WorldWideScience

Sample records for sensitive epithelial marker

  1. Molecular cloning and expression of the transformation sensitive epithelial marker stratifin. A member of a protein family that has been involved in the protein kinase C signalling pathway

    DEFF Research Database (Denmark)

    Leffers, H; Madsen, Peder; Rasmussen, H H

    1993-01-01

    tissues showed that polypeptides comigrating with proteins 9124, 9125 and 9126 are ubiquitous and highly expressed in the brain. Stratifin, however, was present only in cultured epithelial cells and was most abundant in fetal and adult human tissues enriched in stratified squamous keratinising epithelium......We have identified a family of abundant acidic human keratinocyte proteins with apparent molecular masses ranging between 30,000 and 31,100 (isoelectric focussing sample spot proteins 9109 (epithelial marker stratifin), 9124, 9125, 9126 and 9231 in the master two-dimensional gel database of human...

  2. Translating epithelial mesenchymal transition markers into the clinic: Novel insights from proteomics

    Directory of Open Access Journals (Sweden)

    Vergara Daniele

    2016-03-01

    Full Text Available The growing understanding of the molecular mechanisms underlying epithelial-to-mesenchymal transition (EMT may represent a potential source of clinical markers. Despite EMT drivers have not yet emerged as candidate markers in the clinical setting, their association with established clinical markers may improve their specificity and sensitivity. Mass spectrometry-based platforms allow analyzing multiple samples for the expression of EMT candidate markers, and may help to diagnose diseases or monitor treatment efficiently. This review highlights proteomic approaches applied to elucidate the differences between epithelial and mesenchymal tumors and describes how these can be used for target discovery and validation.

  3. Ontogeny of pulmonary alveolar epithelial markers of differentiation.

    Science.gov (United States)

    Joyce-Brady, M F; Brody, J S

    1990-02-01

    We studied differentiation of the pulmonary epithelium in the periphery of fetal rat lung in vivo and in vitro by comparing the ontogeny of cell-surface glycoconjugates with that of surfactant phospholipids. Apical surface binding of the lectin Maclura pomifera agglutinin (MPA) and expression of a 200-kDa MPA-binding glycoprotein (MPA-gp200) was evident at 20 days gestation in type 2 cells, but did not correlate with ultrastructural features of type 2 cell differentiation. Epithelial cells isolated from peripheral lung of 18-day gestation fetal rats displayed hormone-sensitive surfactant synthesis prior to the hormone-insensitive expression of MPA-gp200. Expression of MPA-gp200 occurred in association with the appearance of many new apical surface proteins suggesting a hormone-independent process of polar membrane differentiation. Thus membrane and secretory differentiation are discordant and can be dissociated. In vivo binding of Ricinus communis 1 agglutinin (RCA1), an apical marker of the differentiated alveolar type 1 cell occurred in undifferentiated peripheral lung epithelial cells as early as 18 days gestation, disappeared from differentiating type 2 cells and appeared in differentiated type 1 cells. Both undifferentiated fetal epithelial cells at 18 days gestation and fully differentiated type 1 cells express multiple glycoproteins with terminal beta-linked galactose residues which bind RCA1. Some of these RCA1-binding glycoproteins appear to be similar. These observations suggest that alveolar epithelial type 1 cells may derive directly from undifferentiated peripheral lung epithelial cells as well as from fully differentiated type 2 cells. In addition, terminal differentiation of fetal lung peripheral epithelium into type 1 and type 2 cells may involve repression as well as induction of differentiation-related genes.

  4. Use of mammary epithelial antigens as markers in mammary neoplasia

    International Nuclear Information System (INIS)

    Ceriani, R.L.; Peterson, J.A.; Blank, E.W.

    1979-01-01

    Cell-type specific antigens of the mammary epithelial cells can be used as markers of breast neoplasia. Methods are proposed for the detection of metastatic mammary tissue in vivo by injection of [ 125 I]-labeled antibodies against the mammary epithelial antigens. In addition, the reduced expression of mammary epithelial cell antigens in neoplastic breast cells, quantitated here on a cell per cell basis by flow cytofluorimetry, is a marker of neoplasia and an indication of a deletion accompanying the neoplastic transformation of these cells. (Auth.)

  5. Epithelial cell proliferative activity of Barrett's esophagus : methodology and correlation with traditional cancer risk markers

    NARCIS (Netherlands)

    Peters, FTM; Ganesh, S; Kuipers, EJ; De Jager-Krikken, A; Karrenbeld, A; Harms, Geert; Sluiter, WJ; Koudstaal, J; Klinkenberg-Knol, EC; Lamers, CBHW; Kleibeuker, JH

    Barrett's esophagus (BE) is a premalignant condition, due to chronic gastroesophageal reflux. Effective antireflux therapy may diminish cancer risk. To evaluate this option an intermediate marker is needed. We developed a methodology for measurement of epithelial cell proliferative activity of

  6. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets

    OpenAIRE

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F.; Payne, Jason; Swetenburg, Raymond L.; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J.; Stice, Steven L.; Beckstead, Robert; Liu, Hong-Xiang

    2016-01-01

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240?360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and ?-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us t...

  7. Epithelial cell adhesion molecule - More than a carcinoma marker and adhesion molecule

    NARCIS (Netherlands)

    Trzpis, Monika; McLaughlin, Pamela M. J.; de Leij, Lou M. F. H.; Harmsen, Martin C.

    The epithetial cell adhesion molecule (EpCAM, CD326) is a glycoprotein of similar to 40 kd that was originally identified as a marker for carcinoma, attributable to its high expression on rapidly proliferating tumors of epithelial origin. Normal epithelia express EpCAM at a variable but generally

  8. Canine tracheal epithelial cells are more sensitive than rat tracheal epithelial cells to transforming growth factor beta induced growth inhibition

    International Nuclear Information System (INIS)

    Hubbs, A.F.; Hahn, F.F.; Kelly, G.; Thomassen, D.G.

    1988-01-01

    Transforming growth factor beta (TGFβ) markedly inhibited growth of canine tracheal epithelial (CTE) cells. Reduced responsiveness to TGFβ-induced growth inhibition accompanied neoplastic progression of these cells from primary to transformed to neoplastic. This was similar to the relationship between neoplastic progression and increased resistance to TGFβ-induced growth inhibition seen for rat tracheal epithelial (RTE) cells. The canine cells were more sensitive than rat cells to TGFβ-induced growth inhibition at all stages in the neoplastic process. (author)

  9. Labeling and analysis of chicken taste buds using molecular markers in oral epithelial sheets.

    Science.gov (United States)

    Rajapaksha, Prasangi; Wang, Zhonghou; Venkatesan, Nandakumar; Tehrani, Kayvan F; Payne, Jason; Swetenburg, Raymond L; Kawabata, Fuminori; Tabata, Shoji; Mortensen, Luke J; Stice, Steven L; Beckstead, Robert; Liu, Hong-Xiang

    2016-11-17

    In chickens, the sensory organs for taste are the taste buds in the oral cavity, of which there are ~240-360 in total number as estimated by scanning electron microscopy (SEM). There is not an easy way to visualize all taste buds in chickens. Here, we report a highly efficient method for labeling chicken taste buds in oral epithelial sheets using the molecular markers Vimentin and α-Gustducin. Immediate tissue fixation following incubation with sub-epithelially injected proteases enabled us to peel off whole epithelial sheets, leaving the shape and integrity of the tissue intact. In the peeled epithelial sheets, taste buds labeled with antibodies against Vimentin and α-Gustducin were easily identified and counted under a light microscope and many more taste buds, patterned in rosette-like clusters, were found than previously reported with SEM. Broiler-type, female-line males have more taste buds than other groups and continue to increase the number of taste buds over stages after hatch. In addition to ovoid-shaped taste buds, big tube-shaped taste buds were observed in the chicken using 2-photon microscopy. Our protocol for labeling taste buds with molecular markers will factilitate future mechanistic studies on the development of chicken taste buds in association with their feeding behaviors.

  10. Loss of breast epithelial marker hCLCA2 promotes epithelial to mesenchymal transition and indicates higher risk of metastasis

    Science.gov (United States)

    Walia, Vijay; Yu, Yang; Cao, Deshou; Sun, Miao; McLean, Janel R.; Hollier, Brett G.; Cheng, Jiming; Mani, Sendurai A.; Rao, Krishna; Premkumar, Louis; Elble, Randolph

    2013-01-01

    Transition between epithelial and mesenchymal states is a feature of both normal development and tumor progression. We report that expression of chloride channel accessory protein hCLCA2 is a characteristic of epithelial differentiation in the immortalized MCF10A and HMLE models, while induction of EMT by cell dilution, TGFbeta, or mesenchymal transcription factors sharply reduces hCLCA2 levels. Attenuation of hCLCA2 expression by lentiviral shRNA caused cell overgrowth and focus formation, enhanced migration and invasion, and increased mammosphere formation in methylcellulose. These changes were accompanied by downregulation of E-cadherin and upregulation of mesenchymal markers such as vimentin and fibronectin. Moreover, hCLCA2 expression is greatly downregulated in breast cancer cells with a mesenchymal or claudin-low profile. These observations suggest that loss of hCLCA2 may promote metastasis. We find that higher-than-median expression of hCLCA2 is associated with a one-third lower rate of metastasis over an 18 year period among breast cancer patients compared to lower-than-median (n=344, unfiltered for subtype). Thus, hCLCA2 is required for epithelial differentiation, and its loss during tumor progression contributes to metastasis. Overexpression of hCLCA2 has been reported to inhibit cell proliferation and is accompanied by increases in chloride current at the plasma membrane and reduced intracellular pH (pHi). We found that knockdown cells have sharply reduced chloride current and higher pHi, both characteristics of tumor cells. These results suggest a mechanism for the effects on differentiation. Loss of hCLCA2 may allow escape from pHi homeostatic mechanisms, permitting the higher intracellular and lower extracellular pH that are characteristic of aggressive tumor cells. PMID:21909135

  11. Chromogranins - new sensitive markers for neuroendocrine tumors

    International Nuclear Information System (INIS)

    Eriksson, B.; Arnberg, H.; Oeberg, K.; Hellman, U.; Lundqvist, G.; Wernstedt, C.; Wilander, E.; Uppsala Hospital; Uppsala Hospital

    1989-01-01

    Chromogranins A, B and C, proteins that are costored and coreleased with peptides and amines, have been identified in a variety of endocrine and nervous tissues, both normal and neoplastic. We examined the secretion of chromogranin A and chromogranin A+B by hormone-producing tumors in patients with endocrine pancreatic tumors (EPT), carcinoid tumors, pheochromocytomas and small cell lung cancer (SCLC). Radioimmunoassay (RIA) of the plasma/serum concentrations of chromogranin A+B showed a greater sensitivity than RIA of chromogranin A alone. All patients with EPT, carcinoids and pheochromocytomas had increased levels of chromogranin A+B, whereas a small number of the patients (5/18 with EPT and 1/3 with pheochromocytomas) had normal levels of chromogranin A. Also in immunocytochemical stainings, our polyclonal antiserum detecting both chromogranin A and B showed a greater sensitivity than other available antisera against chromogranin A, B and C. (orig.)

  12. Using Optical Markers of Non-dysplastic Rectal Epithelial Cells to Identify Patients With Ulcerative Colitis (UC) - Associated Neoplasia

    Science.gov (United States)

    Bista, Rajan K.; Brentnall, Teresa A.; Bronner, Mary P.; Langmead, Christopher J.; Brand, Randall E.; Liu, Yang

    2011-01-01

    BACKGROUND Current surveillance guidelines for patients with long-standing ulcerative colitis (UC) recommend repeated colonoscopy with random biopsies, which is time-consuming, discomforting and expensive. A less invasive strategy is to identify neoplasia by analyzing biomarkers from the more accessible rectum to predict the need for a full colonoscopy. The goal of this pilot study is to evaluate whether optical markers of rectal mucosa derived from a novel optical technique – partial-wave spectroscopic microscopy (PWS) could identify UC patients with high-grade dysplasia (HGD) or cancer (CA) present anywhere in their colon. METHODS Banked frozen non-dysplastic mucosal rectal biopsies were used from 28 UC patients (15 without dysplasia and 13 with concurrent HGD or CA). The specimen slides were made using a touch prep method and underwent PWS analysis. We divided the patients into two groups: 13 as a training set and an independent 15 as a validation set. RESULTS We identified six optical markers, ranked by measuring the information gain with respect to the outcome of cancer. The most effective markers were selected by maximizing the cross validated training accuracy of a Naive Bayes classifier. The optimal classifier was applied to the validation data yielding 100% sensitivity and 75% specificity. CONCLUSIONS Our results indicate that the PWS-derived optical markers can accurately predict UC patients with HGD/CA through assessment of rectal epithelial cells. By aiming for a high sensitivity, our approach could potentially simplify the surveillance of UC patients and improve overall resource utilization by identifying patients with HGD/CA who should proceed with colonoscopy. PMID:21351200

  13. Using optical markers of nondysplastic rectal epithelial cells to identify patients with ulcerative colitis-associated neoplasia.

    Science.gov (United States)

    Bista, Rajan K; Brentnall, Teresa A; Bronner, Mary P; Langmead, Christopher J; Brand, Randall E; Liu, Yang

    2011-12-01

    Current surveillance guidelines for patients with long-standing ulcerative colitis (UC) recommend repeated colonoscopy with random biopsies, which is time-consuming, discomforting, and expensive. A less invasive strategy is to identify neoplasia by analyzing biomarkers from the more accessible rectum to predict the need for a full colonoscopy. The goal of this pilot study was to evaluate whether optical markers of rectal mucosa derived from a novel optical technique, partial-wave spectroscopic microscopy (PWS), could identify UC patients with high-grade dysplasia (HGD) or cancer (CA) present anywhere in their colon. Banked frozen nondysplastic mucosal rectal biopsies were used from 28 UC patients (15 without dysplasia and 13 with concurrent HGD or CA). The specimen slides were made using a touch prep method and underwent PWS analysis. We divided the patients into two groups: 13 as a training set and an independent 15 as a validation set. We identified six optical markers, ranked by measuring the information gain with respect to the outcome of cancer. The most effective markers were selected by maximizing the cross-validated training accuracy of a Naive Bayes classifier. The optimal classifier was applied to the validation data yielding 100% sensitivity and 75% specificity. Our results indicate that the PWS-derived optical markers can accurately predict UC patients with HGD/CA through assessment of rectal epithelial cells. By aiming for high sensitivity, our approach could potentially simplify the surveillance of UC patients and improve overall resource utilization by identifying patients with HGD/CA who should proceed with colonoscopy. Copyright © 2011 Crohn's & Colitis Foundation of America, Inc.

  14. Inflammatory markers in blood and serum tumor markers predict survival in patients with epithelial appendiceal neoplasms undergoing surgical cytoreduction and intraperitoneal chemotherapy.

    Science.gov (United States)

    Chua, Terence C; Chong, Chanel H; Liauw, Winston; Zhao, Jing; Morris, David L

    2012-08-01

    The study examines the role inflammatory and tumor markers as biomarkers to preoperatively predict outcome in patients with epithelial appendiceal neoplasm undergoing cytoreduction and intraperitoneal chemotherapy. Associations between baseline variables, tumor markers [CEA (carcinoembyronic antigen], CA125, CA199), inflammatory markers including neutrophils-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and C-reactive protein (CRP) with progression-free survival (PFS) and overall survival (OS) were examined in patients undergoing surgical cytoreduction and intraperitoneal chemotherapy for epithelial appendiceal neoplasm. A total of 174 patients with epithelial appendiceal neoplasm (low-grade pseudomyxoma, n = 117; appendiceal cancer, n = 57) underwent cytoreduction. On univariate analysis, all 3 inflammatory and tumor markers predicted for both PFS and OS, respectively; NLR ≤ 2.6 (P = 0.01, P = 0.002), PLR ≤ 166 (P = 0.006, P = 0.016), CRP ≤ 12.5 (P = 0.001, P = 0.008), CEA (P 37 (P = 0.003), and a CRP > 12.5 (P = 0.013). A higher peritoneal cancer index (PCI > 24) was associated with elevation in CEA > 12, CA125 > 39, CA199 > 37, PLR > 166 and CRP > 12. The tumor histologic subtype was associated with CA 199 levels. The results from this investigation suggest that preoperative inflammatory markers in blood and serologic tumor markers may predict outcomes and are associated with tumor biology in patients with epithelial appendiceal neoplasm undergoing cytoreduction and intraperitoneal chemotherapy treatment.

  15. The fibroblast surface markers FAP, anti-fibroblast, and FSP are expressed by cells of epithelial origin and may be altered during epithelial-to-mesenchymal transition.

    Science.gov (United States)

    Kahounová, Zuzana; Kurfürstová, Daniela; Bouchal, Jan; Kharaishvili, Gvantsa; Navrátil, Jiří; Remšík, Ján; Šimečková, Šárka; Študent, Vladimír; Kozubík, Alois; Souček, Karel

    2017-04-06

    The identification of fibroblasts and cancer-associated fibroblasts from human cancer tissue using surface markers is difficult, especially because the markers used currently are usually not expressed solely by fibroblasts, and the identification of fibroblast-specific surface molecules is still under investigation. It was aimed to compare three commercially available antibodies in the detection of different surface epitopes of fibroblasts (anti-fibroblast, fibroblast activation protein α, and fibroblast surface protein). The specificity of their expression, employing fibroblast cell lines and tumor-derived fibroblasts from breast and prostate tissues was investigated. Both the established fibroblast cell line HFF-1 and ex vivo primary fibroblasts isolated from breast and prostate cancer tissues expressed the tested surface markers to different degrees. Surprisingly, those markers were expressed also by permanent cell lines of epithelial origin, both benign and cancer-derived (breast-cell lines MCF 10A, HMLE and prostate-cell lines BPH-1, DU 145, and PC-3). The expression of fibroblast activation protein α increased on the surface of previously described models of epithelial cells undergoing epithelial-to-mesenchymal transition in response to treatment with TGF-β1. To prove the co-expression of the fibroblast markers on cells of epithelial origin, we used freshly dissociated human prostate and breast cancer tissues. The results confirmed the co-expression of anti-fibroblast and fibroblast surface protein on CD31/CD45-negative/EpCAM-positive epithelial cells. In summary, our data support the findings that the tested fibroblast markers are not fibroblast specific and may be expressed also by cells of epithelial origin (e.g., cells undergoing EMT). Therefore, the expression of these markers should be interpreted with caution, and the combination of several epitopes for both positive (anti-fibroblast or fibroblast activation protein α) and negative (Ep

  16. An epithelial marker promoter induction screen identifies histone deacetylase inhibitors to restore epithelial differentiation and abolishes anchorage independence growth in cancers.

    Science.gov (United States)

    Tang, H M; Kuay, K T; Koh, P F; Asad, M; Tan, T Z; Chung, V Y; Lee, S C; Thiery, J P; Huang, Ry-J

    2016-01-01

    Epithelial-mesenchymal transition (EMT), a crucial mechanism in development, mediates aggressiveness during carcinoma progression and therapeutic refractoriness. The reversibility of EMT makes it an attractive strategy in designing novel therapeutic approaches. Therefore, drug discovery pipelines for EMT reversal are in need to discover emerging classes of compounds. Here, we outline a pre-clinical drug screening platform for EMT reversal that consists of three phases of drug discovery and validation. From the Phase 1 epithelial marker promoter induction (EpI) screen on a library consisting of compounds being approved by Food and Drug Administration (FDA), Vorinostat (SAHA), a histone deacetylase inhibitor (HDACi), is identified to exert EMT reversal effects by restoring the expression of an epithelial marker, E-cadherin. An expanded screen on 41 HDACi further identifies 28 compounds, such as class I-specific HDACi Mocetinosat, Entinostat and CI994, to restore E-cadherin and ErbB3 expressions in ovarian, pancreatic and bladder carcinoma cells. Mocetinostat is the most potent HDACi to restore epithelial differentiation with the lowest concentration required for 50% induction of epithelial promoter activity (EpIC-50).The HDACi exerts paradoxical effects on EMT transcriptional factors such as SNAI and ZEB family and the effects are context-dependent in epithelial- and mesenchymal-like cells. In vitro functional studies further show that HDACi induced significant increase in anoikis and decrease in spheroid formation in ovarian and bladder carcinoma cells with mesenchymal features. This study demonstrates a robust drug screening pipeline for the discovery of compounds capable of restoring epithelial differentiation that lead to significant functional lethality.

  17. Epithelial Markers aSMA, Krt14, and Krt19 Unveil Elements of Murine Lacrimal Gland Morphogenesis and Maturation.

    Science.gov (United States)

    Kuony, Alison; Michon, Frederic

    2017-01-01

    As an element of the lacrimal apparatus, the lacrimal gland (LG) produces the aqueous part of the tear film, which protects the eye surface. Therefore, a defective LG can lead to serious eyesight impairment. Up to now, little is known about LG morphogenesis and subsequent maturation. In this study, we delineated elements of the cellular and molecular events involved in LG formation by using three epithelial markers, namely aSMA, Krt14, and Krt19. While aSMA marked a restricted epithelial population of the terminal end buds (TEBs) in the forming LG, Krt14 was found in the whole embryonic LG epithelial basal cell layer. Interestingly, Krt19 specifically labeled the presumptive ductal domain and subsequently, the luminal cell layer. By combining these markers, the Fucci reporter mouse strain and genetic fate mapping of the Krt14 + population, we demonstrated that LG epithelium expansion is fuelled by a patterned cell proliferation, and to a lesser extent by epithelial reorganization and possible mesenchymal-to-epithelial transition. We pointed out that this epithelial reorganization, which is associated with apoptosis, regulated the lumen formation. Finally, we showed that the inhibition of Notch signaling prevented the ductal identity from setting, and led to a LG covered by ectopic TEBs. Taken together our results bring a deeper understanding on LG morphogenesis, epithelial domain identity, and organ expansion.

  18. Comparative study of different surrogate markers for individual radiation sensitivity

    International Nuclear Information System (INIS)

    Hoffmann, Nele Julia

    2013-01-01

    Radiotherapy is an important part of therapeutic tumor treatment concept. The applied total dose is limited by the unavoidable radiation effect on the surrounding normal tissue and the risk of radiation induced acute or chronic side effects. The clinical radiation sensitivity, i.e. the risk of radiogenic side effects is strongly coupled to the cellular radiation sensitivity. The contribution is focused on the development of a predictive tool for the individual radiation sensitivity for individual radiotherapeutic planning using lymphocytes. Residual foci, i.e. accumulated repair associated proteins at the residual double strand break are supposed to be surrogate markers of the cellular radiation sensitivity. No relation between the foci detection and the G(0)/G(1) was found assay with respect to the individual radiation sensitivity.

  19. Apoptosis in oral epithelial dysplastic lesions and oral squamous cell carcinoma: A prognostic marker

    Directory of Open Access Journals (Sweden)

    Shwetha Nambiar

    2016-01-01

    Full Text Available Background: Apoptotic index (AI using light microscopy as an indirect measure to assess the significance of apoptosis as a proliferative marker in dysplastic lesions and malignant epithelial lesions of the oral cavity. Aims: (1 To quantify the apoptotic bodies/cells in oral epithelial dysplastic (OED lesions and oral squamous cell carcinoma (OSCC. (2 To measure AI in OED and OSCC. (3 To compare AI in OED and OSCC. Settings and Design: The proposed laboratory-based retrospective study involved the use of hematoxylin and eosin (H and E-stained slides of previously diagnosed OED lesions and OSCC from institutional archives. Materials and Methods: This study constituted 50 cases, each of H and E-stained slides of previously diagnosed cases of OED and OSCC. AI was calculated as the number of apoptotic bodies/cells expressed as a percentage of the total number of nonapoptotic tumor/dysplastic cells counted in each case. Statistical Analysis Used: Nonparametric tests such as Kruskal–Wallis test and Mann–Whitney test were used. Results: There was a statistically significant increase in AI from OED to OSCC (P = 0.000. Conclusions: Further studies need to be undertaken to detect and understand the apoptotic mechanisms in the progression from OED to OSCC.

  20. Expression of basal cell marker revealed by RAM11 antibody during epithelial regeneration in rabbits.

    Directory of Open Access Journals (Sweden)

    Tadeusz Cichocki

    2010-06-01

    Full Text Available RAM11 is a mouse monoclonal anti-rabbit macrophage antibody recognizing connective tissue and vascular macrophages. Our previous report showed that RAM11 reacted with basal cells of stratified squamous epithelia of rabbit skin, oral mucosa and esophagus. The aim of the present study was to follow the appearance of RAM11 immunoreactivity in basal cells of regenerating oral epithelium in rabbits. No RAM11 immunostaining was observed in the regenerating epithelium examined on days 1 and 3 of wound healing. A weak immunofluorescence first appeared on day 7 in single basal cells and 32% of RAM11- positive basal cells were observed on day 14. These findings indicate that expression of the antigen recognized by RAM11 antibody is a transient event in the differentiation of oral keratinocytes which not always occurs during epithelial repair, although it is a constant feature of epithelial turnover in mature epithelium. Therefore this antigen can be regarded as basal cell marker only in mature stratified squamous epithelia.

  1. Preclinical assessment of hypoxic marker specificity and sensitivity

    International Nuclear Information System (INIS)

    Iyer, Renuka V.; Engelhardt, Edward L.; Stobbe, Corinne C.; Schneider, Richard F.; Chapman, J. Donald

    1998-01-01

    Purpose: In the search for a sensitive, accurate, and noninvasive technique for quantifying human tumor hypoxia, our laboratory has synthesized several potential radiodiagnostic agents. The purpose of this study was to assess and compare the hypoxic marking properties of both radioiodinated and Tc-99m labeled markers in appropriate test systems which can predict for in vivo activity. Materials and Methods: Preclinical assessment of hypoxic marker specificity and sensitivity employed three laboratory assays with tumor cells in vitro and in vivo. Radiolabeled marker uptake and/or binding to whole EMT-6 tumor cells under extremely hypoxic and aerobic conditions was measured and their ratio defined hypoxia-specific factor (HSF). Marker specificity to hypoxic tumor tissue was estimated from its selective avidity to two rodent tumors in vivo, whose radiobiologic hypoxic fractions (HF) had been measured. The ratios of % injected dose/gram (%ID/g) of marker at various times in EMT-6 tumor tissue relative to that in the blood and muscle of scid mice were used to quantify hypoxia-specific activity. This tumor in this host exhibited an average radiobiologic HF of ∼35%. As well, nuclear medicine images were acquired from R3327-AT (HF ≅15%) and R3327-H (no measurable HF) prostate carcinomas growing in rats to distinguish between marker avidity due to hypoxia versus perfusion. Results: The HSF for FC-103 and other iodinated markers were higher (5-40) than those for FC-306 and other Tc-99m labeled markers. The latter did not show hypoxia-specific uptake into cells in vitro. Qualitative differences were observed in the biodistribution and clearance kinetics of the iodinated azomycin nucleosides relative to the technetium chelates. The largest tumor/blood (T/B) and tumor/muscle (T/M) ratios were observed for compounds of the azomycin nucleoside class in EMT-6 tumor-bearing scid mice. These markers also showed a 3-4 x higher uptake into R3327-AT tumors relative to the well

  2. Skeletal Muscle Depletion and Markers for Cancer Cachexia Are Strong Prognostic Factors in Epithelial Ovarian Cancer.

    Directory of Open Access Journals (Sweden)

    Stefanie Aust

    Full Text Available Tumor cachexia is an important prognostic parameter in epithelial ovarian cancer (EOC. Tumor cachexia is characterized by metabolic and inflammatory disturbances. These conditions might be reflected by body composition measurements (BCMs ascertained by pre-operative computed tomography (CT. Thus, we aimed to identify the prognostically most relevant BCMs assessed by pre-operative CT in EOC patients.We evaluated muscle BCMs and well established markers of nutritional and inflammatory status, as well as clinical-pathological parameters in 140 consecutive patients with EOC. Furthermore, a multiplexed inflammatory marker panel of 25 cytokines was used to determine the relationship of BCMs with inflammatory markers and patient's outcome. All relevant parameters were evaluated in uni- and multivariate survival analysis.Muscle attenuation (MA-a well established BCM parameter-is an independent prognostic factor for survival in multivariate analysis (HR 2.25; p = 0.028. Low MA-reflecting a state of cachexia-is also associated with residual tumor after cytoreductive surgery (p = 0.046 and with an unfavorable performance status (p = 0.015. Moreover, MA is associated with Eotaxin and IL-10 out of the 25 cytokine multiplex marker panel in multivariate linear regression analysis (p = 0.021 and p = 0.047, respectively.MA-ascertained by routine pre-operative CT-is an independent prognostic parameter in EOC patients. Low MA is associated with the inflammatory, as well as the nutritional component of cachexia. Therefore, the clinical value of pre-operative CT could be enhanced by the assessment of MA.

  3. Suprabasal expression of Ki-67 as a marker for the severity of oral epithelial dysplasia and oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Nidhi Dwivedi

    2013-01-01

    Full Text Available Background: Transition of the normal oral epithelium to dysplasia and to malignancy is featured by increased cell proliferation. To evaluate the hypothesis of distributional disturbances in proliferating and stem cells in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC. Aim: To evaluate layer wise expression of Ki-67 in oral epithelial dysplasia and in OSCC. Materials and Methods: Thirty histologically confirmed cases of oral epithelial dysplasia, fifteen cases of OSCC and five cases of normal buccal mucosa were immunohistochemically examined and nuclear expression of Ki-67 was counted according to basal, parabasal, and suprabasal layers in epithelial dysplasia and number of positive cells per 100 cells in OSCC as labeling index (LI. Results: Suprabasal expression of Ki-67 increased according to the severity of epithelial dysplasia and the difference was statistically significant ( P < 0.001. The mean Ki-67LI was 12.78 for low risk lesions, 28.68 for high risk lesions, 39.45 for OSCC and 13.6 for normal buccal mucosa. Conclusion: The results of the present study demonstrate the use of proliferative marker Ki-67 in assessing the severity of epithelial dysplasia. Suprabasal expression of Ki-67 provides an objective criteria for determining the severity of epithelial dysplasia and histological grading of OSCC.

  4. Human vaginal epithelial cells augment autophagy marker genes in response to Candida albicans infection.

    Science.gov (United States)

    Shroff, Ankit; Sequeira, Roicy; Reddy, Kudumula Venkata Rami

    2017-04-01

    Autophagy plays an important role in clearance of intracellular pathogens. However, no information is available on its involvement in vaginal infections such as vulvo-vaginal candidiasis (VVC). VVC is intimately associated with the immune status of the human vaginal epithelial cells (VECs). The objective of our study is to decipher if autophagy process is involved during Candida albicans infection of VECs. In this study, C. albicans infection system was established using human VEC line (VK2/E6E7). Infection-induced change in the expression of autophagy markers like LC3 and LAMP-1 were analyzed by RT-PCR, q-PCR, Western blot, immunofluorescence and transmission electron microscopy (TEM) studies were carried out to ascertain the localization of autophagosomes. Multiplex ELISA was carried out to determine the cytokine profiles. Analysis of LC3 and LAMP-1 expression at mRNA and protein levels at different time points revealed up-regulation of these markers 6 hours post C. albicans infection. LC3 and LAMP-1 puncti were observed in infected VECs after 12 hours. TEM studies showed C. albicans entrapped in autophagosomes. Cytokines-TNF-α and IL-1β were up-regulated in culture supernatants of VECs at 12 hours post-infection. The results suggest that C. albicans invasion led to the activation of autophagy as a host defense mechanism of VECs. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Interferon-gamma sensitizes colonic epithelial cell lines to physiological and therapeutic inducers of colonocyte apoptosis.

    LENUS (Irish Health Repository)

    O'Connell, J

    2012-02-03

    Homeostasis in the colonic epithelium is achieved by a continuous cycle of proliferation and apoptosis, in which imbalances are associated with disease. Inflammatory bowel disease (IBD) and colon cancer are associated with either excessive or insufficient apoptosis of colonic epithelial cells, respectively. By using two colonic epithelial cell lines, HT29 and SW620, we investigated how the epithelial cell\\'s sensitivity to apoptosis was regulated by the proinflammatory cytokine interferon-gamma (IFN-gamma). We found that IFN-gamma sensitized HT29 cells, and to a lesser extent SW620, to diverse inducers of apoptosis of physiologic or therapeutic relevance to the colon. These apoptosis inducers included Fas (CD95\\/APO-1) ligand (FasL), short-chain fatty acids, and chemotherapeutic drugs. The extent of IFN-gamma-mediated apoptosis sensitization in these two cell lines correlated well with the degree of IFN-gamma-mediated upregulation of the proapoptotic protease caspase-1. Although IFN-gamma alone effectively sensitized HT29 cells to apoptosis, inclusion of the protein synthesis inhibitor cyclohexamide (CHX) during apoptotic challenge was necessary for maximal sensitization of SW620. The requirement of CHX to sensitize SW620 cells to apoptosis implies a need to inhibit translation of antiapoptotic proteins absent from HT29. In particular, the antiapoptotic protein Bcl-2 was strongly expressed in SW620 cells but absent from HT29. Our results indicate that IFN-gamma increases the sensitivity of colonic epithelial cells to diverse apoptotic stimuli in concert, via upregulation of caspase-1. Our findings implicate caspase-1 and Bcl-2 as important central points of control determining the general sensitivity of colonic epithelial cells to apoptosis.

  6. Nasal airway epithelial cell IL-6 and FKBP51 gene expression and steroid sensitivity in asthmatic children.

    Directory of Open Access Journals (Sweden)

    Michael Fayon

    Full Text Available Many asthmatic patients exhibit uncontrolled asthma despite high-dose inhaled corticosteroids (ICS. Airway epithelial cells (AEC have distinct activation profiles that can influence ICS response.A pilot study to identify gene expression markers of AEC dysfunction and markers of corticosteroid sensitivity in asthmatic and non-asthmatic control children, for comparison with published reports in adults.AEC were obtained by nasal brushings and primary submerged cultures, and incubated in control conditions or in the presence of 10 ng/ml TNFalpha, 10-8M dexamethasone, or both. RT-PCR-based expression of FKBP51 (a steroid hormone receptor signalling regulator, NF-kB, IL-6, LIF (an IL-6 family neurotrophic cytokine, serpinB2 (which inhibits plasminogen activation and promotes fibrin deposition and porin (a marker of mitochondrial mass were determined.6 patients without asthma (median age 11yr; min-max: 7-13, 8 with controlled asthma (11yr, 7-13; median daily fluticasone dose = 100 μg, and 4 with uncontrolled asthma (12yr, 7-14; 1000 μg fluticasone daily were included. Baseline expression of LIF mRNA was significantly increased in uncontrolled vs controlled asthmatic children. TNFalpha significantly increased LIF expression in uncontrolled asthma. A similar trend was observed regarding IL-6. Dexamethasone significantly upregulated FKBP51 expression in all groups but the response was blunted in asthmatic children. No significant upregulation was identified regarding NF-kB, serpinB2 and porin.LIF and FKBP51 expression in epithelial cells were the most interesting markers of AEC dysfunction/response to corticosteroid treatment.

  7. Expression of p75NGFR, a Proliferative and Basal Cell Marker, in the Buccal Mucosa Epithelium during Re-epithelialization

    International Nuclear Information System (INIS)

    Ishii, Akihiro; Muramatsu, Takashi; Lee, Jong-Min; Higa, Kazunari; Shinozaki, Naoshi; Jung, Han-Sung; Shibahara, Takahiko

    2014-01-01

    We investigated the expression of p75 NGFR , a proliferative and basal cell marker, in the mouse buccal mucosa epithelium during wound healing in order to elucidate the role of epithelial stem cells. Epithelial defects were generated in the epithelium of the buccal mucosa of 6-week-old mice using CO 2 laser irradiation. BrdU was immediately administered to mice following laser irradiation. They were then sacrificed after 1, 3, 7, and 14 days. Paraffin sections were prepared and the irradiated areas were analyzed using immunohistochemistry with anti-p75 NGFR , BrdU, PCNA, and CK14 antibodies. During re-epithelialization, PCNA (–)/p75 NGFR (+) cells extended to the wound, which then closed, whereas PCNA (+)/p75 NGFR (+) cells were not observed at the edge of the wound. In addition, p75 NGFR (–)/CK14 (+), which reflected the presence of post-mitotic differentiating cells, was observed in the supra-basal layers of the extended epithelium. BrdU (+)/p75 NGFR (+), which reflected the presence of epithelial stem cells, was detected sparsely in buccal basal epithelial cells after healing, and disappeared after 7 days. These results suggest that p75 NGFR (+) keratinocytes are localized in the basal layer, which contains oral epithelial stem cells, and retain the ability to proliferate in order to regenerate the buccal mucosal epithelium

  8. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  9. Acute damage by naphthalene triggers expression of the neuroendocrine marker PGP9.5 in airway epithelial cells

    DEFF Research Database (Denmark)

    Poulsen, T.T.; Naizhen, X.; Linnoila, R.I.

    2008-01-01

    Protein Gene Product 9.5 (PGP9.5) is highly expressed in nervous tissue. Recently PGP9.5 expression has been found to be upregulated in the pulmonary epithelium of smokers and in non-small cell lung cancer, suggesting that it also plays a role in carcinogen-inflicted lung epithelial injury...... neuroendocrine markers was found in the non-neuroendocrine epithelial cells after naphthalene exposure. In contrast, immunostaining for the cell cycle regulator p27(Kip1), which has previously been associated with PGP9.5 in lung cancer cells, revealed transient downregulation of p27(Kip1) in naphthalene exposed...... and further strengthens the accumulating evidence of PGP9.5 as a central player in lung epithelial damage and early carcinogenesis Udgivelsesdato: 2008/9/26...

  10. Markers of Pluripotency in Human Amniotic Epithelial Cells and Their Differentiation to Progenitor of Cortical Neurons

    Science.gov (United States)

    García-Castro, Irma Lydia; García-López, Guadalupe; Ávila-González, Daniela; Flores-Herrera, Héctor; Molina-Hernández, Anayansi; Portillo, Wendy; Ramón-Gallegos, Eva; Díaz, Néstor Fabián

    2015-01-01

    Human pluripotent stem cells (hPSC) have promise for regenerative medicine due to their auto-renovation and differentiation capacities. Nevertheless, there are several ethical and methodological issues about these cells that have not been resolved. Human amniotic epithelial cells (hAEC) have been proposed as source of pluripotent stem cells. Several groups have studied hAEC but have reported inconsistencies about their pluripotency properties. The aim of the present study was the in vitro characterization of hAEC collected from a Mexican population in order to identify transcription factors involved in the pluripotency circuitry and to determine their epigenetic state. Finally, we evaluated if these cells differentiate to cortical progenitors. We analyzed qualitatively and quantitatively the expression of the transcription factors of pluripotency (OCT4, SOX2, NANOG, KLF4 and REX1) by RT-PCR and RT-qPCR in hAEC. Also, we determined the presence of OCT4, SOX2, NANOG, SSEA3, SSEA4, TRA-1-60, E-cadherin, KLF4, TFE3 as well as the proliferation and epigenetic state by immunocytochemistry of the cells. Finally, hAEC were differentiated towards cortical progenitors using a protocol of two stages. Here we show that hAEC, obtained from a Mexican population and cultured in vitro (P0-P3), maintained the expression of several markers strongly involved in pluripotency maintenance (OCT4, SOX2, NANOG, TFE3, KLF4, SSEA3, SSEA4, TRA-1-60 and E-cadherin). Finally, when hAEC were treated with growth factors and small molecules, they expressed markers characteristic of cortical progenitors (TBR2, OTX2, NeuN and β-III-tubulin). Our results demonstrated that hAEC express naïve pluripotent markers (KLF4, REX1 and TFE3) as well as the cortical neuron phenotype after differentiation. This highlights the need for further investigation of hAEC as a possible source of hPSC. PMID:26720151

  11. Loss of breast epithelial marker hCLCA2 promotes epithelial-to-mesenchymal transition and indicates higher risk of metastasis.

    Science.gov (United States)

    Walia, V; Yu, Y; Cao, D; Sun, M; McLean, J R; Hollier, B G; Cheng, J; Mani, S A; Rao, K; Premkumar, L; Elble, R C

    2012-04-26

    Transition between epithelial and mesenchymal states is a feature of both normal development and tumor progression. We report that expression of chloride channel accessory protein hCLCA2 is a characteristic of epithelial differentiation in the immortalized MCF10A and HMLE models, while induction of epithelial-to-mesenchymal transition by cell dilution, TGFβ or mesenchymal transcription factors sharply reduces hCLCA2 levels. Attenuation of hCLCA2 expression by lentiviral small hairpin RNA caused cell overgrowth and focus formation, enhanced migration and invasion, and increased mammosphere formation in methylcellulose. These changes were accompanied by downregulation of E-cadherin and upregulation of mesenchymal markers such as vimentin and fibronectin. Moreover, hCLCA2 expression is greatly downregulated in breast cancer cells with a mesenchymal or claudin-low profile. These observations suggest that loss of hCLCA2 may promote metastasis. We find that higher-than-median expression of hCLCA2 is associated with a one-third lower rate of metastasis over an 18-year period among breast cancer patients compared with lower-than-median (n=344, unfiltered for subtype). Thus, hCLCA2 is required for epithelial differentiation, and its loss during tumor progression contributes to metastasis. Overexpression of hCLCA2 has been reported to inhibit cell proliferation and is accompanied by increases in chloride current at the plasma membrane and reduced intracellular pH (pHi). We found that knockdown cells have sharply reduced chloride current and higher pHi, both characteristics of tumor cells. These results suggest a mechanism for the effects on differentiation. Loss of hCLCA2 may allow escape from pHi homeostatic mechanisms, permitting the higher intracellular and lower extracellular pH that are characteristic of aggressive tumor cells.

  12. Inhibition of hypoxia inducible factor-1α downregulates the expression of epithelial to mesenchymal transition early marker proteins without undermining cell survival in hypoxic lens epithelial cells.

    Science.gov (United States)

    Cammarata, Patrick R; Neelam, Sudha; Brooks, Morgan M

    2015-01-01

    The purpose of this study was to identify potential therapeutic strategies to slow down or prevent the expression of early-onset epithelial to mesenchymal transition (EMT) marker proteins (fibronectin and alpha smooth muscle actin, α-SMA) without sacrificing the synthesis and accumulation of the prosurvival protein vascular endothelial growth factor (VEGF) in cultured virally transformed human lens epithelial (HLE) cells. HLE-B3 cells, maintained in a continuous hypoxic environment (1% oxygen), were treated with SB216763, a specific inhibitor of glycogen synthase kinase-3β (GSK-3β) catalytic activity. Western blot analysis was employed to detect the cytoplasmic and nuclear levels of β-catenin, as well as the total lysate content of fibronectin and α-SMA. Enzyme-linked immunosorbent assay (ELISA) was used to measure the levels of VEGF in cell culture medium. A hypoxia-inducible factor-1α (HIF-1α) translation inhibitor and an HIF-2α translation inhibitor were independently employed to evaluate the effect of hypoxia inducible factor inhibition on EMT marker protein and VEGF expression. XAV932 was used to assess the suppression of nuclear β-catenin and its downstream effect on EMT marker proteins and VEGF expression. SB216763-treated HLE-B3 cells caused marked inhibition of GSK-3β activity prompting a significant increase in the translocation of cytoplasmic β-catenin to the nucleus. The enhancement of nuclear β-catenin looked as if it positively correlated with a significant increase in the basal expression of VEGF as well as increased expression of fibronectin and α-SMA. In conjunction with SB216763, coadministration of an HIF-1α translation inhibitor, but not an HIF-2α translation inhibitor, markedly suppressed the expression of fibronectin and α-SMA without affecting VEGF levels. Treatment with XAV932 significantly reduced the level of nuclear β-catenin, but the levels of neither the EMT marker proteins nor VEGF were changed. Recently, we reported

  13. Can widely used cell type markers predict the suitability of immortalized or primary mammary epithelial cell models?

    Directory of Open Access Journals (Sweden)

    Edgar Corneille Ontsouka

    Full Text Available BACKGROUND: Mammary cell cultures are convenient tools for in vitro studies of mammary gland biology. However, the heterogeneity of mammary cell types, e.g., glandular milk secretory epithelial or myoepithelial cells, often complicates the interpretation of cell-based data. The present study was undertaken to determine the relevance of bovine primary mammary epithelial cells isolated from American Holstein (bMEC US or Swiss Holstein-Friesian (bMEC CH cows, and of primary bovine mammary alveolar epithelial cells stably transfected with simian virus-40 (SV-40 large T-antigen (MAC-T for in vitro analyses. This was evaluated by testing their expression pattern of cytokeratin (CK 7, 18, 19, vimentin, and α-smooth muscle actin (α-SMA. RESULTS: The expression of the listed markers was assessed using real-time quantitative PCR, flow cytometry and immunofluorescence microscopy. Characteristic markers of the mesenchymal (vimentin, myoepithelial (α-SMA and glandular secretory cells (CKs showed differential expression among the studied cell cultures, partly depending on the analytical method used. The relative mRNA expression of vimentin, CK7 and CK19, respectively, was lower (P < 0.05 in immortalized than in primary mammary cell cultures. The stain index (based on flow cytometry of CK7 and CK19 protein was lower (P < 0.05 in MAC-T than in bMECs, while the expression of α-SMA and CK18 showed an inverse pattern. Immunofluorescence microscopy analysis mostly confirmed the mRNA data, while partly disagreed with flow cytometry data (e.g., vimentin level in MAC-T. The differential expression of CK7 and CK19 allowed discriminating between immortal and primary mammary cultures. CONCLUSIONS: The expression of the selected widely used cell type markers in primary and immortalized MEC cells did not allow a clear preference between these two cell models for in vitro analyses studying aspects of milk composition. All tested cell models exhibited to a variable

  14. Proteomic biomarkers apolipoprotein A1, truncated transthyretin and connective tissue activating protein III enhance the sensitivity of CA125 for detecting early stage epithelial ovarian cancer.

    Science.gov (United States)

    Clarke, Charlotte H; Yip, Christine; Badgwell, Donna; Fung, Eric T; Coombes, Kevin R; Zhang, Zhen; Lu, Karen H; Bast, Robert C

    2011-09-01

    The low prevalence of ovarian cancer demands both high sensitivity (>75%) and specificity (99.6%) to achieve a positive predictive value of 10% for successful early detection. Utilizing a two stage strategy where serum marker(s) prompt the performance of transvaginal sonography (TVS) in a limited number (2%) of women could reduce the requisite specificity for serum markers to 98%. We have attempted to improve sensitivity by combining CA125 with proteomic markers. Sera from 41 patients with early stage (I/II) and 51 with late stage (III/IV) epithelial ovarian cancer, 40 with benign disease and 99 healthy individuals, were analyzed to measure 7 proteins [Apolipoprotein A1 (Apo-A1), truncated transthyretin (TT), transferrin, hepcidin, ß-2-microglobulin (ß2M), Connective Tissue Activating Protein III (CTAPIII), and Inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4)]. Statistical models were fit by logistic regression, followed by optimization of factors retained in the models determined by optimizing the Akaike Information Criterion. A validation set included 136 stage I ovarian cancers, 140 benign pelvic masses and 174 healthy controls. In a training set analysis, the 3 most effective biomarkers (Apo-A1, TT and CTAPIII) exhibited 54% sensitivity at 98% specificity, CA125 alone produced 68% sensitivity and the combination increased sensitivity to 88%. In a validation set, the marker panel plus CA125 produced a sensitivity of 84% at 98% specificity (P=0.015, McNemar's test). Combining a panel of proteomic markers with CA125 could provide a first step in a sequential two-stage strategy with TVS for early detection of ovarian cancer. Copyright © 2011. Published by Elsevier Inc.

  15. Inhibition of airway epithelial-to-mesenchymal transition and fibrosis by kaempferol in endotoxin-induced epithelial cells and ovalbumin-sensitized mice.

    Science.gov (United States)

    Gong, Ju-Hyun; Cho, In-Hee; Shin, Daekeun; Han, Seon-Young; Park, Sin-Hye; Kang, Young-Hee

    2014-03-01

    Chronic airway remodeling is characterized by structural changes within the airway wall, including smooth muscle hypertrophy, submucosal fibrosis and epithelial shedding. Epithelial-to-mesenchymal transition (EMT) is a fundamental mechanism of organ fibrosis, which can be induced by TGF-β. In the in vitro study, we investigated whether 1-20 μM kaempferol inhibited lipopolysaccharide (LPS)-induced bronchial EMT in BEAS-2B cells. The in vivo study explored demoting effects of 10-20 mg/kg kaempferol on airway fibrosis in BALB/c mice sensitized with ovalbumin (OVA). LPS induced airway epithelial TGF-β1 signaling that promoted EMT with concurrent loss of E-cadherin and induction of α-smooth muscle actin (α-SMA). Nontoxic kaempferol significantly inhibited TGF-β-induced EMT process through reversing E-cadherin expression and retarding the induction of N-cadherin and α-SMA. Consistently, OVA inhalation resulted in a striking loss of epithelial morphology by displaying myofibroblast appearance, which led to bronchial fibrosis with submucosal accumulation of collagen fibers. Oral administration of kaempferol suppressed collagen deposition, epithelial excrescency and goblet hyperplasia observed in the lung of OVA-challenged mice. The specific inhibition of TGF-β entailed epithelial protease-activated receptor-1 (PAR-1) as with 20 μM kaempferol. The epithelial PAR-1 inhibition by SCH-79797 restored E-cadherin induction and deterred α-SMA induction, indicating that epithelial PAR-1 localization was responsible for resulting in airway EMT. These results demonstrate that dietary kaempferol alleviated fibrotic airway remodeling via bronchial EMT by modulating PAR1 activation. Therefore, kaempferol may be a potential therapeutic agent targeting asthmatic airway constriction.

  16. Glycolipid-Dependent, Protease Sensitive Internalization of Pseudomonas aeruginosa Into Cultured Human Respiratory Epithelial Cells

    Science.gov (United States)

    Emam, Aufaugh; Carter, William G; Lingwood, Clifford

    2010-01-01

    Internalization of PAK strain Pseudomonas aeruginosa into human respiratory epithelial cell lines and HeLa cervical cancer cells in vitro was readily demonstrable via a gentamycin protection assay. Depletion of target cell glycosphingolipids (GSLs) using a glucosyl ceramide synthase inhibitor, P4, completely prevented P. aeruginosa internalization. In contrast, P4 treatment had no effect on the internalization of Salmonella typhimurium into HeLa cells. Internalized P. aeruginosa were within membrane vacuoles, often containing microvesicles, between the bacterium and the limiting membrane. P. aeruginosa internalization was markedly enhanced by target cell pretreatment with the exogenous GSL, deacetyl gangliotetraosyl ceramide (Gg4). Gg4 binds the lipid raft marker, GM1 ganglioside. Target cell pretreatment with TLCK, but not other (serine) protease inhibitors, prevented both P. aeruginosa host cell binding and internalization. NFkB inhibition also prevented internalization. A GSL-containing lipid-raft model of P. aeruginosa host cell binding/internalization is proposed PMID:21270937

  17. Utility of CEA and CA 19-9 tumor markers in diagnosis and prognostic assessment of mucinous epithelial cancers of the appendix.

    Science.gov (United States)

    Carmignani, C Pablo; Hampton, Regina; Sugarbaker, Christina E; Chang, David; Sugarbaker, Paul H

    2004-09-15

    Tumor markers are a clinical tool frequently used in oncology in association with other clinical and radiologic information. For gastrointestinal cancer, carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9 (CA 19-9) tumor markers have found selected clinical application. The use of these tumor markers in mucinous epithelial tumors of the appendix has not been previously determined. In patients with peritoneal dissemination of a mucinous epithelial malignancy of the appendix, tumor markers CEA and CA 19-9 were prospectively recorded preoperatively within 1 week prior to definitive treatment. Also, if the appendiceal tumor recurred, the tumor marker was determined. The accuracy of these two tumor markers in the management of this disease was determined for these two specific clinical situations. CEA was elevated in 56% of 532 patients and CA 19-9 was elevated in 67.1% of these patients. Although the absolute level of tumor marker did not correlate with prognosis, a normal value indicated an improved survival. CEA was elevated in 35.2% of 110 patients determined to have recurrent disease; CA 19-9 was elevated in 62.9% and at least one of the tumor markers was elevated in 68.2% of patients. An elevated CEA tumor marker at the time of recurrence indicated a reduced prognosis. Both CEA and CA 19-9 tumor markers were elevated in a majority of these patients and should be a valuable diagnostic tool previously underutilized in this group of patients. These tumor markers were also of benefit in the assessment of prognosis in that a normal level indicated an improved prognosis. At the time of a reoperative procedure, CEA and CA 19-9 tumor markers gave information regarding the progression of disease. These tumor markers have practical value in the management of epithelial appendiceal malignancy with peritoneal dissemination. Copyright 2004 Wiley-Liss, Inc.

