit of detection. Significantly, using the layer-by-layer construction, SERS-active AuNP layers are spaced out and thus optically isolated. This uniquely allows the creation of an internal standard within each colloidal sensor to enable highly reproducible self-calibrated sensing. By using 4-mercaptobenzoic acid (4-MBA) as the internal standard adenine concentrations are quantified to an accuracy of 92.6-99.5%. Our versatile approach paves the way for rationally designed yet quantitative colloidal SERS sensors and their use in a variety of sensing applications.

  15. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L

    2012-08-01

    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  16. Molding resonant energy transfer by colloidal crystal: Dexter transfer and electroluminescence

    González-Urbina, Luis; Kolaric, Branko; Libaers, Wim; Clays, Koen

    2010-05-01

    Building photonic crystals by combination of colloidal ordering and metal sputtering we were able to construct a system sensitive to an electrical field. In corresponding crystals we embedded the Dexter pair (Ir(ppy3) and BAlq) and investigated the influence of the band gap on the resonant energy transfer when the system is excited by light and by an electric field respectively. Our investigations extend applications of photonic crystals into the field of electroluminescence and LED technologies.

  17. Safety and efficacy of personal care products containing colloidal oatmeal.

    Criquet, Maryline; Roure, Romain; Dayan, Liliane; Nollent, Virginie; Bertin, Christiane

    2012-01-01

    Colloidal oatmeal is a natural ingredient used in the formulation of a range of personal care products for relief of skin dryness and itchiness. It is also used as an adjunctive product in atopic dermatitis. The safety of personal care products used on vulnerable skin is of particular importance and the risk of developing further skin irritations and/or allergies should be minimized. In a series of studies, we tested the safety of personal care products containing oatmeal (creams, cleansers, lotions) by assessing their irritant/allergenic potential on repeat insult patch testing, in safety-in-use and ocular studies using subjects with nonsensitive and sensitive skin. We also tested the skin moisturizing and repair properties of an oatmeal-containing skin care product for dry skin. We found that oatmeal-containing personal care products had very low irritant potential as well as a very low allergenic sensitization potential. Low-level reactions were documented in 1.0% of subjects during the induction phase of repeat insult patch testing; one of 2291 subjects developed a persistent but doubtful low-level reaction involving edema during the challenge phase in repeat insult patch testing. No allergies were reported by 80 subjects after patch testing after in-use application. Sustained skin moisturizing was documented in subjects with dry skin that lasted up to 2 weeks after product discontinuation. Our results demonstrate that colloidal oatmeal is a safe and effective ingredient in personal care products. No allergies were reported by consumers of 445,820 products sold during a 3-year period.

  18. Colloids from the aqueous corrosion of uranium nuclear fuel

    Kaminski, M. D.; Dimitrijevic, N. M.; Mertz, C. J.; Goldberg, M. M.

    2005-12-01

    Colloids may enhance the subsurface transport of radionuclides and potentially compromise the long-term safe operation of the proposed radioactive waste repository at Yucca Mountain. Little data is available on colloid formation for the many different waste forms expected to be buried in the repository. This work expands the sparse database on colloids formed during the corrosion of metallic uranium nuclear fuel. We characterized spherical UO 2 and nickel-rich montmorilonite smectite-clay colloids formed during the corrosion of uranium metal fuel under bathtub conditions at 90 °C. Iron and chromium oxides and calcium carbonate colloids were present but were a minor population. The estimated upper concentration of the UO 2 and clays was 4 × 10 11 and 7 × 10 11-3 × 10 12 particles/L, respectively. However, oxygen eventually oxidized the UO 2 colloids, forming long filaments of weeksite K 2(UO 2) 2Si 6O 15 · 4H 2O that settled from solution, reducing the UO 2 colloid population and leaving predominantly clay colloids. The smectite colloids were not affected by oxygen. Plutonium was not directly observed within the UO 2 colloids but partitioned completely to the colloid size fraction. The plutonium concentration in the colloidal fraction was slightly higher than the value used in the viability assessment model, and does not change in concentration with exposure to oxygen. This paper provides conclusive evidence for single-phase radioactive colloids composed of UO 2. However, its impact on repository safety is probably small since oxygen and silica availability will oxidize and effectively precipitate the UO 2 colloids from concentrated solutions.

  19. Investigation on the Stability of Aluminosilicate Colloids by Various Analytical Tools

    Putri, Kirana Y.; Lee, D. H.; Yun, J. I. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2010-05-15

    Colloids are ubiquitous in natural aquatic systems. Aquatic colloids may play a significant carrier role for radionuclide migration in aquifer systems. Being omnipresent in natural aquatic systems, aluminosilicate colloids are considered as a kernel for various aquatic colloids. Characterization of aluminosilicate colloids formed under various geochemical conditions is of importance to understand their chemical behavior in natural aquatic systems. In this work, a preliminary study on the formation of aluminosilicate colloids with a help of colorimetry and other colloid detection techniques is presented

  20. Advanced Colloids Experiment (ACE) Science Overview

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Luna, Unique J.; Chaiken, Paul M.; Hollingsworth, Andrew; Secanna, Stefano; Weitz, David; Lu, Peter; Yodh, Arjun; hide

    2013-01-01

    The Advanced Colloids Experiment is being conducted on the International Space Station (ISS) using the Light Microscopy Module (LMM) in the Fluids Integrated Rack (FIR). Work to date will be discussed and future plans and opportunities will be highlighted. The LMM is a microscope facility designed to allow scientists to process, manipulate, and characterize colloidal samples in micro-gravity where the absence of gravitational settling and particle jamming enables scientists to study such things as:a.The role that disordered and ordered-packing of spheres play in the phase diagram and equation of state of hard sphere systems,b.crystal nucleation and growth, growth instabilities, and the glass transition, c.gelation and phase separation of colloid polymer mixtures,d.crystallization of colloidal binary alloys,e.competition between crystallization and phase separation,f.effects of anisotropy and specific interactions on packing, aggregation, frustration and crystallization,g.effects of specific reversible and irreversible interactions mediated in the first case by hybridization of complementary DNA strands attached to separate colloidal particles,h.Lock and key interactions between colloids with dimples and spheres which match the size and shape of the dimples,i.finding the phase diagrams of isotropic and interacting particles,j.new techniques for complex self-assembly including scenarios for self-replication, k.critical Casimir forces,l.biology (real and model systems) in microgravity,m.etc. By adding additional microscopy capabilities to the existing LMM, NASA will increase the tools available for scientists that fly experiments on the ISS enabling scientists to observe directly what is happening at the particle level. Presently, theories are needed to bridge the gap between what is being observed (at a macroscopic level when photographing samples) with what is happening at a particle (or microscopic) level. What is happening at a microscopic level will be directly

  1. Colloid Mobilization in Two Atlantic Coastal Plain Aquifers: Field Studies

    Ryan, Joseph N.; Gschwend, Philip M.

    1990-02-01

    The geochemical mechanisms leading to the mobilization of colloids in groundwater were investigated in the Pine Barrens of New Jersey and in rural central Delaware by sampling pairs of wells screened in oxic and anoxic groundwaters in the same geologic formations. Samples were carefully taken at very low flow rates (˜100 mL min-1) to avoid suspending immobilized particles. The colloidal matter was characterized by light-scattering photometry, scanning electron microscopy, energy-dispersive X ray analysis, microelectrophoresis, and Fe, Al, Si, and organic carbon analyses. The colloids, composed primarily of clays, were observed at high concentrations (up to 60 mg colloids/L) in the anoxic groundwaters, while the oxic groundwaters exhibited ≤1 mg colloids/L. Colloidal organic carbon was present in all groundwaters; but under anoxic conditions, one-third to one-half of the total organic carbon was associated with the inorganic colloids. The field evidence indicates that anoxic conditions cause the mobilization of soil colloids by dissolving the ferric oxyhydroxide coatings cementing the clay particles to the aquifer solids. The depletion of oxidized iron on the surfaces of immobile particles and the addition of organic carbon coatings on the soil particles and colloids apparently stabilizes the colloidal suspension in the anoxic groundwaters.

  2. Behavior of colloids in radionuclide migration in deep geologic formation

    Kanno, Takuji

    1994-01-01

    In case high level waste is isolated in deep strata, it is important to elucidate the behavior of movement that radionuclides take in the strata. Recently, it has been recognized that the participation of colloids is very important, and it has been studied actively. In this study, as to the mechanism of the adsorption of colloids to geological media or buffers, analysis was carried out for a number of systems, and it was clarified in what case they are caught or they move without being caught. Also it is considered what research is necessary hereafter. First, the kinds of colloids are shown. As the properties of colloids that control the movement of colloids in groundwater in deep strata, the surface potential, shape, size and so on of colloids are conceivable. These properties are briefly discussed. As the interaction of colloids and geological media, the interaction by electrostatic attraction, the fast and slow movement of colloids through rock crevices, and the filtration of colloids in buffers and porous media are described. The experimental results on the movement of colloids are reported. (K.I.)

  3. Colloids related to low level and intermediate level waste

    Ramsay, J.D.F.; Russell, P.J.; Avery, R.G.

    1991-03-01

    A comprehensive investigation has been undertaken to improve the understanding of the potential role of colloids in the context of disposal and storage of low and intermediate level waste immobilised in cement. Several topics have been investigated using a wide range of advanced physico-chemical and analytical techniques. These include: (a) the study of formation and characteristics of colloids in cement leachates, (b) the effects of the near-field aqueous chemistry on the characteristics of colloids in repository environments, (c) colloid sorption behaviour, (d) interactions of near-field materials with leachates, and (e) preliminary assessment of colloid migration behaviour. It has been shown that the generation of colloids in cement leachates can arise from a process of nucleation and growth leading to an amorphous phase which is predominantly calcium silicate hydrate. Such colloidal material has a capacity for association with polyvalent rare earths and actinides and these may be significant in the source term and processes involving radionuclide retention in the near field. It has also been shown that the near-field aqueous chemistry (pH, Ca 2+ concentration) has a marked effect on colloid behaviour (deposition and stability). A mechanistic approach to predict colloid sorption affinity has been developed which highlights the importance of colloid characteristics and the nature of the ionic species. (author)

  4. Formation and transport of radioactive colloids in porous media

    Chung, J.Y.; Lee, K.J.

    1993-01-01

    This paper deals with the effect of the presence of colloids in natural groundwater on radionuclide transport. The system considered here treats groundwater as a dispersing medium and colloid or finely divided solid material resulting from several different repository sources as a dispersed phase. Evaluation of the radionuclides adsorption on colloid, concepts of effective transport velocity and migration distance, and mathematical formulation of the filtration equation were driven, along with the case studies using typical parameter values of a conceptual radioactive waste repository and concentration on the effect of poly dispersed colloid on radionuclide transport. This paper also introduces the three phase analysis to treat the radionuclide transport more practically. When compared with the previously published experimental data, the modified filtration equation gives a satisfactory result. Results of the case studies show that the reduction of colloidal size enhances the corresponding colloid concentration when colloidal transport is only affected by diffusion phenomena. However, the three phase analysis shows that this trend can be reversed if the colloidal filtration becomes a dominant mechanism in the colloidal transport. Consequently, these results show that colloid could play a very important role in radionuclide transport under a repository environment

  5. Forging Colloidal Nanostructures via Cation Exchange Reactions.

    De Trizio, Luca; Manna, Liberato

    2016-09-28

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field.

  6. Colloid Release From Differently Managed Loess Soil

    Vendelboe, Anders Lindblad; Schjønning, Per; Møldrup, Per

    2012-01-01

    The content of water-dispersible colloids (WDC) in a soil can have a major impact on soil functions, such as permeability to water and air, and on soil strength, which can impair soil fertility and workability. In addition, the content of WDC in the soil may increase the risk of nutrient loss...... and of colloid-facilitated transport of strongly sorbing compounds. In the present study, soils from the Bad Lauchsta¨dt longterm static fertilizer experiment with different management histories were investigated to relate basic soil properties to the content of WDC, the content of water-stable aggregates (WSA......), and aggregate tensile strength. Our studies were carried out on soils on identical parent material under controlled management conditions, enabling us to study the long-term effects on soil physical properties with few explanatory variables in play. The content of WDC and the amount of WSA were measured...

  7. Interaction between colloidal particles. Literature Review

    Longcheng Liu; Neretnieks, Ivars (Royal Inst. of Technology, Stockholm (Sweden). School of Chemical Science and Engineering, Dept. of Chemical Engineering and Technology)

    2010-02-15

    This report summarises the commonly accepted theoretical basis describing interaction between colloidal particles in an electrolyte solution. The two main forces involved are the van der Waals attractive force and the electrical repulsive force. The report describes in some depth the origin of these two forces, how they are formulated mathematically as well as how they interact to sometimes result in attraction and sometimes in repulsion between particles. The report also addresses how the mathematical models can be used to quantify the forces and under which conditions the models can be expected to give fair description of the colloidal system and when the models are not useful. This report does not address more recent theories that still are discussed as to their applicability, such as ion-ion correlation effects and the Coulombic attraction theory (CAT). These and other models will be discussed in future reports

  8. Hybrid colloidal plasmonic-photonic crystals.

    Romanov, Sergei G; Korovin, Alexander V; Regensburger, Alois; Peschel, Ulf

    2011-06-17

    We review the recently emerged class of hybrid metal-dielectric colloidal photonic crystals. The hybrid approach is understood as the combination of a dielectric photonic crystal with a continuous metal film. It allows to achieve a strong modification of the optical properties of photonic crystals by involving the light scattering at electronic excitations in the metal component into moulding of the light flow in series to the diffraction resonances occurring in the body of the photonic crystal. We consider different realizations of hybrid plasmonic-photonic crystals based on two- and three-dimensional colloidal photonic crystals in association with flat and corrugated metal films. In agreement with model calculations, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tuneable functionality of these crystals. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Forging Colloidal Nanostructures via Cation Exchange Reactions

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  10. Laser diffraction analysis of colloidal crystals

    Sogami, Ikuo S.; Shinohara, Tadatomi; Yoshiyama, Tsuyoshi [Kyoto Sangyo Univ., Department of Physics, Kyoto (Japan)

    2001-10-01

    Laser diffraction analysis is made on crystallization in salt-free aqueous suspensions of highly-charged colloidal particles for semi-dilute specimens of concentration 0.1-10.0 vol%. Kossel diffraction patterns which represent faithfully accurate information on lattice symmetries in the suspensions enable us to investigate the time evolution of colloidal crystals. The results show that the crystallization proceeds by way of the following intermediate phase transitions: two-dimensional hcp structure {yields} random layer structure {yields} layer structure with one sliding degree of freedom {yields} stacking disorder structure {yields} stacking structure with multivariant periodicity {yields} fcc twin structure with twin plane (111) {yields} normal fcc structure {yields} bcc twin structure with twin plane (11-bar2) or (1-bar12) {yields} normal bcc structure. For concentrated suspensions (>2 vol %), the phase transition ceases to proceed at the normal fcc structure. (author)

  11. Particles with changeable topology in nematic colloids

    Ravnik, Miha; Čopar, Simon; Žumer, Slobodan

    2015-01-01

    We show that nematic colloids can serve as a highly variable and controllable platform for studying inclusions with changeable topology and their effects on the surrounding ordering fields. We explore morphing of toroidal and knotted colloidal particles into effective spheres, distinctively changing their Euler characteristic and affecting the surrounding nematic field, including topological defect structures. With toroidal particles, the inner nematic defect eventually transitions from a wide loop to a point defect (a small loop). Trefoil particles become linked with two knotted defect loops, mutually forming a three component link, that upon tightening transform into a two-component particle-defect loop link. For more detailed topological analysis, Pontryagin-Thom surfaces are calculated and visualised, indicating an interesting cascade of defect rewirings caused by the shape morphing of the knotted particles. (paper)

  12. Aging near the wall in colloidal glasses

    Cao, Cong; Huang, Xinru; Weeks, Eric

    In a colloidal glass system, particles move slower as sample ages. In addition, their motions may be affected by their local structure, and this structure will be different near a wall. We examine how the aging process near a wall differs from that in the bulk of the sample. In particular, we use a confocal microscope to observe 3D motion in a bidisperse colloidal glass sample. We find that flat walls induce the particles to organize into layers. The aging process behaves differently near the boundary, especially within the first three layers. Particle motion near the wall is noticeably slower but also changes less dramatically with age. We compare and contrast aging seen in samples with flat and rough walls.

  13. Polymers at interfaces and in colloidal dispersions.

    Fleer, Gerard J

    2010-09-15

    This review is an extended version of the Overbeek lecture 2009, given at the occasion of the 23rd Conference of ECIS (European Colloid and Interface Society) in Antalya, where I received the fifth Overbeek Gold Medal awarded by ECIS. I first summarize the basics of numerical SF-SCF: the Scheutjens-Fleer version of Self-Consistent-Field theory for inhomogeneous systems, including polymer adsorption and depletion. The conformational statistics are taken from the (non-SCF) DiMarzio-Rubin lattice model for homopolymer adsorption, which enumerates the conformational details exactly by a discrete propagator for the endpoint distribution but does not account for polymer-solvent interaction and for the volume-filling constraint. SF-SCF corrects for this by adjusting the field such that it becomes self-consistent. The model can be generalized to more complex systems: polydispersity, brushes, random and block copolymers, polyelectrolytes, branching, surfactants, micelles, membranes, vesicles, wetting, etc. On a mean-field level the results are exact; the disadvantage is that only numerical data are obtained. Extensions to excluded-volume polymers are in progress. Analytical approximations for simple systems are based upon solving the Edwards diffusion equation. This equation is the continuum variant of the lattice propagator, but ignores the finite segment size (analogous to the Poisson-Boltzmann equation without a Stern layer). By using the discrete propagator for segments next to the surface as the boundary condition in the continuum model, the finite segment size can be introduced into the continuum description, like the ion size in the Stern-Poisson-Boltzmann model. In most cases a ground-state approximation is needed to find analytical solutions. In this way realistic analytical approximations for simple cases can be found, including depletion effects that occur in mixtures of colloids plus non-adsorbing polymers. In the final part of this review I discuss a

  14. Laser diffraction analysis of colloidal crystals

    Sogami, Ikuo S.; Shinohara, Tadatomi; Yoshiyama, Tsuyoshi

    2001-01-01

    Laser diffraction analysis is made on crystallization in salt-free aqueous suspensions of highly-charged colloidal particles for semi-dilute specimens of concentration 0.1-10.0 vol%. Kossel diffraction patterns which represent faithfully accurate information on lattice symmetries in the suspensions enable us to investigate the time evolution of colloidal crystals. The results show that the crystallization proceeds by way of the following intermediate phase transitions: two-dimensional hcp structure → random layer structure → layer structure with one sliding degree of freedom → stacking disorder structure → stacking structure with multivariant periodicity → fcc twin structure with twin plane (111) → normal fcc structure → bcc twin structure with twin plane (11-bar2) or (1-bar12) → normal bcc structure. For concentrated suspensions (>2 vol %), the phase transition ceases to proceed at the normal fcc structure. (author)

  15. Colloid transport code-nuclear user's manual

    Jain, R.

    1992-01-01

    This report describes the CTCN computer code, designed to solve the equations of transient colloidal transport of radionuclides in porous and fractured media. This Fortran 77 package solves systems of coupled nonlinear differential equations with a wide range of boundary conditions. The package uses the Method of Lines technique with a special section which forms finite-difference discretizations in up to four spatial dimensions to automatically convert the system into a set of ordinary differential equations. The CTCN code then solves these equations using a robust, efficient ODE solver. Thus CTCN can be used to solve population balance equations along with the usual transport equations to model colloid transport processes or as a general problem solver to treat up to four-dimensional differential systems

  16. Introduction to Applied Colloid and Surface Chemistry

    Kontogeorgis, Georgios; Kiil, Søren

    Colloid and Surface Chemistry is a subject of immense importance and implications both to our everyday life and numerous industrial sectors, ranging from coatings and materials to medicine and biotechnology. How do detergents really clean? (Why can’t we just use water ?) Why is milk “milky” Why do......, to the benefit of both the environment and our pocket. Cosmetics is also big business! Creams, lotions and other personal care products are really just complex emulsions. All of the above can be explained by the principles and methods of colloid and surface chemistry. A course on this topic is truly valuable...... to chemists, chemical engineers, biologists, material and food scientists and many more....

  17. Crust formation in drying colloidal suspensions

    Style, R. W.

    2010-06-30

    During the drying of colloidal suspensions, the desiccation process causes the suspension near the air interface to consolidate into a connected porous matrix or crust. Fluid transport in the porous medium is governed by Darcy\\'s law and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model of the concentration and stress profiles during drying. A solution is found for the steady-state growth of a nedimensional crust during constant evaporation rate from the surface. The solution is used to demonstrate the importance of the system boundary conditions on stress profiles and diffusivity in a drying crust. © 2011 The Royal Society.

  18. Transport and Deposition of Variably Charged Soil Colloids in Saturated Porous Media

    Sharma, Anu; Kawamoto, Ken; Møldrup, Per

    2011-01-01

    Okinawa (RYS colloids) in Japan. The VAS colloids exhibited a negative surface charge with a high pH dependency, whereas the RYS colloids exhibited a negative surface charge with less pH dependency. The soil colloids were applied as colloidal suspensions to 10-cm-long saturated sand columns packed...

  19. Evaporative lithographic patterning of binary colloidal films.

    Harris, Daniel J; Conrad, Jacinta C; Lewis, Jennifer A

    2009-12-28

    Evaporative lithography offers a promising new route for patterning a broad array of soft materials. In this approach, a mask is placed above a drying film to create regions of free and hindered evaporation, which drive fluid convection and entrained particles to regions of highest evaporative flux. We show that binary colloidal films exhibit remarkable pattern formation when subjected to a periodic evaporative landscape during drying.

  20. Thermal Jamming of a Colloidal Glass

    Agarwal, Praveen

    2011-12-01

    We investigate the effect of temperature on structure and dynamics of a colloidal glass created by tethering polymers to the surface of inorganic nanoparticles. Contrary to the conventional assumption, an increase in temperature slows down glassy dynamics of the material, yet causes no change in its static structure factor. We show that these findings can be explained within the soft glassy rheology framework if the noise temperature X of the glass phase is correlated with thermodynamic temperature. © 2011 American Physical Society.

  1. Colloid normalizes resuscitation ratio in pediatric burns.

    Faraklas, Iris; Lam, Uyen; Cochran, Amalia; Stoddard, Gregory; Saffle, Jeffrey

    2011-01-01

    Fluid resuscitation of burned children is challenging because of their small size and intolerance to over- or underresuscitation. Our American Burn Association-verified regional burn center has used colloid "rescue" as part of our pediatric resuscitation protocol. With Institutional Review Board approval, the authors reviewed children with ≥15% TBSA burns admitted from January 1, 2004, to May 1, 2009. Resuscitation was based on the Parkland formula, which was adjusted to maintain urine output. Patients requiring progressive increases in crystalloid were placed on a colloid protocol. Results were expressed as an hourly resuscitation ratio (I/O ratio) of fluid infusion (ml/kg/%TBSA/hr) to urine output (ml/kg/hr). We reviewed 53 patients; 29 completed resuscitation using crystalloid alone (lactated Ringer's solution [LR]), and 24 received colloid supplementation albumin (ALB). Groups were comparable in age, gender, weight, and time from injury to admission. ALB patients had more inhalation injuries and larger total and full-thickness burns. LR patients maintained a median I/O of 0.17 (range, 0.08-0.31), whereas ALB patients demonstrated escalating ratios until the institution of albumin produced a precipitous return of I/O comparable with that of the LR group. Hospital stay was lower for LR patients than ALB patients (0.59 vs 1.06 days/%TBSA, P = .033). Twelve patients required extremity or torso escharotomy, but this did not differ between groups. There were no decompressive laparotomies. The median resuscitation volume for ALB group was greater than LR group (9.7 vs 6.2 ml/kg/%TBSA, P = .004). Measuring hourly I/O is a helpful means of evaluating fluid demands during burn shock resuscitation. The addition of colloid restores normal I/O in pediatric patients.

  2. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Transport of Intrinsic Plutonium Colloids in Saturated Porous Media

    Zhou, D.; Abdel-Fattah, A.; Boukhalfa, H.; Ware, S. D.; Tarimala, S.; Keller, A. A.

    2011-12-01

    Actinide contaminants were introduced to the subsurface environment as a result of nuclear weapons development and testing, as well as for nuclear power generation and related research activities for defense and civilian applications. Even though most actinide species were believed to be fairly immobile once in the subsurface, recent studies have shown the transport of actinides kilometers away from their disposal sites. For example, the treated liquid wastes released into Mortandad Canyon at the Los Alamos National Laboratory were predicted to travel less than a few meters; however, plutonium and americium have been detected 3.4 km away from the waste outfall. A colloid-facilitated mechanism has been suggested to account for this unexpected transport of these radioactive wastes. Clays, oxides, organic matters, and actinide hydroxides have all been proposed as the possible mobile phase. Pu ions associated with natural colloids are often referred to as pseudo-Pu colloids, in contrast with the intrinsic Pu colloids that consist of Pu oxides. Significant efforts have been made to investigate the role of pseudo-Pu colloids, while few studies have evaluated the environmental behavior of the intrinsic Pu colloids. Given the fact that Pu (IV) has extremely low solubility product constant, it can be inferred that the transport of Pu in the intrinsic form is highly likely at suitable environmental conditions. This study investigates the transport of intrinsic Pu colloids in a saturated alluvium material packed in a cylindrical column (2.5-cm Dia. x 30-cm high) and compares the results to previous data on the transport of pseudo Pu colloids in the same material. A procedure to prepare a stable intrinsic Pu colloid suspension that produced consistent and reproducible electrokinetic and stability data was developed. Electrokinetic properties and aggregation stability were characterized. The Pu colloids, together with trillium as a conservative tracer, were injected into the

  4. Structure of colloidal sphere-plate mixtures

    Doshi, N; Cinacchi, G; Van Duijneveldt, J S; Cosgrove, T; Prescott, S W; Grillo, I; Phipps, J; Gittins, D I

    2011-01-01

    In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.

  5. Structure of colloidal sphere-plate mixtures

    Doshi, N; Cinacchi, G; Van Duijneveldt, J S; Cosgrove, T; Prescott, S W [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Grillo, I [Institut Laue-Langevin, 6 rue Jules Horowitz BP 156, 38042 Grenoble Cedex 9 (France); Phipps, J [Imerys Minerals Ltd, Par Moor Centre, Par Moor Road, Par, Cornwall PL24 2SQ (United Kingdom); Gittins, D I, E-mail: Giorgio.Cinacchi@bristol.ac.uk, E-mail: J.S.van-Duijneveldt@bristol.ac.uk [Imerys Performance and Filtration Minerals Ltd, 130 Castilian Drive, Goleta, CA 93117 (United States)

    2011-05-18

    In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.

  6. Colloidal silver solutions with antimicrobial properties

    Petica, A.; Gavriliu, S.; Lungu, M.; Buruntea, N.; Panzaru, C.

    2008-01-01

    Some colloidal silver solutions involving the electrochemical technique with 'sacrificial anode method and different stabilizers and co-stabilizers' have been prepared. A constant current pulse generator with stirrer at different working times has been used. To achieve stable colloidal silver solutions, a mix of different tensioactive agents namely [poly (N-vinylpyrrolidone)], Na-naphthalene sulphonate, Na-lauryl sulfate and Na-dodecyl sulphonate were tested. The effects of these various mixes of polymer and ionic surfactants upon the Ag concentration and UV-vis spectra of silver nanoparticles were determined by spectrophotometer techniques. The nanoparticles sizes have been analyzed through dynamic light scattering technique and the silver nanoparticle morphology has been evidenced by transmission electron microscopy (TEM). Micobiological analysis has been made by determining minimal inhibitorial concentration upon the following germs: Staphylococcus aureus (ATCC) (Gram-positive cocci), Pseudomonas aeruginosa (ATTC), Escherichia coli (ATCC) and Acinetobacter spp. (Gram-negative coccobacillus). To evaluate the antifungal effect, the antibiogram method involving various tests using a fungi mix of Aspergillus, Penicillium and Trichoderma species has been used. The presented method allows obtaining of some stable colloidal solutions containing up to 35 ppm of Ag with very good antimicrobial and antifungal properties

  7. Yielding and flow of sheared colloidal glasses

    Petekidis, G; Vlassopoulos, D; Pusey, P N

    2004-01-01

    We have studied some of the rheological properties of suspensions of hard-sphere colloids with particular reference to behaviour near the concentration of the glass transition. First we monitored the strain on the samples during and after a transient step stress. We find that, at all values of applied step stress, colloidal glasses show a rapid, apparently elastic, recovery of strain after the stress is removed. This recovery is found even in samples which have flowed significantly during stressing. We attribute this behaviour to 'cage elasticity', the recovery of the stress-induced distorted environment of any particle to a more isotropic state when the stress is removed. Second, we monitored the stress as the strain rate dot γ of flowing samples was slowly decreased. Suspensions which are glassy at rest show a stress which becomes independent of dot γ as dot γ →0. This limiting stress can be interpreted as the yield stress of the glass and agrees well both with the yield stress deduced from the step stress and recovery measurements and that predicted by a recent mode coupling theory of sheared suspensions. Thus, the behaviours under steady shearing and transient step stress both support the idea that colloidal glasses have a finite yield stress. We note however that the samples do exhibit a slow accumulation of strain due to creep at stresses below the yield stress

  8. Composition of estuarine colloidal material: organic components

    Sigleo, A.C.; Hoering, T.C.; Helz, G.R.

    1982-01-01

    Colloidal material in the size range 1.2 nm to 0.4 ??m was isolated by ultrafiltration from Chesapeake Bay and Patuxent River waters (U.S.A.). Temperature controlled, stepwise pyrolysis of the freeze-dried material, followed by gas chromatographic-mass spectrometric analyses of the volatile products indicates that the primary organic components of this polymer are carbohydrates and peptides. The major pyrolysis products at the 450??C step are acetic acid, furaldehydes, furoic acid, furanmethanol, diones and lactones characteristic of carbohydrate thermal decomposition. Pyrroles, pyridines, amides and indole (protein derivatives) become more prevalent and dominate the product yield at the 600??C pyrolysis step. Olefins and saturated hydrocarbons, originating from fatty acids, are present only in minor amounts. These results are consistent with the composition of Chesapeake phytoplankton (approximately 50% protein, 30% carbohydrate, 10% lipid and 10% nucleotides by dry weight). The pyrolysis of a cultured phytoplankton and natural particulate samples produced similar oxygen and nitrogencontaining compounds, although the proportions of some components differ relative to the colloidal fraction. There were no lignin derivatives indicative of terrestrial plant detritus in any of these samples. The data suggest that aquatic microorganisms, rather than terrestrial plants, are the dominant source of colloidal organic material in these river and estuarine surface waters. ?? 1982.

  9. Colloidal silver solutions with antimicrobial properties

    Petica, A. [INCDIE ICPE-Advanced Research, Bucharest (Romania)], E-mail: petica@icpe-ca.ro; Gavriliu, S.; Lungu, M.; Buruntea, N. [INCDIE ICPE-Advanced Research, Bucharest (Romania); Panzaru, C. [Institute of Medicine and Pharmacy, Iassy (Romania)

    2008-08-25

    Some colloidal silver solutions involving the electrochemical technique with 'sacrificial anode method and different stabilizers and co-stabilizers' have been prepared. A constant current pulse generator with stirrer at different working times has been used. To achieve stable colloidal silver solutions, a mix of different tensioactive agents namely [poly (N-vinylpyrrolidone)], Na-naphthalene sulphonate, Na-lauryl sulfate and Na-dodecyl sulphonate were tested. The effects of these various mixes of polymer and ionic surfactants upon the Ag concentration and UV-vis spectra of silver nanoparticles were determined by spectrophotometer techniques. The nanoparticles sizes have been analyzed through dynamic light scattering technique and the silver nanoparticle morphology has been evidenced by transmission electron microscopy (TEM). Micobiological analysis has been made by determining minimal inhibitorial concentration upon the following germs: Staphylococcus aureus (ATCC) (Gram-positive cocci), Pseudomonas aeruginosa (ATTC), Escherichia coli (ATCC) and Acinetobacter spp. (Gram-negative coccobacillus). To evaluate the antifungal effect, the antibiogram method involving various tests using a fungi mix of Aspergillus, Penicillium and Trichoderma species has been used. The presented method allows obtaining of some stable colloidal solutions containing up to 35 ppm of Ag with very good antimicrobial and antifungal properties.

  10. Colloquium: Toward living matter with colloidal particles

    Zeravcic, Zorana; Manoharan, Vinothan N.; Brenner, Michael P.

    2017-07-01

    A fundamental unsolved problem is to understand the differences between inanimate matter and living matter. Although this question might be framed as philosophical, there are many fundamental and practical reasons to pursue the development of synthetic materials with the properties of living ones. There are three fundamental properties of living materials that we seek to reproduce: The ability to spontaneously assemble complex structures, the ability to self-replicate, and the ability to perform complex and coordinated reactions that enable transformations impossible to realize if a single structure acted alone. The conditions that are required for a synthetic material to have these properties are currently unknown. This Colloquium examines whether these phenomena could emerge by programming interactions between colloidal particles, an approach that bootstraps off of recent advances in DNA nanotechnology and in the mathematics of sphere packings. The argument is made that the essential properties of living matter could emerge from colloidal interactions that are specific—so that each particle can be programmed to bind or not bind to any other particle—and also time dependent—so that the binding strength between two particles could increase or decrease in time at a controlled rate. There is a small regime of interaction parameters that gives rise to colloidal particles with lifelike properties, including self-assembly, self-replication, and metabolism. The parameter range for these phenomena can be identified using a combinatorial search over the set of known sphere packings.

  11. C-cells in colloid goiter

    Lima Marcus A.

    2003-01-01

    Full Text Available PURPOSE: The aim of this investigation was to quantitatively evaluate C-cells in colloid goiters, analyzing 36 thyroids that were obtained through thyroidectomy from 24 patients with goiter and 12 normal glands from adult patients without thyroid disease, which were used as the control group. MATERIAL AND METHODS: On average, 6 different thyroid areas were sampled and labeled by immunohistochemistry with a monoclonal anticalcitonin antibody, utilizing the avidin-biotin-peroxidase complex. C-cells were counted in fields measuring 1 square centimeter, and the mean number of cells per field was then calculated. Data were statistically analyzed using the Mann-Whitney test. RESULTS: In the colloid goiter group, the number of C-cells ranged from 0 to 23 per field, while in normal controls they ranged from 20 to 148 per field. CONCLUSIONS: These results demonstrate a significant decrease of C-cell number in the colloid goiter group compared with control group, indicating that the hyperplastic process is restricted to follicular cells, to the detriment of C-cells, which probably cease to receive trophic stimuli.

  12. Armoring confined bubbles in concentrated colloidal suspensions

    Yu, Yingxian; Khodaparast, Sepideh; Stone, Howard

    2016-11-01

    Encapsulation of a bubble with microparticles is known to significantly improve the stability of the bubble. This phenomenon has recently gained increasing attention due to its application in a variety of technologies such as foam stabilization, drug encapsulation and colloidosomes. Nevertheless, the production of such colloidal armored bubble with controlled size and particle coverage ratio is still a great challenge industrially. We study the coating process of a long air bubble by microparticles in a circular tube filled with a concentrated microparticles colloidal suspension. As the bubble proceeds in the suspension of particles, a monolayer of micro-particles forms on the interface of the bubble, which eventually results in a fully armored bubble. We investigate the phenomenon that triggers and controls the evolution of the particle accumulation on the bubble interface. Moreover, we examine the effects of the mean flow velocity, the size of the colloids and concentration of the suspension on the dynamics of the armored bubble. The results of this study can potentially be applied to production of particle-encapsulated bubbles, surface-cleaning techniques, and gas-assisted injection molding.