  18. Androgen-Sensitized Apoptosis of HPr-1AR Human Prostate Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Congcong Chen

    Full Text Available Androgen receptor (AR signaling is crucial to the development and homeostasis of the prostate gland, and its dysregulation mediates common prostate pathologies. The mechanisms whereby AR regulates growth suppression and differentiation of luminal epithelial cells in the prostate gland and proliferation of malignant versions of these cells have been investigated in human and rodent adult prostate. However, the cellular stress response of human prostate epithelial cells is not well understood, though it is central to prostate health and pathology. Here, we report that androgen sensitizes HPr-1AR and RWPE-AR human prostate epithelial cells to cell stress agents and apoptotic cell death. Although 5α-dihydrotestosterone (DHT treatment alone did not induce cell death, co-treatment of HPr-1AR cells with DHT and an apoptosis inducer, such as staurosporine (STS, TNFt, or hydrogen peroxide, synergistically increased cell death in comparison to treatment with each apoptosis inducer by itself. We found that the synergy between DHT and apoptosis inducer led to activation of the intrinsic/mitochondrial apoptotic pathway, which is supported by robust cleavage activation of caspase-9 and caspase-3. Further, the dramatic depolarization of the mitochondrial membrane potential that we observed upon co-treatment with DHT and STS is consistent with increased mitochondrial outer membrane permeabilization (MOMP in the pro-apoptotic mechanism. Interestingly, the synergy between DHT and apoptosis inducer was abolished by AR antagonists and inhibitors of transcription and protein synthesis, suggesting that AR mediates pro-apoptotic synergy through transcriptional regulation of MOMP genes. Expression analysis revealed that pro-apoptotic genes (BCL2L11/BIM and AIFM2 were DHT-induced, whereas pro-survival genes (BCL2L1/BCL-XL and MCL1 were DHT-repressed. Hence, we propose that the net effect of these AR-mediated expression changes shifts the balance of BCL2-family proteins

  19. Markers of fibrosis and epithelial to mesenchymal transition demonstrate field cancerization in histologically normal tissue adjacent to breast tumors

    Science.gov (United States)

    Trujillo, Kristina A.; Heaphy, Christopher M.; Mai, Minh; Vargas, Keith M.; Jones, Anna C.; Vo, Phung; Butler, Kimberly S.; Joste, Nancy E.; Bisoffi, Marco; Griffith, Jeffrey K

    2011-01-01

    Previous studies have shown that a field of genetically altered but histologically normal tissue extends 1 cm or more from the margins of human breast tumors. The extent, composition and biological significance of this field are only partially understood, but the molecular alterations in affected cells could provide mechanisms for limitless replicative capacity, genomic instability and a microenvironment that supports tumor initiation and progression. We demonstrate by microarray, qRT-PCR and immunohistochemistry a signature of differential gene expression that discriminates between patient-matched, tumor-adjacent histologically normal breast tissues located 1 cm and 5 cm from the margins of breast adenocarcinomas (TAHN-1 and TAHN-5, respectively). The signature includes genes involved in extracellular matrix remodeling, wound healing, fibrosis and epithelial to mesenchymal transition (EMT). Myofibroblasts, which are mediators of wound healing and fibrosis, and intra-lobular fibroblasts expressing MMP2, SPARC, TGF-β3, which are inducers of EMT, were both prevalent in TAHN-1 tissues, sparse in TAHN-5 tissues, and absent in normal tissues from reduction mammoplasty. Accordingly, EMT markers S100A4 and vimentin were elevated in both luminal and myoepithelial cells, and EMT markers α-smooth muscle actin and SNAIL were elevated in luminal epithelial cells of TAHN-1 tissues. These results identify cellular processes that are differentially activated between TAHN-1 and TAHN-5 breast tissues, implicate myofibroblasts as likely mediators of these processes, provide evidence that EMT is occurring in histologically normal tissues within the affected field and identify candidate biomarkers to investigate whether or how field cancerization contributes to the development of primary or recurrent breast tumors. PMID:21105047

  20. Epithelial-mesenchymal transition increases tumor sensitivity to COX-2 inhibition by apricoxib.

    Science.gov (United States)

    Kirane, Amanda; Toombs, Jason E; Larsen, Jill E; Ostapoff, Katherine T; Meshaw, Kathryn R; Zaknoen, Sara; Brekken, Rolf A; Burrows, Francis J

    2012-09-01

    Although cyclooxygenase-2 (COX-2) inhibitors, such as the late stage development drug apricoxib, exhibit antitumor activity, their mechanisms of action have not been fully defined. In this study, we characterized the mechanisms of action of apricoxib in HT29 colorectal carcinoma. Apricoxib was weakly cytotoxic toward naive HT29 cells in vitro but inhibited tumor growth markedly in vivo. Pharmacokinetic analyses revealed that in vivo drug levels peaked at 2-4 µM and remained sufficient to completely inhibit prostaglandin E(2) production, but failed to reach concentrations cytotoxic for HT29 cells in monolayer culture. Despite this, apricoxib significantly inhibited tumor cell proliferation and induced apoptosis without affecting blood vessel density, although it did promote vascular normalization. Strikingly, apricoxib treatment induced a dose-dependent reversal of epithelial-mesenchymal transition (EMT), as shown by robust upregulation of E-cadherin and the virtual disappearance of vimentin and ZEB1 protein expression. In vitro, either anchorage-independent growth conditions or forced EMT sensitized HT29 and non-small cell lung cancer cells to apricoxib by 50-fold, suggesting that the occurrence of EMT may actually increase the dependence of colon and lung carcinoma cells on COX-2. Taken together, these data suggest that acquisition of mesenchymal characteristics sensitizes carcinoma cells to apricoxib resulting in significant single-agent antitumor activity.

  1. SPECIFIC ROLE OF LYMPHATIC MARKER PODOPLANIN IN RETINAL PIGMENT EPITHELIAL CELLS

    Science.gov (United States)

    Grimaldo, S.; Garcia, M.; Zhang, H.; Chen, L.

    2015-01-01

    Podoplanin is a small transmembrane glycoprotein widely known to be a marker for lymphatic endothelial cells. In this study, we identify a novel localization of podoplanin in the retinal pigment epithelium (RPE), a cellular monolayer critically involved in the visual process. Using a small interfering RNA (siRNA)-mediated gene silencing approach, we have also demonstrated, for the first time, that podoplanin depletion in human RPE cells leads to a marked reduction of cell aggregates and tight junctions. Additionally, the podoplanin-depleted cells also exhibit a significantly lower rate of proliferation. These data together indicate that podoplanin plays a crucial role in RPE cell functions. Further investigation on this factor may reveal novel mechanisms and therapeutic strategies for RPE-related eye diseases, such as proliferative retinopathy and age-related macular degeneration. PMID:21226415

  2. Characterization of tumorigenicity and radio-sensitivity markers by an ex vivo approach. In vivo identification of p53 dependent radio-sensitivity markers

    International Nuclear Information System (INIS)

    Alvarez, S.

    2003-12-01

    After a detailed discussion of the relationship between cancer and genetic instability, of the structure, activation mechanisms, activity and biological functions of the p53 protein, a presentation of p53 mutants, and a recall of the effects of ionizing radiations, the author reports a biology research during which he investigated a cell model established from rat embryo lungs treated with Benzo[a]pyrene and made of tumoral lines muted by the p53 gene. He tried to identify markers which could report differences of tumorigenicity and radio-sensitivity observed in these different lines. He also tried to characterize radio-sensitivity molecular markers dependent on the p53 gene in a context of normal cells

  3. Glucose metabolite patterns as markers of functional differentiation in freshly isolated and cultured mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Emerman, J.T.; Bartley, J.C.; Bissel, M.J.

    1981-01-01

    In the mammary gland of non-ruminant animals, glucose is utilized in a characteristic and unique way during lacation. By measuring the incorporation of glucose carbon from [U- 14 C]glucose into intermediary metabolitees and metabolic products in mammary epithelia cells from virgin, pregnant, and lacating mice, we domonstrate that glucose metabolite patterns can be used to recognize stages of differentiated function. For these cells, the rates of synthesis of glycogen and lactose, the ratio of lactate to alanine, and the ratio of citrate to malate are important parameters in identifying the degree of expression of differentiation. We further show that these patterns can be used as markers to determine the differentiated state of cultured mammary epithelial cells. Cells maintained on plastic substrates lose their distinctive glucose metabolite patterns while those on floating collagen gels do not. Cells isolated from pregnant mice and cultured on collagen gels have a pattern similar to that of their freshly isolated counter-parts. When isolated from lacating mice, the metabolite patterns of cells cultured on collagen gels are different from that of the cells of origin, and resembles that of freshly isolated cells from pregnant mice. Our findings suggest that the floating collagen gels under the culture conditions used in these experiments provide an environment for the functional expression of the pregnant state, while additional factors are needed for the expression of the lactating state

  4. Brain tissue stiffness is a sensitive marker for acidosis.

    Science.gov (United States)

    Holtzmann, Kathrin; Gautier, Hélène O B; Christ, Andreas F; Guck, Jochen; Káradóttir, Ragnhildur Thóra; Franze, Kristian

    2016-09-15

    Carbon dioxide overdose is frequently used to cull rodents for tissue harvesting. However, this treatment may lead to respiratory acidosis, which potentially could change the properties of the investigated tissue. Mechanical tissue properties often change in pathological conditions and may thus offer a sensitive generic readout for changes in biological tissues with clinical relevance. In this study, we performed force-indentation measurements with an atomic force microscope on acute cerebellar slices from adult rats to test if brain tissue undergoes changes following overexposure to CO2 compared to other methods of euthanasia. The pH significantly decreased in brain tissue of animals exposed to CO2. Concomitant with the drop in pH, cerebellar grey matter significantly stiffened. Tissue stiffening was reproduced by incubation of acute cerebellar slices in acidic medium. Tissue stiffness provides an early, generic indicator for pathophysiological changes in the CNS. Atomic force microscopy offers unprecedented high spatial resolution to detect such changes. Our results indicate that the stiffness particularly of grey matter strongly correlates with changes of the pH in the cerebellum. Furthermore, the method of tissue harvesting and preparation may not only change tissue stiffness but very likely also other physiologically relevant parameters, highlighting the importance of appropriate sample preparation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Evaluation of the Sensitivity and Specificity of Immunohistochemical Markers in the Differential Diagnosis of Effusion Cytology

    Directory of Open Access Journals (Sweden)

    Zahraa Mohammed Yahya

    2013-11-01

    Full Text Available Objective: To evaluate the sensitivity and specificity of Calretinin and Carcinoembryonic antigen as immunocytochemical markers in distinguishing mesothelial cells from metastatic adenocarcinoma cells in effusion cytology.Methods: This study included 50 patients who presented with effusions (26 pleural and 24 peritoneal, at Al-Kadhimya Teaching Hospital who were selected according to their preliminary diagnosis from 1st December 2010 to 30th June 2011. Effusion fluids were aspirated and processed for both conventional cytological methods using Papanicolaou-stain and immunocytochemical staining with anti Calretinin and Carcinoembryonic antigen.Results: The sensitivity of cytology for detection of malignant cells was 77%, with 100% specificity and 86% accuracy. Calretinin was observed to be a specific (100% and sensitive (90% marker for mesothelial cells (of benign etiology. Carcinoembryonic antigen exhibited 70% sensitivity and 100% specificity for adenocarcinoma cells. When the results of both cytology and immunocytochemistry were considered in conjunction, the sensitivity for the detection of malignancy increased to 97%, with 100% specificity and 98% accuracy.Conclusion: Calretinin and Carcinoembryonic antigen were found to be useful markers for differentiating reactive mesothelial cells from metastatic adenocarcinoma cells in smears prepared from body fluids. Also, the combination of both cytology and immunocytochemical studies using the two markers can greatly enhance the diagnostic accuracy, sensitivity and specificity in malignant effusions.

  6. Sensitivity of the Oxford Foot Model to marker misplacement: A systematic single-case investigation.

    Science.gov (United States)

    Carty, Christopher P; Walsh, Henry P J; Gillett, Jarred G

    2015-09-01

    The purpose of this paper was to systematically assess the effect of Oxford Foot Model (OFM) marker misplacement on hindfoot relative to tibia, and forefoot relative to hindfoot kinematic calculations during the stance phase of gait. Marker trajectories were recorded with an 8-camera motion analysis system (Vicon Motion Systems Ltd., UK) and ground reaction forces were recorded from three force platforms (AMTI, USA). A custom built marker cluster consisting of 4 markers in a square arrangement (diagonal distance 2 cm) was used to assess the effect of marker misplacement in the superior, inferior, anterior and posterior direction for the sustentaculum tali (STL), the proximal 1st metatarsal (P1M), distal 5th metatarsal (D5M), proximal 5th metatarsal (P5M) and lateral calcaneus (LCA) markers. In addition manual movement of the heel complex 1 cm superiorly, inferiorly, medially and laterally, and also an alignment error of 10° inversion and 10° eversion was assessed. Clinically meaningful effects of marker misplacement were determined using a threshold indicating the minimal clinically important difference. Misplacement of the heel-wand complex had the most pronounced effect on mean kinematic profiles during the stance phase across all degrees-of-freedom with respect to hindfoot-tibia and forefoot-hindfoot angles. Vertical marker misplacement of the D5M and P5M markers affected the sagittal plane, and to a lesser extent frontal plane, forefoot-hindfoot kinematics. In conclusion, the OFM is highly sensitive to misplacement of the heel-wand complex in all directions and the P5M marker in the vertical direction. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  7. Markers of epithelial-to-mesenchymal transition reflect tumor biology according to patient age and Gleason score in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Dorota Jędroszka

    Full Text Available Prostate carcinoma (PRAD is one of the most frequently diagnosed malignancies amongst men worldwide. It is well-known that androgen receptor (AR plays a pivotal role in a vast majority of prostate tumors. However, recent evidence emerged stating that estrogen receptors (ERs may also contribute to prostate tumor development. Moreover, progression and aggressiveness of prostate cancer may be associated with differential expression genes of epithelial-to-mesenchymal transition (EMT. Therefore we aimed to assess the significance of receptors status as well as EMT marker genes expression among PRAD patients in accordance to their age and Gleason score.We analyzed TCGA gene expression profiles of 497 prostate tumor samples according to 43 genes involved in EMT and 3 hormone receptor genes (AR, ESR1, ESR2 as well as clinical characteristic of cancer patients. Then patients were divided into four groups according to their age and 5 groups according to Gleason score. Next, we evaluated PRAD samples according to relationship between the set of variables in different combinations and compared differential expression in subsequent groups of patients. The analysis was applied using R packages: FactoMineR, gplots, RColorBrewer and NMF.MFA analysis resulted in distinct grouping of PRAD patients into four age categories according to expression level of AR, ESR1 and ESR2 with the most distinct group of age less than 50 years old. Further investigations indicated opposite expression profiles of EMT markers between different age groups as well as strong association of EMT gene expression with Gleason score. We found that depending on age of prostate cancer patients and Gleason score EMT genes with distinctly altered expression are: KRT18, KRT19, MUC1 and COL4A1, CTNNB1, SNAI2, ZEB1 and MMP3.Our major observation is that prostate cancer from patients under 50 years old compared to older ones has entirely different EMT gene expression profiles showing potentially

  8. Sensory Processing Sensitivity as a Marker of Differential Susceptibility to Parenting

    Science.gov (United States)

    Slagt, Meike; Dubas, Judith Semon; van Aken, Marcel A. G.; Ellis, Bruce J.; Dekovic, Maja

    2018-01-01

    In this longitudinal multiinformant study negative emotionality and sensory processing sensitivity were compared as susceptibility markers among kindergartners. Participating children (N = 264, 52.9% boys) were Dutch kindergartners (M[subscript age] = 4.77, SD = 0.60), followed across three waves, spaced seven months apart. Results show that…

  9. A graphene oxide-based fluorescent aptasensor for the turn-on detection of epithelial tumor marker mucin 1.

    Science.gov (United States)

    He, Yue; Lin, Yi; Tang, Hongwu; Pang, Daiwen

    2012-03-21

    Mucin 1 (MUC1) which presents in epithelial malignancies, is a well-known tumor biomarker. In this paper, a highly sensitive and selective fluorescent aptasensor for Mucin 1 (MUC1) detection is constructed, utilizing graphene oxide (GO) as a quencher which can quench the fluorescence of single-stranded dye-labeled MUC1 specific aptamer. In the absence of MUC1, the adsorption of the dye-labeled aptamer on GO brings the dyes in close proximity to the GO surface resulting in high efficiency quenching of dye fluorescence. Therefore, the fluorescence of the designed aptasensor is completely quenched by GO, and the system shows very low background fluorescence. Conversely, and very importantly, upon the adding of MUC1, the quenched fluorescence is recovered significantly, and MUC1 can be detected in a wide range of 0.04-10 μM with a detection limit of 28 nM and good selectivity. Moreover, the results have also been verified for real sample application by testing 2% serum containing buffer solution spiked with a series of concentrations of MUC1. This journal is © The Royal Society of Chemistry 2012

  10. Investigations for a multi-marker RT-PCR to improve sensitivity of disseminated tumor cell detection.

    NARCIS (Netherlands)

    Vlems, F.A.; Diepstra, J.H.S.; Cornelissen, I.M.; Ligtenberg, M.J.L.; Wobbes, Th.; Punt, C.J.A.; Krieken, J.H.J.M. van; Ruers, T.J.M.; Muijen, G.N.P. van

    2003-01-01

    BACKGROUND: In order to develop a multi-marker RT-PCR, which as such may be more sensitive than a single marker assay for the detection of disseminated tumor cells, we evaluated six RT-PCR markers: cytokeratin 20 (CK20), carcinoembryonic antigen (CEA), guanylyl cyclase C (GCC), epidermal growth

  11. Investigations for a multi-marker RT-PCR to improve sensitivity of disseminated tumor cell detection

    NARCIS (Netherlands)

    Vlems, F. A.; Diepstra, J. H. S.; Cornelissen, I. M. H. A.; Ligtenberg, M. J. L.; Wobbes, Th; Punt, C. J. A.; van Krieken, J. H. J. M.; Ruers, T. J. M.; van Muijen, G. N. P.

    2003-01-01

    In order to develop a multi-marker RT-PCR, which as such may be more sensitive than a single marker assay for the detection of disseminated tumor cells, we evaluated six RT-PCR markers: cytokeratin 20 (CK20), carcinoembryonic antigen (CEA), guanylyl cyclase C (GCC), epidermal growth factor receptor

  12. Markers

    Science.gov (United States)

    Healthy Schools Network, Inc., 2011

    2011-01-01

    Dry erase whiteboards come with toxic dry erase markers and toxic cleaning products. Dry erase markers labeled "nontoxic" are not free of toxic chemicals and can cause health problems. Children are especially vulnerable to environmental health hazards; moreover, schools commonly have problems with indoor air pollution, as they are more densely…

  13. Differential sensitivity of epithelial cells to extracellular matrix in polarity establishment.

    Directory of Open Access Journals (Sweden)

    Shigenobu Yonemura

    Full Text Available Establishment of apical-basal polarity is crucial for epithelial sheets that form a compartment in the body, which function to maintain the environment in the compartment. Effects of impaired polarization are easily observed in three-dimensional (3-D culture systems rather than in two-dimensional (2-D culture systems. Although the mechanisms for establishing the polarity are not completely understood, signals from the extracellular matrix (ECM are considered to be essential for determining the basal side and eventually generating polarity in the epithelial cells. To elucidate the common features and differences in polarity establishment among various epithelial cells, we analyzed the formation of epithelial apical-basal polarity using three cell lines of different origin: MDCK II cells (dog renal tubules, EpH4 cells (mouse mammary gland, and R2/7 cells (human colon expressing wild-type α-catenin (R2/7 α-Cate cells. These cells showed clear apical-basal polarity in 2-D cultures. In 3-D cultures, however, each cell line displayed different responses to the same ECM. In MDCK II cells, spheroids with a single lumen formed in both Matrigel and collagen gel. In R2/7 α-Cate cells, spheroids showed similar apical-basal polarity as that seen in MDCK II cells, but had multiple lumens. In EpH4 cells, the spheroids displayed an apical-basal polarity that was opposite to that seen in the other two cell types in both ECM gels, at least during the culture period. On the other hand, the three cell lines showed the same apical-basal polarity both in 2-D cultures and in 3-D cultures using the hanging drop method. The three lines also had similar cellular responses to ECM secreted by the cells themselves. Therefore, appropriate culture conditions should be carefully determined in advance when using various epithelial cells to analyze cell polarity or 3-D morphogenesis.

  14. Comparative two-dimensional gel analysis and microsequencing identifies gelsolin as one of the most prominent downregulated markers of transformed human fibroblast and epithelial cells

    DEFF Research Database (Denmark)

    Vandekerckhove, J; Bauw, G; Vancompernolle, K

    1990-01-01

    A systematic comparison of the protein synthesis patterns of cultured normal and transformed human fibroblasts and epithelial cells, using two-dimensional gel protein analysis combined with computerized imaging and data acquisition, identified a 90-kD protein (SSP 5714) as one of the most striking...... downregulated markers typical of the transformed state. Using the information stored in the comprehensive human cellular protein database, we found this protein strongly expressed in several fetal tissues and one of them, epidermis, served as a source for preparative two-dimensional gel electrophoresis. Partial...... and by coelectrophoresis with purified human gelsolin. These results suggest that an important regulatory protein of the microfilament system may play a role in defining the phenotype of transformed human fibroblast and epithelial cells in culture. Udgivelsesdato: 1990-Jul...

  15. Comparative two-dimensional gel analysis and microsequencing identifies gelsolin as one of the most prominent downregulated markers of transformed human fibroblast and epithelial cells

    DEFF Research Database (Denmark)

    Vandekerckhove, J; Bauw, G; Vancompernolle, K

    1990-01-01

    downregulated markers typical of the transformed state. Using the information stored in the comprehensive human cellular protein database, we found this protein strongly expressed in several fetal tissues and one of them, epidermis, served as a source for preparative two-dimensional gel electrophoresis. Partial......A systematic comparison of the protein synthesis patterns of cultured normal and transformed human fibroblasts and epithelial cells, using two-dimensional gel protein analysis combined with computerized imaging and data acquisition, identified a 90-kD protein (SSP 5714) as one of the most striking...... and by coelectrophoresis with purified human gelsolin. These results suggest that an important regulatory protein of the microfilament system may play a role in defining the phenotype of transformed human fibroblast and epithelial cells in culture. Udgivelsesdato: 1990-Jul...

  16. Kaempferol Inhibits Endoplasmic Reticulum Stress-Associated Mucus Hypersecretion in Airway Epithelial Cells And Ovalbumin-Sensitized Mice.

    Science.gov (United States)

    Park, Sin-Hye; Gong, Ju-Hyun; Choi, Yean-Jung; Kang, Min-Kyung; Kim, Yun-Ho; Kang, Young-Hee

    2015-01-01

    Mucus hypersecretion is an important pathological feature of chronic airway diseases, such as asthma and pulmonary diseases. MUC5AC is a major component of the mucus matrix forming family of mucins in the airways. The initiation of endoplasmic reticulum (ER)-mediated stress responses contributes to the pathogenesis of airway diseases. The present study investigated that ER stress was responsible for airway mucus production and this effect was blocked by the flavonoid kaempferol. Oral administration of ≥10 mg/kg kaempferol suppressed mucus secretion and goblet cell hyperplasia observed in the bronchial airway and lung of BALB/c mice sensitized with ovalbumin (OVA). TGF-β and tunicamycin promoted MUC5AC induction after 72 h in human bronchial airway epithelial BEAS-2B cells, which was dampened by 20 μM kaempferol. Kaempferol inhibited tunicamycin-induced ER stress of airway epithelial cells through disturbing the activation of the ER transmembrane sensor ATF6 and IRE1α. Additionally, this compound demoted the induction of ER chaperones such as GRP78 and HSP70 and the splicing of XBP-1 mRNA by tunicamycin. The in vivo study further revealed that kaempferol attenuated the induction of XBP-1 and IRE1α in epithelial tissues of OVA-challenged mice. TGF-β and tunicamycin induced TRAF2 with JNK activation and such induction was deterred by kaempferol. The inhibition of JNK activation encumbered the XBP-1 mRNA splicing and MUC5AC induction by tunicamycin and TGF-β. These results demonstrate that kaempferol alleviated asthmatic mucus hypersecretion through blocking bronchial epithelial ER stress via the inhibition of IRE1α-TRAF2-JNK activation. Therefore, kaempferol may be a potential therapeutic agent targeting mucus hypersecretion-associated pulmonary diseases.

  17. Radiation studies on sensitivity and repair of human mammary epithelial cells

    International Nuclear Information System (INIS)

    Tracy Chuihsu Yang; Stampfer, M.R.; Tobias, C.A.

    1989-01-01

    The authors present results indicating that normal breast epithelial cells and fibroblasts respond to X-rays similarly, lacking significant repair of sublethal damage when 2 Gy was used as the conditioning dose. Epithelial cells from tumor and from parenchymal tissue peripheral to the tumor, however, did show an efficient repair of sublethal damage. The reasons for this difference is unknown. Heavy-ion studies suggest energetic carbon and neon particles can be more effective in killing normal and tumour cells. The RBE for normal cells, however, appeared to be slightly less than for tumor cells. The repair of sublethal damage in tumor cells was less for neon particles than for X-rays. These findings suggest that heavy ions might be more advantageous than X-rays in treating breast tumors. (author)

  18. Structural changes in leaves and roots are anatomical markers of aluminum sensitivity in sunflower

    Directory of Open Access Journals (Sweden)

    Daniel da Silva de Jesus

    2016-12-01

    Full Text Available Aluminum (Al toxicity in plants evidences the importance of genotype evaluation to the identification of tolerance markers. This study aimed at evaluating the effects of aluminum stress on the relative water content, membrane damages and anatomical changes, in Al-tolerant and Al-sensitive sunflower cultivars. Sunflower plants [Catissol (Al-tolerant and IAC-Uruguai (Al-sensitive] were grown in nutrient solution (control or nutrient solution containing 0.15 mM of AlCl3 (Al-stress treatment, in a greenhouse. The experimental design was completely randomized, in a factorial arrangement consisting of four harvest times x two sunflower cultivars x two Al levels, with four replications. The results showed that Al negatively affected the absolute integrity percentage and relative water content only for the IAC-Uruguay cultivar. These results in the stressed leaves of the Al-sensitive cultivar may be due to damage in the xylem structure. In addition, the increase in leaf blade thickness and parenchyma layers, as well as lignification of root tissues, are important traits of IAC-Uruguay plants and may be used as anatomical markers of Al sensitivity in sunflower.

  19. Sensitivity to radiation of human normal, hyperthyroid, and neoplastic thyroid epithelial cells in primary culture

    International Nuclear Information System (INIS)

    Miller, R.C.; Hiraoka, Toshio; Kopecky, K.J.; Nakamura, Nori; Jones, M.P.; Ito, Toshio; Clifton, K.H.

    1986-09-01

    Samples of thyroid tissue removed surgically from 63 patients were cultured in vitro and X-irradiated to investigate the radiosensitivities of various types of thyroid epithelial cells. A total of 76 samples were obtained, including neoplastic cells from patients with papillary carcinoma (PC) or follicular adenoma (FA), cells from hyperthyroidism (HY) patients, and normal cells from the surgical margins of PC and FA patients. Culturing of the cells was performed in a manner which has been shown to yield a predominance of epithelial cells. Results of colony formation assays indicated that cells from HY and FA patients were the least radiosensitive: when adjusted to the overall geometric mean plating efficiency of 5.5 %, the average mean lethal dose D 0 was 97.6 cGy for HY cells, and 96.7 cGy and 94.3 cGy, respectively, for neoplastic and normal cells from FA patients. Cells from PC patients were more radiosensitive, normal cells having an adjusted average D 0 of 85.0 cGy and PC cells a significantly (p = .001) lower average D 0 of 74.4 cGy. After allowing for this variation by cell type, in vitro radiosensitivity was not significantly related to age at surgery (p = .82) or sex (p = .10). These results suggest that malignant thyroid cells may be especially radiosensitive. (author)

  20. Relationship between Inflammation markers, Coagulation Activation and Impaired Insulin Sensitivity in Obese Healthy Women

    International Nuclear Information System (INIS)

    Soliman, S.Et; Shousha, M.A.

    2011-01-01

    Obesity, insulin resistance syndrome, and atherosclerosis are closely linked phenomena, often connected with a chronic low grade inflammatory state and pro thrombotic hypo fibrinolytic condition. This study investigated the relationship between impaired insulin sensitivity and selected markers of inflammation and thrombin generation in obese healthy women. The study included 36 healthy obese women (body mass index ≥ 30), with normal insulin sensitivity (NIS, n = 18) or impaired insulin sensitivity (IIS, n 18), and 10 non obese women (body mass index < 25).Impaired insulin sensitivity patients had significantly higher levels of high sensitivity C-reactive protein (hs-CRP), transforming growth factor -β1(TGF-β1), plasminogen activator inhibitor-1 (PAI-1), activated factor VII (VIIa), and prothrombin fragments 1 + 2 (F1 + 2) compared with either control subjects or normal insulin sensitivity patients. On the other hand, NIS patients had higher hs-CRP, TGF-β1, PAI-1, and factor VIIa, but not F1 + 2, levels than controls. Significant inverse correlations were observed between the insulin sensitivity index and TGF-β1, hs-CRP, PAI-1; factor VIIa, and F1 + 2 levels. Moreover, significant direct correlations were noted between TGF-β1 and CRP, PAI-1, factor VIIa, and F1 + 2 concentrations. Finally, multiple regressions revealed that TGF-β1 and the insulin sensitivity index were independently related to F1 + 2. These results document an in vivo relationship between insulin sensitivity and coagulation activation in obesity. Here we report that obesity is associated with higher TGF-β, PAI-1, prothrombin fragments 1 and 2 (F1 + 2), and activated factor VII (VIIa) plasma levels, and that insulin resistance exacerbates these alterations. The elevated TGF-β1 levels detected in the obese population may provide a biochemical link between insulin resistance and an increased risk for cardiovascular disease

  1. Chimaphilin inhibits human osteosarcoma cell invasion and metastasis through suppressing the TGF-β1-induced epithelial-to-mesenchymal transition markers via PI-3K/Akt, ERK1/2, and Smad signaling pathways.

    Science.gov (United States)

    Dong, Feng; Liu, Tingting; Jin, Hao; Wang, Wenbo

    2018-01-01

    Epithelial-to-mesenchymal transition is a cellular process associated with cancer invasion and metastasis. However, the antimetastatic effects of chimaphilin remain elusive. In this study, we attempted to investigate the potential use of chimaphilin as an inhibitor of TGF-β1-induced epithelial-to-mesenchymal transition in U2OS cells. We found that TGF-β1 induced epithelial-to-mesenchymal transition to promote U2OS cell invasion and metastasis. Western blotting demonstrated that chimaphilin inhibited U2OS cell invasion and migration, increased the expression of the epithelial phenotype marker E-cadherin, repressed the expression of the mesenchymal phenotype marker vimentin, as well as decreased the level of epithelial-to-mesenchymal-inducing transcription factors Snail1 and Slug during the initiation of TGF-β1-induced epithelial-to-mesenchymal transition. In this study, we revealed that chimaphilin up-regulated the E-cadherin expression level and inhibited the production of vimentin, Snail1, and Slug in TGF-β1-induced U2OS cells by blocking PI-3K/Akt and ERK 1/2 signaling pathway. Additionally, the TGF-β1-mediated phosphorylated levels of Smad2/3 were inhibited by chimaphilin pretreatment. Above all, we conclude that chimaphilin represents an effective inhibitor of the metastatic potential of U2OS cells through suppression of TGF-β1-induced epithelial-to-mesenchymal transition.

  2. Characterization of Paroxysmal Gluten‐Sensitive Dyskinesia in Border Terriers Using Serological Markers

    Science.gov (United States)

    Garden, O.A.; Hadjivassiliou, M.; Sanders, D.S.; Powell, R.; Garosi, L.

    2018-01-01

    Background Paroxysmal gluten‐sensitive dyskinesia (PGSD) in border terriers (BTs) results from an immunologic response directed against transglutaminase (TG)2 and gliadin. Recent evidence suggests that PGSD is only one aspect of a range of possible manifestations of gluten sensitivity in the breed. Hypothesis/Objectives Gluten sensitivity in BTs is a heterogeneous disease process with a diverse clinical spectrum; to characterize the phenotype of PGSD using TG2 and gliadin autoantibodies as diagnostic markers. Animals One hundred twenty‐eight client‐owned BTs with various disorders. Methods Prospective study. BTs with paroxysmal episodes and a normal interictal examination were phenotyped using footage of a representative episode and assigned to 3 groups: idiopathic epilepsy (IE), paroxysmal dyskinesia (PD), or other. Owners of each dog completed a questionnaire to obtain information regarding clinical signs. Healthy BTs formed a control group. Serum antibodies against TG2 and AGA were measured in all dogs. Results One hundred twenty‐eight BTs were enrolled; 45 with PD, 28 with IE, 35 with other conditions, and 20 controls. Three overlapping phenotypes were identified; PD, signs suggestive of gastrointestinal disease, and dermatopathy. AGA‐IgG concentrations were increased in PD, compared with IE (P = 0.012), controls (P < 0.0001) and other (P = 0.018) conditions. Anti‐canine TG2‐IgA concentrations were increased in PD, compared with IE (P < 0.0001), controls (P < 0.0001) and other (P = 0.012) conditions. Serological markers are highly specific for PGSD but lack sensitivity. Conclusions PGSD appears part of a syndrome of gluten intolerance consisting of episodes of transient dyskinesia, signs suggestive of gastrointestinal disease, and dermatological hypersensitivity. PMID:29424456

  3. OVX1, macrophage-colony stimulating factor, and CA-125-II as tumor markers for epithelial ovarian carcinoma - A critical appraisal

    NARCIS (Netherlands)

    van Haaften-Day, C; Shen, Y; Xu, FJ; Yu, YH; Berchuck, A; Havrilesky, LJ; de Bruijn, HWA; van der Zee, AGJ; Bast, RC; Hacker, NF

    2001-01-01

    BACKGROUND. Ovarian carcinoma remains the leading cause of death from gynecologic malignancy in Australia, the Netherlands, and the United States. CA-125-II, the most widely used serum marker, has limited sensitivity and specificity for detecting small-volume, early-stage disease. Therefore, a panel

  4. Study of High Sensitive-CRP and Cardiac Marker Enzymes in Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Srikrishna R,

    2015-04-01

    Full Text Available Background: Inflammation has been proposed as a contributor to different stages in the pathogenesis of Coronary Heart Disease (CHD. High sensitive C-Reactive Protein (hs-CRP, an acute-phase plasma protein synthesized by the liver, is the most extensively studied systemic marker of inflammation. Elevated hsCRP concentrations early in Acute Coronary Syndrome (ACS, prior to the tissue necrosis, may be a surrogate marker for cardiovascular co-morbidities. The cardiac marker enzymes Creatine Kinase myocardial bound (CK-MB, Aspartate Aminotransferase (AST and lactate dehydrogenase (LDH have been known to be increased in coronary artery diseases. Objective: The aim of the study was to measure hs-CRP levels and other cardiac marker enzymes in ACS patients and to compare the levels of hs-CRP with other cardiac marker enzymes between ST Elevation Myocardial Infarction (STEMI and Non-ST Elevation Myocardial Infarction (NSTEMI patients. Material and Methods: The study group consisted of 207 consecutive patients admitted to Sri Siddhartha Medical College Hospital within the first 6 hours from the onset of chest pain. Patients were diagnosed as Unstable Angina (UA, (n=84; STEMI (n=63 and NSTEMI (n=60. ACS patients were compared with 211 healthy age and sex matched controls. Hs-CRP, CK-MB, AST and LDH levels were measured by standard methods in both groups at baseline and forcases at 36-48 hours i.e. Peak levels. Results: ACS patients had significantly (p<0.05 higher levels of hs-CRP, CKMB, AST and LDH in comparison to controls at baseline. Hs-CRP, CK-MB, AST and LDH levels were significantly higher in STEMI patients compared to NSTEMI patients (p<0.05 at baseline. There was a significant difference regarding peak hs-CRP levels between the two groups, as STEMI patients had significantly higher peak hs-CRP levels compared to NSTEMI patients (p<0.05. Conclusion: STEMI patients have significantly higher peak hsCRP levels compared to NSTEMI patients. These data

  5. Salt-induced epithelial-to-mesenchymal transition in Dahl salt-sensitive rats is dependent on elevated blood pressure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.; Mu, J.J.; Liu, F.Q.; Ren, K.Y.; Xiao, H.Y. [Xi' an Jiaotong University, Medical College, First Affiliated Hospital, Cardiovascular Department, Xi' an, China, Cardiovascular Department, First Affiliated Hospital, Medical College, Xi' an Jiaotong University, Xi' an (China); Ministry of Education, Key Laboratory of Environment and Genes Related to Diseases, Xi' an, China, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi' an (China); Yang, Z. [Xi' an Jiaotong University, Medical College, First Affiliated Hospital, Department of Pathology, Xi' an, China, Department of Pathology, First Affiliated Hospital, Medical College, Xi' an Jiaotong University, Xi' an (China); Yuan, Z.Y. [Xi' an Jiaotong University, Medical College, First Affiliated Hospital, Cardiovascular Department, Xi' an, China, Cardiovascular Department, First Affiliated Hospital, Medical College, Xi' an Jiaotong University, Xi' an (China); Ministry of Education, Key Laboratory of Environment and Genes Related to Diseases, Xi' an, China, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi' an (China)

    2014-03-03

    Dietary salt intake has been linked to hypertension and cardiovascular disease. Accumulating evidence has indicated that salt-sensitive individuals on high salt intake are more likely to develop renal fibrosis. Epithelial-to-mesenchymal transition (EMT) participates in the development and progression of renal fibrosis in humans and animals. The objective of this study was to investigate the impact of a high-salt diet on EMT in Dahl salt-sensitive (SS) rats. Twenty-four male SS and consomic SS-13{sup BN} rats were randomized to a normal diet or a high-salt diet. After 4 weeks, systolic blood pressure (SBP) and albuminuria were analyzed, and renal fibrosis was histopathologically evaluated. Tubular EMT was evaluated using immunohistochemistry and real-time PCR with E-cadherin and alpha smooth muscle actin (α-SMA). After 4 weeks, SBP and albuminuria were significantly increased in the SS high-salt group compared with the normal diet group. Dietary salt intake induced renal fibrosis and tubular EMT as identified by reduced expression of E-cadherin and enhanced expression of α-SMA in SS rats. Both blood pressure and renal interstitial fibrosis were negatively correlated with E-cadherin but positively correlated with α-SMA. Salt intake induced tubular EMT and renal injury in SS rats, and this relationship might depend on the increase in blood pressure.

  6. Salt-induced epithelial-to-mesenchymal transition in Dahl salt-sensitive rats is dependent on elevated blood pressure

    International Nuclear Information System (INIS)

    Wang, Y.; Mu, J.J.; Liu, F.Q.; Ren, K.Y.; Xiao, H.Y.; Yang, Z.; Yuan, Z.Y.

    2014-01-01

    Dietary salt intake has been linked to hypertension and cardiovascular disease. Accumulating evidence has indicated that salt-sensitive individuals on high salt intake are more likely to develop renal fibrosis. Epithelial-to-mesenchymal transition (EMT) participates in the development and progression of renal fibrosis in humans and animals. The objective of this study was to investigate the impact of a high-salt diet on EMT in Dahl salt-sensitive (SS) rats. Twenty-four male SS and consomic SS-13 BN rats were randomized to a normal diet or a high-salt diet. After 4 weeks, systolic blood pressure (SBP) and albuminuria were analyzed, and renal fibrosis was histopathologically evaluated. Tubular EMT was evaluated using immunohistochemistry and real-time PCR with E-cadherin and alpha smooth muscle actin (α-SMA). After 4 weeks, SBP and albuminuria were significantly increased in the SS high-salt group compared with the normal diet group. Dietary salt intake induced renal fibrosis and tubular EMT as identified by reduced expression of E-cadherin and enhanced expression of α-SMA in SS rats. Both blood pressure and renal interstitial fibrosis were negatively correlated with E-cadherin but positively correlated with α-SMA. Salt intake induced tubular EMT and renal injury in SS rats, and this relationship might depend on the increase in blood pressure

  7. Tensiomyographic Markers Are Not Sensitive for Monitoring Muscle Fatigue in Elite Youth Athletes: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Thimo Wiewelhove

    2017-06-01

    Full Text Available Objective: Tensiomyography (TMG is an indirect measure of a muscle's contractile properties and has the potential as a technique for detecting exercise-induced skeletal muscle fatigue. Therefore, the aim of this study was to assess the sensitivity of tensiomyographic markers to identify reduced muscular performance in elite youth athletes.Methods: Fourteen male junior tennis players (age: 14.9 ± 1.2 years with an international (International Tennis Federation ranking position participated in this pre-post single group trial. They completed a 4-day high-intensity interval training (HIT microcycle, which was composed of seven training sessions. TMG markers; countermovement jump (CMJ performance (criterion measure of fatigue; delayed onset muscle soreness; and perceived recovery and stress were measured 24 h before and after the training program. The TMG measures included maximal radial deformation of the rectus femoris muscle belly (Dm, contraction time between 10 and 90% Dm (Tc and the rate of deformation until 10% (V10 and 90% Dm (V90, respectively. Diagnostic characteristics were assessed with a receiver-operating curve (ROC analysis and a contingency table, in which the area under the curve (AUC, Youden's index, sensitivity, specificity, and the diagnostic effectiveness (DE of TMG measures were reported. A minimum AUC of 0.70 and a lower confidence interval (CI >0.50 classified “good” diagnostic markers to assess performance changes.Results: Twenty-four hours after the microcycle, CMJ performance was observed to be significantly (p < 0.001 reduced (Effect Size [ES] = −0.68, and DOMS (ES = 3.62 as well as perceived stress were significantly (p < 0.001 increased. In contrast, Dm (ES = −0.35, Tc (ES = 0.04, V10 (ES = −0.32, and V90 (ES = −0.33 remained unchanged (p > 0.05 throughout the study. ROC analysis and the data derived from the contingency table revealed that none of the tensiomyographic markers were effective diagnostic

  8. Canine mammary tumors: a review and consensus of standard guidelines on epithelial and myoepithelial phenotype markers, HER2, and hormone receptor assessment using immunohistochemistry.

    Science.gov (United States)

    Peña, L; Gama, A; Goldschmidt, M H; Abadie, J; Benazzi, C; Castagnaro, M; Díez, L; Gärtner, F; Hellmén, E; Kiupel, M; Millán, Y; Miller, M A; Nguyen, F; Poli, A; Sarli, G; Zappulli, V; de las Mulas, J Martín

    2014-01-01

    Although there have been several studies on the use of immunohistochemical biomarkers of canine mammary tumors (CMTs), the results are difficult to compare. This article provides guidelines on the most useful immunohistochemical markers to standardize their use and understand how outcomes are measured, thus ensuring reproducibility of results. We have reviewed the biomarkers of canine mammary epithelial and myoepithelial cells and identified those biomarkers that are most useful and those biomarkers for invasion and lymph node micrometastatic disease. A 10% threshold for positive reaction for most of these markers is recommended. Guidelines on immunolabeling for HER2, estrogen receptors (ERs), and progesterone receptors (PRs) are provided along with the specific recommendations for interpretation of the results for each of these biomarkers in CMTs. Only 3+ HER2-positive tumors should be considered positive, as found in human breast cancer. The lack of any known response to adjuvant endocrine therapy of ER- and PR-positive CMTs prevents the use of the biological positive/negative threshold used in human breast cancer. Immunohistochemistry results of ER and PR in CMTs should be reported as the sum of the percentage of positive cells and the intensity of immunolabeling (Allred score). Incorporation of these recommendations in future studies, either prospective or retrospective, will provide a mechanism for the direct comparison of studies and will help to determine whether these biomarkers have prognostic significance. Finally, these biomarkers may ascertain the most appropriate treatment(s) for canine malignant mammary neoplasms.

  9. The role of volume-sensitive ion transport systems in regulation of epithelial transport

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Schettino, T; Marshall, W S

    2007-01-01

    This review focuses on using the knowledge on volume-sensitive transport systems in Ehrlich ascites tumour cells and NIH-3T3 cells to elucidate osmotic regulation of salt transport in epithelia. Using the intestine of the European eel (Anguilla anguilla) (an absorptive epithelium of the type...... on the apical side and the Na+/K+ ATPase, NKCC1 and a K+ channel on the basolateral side. Osmotic control of Cl- secretion across the operculum epithelium includes: (i) hyperosmotic shrinkage activation of NKCC1 via PKC, MLCK, p38, OSR1 and SPAK; (ii) deactivation of NKCC by hypotonic cell swelling...

  10. Genome Target Evaluator (GTEvaluator: A workflow exploiting genome dataset to measure the sensitivity and specificity of genetic markers.

    Directory of Open Access Journals (Sweden)

    Arnaud Felten

    Full Text Available Most of the bacterial typing methods used to discriminate isolates in medical or food safety microbiology are based on genetic markers used as targets in PCR or hybridization experiments. These DNA typing methods are important tools for studying prevalence and epidemiology, for conducting surveillance, investigations and control of biological hazard sources. In that perspective, it is crucial to insure that the chosen genetic markers have the greatest specificity and sensitivity. The wealth of whole-genome sequences available for many bacterial species offers the opportunity to evaluate the performance of these genetic markers. In the present study, we have developed GTEvaluator, a bioinformatics workflow which ranks genetic markers depending on their sensitivity and specificity towards groups of well-defined genomes. GTEvaluator identifies the most performant genetic markers to target individuals among a population. The individuals (i.e. a group of genomes within a collection are defined by any kind of particular phenotypic or biological properties inside a related population (i.e. collection of genomes. The performance of the genetic markers is computed by a distance value which takes into account both sensitivity and specificity. In this study we report two examples of GTEvaluator application. In the first example Bacillus phenotypic markers were evaluated for their capacity to distinguish B. cereus from B. thuringiensis. In the second experiment, GTEvaluator measured the performance of genetic markers dedicated to the molecular serotyping of Salmonella enterica. In one in silico experiment it was possible to test 64 markers onto 134 genomes corresponding to 14 different serotypes.

  11. Sensitization to epithelial antigens in chronic mucosal inflammatory disease. Characterization of human intestinal mucosa-derived mononuclear cells reactive with purified epithelial cell-associated components in vitro.

    OpenAIRE

    Roche, J K; Fiocchi, C; Youngman, K

    1985-01-01

    To explore the auto-reactive potential of cells infiltrating the gut mucosa in idiopathic chronic inflammatory bowel disease, intestinal lamina propria mononuclear cells (LPMC) were isolated, characterized morphologically and phenotypically, and evaluated for antigen-specific reactivity. The last was assessed by quantitating LPMC cytotoxic capabilities against purified, aqueous-soluble, organ-specific epithelial cell-associated components (ECAC) characterized previously. Enzyme-isolated infla...

  12. Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Hagen Jeffrey A

    2007-10-01

    Full Text Available Abstract Background Lung cancer is the number one cancer killer of both men and women in the United States. Three quarters of lung cancer patients are diagnosed with regionally or distantly disseminated disease; their 5-year survival is only 15%. DNA hypermethylation at promoter CpG islands shows great promise as a cancer-specific marker that would complement visual lung cancer screening tools such as spiral CT, improving early detection. In lung cancer patients, such hypermethylation is detectable in a variety of samples ranging from tumor material to blood and sputum. To date the penetrance of DNA methylation at any single locus has been too low to provide great clinical sensitivity. We used the real-time PCR-based method MethyLight to examine DNA methylation quantitatively at twenty-eight loci in 51 primary human lung adenocarcinomas, 38 adjacent non-tumor lung samples, and 11 lung samples from non-lung cancer patients. Results We identified thirteen loci showing significant differential DNA methylation levels between tumor and non-tumor lung; eight of these show highly significant hypermethylation in adenocarcinoma: CDH13, CDKN2A EX2, CDX2, HOXA1, OPCML, RASSF1, SFPR1, and TWIST1 (p-value Conclusion The identification of eight CpG island loci showing highly significant hypermethylation in lung adenocarcinoma provides strong candidates for evaluation in patient remote media such as plasma and sputum. The four most highly ranked loci, CDKN2A EX2, CDX2, HOXA1 and OPCML, which show significant DNA methylation even in stage IA tumor samples, merit further investigation as some of the most promising lung adenocarcinoma markers identified to date.

  13. Anti-Müllerian Hormone as a Sensitive Marker of Ovarian Function in Young Cancer Survivors

    Directory of Open Access Journals (Sweden)

    Maryna Krawczuk-Rybak

    2013-01-01

    Full Text Available We evaluated ovarian function by measuring the levels of anti-Müllerian hormone (AMH, estradiol, and gonadotropins in 83 young women treated for cancer during childhood and adolescence, and classified according to post-treatment gonadal toxicity versus 38 healthy females. Results. The mean AMH values were lower in the entire cohort independently of the risk group as compared to the control, whereas FSH was elevated only in the high risk group. The lowest AMH values were noted in patients after bone marrow transplantation (BMT and those treated for Hodgkin lymphoma (HL. Nineteen patients (22.9% had elevated FSH. They all had low AMH values. Lowered AMH values (but with normal FSH and LH were observed in 43 patients (51.8%. There was no effect of age at the time of treatment (before puberty, during or after puberty on AMH levels. Conclusion. Our results show the utility of AMH measurement as a sensitive marker of a reduced ovarian reserve in young cancer survivors. Patients after BMT and patients treated for HL, independently of age at treatment (prepuberty or puberty, are at the highest risk of gonadal damage and early menopause.

  14. Sensitivity of molecular marker-based CMB models to biomass burning source profiles

    Science.gov (United States)

    Sheesley, Rebecca J.; Schauer, James J.; Zheng, Mei; Wang, Bo

    To assess the contribution of sources to fine particulate organic carbon (OC) at four sites in North Carolina, USA, a molecular marker chemical mass balance model (MM-CMB) was used to quantify seasonal contributions for 2 years. The biomass burning contribution at these sites was found to be 30-50% of the annual OC concentration. In order to provide a better understanding of the uncertainty in MM-CMB model results, a biomass burning profile sensitivity test was performed on the 18 seasonal composites. The results using reconstructed emission profiles based on published profiles compared well, while model results using a single source test profile resulted in biomass burning contributions that were more variable. The biomass burning contribution calculated using an average regional profile of fireplace emissions from five southeastern tree species also compared well with an average profile of open burning of pine-dominated forest from Georgia. The standard deviation of the results using different source profiles was a little over 30% of the annual average biomass contributions. Because the biomass burning contribution accounted for 30-50% of the OC at these sites, the choice of profile also impacted the motor vehicle source attribution due to the common emission of elemental carbon and polycyclic aromatic hydrocarbons. The total mobile organic carbon contribution was less effected by the biomass burning profile than the relative contributions from gasoline and diesel engines.

  15. One year follow-up of contrast sensitivity following conventional laser in situ keratomileusis and laser epithelial keratomileusis.