  13. Colloidal silica films for high-capacity DNA arrays

    Glazer, Marc Irving

    The human genome project has greatly expanded the amount of genetic information available to researchers, but before this vast new source of data can be fully utilized, techniques for rapid, large-scale analysis of DNA and RNA must continue to develop. DNA arrays have emerged as a powerful new technology for analyzing genomic samples in a highly parallel format. The detection sensitivity of these arrays is dependent on the quantity and density of immobilized probe molecules. We have investigated substrates with a porous, "three-dimensional" surface layer as a means of increasing the surface area available for the synthesis of oligonucleotide probes, thereby increasing the number of available probes and the amount of detectable bound target. Porous colloidal silica films were created by two techniques. In the first approach, films were deposited by spin-coating silica colloid suspensions onto flat glass substrates, with the pores being formed by the natural voids between the solid particles (typically 23nm pores, 35% porosity). In the second approach, latex particles were co-deposited with the silica and then pyrolyzed, creating films with larger pores (36 nm), higher porosity (65%), and higher surface area. For 0.3 mum films, enhancements of eight to ten-fold and 12- to 14-fold were achieved with the pure silica films and the films "templated" with polymer latex, respectively. In gene expression assays for up to 7,000 genes using complex biological samples, the high-capacity films provided enhanced signals and performed equivalently or better than planar glass on all other functional measures, confirming that colloidal silica films are a promising platform for high-capacity DNA arrays. We have also investigated the kinetics of hybridization on planar glass and high-capacity substrates. Adsorption on planar arrays is similar to ideal Langmuir-type adsorption, although with an "overshoot" at high solution concentration. Hybridization on high-capacity films is

  14. Microfluidics-assisted generation of stimuli-responsive hydrogels based on alginates incorporated with thermo-responsive and amphiphilic polymers as novel biomaterials.

    Karakasyan, C; Mathos, J; Lack, S; Davy, J; Marquis, M; Renard, D

    2015-11-01

    We used a droplet-based microfluidics technique to produce monodisperse responsive alginate-block-polyetheramine copolymer microgels. The polyetheramine group (PEA), corresponding to a propylene oxide /ethylene oxide ratio (PO/EO) of 29/6 (Jeffamine(®) M2005), was condensed, via the amine link, to alginates with various mannuronic/guluronic acids ratios and using two alginate:jeffamine mass ratios. The size of the grafted-alginate microgels varied from 60 to 80 μm depending on the type of alginate used and the degree of substitution. The droplet-based microfluidics technique offered exquisite control of both the dimension and physical chemical properties of the grafted-alginate microgels. These microgels were therefore comparable to isolated grafted-alginate chains in retaining both their amphiphilic and thermo-sensitive properties. Amphiphilicity was demonstrated at the oil-water interface where grafted-alginate microgels were found to decrease interfacial tension by ∼ 50%. The thermo-sensitivity of microgels was clearly demonstrated and a 10 to 20% reduction in size between was evidenced on increasing the temperature above the lower critical solution temperature (TLCST) of Jeffamine. In addition, the reversibility of thermo-sensitivity was demonstrated by studying the oil-water affinity of microgels with temperature after Congo red labeling. Finally, droplet-based microfluidics was found to be a good and promising tool for generating responsive biobased hydrogels for drug delivery applications and potential new colloidal stabilizers for dispersed systems such as Pickering emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Spectroscopic studies on colloid-borne uranium

    Ulrich, K.U.; Weiss, S.; Foerstendorf, H.; Brendler, V.; Zaenker, H.; Rossberg, A.; Scheinost, A.C.

    2005-01-01

    Full text of publication follows: Information on molecular speciation provides a basis for the reliable assessment of actinide migration in the environment. We use several methods for the separation of colloids from liquids (e.g. ultracentrifugation, ultrafiltration) in combination with spectroscopic techniques (EXAFS, ATR-FTIR, Moessbauer) and modeling of surface complexation reactions. This enables us to investigate the speciation of colloid-borne uranium in waters occurring in or escaping from abandoned uranium mines during the remediation process. Mine flooding was simulated on a 100 L scale by mixing acid mine water of elevated U concentration with oxic, near-neutral groundwater until pH ∼ 5.5 was reached. The freshly formed colloids adsorbed 95% of the total uranium and consisted mainly of 2-line ferri-hydrite (Fh) besides traces of aluminum, sulfur, silica, and carbon compounds. EXAFS analysis at the U-LIII absorption edge suggested a bidentate surface complex of UO 2 2+ on FeO 6 octahedra, but two minor backscattering contributions in close vicinity to the absorber remained unexplained. Since only Al could be excluded as backscattering atom, we studied U sorption on Fh at pH 5.5 in presence and in absence of sulfate, silicate, and atmospheric CO 2 to clarify the bond structure. EXAFS showed the unknown backscattering contributions in all the sorption samples regardless of the presence or absence of the tested components. Contrary to structural models proposed in the literature, bi-dentately complexed carbonate ligands do not explain our experimental EXAFS data. But ATR-IR spectra showed that U-carbonato complexes must be involved in the sorption of uranyl on Fh. These results are not contradictory if the carbonate ligands were bound mono-dentately. Nevertheless, carbon cannot act as backscattering atom in carbonate-free samples prepared in N 2 atmosphere. We propose a new structural model including exclusively Fe, H, and O atoms in which the bi

  16. Adsorption of ions by colloids in electrolyte solutions

    Kallay, N.

    1977-01-01

    The adsorption isotherm for ionic adsorption by colloid particles was evaluated. The adsorption process was treated as the reaction between colloid particles and ions. The colloid particle has been here considered as a reaction entity. The possibility of the surface potential determination was presented. The analyses of the experimental data showed, that (at electrolyte concentration higher than the critical coagulation one) the surface potential reaches its zero value

  17. [Bactericidal activity of colloidal silver against grampositive and gramnegative bacteria].

    Afonina, I A; Kraeva, L A; Tseneva, G Ia

    2010-01-01

    It was shown that colloidal silver solution prepared in cooperation with the A. F. Ioffe Physical Technical Institute of the Russian Academy of Sciences, had significant bactericidal activity. Stable bactericidal effect on gramnegative microorganisms was observed after their 2-hour exposition in the solution of colloidal silver at a concentration of 10 ppm. Grampositive capsule-forming microorganisms were less susceptible to the colloidal silver solution: their death was observed after the 4-hour exposition in the solution.

  18. Formation of silver colloids on ion exchanged soda lime silicate glasses by irradiation

    Yoshimura, E.M.; Okuno, E.

    1998-01-01

    The effect of ionizing radiation (gamma rays, X-rays and electrons) on soda lime silicate glasses, in which part of the Na + was substituted by Ag + by means of an ionic exchange process, was studied. The techniques of thermally stimulated depolarization current (TSDC) and transmission electron microscopy (TEM) were employed to follow the formation of silver colloids by irradiation. Also the thermoluminescence (TL) of the samples was measured and three peaks between room temperature and 450 C were observed. The TEM and TSDC results agree that, as expected, ionizing radiation promotes the formation of silver colloids on the ion exchanged surface of soda lime glasses. Soft X-rays are much more efficient in the process than gamma rays and electrons. The correlation with thermoluminescence glow curves indicates that the intensity of a TL peak at 230 C can provide a rapid means of evaluating the presence of silver colloids. TL sensitivities, measured as area under the glow curve per unit mass and unit dose, are very similar for ion exchanged and not exchanged samples submitted to X-ray irradiation, although the peak temperatures differ in about 40 C in the two cases. For both electron and gamma irradiated samples, the TL sensitivity drops about an order of magnitude when compared to the X-ray irradiated ones. (orig.)

  19. Oppositely charged colloids out of equilibrium

    Vissers, T.

    2010-11-01

    Colloids are particles with a size in the range of a few nanometers up to several micrometers. Similar to atomic and molecular systems, they can form gases, liquids, solids, gels and glasses. Colloids can be used as model systems because, unlike molecules, they are sufficiently large to be studied directly with light microscopy and move sufficiently slow to study their dynamics. In this thesis, we study binary systems of polymethylmethacrylate (PMMA) colloidal particles suspended in low-polar solvent mixtures. Since the ions can still partially dissociate, a surface charge builds up which causes electrostatic interactions between the colloids. By carefully tuning the conditions inside the suspension, we make two kinds of particles oppositely charged. To study our samples, we use Confocal Laser Scanning Microscopy (CLSM). The positively and negatively charged particles can be distinguished by a different fluorescent dye. Colloids constantly experience a random motion resulting from random kicks of surrounding solvent molecules. When the attractions between the oppositely charged particles are weak, the particles can attach and detach many times and explore a lot of possible configurations and the system can reach thermodynamic equilibrium. For example, colloidal ‘ionic’ crystals consisting of thousands to millions of particles can form under the right conditions. When the attractions are strong, the system can become kinetically trapped inside a gel-like state. We observe that when the interactions change again, crystals can even emerge again from this gel-like phase. By using local order parameters, we quantitatively study the crystallization of colloidal particles and identify growth defects inside the crystals. We also study the effect of gravity on the growth of ionic crystals by using a rotating stage. We find that sedimentation can completely inhibit crystal growth and plays an important role in crystallization from the gel-like state. The surface

  20. Giant Leaking Colloid Cyst Presenting with Aseptic Meningitis

    Bakhtevari, Mehrdad Hosseinzadeh; Sharifi, Guive; Jabbari, Reza

    2015-01-01

    BACKGROUND: Colloid cysts are benign third ventricle lesions that need to be diagnosed correctly because of their association with sudden death. Chemical or aseptic meningitis is a rare presentation of a colloid cyst. METHODS: We present a case of a 69-year-old man with fever, alteration of mental...... status, and meningismus. Microbiological examination of the cerebrospinal fluid revealed aseptic meningitis. Brain imaging revealed a third ventricular colloid cyst with hydrocephalus. RESULTS: The tumor was resected via endoscopic intervention. There were no persistent operative complications related...... to the endoscopic procedure. CONCLUSIONS: Chemical or aseptic meningitis is an unusual clinical manifestation of a colloid cyst, complicating the differential diagnosis, especially in the elderly....

  1. Bletilla colloid as a vascular embolization agent: experimental studies

    Zheng Chuansheng; Feng Gansheng; Zhang Yanfang

    1998-01-01

    Purpose: To study the efficacy, safety and related characteristics of bletilla colloid as a vascular embolization agent. Materials and methods: The authors prepared bletilla colloid as a vascular embolization agent from the stem tubers of bletilla of Chinese medicinal herb. Related characteristics of bletilla colloid were studied. In four pigs hepatic arterial embolization was performed with the bletilla colloid. Results: The bletilla colloid was a homogenous viscous colloid whose relative viscosity was 2324.6 mm 2 /s. It was easily injected through 4-F catheter and hyperattenuating under fluoroscopy, meanwhile, with good histocompatibility and hemo-compatibility, without pyrogenetic response and toxicity. In vitro, the mixture of bletilla colloid and MMC did not produce separation and suspension phenomena but released 50% of MMC at 1.8h and 100% at 3.4h. The bletilla colloid mainly embolized peripheral arteries, maintaining occlusion for 5 weeks and without formation of collateral circulation. The injuries of normal hepatic tissues were slight, without hepatic cytonecrosis. Conclusions: Bletilla colloid, safe and effective in use with angioembolic function and characteristics of carrier and slow-release, is a potential peripheral embolization agent

  2. Reversible Control of Anisotropic Electrical Conductivity using Colloidal Microfluidic Networks

    Beskok, Ali; Bevan, Michael; Lagoudas, Dimitris; Ounaies, Zoubeida; Bahukudumbi, Pradipkumar; Everett, William

    2007-01-01

    This research addresses the tunable assembly of reversible colloidal structures within microfluidic networks to engineer multifunctional materials that exhibit a wide range of electrical properties...

  3. Groundwater colloids: Their mobilization from subsurface deposits. Final report

    1998-01-01

    The overall goal of this program has involved developing basic understandings of the mechanisms controlling the presence of colloidal phases in groundwaters. The presence of colloids in groundwater is extremely important in that they may enable the subsurface transport of otherwise immobile pollutants like plutonium or PCBs. The major findings of this work have included: (1) Sampling groundwaters must be performed with great care in order to avoid false positives; (2) Much of the colloidal load moving below ground derives from the aquifer solids themselves; and (3) The detachment of colloids from the aquifer solids occurs in response to changes in the groundwater solution chemistry

  4. Establishment of colloid gold immunity chromatography assay for cardiac troponin I (cTnI)

    Wang Dezhi; Chen Jiying; Qin Lili; Zhao Baojian; Zhang Chunming

    2006-01-01

    Objective: To establish the colloid gold Immunity chromatography assay for cardiac troponin I. Methods: To purify cTnI from human cardiac muscle and immunize rabbit with it. cTnI antibody of rabbit anti-human cardiac muscle has been prepared and colloid gold immunity chromatography assay was established by using immunity chromatography technology. Results: Anti-serum titles of cTnI were 1:100000, Ka=2.38 x 10 9 L/mol; Methodological index: Sensitivity: 5 ng/ml; Specificity: cTnI is no cross-reaction with cTnT, cTnC and CK-MB. conclusion: The assay is highly specific, quick and simple. It can be widely used for the early diagnosis of AMI and scientific research. (authors)

  5. Measurement of the effective refractive index of a turbid colloidal suspension using light refraction

    Reyes-Coronado, A; Garcia-Valenzuela, A; Sanchez-Perez, C; Barrera, R G

    2005-01-01

    We propose and analyse a simple method to measure simultaneously the real and imaginary parts of the effective refractive index of a turbid suspension of particles. The method is based on measurements of the angle of refraction and transmittance of a laser beam that traverses a hollow glass prism filled with a colloidal suspension. We provide a comprehensive assessment of the method. It can offer high sensitivity while still being simple to interpret. We present results of experiments using an optically turbid suspension of polystyrene particles and compare them with theoretical predictions. We also report experimental evidence showing that the refractive behaviour of the diffuse component of light coming from a suspension depends on the volume fraction of the colloidal particles

  6. Rheology modification in mixed shape colloidal dispersions. Part I: pure components

    ten Brinke, A.J.W.; Bailey, L.; Lekkerkerker, H.N.W.; Matiland, G.C.

    2007-01-01

    The flow behaviour and rheology of colloidal dispersions are of considerable interest in many applications, for example colloidal clay particles find applications in oilfield and constructiondrilling fluids. The rheological properties of such fluids can be enhanced significantly by adding colloidal

  7. Studies on the Radiation-Chemical Basis of Synthesizing Oligosaccharides and Polymer Microgels, and Analytical Methods for their Characterization. Chapter 16

    Czechowska-Biskup, R.; Kadlubowski, S.; Rokita, B.; Rosiak, J. M.; Ulanski, P.; Wach, R. [Institute of Applied Radiation Chemistry (IARC), Lodz University of Technology (Poland)

    2014-07-15

    This report summarizes recent studies performed at the Institute of Applied Radiation Chemistry (IARC) at the Lodz University of Technology in fields related to radiation synthesis and the modification of polymers for agricultural applications. These projects included both natural and synthetic polymers. Based on the extensive studies conducted on the mechanism and kinetics of radiation-induced reactions in polysaccharides within the CRP’s “Development of Radiation-Processed Products of Natural Polymers for Application in Agriculture, Healthcare, Industry, and Environment”, interlaboratory activities to assess existing methods in determining the molecular weight and degree of deacetylation of chitosan, and to refine protocols for performing these measurements have been planned, performed and evaluated. Synthetic polymers have been used in the basic and application-oriented research on the radiation synthesis of hydrogels, microgels, and nanogels (> 50 papers). IARC is ready to support research teams from member states that work on the elaboration and implementation of polymers for agricultural applications, using the existing experience in basic studies and in analytical methods to evaluate the physicochemical properties of polysaccharides. (author)

  8. 99mTc-stannous colloid white cell scintigraphy in childhood inflammatory bowel disease.

    Peacock, Kenneth; Porn, Ute; Howman-Giles, Robert; O'Loughlin, Edward; Uren, Roger; Gaskin, Kevin; Dorney, Stuart; Kamath, Ramanand

    2004-02-01

    99mTc-Labeled white cell scintigraphy (WCS) has been used for the investigation of inflammatory bowel disease (IBD) in adults, but data on children are limited. The most common agent used is (99m) Tc-hexamethylpropyleneamine oxime (HMPAO); however, this agent has limitations. In a retrospective study, we assessed the use of (99m)Tc-stannous colloid WCS for the initial evaluation of children with suspected IBD. Diagnostic, endoscopic, and contrast radiography results were retrospectively collected from the medical records. Two experienced nuclear physicians unaware of the patient data interpreted the WCS results, with agreement reached by consensus. Statistical analysis was performed on the ability of WCS to detect active disease and localize it topographically and on a comparison of diagnostic methods, using a combination of clinical features and endoscopy as the reference standard. Between 1996 and 1999, 64 patients (35 male and 29 female; mean age, 12.5 y; age range, 2-19 y) had WCS performed, with IBD subsequently diagnosed in 34 patients. (99m)Tc-Stannous colloid WCS had an 88% sensitivity, 90% specificity, and 8.8 likelihood ratio for initial investigation of IBD. Agreement was poor for topographic localization of disease. Small-bowel series had a 75% sensitivity, 50% specificity, and 1.5 likelihood ratio for detecting endoscopic disease of the terminal ileum and proximal colon. Our results confirm that WCS is a useful imaging technique for the initial evaluation of patients with suspected IBD. (99m)Tc-Stannous colloid had results at least comparable to those of other WCS agents, and in children, (99m)Tc-stannous colloid WCS should be preferred in view of lower cost, shorter preparation time, and the smaller blood volumes required.

  9. Elaboration of colloidal silica sols in aqueous medium: functionalities, optical properties and chemical detection of coating

    Le Guevel, X.

    2006-03-01

    The aim of this work was to study surface reactivity of silica nanoparticles through physical and chemical properties of sols and coatings. Applications are numerous and they are illustrated in this work by optical coating preparation for laser components and chemical gas sensor development for nitroaromatics detection. On one hand, protocol synthesis of colloidal silica sols has been developed in water medium using sol-gel process (0 to 100 w%). These sols, so-called BLUESIL, are time-stable during at least one year. Homogeneous coatings having thickness fixed to 200 nm, have been prepared on silica substrate and show high porosity and high transparence. Original films have been developed using catalytic curing in gas atmosphere (ammonia curing) conferring good abrasive resistance to the coating without significant properties modification. In order to reduce film sensitivity to molecular adsorption (water, polluting agents... ), specific BLUESIL coatings have been prepared showing hydrophobic property due to apolar species grafting onto silica nanoparticles. Using this route, coatings having several functional properties such as transparence, hydrophobicity, high porosity and good abrasive resistance have been elaborated. On the other hand, we show that colloidal silica is a material specifically adapted to the detection of nitro aromatic vapors (NAC). Indeed, the use of colloidal silica as chemical gas sensor reveals very high sensitivity, selectivity to NAC compared to Volatile Organic Compound (V.O.C) and good detection performances during one year. Moreover, chemical sensors using functionalized colloidal silica have exhibited good results of detection, even in high humidity medium (≥70 %RH). (author)

  10. Fast microbial reduction of ferrihydrite colloids from a soil effluent

    Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.

    2012-01-01

    Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite

  11. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts

    Wolthoorn, A.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2004-01-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater to make the water potable. In a groundwater system with pH > 7, subsurface aeration results in a non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove Fe in situ, the

  12. Explorative analysis of microbes, colloids and gases

    Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB, Goeteborg (Sweden))

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. In this report, part of the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. This report focuses on microbiology, colloids and gases: - Microbes (Chapter 1): Several methods must be used to characterize active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of microorganisms. Different microbial groups influence the environment in different ways, depending on what metabolic group is dominant. Typically, the following redox couples are utilized by bacteria in granitic groundwater: H{sub 2}O/O{sub 2}, NO{sub 3}-/N{sub 2}, Mn2+/Mn(IV), Fe2+/Fe(III), S2-/SO{sub 4}2-, CH{sub 4}/CO{sub 2}, CH{sub 3}COOH/CO{sub 2}, and H{sub 2}/H+. The data will indicate the activity of specific microbial populations at particular sites and how they may affect the geochemistry. - Colloids (Chapter 2): Particles in the size range from 1 to 1x10-3 mum are regarded as colloids. Their small size prohibits them from settling, which gives them the

  13. Explorative analysis of microbes, colloids and gases

    Hallbeck, Lotta; Pedersen, Karsten

    2008-08-01

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. In this report, part of the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. This report focuses on microbiology, colloids and gases: - Microbes (Chapter 1): Several methods must be used to characterize active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of microorganisms. Different microbial groups influence the environment in different ways, depending on what metabolic group is dominant. Typically, the following redox couples are utilized by bacteria in granitic groundwater: H 2 O/O 2 , NO 3 - /N 2 , Mn 2+ /Mn(IV), Fe 2+ /Fe(III), S 2- /SO 4 2- , CH 4 /CO 2 , CH 3 COOH/CO 2 , and H 2 /H + . The data will indicate the activity of specific microbial populations at particular sites and how they may affect the geochemistry. - Colloids (Chapter 2): Particles in the size range from 1 to 1x10 -3 μm are regarded as colloids. Their small size prohibits them from settling, which gives them the potential to transport

  14. Sustainable steric stabilization of colloidal titania nanoparticles

    Elbasuney, Sherif

    2017-07-01

    A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This

  15. Normal modes of weak colloidal gels

    Varga, Zsigmond; Swan, James W.

    2018-01-01

    The normal modes and relaxation rates of weak colloidal gels are investigated in calculations using different models of the hydrodynamic interactions between suspended particles. The relaxation spectrum is computed for freely draining, Rotne-Prager-Yamakawa, and accelerated Stokesian dynamics approximations of the hydrodynamic mobility in a normal mode analysis of a harmonic network representing several colloidal gels. We find that the density of states and spatial structure of the normal modes are fundamentally altered by long-ranged hydrodynamic coupling among the particles. Short-ranged coupling due to hydrodynamic lubrication affects only the relaxation rates of short-wavelength modes. Hydrodynamic models accounting for long-ranged coupling exhibit a microscopic relaxation rate for each normal mode, λ that scales as l-2, where l is the spatial correlation length of the normal mode. For the freely draining approximation, which neglects long-ranged coupling, the microscopic relaxation rate scales as l-γ, where γ varies between three and two with increasing particle volume fraction. A simple phenomenological model of the internal elastic response to normal mode fluctuations is developed, which shows that long-ranged hydrodynamic interactions play a central role in the viscoelasticity of the gel network. Dynamic simulations of hard spheres that gel in response to short-ranged depletion attractions are used to test the applicability of the density of states predictions. For particle concentrations up to 30% by volume, the power law decay of the relaxation modulus in simulations accounting for long-ranged hydrodynamic interactions agrees with predictions generated by the density of states of the corresponding harmonic networks as well as experimental measurements. For higher volume fractions, excluded volume interactions dominate the stress response, and the prediction from the harmonic network density of states fails. Analogous to the Zimm model in polymer

  16. Shear Melting of a Colloidal Glass

    Eisenmann, Christoph; Kim, Chanjoong; Mattsson, Johan; Weitz, David A.

    2010-01-01

    We use confocal microscopy to explore shear melting of colloidal glasses, which occurs at strains of ˜0.08, coinciding with a strongly non-Gaussian step size distribution. For larger strains, the particle mean square displacement increases linearly with strain and the step size distribution becomes Gaussian. The effective diffusion coefficient varies approximately linearly with shear rate, consistent with a modified Stokes-Einstein relationship in which thermal energy is replaced by shear energy and the length scale is set by the size of cooperatively moving regions consisting of ˜3 particles.

  17. Colloid research for the Nevada Test Site

    Bryant, E.A.

    1992-05-01

    Research is needed to understand the role of particulates in the migration of radionuclides away from the sites of nuclear tests at the Nevada Test Site. The process of testing itself may produce a reservoir of particles to serve as vectors for the transport of long-lived radionuclides in groundwater. Exploratory experiments indicate the presence of numerous particulates in the vicinity of the Cambric test but a much lower loading in a nearby well that has been pumped continuously for 15 years. Recent groundwater colloid research is briefly reviewed to identify sampling and characterization methods that may be applicable at the Nevada Test Site

  18. Depletion and the dynamics in colloid-polymer mixtures

    Tuinier, R.; Fan, T.H.; Taniguchi, T.

    2015-01-01

    The status of work on the influence of nonadsorbing polymers on depletion dynamics in colloidal dispersions is reviewed. In the past focus has been paid to equilibrium properties of colloid-polymer mixtures. In practice the dynamical behaviour is equally important. Dynamic properties including

  19. Enhanced adhesion of bioinspired nanopatterned elastomets via colloidal surface assembly

    Akerboom, S.; Appel, J.; Labonte, D.; Federle, W.; Sprakel, J.H.B.; Kamperman, M.M.G.

    2015-01-01

    We describe a scalable method to fabricate nanopatterned bioinspired dry adhesives using colloidal lithography. Close-packed monolayers of polystyrene particles were formed at the air/water interface, on which polydimethylsiloxane (PDMS) was applied. The order of the colloidal monolayer and the

  20. Formation, characterization, and stability of plutonium (IV) colloid

    Hobart, D.E.; Morris, D.E.; Palmer, P.D.; Newton, T.W.

    1989-01-01

    Plutonium is expected to be a major component of the waste element package in any high-level nuclear waste repository. Plutonium(IV) is known to form colloids under chemical conditions similar to those found in typical groundwaters. In the event of a breach of a repository, these colloids represent a source of radionuclide transport to the far-field environment, in parallel with the transport of dissolved waste element species. In addition, the colloids may decompose or disaggregate into soluble ionic species. Thus, colloids represent an additional term in determining waste element solubility limits. A thorough characterization of the physical and chemical properties of these colloids under relevant conditions is essential to assess the concentration limits and transport mechanisms for the waste elements at the proposed Yucca Mountain Repository site. This report is concerned primarily with recent results obtained by the Yucca Mountain Project (YMP) Solubility Determination Task pertaining to the characterization of the structural and chemical properties of Pu(IV) colloid. Important results will be presented which provides further evidence that colloidal plutonium(IV) is structurally similar to plutonium dioxide and that colloidal plutonium(IV) is electrochemically reactive. 13 refs., 7 figs

  1. Complex Colloidal Structures by Self-assembly in Electric Fields

    Vutukuri, H.R.

    2012-01-01

    The central theme of this thesis is exploiting the directed self-assembly of both isotropic and anisotropic colloidal particles to achieve the fabrication of one-, two-, and three-dimensional complex colloidal structures using external electric fields and/or a simple in situ thermal annealing

  2. Optical properties of spherical and oblate spheroidal gold shell colloids

    Penninkhof, J.J.; Moroz, A.; van Blaaderen, A.; Polman, A.

    2008-01-01

    The surface plasmon modes of spherical and oblate spheroidal core−shell colloids composed of a 312 nm diameter silica core and a 20 nm thick Au shell are investigated. Large arrays of uniaxially aligned core−shell colloids with size aspect ratios ranging from 1.0 to 1.7 are fabricated using a novel

  3. Anisotropic colloids: bulk phase behavior and equilibrium sedimentation

    Marechal, M.A.T.

    2009-01-01

    This thesis focuses on the phase behavior of anisotropically shaped (i.e. non-spherical) colloids using computer simulations. Only hard-core interactions between the colloids are taken into account to investigate the effects of shape alone. The bulk phase behavior of three different shapes of

  4. Particle Trapping and Banding in Rapid Colloidal Solidification

    Elliott, J. A. W.

    2011-10-11

    We derive an expression for the nonequilibrium segregation coefficient of colloidal particles near a moving solid-liquid interface. The resulting kinetic phase diagram has applications for the rapid solidification of clay soils, gels, and related colloidal systems. We use it to explain the formation of bandlike defects in rapidly solidified alumina suspensions. © 2011 American Physical Society.

  5. Wetting in a Colloidal Liquid-Gas System

    Wijting, W. K.; Besseling, N. A.; Stuart, M. A.

    2003-05-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  6. Wetting behavior in colloid-polymer mixtures at different substrates

    Wijting, W.K.; Besseling, N.A.M.; Cohen Stuart, M.A.

    2003-01-01

    We present experimental observations on wetting phenomena in depletion interaction driven, phase separated colloidal dispersions. The contact angle of the colloidal liquid-gas interface at a solid substrate was determined for a series of compositions. Upon approach to the critical point, a

  7. Wetting in a colloidal liquid-gas system

    Wijting, W.K.; Besseling, N.A.M.; Cohen Stuart, M.A.

    2003-01-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting.

  8. Wetting in a colloidal liquid-gas system

    Wijting, W.K.; Besseling, N.A.M.; Cohen Stuart, M.A.

    2003-01-01

    We present first observations of wetting phenomena in depletion interaction driven, phase separated colloidal dispersions (coated silica-cyclohexane-polydimethylsiloxane). The contact angle of the colloidal liquid-gas interface at a solid substrate (coated glass) was determined for a series of

  9. The influence of colloids on the migration of radionuclides

    Seher, Holger

    2011-01-01

    For a concept of deep geological disposal of high level nuclear waste, the repository will be designed as a multiple-barrier system including bentonite as the buffer/backfill material and the host rock formation as the geological barrier. The engineered barrier (compacted bentonite) will be in contact with the host rock formation (e.g. granite). Consequently the bentonite will be saturated over time with formation groundwater, which will induce swelling and gel formation of the bentonite. At the gel-groundwater boundary, colloid detachment might be a possible colloid source and therefore might enhance the mobility of strong sorbing actinides. This work will focus on three aspects of colloidal transport: (a) Colloid stability in the mixing zone between granite groundwater and bentonite pore water, including its description with an extended DLVO model. (b) Colloid generation and erosion of the bentonite at the interface between compacted bentonite and granitic groundwater, as well as formation of new colloids in the mixing zone between the bentonite porewater and the granitic groundwater. (c) Colloid transport and the interaction of U, Th, Hf, Tb, Eu and Cm with bentonite colloids and fracture filling material, as well as their mobility in a natural fracture.

  10. Small-angle neutron scattering from colloidal dispersions

    Ottewill, R.H.

    1991-01-01

    A survey is given of recent work on the use of small-angle neutron scattering to examine colloidal dispersions. Particular attention is given to the determination of particle size and polydispersity, the determination of particle morphology and the behaviour of concentrated colloidal dispersions, both at rest and under the influence of an applied shear field. (orig.)

  11. Thermodynamics and vibrational modes of hard sphere colloidal systems

    Zargar, R.

    2014-01-01

    The central question that we address in this thesis is the thermodynamics of colloidal glasses. The thermodynamics of colloidal hard sphere glasses are directly related to the entropy of the system, since the phase behavior of hard sphere systems is dictated only by entropic contributions, and also

  12. Preparation, definition and stabilisation of an inorganic sol by an organic macromolecule: case of an aluminium hydroxide colloid

    Hurbin-Faucon, A.

    1966-01-01

    An attempt has been made in this work to define an aluminium colloid which is resistant as a high ionic force and to analyse, in the case of this system, the possibilities. and the limits of certain techniques used in the physical chemistry of colloids. The aluminium colloid is obtained by peptization of an aluminium hydroxide precipitate. The physical characterisation of the micelle is effected using the light scattering method which makes it possible to define the colloid from the point of view of size and shape. An interesting characteristic, arising from the low refractive index of the colloid studied, has led us to use not only the general MIE methods but also the methods normally used in macro-molecular chemistry; these latter involve fewer hypotheses and thus make it possible to carry out a more complete analysis of the sol. Since the aluminium hydroxide colloid is sensitive to a high ionic force, we have begun to study the possibility of making it more stable by means of a macromolecule: gelatin. After characterizing this macromolecule by means of potentiometric and light scattering measurements, we have shown the existence of a chemical interaction which occurs when aluminium hydroxide is brought into contact with gelatin; this interaction leads to the production of an inorganic-organic entity which is stable when the ionic force increases. We have established some of the characteristics of the complex thus formed, in particular the pH range of the solution necessary for its formation, its stability. in the presence of electrolytes and some hypotheses concerning its size and shape, Finally we have tried to define the influence of. the molecular weight and the respective dimensions of each constituent on the formation of the complex and thus on the stabilization. (author) [fr

  13. Colloid-facilitated radionuclide transport: a regulatory perspective

    Dam, W. L.; Pickett, D. A.; Codell, R. B.; Nicholson, T. J.

    2001-12-01

    What hydrogeologic-geochemical-microbial conditions and processes affect migration of radionuclides sorbed onto microparticles or native colloid-sized radionuclide particles? The U.S. Nuclear Regulatory Commission (NRC) is responsible for protecting public health, safety, and the environment at numerous nuclear facilities including a potential high-level nuclear waste disposal site. To fulfill these obligations, NRC needs to understand the mechanisms controlling radionuclide release and transport and their importance to performance. The current focus of NRC staff reviews and technical interactions dealing with colloid-facilitated transport relates to the potential nuclear-waste repository at Yucca Mountain, Nevada. NRC staff performed bounding calculations to quantify radionuclide releases available for ground-water transport to potential receptors from a Yucca Mountain repository. Preliminary analyses suggest insignificant doses of plutonium and americium colloids could be derived from spent nuclear fuel. Using surface complexation models, NRC staff found that colloids can potentially lower actinide retardation factors by up to several orders of magnitude. Performance assessment calculations, in which colloidal transport of plutonium and americium was simulated by assuming no sorption or matrix diffusion, indicated no effect of colloids on human dose within the 10,000 year compliance period due largely to long waste-package lifetimes. NRC staff have identified information gaps and developed technical agreements with the U.S. Department of Energy (DOE) to ensure sufficient information will be presented in any potential future Yucca Mountain license application. DOE has agreed to identify which radionuclides could be transported via colloids, incorporate uncertainties in colloid formation, release and transport parameters, and conceptual models, and address the applicability of field data using synthetic microspheres as colloid analogs. NRC is currently

  14. The effects of corrosion product colloids on actinide transport

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1991-11-01

    This report assesses the possible effects of colloidal corrosion products on the transport of actinides from the near field of radioactive waste repositories. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium was studied under conditions simulating a transition from near-field to far-field environmental conditions. Desorption of actinides occurred slowly from the colloids under far-field conditions. Measurements of particle stability showed all the colloids to be unstable in the near field. Stability increased under far-field conditions or as a result of the evolution of the near field. Migration of colloids from the near field is unlikely except in the presence of organic materials. (Author)

  15. Colloidal characterization of silicon nitride and silicon carbide

    Feke, Donald L.

    1986-01-01

    The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.

  16. Nonlinear machine learning and design of reconfigurable digital colloids.

    Long, Andrew W; Phillips, Carolyn L; Jankowksi, Eric; Ferguson, Andrew L

    2016-09-14

    Digital colloids, a cluster of freely rotating "halo" particles tethered to the surface of a central particle, were recently proposed as ultra-high density memory elements for information storage. Rational design of these digital colloids for memory storage applications requires a quantitative understanding of the thermodynamic and kinetic stability of the configurational states within which information is stored. We apply nonlinear machine learning to Brownian dynamics simulations of these digital colloids to extract the low-dimensional intrinsic manifold governing digital colloid morphology, thermodynamics, and kinetics. By modulating the relative size ratio between halo particles and central particles, we investigate the size-dependent configurational stability and transition kinetics for the 2-state tetrahedral (N = 4) and 30-state octahedral (N = 6) digital colloids. We demonstrate the use of this framework to guide the rational design of a memory storage element to hold a block of text that trades off the competing design criteria of memory addressability and volatility.

  17. Studies of colloids and their importance for repository performance assessment

    Laaksoharju, M.; Skaarman, C.; Degueldre, C.

    1995-12-01

    The processes, parameters and data used to evaluate the potential of nuclide transport by a colloid facilitated mechanism are reviewed and discussed in this report. Both steady-state (present situation) and possible future non-steady-state hydrogeochemistry in the geosphere are covered. In the steady-state scenario, the colloid (clay, silica, iron(III)hydroxide) concentration is around 20-45 micrograms/l which is considered to be a low value. The low colloid concentration is justified by the large attachment factor to the rock which reduces the stability of the colloids in the aquifer. Both reversible and irreversible sorption processes are reviewed. In the non-steady-state scenario, changes of hydrogeochemical properties may induce larger colloid concentrations. The increase of concentration is however limited and relaxation is always observed after any change. Emphasis is placed on the glaciation-deglaciation scenario. 53 refs, 12 figs, 3 tabs

  18. Colloids related to low level and intermediate level waste

    Ramsay, J.D.F.; Russell, P.J.; Avery, R.G.