    Science.gov (United States)

    Townley, Deirdre; Kirwan, Caitriona; O'Keefe, Michael

    2012-02-01

    To determine the effect of conventional laser in situ keratomileusis (LASIK) and laser epithelial keratomileusis (LASEK) for myopia on contrast sensitivity (CS) using the Pelli-Robson and Vector Vision CSV-1000E CS tests. A prospective, comparative study was conducted on 36 eyes of 36 patients with myopia undergoing LASIK (18 eyes) and LASEK (18 eyes). Surgery was performed using the Technolas 217z laser (Bausch & Lomb). CS was recorded preoperatively and at 3, 6 and 12 months postoperatively. No statistically significant difference was found in LogMAR uncorrected visual acuity post-LASIK (-0.02 ± 0.16) and LASEK (-0.04 ± 0.14). Using the Pelli-Robson, CS was significantly lower in the LASIK group 3 and 6 months postoperatively. No significant postoperative reduction in CS was observed in either treatment group. Using the CSV-1000E test, CS was significantly reduced post-LASIK at 3 (p = 0.05) and 6 (p = 0.05) cycles/degree under photopic conditions. No significant postoperative change occurred in the LASEK group under photopic or scotopic conditions. There was no significant difference in postoperative CS between the LASIK and LASEK groups at 3, 6, 12 or 18 cycles/degree using the CSV-1000E test. One year postoperatively, there was no difference in CS between both treatment groups using the Pelli-Robson and CSV-1000E tests. CS was reduced postoperatively in the LASIK group at the lower spatial frequencies under photopic conditions. No postoperative change was detected in CS following LASIK or LASEK using the Pelli-Robson test. © 2010 The Authors. Journal compilation © 2010 Acta Ophthalmol.

  16. Co-expression of putative stemness and epithelial-to-mesenchymal transition markers on single circulating tumour cells from patients with early and metastatic breast cancer.

    Science.gov (United States)

    Papadaki, Maria A; Kallergi, Galatea; Zafeiriou, Zafeiris; Manouras, Lefteris; Theodoropoulos, Panayiotis A; Mavroudis, Dimitris; Georgoulias, Vassilis; Agelaki, Sofia

    2014-09-03

    The detection of circulating tumor cells (CTCs) in peripheral blood (PB) of patients with breast cancer predicts poor clinical outcome. Cancer cells with stemness and epithelial-to-mesenchymal transition (EMT) features display enhanced malignant and metastatic potential. A new methodology was developed in order to investigate the co-expression of a stemness and an EMT marker (ALDH1 and TWIST, respectively) on single CTCs of patients with early and metastatic breast cancer. Triple immunofluorescence using anti-pancytokeratin (A45-B/B3), anti-ALDH1 and anti-TWIST antibodies was performed in cytospins prepared from hepatocellular carcinoma HepG2 cells and SKBR-3, MCF-7 and MDA.MB.231 breast cancer cell lines. Evaluation of ALDH1 expression levels (high, low or absent) and TWIST subcellular localization (nuclear, cytoplasmic or absent) was performed using the ARIOL system. Cytospins prepared from peripheral blood of patients with early (n = 80) and metastatic (n = 50) breast cancer were analyzed for CTC detection (based on pan-cytokeratin expression and cytomorphological criteria) and characterized according to ALDH1 and TWIST. CTCs were detected in 13 (16%) and 25 (50%) patients with early and metastatic disease, respectively. High ALDH1 expression (ALDH1high) and nuclear TWIST localization (TWISTnuc) on CTCs was confirmed in more patients with metastatic than early breast cancer (80% vs. 30.8%, respectively; p = 0.009). In early disease, ALDH1low/neg CTCs (p = 0.006) and TWISTcyt/neg CTCs (p = 0.040) were mainly observed. Regarding co-expression of these markers, ALDH1high/TWISTnuc CTCs were more frequently evident in the metastatic setting (76% vs. 15.4% of patients, p = 0.001; 61.5% vs. 12.9% of total CTCs), whereas in early disease ALDH1low/neg/TWISTcyt/neg CTCs were mainly detected (61.5% vs. 20% of patients, p = 0.078; 41.9% vs. 7.7% of total CTCs). A new assay is provided for the evaluation of ALDH1 and TWIST co-expression at the

  17. Diagnostic Utility of High Sensitivity Troponins for Echocardiographic Markers of Structural Heart Disease.

    Science.gov (United States)

    Wang, Tom Kai Ming; Dugo, Clementina; Gillian, Yvonne; Yvonne, Wynne; Heather, Semple; Kevin, Smith; Peter, Cleave; Jonathan, Christiansen; Andrew, To; Nezar, Amir; Scott, Tony; Ross, Boswell; Patrick, Gladding

    2018-02-15

    The conventional use of high-sensitivity troponins (hs-troponins) is for diagnosing myocardial infarction however they also have a role in chronic disease management. This pilot study assessed the relationship of hs-troponins with echocardiographic markers of left ventricular hypertrophy (LVH) and structural heart disease (SHD). Patients undergoing computer gomography (CT) coronary angiogram for low-intermediate risk chest pain and healthy volunteers were recruited. Hs-troponins Singulex I, Abbott I and Roche T and N-terminal pro-brain natriuretic peptide (NT-proBNP) were evaluated in relation to SHD parameters including left ventricular hypertrophy (LVH Echo ) and left atrial enlargement (LAE Echo ) on echocardiography. 78 subjects who underwent echocardiography were included in this study. C-statistics (95% confidence interval) of the four biomarkers for predicting LVH Echo were 0.84 (0.72-0.92), 0.84 (0.73-0.92), 0.75 (0.63-0.85) and 0.62 (0.49-0.74); for LAE Echo 0.74 (0.6-0.85), 0.78 (0.66-0.88), 0.55 (0.42-0.67) and 0.68 (0.62-0.85); and composite SHD 0.79 (0.66-0.88), 0.87 (0.75-0.94), 0.62 (0.49-0.73) and 0.74 (0.62-0.84) respectively. Optimal cut points for SHD were >1.2 ng/L, >1.6 ng/L, >8 ng/L and >18 pmol/L respectively. These results advocate the potential role of hs-troponins as screening tools for structural heart disease with theranostic implications.

  18. Expression of the RNA-binding protein RBM3 is associated with a favourable prognosis and cisplatin sensitivity in epithelial ovarian cancer

    LENUS (Irish Health Repository)

    Ehlen, Asa

    2010-08-20

    Abstract Background We recently demonstrated that increased expression of the RNA-binding protein RBM3 is associated with a favourable prognosis in breast cancer. The aim of this study was to examine the prognostic value of RBM3 mRNA and protein expression in epithelial ovarian cancer (EOC) and the cisplatin response upon RBM3 depletion in a cisplatin-sensitive ovarian cancer cell line. Methods RBM3 mRNA expression was analysed in tumors from a cohort of 267 EOC cases (Cohort I) and RBM3 protein expression was analysed using immunohistochemistry (IHC) in an independent cohort of 154 prospectively collected EOC cases (Cohort II). Kaplan Meier analysis and Cox proportional hazards modelling were applied to assess the relationship between RBM3 and recurrence free survival (RFS) and overall survival (OS). Immunoblotting and IHC were used to examine the expression of RBM3 in a cisplatin-resistant ovarian cancer cell line A2780-Cp70 and its cisplatin-responsive parental cell line A2780. The impact of RBM3 on cisplatin response in EOC was assessed using siRNA-mediated silencing of RBM3 in A2780 cells followed by cell viability assay and cell cycle analysis. Results Increased RBM3 mRNA expression was associated with a prolonged RFS (HR = 0.64, 95% CI = 0.47-0.86, p = 0.003) and OS (HR = 0.64, 95% CI = 0.44-0.95, p = 0.024) in Cohort I. Multivariate analysis confirmed that RBM3 mRNA expression was an independent predictor of a prolonged RFS, (HR = 0.61, 95% CI = 0.44-0.84, p = 0.003) and OS (HR = 0.62, 95% CI = 0.41-0.95; p = 0.028) in Cohort I. In Cohort II, RBM3 protein expression was associated with a prolonged OS (HR = 0.53, 95% CI = 0.35-0.79, p = 0.002) confirmed by multivariate analysis (HR = 0.61, 95% CI = 0.40-0.92, p = 0.017). RBM3 mRNA and protein expression levels were significantly higher in the cisplatin sensitive A2780 cell line compared to the cisplatin resistant A2780-Cp70 derivative. siRNA-mediated silencing of RBM3 expression in the A2780 cells resulted

  19. Faster DNA Repair of Ultraviolet-Induced Cyclobutane Pyrimidine Dimers and Lower Sensitivity to Apoptosis in Human Corneal Epithelial Cells than in Epidermal Keratinocytes.

    Directory of Open Access Journals (Sweden)

    Justin D Mallet

    Full Text Available Absorption of UV rays by DNA generates the formation of mutagenic cyclobutane pyrimidine dimers (CPD and pyrimidine (6-4 pyrimidone photoproducts (6-4PP. These damages are the major cause of skin cancer because in turn, they can lead to signature UV mutations. The eye is exposed to UV light, but the cornea is orders of magnitude less prone to UV-induced cancer. In an attempt to shed light on this paradox, we compared cells of the corneal epithelium and the epidermis for UVB-induced DNA damage frequency, repair and cell death sensitivity. We found similar CPD levels but a 4-time faster UVB-induced CPD, but not 6-4PP, repair and lower UV-induced apoptosis sensitivity in corneal epithelial cells than epidermal. We then investigated levels of DDB2, a UV-induced DNA damage recognition protein mostly impacting CPD repair, XPC, essential for the repair of both CPD and 6-4PP and p53 a protein upstream of the genotoxic stress response. We found more DDB2, XPC and p53 in corneal epithelial cells than in epidermal cells. According to our results analyzing the protein stability of DDB2 and XPC, the higher level of DDB2 and XPC in corneal epithelial cells is most likely due to an increased stability of the protein. Taken together, our results show that corneal epithelial cells have a better efficiency to repair UV-induced mutagenic CPD. On the other hand, they are less prone to UV-induced apoptosis, which could be related to the fact that since the repair is more efficient in the HCEC, the need to eliminate highly damaged cells by apoptosis is reduced.

  20. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: RVRMILES (River Mile Marker Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains human-use resource data for river miles along the Hudson River. Vector lines in this data set represent river mile markers. This data set...

  1. microRNA-494 is a potential prognostic marker and inhibits cellular proliferation, migration and invasion by targeting SIRT1 in epithelial ovarian cancer.

    Science.gov (United States)

    Yang, Aijun; Wang, Xuenan; Yu, Chunna; Jin, Zhenzhen; Wei, Lingxia; Cao, Jinghe; Wang, Qin; Zhang, Min; Zhang, Lin; Zhang, Lei; Hao, Cuifang

    2017-09-01

    Ovarian cancer is one of the most common types of gynecological malignancy worldwide, and is the fourth leading cause of cancer-associated mortality among women. Despite improvements in therapeutic treatments, the prognosis for epithelial ovarian cancer (EOC) remains poor, mainly due to the rapid growth and metastasis of ovarian cancer tumors. An increasing number of studies have indicated that microRNAs (miRNAs) are involved in the carcinogenesis and progression of human cancer, suggesting that miRNAs may be used in clinical prognosis and as a therapeutic target in EOC. The aim of the present study was to investigate the expression levels of miRNA-494 in EOC tissues and cell lines. The clinical significance of miRNA-494 in patients with EOC was also evaluated. The results demonstrated that miRNA-494 was significantly downregulated in EOC tissues and cell lines. Low expression levels of miRNA-494 were associated with poor prognostic features, including International Federation of Gynecology and Obstetrics stage, tumor size and lymph node metastasis. In vitro functional studies demonstrated that overexpression of miRNA-494 inhibited proliferation, migration and invasion in EOC cells. By contrast, knockdown of miRNA-494 enhanced cell growth, migration and invasion in EOC cells. Notably, sirtuin 1 (SIRT1) was identified as a direct target of miRNA-494 in EOC. Furthermore, MTT, cell migration and invasion assays verified that EOC cell proliferation, migration and invasion were completely restored with forced miRNA-494 expression and SIRT1 restoration. Together, these findings suggest that miRNA-494 is a potential prognostic marker, and may provide novel therapeutic regimens of targeted therapy for EOC.

  2. Detection of Tumor Markers in Prostate Cancer and Comparison of Sensitivity between Real Time and Nested PCR

    OpenAIRE

    Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro

    2012-01-01

    The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivi...

  3. Detection of tumor markers in prostate cancer and comparison of sensitivity between real time and nested PCR.

    Science.gov (United States)

    Matsuoka, Takayuki; Shigemura, Katsumi; Yamamichi, Fukashi; Fujisawa, Masato; Kawabata, Masato; Shirakawa, Toshiro

    2012-06-27

    The objective of this study is to investigate and compare the sensitivity in conventional PCR, quantitative real time PCR, nested PCR and western blots for detection of prostate cancer tumor markers using prostate cancer (PCa) cells. We performed conventional PCR, quantitative real time PCR, nested PCR, and western blots using 5 kinds of PCa cells. Prostate specific antigen (PSA), prostate specific membrane antigen (PSMA), and androgen receptor (AR) were compared for their detection sensitivity by real time PCR and nested PCR. In real time PCR, there was a significant correlation between cell number and the RNA concentration obtained (R(2)=0.9944) for PSA, PSMA, and AR. We found it possible to detect these markers from a single LNCaP cell in both real time and nested PCR. By comparison, nested PCR reached a linear curve in fewer PCR cycles than real time PCR, suggesting that nested PCR may offer PCR results more quickly than real time PCR. In conclusion, nested PCR may offer tumor maker detection in PCa cells more quickly (with fewer PCR cycles) with the same high sensitivity as real time PCR. Further study is necessary to establish and evaluate the best tool for PCa tumor marker detection.

  4. Pressure pain sensitivity as a marker for stress and pressure pain sensitivity-guided stress management in women with primary breast cancer

    DEFF Research Database (Denmark)

    Axelsson, Christen K; Ballegaard, Søren; Karpatschof, Benny

    2014-01-01

    employees was divided in a High Stress Group (HSG, n = 37) and a Low Stress Group (LSG, n = 128) to evaluate the association between PPS, questionnaire-related Quality of Life (QOL) and self-evaluated stress. (2) A PPS-guided stress management program (n = 40) was compared to a Psychosocial Group......OBJECTIVES: To validate (1) Pressure Pain Sensitivity (PPS) as a marker for stress and (2) a PPS-guided intervention in women with primary Breast Cancer (BC). METHODS: (1) A total of 58 women with BC were examined before and after 6 months of intervention. A control group of 165 women office...... scores: (all p stress scores (all p

  5. Wdr66 is a novel marker for risk stratification and involved in epithelial-mesenchymal transition of esophageal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Wang, Qing; Ma, Chenming; Kemmner, Wolfgang

    2013-01-01

    We attempted to identify novel biomarkers and therapeutic targets for esophageal squamous cell carcinoma by gene expression profiling of frozen esophageal squamous carcinoma specimens and examined the functional relevance of a newly discovered marker gene, WDR66. Laser capture microdissection technique was applied to collect the cells from well-defined tumor areas in collaboration with an experienced pathologist. Whole human gene expression profiling of frozen esophageal squamous carcinoma specimens (n = 10) and normal esophageal squamous tissue (n = 18) was performed using microarray technology. A gene encoding WDR66, WD repeat-containing protein 66 was significantly highly expressed in esophageal squamous carcinoma specimens. Microarray results were validated by quantitative real-time polymerase chain reaction (qRT-PCR) in a second and independent cohort (n = 71) consisting of esophageal squamous cell carcinoma (n = 25), normal esophagus (n = 11), esophageal adenocarcinoma (n = 13), gastric adenocarcinoma (n = 15) and colorectal cancers (n = 7). In order to understand WDR66’s functional relevance siRNA-mediated knockdown was performed in a human esophageal squamous cell carcinoma cell line, KYSE520 and the effects of this treatment were then checked by another microarray analysis. High WDR66 expression was significantly associated with poor overall survival (P = 0.031) of patients suffering from esophageal squamous carcinomas. Multivariate Cox regression analysis revealed that WDR66 expression remained an independent prognostic factor (P = 0.042). WDR66 knockdown by RNA interference resulted particularly in changes of the expression of membrane components. Expression of vimentin was down regulated in WDR66 knockdown cells while that of the tight junction protein occludin was markedly up regulated. Furthermore, siRNA-mediated knockdown of WDR66 resulted in suppression of cell growth and reduced cell motility. WDR66 might be a useful biomarker for risk

  6. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    Science.gov (United States)

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs. Copyright © 2015 the American Physiological Society.

  7. Nuclear internal transcribed spacer-1 as a sensitive genetic marker for environmental DNA studies in common carp Cyprinus carpio.

    Science.gov (United States)

    Minamoto, Toshifumi; Uchii, Kimiko; Takahara, Teruhiko; Kitayoshi, Takumi; Tsuji, Satsuki; Yamanaka, Hiroki; Doi, Hideyuki

    2017-03-01

    The recently developed environmental DNA (eDNA) analysis has been used to estimate the distribution of aquatic vertebrates by using mitochondrial DNA (mtDNA) as a genetic marker. However, mtDNA markers have certain drawbacks such as variable copy number and maternal inheritance. In this study, we investigated the potential of using nuclear DNA (ncDNA) as a more reliable genetic marker for eDNA analysis by using common carp (Cyprinus carpio). We measured the copy numbers of cytochrome b (CytB) gene region of mtDNA and internal transcribed spacer 1 (ITS1) region of ribosomal DNA of ncDNA in various carp tissues and then compared the detectability of these markers in eDNA samples. In the DNA extracted from the brain and gill tissues and intestinal contents, CytB was detected at 95.1 ± 10.7 (mean ± 1 standard error), 29.7 ± 1.59 and 24.0 ± 4.33 copies per cell, respectively, and ITS1 was detected at 1760 ± 343, 2880 ± 503 and 1910 ± 352 copies per cell, respectively. In the eDNA samples from mesocosm, pond and lake water, the copy numbers of ITS1 were about 160, 300 and 150 times higher than those of CytB, respectively. The minimum volume of pond water required for quantification was 33 and 100 mL for ITS1 and CytB, respectively. These results suggested that ITS1 is a more sensitive genetic marker for eDNA studies of C. carpio. © 2016 John Wiley & Sons Ltd.

  8. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers.

    Science.gov (United States)

    Cervera, M T; Ruiz-García, L; Martínez-Zapater, J M

    2002-12-01

    AFLP analysis using restriction enzyme isoschizomers that differ in their sensitivity to methylation of their recognition sites has been used to analyse the methylation state of anonymous CCGG sequences in Arabidopsis thaliana. The technique was modified to improve the quality of fingerprints and to visualise larger numbers of scorable fragments. Sequencing of amplified fragments indicated that detection was generally associated with non-methylation of the cytosine to which the isoschizomer is sensitive. Comparison of EcoRI/ HpaII and EcoRI/ MspI patterns in different ecotypes revealed that 35-43% of CCGG sites were differentially digested by the isoschizomers. Interestingly, the pattern of digestion among different plants belonging to the same ecotype is highly conserved, with the rate of intra-ecotype methylation-sensitive polymorphisms being less than 1%. However, pairwise comparisons of methylation patterns between samples belonging to different ecotypes revealed differences in up to 34% of the methylation-sensitive polymorphisms. The lack of correlation between inter-ecotype similarity matrices based on methylation-insensitive or methylation-sensitive polymorphisms suggests that whatever the mechanisms regulating methylation may be, they are not related to nucleotide sequence variation.

  9. Simultaneous quantitative detection of multiple tumor markers with a rapid and sensitive multicolor quantum dots based immunochromatographic test strip.

    Science.gov (United States)

    Wang, Chunying; Hou, Fei; Ma, Yicai

    2015-06-15

    A novel multicolor quantum dots (QDs) based immunochromatographic test strip (ICTS) was developed for simultaneous quantitative detection of multiple tumor markers, by utilizing alpha fetoprotein (AFP) and carcinoembryonic antigen (CEA) as models. The immunosensor could realize simultaneous quantitative detection of tumor markers with only one test line and one control line on the nitrocellulose membrane (NC membrane) due to the introduction of multicolor QDs. In this method, a mixture of mouse anti-AFP McAb and mouse anti-CEA McAb was coated on NC membrane as test line and goat anti-mouse IgG antibody was coated as control line. Anti-AFP McAb-QDs546 conjugates and anti-CEA McAb-QDs620 conjugates were mixed and applied to the conjugate pad. Simultaneous quantitative detection of multiple tumor markers was achieved by detecting the fluorescence intensity of captured QDs labels on test line and control line using a test strip reader. Under the optimum conditions, AFP and CEA could be detected as low as 3 ng/mL and 2 ng/mL in 15 min with a sample volume of 80 μL, and no obvious cross-reactivity was observed. The immunosensor was validated with 130 clinical samples and in which it exhibited high sensitivity (93% for AFP and 87% for CEA) and specificity (94% for AFP and 97% for CEA). The immunosensor also demonstrated high recoveries (87.5-113% for AFP and 90-97.3% for CEA) and low relative standard deviations (RSDs) (2.8-6.2% for AFP and 4.9-9.6% for CEA) when testing spiked human serum. This novel multicolor QDs based ICTS provides an easy and rapid, simultaneous quantitative detecting strategy for point-of-care testing of tumor markers. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Perspective Biological Markers for Autism Spectrum Disorders: Advantages of the Use of Receiver Operating Characteristic Curves in Evaluating Marker Sensitivity and Specificity

    Directory of Open Access Journals (Sweden)

    Provvidenza M. Abruzzo

    2015-01-01

    Full Text Available Autism Spectrum Disorders (ASD are a heterogeneous group of neurodevelopmental disorders. Recognized causes of ASD include genetic factors, metabolic diseases, toxic and environmental factors, and a combination of these. Available tests fail to recognize genetic abnormalities in about 70% of ASD children, where diagnosis is solely based on behavioral signs and symptoms, which are difficult to evaluate in very young children. Although it is advisable that specific psychotherapeutic and pedagogic interventions are initiated as early as possible, early diagnosis is hampered by the lack of nongenetic specific biological markers. In the past ten years, the scientific literature has reported dozens of neurophysiological and biochemical alterations in ASD children; however no real biomarker has emerged. Such literature is here reviewed in the light of Receiver Operating Characteristic (ROC analysis, a very valuable statistical tool, which evaluates the sensitivity and the specificity of biomarkers to be used in diagnostic decision making. We also apply ROC analysis to some of our previously published data and discuss the increased diagnostic value of combining more variables in one ROC curve analysis. We also discuss the use of biomarkers as a tool for advancing our understanding of nonsyndromic ASD.

  11. Adenosine deaminase complexing protein (ADCP): a transformation sensitive protein with potentials of a cancer marker.

    Science.gov (United States)

    Herbschleb-Voogt, E; Ten Kate, J; Meera Khan, P

    1983-01-01

    Several observations by independent investigators in the past have indicated that adenosine deaminase complexing protein (ADCP), present in considerable quantities in certain human tissues, was absent or decreased in the cancers originated from them. During the present study, electrophoretic analysis of adenosine deaminase (ADA) isozymes and radioimmunoassay for ADCP in the primary fibroblasts and the transformed as well as certain tumor derived cell lines have demonstrated that ADCP present in large quantities in the primary cells was absent or nearly absent in the transformed or tumor-derived cell lines. Though the mechanisms involved are not yet clear, the above observations indicate that ADCP has the potentials of a useful marker in the studies on transformed cells and cancer tissues.

  12. Differential expression of GSK3β and pS9GSK3β in normal human tissues: can pS9GSK3β be an epithelial marker?

    Science.gov (United States)

    Lee, Hojung; Ro, Jae Y

    2015-01-01

    Glycogen synthase kinase 3β (GSK3β) and phosphorylated GSK3β at Ser9 (pS9GSK3β) are crucial in cellular proliferation and metabolism. GSK3β and pS9GSK3β are deregulated in many diseases including tumors. Data on altered expression of GSK3β and pS9GSK3β are mainly limited to tumor tissues, thus the expression of GSK3β and pS9GSK3β in normal human tissue has been largely unknown. Thus, we examined the immunohistochemical localization of GSK3β and pS9GSK3β in human fetal and adult tissues, and also compared the expression pattern of GSK3β and pS9GSK3β with that of the CK7 and CK20. We found GSK3β expression in neurons of brain, myenteric plexus in gastrointestinal tract, squamous epithelium of skin, and mammary gland. The expression of pS9GSK3β was restricted to the epithelial cells of breast and pancreaticobiliary duct, distal nephron of kidney, gastrointestinal tract, fallopian tube, epididymis, secretory cell of prostatic gland, and umbrella cell of urinary tract. The staining pattern of pS9GSK3β and CK7 was overlapped in most organs except for gastrointestinal tract where CK7 was negative and CK20 was positive. Our results show that the expression of GSK3β may be associated with differentiation of ectodermal derived tissues and pS9GSK3β with that of epithelial cells of endodermal derived tissues in human. In addition, the expression of pS9GSK3β in the selective epithelial cells may indicate its association with secretory or barrier function of specific cells and may serve as another immunohistochemical marker for epithelial cells.

  13. Is there a genetic contribution to cultural differences? Collectivism, individualism and genetic markers of social sensitivity.

    Science.gov (United States)

    Way, Baldwin M; Lieberman, Matthew D

    2010-06-01

    Genes and culture are often thought of as opposite ends of the nature-nurture spectrum, but here we examine possible interactions. Genetic association studies suggest that variation within the genes of central neurotransmitter systems, particularly the serotonin (5-HTTLPR, MAOA-uVNTR) and opioid (OPRM1 A118G), are associated with individual differences in social sensitivity, which reflects the degree of emotional responsivity to social events and experiences. Here, we review recent work that has demonstrated a robust cross-national correlation between the relative frequency of variants in these genes and the relative degree of individualism-collectivism in each population, suggesting that collectivism may have developed and persisted in populations with a high proportion of putative social sensitivity alleles because it was more compatible with such groups. Consistent with this notion, there was a correlation between the relative proportion of these alleles and lifetime prevalence of major depression across nations. The relationship between allele frequency and depression was partially mediated by individualism-collectivism, suggesting that reduced levels of depression in populations with a high proportion of social sensitivity alleles is due to greater collectivism. These results indicate that genetic variation may interact with ecological and social factors to influence psychocultural differences.

  14. Neuronal markers are expressed in human gliomas and NSE knockdown sensitizes glioblastoma cells to radiotherapy and temozolomide

    International Nuclear Information System (INIS)

    Yan, Tao; Skaftnesmo, Kai Ove; Leiss, Lina; Sleire, Linda; Wang, Jian; Li, Xingang; Enger, Per Øyvind

    2011-01-01

    Expression of neuronal elements has been identified in various glial tumors, and glioblastomas (GBMs) with neuronal differentiation patterns have reportedly been associated with longer survival. However, the neuronal class III β-tubulin has been linked to increasing malignancy in astrocytomas. Thus, the significance of neuronal markers in gliomas is not established. The expressions of class III β-tubulin, neurofilament protein (NFP), microtubule-associated protein 2 (MAP2) and neuron-specific enolase (NSE) were investigated in five GBM cell lines and two GBM biopsies with immunocytochemistry and Western blot. Moreover, the expression levels were quantified by real-time qPCR under different culture conditions. Following NSE siRNA treatment we used Electric cell-substrate impedance sensing (ECIS) to monitor cell growth and migration and MTS assays to study viability after irradiation and temozolomide treatment. Finally, we quantitated NSE expression in a series of human glioma biopsies with immunohistochemistry using a morphometry software, and collected survival data for the corresponding patients. The biopsies were then grouped according to expression in two halves which were compared by survival analysis. Immunocytochemistry and Western blotting showed that all markers except NFP were expressed both in GBM cell lines and biopsies. Notably, qPCR demonstrated that NSE was upregulated in cellular stress conditions, such as serum-starvation and hypoxia, while we found no uniform pattern for the other markers. NSE knockdown reduced the migration of glioma cells, sensitized them to hypoxia, radio- and chemotherapy. Furthermore, we found that GBM patients in the group with the highest NSE expression lived significantly shorter than patients in the low-expression group. Neuronal markers are aberrantly expressed in human GBMs, and NSE is consistently upregulated in different cellular stress conditions. Knockdown of NSE reduces the migration of GBM cells and sensitizes

  15. MicroRNA-9 enhances sensitivity to cetuximab in epithelial phenotype hepatocellular carcinoma cells through regulation of the eukaryotic translation initiation factor 5A-2.

    Science.gov (United States)

    Xue, Fei; Liang, Yuntian; Li, Zhenrong; Liu, Yanhui; Zhang, Hongwei; Wen, Yu; Yan, Lei; Tang, Qiang; Xiao, Erhui; Zhang, Dongyi

    2018-01-01

    Hepatocellular carcinoma (HCC) is one of the most widespread malignant human tumors worldwide. Treatment options include radiotherapy, surgical intervention and chemotherapy; however, drug resistance is an ongoing treatment concern. In the present study, the effects of a microRNA (miR/miRNA), miR-9, on the sensitivity of HCC cell lines to the epidermal growth factor receptor inhibitor, cetuximab, were examined. miR-9 has been proposed to serve a role in tumorigenesis and tumor progression. In the present study, bioinformatics analyses identified the eukaryotic translation initiation factor 5A2 (eIF-5A-2) as a target of miR-9. The expression levels of miR-9 and eIF-5A-2 were examined by reverse transcription-quantitative polymerase chain reaction and HCC cell lines were transfected with miR-9 mimics and inhibitors to determine the effects of the miRNA on cell proliferation and viability. The miR-9 mimic was revealed to significantly increase the sensitivity of epithelial phenotype HCC cells (Hep3B and Huh7) to cetuximab, while the miR-9 inhibitor triggered the opposite effect. There were no significant differences in sensitivity to cetuximab observed in mesenchymal phenotype HCC cells (SNU387 and SNU449). Cells lines displaying high expression levels of eIF-5A-2 were more resistant to cetuximab. Transfection of cells with a miR-9 mimic resulted in downregulation of the expression of eIF-5A-2 mRNA, while an miR-9 inhibitor increased expression. When expression of eIF-5A-2 was knocked down with siRNA, the effects of miR-9 on cetuximab sensitivity were no longer observed. Taken together, these data support a role for miR-9 in enhancing the sensitivity of epithelial phenotype HCC cells to cetuximab through regulation of eIF-5A-2.

  16. Rejection sensitivity as a vulnerability marker for depressive symptom deterioration in men.

    Directory of Open Access Journals (Sweden)

    Jannika De Rubeis

    Full Text Available Consistent across time and cultures, men and male adolescents older than 14 years of age appear underrepresented in mood disorders, and are far less likely than women to seek psychological help. The much higher rate of suicide amongst males suggests that depression in men might be underreported. One of the core human motives is to seek acceptance by others and avoid rejection. Rejection Sensitivity (RS has been conceptualized as the cognitive-affective processing disposition to anxiously expect, readily perceive, and intensely respond to cues of rejection in the behavior of others. RS has been previously linked with the onset and course of depression, but-as yet-has not been investigated longitudinally in a clinical population. We investigated the predictive role of RS to symptom deterioration 6 months after end-of- treatment in 72 male inpatients with depressive spectrum disorder. The BDI was administered at intake, end-of-treatment and 6 month follow-up. RS scores were obtained at intake. Rejection Sensitivity had additional predictive power on BDI scores at 6 months follow-up controlling for BDI scores at end-of-treatment (ΔR2 = .095. The results are discussed in terms of the importance of targeting RS during treatment, and highlight the fact that therapeutic follow-up care is paramount. Future research should investigate possible mediators of the RS-relapse-to-depression association, such as self-blame, rumination, neuroticism, pessimism, emotion dysregulation, and low self-esteem.

  17. Stop Saying That It Is Wrong! Psychophysiological, Cognitive, and Metacognitive Markers of Children's Sensitivity to Punishment.

    Science.gov (United States)

    Gonzalez-Gadea, Maria Luz; Scheres, Anouk; Tobon, Carlos Andres; Damm, Juliane; Baez, Sandra; Huepe, David; Marino, Julian; Marder, Sandra; Manes, Facundo; Abrevaya, Sofia; Ibanez, Agustin

    2015-01-01

    Neurodevelopmental evidence suggests that children's main decision-making strategy is to avoid options likely to induce punishment. However, the cognitive and affective factors contributing to children's avoidance to high punishment frequency remain unknown. The present study explored psychophysiological, cognitive, and metacognitive processes associated with sensitivity to punishment frequency. We evaluated 54 participants (between 8 and 15 years old) with a modified Iowa Gambling Task for children (IGT-C) which included options with varying long-term profit and punishment frequencies. Skin conductance responses (SCRs) were recorded during this task. Additionally, we assessed IGT-C metacognitive knowledge, fluid intelligence, and executive functions. Participants exhibited behavioral avoidance and high anticipatory SCRs to options with high frequency of punishment. Moreover, age, IGT-C metacognitive knowledge, and inhibitory control were associated with individual differences in sensitivity to punishment frequency. Our results suggest that children's preference for infrequently punished decisions is partially explained by psychophysiological signals as well as task complexity and development of cognitive control.

  18. Cancerous epithelial cell lines shed extracellular vesicles with a bimodal size distribution that is sensitive to glutamine inhibition

    International Nuclear Information System (INIS)

    Santana, Steven Michael; Kirby, Brian J; Antonyak, Marc A; Cerione, Richard A

    2014-01-01

    Extracellular shed vesicles (ESVs) facilitate a unique mode of cell–cell communication wherein vesicle uptake can induce a change in the recipient cell's state. Despite the intensity of ESV research, currently reported data represent the bulk characterization of concentrated vesicle samples with little attention paid to heterogeneity. ESV populations likely represent diversity in mechanisms of formation, cargo and size. To better understand ESV subpopulations and the signaling cascades implicated in their formation, we characterize ESV size distributions to identify subpopulations in normal and cancerous epithelial cells. We have discovered that cancer cells exhibit bimodal ESV distributions, one small-diameter and another large-diameter population, suggesting that two mechanisms may govern ESV formation, an exosome population and a cancer-specific microvesicle population. Altered glutamine metabolism in cancer is thought to fuel cancer growth but may also support metastatic niche formation through microvesicle production. We describe the role of a glutaminase inhibitor, compound 968, in ESV production. We have discovered that inhibiting glutamine metabolism significantly impairs large-diameter microvesicle production in cancer cells. (paper)

  19. Clinical evaluation of carbon-11-phenylephrine: MAO-sensitive marker of cardiac sympathetic neurons.

    Science.gov (United States)

    Raffel, D M; Corbett, J R; del Rosario, R B; Gildersleeve, D L; Chiao, P C; Schwaiger, M; Wieland, D M

    1996-12-01

    The sympathomimetic drug phenylephrine recently has been labeled with 11C for use in PET studies of cardiac sympathetic innervation. Previous reports using isolated perfused rat heart models indicate that phenylephrine is metabolized by intraneuronal monoamine oxidase (MAO). This report compares the imaging characteristics, neuronal selectivity and kinetics of (-)-[11C]phenylephrine (PHEN) to the structurally similar but MAO-resistant analog (-)-[11C]-meta-hydroxyephedrine (HED), an established heart neuronal marker. Fourteen healthy volunteers were studied with PET and PHEN. Ten had paired studies with HED; four of the 10 were scanned a second time with each tracer after oral administration of desipramine, a selective neuronal transport blocker. Hemodynamic and electrocardiographic responses were monitored. Blood levels of intact radiotracer and radiolabeled metabolites were determined from venous blood samples taken during the PET study. Myocardial retention indices for both tracers were calculated. No hemodynamic or electrocardiographic effects were observed with either tracer. PHEN showed reduced myocardial retention at 50 min compared to HED; however, image quality and uniformity of distribution were comparable. PHEN cleared from myocardium with a mean half-time of 59 +/- 5 min, while myocardial levels of HED remained constant. PHEN metabolites appeared in the blood approximately three times faster than HED metabolites. Desipramine pretreatment markedly reduced (> 60%) myocardial retention of both PHEN and HED. PHEN provides PET images of human heart comparable in quality and uniformity to HED. Like HED, PHEN localizes in the sympathetic nerves of the heart. However, the more rapid efflux of PHEN, that is likely mediated by MAO, may provide information on the functional status of cardiac sympathetic neurons unobtainable with HED.

  20. Snail-induced epithelial-to-mesenchymal transition of MCF-7 breast cancer cells: systems analysis of molecular changes and their effect on radiation and drug sensitivity

    International Nuclear Information System (INIS)

    Mezencev, Roman; Matyunina, Lilya V.; Jabbari, Neda; McDonald, John F.

    2016-01-01

    Epithelial-to-mesenchymal transition (EMT) has been associated with the acquisition of metastatic potential and the resistance of cancer cells to therapeutic treatments. MCF-7 breast cancer cells engineered to constitutively express the zinc-finger transcriptional repressor gene Snail (MCF-7-Snail cells) have been previously shown to display morphological and molecular changes characteristic of EMT. We report here the results of a comprehensive systems level molecular analysis of changes in global patterns of gene expression and levels of glutathione and reactive oxygen species (ROS) in MCF-7-Snail cells and the consequence of these changes on the sensitivity of cells to radiation treatment and therapeutic drugs. Snail-induced changes in global patterns of gene expression were identified by microarray profiling using the Affymetrix platform (U133 Plus 2.0). The resulting data were processed and analyzed by a variety of system level analytical methods. Levels of ROS and glutathione (GSH) were determined by fluorescent and luminescence assays, and nuclear levels of NF-κB protein were determined by an ELISA based method. The sensitivity of cells to ionizing radiation and anticancer drugs was determined using a resazurin-based cell cytotoxicity assay. Constitutive ectopic expression of Snail in epithelial-like, luminal A-type MCF-7 cells induced significant changes in the expression of >7600 genes including gene and miRNA regulators of EMT. Mesenchymal-like MCF-7-Snail cells acquired molecular profiles characteristic of triple-negative, claudin-low breast cancer cells, and displayed increased sensitivity to radiation treatment, and increased, decreased or no change in sensitivity to a variety of anticancer drugs. Elevated ROS levels in MCF-7-Snail cells were unexpectedly not positively correlated with NF-κB activity. Ectopic expression of Snail in MCF-7 cells resulted in morphological and molecular changes previously associated with EMT. The results underscore the

  1. Synergy as a new and sensitive marker of basal ganglia dysfunction: A study of asymptomatic welders.

    Science.gov (United States)

    Lewis, Mechelle M; Lee, Eun-Young; Jo, Hang Jin; Du, Guangwei; Park, Jaebum; Flynn, Michael R; Kong, Lan; Latash, Mark L; Huang, Xuemei

    2016-09-01

    as preclinical markers for basal ganglia dysfunction in welders and other populations at risk for neurodegenerative diseases involving parkinsonian symptoms. This finding may have important clinical, scientific, and public/occupational health implications. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The temporal evolution of electromagnetic markers sensitive to the capacity limits of visual short-term memory.

    Science.gov (United States)

    Mitchell, Daniel J; Cusack, Rhodri

    2011-01-01

    An electroencephalographic (EEG) marker of the limited contents of human visual short-term memory (VSTM) has previously been described. Termed contralateral delay activity, this consists of a sustained, posterior, negative potential that correlates with memory load and is greatest contralateral to the remembered hemifield. The current investigation replicates this finding and uses magnetoencephalography (MEG) to characterize its magnetic counterparts and their neural generators as they evolve throughout the memory delay. A parametric manipulation of memory load, within and beyond capacity limits, allows separation of signals that asymptote with behavioral VSTM performance from additional responses that contribute to a linear increase with set-size. Both EEG and MEG yielded bilateral signals that track the number of objects held in memory, and contralateral signals that are independent of memory load. In MEG, unlike EEG, the contralateral interaction between hemisphere and item load is much weaker, suggesting that bilateral and contralateral markers of memory load reflect distinct sources to which EEG and MEG are differentially sensitive. Nonetheless, source estimation allowed both the bilateral and the weaker contralateral capacity-limited responses to be localized, along with a load-independent contralateral signal. Sources of global and hemisphere-specific signals all localized to the posterior intraparietal sulcus during the early delay. However the bilateral load response peaked earlier and its generators shifted later in the delay. Therefore the hemifield-specific response may be more closely tied to memory maintenance while the global load response may be involved in initial processing of a limited number of attended objects, such as their individuation or consolidation into memory.

  3. The temporal evolution of electromagnetic markers sensitive to the capacity limits of visual short-term memory

    Directory of Open Access Journals (Sweden)

    Daniel James Mitchell

    2011-02-01

    Full Text Available An electroencephalographic (EEG marker of the limited contents of human visual short-term memory (VSTM has previously been described. Termed contralateral delay activity (CDA, this consists of a sustained, posterior, negative potential that correlates with memory load and is greatest contralateral to the remembered hemifield. The current investigation replicates this finding and uses magnetoencephalography (MEG to characterise its magnetic counterparts and their neural generators as they evolve throughout the memory delay. A parametric manipulation of memory load, within and beyond capacity limits, allows separation of signals that asymptote with behavioural VSTM performance from additional responses that contribute to a linear increase with set-size. Both EEG and MEG yielded bilateral signals that track the number of objects held in memory, and contralateral signals that are independent of memory load. In MEG, unlike EEG, the contralateral interaction between hemisphere and item load is much weaker, suggesting that bilateral and contralateral markers of memory load reflect distinct sources to which EEG and MEG are differentially sensitive. Nonetheless, source estimation allowed both the bilateral and the weaker contralateral capacity-limited responses to be localised, along with a load-independent contralateral signal. Sources of global and hemisphere-specific signals all localised to the posterior intraparietal sulcus during the early delay. However the bilateral load response peaked earlier and its generators shifted later in the delay. Therefore the hemifield-specific response may be more closely tied to memory maintenance while the global load response may be involved in initial processing of a limited number of attended objects, such as their individuation or consolidation into memory.

  4. Pressure pain sensitivity as a marker for stress and pressure pain sensitivity-guided stress management in women with primary breast cancer.

    Science.gov (United States)

    Axelsson, Christen K; Ballegaard, Søren; Karpatschof, Benny; Schousen, Peer

    2014-08-01

    To validate (1) Pressure Pain Sensitivity (PPS) as a marker for stress and (2) a PPS-guided intervention in women with primary Breast Cancer (BC). (1) A total of 58 women with BC were examined before and after 6 months of intervention. A control group of 165 women office employees was divided in a High Stress Group (HSG, n = 37) and a Low Stress Group (LSG, n = 128) to evaluate the association between PPS, questionnaire-related Quality of Life (QOL) and self-evaluated stress. (2) A PPS-guided stress management program (n = 40) was compared to a Psychosocial Group Intervention (PGI, n = 91) and no treatment (n = 86) with respect to a European Organization for Research and Treatment of Cancer (EORTC) questionnaire measured QOL. (1) Resting PPS and changes in PPS during the intervention period correlated significantly to EORTC and Short Form 36 (SF 36) main scores: (all p stress scores (all p stress. (2) The PPS-guided intervention group improved EORTC main score, pain and nausea, when compared to the control groups (all p stress. PPS-guided intervention improved QOL in women with breast cancer.

  5. Expression of surface markers on the human monocytic leukaemia cell line, THP-1, as indicators for the sensitizing potential of chemicals.

    Science.gov (United States)

    An, Susun; Kim, Seoyoung; Huh, Yong; Lee, Tae Ryong; Kim, Han-Kon; Park, Kui-Lea; Eun, Hee Chul

    2009-04-01

    Evaluation of skin sensitization potential is an important part of the safety assessment of cosmetic ingredients and topical drugs. Recently, evaluation of changes in surface marker expression induced in dendritic cells (DC) or DC surrogate cell lines following exposure to chemicals represents one approach for in vitro test methods. The study aimed to test the change of expression patterns of surface markers on THP-1 cells by chemicals as a predictive in vitro method for contact sensitization. We investigated the expression of CD54, CD86, CD83, CD80, and CD40 after a 1-day exposure to sensitizers (1-chloro-2,4-dinitrobenzene; 2,4-dinitrofluorobenzene; benzocaine; 5-chloro-2-methyl-4-isothiazolin-3-one; hexyl cinnamic aldehyde; eugenol; nickel sulfate hexahydrate; potassium dichromate; cobalt sulfate; 2-mercaptobenzothiazole; and ammonium tetrachloroplatinate) and non-sensitizers (sodium lauryl sulfate, benzalkonium chloride, lactic acid, salicylic acid, isopropanol, and dimethyl sulphoxide). The test concentrations were 0.1x, 0.5x, and 1x of the 50% inhibitory concentration, and the relative fluorescence intensity was used as an expression indicator. By evaluating the expression patterns of CD54, CD86, and CD40, we could classify the chemicals as sensitizers or non-sensitizers, but CD80 and CD83 showed non-specific patterns of expression. These data suggest that the THP-1 cells are good model for screening contact sensitizers and CD40 could be a useful marker complementary to CD54 and CD86.

  6. Cys34-cysteinylated human serum albumin is a sensitive plasma marker in oxidative stress-related chronic diseases.

    Directory of Open Access Journals (Sweden)

    Kohei Nagumo

    Full Text Available The degree of oxidized cysteine (Cys 34 in human serum albumin (HSA, as determined by high performance liquid chromatography (HPLC, is correlated with oxidative stress related pathological conditions. In order to further characterize the oxidation of Cys34-HSA at the molecular level and to develop a suitable analytical method for a rapid and sensitive clinical laboratory analysis, the use of electrospray ionization time-of-flight mass spectrometer (ESI-TOFMS was evaluated. A marked increase in the cysteinylation of Cys34 occurs in chronic liver and kidney diseases and diabetes mellitus. A significant positive correlation was observed between the Cys-Cys34-HSA fraction of plasma samples obtained from 229 patients, as determined by ESI-TOFMS, and the degree of oxidized Cys34-HSA determined by HPLC. The Cys-Cys34-HSA fraction was significantly increased with the progression of liver cirrhosis, and was reduced by branched chain amino acids (BCAA treatment. The changes in the Cys-Cys34-HSA fraction were significantly correlated with the alternations of the plasma levels of advanced oxidized protein products, an oxidative stress marker for proteins. The binding ability of endogenous substances (bilirubin and tryptophan and drugs (warfarin and diazepam to HSA purified from chronic liver disease patients were significantly suppressed but significantly improved by BCAA supplementation. Interestingly, the changes in this physiological function of HSA in chronic liver disease were correlated with the Cys-Cys34-HSA fraction. In conclusion, ESI-TOFMS is a suitable high throughput method for the rapid and sensitive quantification of Cys-Cys34-HSA in a large number of samples for evaluating oxidative stress related chronic disease progression or in response to a treatment.

  7. Oral Treatment with Extract of Agaricus blazei Murill Enhanced Th1 Response through Intestinal Epithelial Cells and Suppressed OVA-Sensitized Allergy in Mice

    Directory of Open Access Journals (Sweden)

    Go Bouike

    2011-01-01

    Full Text Available To clarify the mechanism of the antiallergic activity of Agaricus blazei Murill extract (ABME, the present paper used an in vivo allergy model and an in vitro intestinal gut model. During OVA sensitization, the serum IgE levels decreased significantly in ABME group. Interleukin (IL-4 and -5 produced from OVA-restimulated splenocytes was significantly decreased, and anti-CD3ε/CD28 antibody treatment also reduced IL-10, -4, and -5 production and increased IFN-γ production in ABME group. These results suggest that oral administration of ABME improves Th1/Th2 balance. Moreover, a coculture system constructed of Caco-2 cells and splenocytes from OT-II mice or RAW 264.7 cells indicated that the significant increases in IFN-γ production by ABME treatment. Therefore, it was concluded that the antiallergic activity of ABME was due to the activation of macrophages by epithelial cells and the promotion of the differentiation of naïve T cells into Th1 cells in the immune.

  8. Transient receptor potential ion channel Trpm7 regulates exocrine pancreatic epithelial proliferation by Mg2+-sensitive Socs3a signaling in development and cancer

    Directory of Open Access Journals (Sweden)

    Nelson S. Yee

    2011-03-01

    Genetic analysis of pancreatic development has provided new insights into the mechanisms underlying the formation of exocrine pancreatic neoplasia. Zebrafish sweetbread (swd mutants develop hypoplastic acini and dysmorphic ducts in the exocrine pancreas, with impeded progression of cell division cycle and of epithelial growth. Positional cloning and allelic complementation have revealed that the swd mutations affect the transient receptor potential melastatin-subfamily member 7 (trpm7 gene, which encodes a divalent cation-permeable channel with kinase activity. Supplementary Mg2+ partially rescued the exocrine pancreatic defects of the trpm7 mutants by improving cell-cycle progression and growth and repressing the suppressor of cytokine signaling 3a (socs3a gene. The role of Socs3a in Trpm7-mediated signaling is supported by the findings that socs3a mRNA level is elevated in the trpm7 mutants, and antisense inhibition of socs3a expression improved their exocrine pancreatic growth. TRPM7 is generally overexpressed in human pancreatic adenocarcinoma. TRPM7-deficient cells are impaired in proliferation and arrested in the G0-G1 phases of the cell division cycle. Supplementary Mg2+ rescued the proliferative defect of the TRPM7-deficient cells. Results of this study indicate that Trpm7 regulates exocrine pancreatic development via the Mg2+-sensitive Socs3a pathway, and suggest that aberrant TRPM7-mediated signaling contributes to pancreatic carcinogenesis.

  9. High salt loading induces urinary storage dysfunction via upregulation of epithelial sodium channel alpha in the bladder epithelium in Dahl salt-sensitive rats

    Directory of Open Access Journals (Sweden)

    Seiji Yamamoto

    2017-11-01

    Full Text Available We aimed to investigate whether high salt intake affects bladder function via epithelial sodium channel (ENaC by using Dahl salt-resistant (DR and salt-sensitive (DS rats. Bladder weight of DR + high-salt diet (HS, 8% NaCl and DS + HS groups were significantly higher than those of DR + normal-salt diet (NS, 0.3% NaCl and DS + NS groups after one week treatment. We thereafter used only DR + HS and DS + HS group. Systolic and diastolic blood pressures were significantly higher in DS + HS group than in DR + HS group after the treatment period. Cystometrogram showed the intercontraction intervals (ICI were significantly shorter in DS + HS group than in DR + HS group during infusion of saline. Subsequent infusion of amiloride significantly prolonged ICI in DS + HS group, while no intra-group difference in ICI was observed in DR + HS group. No intra- or inter-group differences in maximum intravesical pressure were observed. Protein expression levels of ENaCα in the bladder were significantly higher in DS + HS group than in DR + HS group. ENaCα protein was localized at bladder epithelium in both groups. In conclusion, high salt intake is considered to cause urinary storage dysfunction via upregulation of ENaC in the bladder epithelium with salt-sensitive hypertension, suggesting that ENaC might be a candidate for therapeutic target for urinary storage dysfunction.

  10. A Synthetic Lethality Screen Using a Focused siRNA Library to Identify Sensitizers to Dasatinib Therapy for the Treatment of Epithelial Ovarian Cancer.

    Directory of Open Access Journals (Sweden)

    Harsh B Pathak

    Full Text Available Molecular targeted therapies have been the focus of recent clinical trials for the treatment of patients with recurrent epithelial ovarian cancer (EOC. The majority have not fared well as monotherapies for improving survival of these patients. Poor bioavailability, lack of predictive biomarkers, and the presence of multiple survival pathways can all diminish the success of a targeted agent. Dasatinib is a tyrosine kinase inhibitor of the Src-family kinases (SFK and in preclinical studies shown to have substantial activity in EOC. However, when evaluated in a phase 2 clinical trial for patients with recurrent or persistent EOC, it was found to have minimal activity. We hypothesized that synthetic lethality screens performed using a cogently designed siRNA library would identify second-site molecular targets that could synergize with SFK inhibition and improve dasatinib efficacy. Using a systematic approach, we performed primary siRNA screening using a library focused on 638 genes corresponding to a network centered on EGFR, HER2, and the SFK-scaffolding proteins BCAR1, NEDD9, and EFS to screen EOC cells in combination with dasatinib. We followed up with validation studies including deconvolution screening, quantitative PCR to confirm effective gene silencing, correlation of gene expression with dasatinib sensitivity, and assessment of the clinical relevance of hits using TCGA ovarian cancer data. A refined list of five candidates (CSNK2A1, DAG1, GRB2, PRKCE, and VAV1 was identified as showing the greatest potential for improving sensitivity to dasatinib in EOC. Of these, CSNK2A1, which codes for the catalytic alpha subunit of protein kinase CK2, was selected for additional evaluation. Synergistic activity of the clinically relevant inhibitor of CK2, CX-4945, with dasatinib in reducing cell proliferation and increasing apoptosis was observed across multiple EOC cell lines. This overall approach to improving drug efficacy can be applied to other

  11. A Unique Model System for Tumor Progression in GBM Comprising Two Developed Human Neuro-Epithelial Cell Lines with Differential Transforming Potential and Coexpressing Neuronal and Glial Markers

    Directory of Open Access Journals (Sweden)

    Anjali Shiras

    2003-11-01

    Full Text Available The molecular mechanisms involved in tumor progression from a low-grade astrocytoma to the most malignant glioblastoma multiforme (GBM have been hampered due to lack of suitable experimental models. We have established a model of tumor progression comprising of two cell lines derived from the same astrocytoma tumor with a set of features corresponding to low-grade glioma (as in HNGC-1 and high-grade GBM (as in HNGC-2. The HNGC-1 cell line is slowgrowing, contact-inhibited, nontumorigenic, and noninvasive, whereas HNGC-2 is a rapidly proliferating, anchorage-independent, highly tumorigenic, and invasive cell line. The proliferation of cell lines is independent of the addition of exogenous growth factors. Interestingly, the HNGC-2 cell line displays a near-haploid karyotype except for a disomy of chromosome 2. The two cell lines express the neuronal precursor and progenitor markers vimentin, nestin, MAP-2, and NFP160, as well as glial differentiation protein S100μ. The HNGC-1 cell line also expresses markers of mature neurons like Tuj1 and GFAP, an astrocytic differentiation marker, hence contributing toward a more morphologically differentiated phenotype with a propensity for neural differentiation in vitro. Additionally, overexpression of epidermal growth factor receptor and c-erbB2, and loss of fibronectin were observed only in the HNGC-2 cell line, implicating the significance of these pathways in tumor progression. This in vitro model system assumes importance in unraveling the cellular and molecular mechanisms in differentiation, transformation, and gliomagenesis.

  12. Polarisation-sensitive OCT is useful for evaluating retinal pigment epithelial lesions in patients with neovascular AMD.

    Science.gov (United States)

    Schütze, Christopher; Teleky, Katharina; Baumann, Bernhard; Pircher, Michael; Götzinger, Erich; Hitzenberger, Christoph K; Schmidt-Erfurth, Ursula

    2016-03-01

    To examine the reproducibility of lesion dimensions of the retinal pigment epithelium (RPE) in neovascular age-related macular degeneration (AMD) with polarisation-sensitive optical coherence tomography (PS-OCT), specifically imaging the RPE. Twenty-six patients (28 eyes) with neovascular AMD were included in this study, and examined by a PS-OCT prototype. Each patient was scanned five times at a 1-day visit. The PS-OCT B-scan located closest to the macular centre presenting with RPE atrophy was identified, and the longitudinal diameter of the lesion was quantified manually using AutoCAD 2008. This procedure was followed for the identical B-scan position in all five scans per eye and patient. Reproducibility of qualitative changes in PS-OCT was evaluated. Interobserver variability was assessed. Results were compared with intensity-based spectral-domain OCT (SD-OCT) imaging. Mean variability of all atrophy lesion dimensions was 0.10 mm (SD±=0.06 mm). Coefficient of variation (SD±/mean) was 0.06 on average (SD±=0.03). Interobserver variability assessment showed a mean difference of 0.02 mm across all patients regarding RPE lesion size evaluation (paired t test: p=0.38). Spearman correlation coefficient was r=0.98, p<0.001. Results revealed a good overall reproducibility of ∼90%. PS-OCT specifically detected the RPE in all eyes compared with conventional intensity-based SD-OCT that was not capable to clearly identify RPE atrophy in 25 eyes (89.3%, p<0.01). PS-OCT offers good reproducibility of RPE atrophy assessment in neovascular AMD, and may be suitable for precise RPE evaluation in clinical practice. PS-OCT unambiguously identifies RPE changes in choroidal neovascularisation compared with intensity-based SD-OCT that does not identify the RPE status reliably. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Mammaglobin B is an independent prognostic marker in epithelial ovarian cancer and its expression is associated with reduced risk of disease recurrence

    International Nuclear Information System (INIS)

    Tassi, Renata A; Todeschini, Paola; Romani, Chiara; Bandiera, Elisabetta; Zanotti, Laura; Pecorelli, Sergio; Santin, Alessandro D; Calza, Stefano; Ravaggi, Antonella; Bignotti, Eliana; Odicino, Franco E; Tognon, Germana; Donzelli, Carla; Falchetti, Marcella; Rossi, Elisa

    2009-01-01

    Traditional prognostic factors in epithelial ovarian cancer (EOC) are inadequate in predicting recurrence and long-term prognosis, but genome-wide cancer research has recently provided multiple potentially useful biomarkers. The gene codifying for Mammaglobin B (MGB-2) has been selected from our previous microarray analysis performed on 19 serous papillary epithelial ovarian cancers and its expression has been further investigated on multiple histological subtypes, both at mRNA and protein level. Since, to date, there is no information available on the prognostic significance of MGB-2 expression in cancer, the aim of this study was to determine its prognostic potential on survival in a large cohort of well-characterized EOC patients. MGB-2 expression was evaluated by quantitative real time-PCR in fresh-frozen tissue biopsies and was validated by immunohistochemistry in matched formalin fixed-paraffin embedded tissue samples derived from a total of 106 EOC patients and 27 controls. MGB-2 expression was then associated with the clinicopathologic features of the tumors and was correlated with clinical outcome. MGB-2 expression was found significantly elevated in EOC compared to normal ovarian controls, both at mRNA and protein level. A good correlation was detected between MGB-2 expression data obtained by the two different techniques. MGB-2 expressing tumors were significantly associated with several clinicopathologic characteristics defining a less aggressive tumor behavior. Univariate survival analysis revealed a decreased risk for cancer-related death, recurrence and disease progression in MGB-2-expressing patients (p < 0.05). Moreover, multivariate analysis indicated that high expression levels of MGB-2 transcript (HR = 0.25, 95%, 0.08–0.75, p = 0.014) as well as positive immunostaining for the protein (HR = 0.41, 95%CI, 0.17–0.99, p = 0.048) had an independent prognostic value for disease-free survival. This is the first report documenting that MGB-2

  14. Identification of BDNF sensitive electrophysiological markers of synaptic activity and their structural correlates in healthy subjects using a genetic approach utilizing the functional BDNF Val66Met polymorphism.

    Directory of Open Access Journals (Sweden)

    Fruzsina Soltész

    Full Text Available Increasing evidence suggests that synaptic dysfunction is a core pathophysiological hallmark of neurodegenerative disorders. Brain-derived neurotropic factor (BDNF is key synaptogenic molecule and targeting synaptic repair through modulation of BDNF signalling has been suggested as a potential drug discovery strategy. The development of such "synaptogenic" therapies depend on the availability of BDNF sensitive markers of synaptic function that could be utilized as biomarkers for examining target engagement or drug efficacy in humans. Here we have utilized the BDNF Val66Met genetic polymorphism to examine the effect of the polymorphism and genetic load (i.e. Met allele load on electrophysiological (EEG markers of synaptic activity and their structural (MRI correlates. Sixty healthy adults were prospectively recruited into the three genetic groups (Val/Val, Val/Met, Met/Met. Subjects also underwent fMRI, tDCS/TMS, and cognitive assessments as part of a larger study. Overall, some of the EEG markers of synaptic activity and brain structure measured with MRI were the most sensitive markers of the polymorphism. Met carriers showed decreased oscillatory activity and synchrony in the neural network subserving error-processing, as measured during a flanker task (ERN; and showed increased slow-wave activity during resting. There was no evidence for a Met load effect on the EEG measures and the polymorphism had no effects on MMN and P300. Met carriers also showed reduced grey matter volume in the anterior cingulate and in the (left prefrontal cortex. Furthermore, anterior cingulate grey matter volume, and oscillatory EEG power during the flanker task predicted subsequent behavioural adaptation, indicating a BDNF dependent link between brain structure, function and behaviour associated with error processing and monitoring. These findings suggest that EEG markers such as ERN and resting EEG could be used as BDNF sensitive functional markers in early

  15. Predictive diagnosis of radiation hazard and therapeutic sensitivity by polymorphic marker. Individualized dedicare standing on genome diagnosis

    International Nuclear Information System (INIS)

    Imai, Takashi

    2009-01-01

    In the field of cancer treatment, genome analysis can contribute to individualized medicare. For the purpose of practical application of the analysis in clinic, the author and coworkers have studied the relationships between the SNP on 118 candidate genetic regions related with radiation sensitivity and late effect of carbon ion radiotherapy (CIR), dysuria, in patients with prostate cancer, of which process and result hitherto are presented here. Subjects are 197 patients, most of whom were enrolled in the phase II clinical trial, and 227 healthy volunteers. Patients received CIR with total dose of 66.0 GyE at 20 fr./5 weeks, and were divided in two groups of the training 132 cases (grade 0 and 1 dysuria 3 months after CIR was observed in 109 and 23 cases, respectively), and subsequent test 65 cases (grade 0 and 1 or more, 56 and 9) for prediction. In the training set, analysis of AUC-ROC (area under the curve of receiver operating characteristic) revealed that 5 SNP markers of SART1, ID3, EPDR1, PAH and XRCC6 among analyzed genes were correlated with the dysuria. The prediction was shown to be true in the test set. In total 32 patients with the dysuria, 29 cases (90.6%) were found to have more than 3 risk genotypes above. Analysis in the whole patients thus revealed that there were about 30% of false positive cases, but 11.5% of them were found to have the late effect 6 months after CIR. Thus, genomic diagnosis will be a much more useful tool for individualized medicare not only in prediction of the late effect risk described here but also in selection of therapeutic modality involving the heavy ion radiotherapy. (K.T.)

  16. Highly sensitive in vitro methods for detection of residual undifferentiated cells in retinal pigment epithelial cells derived from human iPS cells.

    Directory of Open Access Journals (Sweden)

    Takuya Kuroda

    Full Text Available Human induced pluripotent stem cells (hiPSCs possess the capabilities of self-renewal and differentiation into multiple cell types, and they are free of the ethical problems associated with human embryonic stem cells (hESCs. These characteristics make hiPSCs a promising choice for future regenerative medicine research. There are significant obstacles, however, preventing the clinical use of hiPSCs. One of the most obvious safety issues is the presence of residual undifferentiated cells that have tumorigenic potential. To locate residual undifferentiated cells, in vivo teratoma formation assays have been performed with immunodeficient animals, which is both costly and time-consuming. Here, we examined three in vitro assay methods to detect undifferentiated cells (designated an in vitro tumorigenicity assay: soft agar colony formation assay, flow cytometry assay and quantitative real-time polymerase chain reaction assay (qRT-PCR. Although the soft agar colony formation assay was unable to detect hiPSCs even in the presence of a ROCK inhibitor that permits survival of dissociated hiPSCs/hESCs, the flow cytometry assay using anti-TRA-1-60 antibody detected 0.1% undifferentiated hiPSCs that were spiked in primary retinal pigment epithelial (RPE cells. Moreover, qRT-PCR with a specific probe and primers was found to detect a trace amount of Lin28 mRNA, which is equivalent to that present in a mixture of a single hiPSC and 5.0×10⁴ RPE cells. Our findings provide highly sensitive and quantitative in vitro assays essential for facilitating safety profiling of hiPSC-derived products for future regenerative medicine research.

  17. Use of human bronchial epithelial cells (BEAS-2B) to study immunological markers resulting from exposure to PM2.5 organic extract from Puerto Rico

    International Nuclear Information System (INIS)

    Fuentes-Mattei, Enrique; Rivera, Evasomary; Gioda, Adriana; Sanchez-Rivera, Diana; Roman-Velazquez, Felix R.; Jimenez-Velez, Braulio D.

    2010-01-01

    Fine particulate air pollutants, mainly their organic fraction, have been demonstrated to be associated with cardiovascular and respiratory health problems. Puerto Rico has been reported to have the highest prevalence of pulmonary diseases (e.g., asthma) in the United States. The aim of this study was to assess, for the first time, the immunological response of human bronchial epithelial cells (BEAS-2B) to organic extracts isolated from airborne particulate matter (PM 2.5 ) in Puerto Rico. Organic extracts from PM 2.5 collected throughout an 8-month period (2000-2001) were pooled (composite) in order to perform chemical analysis and biological activity testing. BEAS-2B cells were exposed to PM 2.5 organic extract to assess cytotoxicity, levels of cytokines and relative gene expression of MHC-II, hPXR and CYP3A5. Our findings show that organic PM 2.5 consist of toxic as well as bioactive components that can regulate the secretion of cytokines in BEAS-2B, which could modulate inflammatory response in the lung. Trace element analyses confirmed the presence of metals in organic extracts highlighting the relative high abundance of Cu and Zn in polar organic extracts. Polar organic extracts exhibited dose-dependant toxicity and were found to significantly induce the release of interleukin 6 (IL-6), IL-1β and IL-7 while significantly inhibiting the secretion of IL-8, G-CSF and MCP-1. Moreover, MHC-II transcriptional activity was up-regulated after 24 h of exposure, whereas PXR and CYP3A5 were down-regulated. This research provides a new insight into the effects of PM 2.5 organic fractions on specific effectors and their possible role in the development of respiratory inflammatory diseases in Puerto Rico.

  18. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xuejiao [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China); Jiaojiang District Center for Disease Control and Prevention, 518 Jingdong Rd., Taizhou 318000 (China); Zhang, Zhan; Wang, Xichen; Wang, Yun; Zhang, Xiaoming; Lu, Huiyuan [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China); Wang, Shou-Lin, E-mail: wangshl@njmu.edu.cn [Key Lab of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 818 East Tiangyuan Rd., Nanjing 211166 (China)

    2013-07-15

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose- and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8

  19. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    International Nuclear Information System (INIS)

    Yang, Xuejiao; Zhang, Zhan; Wang, Xichen; Wang, Yun; Zhang, Xiaoming; Lu, Huiyuan; Wang, Shou-Lin

    2013-01-01

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose- and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8

  20. Region-specific role for Pten in maintenance of epithelial phenotype and integrity

    Science.gov (United States)

    Flodby, Per; Sunohara, Mitsuhiro; Castillo, Dan R.; McConnell, Alicia M.; Krishnaveni, Manda S.; Banfalvi, Agnes; Li, Min; Stripp, Barry; Zhou, Beiyun; Crandall, Edward D.; Minoo, Parviz

    2017-01-01

    Previous studies have demonstrated resistance to naphthalene-induced injury in proximal airways of mice with lung epithelial-specific deletion of the tumor-suppressor gene Pten, attributed to increased proliferation of airway progenitors. We tested effects of Pten loss following bleomycin injury, a model typically used to study distal lung epithelial injury, in conditional PtenSFTPC-cre knockout mice. Pten-deficient airway epithelium exhibited marked hyperplasia, particularly in small bronchioles and at bronchoalveolar duct junctions, with reduced E-cadherin and β-catenin expression between cells toward the luminal aspect of the hyperplastic epithelium. Bronchiolar epithelial and alveolar epithelial type II (AT2) cells in PtenSFTPC-cre mice showed decreased expression of epithelial markers and increased expression of mesenchymal markers, suggesting at least partial epithelial-mesenchymal transition at baseline. Surprisingly, and in contrast to previous studies, mutant mice were exquisitely sensitive to bleomycin, manifesting rapid weight loss, respiratory distress, increased early mortality (by day 5), and reduced dynamic lung compliance. This was accompanied by sloughing of the hyperplastic airway epithelium with occlusion of small bronchioles by cellular debris, without evidence of increased parenchymal lung injury. Increased airway epithelial cell apoptosis due to loss of antioxidant defenses, reflected by decreased expression of superoxide dismutase 3, in combination with deficient intercellular adhesion, likely predisposed to airway sloughing in knockout mice. These findings demonstrate an important role for Pten in maintenance of airway epithelial phenotype integrity and indicate that responses to Pten deletion in respiratory epithelium following acute lung injury are highly context-dependent and region-specific. PMID:27864284

  1. Marker evaluation for differentiation of blood and menstrual fluid by methylation-sensitive SNaPshot analysis.

    Science.gov (United States)

    Holtkötter, Hannah; Schwender, Kristina; Wiegand, Peter; Pfeiffer, Heidi; Vennemann, Marielle

    2018-03-01

    The differentiation of blood and menstrual fluid is especially important in cases of alleged sexual assault. While the identification of blood is relatively straightforward, the identification of menstrual fluid in trace evidence has been shown to be more challenging. This may be due to the complex nature of menstrual fluid that leads to intra- and inter-individual differences in composition. Nevertheless, recent advances in DNA methylation profiling have revealed promising markers for the differentiation of the two body fluids and furthermore, markers to distinguish menstrual fluid from vaginal fluid. A literature study was performed and in total, 11 markers were evaluated in this study of which seven could be validated for menstrual fluid and blood identification purposes. Marker "BLU2" (chr16:29757334) was identified as most suitable for differentiation of blood and menstrual fluid.

  2. Grammatical morphology is not a sensitive marker of language impairment in Icelandic in children aged 4-14 years.

    Science.gov (United States)

    Thordardottir, Elin

    2016-01-01

    Grammatical morphology continues to be widely regarded as an area of extraordinary difficulty in children with Specific Language Impairment (SLI). A main argument for this view is the purported high diagnostic accuracy of morphological errors for the identification of SLI. However, findings are inconsistent across age groups and across languages. Studies show morphological difficulty to be far less pronounced in more highly inflected languages and the diagnostic accuracy of morphology in such languages is largely unknown. This study examines the morphological use of Icelandic children with and without SLI in a cross-sectional sample of children ranging from preschool age to adolescence and assesses the usefulness of morphology as a clinical marker to identify SLI. Participants were 57 monolingual Icelandic-speaking children age 4-14 years; 31 with SLI and 26 with typical language development (TD). Spontaneous language samples were coded for correct and incorrect use of grammatical morphology. The diversity of use of grammatical morphemes was documented for each group at different age and MLU levels. Individual accuracy scores were plotted against age as well as MLU and diagnostic accuracy was calculated. MLU and morphological accuracy increased with age for both children with SLI and TD, with the two groups gradually approaching each other. Morphological diversity and sequence of acquisition was similar across TD and SLI groups compared based on age or MLU. Morphological accuracy was overall high, but was somewhat lower in the SLI group, in particular at ages below 12 years and MLU levels below 6.0. However, overlap between the groups was important in all age groups, involving a greater tendency for errors in both groups at young ages and scores close to or at ceiling at older ages. Sensitivity rates as well as likelihood ratios for each morpheme were all below the range considered acceptable for clinical application, whereas better specificity rates in some age

  3. Overfeeding reduces insulin sensitivity and increases oxidative stress, without altering markers of mitochondrial content and function in humans.

    Directory of Open Access Journals (Sweden)

    Dorit Samocha-Bonet

    Full Text Available Mitochondrial dysfunction and increased oxidative stress are associated with obesity and type 2 diabetes. High fat feeding induces insulin resistance and increases skeletal muscle oxidative stress in rodents, but there is controversy as to whether skeletal muscle mitochondrial biogenesis and function is altered.Forty (37 ± 2 y non-obese (25.6 ± 0.6 kg/m(2 sedentary men (n = 20 and women (n = 20 were overfed (+1040 ± 100 kcal/day, 46 ± 1% of energy from fat for 28 days. Hyperinsulinemic-euglycemic clamps were performed at baseline and day 28 of overfeeding and skeletal muscle biopsies taken at baseline, day 3 and day 28 of overfeeding in a sub cohort of 26 individuals (13 men and 13 women that consented to having all 3 biopsies performed. Weight increased on average in the whole cohort by 0.6 ± 0.1 and 2.7 ± 0.3 kg at days 3 and 28, respectively (P<0.0001, without a significant difference in the response between men and women (P = 0.4. Glucose infusion rate during the hyperinsulinemic-euglycemic clamp decreased from 54.8 ± 2.8 at baseline to 50.3 ± 2.5 µmol/min/kg FFM at day 28 of overfeeding (P = 0.03 without a significant difference between men and women (P = 0.4. Skeletal muscle protein carbonyls and urinary F2-isoprostanes increased with overfeeding (P<0.05. Protein levels of muscle peroxisome proliferator-activated receptor gamma coactivator-1α (PGC1α and subunits from complex I, II and V of the electron transport chain were increased at day 3 (all P<0.05 and returned to basal levels at day 28. No changes were detected in muscle citrate synthase activity or ex vivo CO(2 production at either time point.Peripheral insulin resistance was induced by overfeeding, without reducing any of the markers of mitochondrial content that were examined. Oxidative stress was however increased, and may have contributed to the reduction in insulin sensitivity observed.

  4. A comparison of osteoprotegerin with adiponectin and high-sensitivity C-reactive protein (hsCRP) as a marker for insulin resistance.

    LENUS (Irish Health Repository)

    O'Sullivan, Eoin P

    2013-01-01

    Insulin resistance (IR) is associated with low adiponectin and elevated high sensitivity C-reactive protein (hsCRP). Osteoprotegerin (OPG) has been shown to be elevated in type 2 diabetes, but whether it reflects underlying IR is unclear. We aimed to compare the ability of serum OPG with adiponectin and hsCRP to act as a marker for IR in individuals with normal and abnormal glucose tolerance.

  5. Effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile and inflammation markers in metabolic syndrome - a randomized study (SYSDIET)

    DEFF Research Database (Denmark)

    Uusitupa, M; Hermansen, Kjeld; Savolainen, M J

    2013-01-01

    BACKGROUND: Different healthy food patterns may modify cardiometabolic risk. We investigated the effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile, blood pressure and inflammatory markers in people with metabolic syndrome. METHODS: We conducted a randomized dietary...... by repeated 4-day food diaries and fatty acid composition of serum phospholipids. RESULTS: Body weight remained stable, and no significant changes were observed in insulin sensitivity or blood pressure. Significant changes between the groups were found in non-HDL cholesterol (-0.18, mmol L-1 95% CI -0.35; -0...

  6. Menadione (Vitamin K3) induces apoptosis of human oral cancer cells and reduces their metastatic potential by modulating the expression of epithelial to mesenchymal transition markers and inhibiting migration.

    Science.gov (United States)

    Suresh, Shruthy; Raghu, Dinesh; Karunagaran, Devarajan

    2013-01-01

    Oral cancer is one of the most commonly occurring cancers worldwide, decreasing the patient's survival rate due to tumor recurrence and metastasis. Menadione (Vitamin K3) is known to exhibit cytotoxicity in various cancer cells but the present study focused on its effects on viability, apoptosis, epithelial to mesenchymal transition (EMT), anchorage independent growth and migration of oral cancer cells. The results show that menadione is more cytotoxic to SAS (oral squamous carcinoma) cells but not to non-tumorigenic HEK293 and HaCaT cells. Menadione treatment increased the expression of pro-apoptotic proteins, Bax and p53, with a concurrent decrease in anti-apoptotic proteins, Bcl-2 and p65. Menadione induced the expression of E-cadherin but reduced the expression of EMT markers, vimentin and fibronectin. Menadione also inhibited anchorage independent growth and migration in SAS cells. These findings reveal and confirm that menadione is a potential candidate in oral cancer therapy as it exhibits cytotoxic, antineoplastic and antimigratory effects besides effectively blocking EMT in oral cancer cells.

  7. FOXN1GFP/w Reporter hESCs Enable Identification of Integrin-β4, HLA-DR, and EpCAM as Markers of Human PSC-Derived FOXN1+ Thymic Epithelial Progenitors

    Directory of Open Access Journals (Sweden)

    Chew-Li Soh

    2014-06-01

    Full Text Available Thymic epithelial cells (TECs play a critical role in T cell maturation and tolerance induction. The generation of TECs from in vitro differentiation of human pluripotent stem cells (PSCs provides a platform on which to study the mechanisms of this interaction and has implications for immune reconstitution. To facilitate analysis of PSC-derived TECs, we generated hESC reporter lines in which sequences encoding GFP were targeted to FOXN1, a gene required for TEC development. Using this FOXN1GFP/w line as a readout, we developed a reproducible protocol for generating FOXN1-GFP+ thymic endoderm cells. Transcriptional profiling and flow cytometry identified integrin-β4 (ITGB4, CD104 and HLA-DR as markers that could be used in combination with EpCAM to selectively purify FOXN1+ TEC progenitors from differentiating cultures of unmanipulated PSCs. Human FOXN1+ TEC progenitors generated from PSCs facilitate the study of thymus biology and are a valuable resource for future applications in regenerative medicine.

  8. IGF-1 levels across the spectrum of normal to elevated in acromegaly: relationship to insulin sensitivity, markers of cardiovascular risk and body composition.

    Science.gov (United States)

    Reid, Tirissa J; Jin, Zhezhen; Shen, Wei; Reyes-Vidal, Carlos M; Fernandez, Jean Carlos; Bruce, Jeffrey N; Kostadinov, Jane; Post, Kalmon D; Freda, Pamela U

    2015-12-01

    Activity of acromegaly is gauged by levels of GH and IGF-1 and epidemiological studies demonstrate that their normalization reduces acromegaly's excess mortality rate. However, few data are available linking IGF-1 levels to features of the disease that may relate to cardiovascular (CV) risk. Therefore, we tested the hypothesis that serum IGF-1 levels relative to the upper normal limit relate to insulin sensitivity, serum CV risk markers and body composition in acromegaly. In this prospective, cross-sectional study conducted at a pituitary tumor referral center we studied 138 adult acromegaly patients, newly diagnosed and previously treated surgically, with fasting and post-oral glucose levels of endocrine and CV risk markers and body composition assessed by DXA. Active acromegaly is associated with lower insulin sensitivity, body fat and CRP levels than acromegaly in remission. %ULN IGF-1 strongly predicts insulin sensitivity, better than GH and this persists after adjustment for body fat and lean tissue mass. %ULN IGF-1 also relates inversely to CRP levels and fat mass, positively to lean tissue and skeletal muscle estimated (SM(E)) by DXA, but not to blood pressure, lipids, BMI or waist circumference. Gender interacts with the IGF-1-lean tissue mass relationship. Active acromegaly presents a unique combination of features associated with CV risk, reduced insulin sensitivity yet lower body fat and lower levels of some serum CV risk markers, a pattern that is reversed in remission. %ULN IGF-1 levels strongly predict these features. Given the known increased CV risk of active acromegaly, these findings suggest that of these factors insulin resistance is most strongly related to disease activity and potentially to the increased CV risk of active acromegaly.

  9. Isolation and characterization of a primary proximal tubular epithelial cell model from human kidney by CD10/CD13 double labeling.

    Directory of Open Access Journals (Sweden)

    Cynthia Van der Hauwaert

    Full Text Available Renal proximal tubular epithelial cells play a central role in renal physiology and are among the cell types most sensitive to ischemia and xenobiotic nephrotoxicity. In order to investigate the molecular and cellular mechanisms underlying the pathophysiology of kidney injuries, a stable and well-characterized primary culture model of proximal tubular cells is required. An existing model of proximal tubular cells is hampered by the cellular heterogeneity of kidney; a method based on cell sorting for specific markers must therefore be developed. In this study, we present a primary culture model based on the mechanical and enzymatic dissociation of healthy tissue obtained from nephrectomy specimens. Renal epithelial cells were sorted using co-labeling for CD10 and CD13, two renal proximal tubular epithelial markers, by flow cytometry. Their purity, phenotypic stability and functional properties were evaluated over several passages. Our results demonstrate that CD10/CD13 double-positive cells constitute a pure, functional and stable proximal tubular epithelial cell population that displays proximal tubule markers and epithelial characteristics over the long term, whereas cells positive for either CD10 or CD13 alone appear to be heterogeneous. In conclusion, this study describes a method for establishing a robust renal proximal tubular epithelial cell model suitable for further experimentation.

  10. Methylation-sensitive amplified polymorphism (MSAP) marker to investigate drought-stress response in Montepulciano and Sangiovese grape cultivars.

    Science.gov (United States)

    Albertini, Emidio; Marconi, Gianpiero

    2014-01-01

    Methylation-sensitive amplified polymorphism (MSAP) is a technique developed for assessing the extent and pattern of cytosine methylation and has been applied to genomes of several species (Arabidopsis, grape, maize, tomato, and pepper). The technique relies on the use of isoschizomers that differ in their sensitivity to methylation.

  11. Systematic evaluation of candidate blood markers for detecting ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Chana Palmer

    2008-07-01

    Full Text Available Epithelial ovarian cancer is a significant cause of mortality both in the United States and worldwide, due largely to the high proportion of cases that present at a late stage, when survival is extremely poor. Early detection of epithelial ovarian cancer, and of the serous subtype in particular, is a promising strategy for saving lives. The low prevalence of ovarian cancer makes the development of an adequately sensitive and specific test based on blood markers very challenging. We evaluated the performance of a set of candidate blood markers and combinations of these markers in detecting serous ovarian cancer.We selected 14 candidate blood markers of serous ovarian cancer for which assays were available to measure their levels in serum or plasma, based on our analysis of global gene expression data and on literature searches. We evaluated the performance of these candidate markers individually and in combination by measuring them in overlapping sets of serum (or plasma samples from women with clinically detectable ovarian cancer and women without ovarian cancer. Based on sensitivity at high specificity, we determined that 4 of the 14 candidate markers--MUC16, WFDC2, MSLN and MMP7--warrant further evaluation in precious serum specimens collected months to years prior to clinical diagnosis to assess their utility in early detection. We also reported differences in the performance of these candidate blood markers across histological types of epithelial ovarian cancer.By systematically analyzing the performance of candidate blood markers of ovarian cancer in distinguishing women with clinically apparent ovarian cancer from women without ovarian cancer, we identified a set of serum markers with adequate performance to warrant testing for their ability to identify ovarian cancer months to years prior to clinical diagnosis. We argued for the importance of sensitivity at high specificity and of magnitude of difference in marker levels between cases and

  12. EGCG Suppresses ERK5 Activation to Reverse Tobacco Smoke-Triggered Gastric Epithelial-Mesenchymal Transition in BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Ling Lu

    2016-07-01

    Full Text Available Tobacco smoke is an important risk factor of gastric cancer. Epithelial-mesenchymal transition is a crucial pathophysiological process in cancer development. ERK5 regulation of epithelial-mesenchymal transition may be sensitive to cell types and/or the cellular microenvironment and its role in the epithelial-mesenchymal transition process remain elusive. Epigallocatechin-3-gallate (EGCG is a promising chemopreventive agent for several types of cancers. In the present study we investigated the regulatory role of ERK5 in tobacco smoke-induced epithelial-mesenchymal transition in the stomach of mice and the preventive effect of EGCG. Exposure of mice to tobacco smoke for 12 weeks reduced expression of epithelial markers E-cadherin, ZO-1, and CK5, while the expression of mesenchymal markers Snail-1, Vimentin, and N-cadherin were increased. Importantly, we demonstrated that ERK5 modulated tobacco smoke-mediated epithelial-mesenchymal transition in mice stomach, as evidenced by the findings that tobacco smoke elevated ERK5 activation, and that tobacco smoke-triggered epithelial-mesenchymal transition was reversed by ERK5 inhibition. Treatment of EGCG (100 mg/kg BW effectively attenuated tobacco smoke-triggered activation of ERK5 and epithelial-mesenchymal transition alterations in mice stomach. Collectively, these data suggested that ERK5 was required for tobacco smoke-triggered gastric epithelial-mesenchymal transition and that EGCG suppressed ERK5 activation to reverse tobacco smoke-triggered gastric epithelial-mesenchymal transition in BALB/c mice. These findings provide new insights into the mechanism of tobacco smoke-associated gastric tumorigenesis and the chemoprevention of tobacco smoke-associated gastric cancer.

  13. Sensitive voltammetric detection of DNA damage at carbon electrodes using DNA repair enzymes and an electroactive osmium marker

    Czech Academy of Sciences Publication Activity Database

    Havran, Luděk; Vacek, Jan; Cahová, Kateřina; Fojta, Miroslav

    2008-01-01

    Roč. 391, č. 5 (2008), s. 1751-1758 ISSN 1618-2642 R&D Projects: GA AV ČR(CZ) IAA4004402; GA AV ČR(CZ) IAA400040611; GA ČR(CZ) GA203/07/1195; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : DNA damage * electroactive marker * carbon electrodes Subject RIV: BO - Biophysics Impact factor: 3.328, year: 2008

  14. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging.

    Science.gov (United States)

    Lee, Sangyeop; Chon, Hyangah; Lee, Jiyoung; Ko, Juhui; Chung, Bong Hyun; Lim, Dong Woo; Choo, Jaebum

    2014-01-15

    We report a surface-enhanced Raman scattering (SERS)-based cellular imaging technique to detect and quantify breast cancer phenotypic markers expressed on cell surfaces. This technique involves the synthesis of SERS nano tags consisting of silica-encapsulated hollow gold nanospheres (SEHGNs) conjugated with specific antibodies. Hollow gold nanospheres (HGNs) enhance SERS signal intensity of individual particles by localizing surface electromagnetic fields through pinholes in the hollow particle structures. This capacity to enhance imaging at the level of single molecules permits the use of HGNs to detect specific biological markers expressed in living cancer cells. In addition, silica encapsulation greatly enhances the stability of nanoparticles. Here we applied a SERS-based imaging technique using SEHGNs in the multiplex imaging of three breast cancer cell phenotypes. Expression of epidermal growth factor (EGF), ErbB2, and insulin-like growth factor-1 (IGF-1) receptors were assessed in the MDA-MB-468, KPL4 and SK-BR-3 human breast cancer cell lines. SERS imaging technology described here can be used to test the phenotype of a cancer cell and quantify proteins expressed on the cell surface simultaneously. Based on results, this technique may enable an earlier diagnosis of breast cancer than is currently possible and offer guidance in treatment. © 2013 Elsevier B.V. All rights reserved.

  15. Is immunotherapy-induced birch-pollen-specific IgG4 a marker for decreased allergen-specific sensitivity?

    DEFF Research Database (Denmark)

    Bodtger, U; Ejrnaes, A M; Hummelshoj, L

    2005-01-01

    The role of IgG4 during allergen-specific immunotherapy (SIT) is still controversial. The available studies present paramount differences in in vitro techniques, allergens, and clinical outcome parameters. By implementing a sensitive method, and pivotal clinical outcome parameters, we wanted to a...

  16. Dye sensitized photoelectrochemical immunosensor for the tumor marker CEA by using a flower-like 3D architecture prepared from graphene oxide and MoS2.

    Science.gov (United States)

    Song, Kaijing; Ding, Chuanmin; Zhang, Bing; Chang, Honghong; Zhao, Zhihuan; Wei, Wenlong; Wang, Junwen

    2018-06-01

    The authors describe a dye-sensitized photoelectrochemical immunoassay for the tumor marker carcinoembryonic antigen (CEA). The method employs the rhodamine dye Rh123 with red color and absorption maximum at 500 nm for spectral sensitization, and a 3D nanocomposite prepared from graphene oxide and MoS 2 acting as the photoelectric conversion layer. The nanocomposite with flower-like 3D architectures was characterized by transmission electron microscopy, scanning electron microscopy, X-ray powder diffraction, and UV-vis diffuse reflectometry. A photoelectrochemical sandwich immunoassay was developed that is based on the use of the nanocomposite and based on the specific binding of antibody and antigen, and by using a secondary antibody labeled with Rh123 and CdS (Ab 2 -Rh123@CdS). Under optimal conditions and at a typical working voltage of 0 V (vs. Hg/HgCl 2 ), the photocurrent increases linearly 10 pg mL -1 to 80 ng mL -1 CEA concentration range, with a 3.2 pg mL -1 detection limit. Graphical abstract Flower-like GO-MoS 2 complex with high efficiency of electron transport was synthesized to construct photoelectrochemical platform. The sandwich-type immunoassay was built on this platform based on specific binding of antigen and antibody. Carcinoembryonic antigen in sample was detected sensitively by using sensitization of rhodamine dye Rh123 as signal amplification strategy.

  17. THE DIFFERENCE OF MAP1LC3 LEVEL AS MACROPHAGE AUTOPHAGY MARKER BETWEEN RESISTANT AND SENSITIVE TUBERCULOSIS PATIENTS ON RIFAMPICIN

    Directory of Open Access Journals (Sweden)

    Dian novita W

    2018-04-01

    Full Text Available Mycobacterium tuberculosis (MTB is an intracelular bacteria that live in the host macrophage cells. Several organs can be affected by tuberculosis but most major illnesses are lung diseases. Immediately after infection, MTB will be phagocytosed by the alveolar macrophage cells and can survive in the phagosome. The macrophage plays a role in innate immunity towards an infection using autophagy by removing the microbe directly via phagocytosis. When bacteria phagocytosized, vacuole membrane formed double membranes called autophagosome, and followed by degradation by lysosome, which known as autolysosome. Induction of autophagy can be observed on the formation of microtubule-associated proteins 1B lightchain 3B (MAP1LC3B/LC3. MAP1LC3B is protein that have role at autophagic way for selection autophagy substrate and biogenesis. In this study we are used serum from patients TB with rifampicin resistant and rifampicin sensitive as control. Samples were divided using gene expert to differentiate between resistant and sensitive rifampicin.This research aims to compare MAP1LC3B levels in resistant and sensitive rifampicin to study macrophages respond in autophagic way in tuberculosis patients, and give information for define therapy plan to improve therapy for MDR-TB patients. Type of this research is a case control study design with cross sectional research with each groups sample is 19 from age 18-65 years old. Result, MAP1LC3B serum levels on the rifampicin resistant group are lower compared to rifampicin sensitive group. This occur because MTB is able to hide and evade innate immune defense mechanisms. MTB can maintain intracellular growth inside the phagosome by inhibiting phagolysosome formation in autophagy process especially inhibit MAP1LC3B formation by PDIM.

  18. Hepcidin as a possible marker in determination of malignancy degree and sensitivity of breast cancer cells to cytostatic drugs.

    Science.gov (United States)

    Yalovenko, T M; Todor, I M; Lukianova, N Y; Chekhun, V F

    2016-06-01

    To investigate the role of hepcidin (Hepc) in the formation of cells malignant phenotype in vitro and its expression in the dyna-mics of growth of Walker-256 carcinosarcoma with different sensitivity to doxorubicin (Dox). The cell lines used in the analysis included T47D, MCF-7, MDA-MB-231, MDA-MB-468, MCF/CP, and MCF/Dox. Hepc expression was studied by immunocytochemical method. "Free" iron content was determined by EPR spectroscopy. Determination of Hepc expression in homogenates of tumor tissue and in blood serum of rats with Dox-sensitive and -resistant Walker-256 carcinosarcoma was performed. It was found that Hepc levels in breast cancer (BC) cells with high degree of malignancy (MDA-MB-231, MDA-MB-468) and drug-resistant phenotype (MCF/CP, MCF/Dox) were by 1.5-2 times higher (p < 0.05) in comparison with sensitive and less malignant BC cells. The development of drug-resistant phenotype in Walker-256 carcinosarcoma cells was accompanied by increasing of Hepc and "free" iron content (by 2.4 and 1.2 times, respectively). The data of in vitro and in vivo research evidenced on involvement of Hepc in formation of BC cells malignant phenotype and their resistance to Dox.

  19. Allergic sensitization

    DEFF Research Database (Denmark)

    van Ree, Ronald; Hummelshøj, Lone; Plantinga, Maud

    2014-01-01

    Allergic sensitization is the outcome of a complex interplay between the allergen and the host in a given environmental context. The first barrier encountered by an allergen on its way to sensitization is the mucosal epithelial layer. Allergic inflammatory diseases are accompanied by increased pe...

  20. Sensitive and specific markers for insulin resistance, hyperandrogenemia, and inappropriate gonadotrophin secretion in women with polycystic ovary syndrome: a case-control study from Bahrain

    Directory of Open Access Journals (Sweden)

    Al-Ayadhi MA

    2012-05-01

    .989, FAI (AUC = 0.932; CI: 0.895–0.993, SHBG (AUC = 0.924; CI: 0.87–0.978, and LH/FSH ratios (AUC = 0.906; CI: 0.821–0.965.Conclusion: For insulin and LH/FSH ratios, FAI, and SHBG seemed the best predictors and markers for insulin resistance, inappropriate gonadotrophin secretion, and hyperandrogenemia, respectively, with high sensitivity and specificity for identifying Bahraini women with and without PCOS.Keywords: polycystic ovary syndrome, insulin resistance, gonadotrophin, hyperandrogenemia, diagnostic markers

  1. Stop Saying That It Is Wrong! Psychophysiological, Cognitive, and Metacognitive Markers of Children’s Sensitivity to Punishment

    Science.gov (United States)

    Gonzalez-Gadea, Maria Luz; Scheres, Anouk; Tobon, Carlos Andres; Damm, Juliane; Baez, Sandra; Huepe, David; Marino, Julian; Marder, Sandra; Manes, Facundo; Abrevaya, Sofia; Ibanez, Agustin

    2015-01-01

    Neurodevelopmental evidence suggests that children’s main decision-making strategy is to avoid options likely to induce punishment. However, the cognitive and affective factors contributing to children’s avoidance to high punishment frequency remain unknown. The present study explored psychophysiological, cognitive, and metacognitive processes associated with sensitivity to punishment frequency. We evaluated 54 participants (between 8 and 15 years old) with a modified Iowa Gambling Task for children (IGT-C) which included options with varying long-term profit and punishment frequencies. Skin conductance responses (SCRs) were recorded during this task. Additionally, we assessed IGT-C metacognitive knowledge, fluid intelligence, and executive functions. Participants exhibited behavioral avoidance and high anticipatory SCRs to options with high frequency of punishment. Moreover, age, IGT-C metacognitive knowledge, and inhibitory control were associated with individual differences in sensitivity to punishment frequency. Our results suggest that children’s preference for infrequently punished decisions is partially explained by psychophysiological signals as well as task complexity and development of cognitive control. PMID:26218584

  2. Correlation of MCP-4 and high-sensitivity C-reactive protein as a marker of inflammation in obesity and chronic periodontitis.

    Science.gov (United States)

    Pradeep, A R; Kumari, Minal; Kalra, Nitish; Priyanka, N

    2013-03-01

    Obesity is increasing in prevalence worldwide and has emerged as a strong risk factor for periodontal disease. Conversely, the remote effects of periodontal disease on various systemic diseases have been proposed. The aim of this study is to determine the presence of MCP-4 and high sensitivity C reactive protein (hsCRP) levels in gingival crevicular fluid (GCF) and serum in obese and non-obese subjects with chronic periodontitis and to find a correlation between MCP-4 and hsCRP in GCF and serum. Forty subjects (20 males and 20 females) were selected and divided into four groups (10 subjects in each group), based on clinical parameters: group NOH (non-obese healthy), group OH (obese healthy), Group NOCP (non-obese with chronic periodontitis) and group OCP (obese with chronic periodontitis). The levels of serum and GCF MCP-4 were determined by ELISA and hsCRP levels were determined by immunoturbidimetry method. The mean GCF and serum concentration of MCP-4 was highest for group OCP followed by group NOCP, group OH (in GCF); group OH, group NOCP(in serum) and least in group NOH. The mean hsCRP concentration was highest for group OCP followed by group OH, group NOCP and group NOH. A significant positive correlation was found between serum and GCF MCP-4 and hsCRP levels. GCF MCP-4 concentrations increased in periodontal disease compared to health and correlated positively with the severity of disease indicating it as a novel marker of periodontal disease. The serum concentration of MCP-4 was found to be more in obese group as compared to nonobese group indicating it as a marker of obesity. Furthermore, based on the positive correlation of MCP-4 and hsCRP found in this study, it can be proposed that MCP-4 and hsCRP may be the markers linking chronic inflammation in obesity and periodontal disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Improving Blast Resistance of a Thermo-Sensitive Genic Male Sterile Rice Line GD-8S by Molecular Marker-Assisted Selection

    Directory of Open Access Journals (Sweden)

    Wu-ge LIU

    2008-09-01

    Full Text Available The broad-spectrum blast resistance gene Pi-1, from donor line BL122, was introduced into a thermo-sensitive genic male sterile rice line GD-8S, which possessed good grain quality but high susceptibility to rice blast, by using backcross breeding and molecular marker-assisted selection. Five elite improved male sterile lines, RGD8S-1, RGD8S-2, RGD8S-3, RGD8S-4 and RGD8S-5, were selected based on the results of molecular marker analysis, spikelet sterility, recovery rate of genetic background and agronomic traits. Thirty-three representative blast isolates collected from Guangdong Province, China were used to inoculate the improved lines and the original line GD-8S artificially. The resistance frequencies of the improved lines ranged from 76.47% to 100%, much higher than that of the original line GD-8S (9.09%. On the agronomic characters, there were no significant differences between the improved lines and GD-8S except for flag leaf length and panicle number per plant. The improved lines could be used for breeding hybrid rice with high blast resistance.

  4. High-sensitive CRP as a predictive marker of long-term outcome in juvenile idiopathic arthritis

    DEFF Research Database (Denmark)

    Alberdi-Saugstrup, Mikel; Zak, Marek; Nielsen, Susan

    2017-01-01

    To evaluate whether C-reactive protein (CRP), including variation within the normal range, is predictive of long-term disease outcome in Juvenile Idiopathic Arthritis (JIA). Consecutive patients with newly diagnosed JIA were included prospectively from defined geographic areas of the Nordic...... countries from 1997 to 2000. Inclusion criteria were availability of a baseline serum sample within 12 months after disease onset and 8-year clinical assessment data. Systemic onset JIA was not included. CRP was measured by high-sensitive ELISA (detection limit of 0.2 mg/l). One hundred and thirty...... participants with a median follow-up time of 97 months (range 95–100) were included. At follow-up, 38% of the patients were in remission off medication. Absence of remission was associated with elevated level of CRP at baseline (odds ratio (OR) 1.33, confidence interval (CI) 1.08–1.63, p = 0.007). By applying...

  5. Electrodeposition of gold-platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker

    Energy Technology Data Exchange (ETDEWEB)

    Li Ya [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chai Yaqin; Song Zhongju [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2011-07-30

    Graphical abstract: Electrodeposition of gold-platinum alloy (Au-PtNPs) on carbon nanotubes as electrochemical sensing interface and HRP as blocking agent for the fabrication of high sensitive immunosensor. Display Omitted Highlights: > In this work, we proposed a novel electrochemical sensing surface. > The sensing surface possessed larger electro-active areas and higher conductivity due to the introduction of MWCNTs. > The signal could be amplified effectively by synergetic catalysis effect of Au-PtNPs and HRP towards the reduction of H{sub 2}O{sub 2}. > Biomolecules could be immobilized on the surface of Au-PtNPs tightly with the bioactivity kept well. > The simple fabrication method provided a new potential for the future development of practical devices for clinical diagnosis application. - Abstract: A novel electrochemical sensing interface, electrodeposition of gold-platinum alloy nanoparticles (Au-PtNPs) on carbon nanotubes, was proposed and used to fabricate a label-free amperometric immunosensor. On the one hand, the multiwalled carbon nanotubes (MWCNTs) could increase active area of the electrode and enhance the electron transfer ability between the electrode and redox probe; on the other hand, the Au-PtNPs not only could be used to assemble biomolecules with bioactivity kept well, but also could further facilitate the shuttle of electrons. In the meanwhile, horseradish peroxidase (HRP) instead of bovine serum albumin (BSA) was employed to block the possible remaining active sites and avoid the nonspecific adsorption. With the synergetic catalysis effect of Au-PtNPs and HRP towards the reduction of hydrogen peroxide (H{sub 2}O{sub 2}), the signal could be amplified and the sensitivity could be enhanced. Using alpha-fetoprotein (AFP) as model analyte, the fabricated immunosensor exhibited two wide linear ranges in the concentration ranges of 0.5-20 ng mL{sup -1} and 20-200 ng mL{sup -1} with a detection limit of 0.17 ng mL{sup -1} at a signal-to-noise of

  6. Selection of antigenic markers on a GFP-Cκ fusion scaffold with high sensitivity by eukaryotic ribosome display

    International Nuclear Information System (INIS)

    Yang Yongmin; Barankiewicz, Teresa J.; He Mingyue; Taussig, Michael J.; Chen, Swey-Shen

    2007-01-01

    Ribosome display is a cell-free system permitting gene selection through the physical association of genetic material (mRNA) and its phenotypic (protein) product. While often used to select single-chain antibodies from large libraries by panning against immobilized antigens, we have adapted ribosome display for use in the 'reverse' format in order to select high affinity antigenic determinants against solid-phase antibody. To create an antigenic scaffold, DNA encoding green fluorescent protein (GFP) was fused to a light chain constant domain (Cκ) with stop codon deleted, and with 5' signals (T7 promoter, Kozak) enabling coupled transcription/translation in a eukaryotic cell-free system. Epitopes on either GFP (5') or Cκ (3') were selected by anti-GFP or anti-Cκ antibodies, respectively, coupled to magnetic beads. After selection, mRNA was amplified directly from protein-ribosome-mRNA (PRM) complexes by in situ PCR followed by internal amplification and reassembly PCR. As little as 10 fg of the 1 kb DNA construct, i.e. approximately 7500 molecules, could be recovered following a single round of interaction with solid-phase anti-GFP antibody. This platform is highly specific and sensitive for the antigen-antibody interaction and may permit selection and reshaping of high affinity antigenic variants of scaffold proteins

  7. Selection of antigenic markers on a GFP-C{kappa} fusion scaffold with high sensitivity by eukaryotic ribosome display

    Energy Technology Data Exchange (ETDEWEB)

    Yongmin, Yang [Institute of Genetics, San Diego, CA 92121-2233 (United States); IgE Therapeutics, Inc., San Diego, CA 92121-2233 (United States); Barankiewicz, Teresa J [Institute of Genetics, San Diego, CA 92121-2233 (United States); IgE Therapeutics, Inc., San Diego, CA 92121-2233 (United States); Mingyue, He [Babraham Institute, Cambridge CB2 4AT (United Kingdom); Taussig, Michael J [Babraham Institute, Cambridge CB2 4AT (United Kingdom); Chen, Swey-Shen [Institute of Genetics, San Diego, CA 92121-2233 (United States) and IgE Therapeutics, Inc., San Diego, CA 92121-2233 (United States)

    2007-07-27

    Ribosome display is a cell-free system permitting gene selection through the physical association of genetic material (mRNA) and its phenotypic (protein) product. While often used to select single-chain antibodies from large libraries by panning against immobilized antigens, we have adapted ribosome display for use in the 'reverse' format in order to select high affinity antigenic determinants against solid-phase antibody. To create an antigenic scaffold, DNA encoding green fluorescent protein (GFP) was fused to a light chain constant domain (C{kappa}) with stop codon deleted, and with 5' signals (T7 promoter, Kozak) enabling coupled transcription/translation in a eukaryotic cell-free system. Epitopes on either GFP (5') or C{kappa} (3') were selected by anti-GFP or anti-C{kappa} antibodies, respectively, coupled to magnetic beads. After selection, mRNA was amplified directly from protein-ribosome-mRNA (PRM) complexes by in situ PCR followed by internal amplification and reassembly PCR. As little as 10 fg of the 1 kb DNA construct, i.e. approximately 7500 molecules, could be recovered following a single round of interaction with solid-phase anti-GFP antibody. This platform is highly specific and sensitive for the antigen-antibody interaction and may permit selection and reshaping of high affinity antigenic variants of scaffold proteins.

  8. Analysis of proviral integration in human mammary epithelial cell lines immortalized by retroviral infection with a temperature-sensitive SV40 T-antigen construct.

    Science.gov (United States)

    Stamps, A C; Davies, S C; Burman, J; O'Hare, M J

    1994-06-15

    A panel of eight conditionally immortal lines derived by infection of human breast epithelial cells with an amphotropic retrovirus transducing a ts mutant of SV40 large T-antigen was analyzed with respect to individual retroviral integration patterns. Each line contained multiple integration sites which were clonal and stable over extended passage. Similar integration patterns were observed between individual lines arising separately from the same stock of pre-immortal cells, suggesting a common progenitor. Retroviral integration analysis of pre-immortal cells at different stages of pre-crisis growth showed changes indicative of a progressive transition from polyclonality to clonality as the cells approached crisis. Each of the immortal lines contained a sub-set of the integration sites of their pre-immortal progenitors, with individual combinations and copy numbers of sites. Since all the cell lines appeared to originate from single foci in separate flasks, it is likely that each set arose from a common clone of pre-immortal cells as the result of separate genetic events. There was no evidence from this analysis to suggest that specific integration sites played any part either in the selection of pre-crisis clones or in the subsequent establishment of immortal lines.