    1991-01-01

    A comprehensive research investigation has been undertaken to improve the understanding of the potential role of colloids in the context of disposal and storage of low level and intermediate level waste immobilized in cement. Several topics have been investigated which include: (a) the study of the formation and characteristics of colloids in cement leachates; (b) the effects of the near-field aqueous chemistry on the characteristics of colloids in repository environments; (c) colloid sorption behaviour; (d) interactions of near-field materials with leachates; (e) characteristics of near-field materials in EC repository simulation tests; and (f) colloid migration behaviour. These experimental investigations should provide data and a basis for the development of transport models and leaching mechanisms, and thus relate directly to the part of the Task 3 programme concerned with migration and retention of radionuclides in the near field. 114 Figs.; 39 Tabs.; 12 Refs

  19. Spectrum of antimicrobial activity associated with ionic colloidal silver.

    Morrill, Kira; May, Kathleen; Leek, Daniel; Langland, Nicole; Jeane, La Deana; Ventura, Jose; Skubisz, Corey; Scherer, Sean; Lopez, Eric; Crocker, Ephraim; Peters, Rachel; Oertle, John; Nguyen, Krystine; Just, Scott; Orian, Michael; Humphrey, Meaghan; Payne, David; Jacobs, Bertram; Waters, Robert; Langland, Jeffrey

    2013-03-01

    Silver has historically and extensively been used as a broad-spectrum antimicrobial agent. However, the Food and Drug Administration currently does not recognize colloidal silver as a safe and effective antimicrobial agent. The goal of this study was to further evaluate the antimicrobial efficacy of colloidal silver. Several strains of bacteria, fungi, and viruses were grown under multicycle growth conditions in the presence or absence of ionic colloidal silver in order to assess the antimicrobial activity. For bacteria grown under aerobic or anaerobic conditions, significant growth inhibition was observed, although multiple treatments were typically required. For fungal cultures, the effects of ionic colloidal silver varied significantly between different genera. No viral growth inhibition was observed with any strains tested. The study data support ionic colloidal silver as a broad-spectrum antimicrobial agent against aerobic and anaerobic bacteria, while having a more limited and specific spectrum of activity against fungi.

  20. Predicting tensorial electrophoretic effects in asymmetric colloids

    Mowitz, Aaron J.; Witten, T. A.

    2017-12-01

    We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970), 10.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).

  1. Dynamics and Rheology of Soft Colloidal Glasses

    Wen, Yu Ho

    2015-01-20

    © 2015 American Chemical Society. The linear viscoelastic (LVE) spectrum of a soft colloidal glass is accessed with the aid of a time-concentration superposition (TCS) principle, which unveils the glassy particle dynamics from in-cage rattling motion to out-of-cage relaxations over a broad frequency range 10-13 rad/s < ω < 101 rad/s. Progressive dilution of a suspension of hairy nanoparticles leading to increased intercenter distances is demonstrated to enable continuous mapping of the structural relaxation for colloidal glasses. In contrast to existing empirical approaches proposed to extend the rheological map of soft glassy materials, i.e., time-strain superposition (TSS) and strain-rate frequency superposition (SRFS), TCS yields a LVE master curve that satis fies the Kramers-Kronig relations which interrelate the dynamic moduli for materials at equilibrium. The soft glassy rheology (SGR) model and literature data further support the general validity of the TCS concept for soft glassy materials.

  2. Aging of a Binary Colloidal Glass

    Lynch, Jennifer M.; Cianci, Gianguido C.; Weeks, Eric R.

    2008-03-01

    After having undergone a glass transition, a glass is in a non-equilibrium state, and its properties depend on the time elapsed since vitrification. We study this phenomenon, known as aging. In particular, we study a colloidal suspension consisting of micron-sized particles in a liquid --- a good model system for studying the glass transition. In this system, the glass transition is approached by increasing the particle concentration, instead of decreasing the temperature. We observe samples composed of particles of two sizes (d1= 1.0μm and d2= 2.0μm) using fast laser scanning confocal microscopy, which yields real-time, three-dimensional movies deep inside the colloidal glass. We then analyze the trajectories of several thousand particles as the glassy suspension ages. Specifically, we look at how the size, motion and structural organization of the particles relate to the overall aging of the glass. We find that areas richer in small particles are more mobile and therefore contribute more to the structural changes found in aging glasses.

  3. Integrated photonics using colloidal quantum dots

    Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.

    2009-11-01

    Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.

  4. Flow-induced structure in colloidal suspensions

    Vermant, J [Department of Chemical Engineering, K U Leuven, W de Croylaan 46, B-3001 Leuven (Belgium); Solomon, M J [Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109-2136 (United States)

    2005-02-02

    We review the sequences of structural states that can be induced in colloidal suspensions by the application of flow. Structure formation during flow is strongly affected by the delicate balance among interparticle forces, Brownian motion and hydrodynamic interactions. The resulting non-equilibrium microstructure is in turn a principal determinant of the suspension rheology. Colloidal suspensions with near hard-sphere interactions develop an anisotropic, amorphous structure at low dimensionless shear rates. At high rates, clustering due to strong hydrodynamic forces leads to shear thickening rheology. Application of steady-shear flow to suspensions with repulsive interactions induces a rich sequence of transitions to one-, two-and three-dimensional order. Oscillatory-shear flow generates metastable ordering in suspensions with equilibrium liquid structure. On the other hand, short-range attractive interactions can lead to a fluid-to-gel transition under quiescent suspensions. Application of flow leads to orientation, breakup, densification and spatial reorganization of aggregates. Using a non-Newtonian suspending medium leads to additional possibilities for organization. We examine the extent to which theory and simulation have yielded mechanistic understanding of the microstructural transitions that have been observed. (topical review)

  5. Colloidal Quantum Dot Photovoltaics: A Path Forward

    Kramer, Illan J.

    2011-11-22

    Colloidal quantum dots (CQDs) offer a path toward high-efficiency photovoltaics based on low-cost materials and processes. Spectral tunability via the quantum size effect facilitates absorption of specific wavelengths from across the sun\\'s broad spectrum. CQD materials\\' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements represent important first steps toward commercially compelling performance. Here we review advances in device architecture and materials science. We diagnose the principal phenomenon-electronic states within the CQD film band gap that limit both current and voltage in devices-that must be cured for CQD PV devices to fulfill their promise. We close with a prescription, expressed as bounds on the density and energy of electronic states within the CQD film band gap, that should allow device efficiencies to rise to those required for the future of the solar energy field. © 2011 American Chemical Society.

  6. Field-scale colloid migration experiments in a granite fracture

    Vilks, P.; Frost, L.H.; Bachinski, D.B.

    1997-01-01

    An understanding of particle migration in fractured rock, required to assess the potential for colloid-facilitated transport of radionuclides, can best be evaluated when the results of laboratory experiments are demonstrated in the field. Field-scale migration experiments with silica colloids were carried out at AECL's Underground Research Laboratory (URL), located in southern Manitoba, to develop the methodology for large-scale migration experiments and to determine whether colloid transport is possible over distances up to 17 m. In addition, these experiments were designed to evaluate the effects of flow rate and flow path geometry, and to determine whether colloid tracers could be used to provide additional information on subsurface transport to that provided by conservative tracers alone. The colloid migration studies were carried out as part of AECL's Transport Properties in Highly Fractured Rock Experiment, the objective of which was to develop and demonstrate methods for evaluating the solute transport characteristics of zones of highly fractured rock. The experiments were carried out within fracture zone 2 as two-well recirculating, two-well non-recirculating, and convergent flow tests, using injection rates of 5 and 101 min -1 . Silica colloids with a 20 nm size were used because they are potentially mobile due to their stability, small size and negative surface charge. The shapes of elution profiles for colloids and conservative tracers were similar, demonstrating that colloids can migrate over distances of 17 m. The local region of drawdown towards the URL shaft affected colloid migration and, to a lesser extent, conservative tracer migration within the flow field established by the two-well tracer tests. These results indicate that stable colloids, with sizes as small as 20 nm, have different migration properties from dissolved conservative tracers. (author)

  7. Development of Colloidal Gold-Based Immunochromatographic Assay for Rapid Detection of Goose Parvovirus

    Xianglong Yu

    2018-05-01

    Full Text Available Goose parvovirus (GPV remains as a worldwide problem in goose industry. For this reason, it is necessary to develop a new diagnostic approach that is easier and faster than conventional tests. A rapid immunochromatographic assay based on antibody colloidal gold nanoparticles specific to GPV was developed for the detection of GPV in goose allantoic fluid and supernatant of tissue homogenate. The monoclonal antibodies (Mab was produced by immunizing the BALB/c mice with purified GPV suspension, and the polyclonal antibody (pAb was produced by immunizing the rabbits with recombinant VP3 protein. The colloidal gold was prepared by the reduction of gold salt with sodium citrate coupled with Mab against GPV. The optimal concentrations of the coating antibody and capture antibody were determined to be 1.6 mg/ml and 9 μg/ml. With visual observation, the lower limit was found to be around 1.2 μg/ml. Common diseases of goose were tested to evaluate the specificity of the immune colloidal gold (ICG strip, and no cross-reaction was observed. The clinical detection was examined by carrying out the ICG strip test with 92 samples and comparing the results of these tests with those obtained via agar diffusion test and polymerase chain reaction (PCR test. Therefore, the ICG strip test was a sufficiently sensitive and accurate detection method for a rapid screening of GPV.

  8. Magneto-optical characterization of colloidal dispersions. Application to nickel nanoparticles.

    Pascu, Oana; Caicedo, José Manuel; Fontcuberta, Josep; Herranz, Gervasi; Roig, Anna

    2010-08-03

    We report here on a fast magneto-optical characterization method for colloidal liquid dispersions of magnetic nanoparticles. We have applied our methodology to Ni nanoparticles with size equal or below 15 nm synthesized by a ligand stabilized solution-phase synthesis. We have measured the magnetic circular dichroism (MCD) of colloidal dispersions and found that we can probe the intrinsic magnetic properties within a wide concentration range, from 10(-5) up to 10(-2) M, with sensitivity to concentrations below 1 microg/mL of magnetic Ni particles. We found that the measured MCD signal scales up with the concentration thus providing a means of determining the concentration values of highly diluted dispersions. The methodology presented here exhibits large flexibility and versatility and might be suitable to study either fundamental problems related to properties of nanosize particles including surface related effects which are highly relevant for magnetic colloids in biomedical applications or to be applied to in situ testing and integration in production lines.

  9. Large-scale assembly of colloidal particles

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  10. Review on influences of colloids on geologic disposal of high level radioactive waste. For better understanding of natural colloidal materials

    Kanai, Yutaka; Suzuki, Masaya; Kamioka, Hikari; Yoshida, Takahiro; Suko, Takeshi

    2007-01-01

    Although the influences of colloidal materials on radionuclide transport in geological media are pointed out, their behaviors in natural environment have not yet been well elucidated and therefore their influences on the geologic disposal of high-level radioactive waste (HLW) are not fully estimated quantitatively. This paper reviewed the studies on natural colloids, especially focused on inorganic, organic and biological colloids, and discussed the future works to be carried out. Much attention should be paid to the sampling and analysis. Excellent techniques for in-situ observation, concentration without changing the state of colloid, standard procedure for analysis, are necessary to be developed. More research studies on the behaviors of colloids are required in not only far- and near-fields but also items on effects of the environments and its evolution. (author)

  11. Development of a colloidal gold immunochromatographic strip for rapid detection of Streptococcus agalactiae in tilapia.

    Wen-de, Wu; Min, Li; Ming, Chen; Li-Ping, Li; Rui, Wang; Hai-Lan, Chen; Fu-Yan, Chen; Qiang, Mi; Wan-Wen, Liang; Han-Zhong, Chen

    2017-05-15

    A colloidal gold immunochromatographic strip was developed for rapid detection of Streptococcus agalactiae (S. agalactiae) infection in tilapia. The monoclonal antibodies (mAb) 4C12 and 3A9 were used to target S. agalactiae as colloidal gold-mAb conjugate and captured antibody, respectively. The colloidal gold immunochromatographic strip was assembled via routine procedures. Optimal pH and minimum antibody levels in the reaction system for gold colloidal-mAb 4C12 conjugation were pH 7.4 and 18μg/mL, respectively. Optimal concentrations of the captured antibody 3A9 and goat anti-mouse antibody were 0.6mg/mL and 2mg/mL, respectively. The sensitivity of the strip for detecting S. agalactiae was 1.5×10 5 colony forming units (CFU). No cross-reaction was observed with other commonly encountered bacteria, including Pseudomonas fluorescens, Aeromonas hydrophila, Vibrio anguillarum and Streptococcus iniae. The assay time for S. agalactiae was less than 15min. Tilapia samples artificially infected with S. agalactiae were tested using the newly developed strip. The results indicated that blood, brain, kidney, spleen, metanephros and intestine specimens of infected fish can be used for S. agalactiae detection. The validity of the strip was maintained for 6 months at 4°C. These findings suggested that the immunochromatographic strip was effective for spot and rapid detection of S. agalactiae infected tilapia. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter D B (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > D B (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than D B show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  13. EDITORIAL: Colloidal dispersions in external fields Colloidal dispersions in external fields

    Löwen, Hartmut

    2012-11-01

    Colloidal dispersions have long been proven as pivotal model systems for equilibrium phase transition such as crystallization, melting and liquid-gas phase transition. The last decades have revealed that this is also true for nonequilibrium phenomena. In fact, the fascinating possibility to track the individual trajectories of colloidal particles has greatly advanced our understanding of collective behaviour in classical many-body systems and has helped to reveal the underlying physical principles of glass transition, crystal nucleation, and interfacial dynamics (to name just a few typical nonequilibrium effects). External fields can be used to bring colloids out of equilibrium in a controlled way. Different kinds of external fields can be applied to colloidal dispersions, namely shear flow, electric, magnetic and laser-optical fields, and confinement. Typical research areas can be sketched with the by now traditional complexity diagram (figure 1). The complexity of the colloidal system itself as embodied in statistical degrees of freedom is shown on the x-axis while the complexity of the problem posed, namely bulk, an inhomogeneity in equilibrium, steady state nonequilibrium and full time-dependent nonequilibrium are shown on the y-axis. The different external fields which can be imposed are indicated by the different hatched areas. figure1 Figure 1. Diagram of complexity for colloidal dispersions in external fields: while the x-axis shows the complexity of the system, the y-axis shows the complexity of the problem. Regions which can be accessed by different kinds of external fields are indicated. The arrows indicate recent research directions. Active particles are also indicated with a special complexity of internal degrees of freedom [1]. This collection of papers reflects the scientific programme of the International Conference on Colloidal Dispersions in External Fields III (CODEF III) which took place in Bonn-Bad Godesberg from 20-23 March 2012. This was the

  14. Extraction and characterisation of colloids in waste repository leachate

    Verrall, K.E.

    1998-10-01

    Inorganic colloids are ubiquitous in environmental waters and are thought to be potential transporters of radionuclides and other toxic metals. Colloids present large surface areas to pollutants and contaminants present in waters and are therefore capable of sorbing and transporting them via groundwater and surface water movement. Much research has been and is currently being undertaken to understand more fully the stability of colloids in different water chemistries, factors which affect metal sorption onto colloids, and the processes which affect metal-colloid transport. This thesis first investigates groundwater and surface water sampling and characterisation techniques for the investigation of the colloids present in and around a low-level waste repository. Samples were collected anaerobically using micro-purge low-flow methodology (MPLF) and then subjected to sequential ultrafiltration, again anaerobically. After separation into size fractions the solids were analysed for radiochemical content, colloid population and morphology. It was found that colloids were present in large numbers in the groundwaters extracted from the trench waste burial area (anaerobic environment), but in the surface drain waters (aerobic environment) colloid population was comparable to levels found in waters extracted from above the trenches. There was evidence that the non-tritium activity was associated with the colloids and particulates in the trenches, but outside of the trenches the evidence was not conclusive because the activity and colloid concentrations were low. Secondly this thesis investigates the stability of inorganic colloids, mainly haematite, in the presence of humic acid, varying pH and electrolyte concentrations. The applicability of the SchuIze-Hardy rule to haematite and haematite/humic acid mixtures was investigated using photon correlation spectroscopy to measure the rate of fast and slow coagulation after the addition of mono, di and trivalent ions. It was

  15. Distribution of cesium between colloid-rock phases-establishment of experimental system and investigation of Cs distribution between colloid and rock

    Nakata, Kotaro

    2006-01-01

    Distribution and re-distribution of cesium between 3-phases (colloid, rock and water) was investigated. Analcite and bentonite colloid ware used as colloid phase and muscovite was used as rock phase. Before investigating the distribution between 3-phases, sorption and desorption behavior of Cs on analcite colloid, bentonite colloid and muscovite was investigated. It was found some fraction of Cs sorbed irreversibly on analcite colloid, while Cs sorbed reversibly on bentonite colloid. The experimental system was established for assessment of the distribution of nuclides between 3-phases by using combination of membrane filter and experimental cell. Since colloid and muscovite were separated by membrane filter, sorption of colloid on muscovite could be prevented and we could obtain distribution of Cs as ion. The distribution of Cs between 3-phases were obtained by this experimental system. Furthermore, re-distribution experiment was also carried out by using this system. After 7 days contact of colloid with Cs, distribution of sorbed Cs on colloid to liquid or muscovite phase was investigated. Comparing sorption and desorption isotherm with the distribution of Cs between 3-phases, it was found that Kd value of colloid (ratio of Cs concentration in liquid phase to amount of sorbed Cs on colloid phase) estimated in 2-phases (water and colloid) is different from that in 3-phases. Furthermore, in the case of analcite colloid, Kd value of colloid obtained in 3-phases distribution experiment was different from that obtained in re-distribution experiment. This is considered because of the irreversibility of Cs sorption on analcite colloid. Thus, it was found distribution of Cs in 3-phases was not predictable from sorption and desorption isotherm or Kd value of 2-phases (water-rock, water-colloid). (author)

  16. Sustainable steric stabilization of colloidal titania nanoparticles

    Elbasuney, Sherif, E-mail: sherif_basuney2000@yahoo.com

    2017-07-01

    Graphical abstract: Controlled surface properties of titania nanoparticles via surface modification, flocculation from aqueous phase (a), stabilization in aqueous phase (b), extraction to organic phase (c). - Highlights: • Complete change in surface properties of titania nanoparticles from hydrophilic to hydrophobic. • Harvesting the formulated nanoparticles from the aqueous phase to the organic phase. • Exclusive surface modification in the reactor during nanoparticle synthesis. • Sustainable stabilization of titania nanoparticles in aqueous media with polar polymeric dispersant. - Abstract: A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180–240 °C to ensure DDSA ring opening

  17. Air-stable n-type colloidal quantum dot solids

    Ning, Zhijun; Voznyy, Oleksandr; Pan, Jun; Hoogland, Sjoerd H.; Adinolfi, Valerio; Xu, Jixian; Li, Min; Kirmani, Ahmad R.; Sun, Jonpaul; Minor, James C.; Kemp, Kyle W.; Dong, Haopeng; Rollny, Lisa R.; Labelle, André J.; Carey, Graham H.; Sutherland, Brandon R.; Hill, Ian G.; Amassian, Aram; Liu, Huan; Tang, Jiang; Bakr, Osman; Sargent, E. H.