  9. Expression of circadian gens in different rat tissues is sensitive marker of in vivo silver nanoparticles action

    Science.gov (United States)

    Minchenko, D. O.; Yavorovsky, O. P.; Zinchenko, T. O.; Komisarenko, S. V.; Minchenko, O. H.

    2012-09-01

    day after treatment of rats with silver nanoparticles. It was also shown that expression level of PFKFB4, a key enzyme of glycolysis regulation, gradually reduces in the brain from 1st to 14th day being up to 4 fold less on 14th day after treatment of animals with silver nanoparticles. Thus, the intratracheally instilled silver nanoparticles significantly affect the expression of PER1, PER2, ARNTL, and CLOCK genes which are an important molecular component of circadian clock system. This is because a disruption of the circadian processes leads to a development of various pathologic processes. The results of this study clearly demonstrate that circadian genes could be a sensitive test for detection of silver nanoparticles toxic action and suggest that more caution is needed in biomedical applications of silver nanoparticles as well as higher level of safety in silver nanoparticles production industry.

  10. Relationships between high-sensitive C-reactive protein and markers of arterial stiffness in hypertensive patients. Differences by sex

    Directory of Open Access Journals (Sweden)

    Gomez-Marcos Manuel A

    2012-06-01

    Full Text Available Abstract Background The present study was designed to evaluate the relationship between high-sensitivity C-reactive protein (hs-CRP and arterial stiffness according to sex in patients with arterial hypertension. Methods A case-series study was carried out in 258 hypertensive patients without antecedents of cardiovascular disease or diabetes mellitus. Nephelometry was used to determine hs-CRP. Office or clinical and home blood pressures were measured with a validated OMRON model M10 sphygmomanometer. Ambulatory blood pressure monitoring was performed with the SpaceLabs 90207 system. Pulse wave velocity (PWV and central and peripheral augmentation index (AIx were measured with the SphygmoCor system, and a Sonosite Micromax ultrasound unit was used for automatic measurements of carotid intima-media thickness (IMT. Ambulatory arterial stiffness index and home arterial stiffness index were calculated as “1-slope” from the within-person regression analysis of diastolic-on-systolic ambulatory blood pressure. Results Central and peripheral AIx were greater in women than in men: 35.31 ± 9.95 vs 26.59 ± 11.45 and 102.06 ± 20.47 vs 85.97 ± 19.13, respectively. IMT was greater in men (0.73 ± 0.13 vs 0.69 ± 0.10. hs-CRP was positively correlated to IMT (r = 0.261, maximum (r = 0.290 and to peripheral AIx (r = 0.166 in men, and to PWV in both men (r = 0.280 and women (r = 0.250. In women, hs-CRP was negatively correlated to central AIx (r = −0.222. For each unit increase in hs-CRP, carotid IMT would increase 0.05 mm in men, and PWV would increase 0.07 m/sec in men and 0.08 m/sec in women, while central AIx would decrease 2.5 units in women. In the multiple linear regression analysis, hs-CRP explained 10.2% and 6.7% of PWV variability in women and men, respectively, 8.4% of carotid IMT variability in men, and 4.9% of central AIx variability in women. Conclusions After adjusting for age, other

  11. Prediction of preservative sensitization potential using surface marker CD86 and/or CD54 expression on human cell line, THP-1.

    Science.gov (United States)

    Sakaguchi, Hitoshi; Miyazawa, Masaaki; Yoshida, Yukiko; Ito, Yuichi; Suzuki, Hiroyuki

    2007-02-01

    Preservatives are important components in many products, but have a history of purported allergy. Several assays [e.g., guinea pig maximization test (GPMT), local lymph node assay (LLNA)] are used to evaluate allergy potential of preservatives. We recently developed the human Cell Line Activation Test (h-CLAT), an in vitro skin sensitization test using human THP-1 cells. This test evaluates the augmentation of CD86 and CD54 expression, which are key events in the sensitization process, as an indicator of allergy following treatment with test chemical. Earlier, we found that a sub-toxic concentration was needed for the up-regulation of surface marker expression. In this study, we further evaluate the capability of h-CLAT to predict allergy potential using eight preservatives. Cytotoxicity was determined using propidium iodide with flow cytometry analysis and five doses that produce a 95, 85, 75, 65, and 50% cell viability were selected. If a material did not have any cytotoxicity at the highest technical dose (HTD), five doses are set using serial 1.3 dilutions of the HTD. The test materials used were six known allergic preservatives (e.g., methylchloroisothiazolinone/methylisothiazolinone, formaldehyde), and two non-allergic preservatives (methylparaben and 4-hydroxybenzoic acid). All allergic preservatives augmented CD86 and/or CD54 expression, indicating h-CLAT correctly identified the allergens. No augmentation was observed with the non-allergic preservatives; also correctly identified by h-CLAT. In addition, we report two threshold concentrations that may be used to categorize skin sensitization potency like the LLNA estimated concentration that yield a three-fold stimulation (EC3) value. These corresponding values are the estimated concentration which gives a relative fluorescence intensity (RFI) = 150 for CD86 and an RFI = 200 for CD54. These data suggest that h-CLAT, using THP-1 cells, may be able to predict the allergy potential of preservatives and

  12. MicroRNA-139-5p affects cisplatin sensitivity in human nasopharyngeal carcinoma cells by regulating the epithelial-to-mesenchymal transition.

    Science.gov (United States)

    Shao, Qianqian; Zhang, Pei; Ma, Yingye; Lu, Zhaoyi; Meng, Jie; Li, Hui; Wang, Xiaoming; Chen, Deshang; Zhang, Mingjie; Han, Yaofeng; Liu, Hao; Ma, Shiyin

    2018-04-30

    Nasopharyngeal carcinoma (NPC) is a head and neck cancer associated with poor prognosis. Many studies have shown that the epithelial-to-mesenchymal transition (EMT) is important in cancer progression, metastasis, and chemotherapy resistance and that microRNAs (miRNAs) play a key role in chemotherapy resistance associated with EMT. The miRNA miR-139-5p is downregulated in many human cancers and is closely related to tumor progression. The aim of this study was to investigate the ability of miR-139-5p to influence the cisplatin resistance, apoptosis, invasion and migration in NPC cells through the regulation of the EMT. We investigated these processes in parental HNE1 and cisplatin-resistant HNE1/DDP cells transfected with miR-139-5p inhibitors and mimics, respectively. Our results suggest that the upregulation of miR-139-5p expression inhibits proliferation, invasion, migration and EMT in human NPC cells. In addition, we found that miR-139-5p expression levels and DDP-induced apoptosis positively correlate in NPC cells. In conclusion, our results demonstrate that miR-139-5p can regulate the migration, invasion and DDP resistance in human NPC by modulating the EMT. The regulation of miR-139-5p levels might be a new approach to reverse EMT and DDP resistance and counteract metastasis and chemotherapy resistance in human NPC. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Chromosome aberration induction in human diploid fibroblast and epithelial cells

    International Nuclear Information System (INIS)

    Scott, D.

    1986-01-01

    The relative sensitivity of cultured human fibroblasts and epithelial cells to radiation-induced chromosomal aberrations was investigated. Lung fibroblast and kidney epithelial cells from the same fetus were compared, as were skin fibroblasts and epithelial keratinocytes from the same foreskin sample. After exposure of proliferating fetal cells to 1.5 Gy X-rays there was a very similar aberration yield in the fibroblasts and epithelial cells. Observations of either little or no difference in chromosomal sensitivity between human fibroblasts and epithelial cells give added confidence that quantitative cytogenetic data obtained from cultured fibroblasts are relevant to the question of sensitivity of epithelial cells which are the predominant cell type in human cancers. (author)

  14. Epithelial-mesenchymal transition in breast epithelial cells treated with cadmium and the role of Snail.

    Science.gov (United States)

    Wei, Zhengxi; Shan, Zhongguo; Shaikh, Zahir A

    2018-04-01

    Epidemiological and experimental studies have implicated cadmium (Cd) with breast cancer. In breast epithelial MCF10A and MDA-MB-231 cells, Cd has been shown to promote cell growth. The present study examined whether Cd also promotes epithelial-mesenchymal transition (EMT), a hallmark of cancer progression. Human breast epithelial cells consisting of non-cancerous MCF10A, non-metastatic HCC 1937 and HCC 38, and metastatic MDA-MB-231 were treated with 1 or 3 μM Cd for 4 weeks. The MCF10A epithelial cells switched to a more mesenchymal-like morphology, which was accompanied by a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal markers N-cadherin and vimentin. In both non-metastatic HCC 1937 and HCC 38 cells, treatment with Cd decreased the epithelial marker claudin-1. In addition, E-cadherin also decreased in the HCC 1937 cells. Even the mesenchymal-like MDA-MB-231 cells exhibited an increase in the mesenchymal marker vimentin. These changes indicated that prolonged treatment with Cd resulted in EMT in both normal and cancer-derived breast epithelial cells. Furthermore, both the MCF10A and MDA-MB-231 cells labeled with Zcad, a dual sensor for tracking EMT, demonstrated a decrease in the epithelial marker E-cadherin and an increase in the mesenchymal marker ZEB-1. Treatment of cells with Cd significantly increased the level of Snail, a transcription factor involved in the regulation of EMT. However, the Cd-induced Snail expression was completely abolished by actinomycin D. Luciferase reporter assay indicated that the expression of Snail was regulated by Cd at the promotor level. Snail was essential for Cd-induced promotion of EMT in the MDA-MB-231 cells, as knockdown of Snail expression blocked Cd-induced cell migration. Together, these results indicate that Cd promotes EMT in breast epithelial cells and does so by modulating the transcription of Snail. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis

    Science.gov (United States)

    Ruggiero, Christine; Elks, Carrie M.; Kruger, Claudia; Cleland, Ellen; Addison, Kaity; Noland, Robert C.

    2014-01-01

    Albuminuria is associated with metabolic syndrome and diabetes. It correlates with the progression of chronic kidney disease, particularly with tubular atrophy. The fatty acid load on albumin significantly increases in obesity, presenting a proinflammatory environment to the proximal tubules. However, little is known about changes in the redox milieu during fatty acid overload and how redox-sensitive mechanisms mediate cell death. Here, we show that albumin with fatty acid impurities or conjugated with palmitate but not albumin itself compromised mitochondrial and cell viability, membrane potential and respiration. Fatty acid overload led to a redox imbalance which deactivated the antioxidant protein peroxiredoxin 2 and caused a peroxide-mediated apoptosis through the redox-sensitive pJNK/caspase-3 pathway. Transfection of tubular cells with peroxiredoxin 2 was protective and mitigated apoptosis. Mitochondrial fatty acid entry and ceramide synthesis modulators suggested that mitochondrial β oxidation but not ceramide synthesis may modulate lipotoxic effects on tubular cell survival. These results suggest that albumin overloaded with fatty acids but not albumin itself changes the redox environment in the tubules, inducing a peroxide-mediated redox-sensitive apoptosis. Thus, mitigating circulating fatty acid levels may be an important factor in both preserving redox balance and preventing tubular cell damage in proteinuric diseases. PMID:24500687

  16. Effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile and inflammation markers in metabolic syndrome -- a randomized study (SYSDIET).

    Science.gov (United States)

    Uusitupa, M; Hermansen, K; Savolainen, M J; Schwab, U; Kolehmainen, M; Brader, L; Mortensen, L S; Cloetens, L; Johansson-Persson, A; Onning, G; Landin-Olsson, M; Herzig, K-H; Hukkanen, J; Rosqvist, F; Iggman, D; Paananen, J; Pulkki, K J; Siloaho, M; Dragsted, L; Barri, T; Overvad, K; Bach Knudsen, K E; Hedemann, M S; Arner, P; Dahlman, I; Borge, G I A; Baardseth, P; Ulven, S M; Gunnarsdottir, I; Jónsdóttir, S; Thorsdottir, I; Orešič, M; Poutanen, K S; Risérus, U; Akesson, B

    2013-07-01

    Different healthy food patterns may modify cardiometabolic risk. We investigated the effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile, blood pressure and inflammatory markers in people with metabolic syndrome. We conducted a randomized dietary study lasting for 18-24 weeks in individuals with features of metabolic syndrome (mean age 55 years, BMI 31.6 kg m(-2) , 67% women). Altogether 309 individuals were screened, 200 started the intervention after 4-week run-in period, and 96 (proportion of dropouts 7.9%) and 70 individuals (dropouts 27%) completed the study, in the Healthy diet and Control diet groups, respectively. Healthy diet included whole-grain products, berries, fruits and vegetables, rapeseed oil, three fish meals per week and low-fat dairy products. An average Nordic diet served as a Control diet. Compliance was monitored by repeated 4-day food diaries and fatty acid composition of serum phospholipids. Body weight remained stable, and no significant changes were observed in insulin sensitivity or blood pressure. Significant changes between the groups were found in non-HDL cholesterol (-0.18, mmol L(-1) 95% CI -0.35; -0.01, P = 0.04), LDL to HDL cholesterol (-0.15, -0.28; -0.00, P = 0.046) and apolipoprotein B to apolipoprotein A1 ratios (-0.04, -0.07; -0.00, P = 0.025) favouring the Healthy diet. IL-1 Ra increased during the Control diet (difference -84, -133; -37 ng L(-1) , P = 0.00053). Intakes of saturated fats (E%, beta estimate 4.28, 0.02; 8.53, P = 0.049) and magnesium (mg, -0.23, -0.41; -0.05, P = 0.012) were associated with IL-1 Ra. Healthy Nordic diet improved lipid profile and had a beneficial effect on low-grade inflammation. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  17. Hook1 inhibits malignancy and epithelial-mesenchymal transition in hepatocellular carcinoma.

    Science.gov (United States)

    Sun, Xu; Zhang, Qi; Chen, Wei; Hu, Qida; Lou, Yu; Fu, Qi-Han; Zhang, Jing-Ying; Chen, Yi-Wen; Ye, Long-Yun; Wang, Yi; Xie, Shang-Zhi; Hu, Li-Qiang; Liang, Ting-Bo; Bai, Xue-Li

    2017-07-01

    Hook1 is a member of the hook family of coiled-coil proteins, which is recently found to be associated with malignant tumors. However, its biological function in hepatocellular carcinoma is yet unknown. Here, we evaluated the Hook1 levels in human hepatocellular carcinoma samples and matched peritumoral tissues by real-time polymerase chain reaction. Small interfering RNA knockdown and a transforming growth factor-β-induced epithelial-mesenchymal transition model were employed to investigate the biological effects of Hook1 in hepatocellular carcinoma. Our results indicated that Hook1 levels were significantly lower in hepatocellular carcinoma tissues than in the peritumoral tissues. In addition, Hook1 expression was significantly associated with hepatocellular carcinoma malignancy. Hook1 was downregulated after transforming growth factor-β-induced epithelial-mesenchymal transition. Moreover, Hook1 knockdown promoted epithelial-mesenchymal transition and attenuated the sensitivity of hepatocellular carcinoma cells to doxorubicin. In summary, our results indicate that downregulation of Hook1 plays a pivotal role in hepatocellular carcinoma progression via epithelial-mesenchymal transition. Hook1 may be used as a novel marker and therapeutic molecular target in hepatocellular carcinoma.

  18. Clinical Use of Cancer Biomarkers in Epithelial Ovarian Cancer

    DEFF Research Database (Denmark)

    Söletormos, Georg; Duffy, Michael J; Othman Abu Hassan, Suher

    2016-01-01

    OBJECTIVE: To present an update of the European Group on Tumor Markers guidelines for serum markers in epithelial ovarian cancer. METHODS: Systematic literature survey from 2008 to 2013. The articles were evaluated by level of evidence and strength of recommendation. RESULTS: Because of its low s...

  19. Andrographolide suppresses epithelial mesenchymal transition by inhibition of MAPK signalling pathway in lens epithelial cells.

    Science.gov (United States)

    Kayastha, Forum; Johar, Kaid; Gajjar, Devarshi; Arora, Anshul; Madhu, Hardik; Ganatra, Darshini; Vasavada, Abhay

    2015-06-01

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown. The purpose of this study is to evaluate the effect of andrographolide on EMT induced by growth factors in the fetal human lens epithelial cell line (FHL 124). Initially the LECs were treated with growth factors (TGF-beta 2 and bFGF) to induce EMT. Subsequently these EMT-induced cells were treated with andrographolide at 100 and 500 nM concentrations for 24 h. Our results showed that FHL 124 cells treated with growth factors had a significant decrease in protein and m-RNA levels of epithelial markers pax6 and E-Cadherin. After administering andrographolide, these levels significantly increased. It was noticed that EMT markers alpha-SMA, fibronectin and collagen IV significantly decreased after treatment with andrographolide when compared to the other group. Treatment with andrographolide significantly inhibited phosphorylation of ERK and JNK. Cell cycle analysis showed that andrographolide did not arrest cells at G0/G1 or G2/M at tested concentrations. Our findings suggest that andrographolide helps sustain epithelial characteristics by modulating EMT markers and inhibiting the mitogen-activated protein kinase (MAPK) signalling pathway in LECs. Hence it can prove to be useful in curbing EMT-mediated PCO.

  20. Phase Angle and Handgrip Strength Are Sensitive Early Markers of Energy Intake in Hypophagic, Non-Surgical Patients at Nutritional Risk, with Contraindications to Enteral Nutrition

    Directory of Open Access Journals (Sweden)

    Riccardo Caccialanza

    2015-03-01

    Full Text Available The assessment of nutritional intakes during hospitalization is crucial, as it is known that nutritional status tends to worsen during the hospital stay, and this can lead to the negative consequences of malnutrition. International guidelines recommend the use of parenteral nutrition (PN in hypophagic, non-surgical patients at nutritional risk, with contraindications to enteral nutrition. However, to date, there are no published data regarding either energy intake or objective measurements associated with it in this patient population. The aim of the present exploratory methodological study was to evaluate whether phase angle (PhA and handgrip strength normalized for skeletal muscle mass (HG/SMM are sensitive early markers of energy intake in hypophagic, non-surgical patients at nutritional risk, with contraindications to enteral nutrition. We evaluated 30 eligible patients, who were treated with personalized dietary modifications and supplemental PN for at least one week during hospitalization. In a liner regression model adjusted for age, gender, basal protein intake and the basal value of each variable, a trend toward improvement of PhA and preservation of HG/SMM was observed in patients satisfying the estimated calorie requirements (N = 20, while a significant deterioration of these parameters occurred in those who were not able to reach the target (N = 10. The mean adjusted difference and 95% CI were +1.4° (0.5–2.3 (p = 0.005 for PhA and +0.23 (0.20–0.43 (p = 0.033 for HG/SMM. A significant correlation between PhA and HG/SMM variations was also observed (r = 0.56 (95% CI, 0.23–0.77; p = 0.0023. PhA and HG/SMM were able to distinguish between hypophagic, non-surgical patients at nutritional risk who satisfied their estimated caloric requirements and those who did not after a one-week personalized nutritional support. Clinical studies are warranted, in order to verify these preliminary observations and to validate the role of Ph

  1. Two-dimensional electrophoretic analysis of transformation-sensitive polypeptides during chemically, spontaneously, and oncogene-induced transformation of rat liver epithelial cells

    DEFF Research Database (Denmark)

    Wirth, P J; Luo, L D; Fujimoto, Y

    1992-01-01

    ; AFB), spontaneously, and oncogene (v-Ha-ras, v-raf, and v-myc/v-raf)-induced transformation of RLE cells. Two-dimensional mapping of [35S]methionine-labeled whole cell lysate, cell-free in vitro translation products and [32P]orthophosphate-labeled polypeptides revealed subsets of polypeptides specific...... for each transformation modality. A search of the RLE protein database indicated the specific subcellular location for the majority of these transformation-sensitive proteins. Significant alterations in the expression of the extracellular matrix protein, fibronectin, as well as tropomyosin......- and intermediate filament-related polypeptides (vimentin, beta-tubulin, the cytokeratins, and actin) were observed among the various transformant cell lines. Immunoprecipitation and Western immunoblot analysis of tropomyosin expression in four individual AFB-, as well as four spontaneously induced, and each...

  2. Phase I study of combination of vorinostat, carboplatin, and gemcitabine in women with recurrent, platinum-sensitive epithelial ovarian, fallopian tube, or peritoneal cancer.

    Science.gov (United States)

    Matulonis, Ursula; Berlin, Suzanne; Lee, Hang; Whalen, Christin; Obermayer, Elizabeth; Penson, Richard; Liu, Joyce; Campos, Susana; Krasner, Carolyn; Horowitz, Neil

    2015-08-01

    Combining histone deacetylase inhibitors and chemotherapy is synergistic. This phase I study combined escalating vorinostat doses with constant doses of carboplatin and gemcitabine for the treatment of recurrent platinum-sensitive ovarian cancer. The objectives of this study were to determine the maximally tolerated dose of this combination; secondary objectives included preliminary response rate of this regimen and toxicity profile. Fifteen patients with relapsed ovarian cancer were enrolled into this phase I study. Doses of carboplatin and gemcitabine were AUC 4 on day 1 and 1000 mg/m(2) on days 1 and 8, respectively; cycles were administered every 21 days. Vorinostat was tested using four different schedules. The first dose level (DL A) tested vorinostat as daily oral dosing from days 1 to 14. DL B tested twice daily (BID) vorinostat dosing on days 1-3 and 8-10. DL C tested BID vorinostat dosing on days 1, 2, 8, and 9, starting vorinostat 1 day prior to initiation of carboplatin and gemcitabine, and DL D tested vorinostat on days 1 and 2 with chemotherapy starting on day 2. All four DLs tested resulted in dose-limiting toxicities, and no MTD was determined. Toxicities were mostly hematologic. Seven patients were evaluable for RECIST assessment, and six of them had partial responses (PR) via RECIST. Combination of carboplatin, gemcitabine, and vorinostat has activity in relapsed platinum-sensitive ovarian cancer, but was difficult to combine because of hematologic toxicities in this phase I study. No maximally tolerated dose was found, and the study was terminated early.

  3. Common histological patterns in glomerular epithelial cells in secondary focal segmental glomerulosclerosis.

    Science.gov (United States)

    Kuppe, Christoph; Gröne, Hermann-Josef; Ostendorf, Tammo; van Kuppevelt, Toin H; Boor, Peter; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J

    2015-11-01

    Parietal epithelial cells (PECs) are involved in the development of sclerotic lesions in primary focal and segmental glomerulosclerosis (FSGS). Here, the role of PECs was explored in the more common secondary FSGS lesions in 68 patient biopsies, diagnosed with 11 different frequently or rarely encountered glomerular pathologies and additional secondary FSGS lesions. For each biopsy, one section was quadruple stained for PECs (ANXA3), podocytes (synaptopodin), PEC matrix (LKIV69), and Hoechst (nuclei), and a second was quadruple stained for activated PECs (CD44 and cytokeratin-19), PEC matrix, and nuclei. In all lesions, cellular adhesions (synechiae) between Bowman's capsule and the tuft were formed by cells expressing podocyte and/or PEC markers. Cells expressing PEC markers were detected in all FSGS lesions independent of the underlying glomerular disease and often stained positive for markers of activation. Small FSGS lesions, which were hardly identified on PAS sections previously, were detectable by immunofluorescent staining using PEC markers, potentially improving the diagnostic sensitivity to identify these lesions. Thus, similar patterns of cells expressing podocyte and/or PEC markers were found in the formation of secondary FSGS lesions independent of the underlying glomerular disease. Hence, our findings support the hypothesis that FSGS lesions follow a final cellular pathway to nephron loss that includes involvement of cells expressing PEC markers.

  4. Spirulina platensis Improves Mitochondrial Function Impaired by Elevated Oxidative Stress in Adipose-Derived Mesenchymal Stromal Cells (ASCs) and Intestinal Epithelial Cells (IECs), and Enhances Insulin Sensitivity in Equine Metabolic Syndrome (EMS) Horses.

    Science.gov (United States)

    Nawrocka, Daria; Kornicka, Katarzyna; Śmieszek, Agnieszka; Marycz, Krzysztof

    2017-08-03

    Equine Metabolic Syndrome (EMS) is a steadily growing life-threatening endocrine disorder linked to insulin resistance, oxidative stress, and systemic inflammation. Inflammatory microenvironment of adipose tissue constitutes the direct tissue milieu for various cell populations, including adipose-derived mesenchymal stromal cells (ASCs), widely considered as a potential therapeutic cell source in the course of the treatment of metabolic disorders. Moreover, elevated oxidative stress induces inflammation in intestinal epithelial cells (IECs)-the first-line cells exposed to dietary compounds. In the conducted research, we showed that in vitro application of Spirulina platensis contributes to the restoration of ASCs' and IECs' morphology and function through the reduction of cellular oxidative stress and inflammation. Enhanced viability, suppressed senescence, and improved proliferation of ASCs and IECs isolated from metabolic syndrome-affected individuals were evident following exposition to Spirulina. A protective effect of the investigated extract against mitochondrial dysfunction and degeneration was also observed. Moreover, our data demonstrate that Spirulina extract effectively suppressed LPS-induced inflammatory responses in macrophages. In vivo studies showed that horses fed with a diet based on Spirulina platensis supplementation lost weight and their insulin sensitivity improved. Thus, our results indicate the engagement of Spirulina platensis nourishing as an interesting alternative approach for supporting the conventional treatment of equine metabolic syndrome.

  5. DNA Methylation and Methylation Polymorphism in Genetically Stable In vitro Regenerates of Jatropha curcas L. Using Methylation-Sensitive AFLP Markers.

    Science.gov (United States)

    Rathore, Mangal S; Jha, Bhavanath

    2016-03-01

    The present investigation aimed to evaluate the degree and pattern of DNA methylation using methylation-sensitive AFLP (MS-AFLP) markers in genetically stable in vitro regenerates of Jatropha curcas L.. The genetically stable in vitro regenerates were raised through direct organogenesis via enhanced axillary shoot bud proliferation (Protocol-1) and in vitro-derived leaf regeneration (Protocol-2). Ten selective combinations of MS-AFLP primers produced 462 and 477 MS-AFLP bands in Protocol-1 (P-1) and Protocol-2 (P-2) regenerates, respectively. In P-1 regenerates, 15.8-31.17 % DNA was found methylated with an average of 25.24 %. In P-2 regenerates, 15.93-32.7 % DNA was found methylated with an average of 24.11 %. Using MS-AFLP in P-1 and P-2 regenerates, 11.52-25.53 % and 13.33-25.47 % polymorphism in methylated DNA was reported, respectively. Compared to the mother plant, P-1 regenerates showed hyper-methylation while P-2 showed hypo-methylation. The results clearly indicated alternation in degree and pattern of DNA methylation; hence, epigenetic instability in the genetically stable in vitro regenerates of J. curcas, developed so far using two different regeneration systems and explants of two different origins. The homologous nucleotide fragments in genomes of P-1 and P-2 regenerates showing methylation re-patterning might be involved in immediate adaptive responses and developmental processes through differential regulation of transcriptome under in vitro conditions.

  6. Effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile and inflammation markers in metabolic syndrome – a randomized study (SYSDIET)

    Science.gov (United States)

    Uusitupa, M; Hermansen, K; Savolainen, M J; Schwab, U; Kolehmainen, M; Brader, L; Mortensen, L S; Cloetens, L; Johansson-Persson, A; Önning, G; Landin-Olsson, M; Herzig, K-H; Hukkanen, J; Rosqvist, F; Iggman, D; Paananen, J; Pulkki, K J; Siloaho, M; Dragsted, L; Barri, T; Overvad, K; Bach Knudsen, K E; Hedemann, M S; Arner, P; Dahlman, I; Borge, G I A; Baardseth, P; Ulven, S M; Gunnarsdottir, I; Jónsdóttir, S; Thorsdottir, I; Orešič, M; Poutanen, K S; Risérus, U; Åkesson, B

    2013-01-01

    Background Different healthy food patterns may modify cardiometabolic risk. We investigated the effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile, blood pressure and inflammatory markers in people with metabolic syndrome. Methods We conducted a randomized dietary study lasting for 18–24 weeks in individuals with features of metabolic syndrome (mean age 55 years, BMI 31.6 kg m−2, 67% women). Altogether 309 individuals were screened, 200 started the intervention after 4-week run-in period, and 96 (proportion of dropouts 7.9%) and 70 individuals (dropouts 27%) completed the study, in the Healthy diet and Control diet groups, respectively. Healthy diet included whole-grain products, berries, fruits and vegetables, rapeseed oil, three fish meals per week and low-fat dairy products. An average Nordic diet served as a Control diet. Compliance was monitored by repeated 4-day food diaries and fatty acid composition of serum phospholipids. Results Body weight remained stable, and no significant changes were observed in insulin sensitivity or blood pressure. Significant changes between the groups were found in non-HDL cholesterol (−0.18, mmol L−1 95% CI −0.35; −0.01, P = 0.04), LDL to HDL cholesterol (−0.15, −0.28; −0.00, P = 0.046) and apolipoprotein B to apolipoprotein A1 ratios (−0.04, −0.07; −0.00, P = 0.025) favouring the Healthy diet. IL-1 Ra increased during the Control diet (difference −84, −133; −37 ng L−1, P = 0.00053). Intakes of saturated fats (E%, beta estimate 4.28, 0.02; 8.53, P = 0.049) and magnesium (mg, −0.23, −0.41; −0.05, P = 0.012) were associated with IL-1 Ra. Conclusions Healthy Nordic diet improved lipid profile and had a beneficial effect on low-grade inflammation. PMID:23398528

  7. Brachyury, SOX-9, and Podoplanin, New Markers in the Skull Base Chordoma Vs Chondrosarcoma Differential: A Tissue Microarray Based Comparative Analysis

    Science.gov (United States)

    Oakley, GJ; Fuhrer, K; Seethala, RR

    2014-01-01

    The distinction between chondrosarcoma and chordoma of the skull base/head and neck is prognostically important; however, both have sufficient morphologic overlap to make distinction difficult. As a result of gene expression studies, additional candidate markers have been proposed to help in this distinction. Hence, we sought to evaluate the performance of new markers: brachyury, SOX-9, and podoplanin alongside the more traditional markers glial fibrillary acid protein, carcinoembryonic antigen, CD24 and epithelial membrane antigen. Paraffin blocks from 103 skull base/head and neck chondroid tumors from 70 patients were retrieved (1969-2007). Diagnoses were made based on morphology and/or whole section immunohistochemistry for cytokeratin and S100 protein yielding 79 chordomas (comprising 45 chondroid chordomas and 34 conventional chordomas), and 24 chondrosarcomas. A tissue microarray containing 0.6 mm cores of each tumor in triplicate was constructed using a manual array (MTA-1, Beecher Instruments). For visualization of staining, the ImmPRESS detection system (Vector Laboratories) with 2 - diaminobenzidine substrate was used. Sensitivities and specificities were calculated for each marker. Core loss from the microarray ranged from 25-29% yielding 66-78 viable cases per stain. The classic marker, cytokeratin, still has the best performance characteristics. When combined with brachyury, accuracy improves slightly (sensitivity and specificity for detection of chordoma 98% and 100%, respectively). Positivity for both epithelial membrane antigen and AE1/AE3 had a sensitivity of 90% and a specificity of 100% for detecting chordoma in this study. SOX-9 is apparently common to both notochordal and cartilaginous differentiation, and is not useful in the chordoma-chondrosarcoma differential diagnosis. Glial fibrillary acid protein, carcinoembryonic antigen, CD24, and epithelial membrane antigen did not outperform other markers, and are less useful in the diagnosis of

  8. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Araki Hiromasa

    2007-04-01

    Full Text Available Abstract Background Proteinase-activated receptors (PARs; PAR1–4 that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells. Results Stimulation of PAR with thrombin (1 U/ml or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β. Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial

  9. Neutral lipid fatty acid analysis is a sensitive marker for quantitative estimation of arbuscular mycorrhizal fungi in agricultural soil with crops of different mycotrophy

    Directory of Open Access Journals (Sweden)

    Mauritz Vestberg

    2012-03-01

    Full Text Available The impact of host mycotrophy on arbuscular mycorrhizal fungal (AMF markers was studied in a temperate agricultural soil cropped with mycorrhizal barley, flax, reed canary-grass, timothy, caraway and quinoa and non-mycorrhizal buckwheat, dyer's woad, nettle and false flax. The percentage of AMF root colonization, the numbers of infective propagules by the Most Probable Number (MPN method, and the amounts of signature Phospholipid Fatty Acid (PLFA 16:1ω5 and Neutral Lipid Fatty Acid (NLFA 16:1ω5 were measured as AMF markers.  Crop had a significant impact on MPN levels of AMF, on NLFA 16:1ω5 levels in bulk and rhizosphere soil and on PLFA 16:1ω5 levels in rhizosphere soil. Reed canary-grass induced the highest levels of AMF markers. Mycorrhizal markers were at low levels in all non-mycorrhizal crops. NLFA 16:1ω5 and the ratio of NLFA to PLFA 16:1ω5 from bulk soil are adequate methods as indicators of AMF biomass in soil.

  10. Replication of cultured lung epithelial cells

    International Nuclear Information System (INIS)

    Guzowski, D.; Bienkowski, R.

    1986-01-01

    The authors have investigated the conditions necessary to support replication of lung type 2 epithelial cells in culture. Cells were isolated from mature fetal rabbit lungs (29d gestation) and cultured on feeder layers of mitotically inactivated 3T3 fibroblasts. The epithelial nature of the cells was demonstrated by indirect immunofluorescent staining for keratin and by polyacid dichrome stain. Ultrastructural examination during the first week showed that the cells contained myofilaments, microvilli and lamellar bodies (markers for type 2 cells). The following changes were observed after the first week: increase in cell size; loss of lamellar bodies and appearance of multivesicular bodies; increase in rough endoplasmic reticulum and golgi; increase in tonafilaments and well-defined junctions. General cell morphology was good for up to 10 wk. Cells cultured on plastic surface degenerated after 1 wk. Cell replication was assayed by autoradiography of cultures exposed to ( 3 H)-thymidine and by direct cell counts. The cells did not replicate during the first week; however, between 2-10 wk the cells incorporated the label and went through approximately 6 population doublings. They have demonstrated that lung alveolar epithelial cells can replicate in culture if they are maintained on an appropriate substrate. The coincidence of ability to replicate and loss of markers for differentiation may reflect the dichotomy between growth and differentiation commonly observed in developing systems

  11. Pathophysiology of Corneal Scarring in Persistent Epithelial Defects After PRK and Other Corneal Injuries.

    Science.gov (United States)

    Wilson, Steven E; Medeiros, Carla S; Santhiago, Marcony R

    2018-01-01

    To analyze corneal persistent epithelial defects that occurred at 3 to 4 weeks after -4.50 diopter (D) photorefractive keratectomy (PRK) in rabbits and apply this pathophysiology to the treatment of persistent epithelial defects that occur after any corneal manipulations or diseases. Two of 168 corneas that had -4.50 D PRK to study epithelial basement membrane regeneration developed spontaneous persistent epithelial defects that did not heal at 3 weeks after PRK. These were studied with slit-lamp photographs, immunohistochemistry for the myofibroblast marker alpha-smooth muscle actin (α-SMA), and transmission electron microscopy. Myofibroblasts developed at the stromal surface within the persistent epithelial defect and for a short distance peripheral to the leading edge of the epithelium. No normal epithelial basement membrane was detectable within the persistent epithelial defect or for up to 0.3 mm behind the leading edge of the epithelium, although epithelial basement membrane had normally regenerated in other areas of the zone ablated by an excimer laser where the epithelium healed promptly. A persistent epithelial defect in the cornea results in the development of myofibroblasts and disordered extracellular matrix produced by these cells that together cause opacity within, and a short distance beyond, the persistent epithelial defect. Clinicians should treat persistent epithelial defects within 10 days of non-closure of the epithelium to facilitate epithelial healing to prevent long-term stromal scarring (fibrosis). [J Refract Surg. 2018;34(1):59-64.]. Copyright 2018, SLACK Incorporated.

  12. Globoside accelerates the differentiation of dental epithelial cells into ameloblasts

    Institute of Scientific and Technical Information of China (English)

    Takashi Nakamura; Yuta Chiba; Masahiro Naruse; Kan Saito; Hidemitsu Harada; Satoshi Fukumoto

    2016-01-01

    Tooth crown morphogenesis is tightly regulated by the proliferation and differentiation of dental epithelial cells. Globoside (Gb4), a globo-series glycosphingolipid, is highly expressed during embryogenesis as well as organogenesis, including tooth development. We previously reported that Gb4 is dominantly expressed in the neutral lipid fraction of dental epithelial cells. However, because its functional role in tooth development remains unknown, we investigated the involvement of Gb4 in dental epithelial cell differentiation. The expression of Gb4 was detected in ameloblasts of postnatal mouse molars and incisors. A cell culture analysis using HAT-7 cells, a rat-derived dental epithelial cell line, revealed that Gb4 did not promote dental epithelial cell proliferation. Interestingly, exogenous administration of Gb4 enhanced the gene expression of enamel extracellular matrix proteins such as ameloblastin, amelogenin, and enamelin in dental epithelial cells as well as in developing tooth germs. Gb4 also induced the expression of TrkB, one of the key receptors required for ameloblast induction in dental epithelial cells. In contrast, Gb4 downregulated the expression of p75, a receptor for neurotrophins (including neurotrophin-4) and a marker of undifferentiated dental epithelial cells. In addition, we found that exogenous administration of Gb4 to dental epithelial cells stimulated the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase signalling pathways. Furthermore, Gb4 induced the expression of epiprofin and Runx2, the positive regulators for ameloblastin gene transcription. Thus, our results suggest that Gb4 contributes to promoting the differentiation of dental epithelial cells into ameloblasts.

  13. Characterization of glioma stem cells through multiple stem cell markers and their specific sensitization to double-strand break-inducing agents by pharmacological inhibition of ataxia telangiectasia mutated protein.

    Science.gov (United States)

    Raso, Alessandro; Vecchio, Donatella; Cappelli, Enrico; Ropolo, Monica; Poggi, Alessandro; Nozza, Paolo; Biassoni, Roberto; Mascelli, Samantha; Capra, Valeria; Kalfas, Fotios; Severi, Paolo; Frosina, Guido

    2012-09-01

    Previous studies have shown that tumor-driving glioma stem cells (GSC) may promote radio-resistance by constitutive activation of the DNA damage response started by the ataxia telangiectasia mutated (ATM) protein. We have investigated whether GSC may be specifically sensitized to ionizing radiation by inhibiting the DNA damage response. Two grade IV glioma cell lines (BORRU and DR177) were characterized for a number of immunocytochemical, karyotypic, proliferative and differentiative parameters. In particular, the expression of a panel of nine stem cell markers was quantified by reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry. Overall, BORRU and DR177 displayed pronounced and poor stem phenotypes, respectively. In order to improve the therapeutic efficacy of radiation on GSC, the cells were preincubated with a nontoxic concentration of the ATM inhibitors KU-55933 and KU-60019 and then irradiated. BORRU cells were sensitized to radiation and radio-mimetic chemicals by ATM inhibitors whereas DR177 were protected under the same conditions. No sensitization was observed after cell differentiation or to drugs unable to induce double-strand breaks (DSB), indicating that ATM inhibitors specifically sensitize glioma cells possessing stem phenotype to DSB-inducing agents. In conclusion, pharmacological inhibition of ATM may specifically sensitize GSC to DSB-inducing agents while sparing nonstem cells. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.

  14. Markers of Airway Remodeling in Bronchopulmonary Diseases

    Directory of Open Access Journals (Sweden)

    O.Ye. Chernyshova

    2014-10-01

    Full Text Available The article presents information about markers of airway remodeling in bronchopulmonary diseases. There is described the influence of matrix metalloproteinases, tissue inhibitor of matrix metalloproteinase, transforming growth factor, collagen autoantibodies III type, endothelin-1 on the processes of morphological airway reconstruction as smooth muscle hypertrophy, enhanced neovascularization, epithelial cell hyperplasia, collagen deposition, compaction of the basal membrane, observed in bronchial asthma.

  15. High-sensitivity troponin-T as a prognostic marker after out-of-hospital cardiac arrest - A targeted temperature management (TTM) trial substudy

    DEFF Research Database (Denmark)

    Gilje, Patrik; Koul, Sasha; Thomsen, Jakob Hartvig

    2016-01-01

    -TnT) is a prognostic marker among survivors of OHCA with both ischemic and non-ischemic aetiologies remains to be determined. We sought to evaluate the ability of hs-TnT to prognosticate all-cause mortality, death due to cardiovascular causes or multi-organ failure and death due to cerebral causes after OHCA...... circulation (ROSC). The endpoints were 180 day all-cause mortality, death due to cardiovascular causes or multi-organ failure and death due to cerebral causes. Subgroups based on the initial ECG after ROSC (STEMI vs all other ECG presentations) were analyzed. RESULTS: Hs-TnT was independently associated.......05). In patients with STEMI, hs-TnT was independently associated with death due to cardiovascular causes or multi-organ failure (at 48h: OR 1.47, CI 1.10-1.95, pnon...

  16. High sensitivity C reactive protein as a prognostic marker in patients with mild to moderate aortic valve stenosis during lipid-lowering treatment

    DEFF Research Database (Denmark)

    Blyme, Adam; Asferg, Camilla; Nielsen, Olav W

    2015-01-01

    AIMS: To assess the prognostic importance of high-sensitive C reactive protein (hsCRP) in patients with mild to moderate aortic valve stenosis during placebo or simvastatin/ezetimibe treatment in Simvastatin and Ezetimibe in Aortic Stenosis (SEAS). METHODS AND RESULTS: In 1620 SEAS patients, we m...

  17. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    Science.gov (United States)

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  18. Tumors markers

    International Nuclear Information System (INIS)

    Yamaguchi-Mizumoto, N.H.

    1989-01-01

    In order to study blood and cell components alterations (named tumor markers) that may indicate the presence of a tumor, several methods are presented. Aspects as diagnostic, prognostic, therapeutic value and clinical evaluation are discussed. (M.A.C.)

  19. The increase of microRNA-21 during lung fibrosis and its contribution to epithelial-mesenchymal transition in pulmonary epithelial cells.

    Science.gov (United States)

    Yamada, Mitsuhiro; Kubo, Hiroshi; Ota, Chiharu; Takahashi, Toru; Tando, Yukiko; Suzuki, Takaya; Fujino, Naoya; Makiguchi, Tomonori; Takagi, Kiyoshi; Suzuki, Takashi; Ichinose, Masakazu

    2013-09-24

    The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial

  20. Solo and keratin filaments regulate epithelial tubule morphology.

    Science.gov (United States)

    Nishimura, Ryosuke; Kato, Kagayaki; Fujiwara, Sachiko; Ohashi, Kazumasa; Mizuno, Kensaku

    2018-04-28

    Epithelial tubules, consisting of the epithelial cell sheet with a central lumen, are the basic structure of many organs. Mechanical forces play an important role in epithelial tubulogenesis; however, little is known about the mechanisms controlling the mechanical forces during epithelial tubule morphogenesis. Solo (also known as ARHGEF40) is a RhoA-targeting guanine-nucleotide exchange factor that is involved in mechanical force-induced RhoA activation and stress fiber formation. Solo binds to keratin-8/keratin-18 (K8/K18) filaments, and this interaction plays a crucial role in mechanotransduction. In this study, we examined the roles of Solo and K8/K18 filaments in epithelial tubulogenesis using MDCK cells cultured in 3D collagen gels. Knockdown of either Solo or K18 resulted in rounder tubules with increased lumen size, indicating that Solo and K8/K18 filaments play critical roles in forming the elongated morphology of epithelial tubules. Moreover, knockdown of Solo or K18 decreased the level of diphosphorylated myosin light chain (a marker of contractile force) at the luminal and outer surfaces of tubules, suggesting that Solo and K8/K18 filaments are involved in the generation of the myosin II-mediated contractile force during epithelial tubule morphogenesis. In addition, K18 filaments were normally oriented along the long axis of the tubule, but knockdown of Solo perturbed their orientation. These results suggest that Solo plays crucial roles in forming the elongated morphology of epithelial tubules and in regulating myosin II activity and K18 filament organization during epithelial tubule formation.

  1. Normal morphogenesis of epithelial tissues and progression of epithelial tumors

    Science.gov (United States)

    Wang, Chun-Chao; Jamal, Leen; Janes, Kevin A.

    2011-01-01

    Epithelial cells organize into various tissue architectures that largely maintain their structure throughout the life of an organism. For decades, the morphogenesis of epithelial tissues has fascinated scientists at the interface of cell, developmental, and molecular biology. Systems biology offers ways to combine knowledge from these disciplines by building integrative models that are quantitative and predictive. Can such models be useful for gaining a deeper understanding of epithelial morphogenesis? Here, we take inventory of some recurring themes in epithelial morphogenesis that systems approaches could strive to capture. Predictive understanding of morphogenesis at the systems level would prove especially valuable for diseases such as cancer, where epithelial tissue architecture is profoundly disrupted. PMID:21898857

  2. Human nasal turbinates as a viable source of respiratory epithelial cells using co-culture system versus dispase-dissociation technique.

    Science.gov (United States)

    Noruddin, Nur Adelina Ahmad; Saim, Aminuddin B; Chua, Kien Hui; Idrus, Ruszymah

    2007-12-01

    To compare a co-culture system with a conventional dispase-dissociation method for obtaining functional human respiratory epithelial cells from the nasal turbinates for tissue engineering application. Human respiratory epithelial cells were serially passaged using a co-culture system and a conventional dispase-dissociation technique. The growth kinetics and gene expression levels of the cultured respiratory epithelial cells were compared. Four genes were investigated, namely cytokeratin-18, a marker for ciliated and secretory epithelial cells; cytokeratin-14, a marker for basal epithelial cells; MKI67, a proliferation marker; and MUC5B, a marker for mucin secretion. Immunocytochemical analysis was performed using monoclonal antibodies against the high molecular-weight cytokeratin 34 beta E12, cytokeratin 18, and MUC5A to investigate the protein expression from cultured respiratory epithelial cells. Respiratory epithelial cells cultured using both methods maintained polygonal morphology throughout the passages. At passage 1, co-cultured respiratory epithelial showed a 2.6-times higher growth rate compared to conventional dispase dissociation technique, and 7.8 times higher at passage 2. Better basal gene expression was observed by co-cultured respiratory epithelial cells compared to dispase dissociated cells. Immunocytochemical analyses were positive for the respiratory epithelial cells cultured using both techniques. Co-culture system produced superior quality of cultured human respiratory epithelial cells from the nasal turbinates as compared to dispase dissociation technique.

  3. Biochemical markers of bone turnover

    International Nuclear Information System (INIS)

    Kim, Deog Yoon

    1999-01-01

    Biochemical markers of bone turnover has received increasing attention over the past few years, because of the need for sensitivity and specific tool in the clinical investigation of osteoporosis. Bone markers should be unique to bone, reflect changes of bone less, and should be correlated with radiocalcium kinetics, histomorphometry, or changes in bone mass. The markers also should be useful in monitoring treatment efficacy. Although no bone marker has been established to meet all these criteria, currently osteocalcin and pyridinium crosslinks are the most efficient markers to assess the level of bone turnover in the menopausal and senile osteoporosis. Recently, N-terminal telopeptide (NTX), C-terminal telopeptide (CTX) and bone specific alkaline phosphatase are considered as new valid markers of bone turnover. Recent data suggest that CTX and free deoxypyridinoline could predict the subsequent risk of hip fracture of elderly women. Treatment of postmenopausal women with estrogen, calcitonin and bisphosphonates demonstrated rapid decrease of the levels of bone markers that correlated with the long-term increase of bone mass. Factors such as circadian rhythms, diet, age, sex, bone mass and renal function affect the results of biochemical markers and should be appropriately adjusted whenever possible. Each biochemical markers of bone turnover may have its own specific advantages and limitations. Recent advances in research will provide more sensitive and specific assays

  4. Non-Eosinophilic Nasal Polyps Shows Increased Epithelial Proliferation and Localized Disease Pattern in the Early Stage.

    Directory of Open Access Journals (Sweden)

    Dong-Kyu Kim

    of the four markers, including IL-5 (0.316, and E/M ratio (<2.167, non-eosinophilic CRSwNP are diagnosed with a sensitivity of 84.4% and a specificity of 84.8%.Histologic, immunologic and clinical data suggest that non-eosinophilic NPs showed enhanced epithelial alteration and more localized maxillary involvement. Combination of cutoff value on IL-5, periostin, IFN-γ, and E/M scores may be one of surrogate markers for non-eosinophil NP subtype.

  5. CXCL9 Regulates TGF-β1-Induced Epithelial to Mesenchymal Transition in Human Alveolar Epithelial Cells.

    Science.gov (United States)

    O'Beirne, Sarah L; Walsh, Sinead M; Fabre, Aurélie; Reviriego, Carlota; Worrell, Julie C; Counihan, Ian P; Lumsden, Robert V; Cramton-Barnes, Jennifer; Belperio, John A; Donnelly, Seamas C; Boylan, Denise; Marchal-Sommé, Joëlle; Kane, Rosemary; Keane, Michael P

    2015-09-15

    Epithelial to mesenchymal cell transition (EMT), whereby fully differentiated epithelial cells transition to a mesenchymal phenotype, has been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). CXCR3 and its ligands are recognized to play a protective role in pulmonary fibrosis. In this study, we investigated the presence and extent of EMT and CXCR3 expression in human IPF surgical lung biopsies and assessed whether CXCR3 and its ligand CXCL9 modulate EMT in alveolar epithelial cells. Coexpression of the epithelial marker thyroid transcription factor-1 and the mesenchymal marker α-smooth muscle actin and CXCR3 expression was examined by immunohistochemical staining of IPF surgical lung biopsies. Epithelial and mesenchymal marker expression was examined by quantitative real-time PCR, Western blotting, and immunofluorescence in human alveolar epithelial (A549) cells treated with TGF-β1 and CXCL9, with Smad2, Smad3, and Smad7 expression and cellular localization examined by Western blotting. We found that significantly more cells were undergoing EMT in fibrotic versus normal areas of lung in IPF surgical lung biopsy samples. CXCR3 was expressed by type II pneumocytes and fibroblasts in fibrotic areas in close proximity to cells undergoing EMT. In vitro, CXCL9 abrogated TGF-β1-induced EMT. A decrease in TGF-β1-induced phosphorylation of Smad2 and Smad3 occurred with CXCL9 treatment. This was associated with increased shuttling of Smad7 from the nucleus to the cytoplasm where it inhibits Smad phosphorylation. This suggests a role for EMT in the pathogenesis of IPF and provides a novel mechanism for the inhibitory effects of CXCL9 on TGF-β1-induced EMT. Copyright © 2015 by The American Association of Immunologists, Inc.

  6. Tumour markers in urology

    International Nuclear Information System (INIS)

    Schmid, L.; Fornara, P.; Fabricius, P.G.

    1988-01-01

    The same applies essentially also for the bladder carcinomas: There is no reliable marker for these cancers which would be useful for clinical purposes. TPA has proven to be too non-specific in malignoma-detection and therefore hardly facilitates clinical decision-making in individual cases. The CEA is not sensitive enough to be recommendable for routine application. However, in advanced stages a CEA examination may be useful if applied within the scope of therapeutic efforts made to evaluate efficacy. In cases of carcinomas of the prostate the sour prostate-specific phosphatase (SPP) and, more recently, especially the prostate-specific antigen (PSA) have proven in follow-up and therapy monitoring, whereby the PSA is superior to the SPP. Nevertheless, both these markers should be employed in therapy monitoring because differences in behaviour will be observed when the desired treatment effect is only achieved in one of the two markers producing tumour cell clonuses. Both markers, but especially the PSA, are quite reliably in agreement with the result of the introduced chemo-/hormone therapy, whereby an increase may be a sure indicator of relapse several months previous to clinical symptoms, imaging procedures, so-called routine laboratory results and subjective complaints. However, none of the 2 markers is appropriate for the purposes of screening or early diagnosis of carcinomas of the prostate. (orig.) [de

  7. (SSR) markers

    African Journals Online (AJOL)

    acer

    2013-06-26

    Jun 26, 2013 ... analysis was in general agreement with PCoA in discrimi- nating the cultivars. Conclusions. Estimation of morphological diversity may provide addi- tional information on the present finding. Nonetheless, the 29 SSR markers provided considerable genetic reso- lution and this genetic diversity analysis ...

  8. (SSR) markers

    African Journals Online (AJOL)

    SAM

    2014-07-30

    Jul 30, 2014 ... India and the country is currently the leading producer, consumer and exporter of ... registration with the competent authority for plant variety protection. Conventionally ... detection of duplicates, parental verification in crosses, gene tagging in .... allelic patterns as revealed by the current set of SSR markers.

  9. Multifocal Epithelial Hyperplasia.

    Science.gov (United States)

    Agnew, Caitlin; Alexander, Sherene; Prabhu, Neeta

    2017-01-15

    Multifocal epithelial hyperplasia is a rare disease associated with human papilloma virus types 13 and 32. Diagnosis is based on clinical and histopathological findings, and most lesions are asymptomatic and regress spontaneously with time. The purpose of this paper is to describe a five-year-old girl who presented with multiple intraoral lesions on the buccal mucosa and tongue, which regressed spontaneously in 15 months.

  10. Genetic Markers of Insulin Sensitivity and Insulin Secretion Are Associated With Spontaneous Postnatal Growth and Response to Growth Hormone Treatment in Short SGA Children

    DEFF Research Database (Denmark)

    Jensen, Rikke Beck; Thankamony, Ajay; Day, Felix

    2015-01-01

    with spontaneous postnatal weight gain (regression coefficient [B]: 0.12 SD scores per allele; 95% confidence interval [CI], 0.01-0.23; P = .03) and also in response to GH therapy with first-year height velocity (B: 0.18 cm/y per allele; 95% CI, 0.02-0.35; P = .03) and change in IGF-1 (B: 0.17 SD scores per allele......PURPOSE: The wide heterogeneity in the early growth and metabolism of children born small for gestational age (SGA), both before and during GH therapy, may reflect common genetic variations related to insulin secretion or sensitivity. METHOD: Combined multiallele single nucleotide polymorphism......; 95% CI, 0.00-0.32; P = .03). The association with first-year height velocity was independent of reported predictors of response to GH therapy (adjusted P = .04). The insulin secretion allele score (GS-InSec) was positively associated with spontaneous postnatal height gain (B: 0.15; 95% CI, 0...

  11. An extremely sensitive nested PCR-RFLP mitochondrial marker for detection and identification of salmonids in eDNA from water samples

    Directory of Open Access Journals (Sweden)

    Laura Clusa

    2017-02-01

    Full Text Available Background Salmonids are native from the North Hemisphere but have been introduced for aquaculture and sport fishing in the South Hemisphere and inhabit most rivers and lakes in temperate and cold regions worldwide. Five species are included in the Global Invasive Species Database: rainbow trout Oncorhynchus mykiss, Atlantic salmon Salmo salar, brown trout Salmo trutta, brook trout Salvelinus fontinalis, and lake trout Salvelinus namaycush. In contrast, other salmonids are endangered in their native settings. Methods Here we have developed a method to identify salmonid species directly from water samples, focusing on the Iberian Peninsula as a case study. We have designed nested Salmonidae-specific primers within the 16S rDNA region. From these primers and a PCR-RFLP procedure the target species can be unequivocally identified from DNA extracted from water samples. Results The method was validated in aquarium experiments and in the field with water from watersheds with known salmonid populations. Finally, the method was applied to obtain a global view of the Salmonidae community in Nalón River (north coast of Spain. Discussion This new powerful, very sensitive (identifying the species down to 10 pg DNA/ml water and economical tool can be applied for monitoring the presence of salmonids in a variety of situations, from checking upstream colonization after removal of river barriers to monitoring potential escapes from fish farms.

  12. Activation of neurokinin-1 receptors during ozone inhalation contributes to epithelial injury and repair.

    Science.gov (United States)

    Oslund, Karen L; Hyde, Dallas M; Putney, Leialoha F; Alfaro, Mario F; Walby, William F; Tyler, Nancy K; Schelegle, Edward S

    2008-09-01

    We investigated the importance of neurokinin (NK)-1 receptors in epithelial injury and repair and neutrophil function. Conscious Wistar rats were exposed to 1 ppm ozone or filtered air for 8 hours, followed by an 8-hour postexposure period. Before exposure, we administered either the NK-1 receptor antagonist, SR140333, or saline as a control. Ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, whole mounts of airway dissected lung lobes were immunostained for 5-bromo-2'-deoxyuridine, a marker of epithelial proliferation. Both ethidium homodimer and 5-bromo-2'-deoxyuridine-positive epithelial cells were quantified in specific airway generations. Rats treated with the NK-1 receptor antagonist had significantly reduced epithelial injury and epithelial proliferation compared with control rats. Sections of terminal bronchioles showed no significant difference in the number of neutrophils in airways between groups. In addition, staining ozone-exposed lung sections for active caspase 3 showed no apoptotic cells, but ethidium-positive cells colocalized with the orphan nuclear receptor, Nur77, a marker of nonapoptotic, programmed cell death mediated by the NK-1 receptor. An immortalized human airway epithelial cell line, human bronchial epithelial-1, showed no significant difference in the number of oxidant stress-positive cells during exposure to hydrogen peroxide and a range of SR140333 doses, demonstrating no antioxidant effect of the receptor antagonist. We conclude that activation of the NK-1 receptor during acute ozone inhalation contributes to epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways.

  13. Gut epithelial barrier markers in patients with obstructive sleep apnea.

    Science.gov (United States)

    Barceló, Antonia; Esquinas, Cristina; Robles, Juan; Piérola, Javier; De la Peña, Mónica; Aguilar, Irene; Morell-Garcia, Daniel; Alonso, Alberto; Toledo, Nuria; Sánchez-de la Torre, Manuel; Barbé, Ferran

    2016-10-01

    Obstructive sleep apnea (OSA) is now being recognized as an additional contributing factor to the pathogenesis of obesity-related comorbidities. At the same time, there is now increasing evidence to suggest that intestinal wall permeability plays a role in the development of metabolic syndrome. In the present study, circulating zonulin and fatty acid binding protein (I-FABP) were measured in association with metabolic, hepatic, and inflammatory parameters. Compared with controls, plasma I-FABP levels were significantly higher in patients with OSA (571 pg/mL [IQR 290-950] vs 396 pg/mL [IQR 234-559], p = 0.04). Zonulin levels were similar between groups. Significant relationships were observed between zonulin levels and waist circumference (p zonulin levels correlated negatively with the mean nocturnal oxygenation saturation (p zonulin and ALT, AST, and hs-CRP were attenuated, but not eliminated, after adjustment for other variables. The results of this study suggest that OSA is a risk factor for intestinal damage, regardless of metabolic profile, and that intestinal permeability might be a possible contributor to nonalcoholic fatty liver disease in patients with OSA. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Effect of Probiotic Lactobacillus salivarius UBL S22 and Prebiotic Fructo-oligosaccharide on Serum Lipids, Inflammatory Markers, Insulin Sensitivity, and Gut Bacteria in Healthy Young Volunteers: A Randomized Controlled Single-Blind Pilot Study.

    Science.gov (United States)

    Rajkumar, Hemalatha; Kumar, Manoj; Das, Nilita; Kumar, S Nishanth; Challa, Hanumanth R; Nagpal, Ravinder

    2015-05-01

    This study investigated the effect of 6-week supplementation of a probiotic strain Lactobacillus salivarius UBL S22 with or without prebiotic fructo-oligosaccharide (FOS) on serum lipid profiles, immune responses, insulin sensitivity, and gut lactobacilli in 45 healthy young individuals. The patients were divided into 3 groups (15/group), that is, placebo, probiotic, and synbiotic. After 6 weeks, a significant reduction (P < .05) in total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglycerides and increase in high-density lipoprotein cholesterol was observed in the probiotic as well as in the synbiotic group when compared to placebo; however, the results of total cholesterol and LDL-cholesterol were more pronounced in the synbiotic group. Similarly, when compared to the placebo group, the serum concentrations of inflammatory markers such as high sensitivity C-reactive protein, interleukin (IL) 6, IL-1β, and tumor necrosis factor α were significantly (P < .05) reduced in both the experimental groups, but again the reduction in the synbiotic group was more pronounced. Also, an increase (P < .05) in the fecal counts of total lactobacilli and a decrease (P < .05) in coliforms and Escherichia coli was observed in both the experimental groups after 6 weeks of ingestion. Overall, the combination of L salivarius with FOS was observed to be more beneficial than L salivarius alone, thereby advocating that such synbiotic combinations could be therapeutically exploited for improved health and quality of life. © The Author(s) 2014.

  15. Impact of the putative cancer stem cell markers and growth factor receptor expression on the sensitivity of ovarian cancer cells to treatment with various forms of small molecule tyrosine kinase inhibitors and cytotoxic drugs.

    Science.gov (United States)

    Puvanenthiran, Soozana; Essapen, Sharadah; Seddon, Alan M; Modjtahedi, Helmout

    2016-11-01

    Increased expression and activation of human epidermal growth factor receptor (EGFR) and HER-2 have been reported in numerous cancers. The aim of this study was to determine the sensitivity of a large panel of human ovarian cancer cell lines (OCCLs) to treatment with various forms of small molecule tyrosine kinase inhibitors (TKIs) and cytotoxic drugs. The aim was to see if there was any association between the protein expression of various biomarkers including three putative ovarian cancer stem cell (CSC) markers (CD24, CD44, CD117/c-Kit), P-glycoprotein (P-gp), and HER family members and response to treatment with these agents. The sensitivity of 10 ovarian tumour cell lines to the treatment with various forms of HER TKIs (gefitinib, erlotinib, lapatinib, sapitinib, afatinib, canertinib, neratinib), as well as other TKIs (dasatinib, imatinib, NVP-AEW541, crizotinib) and cytotoxic agents (paclitaxel, cisplatin and doxorubicin), as single agents or in combination, was determined by SRB assay. The effect on these agents on the cell cycle distribution, and downstream signaling molecules and tumour migration were determined using flow cytometry, western blotting, and the IncuCyte Clear View cell migration assay respectively. Of the HER inhibitors, the irreversible pan-TKIs (canertinib, neratinib and afatinib) were the most effective TKIs for inhibiting the growth of all ovarian cancer cells, and for blocking the phosphorylation of EGFR, HER-2, AKT and MAPK in SKOV3 cells. Interestingly, while the majority of cancer cells were highly sensitive to treatment with dasatinib, they were relatively resistant to treatment with imatinib (i.e., IC50 >10 µM). Of the cytotoxic agents, paclitaxel was the most effective for inhibiting the growth of OCCLs, and of various combinations of these drugs, only treatment with a combination of NVP-AEW541 and paclitaxel produced a synergistic or additive anti-proliferative effect in all three cell lines examined (i.e., SKOV3, Caov3, ES2

  16. Marker lamps

    International Nuclear Information System (INIS)

    Watkins, D.V.

    1980-01-01

    A marker lamp is described which consists of a block of transparent plastics material encapsulated in which is a radioactive light source. These lights comprise a small sealed glass capsule, the hollow inside surface of which is coated with phosphor and which contains tritium or similar radioactive gas. The use of such lamps for identification marking of routes, for example roads, and for identification of underwater oil pipelines is envisaged. (U.K.)

  17. Tumor markers in clinical oncology

    International Nuclear Information System (INIS)

    Novakovic, S.

    2004-01-01

    The subtle differences between normal and tumor cells are exploited in the detection and treatment of cancer. These differences are designated as tumor markers and can be either qualitative or quantitative in their nature. That means that both the structures that are produced by tumor cells as well as the structures that are produced in excessive amounts by host tissues under the influence of tumor cells can function as tumor markers. Speaking in general, the tumor markers are the specific molecules appearing in the blood or tissues and the occurrence of which is associated with cancer. According to their application, tumor markers can be roughly divided as markers in clinical oncology and markers in pathology. In this review, only tumor markers in clinical oncology are going to be discussed. Current tumor markers in clinical oncology include (i) oncofetal antigens, (ii) placental proteins, (iii) hormones, (iv) enzymes, (v) tumor-associated antigens, (vi) special serum proteins, (vii) catecholamine metabolites, and (viii) miscellaneous markers. As to the literature, an ideal tumor marker should fulfil certain criteria - when using it as a test for detection of cancer disease: (1) positive results should occur in the early stages of the disease, (2) positive results should occur only in the patients with a specific type of malignancy, (3) positive results should occur in all patients with the same malignancy, (4) the measured values should correlate with the stage of the disease, (5) the measured values should correlate to the response to treatment, (6) the marker should be easy to measure. Most tumor markers available today meet several, but not all criteria. As a consequence of that, some criteria were chosen for the validation and proper selection of the most appropriate marker in a particular malignancy, and these are: (1) markers' sensitivity, (2) specificity, and (3) predictive values. Sensitivity expresses the mean probability of determining an elevated tumor

  18. Polarity in Mammalian Epithelial Morphogenesis

    OpenAIRE

    Roignot, Julie; Peng, Xiao; Mostov, Keith

    2013-01-01

    Cell polarity is fundamental for the architecture and function of epithelial tissues. Epithelial polarization requires the intervention of several fundamental cell processes, whose integration in space and time is only starting to be elucidated. To understand what governs the building of epithelial tissues during development, it is essential to consider the polarization process in the context of the whole tissue. To this end, the development of three-dimensional organotypic cell culture model...

  19. Prognostic value, clinical effectiveness and cost-effectiveness of high sensitivity C-reactive protein as a marker in primary prevention of major cardiac events.

    Science.gov (United States)

    Schnell-Inderst, Petra; Schwarzer, Ruth; Göhler, Alexander; Grandi, Norma; Grabein, Kristin; Stollenwerk, Björn; Klauß, Volker; Wasem, Jürgen; Siebert, Uwe

    2009-05-12

    In a substantial portion of patients (= 25%) with coronary heart disease (CHD), a myocardial infarction or sudden cardiac death without prior symptoms is the first manifestation of disease. The use of new risk predictors for CHD such as the high-sensitivity C-reactive Protein (hs-CRP) in addition to established risk factors could improve prediction of CHD. As a consequence of the altered risk assessment, modified preventive actions could reduce the number of cardiac death and non-fatal myocardial infarction. Does the additional information gained through the measurement of hs-CRP in asymptomatic patients lead to a clinically relevant improvement in risk prediction as compared to risk prediction based on traditional risk factors and is this cost-effective? A literature search of the electronic databases of the German Institute of Medical Documentation and Information (DIMDI) was conducted. Selection, data extraction, assessment of the study-quality and synthesis of information was conducted according to the methods of evidence-based medicine. Eight publications about predictive value, one publication on the clinical efficacy and three health-economic evaluations were included. In the seven study populations of the prediction studies, elevated CRP-levels were almost always associated with a higher risk of cardiovascular events and non-fatal myocardial infarctions or cardiac death and severe cardiovascular events. The effect estimates (odds ratio (OR), relative risk (RR), hazard ratio (HR)), once adjusted for traditional risk factors, demonstrated a moderate, independent association between hs-CRP and cardiac and cardiovascular events that fell in the range of 0.7 to 2.47. In six of the seven studies, a moderate increase in the area under the curve (AUC) could be detected by adding hs-CRP as a predictor to regression models in addition to established risk factors though in three cases this was not statistically significant. The difference [in the AUC] between the

  20. Prognostic value, clinical effectiveness and cost-effectiveness of high sensitivity C-reactive protein as a marker in primary prevention of major cardiac events

    Directory of Open Access Journals (Sweden)

    Klauß, Volker

    2009-05-01

    Full Text Available Background: In a substantial portion of patients (= 25% with coronary heart disease (CHD, a myocardial infarction or sudden cardiac death without prior symptoms is the first manifestation of disease. The use of new risk predictors for CHD such as the high-sensitivity C-reactive Protein (hs-CRP in addition to established risk factors could improve prediction of CHD. As a consequence of the altered risk assessment, modified preventive actions could reduce the number of cardiac death and non-fatal myocardial infarction. Research question: Does the additional information gained through the measurement of hs-CRP in asymptomatic patients lead to a clinically relevant improvement in risk prediction as compared to risk prediction based on traditional risk factors and is this cost-effective? Methods: A literature search of the electronic databases of the German Institute of Medical Documentation and Information (DIMDI was conducted. Selection, data extraction, assessment of the study-quality and synthesis of information was conducted according to the methods of evidence-based medicine. Results: Eight publications about predictive value, one publication on the clinical efficacy and three health-economic evaluations were included. In the seven study populations of the prediction studies, elevated CRP-levels were almost always associated with a higher risk of cardiovascular events and non-fatal myocardial infarctions or cardiac death and severe cardiovascular events. The effect estimates (odds ratio (OR, relative risk (RR, hazard ratio (HR, once adjusted for traditional risk factors, demonstrated a moderate, independent association between hs-CRP and cardiac and cardiovascular events that fell in the range of 0.7 to 2.47. In six of the seven studies, a moderate increase in the area under the curve (AUC could be detected by adding hs-CRP as a predictor to regression models in addition to established risk factors though in three cases this was not

  1. Ionizing radiation predisposes non-malignant human mammaryepithelial cells to undergo TGF beta-induced epithelial to mesenchymaltransition

    Energy Technology Data Exchange (ETDEWEB)

    Andarawewa, Kumari L.; Erickson, Anna C.; Chou, William S.; Costes, Sylvain; Gascard, Philippe; Mott, Joni D.; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2007-04-06

    Transforming growth factor {beta}1 (TGF{beta}) is a tumor suppressor during the initial stage of tumorigenesis, but it can switch to a tumor promoter during neoplastic progression. Ionizing radiation (IR), both a carcinogen and a therapeutic agent, induces TGF{beta}, activation in vivo. We now show that IR sensitizes human mammary epithelial cells (HMEC) to undergo TGF{beta}-mediated epithelial to mesenchymal transition (EMT). Non-malignant HMEC (MCF10A, HMT3522 S1 and 184v) were irradiated with 2 Gy shortly after attachment in monolayer culture, or treated with a low concentration of TGF{beta} (0.4 ng/ml), or double-treated. All double-treated (IR+TGF{beta}) HMEC underwent a morphological shift from cuboidal to spindle-shaped. This phenotype was accompanied by decreased expression of epithelial markers E-cadherin, {beta}-catenin and ZO-1, remodeling of the actin cytoskeleton, and increased expression of mesenchymal markers N-cadherin, fibronectin and vimentin. Furthermore, double-treatment increased cell motility, promoted invasion and disrupted acinar morphogenesis of cells subsequently plated in Matrigel{trademark}. Neither radiation nor TGF{beta} alone elicited EMT, even though IR increased chronic TGF{beta} signaling and activity. Gene expression profiling revealed that double treated cells exhibit a specific 10-gene signature associated with Erk/MAPK signaling. We hypothesized that IR-induced MAPK activation primes non-malignant HMEC to undergo TGF{beta}-mediated EMT. Consistent with this, Erk phosphorylation were transiently induced by irradiation, persisted in irradiated cells treated with TGF{beta}, and treatment with U0126, a Mek inhibitor, blocked the EMT phenotype. Together, these data demonstrate that the interactions between radiation-induced signaling pathways elicit heritable phenotypes that could contribute to neoplastic progression.

  2. Peripheral epithelial odontogenic tumor

    International Nuclear Information System (INIS)

    Carzoglio, J.; Tancredi, N.; Capurro, S.; Ravecca, T.; Scarrone, P.

    2006-01-01

    A new case of peripheral epithelial odontogenic tumor (Pindborg tumor) is reported. It is localized in the superior right gingival region, a less frequent site, and has the histopathological features previously reported. Immunochemical studies were performed, revealing a differential positive stain to cytokeratins in tumor cells deeply seated in the tumor mass, probably related to tumoral cell heterogeneity.Interestingly, in this particular case S-100 protein positive reactivity was also detected in arborescent cells intermingled with tumoral cells, resembling Langerhans cells. Even though referred in the literature in central Pindborg tumors, no references were found about their presence in peripheral tumors, like the one that is presented here

  3. Human corneal epithelial subpopulations

    DEFF Research Database (Denmark)

    Søndergaard, Chris Bath

    2013-01-01

    Corneal epithelium is being regenerated throughout life by limbal epithelial stem cells (LESCs) believed to be located in histologically defined stem cell niches in corneal limbus. Defective or dysfunctional LESCs result in limbal stem cell deficiency (LSCD) causing pain and decreased visual acuity...... subpopulations in human corneal epithelium using a combination of laser capture microdissection and RNA sequencing for global transcriptomic profiling. We compared dissociation cultures, using either expansion on γ-irradiated NIH/3T3 feeder cells in serum-rich medium or expansion directly on plastic in serum...

  4. Detection of alveolar epithelial injury by 99mTc-DTPA radioaerosol inhalation lung scan following blunt chest trauma

    International Nuclear Information System (INIS)

    Okudan, B.; Han, S.; Baldemir, M.; Yildiz, M.

    2004-01-01

    DTPA clearance rate is a reliable index of alveolar epithelial permeability, and is a highly sensitive marker of pulmonary epithelial damage, even of mild degree. In this study, 99m Tc-DTPA aerosol inhalation scintigraphy was used to assess the pulmonary epithelial membrane permeability and to investigate the possible application of this permeability value as an indicator of early alveolar or interstitial changes in patients with blunt chest trauma. A total of 26 patients was chest trauma (4 female, 22 male, 31-80 yrs, mean age; 53±13 yrs) who were referred to the emergency department in our hospital participated in this study. Technetium-99m diethylene triamine pentaacetic acid (DTPA) aerosol inhalation scintigraphy was performed on the first and thirtieth days after trauma. Clearance half times (T 1/2 ) were calculated by placing a mono-exponential fit on the curves. Penetration index (PI) was calculated on the first-minute image. On the first day, mean T 1/2 value of the whole lung was 63±19 minutes (min), and thirtieth day mean T 1/2 value was 67±21 min. On the first day, mean PI values of the lung and 30th day mean PI value were 0.60±0.05, and 0.63 ±0.05, respectively. Significant changes were observed in radioaerosol clearance and penetration indices. Following chest trauma, clearance of 99m Tc-DTPA increased owing to breakdown of the alveolar-capillary barrier. This increase in the epithelial permeability of the lung appears to be an early manifestation of lung disease that may lead to efficient therapy in the early phase. (author)

  5. Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes.

    Science.gov (United States)

    Mehterov, Nikolay; Balazadeh, Salma; Hille, Jacques; Toneva, Valentina; Mueller-Roeber, Bernd; Gechev, Tsanko

    2012-10-01

    The Arabidopsis thaliana atr7 mutant is tolerant to oxidative stress induced by paraquat (PQ) or the catalase inhibitor aminotriazole (AT), while its original background loh2 and wild-type plants are sensitive. Both, AT and PQ, which stimulate the intracellular formation of H₂O₂ or superoxide anions, respectively, trigger cell death in loh2 but do not lead to visible damage in atr7. To study gene expression during oxidative stress and ROS-induced programmed cell death, two platforms for multi-parallel quantitative real-time PCR (qRT-PCR) analysis of 217 antioxidant and 180 ROS marker genes were employed. The qRT-PCR analyses revealed AT- and PQ-induced expression of many ROS-responsive genes mainly in loh2, confirming that an oxidative burst plays a role in the activation of the cell death in this mutant. Some of the genes were specifically regulated by either AT or PQ, serving as markers for particular types of ROS. Genes significantly induced by both AT and PQ in loh2 included transcription factors (ANAC042/JUB1, ANAC102, DREB19, HSFA2, RRTF1, ZAT10, ZAT12, ethylene-responsive factors), signaling compounds, ferritins, alternative oxidases, and antioxidant enzymes. Many of these genes were upregulated in atr7 compared to loh2 under non-stress conditions at the first time point, indicating that higher basal levels of ROS and higher antioxidant capacity in atr7 are responsible for the enhanced tolerance to oxidative stress and suggesting a possible tolerance against multiple stresses of this mutant. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  6. Roles of Wnt/β-catenin signaling in epithelial differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Wang, Yajing; Sun, Zhaorui; Qiu, Xuefeng; Li, Yan; Qin, Jizheng; Han, Xiaodong

    2009-01-01

    Bone marrow-derived mesenchymal stem cells (MSCs) have been demonstrated to be able to differentiate into epithelial lineage, but the precise mechanisms controlling this process are unclear. Our aim is to explore the roles of Wnt/β-catenin in the epithelial differentiation of MSCs. Using indirect co-culture of rat MSCs with rat airway epithelial cells (RTE), MSCs expressed several airway epithelial markers (cytokeratin 18, tight junction protein occudin, cystic fibrosis transmembrance regulator). The protein levels of some important members in Wnt/β-catenin signaling were determined, suggested down-regulation of Wnt/β-catenin with epithelial differentiation of MSCs. Furthermore, Wnt3α can inhibit the epithelial differentiation of MSCs. A loss of β-catenin induced by Dickkopf-1 can enhance MSCs differentiation into epithelial cells. Lithium chloride transiently activated β-catenin expression and subsequently decreased β-catenin level and at last inhibited MSCs to differentiate into airway epithelium. Taken together, our study indicated that RTE cells can trigger epithelial differentiation of MSCs. Blocking Wnt/β-catenin signaling may promote MSCs to differentiate towards airway epithelial cells.

  7. Engineered human broncho-epithelial tissue-like assemblies

    Science.gov (United States)

    Goodwin, Thomas J. (Inventor)

    2012-01-01

    Three-dimensional human broncho-epithelial tissue-like assemblies (TLAs) are produced in a rotating wall vessel (RWV) with microcarriers by coculturing mesenchymal bronchial-tracheal cells (BTC) and bronchial epithelium cells (BEC). These TLAs display structural characteristics and express markers of in vivo respiratory epithelia. TLAs are useful for screening compounds active in lung tissues such as antiviral compounds, cystic fibrosis treatments, allergens, and cytotoxic compounds.

  8. Epithelial Cell Cultures

    Directory of Open Access Journals (Sweden)

    Imran S. Chaudhry

    2011-01-01

    Full Text Available The biological effects of only a finite number of tobacco toxins have been studied. Here, we describe exposure of cultures of human bronchial epithelial cells to low concentrations of tobacco carcinogens: nickel sulphate, benzo(bfluoranthene, N-nitrosodiethylamine, and 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK. After a 24-hour exposure, EGFR was expressed in cell membrane and cytoplasm, BCL-2 was expressed only in the irregular nuclei of large atypical cells, MKI67 was expressed in nuclei with no staining in larger cells, cytoplasmic BIRC5 with stronger nuclear staining was seen in large atypical cells, and nuclear TP53 was strongly expressed in all cells. After only a 24-hour exposure, cells exhibited atypical nuclear and cytoplasmic features. After a 48-hour exposure, EGFR staining was localized to the nucleus, BCL-2 was slightly decreased in intensity, BIRC5 was localized to the cytoplasm, and TP53 staining was increased in small and large cells. BCL2L1 was expressed in both the cytoplasm and nuclei of cells at 24- and 48-hour exposures. We illustrate that short-termexposure of a bronchial epithelial cell line to smoking-equivalent concentrations of tobacco carcinogens alters the expression of key proliferation regulatory genes, EGFR, BCL-2, BCL2L1, BIRC5, TP53, and MKI67, similar to that reported in biopsy specimens of pulmonary epithelium described to be preneoplastic lesions.

  9. The world of epithelial sheets.

    Science.gov (United States)

    Honda, Hisao

    2017-06-01

    An epithelium is a layer of closely connected cells covering the body or lining a body cavity. In this review, several fundamental questions are addressed regarding the epithelium. (i) While an epithelium functions as barrier against the external environment, how is barrier function maintained during its construction? (ii) What determines the apical and basal sides of epithelial layer? (iii) Is there any relationship between the apical side of the epithelium and the apical membrane of an epithelial cell? (iv) Why are hepatocytes (liver cells) called epithelial, even though they differ completely from column-like shape of typical epithelial cells? Keeping these questions in mind, multiple shapes of epithelia were considered, extracting a few of their elemental processes, and constructing a virtual world of epithelia by combining them. Epithelial cells were also classified into several types based on the number of apical domains of each cell. In addition, an intracellular organelle was introduced within epithelial cells, the vacuolar apical compartment (VAC), which is produced within epithelial cells surrounded by external cell matrix (ECM). The VAC interacts with areas of cell-cell contact of the cell surface membrane and is converted to apical membrane. The properties of VACs enable us to answer the initial questions posed above. Finally, the genetic and molecular mechanisms of epithelial morphogenesis are discussed. © 2017 Japanese Society of Developmental Biologists.

  10. Subepithelial corneal fibrosis partially due to epithelial-mesenchymal transition of ocular surface epithelium

    Science.gov (United States)

    Kawashima, Motoko; Higa, Kazunari; Satake, Yoshiyuki; Omoto, Masahiro; Tsubota, Kazuo; Shimmura, Shigeto; Shimazaki, Jun

    2010-01-01

    Purpose To determine whether epithelial-mesenchymal transition is involved in the development of corneal subepithelial fibrosis (pannus). Methods Frozen samples of pannus tissue removed from human corneas with a diagnosis of total limbal stem cell deficiency were characterized by immunostaining for both epithelial and mesenchymal markers. We selected transformation-related protein 63 (p63) and pancytokeratin as epithelial markers and vimentin and α-smooth muscle actin (α-SMA) as mesenchymal markers. Immunostaining for β-catenin and E-cadherin was performed to determine wingless-Int (Wnt)-pathway activation. RT–PCR analysis was also performed on epithelial tissue obtained from pannus samples after dispase digestion. Results Immunohistochemistry revealed strong nuclear expression of p63 and weak intercellular expression of E-cadherin in epithelial basal cells of pannus tissue. Furthermore, translocation of β-catenin from intercellular junctions to the nucleus and cytoplasm was also observed. Double-positive cells for both p63 and α-SMA were observed in the subepithelial stroma of pannus tissue, which was supported by RT–PCR and cytospin analysis. Conclusions Epithelial-mesenchymal transition may be partially involved in the development of subepithelial corneal fibrosis due to total limbal stem cell deficiency. PMID:21179238

  11. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    International Nuclear Information System (INIS)

    William Petersen, Ole; Lind Nielsen, Helga; Gudjonsson, Thorarinn; Villadsen, René; Rønnov-Jessen, Lone; Bissell, Mina J

    2001-01-01

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression

  12. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Ole William; Nielsen, Helga Lind; Gudjonsson, Thorarinn; Villadsen, Ren& #233; ; Ronnov-Jessen, Lone; Bissell, Mina J.

    2001-05-12

    The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast epithelial cells may be substantially more plastic in their differentiation repertoire than previously anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a partial differentiation towards this lineage is being revealed frequently. It has also become clear that conversions towards the mesenchymal lineage actually occur, referred to as epithelial to mesenchymal transitions. Indeed, some of the so-called myofibroblasts surrounding the tumor may indeed have an epithelial origin rather than a mesenchymal origin. Because myoepithelial cells, epithelial to mesenchymal transition-derived cells, genuine stromal cells and myofibroblasts share common markers, we now need to define a more ambitious set of markers to distinguish these cell types in the microenvironment of the tumors. This is necessary because the different microenvironments may confer different clinical outcomes. The aim of this commentary is to describe some of the inherent complexities in defining cellular phenotypes in the microenvironment of breast cancer and to expand wherever possible on the implications for tumor suppression and progression.

  13. Quantifying the Value of Markers in Screening Programmes

    DEFF Research Database (Denmark)

    Østergaard, Søren Dinesen; Dinesen, Peter Thisted; Foldager, Leslie

    2010-01-01

    Existing methods used to rank the value of individual screening markers in screening programmes are inadequate. We have developed a simple Screening Marker Index: (Screening Marker Index = Positive Predictive Value x Sensitivity). The Screening Marker Index proved to be superior to existing indices...

  14. Celiac Disease: Role of the Epithelial BarrierSummary

    Directory of Open Access Journals (Sweden)

    Michael Schumann

    2017-03-01

    Full Text Available In celiac disease (CD a T-cell–mediated response to gluten is mounted in genetically predisposed individuals, resulting in a malabsorptive enteropathy histologically highlighted by villous atrophy and crypt hyperplasia. Recent data point to the epithelial layer as an under-rated hot spot in celiac pathophysiology to date. This overview summarizes current functional and genetic evidence on the role of the epithelial barrier in CD, consisting of the cell membranes and the apical junctional complex comprising sealing as well as ion and water channel-forming tight junction proteins and the adherens junction. Moreover, the underlying mechanisms are discussed, including apoptosis of intestinal epithelial cells, biology of intestinal stem cells, alterations in the apical junctional complex, transcytotic uptake of gluten peptides, and possible implications of a defective epithelial polarity. Current research is directed toward new treatment options for CD that are alternatives or complementary therapeutics to a gluten-free diet. Thus, strategies to target an altered epithelial barrier therapeutically also are discussed. Keywords: Celiac Sprue, Gluten-Sensitive Enteropathy, Tight Junction, Epithelial Polarity, Partitioning-Defective Proteins, α-Gliadin 33mer

  15. Culture of human intestinal epithelial cell using the dissociating enzyme thermolysin and endothelin-3

    Directory of Open Access Journals (Sweden)

    Z. Liu

    2010-05-01

    Full Text Available Epithelium, a highly dynamic system, plays a key role in the homeostasis of the intestine. However, thus far a human intestinal epithelial cell line has not been established in many countries. Fetal tissue was selected to generate viable cell cultures for its sterile condition, effective generation, and differentiated character. The purpose of the present study was to culture human intestinal epithelial cells by a relatively simple method. Thermolysin was added to improve the yield of epithelial cells, while endothelin-3 was added to stimulate their growth. By adding endothelin-3, the achievement ratio (viable cell cultures/total cultures was enhanced to 60% of a total of 10 cultures (initiated from 8 distinct fetal small intestines, allowing the generation of viable epithelial cell cultures. Western blot, real-time PCR and immunofluorescent staining showed that cytokeratins 8, 18 and mouse intestinal mucosa-1/39 had high expression levels in human intestinal epithelial cells. Differentiated markers such as sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV also showed high expression levels in human intestinal epithelial cells. Differentiated human intestinal epithelial cells, with the expression of surface markers (cytokeratins 8, 18 and mouse intestinal mucosa-1/39 and secretion of cytokines (sucrase-isomaltase, aminopeptidase N and dipeptidylpeptidase IV, may be cultured by the thermolysin and endothelin-3 method and maintained for at least 20 passages. This is relatively simple, requiring no sophisticated techniques or instruments, and may have a number of varied applications.

  16. Epithelial cells as active player in fibrosis: findings from an in vitro model.

    Directory of Open Access Journals (Sweden)

    Solange Moll

    Full Text Available Kidney fibrosis, a scarring of the tubulo-interstitial space, is due to activation of interstitial myofibroblasts recruited locally or systemically with consecutive extracellular matrix deposition. Newly published clinical studies correlating acute kidney injury (AKI to chronic kidney disease (CKD challenge this pathological concept putting tubular epithelial cells into the spotlight. In this work we investigated the role of epithelial cells in fibrosis using a simple controlled in vitro system. An epithelial/mesenchymal 3D cell culture model composed of human proximal renal tubular cells and fibroblasts was challenged with toxic doses of Cisplatin, thus injuring epithelial cells. RT-PCR for classical fibrotic markers was performed on fibroblasts to assess their modulation toward an activated myofibroblast phenotype in presence or absence of that stimulus. Epithelial cell lesion triggered a phenotypical modulation of fibroblasts toward activated myofibroblasts as assessed by main fibrotic marker analysis. Uninjured 3D cell culture as well as fibroblasts alone treated with toxic stimulus in the absence of epithelial cells were used as control. Our results, with the caveats due to the limited, but highly controllable and reproducible in vitro approach, suggest that epithelial cells can control and regulate fibroblast phenotype. Therefore they emerge as relevant target cells for the development of new preventive anti-fibrotic therapeutic approaches.

  17. Activation of calcitonin gene-related peptide receptor during ozone inhalation contributes to airway epithelial injury and repair.

    Science.gov (United States)

    Oslund, Karen L; Hyde, Dallas M; Putney, Leialoha F; Alfaro, Mario F; Walby, William F; Tyler, Nancy K; Schelegle, Edward S

    2009-10-01

    The authors investigated the importance of the neuropeptide, calcitonin gene-related peptide (CGRP), in epithelial injury, repair, and neutrophil emigration after ozone exposure. Wistar rats were administered either a CGRP-receptor antagonist (CGRP(8-37)) or saline and exposed to 8 hours of 1-ppm ozone or filtered air with an 8-hour postexposure period. Immediately after exposure, ethidium homodimer was instilled into lungs as a marker of necrotic airway epithelial cells. After fixation, airway dissected lung lobes were stained for 5'-bromo-2'-deoxyuridine, a marker of epithelial proliferation. Positive epithelial cells were quantified in specific airway generations. Rats treated with CGRP(8-37) had significantly reduced epithelial injury in terminal bronchioles and reduced epithelial proliferation in proximal airways and terminal bronchioles. Bronchoalveolar lavage and sections of terminal bronchioles showed no significant difference in the number of neutrophils emigrating into airways in CGRP(8-37)-treated rats. The airway epithelial cell line, HBE-1, showed no difference in the number of oxidant stress positive cells during exposure to hydrogen peroxide and a range of CGRP(8-37) doses, demonstrating no antioxidant effect of CGRP(8-37). We conclude that activation of CGRP receptors during ozone inhalation contributes to airway epithelial injury and subsequent epithelial proliferation, a critical component of repair, but does not influence neutrophil emigration into airways.

  18. Correlation of human S100A12 (EN-RAGE) and high-sensitivity C-reactive protein as gingival crevicular fluid and serum markers of inflammation in chronic periodontitis and type 2 diabetes.

    Science.gov (United States)

    Pradeep, A R; Martande, Santosh S; Singh, Sonender Pal; Suke, Deepak Kumar; Raju, Arjun P; Naik, Savitha B

    2014-04-01

    The aim of the present study was to evaluate the levels and correlation of human S100A12 and high-sensitivity C-reactive protein (hs-CRP) in gingival crevicular fluid (GCF) and serum in chronic periodontitis (CP) subjects with and without type 2 diabetes mellitus (DM). A total of 44 subjects were divided into three groups: group 1 had 10 periodontally healthy subjects, group 2 consisted of 17 CP subjects and group 3 had 17 type 2 DM subjects with CP. GCF and serum levels of human S100A12 and hs-CRP were quantified using enzyme-linked immunosorbent assay and immunoturbidimetric analysis, respectively. The clinical outcomes evaluated were gingival index, probing depth and clinical attachment level and the correlations of the two inflammatory mediators with clinical parameters were evaluated. Both human S100A12 and hs-CRP levels increased from group 1 to group 2 to group 3. The GCF and serum values of both these inflammatory mediators correlated positively with each other and with the periodontal parameters evaluated (p < 0.05). Human S100A12 and hs-CRP can be considered as possible GCF and serum markers of inflammatory activity in CP and DM.

  19. Splenic epithelial cyst

    International Nuclear Information System (INIS)

    Yousuf, M.; Jalali, U.

    2011-01-01

    Cysts of spleen are rare entities. Congenital splenic cysts are even more uncommon comprising of only 10% of benign non-parasitic cysts. We report a case of 22 years old female who presented with history of 2 years abdominal pain and gradual distension. Ultrasound and computed tomography (CT) both were suggestive of splenic cyst. Laboratory tests show thrombocytopenia with platelets count of 97000 per cubic millimeter and anemia with hemoglobin 8.7 gram per deciliter. Serological tests were negative for parasitic infection. Splenectomy was done and the weight of the spleen was found to be 1.5 kilogram. Histopathological findings are consistent with splenic epithelial cyst. The aetiology, diagnostic modalities and treatment options are discussed in the case report. (author)

  20. Volumetric imaging of oral epithelial neoplasia by MPM-SHGM: epithelial connective tissue interface (Conference Presentation)

    Science.gov (United States)

    Pal, Rahul; Yang, Jinping; Qiu, Suimin; Resto, Vicente; McCammon, Susan; Vargas, Gracie

    2016-03-01

    The majority of oral cancers are comprised of oral squamous cell carcinoma in which neoplastic epithelial cells invade across the epithelial connective tissue interface (ECTI). Invasion is preceded by a multi-component process including epithelial hyperproliferation, loss of cell polarity, and remodeling of the extracellular matrix. Multiphoton Autofluorescence Microscopy (MPAM) and Second Harmonic Generation Microscopy (SHGM) show promise for revealing indicators of neoplasia. In particular, volumetric imaging by these methods can reveal aspects of the 3D microstructure that are not possible by other methods and which could both further our understanding of neoplastic transformation and be explored for development of diagnostic approaches in this disease having only 55% 5-year survival rate. MPAM-SHG were applied to reveal the 3D structure of the critical ECTI interface that plays an integral part toward invasion. Epithelial dysplasia was induced in an established hamster model. MPAM-SHGM was applied to lesion sites, using 780 nm excitation (450-600nm emission) for autofluroescence of cellular and extracellular components; 840 nm using 420 nm bandpass filter for SHG. The ECTI surface was identified as the interface at which SHG signal began following the epithelium and was modeled as a 3D surface using Matlab. ECTI surface area and cell features at sites of epithelial expansion where ECTI was altered were measured; Imaged sites were biopsied and processed for histology. ROC analysis using ECTI image metrics indicated the ability to delineate normal from neoplasia with high sensitivity and specificity and it is noteworthy that inflammation did not significantly alter diagnostic potential of MPAM-SHGM .

  1. Novel role of cold/menthol-sensitive transient receptor potential melastatine family member 8 (TRPM8) in the activation of store-operated channels in LNCaP human prostate cancer epithelial cells.

    NARCIS (Netherlands)

    Thebault, S.C.; Lemonnier, L.; Bidaux, G.; Flourakis, M.; Bavencoffe, A.; Gordienko, D.; Roudbaraki, M.; Delcourt, P.; Panchin, Y.; Shuba, Y.; Skryma, R.; Prevarskaya, N.

    2005-01-01

    Recent cloning of a cold/menthol-sensitive TRPM8 channel (transient receptor potential melastatine family member 8) from rodent sensory neurons has provided the molecular basis for the cold sensation. Surprisingly, the human orthologue of rodent TRPM8 also appears to be strongly expressed in the

  2. Positive Correlation between Matrix Metalloproteinases and Epithelial-to-Mesenchymal Transition and its Association with Clinical Outcome in Bladder Cancer Patients.

    Science.gov (United States)

    Singh, R; Mandhani, A; Agrawal, V; Garg, Minal

    2018-01-18

    Involvement of matrix metalloproteinases (MMPs) in the pathogenesis of urothelial carcinoma elects them to be sensitive marker for clinical and prognostic implications. MMPs regulate tumor growth and invasion by inducing epithelial-to-mesenchymal transition (EMT) which is characterized by the complex reprogramming of epithelial cells and ultimately bring about major changes in the structural organization of bladder urothelium. The present study has been undertaken to evaluate the clinical relevance of MMPs in two distinct types of bladder cancer disease. Expression analysis of MMPs namely MMP-2, MMP-7, MMP-9 and EMT markers including epithelial marker, E-cadherin; mesenchymal markers, N-cadherin and Vimentin; and EMT-activating transcriptional factors (EMT-ATFs), Snail, Slug, Twist and Zeb was done in 64 cases of bladder tumor tissues [{Non-muscle invasive bladder cancer (NMIBC): 35 cases} and {Muscle invasive bladder cancer (MIBC): 29 cases}] by real-time quantitative polymerase chain reaction (RT-qPCR). Immunohistochemistry (IHC) staining was done in matched bladder tumor tissues to evaluate the protein expression and localization of E-cadherin, N-cadherin, Vimentin, Snail, and Slug. Our data showed overexpression of MMP-2, MMP-7 and MMP-9 at transcriptome level in 32.8%, 25% and 37.5% bladder tumor cases respectively. These tumor tissues were examined for higher expression of mesenchymal markers (N-cadherin and Vimentin) at mRNA and protein level and exhibited statistical association with tumor stage and tumor grade (p = 0.02, p = 0.04, Mann-Whitney test). Significant statistical correlation in tumor tissues with overexpressed MMPs has also been observed between gain of transcriptional factors and weak expression of E-cadherin with tumor stage, grade, gender, presence of hematuria and smoking history of the patients. Gene expression patterns of EMT markers in bladder tumors with overexpressed MMPs and their significant association with clinical profile

  3. Acute respiratory bronchiolitis: an ultrastructural and autoradiographic study of epithelial cell injury and renewal in Rhesus monkeys exposed to ozone

    International Nuclear Information System (INIS)

    Castleman, W.L.; Dungworth, D.L.; Schwartz, L.W.; Tyler, W.S.

    1980-01-01

    The pathogenesis of acute respiratory bronchiolitis was examined in Rhesus monkeys exposed to 0.8 ppM ozone for 4 to 50 hours. Epithelial injury and renewal were qualitatively and quantitatively characterized by correlated techniques of scanning and transmission electron microscopy as well as by light-microscopic autoradiography following labeling with tritiated thymidine. Extensive degeneration and necrosis of Type 1 epithelial cells occurred on the respiratory bronchiolar wall during the initial 4 to 12 hours of exposure. Increased numbers of labeled epithelial cells were present in this region after 18 hours of exposure, and the highest labeling index (18%) was measured after 50 hours of exposure. Most (67 to 80%) of the labeled cells and all the mitotic epithelial cells (22) observed ultrastructurally were cuboidal bronchiolar epithelial cells. Of the labeled epithelial cells, 20 to 33% were Type 2 epithelial cells. After 50 hours of exposure the respiratory bronchiolar epithelium was hyperplastic. The predominant inflammatory cell in respiratory bronchiolar exudate was the alveolar macrophage. Monkeys that were exposed for 50 hours and allowed to recover in unozonized air for 7 days had incomplete resolution of respiratory bronchiolar epithelial hyperplasia. The results indicate that Type 1 epithelial cells lining respiratory bronchioles are the cell types most sensitive to injury and that both cuboidal bronchiolar epithelial cells and Type 2 epithelial cells function as stem cells in epithelial renewal

  4. Evaluation of Accessory Lacrimal Gland in Muller's Muscle Conjunctival Resection Specimens for Precursor Cell Markers and Biological Markers of Dry Eye Disease.

    Science.gov (United States)

    Ali, Marwan; Shah, Dhara; Pasha, Zeeshan; Jassim, Sarmad H; Jassim Jaboori, Assraa; Setabutr, Pete; Aakalu, Vinay K

    2017-04-01

    The accessory lacrimal glands (ALGs) are an understudied component of the tear functional unit, even though they are important in the development of dry eye syndrome (DES). To advance our understanding of aging changes, regenerative potential, and histologic correlates to human characteristics, we investigated human ALG tissue from surgical samples to determine the presence or absence of progenitor cell markers and lacrimal epithelial markers and to correlate marker expression to relevant patient characteristics. ALG tissues obtained from Muller's muscle conjunctival resection (MMCR) specimens were created using tissue microarrays (TMAs). Immunofluorescence staining of MMCR sections was performed using primary antibodies specific to cell protein markers. Cell marker localization in TMAs was then assessed by two blinded observers using a standardized scoring system. Patient characteristics including age, race, and status of ocular surface health were then compared against expression of stem cell markers. Human ALG expressed a number of epithelial markers, and in particular, histatin-1 was well correlated with the expression of epithelial markers and was present in most acini. In addition, we noted the presence of precursor cell markers nestin, ABCG2, and CD90 in ALG tissue. There was a decrease in precursor cell marker expression with increasing age. Finally, we noted that a negative association was present between histatin-1 expression and DES. Thus, we report for the first time that human ALG tissues contain precursor marker-positive cells and that this marker expression may decrease with increasing age. Moreover, histatin-1 expression may be decreased in DES. Future studies will be performed to use these cell markers to isolate and culture lacrimal epithelial cells from heterogeneous tissues, determine the relevance of histatin-1 expression to DES, and isolate candidate precursor cells from ALG tissue.

  5. Evaluation of Accessory Lacrimal Gland in Muller’s Muscle Conjunctival Resection Specimens for Precursor Cell Markers and Biological Markers of Dry Eye Disease

    Science.gov (United States)

    Ali, Marwan; Shah, Dhara; Pasha, Zeeshan; Jassim, Sarmad H.; Jaboori, Assraa Jassim; Setabutr, Pete; Aakalu, Vinay K.

    2017-01-01

    Purpose The accessory lacrimal glands (ALG) are an understudied component of the tear functional unit, even though they are important in the development of dry eye syndrome (DES). To advance our understanding of aging changes, regenerative potential and histologic correlates to human characteristics, we investigated human ALG tissue from surgical samples to determine the presence or absence of progenitor cell markers and lacrimal epithelial markers and to correlate marker expression to relevant patient characteristics. Materials and Methods ALG tissues obtained from Muller’s Muscle Conjunctival Resection (MMCR) specimens were created using tissue microarrays (TMAs). Immunofluorescence staining of MMCR sections was performed using primary antibodies specific to cell protein markers. Cell marker localization in TMAs was then assessed by two blinded observers using a standardized scoring system. Patient characteristics including age, race, and status of ocular surface health were then compared against expression of stem cell markers. Results Human ALG expressed a number of epithelial markers, and in particular, histatin-1 was well correlated with the expression of epithelial markers and was present in most acini. In addition, we noted the presence of precursor cell markers nestin, ABCG2 and CD90 in ALG tissue. There was a decrease in precursor cell marker expression with increasing age. Finally, we noted that a negative association was present between histatin-1 expression and DES. Conclusions Thus, we report for the first time that human ALG tissues contain precursor marker positive cells and that this marker expression may decrease with increasing age. Moreover, histatin-1 expression may be decreased in DES. Future studies will be performed to use these cell markers to isolate and culture lacrimal epithelial cells from heterogeneous tissues, determine the relevance of histatin-1 expression to DES and isolate candidate precursor cells from ALG tissue. PMID:27612554

  6. Regulation of Epithelial Sodium Transport via Epithelial Na+ Channel

    Science.gov (United States)

    Marunaka, Yoshinori; Niisato, Naomi; Taruno, Akiyuki; Ohta, Mariko; Miyazaki, Hiroaki; Hosogi, Shigekuni; Nakajima, Ken-ichi; Kusuzaki, Katsuyuki; Ashihara, Eishi; Nishio, Kyosuke; Iwasaki, Yoshinobu; Nakahari, Takashi; Kubota, Takahiro

    2011-01-01

    Renal epithelial Na+ transport plays an important role in homeostasis of our body fluid content and blood pressure. Further, the Na+ transport in alveolar epithelial cells essentially controls the amount of alveolar fluid that should be kept at an appropriate level for normal gas exchange. The epithelial Na+ transport is generally mediated through two steps: (1) the entry step of Na+ via epithelial Na+ channel (ENaC) at the apical membrane and (2) the extrusion step of Na+ via the Na+, K+-ATPase at the basolateral membrane. In general, the Na+ entry via ENaC is the rate-limiting step. Therefore, the regulation of ENaC plays an essential role in control of blood pressure and normal gas exchange. In this paper, we discuss two major factors in ENaC regulation: (1) activity of individual ENaC and (2) number of ENaC located at the apical membrane. PMID:22028593

  7. Modulation of epithelial sodium channel in human alveolar epithelial ...

    African Journals Online (AJOL)

    Modulation of epithelial sodium channel in human alveolar epithelial cells by lipoxin A4 through AhR-cAMP-dependent pathway. Bi-Huan Cheng1,2, Li-Wei Pan2, Sheng-Rong Zhang3, Bin-Yu Ying2, Ben-Ji. Wang2, Guo-Liang Lin2 and Shi-Fang Ding1*. 1Department of Critical Care Medicine, Qilu Hospital of Shandong ...