    2014-01-01

    Colloidal quantum dots (CQDs) offer promise in flexible electronics, light sensing and energy conversion. These applications rely on rectifying junctions that require the creation of high-quality CQD solids that are controllably n-type (electron-rich) or p-type (hole-rich). Unfortunately, n-type semiconductors made using soft matter are notoriously prone to oxidation within minutes of air exposure. Here we report high-performance, air-stable n-type CQD solids. Using density functional theory we identify inorganic passivants that bind strongly to the CQD surface and repel oxidative attack. A materials processing strategy that wards off strong protic attack by polar solvents enabled the synthesis of an air-stable n-type PbS CQD solid. This material was used to build an air-processed inverted quantum junction device, which shows the highest current density from any CQD solar cell and a solar power conversion efficiency as high as 8%. We also feature the n-type CQD solid in the rapid, sensitive, and specific detection of atmospheric NO2. This work paves the way for new families of electronic devices that leverage air-stable quantum-tuned materials. © 2014 Macmillan Publishers Limited. All rights reserved.

  18. Dynamic Scaling of Colloidal Gel Formation at Intermediate Concentrations.

    Zhang, Qingteng; Bahadur, Divya; Dufresne, Eric M; Grybos, Pawel; Kmon, Piotr; Leheny, Robert L; Maj, Piotr; Narayanan, Suresh; Szczygiel, Robert; Ramakrishnan, Subramanian; Sandy, Alec

    2017-10-27

    We have examined the formation and dissolution of gels composed of intermediate volume-fraction nanoparticles with temperature-dependent short-range attractions using small-angle x-ray scattering, x-ray photon correlation spectroscopy, and rheology to obtain nanoscale and macroscale sensitivity to structure and dynamics. Gel formation after temperature quenches to the vicinity of the rheologically determined gel temperature, T_{gel}, was characterized via the slowdown of dynamics and changes in microstructure observed in the intensity autocorrelation functions and structure factor, respectively, as a function of quench depth (ΔT=T_{quench}-T_{gel}), wave vector, and formation time t_{f}. We find the wave-vector-dependent dynamics, microstructure, and rheology at a particular ΔT and t_{f} map to those at other ΔTs and t_{f}s via an effective scaling temperature, T_{s}. A single T_{s} applies to a broad range of ΔT and t_{f} but does depend on the particle size. The rate of formation implied by the scaling is a far stronger function of ΔT than expected from the attraction strength between colloids. We interpret this strong temperature dependence in terms of cooperative bonding required to form stable gels via energetically favored, local structures.

  19. Air-stable n-type colloidal quantum dot solids

    Ning, Zhijun

    2014-06-08

    Colloidal quantum dots (CQDs) offer promise in flexible electronics, light sensing and energy conversion. These applications rely on rectifying junctions that require the creation of high-quality CQD solids that are controllably n-type (electron-rich) or p-type (hole-rich). Unfortunately, n-type semiconductors made using soft matter are notoriously prone to oxidation within minutes of air exposure. Here we report high-performance, air-stable n-type CQD solids. Using density functional theory we identify inorganic passivants that bind strongly to the CQD surface and repel oxidative attack. A materials processing strategy that wards off strong protic attack by polar solvents enabled the synthesis of an air-stable n-type PbS CQD solid. This material was used to build an air-processed inverted quantum junction device, which shows the highest current density from any CQD solar cell and a solar power conversion efficiency as high as 8%. We also feature the n-type CQD solid in the rapid, sensitive, and specific detection of atmospheric NO2. This work paves the way for new families of electronic devices that leverage air-stable quantum-tuned materials. © 2014 Macmillan Publishers Limited. All rights reserved.

  20. Search for an optimal colloid for sentinel node imaging

    Imam, S.K.; Killingsworth, M.

    2005-01-01

    This study aims at finding a cost-effective and stable colloid of appropriate size to replace antimony sulfide colloid which is now in routine use in Australia for sentinel lymph node (SLN) imaging. For this reason we evaluated three colloids; namely phytate, hepatate and stannous fluoride (SnF 2 ). As colloids of particle size of 100-200 nm seem to be appropriate for sentinel node imaging, the three radiolabelled colloid preparations were filtered through 0.1 and 0.22 μm filters and then studied on electron microscope. Electron microscopy showed that unlike phytate, the particle size of the hepatate and SnF 2 colloids did not increase beyond the size limit of 200 nm over a period of as long as 26 hours. Instead, they remained well within the size limits chosen. The stability of particle size is required for intra-operative gamma probe lymphatic mapping that sometimes may be performed on the following day. Hepatate and SnF 2 colloids appeared to be more suited for sentinel lymph node imaging, the latter being an inhouse product is more cost-effective. Further studies based on nodal uptake and the behavior of these two radiopharmaceuticals in animals is suggested in order to evaluate their potential for future wide-spread application in human sentinel node imaging. (author)

  1. Structure and stability of charged colloid-nanoparticle mixtures

    Weight, Braden M.; Denton, Alan R.

    2018-03-01

    Physical properties of colloidal materials can be modified by addition of nanoparticles. Within a model of like-charged mixtures of particles governed by effective electrostatic interactions, we explore the influence of charged nanoparticles on the structure and thermodynamic phase stability of charge-stabilized colloidal suspensions. Focusing on salt-free mixtures of particles of high size and charge asymmetry, interacting via repulsive Yukawa effective pair potentials, we perform molecular dynamics simulations and compute radial distribution functions and static structure factors. Analysis of these structural properties indicates that increasing the charge and concentration of nanoparticles progressively weakens correlations between charged colloids. We show that addition of charged nanoparticles to a suspension of like-charged colloids can induce a colloidal crystal to melt and can facilitate aggregation of a fluid suspension due to attractive van der Waals interactions. We attribute the destabilizing influence of charged nanoparticles to enhanced screening of electrostatic interactions, which weakens repulsion between charged colloids. This interpretation is consistent with recent predictions of an effective interaction theory of charged colloid-nanoparticle mixtures.

  2. Characteristics of colloids generated during the corrosion of nuclear waste glasses in groundwater

    Feng, X.; Buck, E.C.; Mertz, C.; Bates, J.K.; Cunnane, J.C.; Chaiko, D.

    1993-10-01

    Aqueous colloidal suspensions were generated by reacting nuclear waste glasses with groundwater at 90 degrees C at different ratios of the glass surface area to solution volume (S/V). The colloids have been characterized in terms of size, charge, identity, and stability with respect to salt concentration, pH, and time, by examination using dynamic light scattering, electrophoretic mobility, and transmission electron microscopy. The colloids are predominately produced by precipitation from solution, possibly with contribution from reacted layers that have spallated from the glass. These colloids are silicon-rich minerals. The colloidal suspensions agglomerate when the salinity of the solutions increase. The following implications for modeling the colloidal transport of contaminants have been derived from this study: (1) The sources of the colloids are not only solubility-limited real colloids and the pseudo colloids formed by adsorption of radionuclides onto a groundwater colloid, but also from the spalled surface layers of reacted waste glasses. (2) In a repository, the local environment is likely to be glass-reaction dominated and the salt concentration is likely to be high, leading to rapid colloid agglomeration and settling; thus, colloid transport may be insignificant. (3) If large volumes of groundwater contact the glass reaction site, the precipitated colloids may become resuspended, and colloid transport may become important. (4) Under most conditions, the colloids are negatively charged and will deposit readily on positively charged surfaces. Negatively charged surfaces will, in general, facilitate colloid stability and transport

  3. The colloid investigations conducted at the Aespoe Hard Rock Laboratory during 2000-2004

    Laaksoharju, Marcus [Geopoint AB, Stockholm (Sweden); Wold, Susanna [Royal Inst. of Tech., Stockholm (Sweden). School of Chemical Science and Engineering, Nuclear Chemistry] (eds.)

    2005-12-15

    In 2000, SKB decided to initiate an international colloid project at the Aespoe Hard Rock Laboratory in Sweden. The objectives of the colloid project are to: (i) study the role of bentonite as a colloid source, (ii) verify the background colloid concentration at Aespoe HRL and, (iii) investigate the potential for colloid formation/transport in natural groundwater concentrations. The experimental concepts for the colloid project are: laboratory experiments with bentonite, background field measurements of natural colloids, borehole specific bentonite colloid stability experiments and a fracture specific transport experiment. The activities concerning the laboratory experiments and background field measurements are described in this work; the other activities are ongoing or planned. The following conclusions were made: The bentonite colloid stability is strongly dependent on the groundwater ionic strength. Natural colloids are organic degradation products such as humic and fulvic acids, inorganic colloids (clay, calcite, iron hydroxide) and microbes. Microbes form few but large particles and their concentration increase with increasing organic carbon concentrations. The small organic colloids are present in very low concentrations in deep granitic groundwater. The concentrations can be rather high in shallow waters. The colloid concentration decreases with depth and salinity, since colloids are less stable in saline waters. The colloid content at Aespoe is less than 300 ppb. The colloid content at repository level is less than 50 ppb. The groundwater variability obtained in the boreholes reflects well the natural groundwater variability along the whole HRL tunnel.

  4. The colloid investigations conducted at the Aespoe Hard Rock Laboratory during 2000-2004

    Laaksoharju, Marcus; Wold, Susanna

    2005-12-01

    In 2000, SKB decided to initiate an international colloid project at the Aespoe Hard Rock Laboratory in Sweden. The objectives of the colloid project are to: (i) study the role of bentonite as a colloid source, (ii) verify the background colloid concentration at Aespoe HRL and, (iii) investigate the potential for colloid formation/transport in natural groundwater concentrations. The experimental concepts for the colloid project are: laboratory experiments with bentonite, background field measurements of natural colloids, borehole specific bentonite colloid stability experiments and a fracture specific transport experiment. The activities concerning the laboratory experiments and background field measurements are described in this work; the other activities are ongoing or planned. The following conclusions were made: The bentonite colloid stability is strongly dependent on the groundwater ionic strength. Natural colloids are organic degradation products such as humic and fulvic acids, inorganic colloids (clay, calcite, iron hydroxide) and microbes. Microbes form few but large particles and their concentration increase with increasing organic carbon concentrations. The small organic colloids are present in very low concentrations in deep granitic groundwater. The concentrations can be rather high in shallow waters. The colloid concentration decreases with depth and salinity, since colloids are less stable in saline waters. The colloid content at Aespoe is less than 300 ppb. The colloid content at repository level is less than 50 ppb. The groundwater variability obtained in the boreholes reflects well the natural groundwater variability along the whole HRL tunnel

  5. Size determinations of colloidal fat emulsions

    Kuntsche, Judith; Klaus, Katrin; Steiniger, Frank

    2009-01-01

    Size and size distributions of colloidal dispersions are of crucial importance for their performance and safety. In the present study, commercially available fat emulsions (Lipofundin N, Lipofundin MCT and Lipidem) were analyzed by photon correlation spectroscopy, laser diffraction with adequate...... was checked with mixtures of monodisperse polystyrene nanospheres. In addition, the ultrastructure of Lipofundin N and Lipofundin MCT was investigated by cryo-electron microscopy. All different particle sizing methods gave different mean sizes and size distributions but overall, results were in reasonable...... agreement. By all methods, a larger mean droplet size (between 350 and 400 nm) as well as a broader distribution was measured for Lipofundin N compared to Lipofundin MCT and Lipidem (mean droplet size between about 280 and 320 nm). Size distributions of Lipofundin MCT and Lipidem were very similar...

  6. Brownian Motion of Boomerang Colloidal Particles

    Wei, Qi-Huo; Konya, Andrew; Wang, Feng; Selinger, Jonathan V.; Sun, Kai; Chakrabarty, Ayan

    2014-03-01

    We present experimental and theoretical studies on the Brownian motion of boomerang colloidal particles confined between two glass plates. Our experimental observations show that the mean displacements are biased towards the center of hydrodynamic stress (CoH), and that the mean-square displacements exhibit a crossover from short-time faster to long-time slower diffusion with the short-time diffusion coefficients dependent on the points used for tracking. A model based on Langevin theory elucidates that these behaviors are ascribed to the superposition of two diffusive modes: the ellipsoidal motion of the CoH and the rotational motion of the tracking point with respect to the CoH.

  7. MOLECULAR DESIGN OF COLLOIDS IN SUPERCRITICAL FLUIDS

    Keith P. Johnston

    2009-04-06

    The environmentally benign, non-toxic, non-flammable fluids water and carbon dioxide (CO2) are the two most abundant and inexpensive solvents on earth. Emulsions of these fluids are of interest in many industrial processes, as well as CO2 sequestration and enhanced oil recovery. Until recently, formation of these emulsions required stabilization with fluorinated surfactants, which are expensive and often not environmentally friendly. In this work we overcame this severe limitation by developing a fundamental understanding of the properties of surfactants the CO2-water interface and using this knowledge to design and characterize emulsions stabilized with either hydrocarbon-based surfactants or nanoparticle stabilizers. We also discovered a new concept of electrostatic stabilization for CO2-based emulsions and colloids. Finally, we were able to translate our earlier work on the synthesis of silicon and germanium nanocrystals and nanowires from high temperatures and pressures to lower temperatures and ambient pressure to make the chemistry much more accessible.

  8. Building devices from colloidal quantum dots.

    Kagan, Cherie R; Lifshitz, Efrat; Sargent, Edward H; Talapin, Dmitri V

    2016-08-26

    The continued growth of mobile and interactive computing requires devices manufactured with low-cost processes, compatible with large-area and flexible form factors, and with additional functionality. We review recent advances in the design of electronic and optoelectronic devices that use colloidal semiconductor quantum dots (QDs). The properties of materials assembled of QDs may be tailored not only by the atomic composition but also by the size, shape, and surface functionalization of the individual QDs and by the communication among these QDs. The chemical and physical properties of QD surfaces and the interfaces in QD devices are of particular importance, and these enable the solution-based fabrication of low-cost, large-area, flexible, and functional devices. We discuss challenges that must be addressed in the move to solution-processed functional optoelectronic nanomaterials. Copyright © 2016, American Association for the Advancement of Science.

  9. Strand Plasticity Governs Fatigue in Colloidal Gels

    van Doorn, Jan Maarten; Verweij, Joanne E.; Sprakel, Joris; van der Gucht, Jasper

    2018-05-01

    The repeated loading of a solid leads to microstructural damage that ultimately results in catastrophic material failure. While posing a major threat to the stability of virtually all materials, the microscopic origins of fatigue, especially for soft solids, remain elusive. Here we explore fatigue in colloidal gels as prototypical inhomogeneous soft solids by combining experiments and computer simulations. Our results reveal how mechanical loading leads to irreversible strand stretching, which builds slack into the network that softens the solid at small strains and causes strain hardening at larger deformations. We thus find that microscopic plasticity governs fatigue at much larger scales. This gives rise to a new picture of fatigue in soft thermal solids and calls for new theoretical descriptions of soft gel mechanics in which local plasticity is taken into account.

  10. Spleen/liver colloid take-up ratio in the diagnosis and treatment of diffuse hepatic disease

    Popa, N; Lens, E; Janssens, A; Fievez, M [Clinique Reine Fabiola, Montignies-sur-Sambre, Belgium

    1979-01-01

    A method is described for accurate comparison of the uptake of 6 mCi Tc 99m colloidal tin in the spleen and liver. Tests on a sample of 237 patients with suspected or confirmed diffuse hepatic disease indicate that the resulting ratio is an accurate guide to the presence or absence of the disease, with a sensitivity of approximately 85% and a discrimination of up to 92.7% confirmed by clinical, biological and morphohistological examinations.

  11. Formation and stability of aluminosilicate colloids by coprecipitation

    Putri, Kirana Yuniati

    2011-02-15

    Colloids are ubiquitous in natural waters. Colloid-facilitated migration is of importance in safety assessment of a nuclear waste disposal. Aluminosilicate colloids are considered to be the kernel of aquatic colloids. Their stability is affected by a number of geochemical parameters. This work aims to study qualitatively and quantitatively the stability of aluminosilicate colloids formed by coprecipitation under various geochemical conditions, i.e. pH, concentration of Al and Si metal ions, ionic strength, and omnipresent cations (Na{sup +}, Ca{sup 2+}, and Mg{sup 2+}). The work is performed by colorimetric method and laser-induced breakdown detection (LIBD). Two consecutive phase separations at 450 nm and 1 kDa are applied to separate the precipitates and colloids from the ionic species. By means of colorimetry, Si and Al can be detected down to 5.8 x10{sup -8} M and 7.4x10{sup -7} M, respectively. On the other hand, LIBD is able to quantify the colloidal size and its number density down to several ppt. Depending on the concentration of Al and Si metal ions, the formation trend of aluminosilicate colloid changes following its solubility curve. The lower the concentration, the higher the pH range in which the colloids start to emerge. Furthermore, the colloids are stable at higher Al and Si concentration and at low ionic strength. In the low pH range, cations provide different effects at low and high ionic strengths. At high ionic strength, the colloids are stable in the presence of a larger cation, while all cations exhibit similar effects at low ionic strength. However, in the high pH range, valence seems to have a stronger effect than ionic radius; colloids are more stable in the presence of monovalent cations than divalent ones. Meanwhile, XRD shows non- and/or poor crystalline structure of the aluminosilicate species. Nevertheless, results from XPS may suggest that the chemical composition (Si/Al ∼ 0.6) of the aluminosilicate precipitates is sillimanite or

  12. Self-assembled three-dimensional chiral colloidal architecture

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.