  8. M-CSF in a new biomarker panel with HE4 and CA 125 in the diagnostics of epithelial ovarian cancer patients.

    Science.gov (United States)

    Będkowska, Grażyna Ewa; Ławicki, Sławomir; Gacuta, Ewa; Pawłowski, Przemysław; Szmitkowski, Maciej

    2015-05-03

    We investigated plasma levels of M-CSF and conventional tumor markers (HE4 and CA 125) in epithelial ovarian cancer patients as compared to control groups: benign ovarian tumor patients (cysts) and healthy subjects. M-CSF levels were determined by ELISA, HE4 and CA 125 levels - by CMIA method. Our results have demonstrated significant differences in the concentration levels of M-CSF, CA 125 and HE4 between the groups of ovarian cancer patients, cysts patients and the healthy controls. In the groups tested M-CSF demonstrated equal to or higher values than both CA 125 and HE4 in diagnostic sensitivity (SE), positive and negative predictive values (PPV, NPV), and in the area under the ROC curve (AUC), particularly in the group with the serous epithelial sub-type of OC. Moreover, CA 125 showed better results of the aforementioned diagnostic criteria than HE4. The combined use of the parameters studied resulted in a further, significant increase in the value of the diagnostic indicators and in the value of the diagnostic power (AUC), especially in the early stages of ovarian cancer. These findings suggest a high usefulness of M-CSF in diagnosing the serous sub-type of epithelial ovarian cancer and in discriminating between cancer and non-carcinoma lesions, particularly in new diagnostic panels in combination with CA 125 and HE4 for the detection of EOC in the early stages.

  9. TGF-β1 induced epithelial to mesenchymal transition (EMT in human bronchial epithelial cells is enhanced by IL-1β but not abrogated by corticosteroids

    Directory of Open Access Journals (Sweden)

    Zuraw Bruce L

    2009-10-01

    Full Text Available Abstract Background Chronic persistent asthma is characterized by ongoing airway inflammation and airway remodeling. The processes leading to airway remodeling are poorly understood, and there is increasing evidence that even aggressive anti-inflammatory therapy does not completely prevent this process. We sought to investigate whether TGFβ1 stimulates bronchial epithelial cells to undergo transition to a mesenchymal phenotype, and whether this transition can be abrogated by corticosteroid treatment or enhanced by the pro-inflammatory cytokine IL-1β. Methods BEAS-2B and primary normal human bronchial epithelial cells were stimulated with TGFβ1 and expression of epithelial and mesenchymal markers assessed by quantitative real-time PCR, immunoblotting, immunofluorescence microscopy and zymography. In some cases the epithelial cells were also incubated with corticosteroids or IL-1β. Results were analyzed using non-parametric statistical tests. Results Treatment of BEAS-2B or primary human bronchial epithelial cells with TGFβ1 significantly reduced the expression level of the epithelial adherence junction protein E-cadherin. TGFβ1 then markedly induced mesenchymal marker proteins such as collagen I, tenascin C, fibronectin and α-smooth muscle actin mRNA in a dose dependant manner. The process of mesenchymal transition was accompanied by a morphological change towards a more spindle shaped fibroblast cell type with a more motile and invasive phenotype. Corticosteroid pre-treatment did not significantly alter the TGFβ1 induced transition but IL-1β enhanced the transition. Conclusion Our results indicate, that TGFβ1 can induce mesenchymal transition in the bronchial epithelial cell line and primary cells. Since asthma has been strongly associated with increased expression of TGFβ1 in the airway, epithelial to mesenchymal transition may contribute to the contractile and fibrotic remodeling process that accompanies chronic asthma.

  10. Oral epithelial dysplasia classification systems

    DEFF Research Database (Denmark)

    Warnakulasuriya, S; Reibel, J; Bouquot, J

    2008-01-01

    At a workshop coordinated by the WHO Collaborating Centre for Oral Cancer and Precancer in the United Kingdom issues related to potentially malignant disorders of the oral cavity were discussed by an expert group. The consensus views of the Working Group are presented in a series of papers....... In this report, we review the oral epithelial dysplasia classification systems. The three classification schemes [oral epithelial dysplasia scoring system, squamous intraepithelial neoplasia and Ljubljana classification] were presented and the Working Group recommended epithelial dysplasia grading for routine...... use. Although most oral pathologists possibly recognize and accept the criteria for grading epithelial dysplasia, firstly based on architectural features and then of cytology, there is great variability in their interpretation of the presence, degree and significance of the individual criteria...

  11. Calcium or resistant starch does not affect colonic epithelial cell proliferation throughout the colon in adenoma patients : A randomized controlled trial

    NARCIS (Netherlands)

    van Gorkom, Britta A P; Karrenbeld, Arend; van der Sluis, Tineke; Zwart, Nynke; van der Meer, Roelof; de Vries, Elisabeth G E; Kleibeuker, Jan H

    2002-01-01

    Patients with a history of sporadic adenomas have increased epithelial cell proliferative activity, an intermediate risk marker for colorectal cancer. Reduction of proliferation by dietary intervention may reflect a decreased colorectal cancer risk. To evaluate whether calcium or resistant starch

  12. Comparison between immunohistochemical expression of Ki-67 and MCM-3 in major salivary gland epithelial tumors in children and adolescents. Preliminary study.

    Science.gov (United States)

    Zieliński, Rafał; Kobos, Jozef; Zakrzewska, Anna

    While Ki-67 expression is frequently used as an indicator of tumor cell proliferation, alternative markers have also been proposed. Possible alternative indicators of proliferation are the minichromosome maintenance (MCM) proteins, whose levels are inversely associated with tumor cell differentiation. The aim of this preliminary study was to compare the levels of Ki-67 and MCM-3 expression in major salivary gland epithelial tumors in all children and adolescents who underwent surgery in our department in the years 2009-2014. The histopathological diagnosis of the subjects was reviewed, as well as the expression of Ki-67 and MCM-3 in post-op specimens of the tumors. The normality of data was checked with the Shapiro-Wilk test. The t test for independent variables or the U test was used as appropriate to determine statistically significant differences in the expression of Ki-67 and MCM-3. Five cases of pleomorphic adenoma, one of myoepithelioma, one of basal cell adenoma and one of mucoepidermoid carcinoma were identified. Significantly greater MCM-3 than Ki-67 expression was observed in every case. The results of our preliminary study emphasize the need for future research on MCM-3 as a sensitive proliferation marker, providing an alternative to Ki-67, in cases of various major salivary gland epithelial tumors in children and adolescents.

  13. Comparative proteome analysis of human epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Gagné Jean-Philippe

    2007-09-01

    Full Text Available Abstract Background Epithelial ovarian cancer is a devastating disease associated with low survival prognosis mainly because of the lack of early detection markers and the asymptomatic nature of the cancer until late stage. Using two complementary proteomics approaches, a differential protein expression profile was carried out between low and highly transformed epithelial ovarian cancer cell lines which realistically mimic the phenotypic changes observed during evolution of a tumour metastasis. This investigation was aimed at a better understanding of the molecular mechanisms underlying differentiation, proliferation and neoplastic progression of ovarian cancer. Results The quantitative profiling of epithelial ovarian cancer model cell lines TOV-81D and TOV-112D generated using iTRAQ analysis and two-dimensional electrophoresis coupled to liquid chromatography tandem mass spectrometry revealed some proteins with altered expression levels. Several of these proteins have been the object of interest in cancer research but others were unrecognized as differentially expressed in a context of ovarian cancer. Among these, series of proteins involved in transcriptional activity, cellular metabolism, cell adhesion or motility and cytoskeleton organization were identified, suggesting their possible role in the emergence of oncogenic pathways leading to aggressive cellular behavior. Conclusion The differential protein expression profile generated by the two proteomics approaches combined to complementary characterizations studies will open the way to more exhaustive and systematic representation of the disease and will provide valuable information that may be helpful to uncover the molecular mechanisms related to epithelial ovarian cancer.

  14. DA-6034 Induces [Ca(2+)]i Increase in Epithelial Cells.

    Science.gov (United States)

    Yang, Yu-Mi; Park, Soonhong; Ji, Hyewon; Kim, Tae-Im; Kim, Eung Kweon; Kang, Kyung Koo; Shin, Dong Min

    2014-04-01

    DA-6034, a eupatilin derivative of flavonoid, has shown potent effects on the protection of gastric mucosa and induced the increases in fluid and glycoprotein secretion in human and rat corneal and conjunctival cells, suggesting that it might be considered as a drug for the treatment of dry eye. However, whether DA-6034 induces Ca(2+) signaling and its underlying mechanism in epithelial cells are not known. In the present study, we investigated the mechanism for actions of DA-6034 in Ca(2+) signaling pathways of the epithelial cells (conjunctival and corneal cells) from human donor eyes and mouse salivary gland epithelial cells. DA-6034 activated Ca(2+)-activated Cl(-) channels (CaCCs) and increased intracellular calcium concentrations ([Ca(2+)]i) in primary cultured human conjunctival cells. DA-6034 also increased [Ca(2+)]i in mouse salivary gland cells and human corneal epithelial cells. [Ca(2+)]i increase of DA-6034 was dependent on the Ca(2+) entry from extracellular and Ca(2+) release from internal Ca(2+) stores. Interestingly, these effects of DA-6034 were related to ryanodine receptors (RyRs) but not phospholipase C/inositol 1,4,5-triphosphate (IP3) pathway and lysosomal Ca(2+) stores. These results suggest that DA-6034 induces Ca(2+) signaling via extracellular Ca(2+) entry and RyRs-sensitive Ca(2+) release from internal Ca(2+) stores in epithelial cells.

  15. Application of multiplex nested methylated specific PCR in early diagnosis of epithelial ovarian cancer.

    Science.gov (United States)

    Wang, Bi; Yu, Lei; Yang, Guo-Zhen; Luo, Xin; Huang, Lin

    2015-01-01

    To explore the application of multiplex nested methylated specific polymerase chain reaction (PCR) in the early diagnosis of epithelial ovarian carcinoma (EOC). Serum and fresh tissue samples were collected from 114 EOC patients. RUNX3, TFPI2 and OPCML served as target genes. Methylation levels of tissues were assessed by multiplex nested methylated specific PCR, the results being compared with those for carcinoma antigen 125 (CA125). The serum free deoxyribose nucleic acid (DNA) methylation spectrum of EOC patients was completely contained in the DNA spectrum of cancer tissues, providing an accurate reflection of tumor DNA methylation conditions. Serum levels of CA125 and free DNA methylation in the EOC group were evidently higher than those in benign lesion and control groups (p0.05). The sensitivity, specificity and positive predicative value (PPV) of multiplex nested methylated specific PCR were significantly higher for detection of all patients and those with early EOC than those for CA125 (pnested methylated specific PCR (p>0.05), but there was no significant difference in sensitivity (p>0.05). Serum free DNA methylation can be used as a biological marker for EOC and multiplex nested methylated specific PCR should be considered for early diagnosis since it can accurately determine tumor methylation conditions.

  16. Styrene induces an inflammatory response in human lung epithelial cells via oxidative stress and NF-κB activation

    International Nuclear Information System (INIS)

    Roeder-Stolinski, Carmen; Fischaeder, Gundula; Oostingh, Gertie Janneke; Feltens, Ralph; Kohse, Franziska; Bergen, Martin von; Moerbt, Nora; Eder, Klaus; Duschl, Albert; Lehmann, Irina

    2008-01-01

    Styrene is a volatile organic compound (VOC) that is widely used as a solvent in many industrial settings. Chronic exposure to styrene can result in irritation of the mucosa of the upper respiratory tract. Contact of styrene with epithelial cells stimulates the expression of a variety of inflammatory mediators, including the chemotactic cytokine monocyte chemoattractant protein-1 (MCP-1). To characterise the underlying mechanisms of the induction of inflammatory signals by styrene, we investigated the influence of this compound on the induction of oxidative stress and the activation of the nuclear factor-kappa B (NF-κB) signalling pathway in human lung epithelial cells (A549). The results demonstrate that styrene-induced MCP-1 expression, as well as the expression of the oxidative stress marker glutathione S-transferase (GST), is associated with a concentration dependent pattern of NF-κB activity. An inhibitor of NF-κB, IKK-NBD, and the anti-inflammatory antioxidant N-acetylcysteine (NAC) were both effective in suppressing styrene-induced MCP-1 secretion. In addition, NAC was capable of inhibiting the upregulation of GST expression. Our findings suggest that the activation of the NF-κB signalling pathway by styrene is mediated via a redox-sensitive mechanism

  17. A multicenter, non-randomized, phase II study of docetaxel and carboplatin administered every 3 weeks as second line chemotherapy in patients with first relapse of platinum sensitive epithelial ovarian, peritoneal or fallopian tube cancer

    DEFF Research Database (Denmark)

    Wang, Yun; Herrstedt, Jørn; Havsteen, Hanne

    2014-01-01

    of 398 cycles were given. Grade 3/4 neutropenia was seen in 80% (59 of 74) patients with an incidence of febrile neutropenia of 16%. Grade 2/3 sensory peripheral neuropathy occurred in 7% of patients, but no grade 4 sensory peripheral neuropathy was observed. Sixty patients were evaluable for response...... of platinum-sensitive ovarian, peritoneal and Fallopian tube cancer. The major toxicity was neutropenia, while the frequency of peripheral neuropathy was low.......BACKGROUND: In patients with ovarian cancer relapsing at least 6 months after end of primary treatment, the addition of paclitaxel to platinum treatment has been shown to improve survival but at the cost of significant neuropathy. In the first line setting, the carboplatin-docetaxel combination...

  18. Tacrolimus Modulates TGF-β Signaling to Induce Epithelial-Mesenchymal Transition in Human Renal Proximal Tubule Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Jason Bennett

    2016-04-01

    Full Text Available Epithelial-mesenchymal transition (EMT, a process which describes the trans-differentiation of epithelial cells into motile mesenchymal cells, is pivotal in stem cell behavior, development and wound healing, as well as contributing to disease processes including fibrosis and cancer progression. Maintenance immunosuppression with calcineurin inhibitors (CNIs has become routine management for renal transplant patient, but unfortunately the nephrotoxicity of these drugs has been well documented. HK-2 cells were exposed to Tacrolimus (FK506 and EMT markers were assessed by RT PCR and western blot. FK506 effects on TGF-β mRNA were assessed by RT PCR and TGF-β secretion was measured by ELISA. The impact of increased TGF-β secretion on Smad signaling pathways was investigated. The impact of inhibition of TGF-β signaling on EMT processes was assessed by scratch-wound assay. The results presented in this study suggest that FK506 initiates EMT processes in the HK-2 cell line, with altered expression of epithelial and myofibroblast markers evident. Additionally, the study demonstrates that FK506 activation of the TGF-β/ SMAD pathways is an essential step in the EMT process. Overall the results demonstrate that EMT is heavily involved in renal fibrosis associated with CNI nephrotoxicity.

  19. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  20. Sodium selectivity of Reissner's membrane epithelial cells

    Directory of Open Access Journals (Sweden)

    Kim Kyunghee X

    2011-02-01

    Full Text Available Abstract Background Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC, which is composed of the three subunits α-,β- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. Results We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196, RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3. By contrast, α-,β- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. Conclusions These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αβγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala

  1. Long-Term Live Cell Imaging of Cell Migration: Effects of Pathogenic Fungi on Human Epithelial Cell Migration.

    Science.gov (United States)

    Wöllert, Torsten; Langford, George M

    2016-01-01

    Long-term live cell imaging was used in this study to determine the responses of human epithelial cells to pathogenic biofilms formed by Candida albicans. Epithelial cells of the skin represent the front line of defense against invasive pathogens such as C. albicans but under certain circumstances, especially when the host's immune system is compromised, the skin barrier is breached. The mechanisms by which the fungal pathogen penetrates the skin and invade the deeper layers are not fully understood. In this study we used keratinocytes grown in culture as an in vitro model system to determine changes in host cell migration and the actin cytoskeleton in response to virulence factors produced by biofilms of pathogenic C. albicans. It is clear that changes in epithelial cell migration are part of the response to virulence factors secreted by biofilms of C. albicans and the actin cytoskeleton is the downstream effector that mediates cell migration. Our goal is to understand the mechanism by which virulence factors hijack the signaling pathways of the actin cytoskeleton to alter cell migration and thereby invade host tissues. To understand the dynamic changes of the actin cytoskeleton during infection, we used long-term live cell imaging to obtain spatial and temporal information of actin filament dynamics and to identify signal transduction pathways that regulate the actin cytoskeleton and its associated proteins. Long-term live cell imaging was achieved using a high resolution, multi-mode epifluorescence microscope equipped with specialized light sources, high-speed cameras with high sensitivity detectors, and specific biocompatible fluorescent markers. In addition to the multi-mode epifluorescence microscope, a spinning disk confocal long-term live cell imaging system (Olympus CV1000) equipped with a stage incubator to create a stable in vitro environment for long-term real-time and time-lapse microscopy was used. Detailed descriptions of these two long-term live

  2. Transcriptional regulation of epithelial-mesenchymal transition in melanoma

    International Nuclear Information System (INIS)

    Wels, C.

    2010-01-01

    The downregulation of epithelial markers followed by upregulation of mesenchymal characteristics is an important step in melanoma development. This process goes along with gains in cell proliferation and motility, depolarization and detachment from neighbouring cells, finally enabling melanoma cells to leave the primary site of tumor growth and to circulate through the blood or lymphatic system. The entirety of these events is referred to as epithelial-mesenchymal transition (EMT). Changes during EMT are accomplished by a set of transcription factors which share the same DNA binding site called E-box. These E-box binding transcription factors are subsumed as epithelial-mesenchymal transitions regulators (EMTRs). In this thesis, I studied the interplay of the zinc-finger transcription factors Slug and ZEB1 and the basic helix-loop-helix transcription factor Twist during melanoma progression. I demonstrate for the first time the direct and specific transcriptional upregulation of one EMTR, ZEB1, by another, Slug, using gene silencing and overexpression studies together with mobility shift and luciferase assays. The two transcription factors cooperate in repressing the epithelial adhesion molecule E-cadherin which is supposed to be a crucial step during early EMT. Further, they show additive effects in promoting detachment from neighbouring cells and cell migration. Conceptually, Slug and ZEB1 are supported by Twist, a transcription factor that might be less pivotal for E-cadherin repression but rather for inducing the expression of the mesenchymal marker N-cadherin, enabling adhesion to mesenchymal cells, thereby promoting migration and invasion of melanoma cells.Taken together, I provide a model of a hierarchical organization of EMT transcription factors, with Slug as a transcriptional activator of ZEB1, leading to cooperative effects on detachment and migration and, together with Twist, leading to EMT in melanoma. (author) [de

  3. The influence of matrix properties on growth and morphogenesis of human pancreatic ductal epithelial cells in 3D

    Science.gov (United States)

    Raza, Asad; Ki, Chang Seok; Lin, Chien-Chi

    2013-01-01

    A highly tunable synthetic biomimetic hydrogel platform was developed to study the growth and morphogenesis of pancreatic ductal epithelial cells (PDEC) under the influence of a myriad of instructive cues. A PDEC line, PANC-1, was used as a model system to illustrate the importance of matrix compositions on cell fate determination. PANC-1 is an immortalized ductal epithelial cell line widely used in the study of pancreatic tumor cell behaviors. PANC-1 cells are also increasingly explored as a potential cell source for endocrine differentiation. Thus far, most studies related to PANC-1, among other PDEC lines, are performed on 2D culture surfaces. Here, we evaluated the effect of matrix compositions on PANC-1 cell growth and morphogenesis in 3D. Specifically, PANC-1 cells were encapsulated in PEG-based hydrogels prepared by step-growth thiol-ene photopolymerization. It was found that thiol-ene hydrogels provided a cytocompatible environment for encapsulation and 3D culture of PANC-1 cells. In contrast to a monolayer morphology on 2D culture surfaces, PANC-1 cells formed clusters in 3D thiol-ene hydrogels within 4 days of culture. After culturing for 10 days, however, the growth and structures of these clusters were significantly impacted by gel matrix properties, including sensitivity of the matrix to proteases, stiffness of the matrix, and ECM-mimetic motifs. The use of matrix metalloproteinase (MMP) sensitive linker or the immobilization of fibronectin-derived RGDS ligand in the matrix promoted PANC-1 cell growth and encouraged them to adopt ductal cyst-like structures. On the other hand, the encapsulated cells formed smaller and more compact aggregates in non-MMP responsive gels. The incorporation of laminin-derived YIGSR peptide did not enhance cell growth and caused the cells to form compact aggregates. Immobilized YIGSR also enhanced the expression of epithelial cell markers including β-catenin and E-cadherin. These studies have established PEG

  4. Epithelial topography for repetitive tooth formation

    Directory of Open Access Journals (Sweden)

    Marcia Gaete

    2015-12-01

    Full Text Available During the formation of repetitive ectodermally derived organs such as mammary glands, lateral line and teeth, the tissue primordium iteratively initiates new structures. In the case of successional molar development, new teeth appear sequentially in the posterior region of the jaw from Sox2+ cells in association with the posterior aspect of a pre-existing tooth. The sequence of molar development is well known, however, the epithelial topography involved in the formation of a new tooth is unclear. Here, we have examined the morphology of the molar dental epithelium and its development at different stages in the mouse in vivo and in molar explants. Using regional lineage tracing we show that within the posterior tail of the first molar the primordium for the second and third molar are organized in a row, with the tail remaining in connection with the surface, where a furrow is observed. The morphology and Sox2 expression of the tail retains characteristics reminiscent of the earlier stages of tooth development, such that position along the A-P axes of the tail correlates with different temporal stages. Sox9, a stem/progenitor cell marker in other organs, is expressed mainly in the suprabasal epithelium complementary with Sox2 expression. This Sox2 and Sox9 expressing molar tail contains actively proliferating cells with mitosis following an apico-basal direction. Snail2, a transcription factor implicated in cell migration, is expressed at high levels in the tip of the molar tail while E-cadherin and laminin are decreased. In conclusion, our studies propose a model in which the epithelium of the molar tail can grow by posterior movement of epithelial cells followed by infolding and stratification involving a population of Sox2+/Sox9+ cells.

  5. Epithelial-Mesenchymal Transition in Kidney Tubular Epithelial Cells Induced by Globotriaosylsphingosine and Globotriaosylceramide.

    Directory of Open Access Journals (Sweden)

    Yeo Jin Jeon

    Full Text Available Fabry disease is a lysosomal storage disorder caused by deficiency of alpha-galactosidase A (α-gal A, which results in the deposition of globotriaosylceramide (Gb3 in the vascular endothelium. Globotriaosylsphingosine (lyso-Gb3, a deacylated Gb3, is also increased in the plasma of patients with Fabry disease. Renal fibrosis is a key feature of advanced Fabry disease patients. Therefore, we evaluated the association of Gb3 and lyso-Gb3 accumulation and the epithelial-mesenchymal transition (EMT on tubular epithelial cells of the kidney. In HK2 cells, exogenous treatments of Gb3 and lyso-Gb3 increased the expression of TGF-β, EMT markers (N-cadherin and α-SMA, and phosphorylation of PI3K/AKT, and decreased the expression of E-cadherin. Lyso-Gb3, rather than Gb3, strongly induced EMT in HK2 cells. In the mouse renal mesangial cell line, SV40 MES 13 cells, Gb3 strongly induced phenotype changes. The EMT induced by Gb3 was inhibited by enzyme α-gal A treatment, but EMT induced by lyso-Gb3 was not abrogated by enzyme treatment. However, TGF-β receptor inhibitor (TRI, SB525334 inhibited the activation of TGF-β and EMT markers in HK2 cells with Gb3 and lyso-Gb3 treatments. This study suggested that increased plasma lyso-Gb3 has a crucial role in the development of renal fibrosis through the cell-specific induction of the EMT in Fabry disease, and that TRI treatment, alongside enzyme replacement therapy, could be a potential therapeutic option for patients with Fabry disease.

  6. Dual-mode endomicroscopy for detection of epithelial dysplasia in the mouth: a descriptive pilot study

    Science.gov (United States)

    Bodenschatz, Nico; Poh, Catherine F.; Lam, Sylvia; Lane, Pierre; Guillaud, Martial; MacAulay, Calum E.

    2017-08-01

    Dual-mode endomicroscopy is a diagnostic tool for early cancer detection. It combines the high-resolution nuclear tissue contrast of fluorescence endomicroscopy with quantified depth-dependent epithelial backscattering as obtained by diffuse optical microscopy. In an in vivo pilot imaging study of 27 oral lesions from 21 patients, we demonstrate the complementary diagnostic value of both modalities and show correlations between grade of epithelial dysplasia and relative depth-dependent shifts in light backscattering. When combined, the two modalities provide diagnostic sensitivity to both moderate and severe epithelial dysplasia in vivo.

  7. Structure of neuro-endocrine and neuro-epithelial interactions in human foetal pancreas.

    Science.gov (United States)

    Krivova, Yuliya; Proshchina, Alexandra; Barabanov, Valeriy; Leonova, Olga; Saveliev, Sergey

    2016-12-01

    In the pancreas of many mammals including humans, endocrine islet cells can be integrated with the nervous system components into neuro-insular complexes. The mechanism of the formation of such complexes is not clearly understood. The present study evaluated the interactions between the nervous system components, epithelial cells and endocrine cells in the human pancreas. Foetal pancreas, gestational age 19-23 weeks (13 cases) and 30-34 weeks (7 cases), were studied using double immunohistochemical labeling with neural markers (S100 protein and beta III tubulin), epithelial marker (cytokeratin 19 (CK19)) and antibodies to insulin and glucagon. We first analyse the structure of neuro-insular complexes using confocal microscopy and provide immunohistochemical evidences of the presence of endocrine cells within the ganglia or inside the nerve bundles. We showed that the nervous system components contact with the epithelial cells located in ducts or in clusters outside the ductal epithelium and form complexes with separate epithelial cells. We observed CK19-positive cells inside the ganglia and nerve bundles which were located separately or were integrated with the islets. Therefore, we conclude that neuro-insular complexes may forms as a result of integration between epithelial cells and nervous system components at the initial stages of islets formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Haemophilia, AIDS and lung epithelial permeability

    Energy Technology Data Exchange (ETDEWEB)

    O' Doherty, M.J.; Page, C.J.; Harrington, C.; Nunan, T.; Savidge, G. (Haemophilia Centre and Coagulation Research Unit, Department of Nuclear Medicine, Rayne Institute, St. Thomas' Hospital, London (United Kingdom))

    1990-01-01

    Lung {sup 99m}Tc DTPA transfer was measured in HIV antibodypositive haemophiliacs (11 smokers, 26 nonsmokers, 5 patients with Pneumocystis carinii pneumonia (PCP)). Lung {sup 99m}Tc DTPA transfer as a marker of lung epithelial permeability was measured as the half time of transfer (from airspace into blood). This half time was faster in smokers compred to nonsmokers and the transfer curve was monoexponential. In nonsmokers no difference was observed between asymptomatic HIV-positive haemophiliacs and normal subjects, with the exception of the lung bases. At the lung basis in HIV-positive haemophiliac nonsmokers the transfer was faster than in normal individuals, implying increased alveolar permeability. Pneumocystis carinii pneumonia resulted in a rapid transfer of {sup 99m}Tc DTPA (mean T50 of 2 minutes) and the transfer curve was biphasic, confirming previous observations in homosexual HIV antibody-positive patients with PCP. These changes returned to a monoexponential profile by 6 weeks following successful treatment. The DTPA lung transfer study may enable clinicians to instigate therapy for PCP without the need for initial bronchoscopy and provide a noninvasive method for the reassessment of patients should further respiratory signs or symptoms develop. This method is considered to be highly cost-effective in that it obviates the use of factor VIII concentrates required to cover bronchoscopic procedures and, with its early application and ease of use as a follow-up investigation, permits the evaluation of patients on an outpatient basis, thus reducing hospital costs. (au).

  9. Haemophilia, AIDS and lung epithelial permeability

    International Nuclear Information System (INIS)

    O'Doherty, M.J.; Page, C.J.; Harrington, C.; Nunan, T.; Savidge, G.

    1990-01-01

    Lung 99m Tc DTPA transfer was measured in HIV antibodypositive haemophiliacs (11 smokers, 26 nonsmokers, 5 patients with Pneumocystis carinii pneumonia (PCP)). Lung 99m Tc DTPA transfer as a marker of lung epithelial permeability was measured as the half time of transfer (from airspace into blood). This half time was faster in smokers compred to nonsmokers and the transfer curve was monoexponential. In nonsmokers no difference was observed between asymptomatic HIV-positive haemophiliacs and normal subjects, with the exception of the lung bases. At the lung basis in HIV-positive haemophiliac nonsmokers the transfer was faster than in normal individuals, implying increased alveolar permeability. Pneumocystis carinii pneumonia resulted in a rapid transfer of 99m Tc DTPA (mean T50 of 2 minutes) and the transfer curve was biphasic, confirming previous observations in homosexual HIV antibody-positive patients with PCP. These changes returned to a monoexponential profile by 6 weeks following successful treatment. The DTPA lung transfer study may enable clinicians to instigate therapy for PCP without the need for initial bronchoscopy and provide a noninvasive method for the reassessment of patients should further respiratory signs or symptoms develop. This method is considered to be highly cost-effective in that it obviates the use of factor VIII concentrates required to cover bronchoscopic procedures and, with its early application and ease of use as a follow-up investigation, permits the evaluation of patients on an outpatient basis, thus reducing hospital costs. (au)

  10. Determinants of the epithelial-muscular axis on embryonic stem cell-derived gut-like structures.

    Science.gov (United States)

    Luo, Yi; Takaki, Miyako; Misawa, Hiromi; Matsuyoshi, Hiroko; Sasahira, Tomonori; Chihara, Yoshitomo; Fujii, Kiyomu; Ohmori, Hitoshi; Kuniyasu, Hiroki

    2010-01-01

    Dome-like structures with epithelial-muscular layers resembling the gut have been derived from mouse embryonic stem (ES) cells. These domes have been reported to show spontaneous contractions and are called ES gut. In the present study, we examined the epithelial-muscular axis of these domes by detecting differentiation markers. A normal epithelial-muscular axis was exhibited in the domes with spontaneous motility, whereas the domes without spontaneous motility showed either an inverted or obscure axis. To investigate the factors affecting the epithelial-muscular axis, we examined the expression of hedgehog signaling factors in the domes. Expression of hedgehog family factors was detected in the epithelial components of the domes with motility, whereas this expression was inverted or obscure in the domes without motility. Out of the 25 domes, 10 of the 10 motility (+) domes showed a normal epithelial-muscular axis, whereas 14 of the 15 motility (-) domes lacked a normal epithelial-muscular axis. This implies that activin A upregulated the expression of sonic hedgehog and intestinal alkaline phosphatase in the embryoid bodies. These findings suggest that the motility of the ES gut depends on the domes' epithelial-muscular axis. Copyright © 2010 S. Karger AG, Basel.

  11. Relationship between circulating tumor cells and epithelial to mesenchymal transition in early breast cancer

    International Nuclear Information System (INIS)

    Mego, M.; Cierna, Z.; Janega, P.; Karaba, M.; Minarik, G.; Benca, J.; Sedlácková, T.; Sieberova, G.; Gronesova, P.; Manasova, D.; Pindak, D.; Sufliarsky, J.; Danihel, L.; Reuben, JM; Mardiak, J.

    2015-01-01

    Circulating tumor cells (CTCs) play a crucial role in tumor dissemination and are an independent survival predictor in breast cancer (BC) patients. Epithelial to mesenchymal transition (EMT) is involved in cancer invasion and metastasis. The aim of this study was to assess correlation between CTCs and expression of EMT transcription factors TWIST1 and SLUG in breast tumor tissue. This study included 102 early BC patients treated by primary surgery. Peripheral blood mononuclear cells (PBMC) were depleted of hematopoietic cells using RossetteSep™ negative selection kit. RNA extracted from CD45-depleted PBMC was interrogated for expression of EMT (TWIST1, SNAIL1, SLUG, FOXC2 and ZEB1) and epithelial (KRT19) gene transcripts by qRT-PCR. Expression of TWIST1 and SLUG in surgical specimens was evaluated by immunohistochemistry and quantified by multiplicative score. CTCs were detected in 24.5 % patients. CTCs exhibiting only epithelial markers were present in 8.8 % patients, whereas CTCs with only EMT markers were observed in 12.8 % of pts and CTCs co-expressing both markers were detected in 2.9 % pts. We observed lack of correlation between CTCs and expression of TWIST1 and SLUG in breast cancer cells or cancer associated stroma. Lack of correlation was observed for epithelial CTCs as well as for CTCs with EMT. In this translational study, we showed a lack of association between CTCs and expression of EMT-inducing transcription factors, TWIST1 and SLUG, in breast tumor tissue. Despite the fact that EMT is involved in cancer invasion and metastasis our results suggest, that expression of EMT proteins in unselected tumor tissue is not surrogate marker of CTCs with either mesenchymal or epithelial features

  12. Molecular mechanisms involved in casein gene expression and secretion in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Lee, E.Y.H.P.; Lee, W.H.; Parry, G.; Bissell, M.J.

    1985-01-01

    Mouse mammary epithelial cells (MMEC) secrete a group of milk-specific proteins including various caseins and whey proteins. Dissociated mammary epithelial cells maintain expression of most of their differentiated functions only if cells are plated on a suitable substratum. Casein production and section, cell morphology, and production of α-lactalbumin have been used as markers to assess the degree of differentiation of mammary cells in culture. The general consensus is that cells express their differentiated properties at high levels and for longer periods of time on such substrata. In this paper, the authors demonstrate that modulation of the expression of caseins by floating collagen gels is manifested at several regulatory points

  13. Fuzheng Huayu Recipe Ameliorates Liver Fibrosis by Restoring Balance between Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Hepatic Stellate Cells

    Directory of Open Access Journals (Sweden)

    Qin Pan

    2015-01-01

    Full Text Available Activation of hepatic stellate cells (HSCs depending on epithelial-to-mesenchymal transition (EMT reflects the key event of liver fibrosis. Contrastively, mesenchymal-to-epithelial transition (MET of HSCs facilitates the fibrosis resolution. Here we investigated the effect of Fuzheng Huayu (FZHY recipe, a Chinese herbal decoction made of Radix Salviae Miltiorrhizae, Semen Persicae, Cordyceps sinensis, Pollen Pini, and Gynostemma pentaphyllum, on liver fibrosis concerning the balance of EMT and MET in HSCs. In contrast to the increased TGF-β1/BMP-7 ratio in activated HSCs, FZHY administration induced significant upregulation of BMP-7 and downregulation of TGF-β1 at both transcription and translation levels. Restoration of TGF-β1/BMP-7 ratio inhibited the expression of p38 MAPK and phosphorylated p38 MAPK, resulting in the reversal of epithelial-to-mesenchymal transition (EMT to mesenchymal-to-epithelial transition (MET as characterized by the abolishment of EMT markers (α-SMA and desmin and reoccurrence of MET marker (E-cadherin. In vivo treatment of FZHY recipe also demonstrated the statistical reduction of activated HSCs with EMT phenotype, which attenuated the carbon tetrachloride- (CCl4- induced liver fibrosis in a dose-dependent manner. These findings may highlight a novel antifibrotic role of FZHY recipe on the basis of rebalancing EMT and MET in HSCs.

  14. The role of Molecular Markers in Improvement of Fruit Crops

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2010-06-01

    Full Text Available Markers have been used over the years for the classification of plants. Markers are any trait of an organism that can be identified with confidence and relative easy, and can be followed in a mapping population on another hand markers be defined as heritable entities associated with the economically important trait under the control of polygenes. Morphological markers can be detected with naked eye (naked eye polymorphism or as difference in physical or chemical properties of the macromolecules. In other words, there are two types of genetic markers viz. morphological markers or naked eye polymorphism and non-morphological markers or molecular markers. Morphological markers include traits such as plant height, disease response, photoperiod, sensitivity, shape or colour of flowers, fruits or seeds etc. Molecular markers include biochemical constituents. Morphological markers have many limitations for being used as markers particularly in fruit crops because of long generation time and large size of fruit trees besides being influenced by environment. Consequently, molecular markers could be appropriate choice to study and preserve the diversity in any germplasm. Molecular markers have diverse applications in fruit crop improvement, particularly in the areas of genetic diversity and varietal identification studies, gene tagging, disease diagnostics, pedigree analysis, hybrid detection, sex differentiation and marker assisted selection.

  15. Identification of an epigenetic biomarker panel with high sensitivity and specificity for colorectal cancer and adenomas

    Directory of Open Access Journals (Sweden)

    Lind Guro E

    2011-07-01

    Full Text Available Abstract Background The presence of cancer-specific DNA methylation patterns in epithelial colorectal cells in human feces provides the prospect of a simple, non-invasive screening test for colorectal cancer and its precursor, the adenoma. This study investigates a panel of epigenetic markers for the detection of colorectal cancer and adenomas. Methods Candidate biomarkers were subjected to quantitative methylation analysis in test sets of tissue samples from colorectal cancers, adenomas, and normal colonic mucosa. All findings were verified in independent clinical validation series. A total of 523 human samples were included in the study. Receiver operating characteristic (ROC curve analysis was used to evaluate the performance of the biomarker panel. Results Promoter hypermethylation of the genes CNRIP1, FBN1, INA, MAL, SNCA, and SPG20 was frequent in both colorectal cancers (65-94% and adenomas (35-91%, whereas normal mucosa samples were rarely (0-5% methylated. The combined sensitivity of at least two positives among the six markers was 94% for colorectal cancers and 93% for adenoma samples, with a specificity of 98%. The resulting areas under the ROC curve were 0.984 for cancers and 0.968 for adenomas versus normal mucosa. Conclusions The novel epigenetic marker panel shows very high sensitivity and specificity for both colorectal cancers and adenomas. Our findings suggest this biomarker panel to be highly suitable for early tumor detection.

  16. The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis.

    Science.gov (United States)

    Dijkman, Henry; Smeets, Bart; van der Laak, Jeroen; Steenbergen, Eric; Wetzels, Jack

    2005-10-01

    Focal segmental glomerulosclerosis (FSGS) is one of the most common patterns of glomerular injury encountered in human renal biopsies. Epithelial hyperplasia, which can be prominent in FSGS, has been attributed to dedifferentiation and proliferation of podocytes. Based on observations in a mouse model of FSGS, we pointed to the role of parietal epithelial cells (PECs). In the present study we investigated the relative role of PECs and podocytes in human idiopathic FSGS. We performed a detailed study of lesions from a patient with recurrent idiopathic FSGS by serial sectioning, marker analysis and three-dimensional reconstruction of glomeruli. We have studied the expression of markers for podocytes, PECs, mesangial cells, endothelium, and myofibroblasts. We also looked at proliferation and composition of the deposited extracellular matrix (ECM). We found that proliferating epithelial cells in FSGS lesions are negative for podocyte and macrophage markers, but stain for PEC markers. The composition of the matrix deposited by these cells is identical to Bowman's capsule. Our study demonstrates that PECs are crucially involved in the pathogenesis of FSGS lesions.

  17. Generation of stratified squamous epithelial progenitor cells from mouse induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Satoru Yoshida

    Full Text Available BACKGROUND: Application of induced pluripotent stem (iPS cells in regenerative medicine will bypass ethical issues associated with use of embryonic stem cells. In addition, patient-specific IPS cells can be useful to elucidate the pathophysiology of genetic disorders, drug screening, and tailor-made medicine. However, in order to apply iPS cells to mitotic tissue, induction of tissue stem cells that give rise to progeny of the target organ is required. METHODOLOGY/PRINCIPAL FINDINGS: We induced stratified epithelial cells from mouse iPS cells by co-culture with PA6 feeder cells (SDIA-method with use of BMP4. Clusters of cells positive for the differentiation markers KRT1 or KRT12 were observed in KRT14-positive colonies. We successfully cloned KRT14 and p63 double-positive stratified epithelial progenitor cells from iPS-derived epithelial cells, which formed stratified epithelial sheets consisting of five- to six-polarized epithelial cells in vitro. When these clonal cells were cultured on denuded mouse corneas, a robust stratified epithelial layer was observed with physiological cell polarity including high levels of E-cadherin, p63 and K15 expression in the basal layer and ZO-1 in the superficial layer, recapitulating the apico-basal polarity of the epithelium in vivo. CONCLUSIONS/SIGNIFICANCE: These results suggest that KRT14 and p63 double-positive epithelial progenitor cells can be cloned from iPS cells in order to produce polarized multilayer epithelial cell sheets.

  18. Increased Eps15 homology domain 1 and RAB11FIP3 expression regulate breast cancer progression via promoting epithelial growth factor receptor recycling.

    Science.gov (United States)

    Tong, Dandan; Liang, Ya-Nan; Stepanova, A A; Liu, Yu; Li, Xiaobo; Wang, Letian; Zhang, Fengmin; Vasilyeva, N V

    2017-02-01

    Recent research indicates that the C-terminal Eps15 homology domain 1 is associated with epithelial growth factor receptor-mediated endocytosis recycling in non-small-cell lung cancer. The aim of this study was to determine the clinical significance of Eps15 homology domain 1 gene expression in relation to phosphorylation of epithelial growth factor receptor expression in patients with breast cancer. Primary breast cancer samples from 306 patients were analyzed for Eps15 homology domain 1, RAB11FIP3, and phosphorylation of epithelial growth factor receptor expression via immunohistochemistry. The clinical significance was assessed via a multivariate Cox regression analysis, Kaplan-Meier curves, and the log-rank test. Eps15 homology domain 1 and phosphorylation of epithelial growth factor receptor were upregulated in 60.46% (185/306) and 53.92% (165/306) of tumor tissues, respectively, as assessed by immunohistochemistry. The statistical correlation analysis indicated that Eps15 homology domain 1 overexpression was positively correlated with the increases in phosphorylation of epithelial growth factor receptor ( r = 0.242, p breast cancer for the overall survival in the total, chemotherapy, and human epidermal growth factor receptor 2 (-) groups. However, the use of combined expression of Eps15 homology domain 1 and phosphorylation of epithelial growth factor receptor markers is more effective for the disease-free survival in the overall population, chemotherapy, and human epidermal growth factor receptor 2 (-) groups. Moreover, the combined markers are also significant prognostic markers of breast cancer in the human epidermal growth factor receptor 2 (+), estrogen receptor (+), and estrogen receptor (-) groups. Eps15 homology domain 1 has a tumor suppressor function, and the combined marker of Eps15 homology domain 1/phosphorylation of epithelial growth factor receptor expression was identified as a better prognostic marker in breast cancer diagnosis

  19. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways.

    Directory of Open Access Journals (Sweden)

    Harish Chandra Pal

    Full Text Available Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60-70% of malignant melanomas. The BRAF-MEK-ERK (MAPK pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5-20 µM resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059 or of NFκB (caffeic acid phenethyl ester also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin and an increase in epithelial markers (E-cadherin and desmoglein. Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that

  20. Fisetin Inhibits Human Melanoma Cell Invasion through Promotion of Mesenchymal to Epithelial Transition and by Targeting MAPK and NFκB Signaling Pathways

    Science.gov (United States)

    Pal, Harish Chandra; Sharma, Samriti; Strickland, Leah Ray; Katiyar, Santosh K.; Ballestas, Mary E.; Athar, Mohammad; Elmets, Craig A.; Afaq, Farrukh

    2014-01-01

    Malignant melanoma is responsible for approximately 75% of skin cancer-related deaths. BRAF plays an important role in regulating the mitogen-activated protein kinase (MAPK) signaling cascade in melanoma with activating mutations in the serine/threonine kinase BRAF occurring in 60–70% of malignant melanomas. The BRAF-MEK-ERK (MAPK) pathway is a key regulator of melanoma cell invasion. In addition, activation of NFκB via the MAPK pathway is regulated through MEK-induced activation of IKK. These pathways are potential targets for prevention and treatment of melanoma. In this study, we investigated the effect of fisetin, a phytochemical present in fruits and vegetables, on melanoma cell invasion and epithelial-mesenchymal transition, and delineated the underlying molecular mechanism. Treatment of multiple human malignant melanoma cell lines with fisetin (5–20 µM) resulted in inhibition of cell invasion. BRAF mutated melanoma cells were more sensitive to fisetin treatment, and this was associated with a decrease in the phosphorylation of MEK1/2 and ERK1/2. In addition, fisetin inhibited the activation of IKK leading to a reduction in the activation of the NFκB signaling pathway. Treatment of cells with an inhibitor of MEK1/2 (PD98059) or of NFκB (caffeic acid phenethyl ester) also reduced melanoma cell invasion. Furthermore, treatment of fisetin promoted mesenchymal to epithelial transition in melanoma cells, which was associated with a decrease in mesenchymal markers (N-cadherin, vimentin, snail and fibronectin) and an increase in epithelial markers (E-cadherin and desmoglein). Employing three dimensional skin equivalents consisting of A375 cells admixed with normal human keratinocytes embedded onto a collagen-constricted fibroblast matrix, we found that treatment of fisetin reduced the invasive potential of melanoma cells into the dermis and increased the expression of E-cadherin with a concomitant decrease in vimentin. These results indicate that fisetin

  1. Epithelial-to-mesenchymal transition and estrogen receptor α mediated epithelial dedifferentiation mark the development of benign prostatic hyperplasia.

    Science.gov (United States)

    Shao, Rui; Shi, Jiandang; Liu, Haitao; Shi, Xiaoyu; Du, Xiaoling; Klocker, Helmut; Lee, Chung; Zhu, Yan; Zhang, Ju

    2014-06-01

    Epithelial-to-mesenchymal transition (EMT) has been reported involved in the pathogenesis of fibrotic disorders and associated with stemness characteristics. Recent studies demonstrated that human benign prostatic hyperplasia (BPH) development involves accumulation of mesenchymal-like cells derived from the prostatic epithelium. However, the inductive factors of EMT in the adult prostate and the cause-and-effect relationship between EMT and stemness characteristics are not yet resolved. EMT expression patterns were immunohistochemically identified in the human epithelia of normal/BPH prostate tissue and in a rat BPH model induced by estrogen/androgen (E2/T, ratio 1:100) alone or in the presence of the ER antagonist raloxifene. Gene expression profiles were analyzed in micro-dissected prostatic epithelia of rat stimulated by E2/T for 3 days. Two main morphological features both accompanied with EMT were observed in the epithelia of human BPH. Luminal cells undergoing EMT dedifferentiated from a cytokeratin (CK) CK18(+) /CK8(+) /CK19(+) to a CK18(-) /CK8(+) /CK19(-) phenotype and CK14 expression increased in basal epithelial cells. ERα expression was closely related to these dedifferentiated cells and the expression of EMT markers. A similar pattern of EMT events was observed in the E2/T induced rat model of BPH in comparison to the prostates of untreated rats, which could be prevented by raloxifene. Epithelial and mesenchymal phenotype switching is an important mechanism in the etiology of BPH. ERα mediated enhanced estrogenic effect is a crucial inductive factor of epithelial dedifferentiation giving rise to activation of an EMT program in prostate epithelium. © 2014 Wiley Periodicals, Inc.

  2. Molecular Pathology: Predictive, Prognostic, and Diagnostic Markers in Uterine Tumors.

    Science.gov (United States)

    Ritterhouse, Lauren L; Howitt, Brooke E

    2016-09-01

    This article focuses on the diagnostic, prognostic, and predictive molecular biomarkers in uterine malignancies, in the context of morphologic diagnoses. The histologic classification of endometrial carcinomas is reviewed first, followed by the description and molecular classification of endometrial epithelial malignancies in the context of histologic classification. Taken together, the molecular and histologic classifications help clinicians to approach troublesome areas encountered in clinical practice and evaluate the utility of molecular alterations in the diagnosis and subclassification of endometrial carcinomas. Putative prognostic markers are reviewed. The use of molecular alterations and surrogate immunohistochemistry as prognostic and predictive markers is also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Investigation of nuclear nano-morphology marker as a biomarker for cancer risk assessment using a mouse model

    Science.gov (United States)

    Bista, Rajan K.; Uttam, Shikhar; Hartman, Douglas J.; Qiu, Wei; Yu, Jian; Zhang, Lin; Brand, Randall E.; Liu, Yang

    2012-06-01

    The development of accurate and clinically applicable tools to assess cancer risk is essential to define candidates to undergo screening for early-stage cancers at a curable stage or provide a novel method to monitor chemoprevention treatments. With the use of our recently developed optical technology--spatial-domain low-coherence quantitative phase microscopy (SL-QPM), we have derived a novel optical biomarker characterized by structure-derived optical path length (OPL) properties from the cell nucleus on the standard histology and cytology specimens, which quantifies the nano-structural alterations within the cell nucleus at the nanoscale sensitivity, referred to as nano-morphology marker. The aim of this study is to evaluate the feasibility of the nuclear nano-morphology marker from histologically normal cells, extracted directly from the standard histology specimens, to detect early-stage carcinogenesis, assess cancer risk, and monitor the effect of chemopreventive treatment. We used a well-established mouse model of spontaneous carcinogenesis--ApcMin mice, which develop multiple intestinal adenomas (Min) due to a germline mutation in the adenomatous polyposis coli (Apc) gene. We found that the nuclear nano-morphology marker quantified by OPL detects the development of carcinogenesis from histologically normal intestinal epithelial cells, even at an early pre-adenomatous stage (six weeks). It also exhibits a good temporal correlation with the small intestine that parallels the development of carcinogenesis and cancer risk. To further assess its ability to monitor the efficacy of chemopreventive agents, we used an established chemopreventive agent, sulindac. The nuclear nano-morphology marker is reversed toward normal after a prolonged treatment. Therefore, our proof-of-concept study establishes the feasibility of the SL-QPM derived nuclear nano-morphology marker OPL as a promising, simple and clinically applicable biomarker for cancer risk assessment and

  4. Hypoxia is a key regulator of limbal epithelial stem cell growth and differentiation

    DEFF Research Database (Denmark)

    Bath, Chris; Yang, Sufang; Muttuvelu, Danson

    2013-01-01

    The aim of this study was to determine whether the growth and differentiation of limbal epithelial stem cell cultures could be controlled through manipulation of the oxygen tension. Limbal epithelial cells were isolated from corneoscleral disks, and cultured using either feeder cells in a growth......, progression through cell cycle, colony forming efficiency (CFE), and expression of stem cell (ABCG2 and p63α) and differentiation (CK3) markers was determined throughout the culture period of up to 18 days. Low oxygen levels favored a stem cell phenotype with a lower proliferative rate, high CFE......, and a relatively higher expression of ABCG2 and p63α, while higher levels of oxygen led not only to decreased CFE but also to increased proportion of differentiated cells positive for CK3. Hypoxic cultures may thus potentially improve stem cell grafts for cultured limbal epithelial transplantation (CLET)....

  5. Wnt-10b promotes differentiation of skin epithelial cells in vitro

    International Nuclear Information System (INIS)

    Ouji, Yukiteru; Yoshikawa, Masahide; Shiroi, Akira; Ishizaka, Shigeaki

    2006-01-01

    To evaluate the role of Wnt-10b in epithelial differentiation, we investigated the effects of Wnt-10b on adult mouse-derived primary skin epithelial cells (MPSEC). Recombinant Wnt-10b protein (rWnt-10b) was prepared using a gene engineering technique and MPSEC were cultured in its presence, which resulted in morphological changes from cuboidal to spindle-shaped and inhibited their proliferation. Further, involvement of the canonical Wnt signal pathway was also observed. MPSEC treated with rWnt-10b showed characteristics of the hair shaft and inner root sheath of the hair follicle, in results of Ayoub Shklar staining and immunocytochemistry. Further, the cells expressed mRNA for differentiated epithelial cells, including keratin 1, keratin 2, loricrin, mHa5, and mHb5, in association with a decreased expression of the basal cell marker keratin 5. These results suggest that Wnt-10b promotes the differentiation of MPSEC

  6. Biochemical Markers in Neurocritical Care

    Directory of Open Access Journals (Sweden)

    Omidvar Rezae

    2016-07-01

    Full Text Available During the past two decades, a variety of serum or cerebrospinal fluid (CSF biochemical markers in daily clinical practice have been recommended to diagnose and monitor diverse diseases or pathologic situations. It will be essential to develop a panel of biomarkers, to be suitable for evaluation of treatment efficacy, representing distinct phases of injury and recovery and consider the temporal profile of those. Among the possible and different biochemical markers, S100b appeared to fulfill many of optimized criteria of an ideal marker. S100b, a cytosolic low molecular weight dimeric calciumbinding protein from chromosome 21, synthesized in glial cells throughout the CNS, an homodimeric diffusible, belongs to a family of closely related protein, predominantly expressed by astrocytes and Schwann cells and a classic immunohistochemical marker for these cells, is implicated in brain development and neurophysiology. Of the 3 isoforms of S-100, the BB subunit (S100B is present in high concentrations in central and peripheral glial and Schwann cells, Langerhans and anterior pituitary cells, fat, muscle, and bone marrow tissues. The biomarker has shown to be a sensitive marker of clinical and subclinical cerebral damage, such as stroke, traumatic brain injury, and spinal cord injury. Increasing evidence suggests that the biomarker plays a double function as an intracellular regulator and an extracellular signal of the CNS. S100b is found in the cytoplasm in a soluble form and also is associated with intracellular membranes, centrosomes, microtubules, and type III intermediate filaments. Their genomic organization now is known, and many of their target proteins have been identified, although the mechanisms of regulating S100b secretion are not completely understood and appear to be related to many factors, such as the proinflammatory cytokines, tumor necrosis factor alpha (TNF-a, interleukin (IL-1b, and metabolic stress. 