    2017-11-01

    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.

  13. Anomalous interactions in confined charge-stabilized colloid

    Grier, D G; Han, Y

    2004-01-01

    Charge-stabilized colloidal spheres dispersed in weak 1:1 electrolytes are supposed to repel each other. Consequently, experimental evidence for anomalous long-ranged like-charged attractions induced by geometric confinement inspired a burst of activity. This has largely subsided because of nagging doubts regarding the experiments' reliability and interpretation. We describe a new class of thermodynamically self-consistent colloidal interaction measurements that confirm the appearance of pairwise attractions among colloidal spheres confined by one or two bounding walls. In addition to supporting previous claims for this as-yet unexplained effect, these measurements also cast new light on its mechanism

  14. Fabrication of Phase-Change Polymer Colloidal Photonic Crystals

    Tianyi Zhao

    2014-01-01

    Full Text Available This paper presents the preparation of phase-change polymer colloidal photonic crystals (PCs by assembling hollow latex spheres encapsulated with dodecanol for the first time. The monodispersed hollow latex spheres were obtained by phase reversion of monodispersed core-shell latex spheres in the n-hexane, which dissolves the PS core and retains the PMMA/PAA shell. The as-prepared phase-change colloidal PCs show stable phase-change behavior. This fabrication of phase-change colloidal PCs would be significant for PC’s applications in functional coatings and various optic devices.

  15. Conjugation of colloidal clusters and chains by capillary condensation.

    Li, Fan; Stein, Andreas

    2009-07-29

    Capillary condensation was used to establish connections in colloidal clusters and 1D colloidal chains with high regional selectivity. This vapor-phase process produced conjugated clusters and chains with anisotropic functionality. The capillary condensation method is simple and can be applied to a wide range of materials. It can tolerate geometric variations and even permits conjugation of spatially separated particles. The selective deposition was also used to modulate the functionality on the colloid surfaces, producing tip-tethered nanosized building blocks that may be suitable for further assembly via directional interactions.

  16. Mesoscopic model of temporal and spatial heterogeneity in aging colloids

    Becker, Nikolaj; Sibani, Paolo; Boettcher, Stefan

    2014-01-01

    We develop a simple and effective description of the dynamics of dense hard sphere colloids in the aging regime deep in the glassy phase. Our description complements the many efforts to understand the onset of jamming in low density colloids, whose dynamics is still time-homogeneous. Based...... scattering function and particle mean-square displacements for jammed colloidal systems, and we predict a growth for the peak of the χ4 mobility correlation function that is logarithmic in waiting-time. At the same time, our model suggests a novel unified description for the irreversible aging dynamics...

  17. Zeta potential in colloid science principles and applications

    Hunter, Robert J; Rowell, R L

    2013-01-01

    Zeta Potential in Colloid Science: Principles and Applications covers the concept of the zeta potential in colloid chemical theory. The book discusses the charge and potential distribution at interfaces; the calculation of the zeta potential; and the experimental techniques used in the measurement of electrokinetic parameters. The text also describes the electroviscous and viscoelectric effects; applications of the zeta potential to areas of colloid science; and the influence of simple inorganic ions or more complex adsorbates on zeta potential. Physical chemists and people involved in the stu

  18. Efficient Parameter Searches for Colloidal Materials Design with Digital Alchemy

    Dodd, Paul, M.; Geng, Yina; van Anders, Greg; Glotzer, Sharon C.

    Optimal colloidal materials design is challenging, even for high-throughput or genomic approaches, because the design space provided by modern colloid synthesis techniques can easily have dozens of dimensions. In this talk we present the methodology of an inverse approach we term ''digital alchemy'' to perform rapid searches of design-paramenter spaces with up to 188 dimensions that yield thermodynamically optimal colloid parameters for target crystal structures with up to 20 particles in a unit cell. The method relies only on fundamental principles of statistical mechanics and Metropolis Monte Carlo techniques, and yields particle attribute tolerances via analogues of familiar stress-strain relationships.

  19. The dynamical crossover in attractive colloidal systems

    Mallamace, Francesco [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Corsaro, Carmelo [Dipartimento di Fisica e Scienze della Terra, Università di Messina and CNISM, I-98168 Messina (Italy); Stanley, H. Eugene [Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 (United States); Mallamace, Domenico [Dipartimento di Scienze dell’Ambiente, della Sicurezza, del Territorio, degli Alimenti e della Salute, Università di Messina, I-98166 Messina (Italy); Chen, Sow-Hsin [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-07

    We study the dynamical arrest in an adhesive hard-sphere colloidal system. We examine a micellar suspension of the Pluronic-L64 surfactant in the temperature (T) and volume fraction (ϕ) phase diagram. According to mode-coupling theory (MCT), this system is characterized by a cusp-like singularity and two glassy phases: an attractive glass (AG) phase and a repulsive glass (RG) phase. The T − ϕ phase diagram of this system as confirmed by a previous series of scattering data also exhibits a Percolation Threshold (PT) line, a reentrant behavior (AG-liquid-RG), and a glass-to-glass transition. The AG phase can be generated out of the liquid phase by using T and ϕ as control parameters. We utilize viscosity and nuclear magnetic resonance (NMR) techniques. NMR data confirm all the characteristic properties of the colloidal system phase diagram and give evidence of the onset of a fractal-like percolating structure at a precise threshold. The MCT scaling laws used to study the shear viscosity as a function of ϕ and T show in both cases a fragile-to-strong liquid glass-forming dynamic crossover (FSC) located near the percolation threshold where the clustering process is fully developed. These results suggest a larger thermodynamic generality for this phenomenon, which is usually studied only as a function of the temperature. We also find that the critical values of the control parameters, coincident with the PT line, define the locus of the FSC. In the region between the FSC and the glass transition lines the system dynamics are dominated by clustering effects. We thus demonstrate that it is possible, using the conceptual framework provided by extended mode-coupling theory, to describe the way a system approaches dynamic arrest, taking into account both cage and hopping effects.

  20. [Interaction of protein with charged colloidal particles].

    Durdenko, E V; Kuznetsova, S M; Basova, L V; Tikhonenko, S A; Saburova, E A

    2011-01-01

    The functional state of three proteins of different molecular weight (urease, lactate dehydrogenase, and hemoglobin) in the presence of the linear polyelectrolytes poly(allylamine hydrochloride) (PAA) and sodium poly(styrenesulfonate) (PSS) in the dissolved state and of the same polyelectrolytes bound to the surface of microspheres has been investigated. Microspheres were prepared by consecutive absorption of oppositely charged polyelectrolytes so that the outer layer of the shell was PAA for the acidic protein urease, and PSS for the alkaline proteins LDH and hemoglobin. It was shown that the dissolved polyelectrolyte completely inactivates all three proteins within one minute with a slight difference in the time constant. (By Hb inactivation are conventionally meant changes in the heme environment observed from the spectrum in the Soret band.) In the presence of microspheres, the proteins were adsorbed on their surface; in this case, more than 95% of the activity was retained within two hours. The proportion of the protein adsorbed on microspheres accounted for about 98% for urease, 72% for Hb, and 35% for LDH, as determined from the tryptophan fluorescence data. The interaction of hemoglobin with another type of charged colloidal particles, phospholipid vesicles, leads to the destruction of the tertiary structure of the protein, which made itself evident in the optical absorption spectra in the Soret band, as well as the spectra of tryptophan fluorescence and circular dichroism. In this case, according to circular dichroism, the percentage of alpha-helical structure of Hb was maintained. The differences in the physical and chemical mechanisms of interaction of proteins with these two types of charged colloidal particles that leads to differences in the degree of denaturing effects are discussed.

  1. Hybrid passivated colloidal quantum dot solids

    Ip, Alex

    2012-07-29

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  2. Hybrid passivated colloidal quantum dot solids

    Ip, Alex; Thon, Susanna; Hoogland, Sjoerd H.; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan K.; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin H.; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, E. H.

    2012-01-01

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  3. Anomalous columnar order of charged colloidal platelets

    Morales-Anda, L.; Wensink, H. H.; Galindo, A.; Gil-Villegas, A.

    2012-01-01

    Monte Carlo computer simulations are carried out for a model system of like-charged colloidal platelets in the isothermal-isobaric ensemble (NpT). The aim is to elucidate the role of electrostatic interactions on the structure of synthetic clay systems at high particle densities. Short-range repulsions between particles are described by a suitable hard-core model representing a discotic particle. This potential is supplemented with an electrostatic potential based on a Yukawa model for the screened Coulombic potential between infinitely thin disklike macro-ions. The particle aspect-ratio and electrostatic parameters were chosen to mimic an aqueous dispersion of thin, like-charged, rigid colloidal platelets at finite salt concentration. An examination of the fluid phase diagram reveals a marked shift in the isotropic-nematic transition compared to the hard cut-sphere reference system. Several statistical functions, such as the pair correlation function for the center-of-mass coordinates and structure factor, are obtained to characterize the structural organization of the platelets phases. At low salinity and high osmotic pressure we observe anomalous hexagonal columnar structures characterized by interpenetrating columns with a typical intercolumnar distance corresponding to about half of that of a regular columnar phase. Increasing the ionic strength leads to the formation of glassy, disordered structures consisting of compact clusters of platelets stacked into finite-sized columns. These so-called "nematic columnar" structures have been recently observed in systems of charge-stabilized gibbsite platelets. Our findings are corroborated by an analysis of the static structure factor from a simple density functional theory.

  4. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average ...

  5. Colloidal interactions in two-dimensional nematic emulsions

    (deformable) interfaces and the shape of fluid colloids in smectic-C films. Keywords. .... with hundreds of points and end with tens of thousands, yielding free energies with an accuracy of ... For simplicity we neglect biaxiality and use the simpler.

  6. PCR detection of groundwater bacteria associated with colloidal transport

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-01-01

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineral transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research

  7. Colloidal alloys with preassembled clusters and spheres.

    Ducrot, Étienne; He, Mingxin; Yi, Gi-Ra; Pine, David J

    2017-06-01

    Self-assembly is a powerful approach for constructing colloidal crystals, where spheres, rods or faceted particles can build up a myriad of structures. Nevertheless, many complex or low-coordination architectures, such as diamond, pyrochlore and other sought-after lattices, have eluded self-assembly. Here we introduce a new design principle based on preassembled components of the desired superstructure and programmed nearest-neighbour DNA-mediated interactions, which allows the formation of otherwise unattainable structures. We demonstrate the approach using preassembled colloidal tetrahedra and spheres, obtaining a class of colloidal superstructures, including cubic and tetragonal colloidal crystals, with no known atomic analogues, as well as percolating low-coordination diamond and pyrochlore sublattices never assembled before.

  8. DEMONSTRATION BULLETIN: COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC.

    The Filter Flow Technology, Inc. (FFT) Colloid Polishing Filter Method (CPFM) was tested as a transportable, trailer mounted, system that uses sorption and chemical complexing phenomena to remove heavy metals and nontritium radionuclides from water. Contaminated waters can be pro...

  9. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.

    Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal

    2014-04-01

    This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Field-scale variation in colloid dispersibility and transport

    Nørgaard, Trine; Møldrup, Per; Ferré, T. P. A.

    2014-01-01

    comparison parameters including textural, chemical, and structural (e.g. air permeability) 8 soil properties. The soil dispersibility was determined (i) using a laser diffraction method on 1-2 mm aggregates equilibrated to an initial matric potential of -100 cm H2O, (ii) using an end-over-end shaking on 6......Colloids are potential carriers for strongly sorbing chemicals in macroporous soils, but predicting the amount of colloids readily available for facilitated chemical transport is an unsolved challenge. This study addresses potential key parameters and predictive indicators when assessing colloid....... Predictions of soil dispersibility and the risk of colloid-facilitated chemical transport will therefore need to be highly scale- and area-specific....

  11. Particle Trapping and Banding in Rapid Colloidal Solidification

    Elliott, J. A. W.; Peppin, S. S. L.

    2011-01-01

    We derive an expression for the nonequilibrium segregation coefficient of colloidal particles near a moving solid-liquid interface. The resulting kinetic phase diagram has applications for the rapid solidification of clay soils, gels, and related

  12. Controlled assembly of jammed colloidal shells on fluid droplets

    Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A.

    2005-07-01

    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.

  13. Colloidal quantum dot solids for solution-processed solar cells

    Yuan, Mingjian; Liu, Mengxia; Sargent, Edward H.

    2016-01-01

    Solution-processed photovoltaic technologies represent a promising way to reduce the cost and increase the efficiency of solar energy harvesting. Among these, colloidal semiconductor quantum dot photovoltaics have the advantage of a spectrally

  14. Colloidal Quantum-Dot Photodetectors Exploiting Multiexciton Generation

    Sukhovatkin, V.; Hinds, S.; Brzozowski, L.; Sargent, E. H.

    2009-01-01

    Multiexciton generation (MEG) has been indirectly observed in colloidal quantum dots, both in solution and the solid state, but has not yet been shown to enhance photocurrent in an optoelectronic device. Here, we report a class of solution

  15. PCR detection of groundwater bacteria associated with colloidal transport

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-02-29

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineral transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.

  16. Green synthesis of silver nanoparticles and silver colloidal solutions

    Nguyen Thi Phuong Phong; Ngo Hoang Minh; Ngo Vo Ke Thanh; Dang Mau Chien

    2009-01-01

    In this paper, silver colloidal solutions have been synthesized rapidly in green conditions by using microwave irradiation and non-toxic chemistry substances (acid oxalic, silver nitrate, polyvinyl pyrolidone (PVP; Mw = 55 000)). The particle size and morphology of these solutions can be controlled by altering several factors like the time, the power of microwave exposure, and the ratio of silver oxalate and PVP etc. The silver nanoparticles were fabricated by thermal decomposition of silver oxalate. The synthesized silver colloidal solutions and silver nanoparticles were characterized by several analytical techniques like UV- VIS, XRD, TEM, FESEM/EDS and ICP-AAS studies. Finally, we used the synthesized silver colloidal solutions for antibacterial purpose. The obtained results showed that the synthesized silver colloidal solutions, even at very low concentrations, have highly efficient anti-bacterial property.

  17. Systematic optimization of quantum junction colloidal quantum dot solar cells

    Liu, Huan; Zhitomirsky, David; Hoogland, Sjoerd; Tang, Jiang; Kramer, Illan J.; Ning, Zhijun; Sargent, Edward H.

    2012-01-01

    The recently reported quantum junction architecture represents a promising approach to building a rectifying photovoltaic device that employs colloidal quantum dot layers on each side of the p-n junction. Here, we report an optimized quantum

  18. Depletion interaction measured by colloidal probe atomic force microscopy

    Wijting, W.K.; Knoben, W.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2004-01-01

    We investigated the depletion interaction between stearylated silica surfaces in cyclohexane in the presence of dissolved polydimethylsiloxane by means of colloidal probe atomic force microscopy. We found that the range of the depletion interaction decreases with increasing concentration.

  19. Migration of colloids of radionuclides in geologic media

    Tanaka, Satoru; Ogawa, Hiromichi

    2001-01-01

    Radionuclide migration in underground environment is affected by the presence of colloids in ground water. As the colloids in flow systems may be trapped or collected to solid surfaces, filtration effect results from. In the present study, dependence of collector efficiency on flow velocity and on heterogeneity of solid surfaces were theoretically and experimentally investigated using DLVO (Electric double-layer and Van der Waals force) and Smoluchowski-Levich approximation and the following results were obtained: Effluent to inflow ratio of colloids obtained from the column experiments can be analyzed to give collector efficiency for single particle. The dependence of collector efficiency on flow velocity was found to be smaller than that deduced from the previously proposed models. A model in which flow system affects the Brownian motion of colloids gives a smaller flow-velocity dependence of collector efficiency. On the contrary, the heterogeneity of solid surface taken into consideration in the model increases the flow velocity dependence. (S. Ohno)

  20. Colloidal quantum dot solar cells exploiting hierarchical structuring

    Labelle, André J.; Thon, Susanna; Masala, Silvia; Adachi, Michael M.; Dong, Haopeng; Farahani, Maryam; Ip, Alexander H.; Fratalocchi, Andrea; Sargent, E. H.

    2015-01-01

    Extremely thin-absorber solar cells offer low materials utilization and simplified manufacture but require improved means to enhance photon absorption in the active layer. Here, we report enhanced-absorption colloidal quantum dot (CQD) solar cells

  1. Characterization of natural colloids sampled from a fractured granite groundwater

    Baik, Min Hoon; Keum, Dong Kwon; Hahn, Pil Soo [Korea Atomic Energy Research Institute, Taejeon (Korea); Vilks, Peter [AECL Whiteshell Laboratories (Canada)

    2000-02-01

    This study was carried out as a part of international joint study of KAERI with AECL. The main purpose of this study is to analyze the physicochemical characteristics and sorption properties of natural colloids sampled from the deep fractured granite groundwater located in the Underground Research Laboratory (URL) of AECL. Physicochemical characteristics such as composition, size distribution, and concentrations of natural colloids was analyzed. This study will be basic data for the analysis of the effect of colloids on the radionuclide migration in a geological medium. This study may provide information for the evaluation of the roles and effects of colloids in the safety and performance assessment of a possible future radioactive waste repository. 20 refs., 8 figs., 8 tabs. (Author)

  2. Synthesis and characterization of colloidal fluorescent silver nanoclusters.

    Huang, Sherry; Pfeiffer, Christian; Hollmann, Jana; Friede, Sebastian; Chen, Justin Jin-Ching; Beyer, Andreas; Haas, Benedikt; Volz, Kerstin; Heimbrodt, Wolfram; Montenegro Martos, Jose Maria; Chang, Walter; Parak, Wolfgang J

    2012-06-19

    Ultrasmall water-soluble silver nanoclusters are synthesized, and their properties are investigated. The silver nanoclusters have high colloidal stability and show fluorescence in the red. This demonstrates that like gold nanoclusters also silver nanoclusters can be fluorescent.

  3. Charge-extraction strategies for colloidal quantum dot photovoltaics

    Lan, Xinzheng

    2014-02-20

    The solar-power conversion efficiencies of colloidal quantum dot solar cells have advanced from sub-1% reported in 2005 to a record value of 8.5% in 2013. Much focus has deservedly been placed on densifying, passivating and crosslinking the colloidal quantum dot solid. Here we review progress in improving charge extraction, achieved by engineering the composition and structure of the electrode materials that contact the colloidal quantum dot film. New classes of structured electrodes have been developed and integrated to form bulk heterojunction devices that enhance photocharge extraction. Control over band offsets, doping and interfacial trap state densities have been essential for achieving improved electrical communication with colloidal quantum dot solids. Quantum junction devices that not only tune the optical absorption spectrum, but also provide inherently matched bands across the interface between p-and n-materials, have proven that charge separation can occur efficiently across an all-quantum-tuned rectifying junction. © 2014 Macmillan Publishers Limited.

  4. Clay colloid formation and release from MX-80 buffer

    Pusch, R.

    1999-12-01

    Flowing groundwater can tear off clay colloids from buffer clay that has penetrated into fractures and transport them and bring sorbed radionuclides up to the biosphere. The colloids are 2-50 μm particle aggregates that are liberated from expanded, softened buffer if the water flow rate in the fractures exceeds a few centimeters per second. Except for the first few months or years after application of the buffer in the deposition holes the flow rate will not be as high as that. The aperture of the fractures will not hinder transport of colloids but most of the fractures contain clastic fillings, usually chlorite, that attract and immobilize them. This condition and the flow rate criterion combine to reduce the chance of radionuclide-bearing clay colloids to reach the biosphere to practically zero except for certain cases that need to be considered

  5. Marine phages as excellent tracers for reactive colloidal transport in porous media

    Ghanem, Nawras; Chatzinotas, Antonis; Harms, Hauke; Wick, Lukas Y.

    2016-04-01

    Question: Here we evaluate marine phages as specific markers of hydrological flow and reactive transport of colloidal particles in the Earth's critical zone (CZ). Marine phages and their bacterial hosts are naturally absent in the CZ, and can be detected with extremely high sensitivity. In the framework of the DFG Collaborative Research Center AquaDiva, we asked the following questions: (1) Are marine phages useful specific markers of hydrological flow and reactive transport in porous media? and (2) Which phage properties are relevant drivers for the transport of marine phages in porous media? Methods: Seven marine phages from different families (as well two commonly used terrestrial phages) were selected based on their morphology, size and physico-chemical surface properties (surface charge and hydrophobicity). Phage properties were assessed by electron microscopy, dynamic light scattering and water contact angle analysis (CA). Sand-filled laboratory percolation columns were used to study transport. The breakthrough curves of the phages were analyzed using the clean bed filtration theory and the XDLVO theory of colloid stability, respectively. Phages were quantified by a modified high- throughput plaque assay and a culture-independent particle counting method approach. Results: Our data show that most marine tested phages exhibited highly variable transport rates and deposition efficiency, yet generally high colloidal stability and viability. We find that size, morphology and hydrophobicity are key factors shaping the transport efficiency of phages. Differing deposition efficiencies of the phages were also supported by calculated XDLVO interaction energy profile. Conclusion: Marine phages have a high potential for the use as sensitive tracers in terrestrial habitats with their surface properties playing a crucial role for their transport. Marine phages however, exhibit differences in their deposition efficiency depending on their morphology, hydrophobicity and

  6. Generation of colloidal granules and capsules from double emulsion drops

    Hess, Kathryn S.

    Assemblies of colloidal particles are extensively used in ceramic processing, pharmaceuticals, inks and coatings. In this project, the aim was to develop a new technique to fabricate monodispersed colloidal assemblies. The use of microfluidic devices and emulsion processing allows for the fabrication of complex materials that can be used in a variety of applications. A microfluidic device is used to create monodispersed water/oil/water (w/o/w) double emulsions with interior droplets of colloidal silica suspension ranging in size from tens to hundreds of microns. By tailoring the osmotic pressure using glycerol as a solute in the continuous and inner phases of the emulsion, we can control the final volume size of the monodispersed silica colloidal crystals that form in the inner droplets of the double emulsion. Modifying the ionic strength in the colloidal dispersion can be used to affect the particle-particle interactions and crystal formation of the final colloidal particle. This w/o/w technique has been used with other systems of metal oxide colloids and cellulose nanocrystals. Encapsulation of the colloidal suspension in a polymer shell for the generation of ceramic-polymer core-shell particles has also been developed. These core-shell particles have spawned new research in the field of locally resonant acoustic metamaterials. Systems and chemistries for creating cellulose hydrogels within the double emulsions have also been researched. Water in oil single emulsions and double emulsions have been used to create cellulose hydrogel spheres in the sub-100 micron diameter range. Oil/water/oil double emulsions allow us to create stable cellulose capsules. The addition of a second hydrogel polymer, such as acrylate or alginate, further strengthens the cellulose gel network and can also be processed into capsules and particles using the microfluidic device. This work could have promising applications in acoustic metamaterials, personal care products, pharmaceuticals

  7. Wetting Behavior in Colloid-Polymer Mixtures at Different Substrates.

    Wijting, Willem K; Besseling, Nicolaas A M; Cohen Stuart, Martien A

    2003-09-25

    We present experimental observations on wetting phenomena in depletion interaction driven, phase separated colloidal dispersions. The contact angle of the colloidal liquid-gas interface at a solid substrate was determined for a series of compositions. Upon approach to the critical point, a transition occurs from partial to complete wetting. The interaction with the substrate was manipulated by modifying the substrate with a polymer. In that case, a transition from partial to complete drying is observed upon approach to the critical point.

  8. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  9. Colloidal silver: a novel treatment for Staphylococcus aureus biofilms?

    Goggin, Rachel; Jardeleza, Camille; Wormald, Peter-John; Vreugde, Sarah

    2014-03-01

    Colloidal silver is an alternative medicine consisting of silver particles suspended in water. After using this solution as a nasal spray, the symptoms of a previously recalcitrant Staphylococcus aureus (S. aureus)-infected chronic rhinosinusitis patient were observed to have improved markedly. The aim of this study was to determine whether colloidal silver has any direct bactericidal effects on these biofilms in vitro. S. aureus biofilms were grown from the ATCC 25923 reference strain on Minimum Biofilm Eradication Concentration (MBEC) device pegs, and treated with colloidal silver. Concentrations tested ranged from 10 to 150 μL colloidal silver diluted to 200 μL with sterile water in 50 μL cerebrospinal fluid (CSF) broth. Control pegs were exposed to equivalent volumes of CSF broth and sterile water. The sample size was 4 biomass values per treatment or control group. Confocal scanning laser microscopy and COMSTAT software were used to quantify biofilms 24 hours after treatment. Significant differences from control were found for all concentrations tested bar the lowest of 10 μL colloidal silver in 200 μL. At 20 μL colloidal silver, the reduction in biomass was 98.9% (mean difference between control and treatment = -4.0317 μm(3) /μm(2) , p colloidal silver (mean differences = -4.0681 and -4.0675μm(3) /μm(2) , respectively, p Colloidal silver directly attenuates in vitro S. aureus biofilms. © 2014 ARS-AAOA, LLC.

  10. Humic colloid-borne migration of uranium in sand columns

    Artinger, R.; Rabung, T.; Kim, J.I.; Sachs, S.; Schmeide, K.; Heise, K.H.; Bernhard, G.; Nitsche, H.

    2002-09-01

    Column experiments were carried out to investigate the influence of humic colloids on subsurface uranium migration. The columns were packed with well-characterized aeolian quartz sand and equilibrated with groundwater rich in humic colloids (dissolved organic carbon (DOC): 30 mg dm -3 ). U migration was studied under an Ar/1% CO 2 gas atmosphere as a function of the migration time, which was controlled by the flow velocity or the column length. In addition, the contact time of U with groundwater prior to introduction into a column was varied. U(VI) was found to be the dominant oxidation state in the spiked groundwater. The breakthrough curves indicate that U was transported as a humic colloid-borne species with a velocity up to 5% faster than the mean groundwater flow. The fraction of humic colloid-borne species increases with increasing prior contact time and also with decreasing migration time. The migration behavior was attributed to a kinetically controlled association/dissociation of U onto and from humic colloids and also a subsequent sorption of U onto the sediment surface. The column experiments provide an insight into humic colloid-mediated U migration in subsurface aquifers

  11. Composition inversion in mixtures of binary colloids and polymer

    Zhang, Isla; Pinchaipat, Rattachai; Wilding, Nigel B.; Faers, Malcolm A.; Bartlett, Paul; Evans, Robert; Royall, C. Patrick

    2018-05-01

    Understanding the phase behaviour of mixtures continues to pose challenges, even for systems that might be considered "simple." Here, we consider a very simple mixture of two colloidal and one non-adsorbing polymer species, which can be simplified even further to a size-asymmetrical binary mixture, in which the effective colloid-colloid interactions depend on the polymer concentration. We show that this basic system exhibits surprisingly rich phase behaviour. In particular, we enquire whether such a system features only a liquid-vapor phase separation (as in one-component colloid-polymer mixtures) or whether, additionally, liquid-liquid demixing of two colloidal phases can occur. Particle-resolved experiments show demixing-like behaviour, but when combined with bespoke Monte Carlo simulations, this proves illusory, and we reveal that only a single liquid-vapor transition occurs. Progressive migration of the small particles to the liquid phase as the polymer concentration increases gives rise to composition inversion—a maximum in the large particle concentration in the liquid phase. Close to criticality, the density fluctuations are found to be dominated by the larger colloids.

  12. Changes in colloid solution sales in Nordic countries.

    Kongsgaard, U E; Holtan, A; Perner, A

    2018-04-01

    Administration of resuscitation fluid is a common intervention in the treatment of critically ill patients, but the right choice of fluid is still a matter of debate. Changes in medical practice are based on new evidence and guidelines as well as traditions and personal preferences. Official warnings against the use of hydroxyl-ethyl-starch (HES) solutions have been issued. Nordic guidelines have issued several strong recommendations favouring crystalloids over colloids in all patient groups. Our objective was to describe the patterns of colloid use in Nordic countries from 2012 to 2016. The data were obtained from companies that provide pharmaceutical statistics in different countries. The data are sales figures from pharmaceutical companies to pharmacies and health institutions. We found a 56% reduction in the total sales of all colloids in Nordic countries over a 5-year period. These findings were mainly related to a 92% reduction in the sales of HES solutions. A reduction in sales of other synthetic colloids has also occurred. During the same period, we found a 46% increase in albumin sales, but these numbers varied between Nordic countries. The general reduction in colloid sales likely reflects the recommendation that colloids should be used only in special circumstances. The dramatic reduction in the sales of HES solutions was expected given evidence of harm and the official warnings. The steady increase in albumin sales and the notable differences between the five Nordic countries cannot be explained. © 2018 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  13. Chancellor Water Colloids: Characterization and Radionuclide Associated Transport

    Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-26

    Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy. In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240

  14. Bentonite as a colloid source in groundwaters at Olkiluoto

    Vuorinen, U.; Hirvonen, H.

    2005-02-01

    In this work bentonite was studied as a potential source of colloids in Olkiluoto groundwaters. Samples were collected at two groundwater stations, PVA1 at 37.5 m dept and PVA3 at 95.6 m depth, in the VLJ-tunnel. The deeper groundwater at PVA3 was more saline (2.6g/L of Cl-) than the shallow at PVA1 (0.8g/L of Cl-). A bentonite source had been assembled at each groundwater station so that two sample lines were available for water samples; one for collecting a sample before and the other for collecting a sample after interaction with bentonite. Before starting the actual colloid sampling groundwaters from both sample lines at both stations were analysed. Only minor alterations, mostly within the uncertainty limits of the analysis methods, were brought about in the water chemistries after interaction with the bentonite sources. The only clear changes were seen in the concentration of iron which decreased after interaction with bentonite in the groundwaters at both stations. After groundwater sampling the actual colloid sampling was performed. The water samples were collected and treated inside a movable nitrogen filled glove-box. The samples could be collected from each sampling line directly in the glove-box via two quick-couplings that had been assembled on the front face of the box. The sample lines had been assembled with 0.45 μm filters before entering the glove-box, because only colloids smaller than 0.45 μm were of interest, as they are not prone to sedimentation in slow groundwater flows and therefore could act as potential radionuclide carriers. Colloid samples were collected and treated similarly from both sampling lines at both groundwater stations. For estimating the colloid content the groundwater samples were filtered with centrifugal ultrafiltration tubes of different cut-off values (0.3 μm, 300kD and 10kD). The ultrafiltrations produced the colloid-containing concentrate fractions and the soluble substances-containing filtrate fractions. In

  15. Colorimetric detection of Ehrlichia canis via nucleic acid hybridization in gold nano-colloids.

    Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong

    2014-08-08

    Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease.

  16. Analysis report for WIPP colloid model constraints and performance assessment parameters

    Mariner, Paul E.; Sassani, David Carl

    2014-03-01

    An analysis of the Waste Isolation Pilot Plant (WIPP) colloid model constraints and parameter values was performed. The focus of this work was primarily on intrinsic colloids, mineral fragment colloids, and humic substance colloids, with a lesser focus on microbial colloids. Comments by the US Environmental Protection Agency (EPA) concerning intrinsic Th(IV) colloids and Mg-Cl-OH mineral fragment colloids were addressed in detail, assumptions and data used to constrain colloid model calculations were evaluated, and inconsistencies between data and model parameter values were identified. This work resulted in a list of specific conclusions regarding model integrity, model conservatism, and opportunities for improvement related to each of the four colloid types included in the WIPP performance assessment.

  17. Silica colloids and their effect on radionuclide sorption. A literature review

    Hoelttae, P.; Hakanen, M.

    2008-05-01

    Silica sol, commercial colloidal silica manufactured by Eka Chemicals in Bohus, Sweden is a promising inorganic grout material for sealing small fractures in low permeable rock. This literature review collects information about the use of silica sol as an injection grout material, the properties of inorganic, especially silica colloids, colloid contents in granitic groundwater conditions, essential characterization methods and colloid-mediated transport of radionuclides. Objective was to evaluate the release and mobility of silica sol colloids, the effect of the groundwater conditions, the amount of colloids compared with natural colloids in Olkiluoto conditions, radionuclide sorption on colloids and their contribution to radionuclide transport. Silica sol seems to be a feasible material to seal fractures with an aperture as small as 10 μm in low permeable rock. The silica sol gel is sufficiently stable to limit to water ingress during the operational phase, the requirement that the pH should be below 11 is fulfilled and the compatibility with Engineered Barrier System (EBS) materials is expected to be good. No significant influence on the bentonite properties caused by the silica sol is expected when calcium chloride is used as an accelerator but the influence of sodium chloride has not been examined. No significant release of colloids is expected under prevailing groundwater conditions. The long-term (100 y) stability of silica sol gel has not yet been clearly demonstrated and a long-term release of silica colloids cannot be excluded. The question is the amount of colloids, how mobile they are and the influence of possible glacial melt waters. The bentonite buffer used in the EBS system is assumed to be a potential source of colloids. In a study in Olkiluoto, bentonite colloids were found only in low salinity groundwater. In general, low salinity water (total dissolved solids -1 ) favours colloid stability and bentonite colloids can remain stable over long

  18. Colloid migration in groundwaters: Geochemical interactions of radionuclides with natural colloids. Appendix III

    Wolf, M.; Geyer, S.; Fritz, P.; Klotz, D.; Lazik, D.

    1994-01-01

    The results obtained from the 152 Eu migration experiment in various columns packed with fine grained sand and equilibrated with a humic substance rich groundwater are: The retardation of mobile Eu-pseudocolloids (Eu-humate) is negligible, since the recovery is 152 Eu concentration is irreversible sorbed on the column, the degree of filtration expressed by the recovery is strongly dependant on the filtration velocity (flow rate): The recovery increases with increasing flow rates, indicating decreasing filtration, since the humic substances are negatively charged, the migration of the Eu pseudocolloids (humic colloids) is slightly accelerated relative to the migration of the 3 HHO tracer, due to anion repulsion. (orig.)

  19. Water evaporation in silica colloidal deposits.

    Peixinho, Jorge; Lefèvre, Grégory; Coudert, François-Xavier; Hurisse, Olivier

    2013-10-15

    The results of an experimental study on the evaporation and boiling of water confined in the pores of deposits made of mono-dispersed silica colloidal micro-spheres are reported. The deposits are studied using scanning electron microscopy, adsorption of nitrogen, and adsorption of water through attenuated total reflection-infrared spectroscopy. The evaporation is characterized using differential scanning calorimetry and thermal gravimetric analysis. Optical microscopy is used to observe the patterns on the deposits after evaporation. When heating at a constant rate and above boiling temperature, the release of water out of the deposits is a two step process. The first step is due to the evaporation and boiling of the surrounding and bulk water and the second is due to the desorption of water from the pores. Additional experiments on the evaporation of water from membranes having cylindrical pores and of heptane from silica deposits suggest that the second step is due to the morphology of the deposits. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Colloidal quantum dot light-emitting devices

    Vanessa Wood

    2010-07-01

    Full Text Available Colloidal quantum dot light-emitting devices (QD-LEDs have generated considerable interest for applications such as thin film displays with improved color saturation and white lighting with a high color rendering index (CRI. We review the key advantages of using quantum dots (QDs in display and lighting applications, including their color purity, solution processability, and stability. After highlighting the main developments in QD-LED technology in the past 15 years, we describe the three mechanisms for exciting QDs – optical excitation, Förster energy transfer, and direct charge injection – that have been leveraged to create QD-LEDs. We outline the challenges facing QD-LED development, such as QD charging and QD luminescence quenching in QD thin films. We describe how optical downconversion schemes have enabled researchers to overcome these challenges and develop commercial lighting products that incorporate QDs to achieve desirable color temperature and a high CRI while maintaining efficiencies comparable to inorganic white LEDs (>65 lumens per Watt. We conclude by discussing some current directions in QD research that focus on achieving higher efficiency and air-stable QD-LEDs using electrical excitation of the luminescent QDs.