  7. The Crosstalk between Nrf2 and TGF-β1 in the Epithelial-Mesenchymal Transition of Pancreatic Duct Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Sarah Arfmann-Knübel

    Full Text Available Nrf2 and TGF-β1 both affect tumorigenesis in a dual fashion, either by preventing carcinogen induced carcinogenesis and suppressing tumor growth, respectively, or by conferring cytoprotection and invasiveness to tumor cells during malignant transformation. Given the involvement of Nrf2 and TGF-β1 in the adaptation of epithelial cells to persistent inflammatory stress, e.g. of the pancreatic duct epithelium during chronic pancreatitis, a crosstalk between Nrf2 and TGF-β1 can be envisaged. By using premalignant human pancreatic duct cells (HPDE and the pancreatic ductal adenocarcinoma cell line Colo357, we could show that Nrf2 and TGF-β1 independently but additively conferred an invasive phenotype to HPDE cells, whereas acting synergistically in Colo357 cells. This was accompanied by differential regulation of EMT markers like vimentin, Slug, L1CAM and E-cadherin. Nrf2 activation suppressed E-cadherin expression through an as yet unidentified ARE related site in the E-cadherin promoter, attenuated TGF-β1 induced Smad2/3-activity and enhanced JNK-signaling. In Colo357 cells, TGF-β1 itself was capable of inducing Nrf2 whereas in HPDE cells TGF-β1 per-se did not affect Nrf2 activity, but enhanced Nrf2 induction by tBHQ. In Colo357, but not in HPDE cells, the effects of TGF-β1 on invasion were sensitive to Nrf2 knock-down. In both cell lines, E-cadherin re-expression inhibited the proinvasive effect of Nrf2. Thus, the increased invasion of both cell lines relates to the Nrf2-dependent downregulation of E-cadherin expression. In line, immunohistochemistry analysis of human pancreatic intraepithelial neoplasias in pancreatic tissues from chronic pancreatitis patients revealed strong Nrf2 activity already in premalignant epithelial duct cells, accompanied by partial loss of E-cadherin expression. Our findings indicate that Nrf2 and TGF-β1 both contribute to malignant transformation through distinct EMT related mechanisms accounting for an

  8. Cigarette smoke-induced alveolar epithelial-mesenchymal transition is mediated by Rac1 activation.

    Science.gov (United States)

    Shen, Hui-juan; Sun, Yan-hong; Zhang, Shui-juan; Jiang, Jun-xia; Dong, Xin-wei; Jia, Yong-liang; Shen, Jian; Guan, Yan; Zhang, Lin-hui; Li, Fen-fen; Lin, Xi-xi; Wu, Xi-mei; Xie, Qiang-min; Yan, Xiao-feng

    2014-06-01

    Epithelial-mesenchymal transition (EMT) is the major pathophysiological process in lung fibrosis observed in chronic obstructive pulmonary disease (COPD) and lung cancer. Smoking is a risk factor for developing EMT, yet the mechanism remains largely unknown. In this study, we investigated the role of Rac1 in cigarette smoke (CS) induced EMT. EMT was induced in mice and pulmonary epithelial cells by exposure of CS and cigarette smoke extract (CSE) respectively. Treatment of pulmonary epithelial cells with CSE elevated Rac1 expression associated with increased TGF-β1 release. Blocking TGF-β pathway restrained CSE-induced changes in EMT-related markers. Pharmacological inhibition or knockdown of Rac1 decreased the CSE exposure induced TGF-β1 release and ameliorated CSE-induced EMT. In CS-exposed mice, pharmacological inhibition of Rac1 reduced TGF-β1 release and prevented aberrations in expression of EMT markers, suggesting that Rac1 is a critical signaling molecule for induction of CS-stimulated EMT. Furthermore, Rac1 inhibition or knockdown abrogated CSE-induced Smad2 and Akt (PKB, protein kinase B) activation in pulmonary epithelial cells. Inhibition of Smad2, PI3K (phosphatidylinositol 3-kinase) or Akt suppressed CSE-induced changes in epithelial and mesenchymal marker expression. Altogether, these data suggest that CS initiates EMT through Rac1/Smad2 and Rac1/PI3K/Akt signaling pathway. Our data provide new insights into the fundamental basis of EMT and suggest a possible new course of therapy for COPD and lung cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells

    Science.gov (United States)

    Li, Yiwei; VandenBoom, Timothy G.; Kong, Dejuan; Wang, Zhiwei; Ali, Shadan; Philip, Philip A.; Sarkar, Fazlul H.

    2009-01-01

    Pancreatic cancer (PC) is the fourth most common cause of cancer death in the United States and the aggressiveness of PC is in part due to its intrinsic and extrinsic drug resistance characteristics, which is also associated with the acquisition of epithelial-to-mesenchymal transition (EMT). Emerging evidence also suggest that the processes of EMT is regulated by the expression status of many microRNAs (miRNAs), which are believed to function as key regulators of various biological and pathological processes during tumor development and progression. In the present study, we compared the expression of miRNAs between gemcitabine-sensitive and gemcitabine-resistant PC cells, and investigated whether the treatment of cells with “natural agents” [3,3′-diinodolylmethane (DIM) or isoflavone] could affect the expression of miRNAs. We found that the expression of miR-200b, miR-200c, let-7b, let-7c, let-7d, and let-7e was significantly down-regulated in gemcitabine-resistant cells that showed EMT characteristics such as elongated fibroblastoid morphology, lower expression of epithelial marker E-cadherin, and higher expression of mesenchymal markers such as vimentin and ZEB1. Moreover, we found that re-expression of miR-200 by transfection studies or treatment of gemcitabine-resistant cells with either DIM or isoflavone resulted in the down-regulation of ZEB1, slug, and vimentin, which was consistent with morphological reversal of EMT phenotype leading to epithelial morphology. These results provide experimental evidence, for the first time, that DIM and isoflavone could function as miRNA regulators leading to the reversal of EMT phenotype, which is likely to be important for designing novel therapies for PC. PMID:19654291

  10. IGF-1 contributes to the expansion of melanoma-initiating cells through an epithelial-mesenchymal transition process.

    Science.gov (United States)

    Le Coz, Vincent; Zhu, Chaobin; Devocelle, Aurore; Vazquez, Aimé; Boucheix, Claude; Azzi, Sandy; Gallerne, Cindy; Eid, Pierre; Lecourt, Séverine; Giron-Michel, Julien

    2016-12-13

    Melanoma is a particularly virulent human cancer, due to its resistance to conventional treatments and high frequency of metastasis. Melanomas contain a fraction of cells, the melanoma-initiating cells (MICs), responsible for tumor propagation and relapse. Identification of the molecular pathways supporting MICs is, therefore, vital for the development of targeted treatments. One factor produced by melanoma cells and their microenvironment, insulin-like growth factor-1 (IGF- 1), is linked to epithelial-mesenchymal transition (EMT) and stemness features in several cancers.We evaluated the effect of IGF-1 on the phenotype and chemoresistance of B16-F10 cells. IGF-1 inhibition in these cells prevented malignant cell proliferation, migration and invasion, and lung colony formation in immunodeficient mice. IGF-1 downregulation also markedly inhibited EMT, with low levels of ZEB1 and mesenchymal markers (N-cadherin, CD44, CD29, CD105) associated with high levels of E-cadherin and MITF, the major regulator of melanocyte differentiation. IGF-1 inhibition greatly reduced stemness features, including the expression of key stem markers (SOX2, Oct-3/4, CD24 and CD133), and the functional characteristics of MICs (melanosphere formation, aldehyde dehydrogenase activity, side population). These features were associated with a high degree of sensitivity to mitoxantrone treatment.In this study, we deciphered new connections between IGF-1 and stemness features and identified IGF-1 as instrumental for maintaining the MIC phenotype. The IGF1/IGF1-R nexus could be targeted for the development of more efficient anti-melanoma treatments. Blocking the IGF-1 pathway would improve the immune response, decrease the metastatic potential of tumor cells and sensitize melanoma cells to conventional treatments.

  11. Tantalum markers in radiography

    International Nuclear Information System (INIS)

    Aronson, A.S.; Jonsson, N.; Alberius, P.

    1985-01-01

    The biocompatibility of two types of radiopaque tantalum markers was evaluated histologically. Reactions to pin markers (99.9% purity) and spherical markers (95.2% purity) were investigated after 3-6 weeks in rabbits and 5-48 weeks in children with abnormal growth. Both marker types were firmly attached to bone trabeculae; this was most pronounced in rabbit bone, and no adverse macroscopic reactions were observed. Microscopically, no reactions or only slight fibrosis of bone tissue were detected, while soft tissues only demonstrated a minor inflammatory reaction. Nevertheless, the need for careful preparation and execution of marker implantations is stressed, and particularly avoidance iof the use of emery in sharpening of cannulae. The bioinertness of tantalum was reconfirmed as was its suitability for use as skeletal and soft tissue radiographic markers. (orig.)

  12. Force transmission in epithelial tissues.

    Science.gov (United States)

    Vasquez, Claudia G; Martin, Adam C

    2016-03-01

    In epithelial tissues, cells constantly generate and transmit forces between each other. Forces generated by the actomyosin cytoskeleton regulate tissue shape and structure and also provide signals that influence cells' decisions to divide, die, or differentiate. Forces are transmitted across epithelia because cells are mechanically linked through junctional complexes, and forces can propagate through the cell cytoplasm. Here, we review some of the molecular mechanisms responsible for force generation, with a specific focus on the actomyosin cortex and adherens junctions. We then discuss evidence for how these mechanisms promote cell shape changes and force transmission in tissues. © 2016 Wiley Periodicals, Inc.

  13. Myoferlin depletion in breast cancer cells promotes mesenchymal to epithelial shape change and stalls invasion.

    Directory of Open Access Journals (Sweden)

    Ruth Li

    Full Text Available Myoferlin (MYOF is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of mesenchymal to epithelial transition (MET. These observations were confirmed by the down-regulation of some mesenchymal cell markers (e.g., fibronectin and vimentin and coordinate up-regulation of the E-cadherin epithelial marker. Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants from shRNA(MYOF transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a potential reversion to an epithelial phenotype upon loss of MYOF.

  14. Small-Molecule Induction Promotes Corneal Epithelial Cell Differentiation from Human Induced Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Alexandra Mikhailova

    2014-02-01

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer unique opportunities for developing novel cell-based therapies and disease modeling. In this study, we developed a directed differentiation method for hiPSCs toward corneal epithelial progenitor cells capable of terminal differentiation toward mature corneal epithelial-like cells. In order to improve the efficiency and reproducibility of our method, we replicated signaling cues active during ocular surface ectoderm development with the help of two small-molecule inhibitors in combination with basic fibroblast growth factor (bFGF in serum-free and feeder-free conditions. First, small-molecule induction downregulated the expression of pluripotency markers while upregulating several transcription factors essential for normal eye development. Second, protein expression of the corneal epithelial progenitor marker p63 was greatly enhanced, with up to 95% of cells being p63 positive after 5 weeks of differentiation. Third, corneal epithelial-like cells were obtained upon further maturation.

  15. Neural differentiation of choroid plexus epithelial cells: role of human traumatic cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Elham Hashemi

    2017-01-01

    Full Text Available As the key producer of cerebrospinal fluid (CSF, the choroid plexus (CP provides a unique protective system in the central nervous system. CSF components are not invariable and they can change based on the pathological conditions of the central nervous system. The purpose of the present study was to assess the effects of non-traumatic and traumatic CSF on the differentiation of multipotent stem-like cells of CP into the neural and/or glial cells. CP epithelial cells were isolated from adult male rats and treated with human non-traumatic and traumatic CSF. Alterations in mRNA expression of Nestin and microtubule-associated protein (MAP2, as the specific markers of neurogenesis, and astrocyte marker glial fibrillary acidic protein (GFAP in cultured CP epithelial cells were evaluated using quantitative real-time PCR. The data revealed that treatment with CSF (non-traumatic and traumatic led to increase in mRNA expression levels of MAP2 and GFAP. Moreover, the expression of Nestin decreased in CP epithelial cells treated with non-traumatic CSF, while treatment with traumatic CSF significantly increased its mRNA level compared to the cells cultured only in DMEM/F12 as control. It seems that CP epithelial cells contain multipotent stem-like cells which are inducible under pathological conditions including exposure to traumatic CSF because of its compositions.

  16. Spontaneous transformation of murine oviductal epithelial cells: A model system to investigate the onset of fallopian-derived tumors

    Directory of Open Access Journals (Sweden)

    MIchael P. Endsley

    2015-07-01

    Full Text Available High-grade serous carcinoma (HGSC is the most lethal ovarian cancer histotype. The fallopian tube secretory epithelial cells (FTSECs are a proposed progenitor cell type. Genetically altered FTSECs form tumors in mice; however, a spontaneous HGSC model has not been described. Apart from a subpopulation of genetically predisposed women, most women develop ovarian cancer spontaneously, which is associated with aging and lifetime ovulations. A murine oviductal cell line (MOELOW was developed and continuously passaged in culture to mimic cellular aging (MOEHIGH. The MOEHIGH cellular model exhibited a loss of acetylated tubulin consistent with an outgrowth of secretory epithelial cells in culture. MOEHIGH cells proliferated significantly faster than MOELOW, and the MOEHIGH cells produced more 2D foci and 3D soft agar colonies as compared to MOELOW. MOEHIGH were xenografted into athymic female nude mice both in the subcutaneous and the intraperiteonal compartments. Only the subcutaneous grafts formed tumors that were negative for cytokeratin, but positive for oviductal markers such as oviductal glycoprotein 1 and Pax8. These tumors were considered to be poorly differentiated carcinoma. The differential molecular profiles between MOEHIGH and MOELOW were determined using RNA-Seq and confirmed by protein expression to uncover pathways important in transformation, like the p53 pathway, the FOXM1 pathway, WNT signaling, and splicing. MOEHIGH had enhanced protein expression of c-myc, Cyclin E, p53 and FOXM1 with reduced expression of p21. MOEHIGH were also less sensitive to cisplatin and DMBA, which induce lesions typically repaired by base-excision repair. A model of spontaneous tumorogenesis was generated starting with normal oviductal cells. Their transition to cancer involved alterations in pathways associated with high-grade serous cancer in humans.

  17. CCAAT/enhancer binding protein beta (C/EBPβ) isoform balance as a regulator of epithelial-mesenchymal transition in mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    Miura, Yuka; Hagiwara, Natsumi; Radisky, Derek C.; Hirai, Yohei

    2014-01-01

    Activation of the epithelial-mesenchymal transition (EMT) program promotes cell invasion and metastasis, and is reversed through mesenchymal-epithelial transition (MET) after formation of distant metastases. Here, we show that an imbalance of gene products encoded by the transcriptional factor C/EBPβ, LAP (liver-enriched activating protein) and LIP (liver-enriched inhibitory protein), can regulate both EMT- and MET-like phenotypic changes in mouse mammary epithelial cells. By using tetracycline repressive LIP expression constructs, we found that SCp2 cells, a clonal epithelial line of COMMA1-D cells, expressed EMT markers, lost the ability to undergo alveolar-like morphogenesis in 3D Matrigel, and acquired properties of benign adenoma cells. Conversely, we found that inducible expression of LAP in SCg6 cells, a clonal fibroblastic line of COMMA1-D cells, began to express epithelial keratins with suppression of proliferation. The overexpression of the C/EBPβ gene products in these COMMA1-D derivatives was suppressed by long-term cultivation on tissue culture plastic, but gene expression was maintained in cells grown on Matrigel or exposed to proteasome inhibitors. Thus, imbalances of C/EBPβ gene products in mouse mammary epithelial cells, which are affected by contact with basement membrane, are defined as a potential regulator of metastatic potential. - Highlights: • We created a temporal imbalance of C/EBPβ gene products in the mammary model cells. • The temporal up-regulation of LIP protein induced EMT-like cell behaviors. • The temporal up-regulation of LAP protein induced MET-like cell behaviors. • Excess amount of C/EBPβ gene products were eliminated by proteasomal-degradation. • Basement membrane components attenuated proteasome-triggered protein elimination

  18. Lentiviral CRISPR/Cas9 vector mediated miR-21 gene editing inhibits the epithelial to mesenchymal transition in ovarian cancer cells.

    Science.gov (United States)

    Huo, Wenying; Zhao, Guannan; Yin, Jinggang; Ouyang, Xuan; Wang, Yinan; Yang, Chuanhe; Wang, Baojing; Dong, Peixin; Wang, Zhixiang; Watari, Hidemichi; Chaum, Edward; Pfeffer, Lawrence M; Yue, Junming

    2017-01-01

    CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats) mediated genome editing is a powerful approach for loss of function studies. Here we report that lentiviral CRISPR/Cas9 vectors are highly efficient in introducing mutations in the precursor miRNA sequence, thus leading to the loss of miRNA expression and function. We constructed four different lentiviral CRISPR/Cas9 vectors that target different regions of the precursor miR-21 sequence and found that these lentiviral CRISPR/Cas9 miR-21 gRNA vectors induced mutations in the precursor sequences as shown by DNA surveyor mutation assay and Sanger sequencing. Two miR-21 lentiviral CRISPR/Cas9 gRNA vectors were selected to probe miR-21 function in ovarian cancer SKOV3 and OVCAR3 cell lines. Our data demonstrate that disruption of pre-miR-21 sequences leads to reduced cell proliferation, migration and invasion. Moreover, CRISPR/Cas9-mediated miR-21 gene editing sensitizes both SKOV3 and OVCAR3 cells to chemotherapeutic drug treatment. Disruption of miR-21 leads to the inhibition of epithelial to mesenchymal transition (EMT) in both SKOV3 and OVCAR3 cells as evidenced by the upregulation of epithelial cell marker E-cadherin and downregulation of mesenchymal marker genes, vimentin and Snai2. The miR-21 target genes PDCD4 and SPRY2 were upregulated in cells transduced with miR-21gRNAs compared to controls. Our study indicates that lentiviral CRISPR/Cas9-mediated miRNA gene editing is an effective approach to address miRNA function, and disruption of miR-21 inhibits EMT in ovarian cancer cells.

  19. Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia.

    Science.gov (United States)

    Li, Xin; Gonzalez, Maria E; Toy, Katherine; Filzen, Tracey; Merajver, Sofia D; Kleer, Celina G

    2009-09-01

    The Polycomb group protein enhancer of zeste homolog 2 (EZH2), which has roles during development of numerous tissues, is a critical regulator of cell type identity. Overexpression of EZH2 has been detected in invasive breast carcinoma tissue samples and is observed in human breast tissue samples of morphologically normal lobules up to 12 years before the development of breast cancer. The function of EZH2 during preneoplastic progression in the mammary gland is unknown. To investigate the role of EZH2 in the mammary gland, we targeted the expression of EZH2 to mammary epithelial cells using the mouse mammary tumor virus long terminal repeat. EZH2 overexpression resulted in aberrant terminal end bud architecture. By the age of 4 months, 100% of female mouse mammary tumor virus-EZH2 virgin mice developed intraductal epithelial hyperplasia resembling the human counterpart accompanied by premature differentiation of ductal epithelial cells and up-regulation of the luminal marker GATA-3. In addition, remodeling of the mammary gland after parturition was impaired and EZH2 overexpression caused delayed involution. Mechanistically, we found that EZH2 physically interacts with beta-catenin, inducing beta-catenin nuclear accumulation in mammary epithelial cells and activating Wnt/beta-catenin signaling. The biological significance of these data to human hyperplasias is demonstrated by EZH2 up-regulation and colocalization with beta-catenin in human intraductal epithelial hyperplasia, the earliest histologically identifiable precursor of breast carcinoma.

  20. Lowe Syndrome protein OCRL1 supports maturation of polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Adam G Grieve

    Full Text Available Mutations in the inositol polyphosphate 5-phosphatase OCRL1 cause Lowe Syndrome, leading to cataracts, mental retardation and renal failure. We noted that cell types affected in Lowe Syndrome are highly polarized, and therefore we studied OCRL1 in epithelial cells as they mature from isolated individual cells into polarized sheets and cysts with extensive communication between neighbouring cells. We show that a proportion of OCRL1 targets intercellular junctions at the early stages of their formation, co-localizing both with adherens junctional components and with tight junctional components. Correlating with this distribution, OCRL1 forms complexes with junctional components α-catenin and zonula occludens (ZO-1/2/3. Depletion of OCRL1 in epithelial cells growing as a sheet inhibits maturation; cells remain flat, fail to polarize apical markers and also show reduced proliferation. The effect on shape is reverted by re-expressed OCRL1 and requires the 5'-phosphatase domain, indicating that down-regulation of 5-phosphorylated inositides is necessary for epithelial development. The effect of OCRL1 in epithelial maturation is seen more strongly in 3-dimensional cultures, where epithelial cells lacking OCRL1 not only fail to form a central lumen, but also do not have the correct intracellular distribution of ZO-1, suggesting that OCRL1 functions early in the maturation of intercellular junctions when cells grow as cysts. A role of OCRL1 in junctions of polarized cells may explain the pattern of organs affected in Lowe Syndrome.

  1. Moderate plasma activated media suppresses proliferation and migration of MDCK epithelial cells

    International Nuclear Information System (INIS)

    Mohades, Soheila; Laroussi, Mounir; Maruthamuthu, Venkat

    2017-01-01

    Low-temperature plasma has been shown to have diverse biomedical uses, including its applications in cancer and wound healing. One recent approach in treating mammalian cells with plasma is through the use of plasma activated media (PAM), which is produced by exposing cell culture media to plasma. While the adverse effects of PAM treatment on cancerous epithelial cell lines have been recently studied, much less is known about the interaction of PAM with normal epithelial cells. In this paper, non-cancerous canine kidney MDCK (Madin-Darby Canine Kidney) epithelial cells were treated by PAM and time-lapse microscopy was used to directly monitor their proliferation and random migration upon treatment. While longer durations of PAM treatment led to cell death, we found that moderate levels of PAM treatment inhibited proliferation in these epithelial cells. We also found that PAM treatment reduced random cell migration within epithelial islands. Immunofluorescence staining showed that while there were no major changes in the actin/adhesion apparatus, there was a significant change in the nuclear localization of proliferation marker Ki-67, consistent with our time-lapse results. (paper)

  2. Effects of PPARγ ligands on TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells

    Directory of Open Access Journals (Sweden)

    Dagher Hayat

    2010-02-01

    Full Text Available Abstract Background Transforming growth factor β1 (TGF-β1-mediated epithelial mesenchymal transition (EMT of alveolar epithelial cells (AEC may contribute to lung fibrosis. Since PPARγ ligands have been shown to inhibit fibroblast activation by TGF-β1, we assessed the ability of the thiazolidinediones rosiglitazone (RGZ and ciglitazone (CGZ to regulate TGF-β1-mediated EMT of A549 cells, assessing changes in cell morphology, and expression of cell adhesion molecules E-cadherin (epithelial cell marker and N-cadherin (mesenchymal cell marker, and collagen 1α1 (COL1A1, CTGF and MMP-2 mRNA. Methods Serum-deprived A549 cells (human AEC cell line were pre-incubated with RGZ and CGZ (1 - 30 μM in the absence or presence of the PPARγ antagonist GW9662 (10 μM before TGFβ-1 (0.075-7.5 ng/ml treatment for up to 72 hrs. Changes in E-cadherin, N-cadherin and phosphorylated Smad2 and Smad3 levels were analysed by Western blot, and changes in mRNA levels including COL1A1 assessed by RT-PCR. Results TGFβ-1 (2.5 ng/ml-induced reductions in E-cadherin expression were associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin, MMP-2, CTGF and COL1A1 were evident in predominantly elongated fibroblast-like cells. Neither RGZ nor CGZ prevented TGFβ1-induced changes in cell morphology, and PPARγ-dependent inhibitory effects of both ligands on changes in E-cadherin were only evident at submaximal TGF-β1 (0.25 ng/ml. However, both RGZ and CGZ inhibited the marked elevation of N-cadherin and COL1A1 induced by TGF-β1 (2.5 ng/ml, with effects on COL1A1 prevented by GW9662. Phosphorylation of Smad2 and Smad3 by TGF-β1 was not inhibited by RGZ or CGZ. Conclusions RGZ and CGZ inhibited profibrotic changes in TGF-β1-stimulated A549 cells independently of inhibition of Smad phosphorylation. Their inhibitory effects on changes in collagen I and E-cadherin, but not N-cadherin or CTGF, appeared to be PPAR

  3. Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multi-parallel quantitative real-time PCR analysis of ROS marker and antioxidant genes

    NARCIS (Netherlands)

    Mehterov, Nikolay; Balazadeh, Salma; Hille, Jacques; Toneva, Valentina; Mueller-Roeber, Bernd; Gechev, Tsanko

    2012-01-01

    The Arabidopsis thaliana atr7 mutant is tolerant to oxidative stress induced by paraquat (PQ) or the catalase inhibitor aminotriazole (AT), while its original background loh2 and wild-type plants are sensitive. Both, AT and PQ which stimulate the intracellular formation of H2O2 or superoxide anions,

  4. Improvement in insulin sensitivity without concomitant changes in body composition and cardiovascular risk markers following fixed administration of a very low growth hormone (GH) dose in adults with severe GH deficiency

    NARCIS (Netherlands)

    Yuen, Kevin C. J.; Frystyk, Jan; White, Deborah K.; Twickler, Th B.; Koppeschaar, Hans P. F.; Harris, Philip E.; Fryklund, Linda; Murgatroyd, Peter R.; Dunger, David B.

    2005-01-01

    OBJECTIVE: Untreated GH-deficient adults are predisposed to insulin resistance and excess cardiovascular mortality. We showed previously that short-term treatment with a very low GH dose (LGH) enhanced insulin sensitivity in young healthy adults. The present study was therefore designed to explore

  5. Intestinal epithelial apoptosis initiates gut mucosal injury during extracorporeal membrane oxygenation in the newborn piglet.

    Science.gov (United States)

    MohanKumar, Krishnan; Killingsworth, Cheryl R; McIlwain, R Britt; Timpa, Joseph G; Jagadeeswaran, Ramasamy; Namachivayam, Kopperuncholan; Kurundkar, Ashish R; Kelly, David R; Garzon, Steven A; Maheshwari, Akhil

    2014-02-01

    Neonates and young infants exposed to extracorporeal circulation during extracorporeal membrane oxygenation (ECMO) and cardiopulmonary bypass are at risk of developing a systemic inflammatory response syndrome with multi-organ dysfunction. We used a piglet model of ECMO to investigate the hypothesis that epithelial apoptosis is an early event that precedes villous damage during ECMO-related bowel injury. Healthy 3-week-old piglets were subjected to ECMO for up to 8 h. Epithelial apoptosis was measured in histopathological analysis, nuclear imaging, and terminal deoxynucleotidyl transferase dUTP nick end labeling. Plasma intestinal fatty acid-binding protein (I-FABP) levels were measured by enzyme immunoassay. Intestinal mast cells were isolated by fluorescence-assisted cell sorting. Cleaved caspase-8, caspase-9, phospho-p38 MAPK, and fas ligand expression were investigated by immunohistochemistry, western blots, and reverse transcriptase-quantitative PCR. Piglet ECMO was associated with increased gut epithelial apoptosis. Extensive apoptotic changes were noted on villus tips and in scattered crypt cells after 2 h of ECMO. After 8 h, the villi were denuded and apoptotic changes were evident in a majority of crypt cells. Increased circulating I-FABP levels, a marker of gut epithelial injury, showed that epithelial injury occurred during ECMO. We detected increased cleaved caspase-8, but not cleaved caspase-9, in epithelial cells indicating that the extrinsic apoptotic pathway was active. ECMO was associated with increased fas ligand expression in intestinal mast cells, which was induced through activation of the p38 mitogen-activated protein kinase. We conclude that epithelial apoptosis is an early event that initiates gut mucosal injury in a piglet model of ECMO.

  6. Engineering epithelial-stromal interactions in vitro for toxicology assessment

    Science.gov (United States)

    Background: Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue function. Epithelial-mesenchymal interactions (EMIs) have been examined using mammalian models, ex vivo t...

  7. Epithelial Cells in Urine: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... page: https://medlineplus.gov/labtests/epithelialcellsinurine.html Epithelial Cells in Urine To use the sharing features on ... page, please enable JavaScript. What is an Epithelial Cells in Urine Test? Epithelial cells are a type ...

  8. The regenerative potential of parietal epithelial cells in adult mice.

    Science.gov (United States)

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J

    2014-04-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glomerular hypertrophy was induced by progressive partial nephrectomies. Again, no significant podocyte replenishment was observed. Rather, labeled PECs exclusively invaded segments of the tuft affected by glomerulosclerosis, consistent with our previous findings. We next reassessed PEC recruitment in juvenile mice using a different reporter mouse and confirmed significant recruitment of labeled PECs onto the glomerular tuft. Moreover, some labeled cells on Bowman's capsule expressed podocyte markers, and cells on Bowman's capsule were also directly labeled in juvenile podocyte-specific Pod-rtTA transgenic mice. In 6-week-old mice, however, cells on Bowman's capsule no longer expressed podocyte-specific markers. Similarly, in human kidneys, some cells on Bowman's capsule expressed the podocyte marker synaptopodin from 2 weeks to 2 years of age but not at 7 years of age. In summary, podocyte regeneration from PECs could not be detected in aging mice or models of glomerular hypertrophy. We propose that a small fraction of committed podocytes reside on Bowman's capsule close to the vascular stalk and are recruited onto the glomerular tuft during infancy to adolescence in mice and humans.

  9. Prognostic relevance of epithelial-mesenchymal transition and proliferation in surgically treated primary parotid gland cancer.

    Science.gov (United States)

    Busch, Alina; Bauer, Larissa; Wardelmann, Eva; Rudack, Claudia; Grünewald, Inga; Stenner, Markus

    2017-05-01

    Cancer of the major salivary glands comprises a morphologically diverse group of rare tumours of largely unknown cause. Epithelial-mesenchymal transition (EMT) has been shown to play a significant prognostic role in various human cancers. The aim was to assess the expression of EMT markers in different histological subtypes of parotid gland cancer (PGC) and analyse their prognostic value. We examined 94 PGC samples (13 histological subtypes) for the expression of MIB-1, epithelial cadherin (E-cadherin), β-catenin, vimentin and cytokeratin 8/18 (CK8/18) by means of immunohistochemistry. The experimental findings were correlated with clinicopathological and survival parameters. We detected all analysed EMT and proliferation markers in specifically different constellations within the examined histological subtypes of PGC. We found high epithelial marker expressions (CK8/18, E-cadherin, membranous β-catenin) only in a distinct variety of carcinomas. A high proliferation rate (high MIB-1 expression) as well as a combination of high CK8/18 and low vimentin expression was associated with a significantly worse survival. Our findings indicate that activation of the EMT pathway is a relevant explanation for tumour progression in individual histological subtypes of malignant parotid gland lesions, but by far not in all. Evidence of EMT activation in PGC cannot be seen as an isolated prognostic factor. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  10. FRK inhibits breast cancer cell migration and invasion by suppressing epithelial-mesenchymal transition.

    Science.gov (United States)

    Ogunbolude, Yetunde; Dai, Chenlu; Bagu, Edward T; Goel, Raghuveera Kumar; Miah, Sayem; MacAusland-Berg, Joshua; Ng, Chi Ying; Chibbar, Rajni; Napper, Scott; Raptis, Leda; Vizeacoumar, Frederick; Vizeacoumar, Franco; Bonham, Keith; Lukong, Kiven Erique

    2017-12-22

    The human fyn-related kinase (FRK) is a non-receptor tyrosine kinase known to have tumor suppressor activity in breast cancer cells. However, its mechanism of action has not been fully characterized. We generated FRK-stable MDA-MB-231 breast cancer cell lines and analyzed the effect on cell proliferation, migration, and invasiveness. We also used kinome analysis to identify potential FRK-regulated signaling pathways. We employed both immunoblotting and RT-PCR to identify/validate FRK-regulated targets (proteins and genes) in these cells. Finally, we interrogated the TCGA and GENT gene expression databases to determine the correlation between the expression of FRK and epithelial/mesenchymal markers. We observed that FRK overexpression suppressed cell proliferation, migration, and invasiveness, inhibited various JAK/STAT, MAPK and Akt signaling pathways, and suppressed the expression of some STAT3 target genes. Also, FRK overexpression increased the expression of epithelial markers including E-cadherin mRNA and down-regulated the transcript levels of vimentin, fibronectin, and slug. Finally, we observed an inverse correlation between FRK expression and mesenchymal markers in a large cohort of breast cancer cells. Our data, therefore, suggests that FRK represses cell proliferation, migration and invasiveness by suppressing epithelial to mesenchymal transition.

  11. Andrographolide suppresses epithelial mesenchymal transition by ...

    Indian Academy of Sciences (India)

    Epithelial mesenchymal transition (EMT) of lens epithelial cells (LECs) may contribute to the development of posterior capsular opacification (PCO), which leads to visual impairment. Andrographolide has been shown to have therapeutic potential against various cancers. However, its effect on human LECs is still unknown.

  12. An immunofluorescence assay for extracellular matrix components highlights the role of epithelial cells in producing a stable, fibrillar extracellular matrix

    Directory of Open Access Journals (Sweden)

    Omar S. Qureshi

    2017-10-01

    Full Text Available Activated fibroblasts are considered major drivers of fibrotic disease progression through the production of excessive extracellular matrix (ECM in response to signals from damaged epithelial and inflammatory cells. Nevertheless, epithelial cells are capable of expressing components of the ECM, cross-linking enzymes that increase its stability and are sensitive to factors involved in the early stages of fibrosis. We therefore wanted to test the hypothesis that epithelial cells can deposit ECM in response to stimulation in a comparable manner to fibroblasts. We performed immunofluorescence analysis of components of stable, mature extracellular matrix produced by primary human renal proximal tubular epithelial cells and renal fibroblasts in response to cytokine stimulation. Whilst fibroblasts produced a higher basal level of extracellular matrix components, epithelial cells were able to deposit significant levels of fibronectin, collagen I, III and IV in response to cytokine stimulation. In response to hypoxia, epithelial cells showed an increase in collagen IV deposition but not in response to the acute stress stimuli aristolochic acid or hydrogen peroxide. When epithelial cells were in co-culture with fibroblasts we observed significant increases in the level of matrix deposition which could be reduced by transforming growth factor beta (TGF-β blockade. Our results highlight the role of epithelial cells acting as efficient producers of stable extracellular matrix which could contribute to renal tubule thickening in fibrosis.

  13. (SSR) markers for drought tolerance in maize

    African Journals Online (AJOL)

    Maize is moderately sensitive to drought. Drought affects virtually all aspects of maize growth in varying degrees at all stages, from germination to maturity. Tolerance to drought is genetically and physiologically complicated and inherited quantitatively. Application of molecular-marker aided selection technique for ...

  14. Distinct effects of EGFR inhibitors on epithelial- and mesenchymal-like esophageal squamous cell carcinoma cells.

    Science.gov (United States)

    Yoshioka, Masahiro; Ohashi, Shinya; Ida, Tomomi; Nakai, Yukie; Kikuchi, Osamu; Amanuma, Yusuke; Matsubara, Junichi; Yamada, Atsushi; Miyamoto, Shin'ichi; Natsuizaka, Mitsuteru; Nakagawa, Hiroshi; Chiba, Tsutomu; Seno, Hiroshi; Muto, Manabu

    2017-08-01

    Epidermal growth factor receptor (EGFR) plays a pivotal role in the pathophysiology of esophageal squamous cell carcinoma (ESCC). However, the clinical effects of EGFR inhibitors on ESCC are controversial. This study sought to identify the factors determining the therapeutic efficacy of EGFR inhibitors in ESCC cells. Immortalized-human esophageal epithelial cells (EPC2-hTERT), transformed-human esophageal epithelial cells (T-Epi and T-Mes), and ESCC cells (TE-1, TE-5, TE-8, TE-11, TE-11R, and HCE4) were treated with the EGFR inhibitors erlotinib or cetuximab. Inhibitory effects on cell growth were assessed by cell counting or cell-cycle analysis. The expression levels of genes and proteins such as involucrin and cytokeratin13 (a squamous differentiation marker), E-cadherin, and vimentin were evaluated by real-time polymerase chain reaction or western blotting. To examine whether mesenchymal phenotype influenced the effects of EGFR inhibitors, we treated T-Epi cells with TGF-β1 to establish a mesenchymal phenotype (mesenchymal T-Epi cells). We then compared the effects of EGFR inhibitors on parental T-Epi cells and mesenchymal T-Epi cells. TE-8 (mesenchymal-like ESCC cells)- or TE-11R (epithelial-like ESCC cells)-derived xenograft tumors in mice were treated with cetuximab, and the antitumor effects of EGFR inhibitors were evaluated. Cells were classified as epithelial-like or mesenchymal-like phenotypes, determined by the expression levels of E-cadherin and vimentin. Both erlotinib and cetuximab reduced cell growth and the ratio of cells in cell-cycle S phase in epithelial-like but not mesenchymal-like cells. Additionally, EGFR inhibitors induced squamous cell differentiation (defined as increased expression of involucrin and cytokeratin13) in epithelial-like but not mesenchymal-like cells. We found that EGFR inhibitors did not suppress the phosphorylation of EGFR in mesenchymal-like cells, while EGFR dephosphorylation was observed after treatment with EGFR

  15. Radiopaque anastomosis marker

    International Nuclear Information System (INIS)

    Elliott, D.P.; Halseth, W.L.

    1977-01-01

    This invention relates to split ring markers fabricated in whole or in part from a radiopaque material, usually metal, having the terminal ends thereof and a medial portion formed to define eyelets by means of which said marker can be sutured to the tissue at the site of an anastomosis to provide a visual indication of its location when examined fluoroscopically

  16. Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4.

    Science.gov (United States)

    Todaro, M; Lombardo, Y; Francipane, M G; Alea, M Perez; Cammareri, P; Iovino, F; Di Stefano, A B; Di Bernardo, C; Agrusa, A; Condorelli, G; Walczak, H; Stassi, G

    2008-04-01

    We investigated the mechanisms involved in the resistance to cell death observed in epithelial cancers. Here, we identify that primary epithelial cancer cells from colon, breast and lung carcinomas express high levels of the antiapoptotic proteins PED, cFLIP, Bcl-xL and Bcl-2. These cancer cells produced interleukin-4 (IL-4), which amplified the expression levels of these antiapoptotic proteins and prevented cell death induced upon exposure to TRAIL or other drug agents. IL-4 blockade resulted in a significant decrease in the growth rate of epithelial cancer cells and sensitized them, both in vitro and in vivo, to apoptosis induction by TRAIL and chemotherapy via downregulation of the antiapoptotic factors PED, cFLIP, Bcl-xL and Bcl-2. Furthermore, we provide evidence that exogenous IL-4 was able to upregulate the expression levels of these antiapoptotic proteins and potently stabilized the growth of normal epithelial cells rendering them apoptosis resistant. In conclusion, IL-4 acts as an autocrine survival factor in epithelial cells. Our results indicate that inhibition of IL-4/IL-4R signaling may serve as a novel treatment for epithelial cancers.

  17. Study of some invasiveness markers as pathogenic factors in oral pseudoepitheliomatous hyperplasia.

    Science.gov (United States)

    Pascu, Roxana Maria; Mărgăritescu, Claudiu; CrăiŢoiu, Monica Mihaela; Florescu, Alma Maria; Croitoru, Ileana Cristiana; Bobic, Adelina Gabriela; Pătru, Ciprian LaurenŢiu; Mălăescu, Gheorghe Dan; CrăiŢoiu, Ştefania

    2016-01-01

    Pseudoepitheliomatous hyperplasia is a benign reactivated epithelial lesion secondary to another pathology, whose incidence is difficult to establish. There still exist controversies regarding the origin and pathogenesis of these lesions. For this purpose, we performed an immuno-histochemical study upon 20 cases of oral pseudoepitheliomatous hyperplasia associated with inflammatory and neoplastic conditions, investigating a series of markers with a possible pathogenic potential in developing this type of lesions. Thus, the immunoreactivity study for β-catenin showed the presence of a membrane reactivity in all the stratum spinosum and a predominantly cytoplasmatic reactivity, more rarely a nuclear one, in the cells of the basal stratum cells, especially in the epithelial apices that descend deeply in the chorion. Instead, in the case of vimentin, the reactivity was present only in the epithelial apices, especially in the peripheral cells, in comparison to the central ones, and especially in the cases where the epithelial apices descended deeply in the sublesional chorion. Moreover, we observed that the MMP9 reactivity in pseudoepitheliomatous hyperplasia lesions was present in the cells at the epithelium-chorion interface and especially in the epithelial apices that descend deeply into the chorion, and also in the epithelial chorion and networks. The study for CXCR4 immuno-reactivity showed a good reactivity in almost all layers of this hyperplastic lesion, with a maximum reactivity especially inside the epithelial apices that descend deeply in the sublesional chorion. Such an immunoprofile suggests the ability of the oral epithelial cells to undergo an epithelial mesenchymal transition process, thus acquiring mesenchymal characteristics through which it deeply migrates in the subadjacent chorion and contributes to the formation of epithelial apices in pseudoepitheliomatous hyperplasia. Moreover, the invasive ability of these lesions is also given by the average

  18. Impact of the putative cancer stem cell markers and growth factor receptor expression on the sensitivity of ovarian cancer cells to treatment with various forms of small molecule tyrosine kinase inhibitors and cytotoxic drugs

    OpenAIRE

    Puvanenthiran, Soozana; Essapen, Sharadah; Seddon, Alan M.; Modjtahedi, Helmout

    2016-01-01

    Increased expression and activation of human epidermal growth factor receptor (EGFR) and HER-2 have been reported in numerous cancers. The aim of this study was to determine the sensitivity of a large panel of human ovarian cancer cell lines (OCCLs) to treatment with various forms of small molecule tyrosine kinase inhibitors (TKIs) and cytotoxic drugs. The aim was to see if there was any association between the protein expression of various biomarkers including three putative ovarian cancer s...

  19. Lung epithelial permeability and inhaled furosemide. Added dimensions in asthmatics

    International Nuclear Information System (INIS)

    Bhure, U.N.; Bhure, S.U.; Bhatt, B.M.; Mistry, S.; Pednekar, S.J.; Chari, V.V.; Desai, S.A.; Joshi, J.M.; Paidhungat, A.J.

    2009-01-01

    Lung clearance rates of inhaled 99m Tc-diethylene-triamine-pentaacetic acid (DTPA) aerosols constitute a sensitive index to evaluate the permeability changes characteristic of airway epithelial damage. It was thought that edema of the airway wall which is reported in asthma could be relieved with a diuretic like furosemide, helping to relieve the symptoms. We intended to study the effect of inhaled furosemide on lung epithelial permeability in asthmatics and smokers with the help of 99m Tc-DTPA lung clearance test (LCT). The study included three groups (n=15), viz. normal healthy controls, asymptomatic chronic smokers, and chronic persistent asthmatics. Each subject underwent the LCT twice, baseline and post-furosemide (Lasix) study, within a week's interval. The post-furosemide study was carried out 15 min after inhalation of 10 mg of lasix. Lung epithelial permeability was determined in terms of clearance half-life (T 1/2 ). The baseline mean T 1/2 values for controls, smokers, and asthmatics were 50.95±16.58, 20.81±5.47, 24.06±6.19 min, respectively. Post-lasix T 1/2 values were 50.83±15.84, 20.70±5.65, 41.27±15.07 min, respectively. There was a significant difference (P<0.001) in baseline and post-lasix clearance values in asthmatics only. Baseline lung epithelial permeability was altered in smokers and asthmatics compared to the controls. Furosemide was effective only in asthmatics in reverting the permeability almost back to the normal range. Inhaled furosemide was effective even in moderate and severe asthmatics. Furosemide has multiple mechanisms of action. It possibly acts at bronchial level in view of the pathology in asthmatics lying in the airways. (author)

  20. E2F5 status significantly improves malignancy diagnosis of epithelial ovarian cancer

    KAUST Repository

    Kothandaraman, Narasimhan

    2010-02-24

    Background: Ovarian epithelial cancer (OEC) usually presents in the later stages of the disease. Factors, especially those associated with cell-cycle genes, affecting the genesis and tumour progression for ovarian cancer are largely unknown. We hypothesized that over-expressed transcription factors (TFs), as well as those that are driving the expression of the OEC over-expressed genes, could be the key for OEC genesis and potentially useful tissue and serum markers for malignancy associated with OEC.Methods: Using a combination of computational (selection of candidate TF markers and malignancy prediction) and experimental approaches (tissue microarray and western blotting on patient samples) we identified and evaluated E2F5 transcription factor involved in cell proliferation, as a promising candidate regulatory target in early stage disease. Our hypothesis was supported by our tissue array experiments that showed E2F5 expression only in OEC samples but not in normal and benign tissues, and by significantly positively biased expression in serum samples done using western blotting studies.Results: Analysis of clinical cases shows that of the E2F5 status is characteristic for a different population group than one covered by CA125, a conventional OEC biomarker. E2F5 used in different combinations with CA125 for distinguishing malignant cyst from benign cyst shows that the presence of CA125 or E2F5 increases sensitivity of OEC detection to 97.9% (an increase from 87.5% if only CA125 is used) and, more importantly, the presence of both CA125 and E2F5 increases specificity of OEC to 72.5% (an increase from 55% if only CA125 is used). This significantly improved accuracy suggests possibility of an improved diagnostics of OEC. Furthermore, detection of malignancy status in 86 cases (38 benign, 48 early and late OEC) shows that the use of E2F5 status in combination with other clinical characteristics allows for an improved detection of malignant cases with sensitivity

  1. Morphologic, Immunophenotypic, and Molecular Features of Epithelial Ovarian Cancer.

    Science.gov (United States)

    Ramalingam, Preetha

    2016-02-01

    markers are routinely employed in the diagnosis of epithelial ovarian carcinomas. However, molecular testing of these tumors, unlike in endometrial carcinoma, is not routinely used in clinical practice.

  2. Resistance to first line platinum paclitaxel chemotherapy in serous epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Steffensen, Karina Dahl; Smoter, Marta; Waldstrøm, Marianne

    2014-01-01

    of sensitivity to platinum/paclitaxel treatment. The primary aim of the study was to investigate whether ERCC1 and Tau protein expression correlates with patient outcome in newly diagnosed epithelial ovarian cancer (EOC) patients. Formalin-fixed, paraffin-embedded tissue sections from 227 newly diagnosed EOC...

  3. QUANTIFICATION OF GLOMERULAR EPITHELIAL-CELL ADHESION BY USING ANTI-DNA ANTIBODIES IN ELISA

    NARCIS (Netherlands)

    COERS, W; SMEENK, RJT; SALANT, DJ; WEENING, JJ

    A sensitive and reproducible microassay is described for quantification of adhesion of cells to matrix-coated 96-wells plates under different experimental conditions. For this purpose glomerular visceral epithelial cells (GVEC) were used. Attached GVEC were fixed with methanol and incubated with a

  4. A preliminary study of inflammatory markers in non-alcoholic ...

    African Journals Online (AJOL)

    2010-03-19

    Mar 19, 2010 ... Inflammatory markers, such as high sensitive C-reactive protein (hsCRP), ferritin ... The C-reactive protein (CRP) is an important test ... BRIEF COMMUNICATION ..... George DK, Goldwurm S, McDonald GA, Cowley LL, Walker.

  5. Mammary collective cell migration involves transient loss of epithelial features and individual cell migration within the epithelium

    Science.gov (United States)

    Ewald, Andrew J.; Huebner, Robert J.; Palsdottir, Hildur; Lee, Jessie K.; Perez, Melissa J.; Jorgens, Danielle M.; Tauscher, Andrew N.; Cheung, Kevin J.; Werb, Zena; Auer, Manfred

    2012-01-01

    Normal mammary morphogenesis involves transitions between simple and multilayered epithelial organizations. We used electron microscopy and molecular markers to determine whether intercellular junctions and apico-basal polarity were maintained in the multilayered epithelium. We found that multilayered elongating ducts had polarized apical and basal tissue surfaces both in three-dimensional culture and in vivo. However, individual cells were only polarized on surfaces in contact with the lumen or extracellular matrix. The basolateral marker scribble and the apical marker atypical protein kinase C zeta localized to all interior cell membranes, whereas PAR3 displayed a cytoplasmic localization, suggesting that the apico-basal polarity was incomplete. Despite membrane localization of E-cadherin and β-catenin, we did not observe a defined zonula adherens connecting interior cells. Instead, interior cells were connected through desmosomes and exhibited complex interdigitating membrane protrusions. Single-cell labeling revealed that individual cells were both protrusive and migratory within the epithelial multilayer. Inhibition of Rho kinase (ROCK) further reduced intercellular adhesion on apical and lateral surfaces but did not disrupt basal tissue organization. Following morphogenesis, segregated membrane domains were re-established and junctional complexes re-formed. We observed similar epithelial organization during mammary morphogenesis in organotypic culture and in vivo. We conclude that mammary epithelial morphogenesis involves a reversible, spatially limited, reduction in polarity and intercellular junctions and active individualistic cell migration. Our data suggest that reductions in polarity and adhesion during breast cancer progression might reflect partial recapitulation of a normal developmental program. PMID:22344263

  6. Patterning bacterial communities on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Dwidar

    Full Text Available Micropatterning of bacteria using aqueous two phase system (ATPS enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.

  7. Basolateral BMP signaling in polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Masao Saitoh

    Full Text Available Bone morphogenetic proteins (BMPs regulate various biological processes, mostly mediated by cells of mesenchymal origin. However, the roles of BMPs in epithelial cells are poorly understood. Here, we demonstrate that, in polarized epithelial cells, BMP signals are transmitted from BMP receptor complexes exclusively localized at the basolateral surface of the cell membrane. In addition, basolateral stimulation with BMP increased expression of components of tight junctions and enhanced the transepithelial resistance (TER, counteracting reduction of TER by treatment with TGF-β or an anti-tumor drug. We conclude that BMPs maintain epithelial polarity via intracellular signaling from basolaterally localized BMP receptors.

  8. Membrane lipidome of an epithelial cell line

    DEFF Research Database (Denmark)

    Sampaio, Julio L; Gerl, Mathias J; Klose, Christian

    2011-01-01

    Tissue differentiation is an important process that involves major cellular membrane remodeling. We used Madin-Darby canine kidney cells as a model for epithelium formation and investigated the remodeling of the total cell membrane lipidome during the transition from a nonpolarized morphology...... to an epithelial morphology and vice versa. To achieve this, we developed a shotgun-based lipidomics workflow that enabled the absolute quantification of mammalian membrane lipidomes with minimal sample processing from low sample amounts. Epithelial morphogenesis was accompanied by a major shift from sphingomyelin...... to generate an apical membrane domain that serves as a protective barrier for the epithelial sheet....

  9. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    , deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis.......After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related...

  10. Multiple marker abundance profiling

    DEFF Research Database (Denmark)

    Hooper, Cornelia M.; Stevens, Tim J.; Saukkonen, Anna

    2017-01-01

    proteins and the scoring accuracy of lower-abundance proteins in Arabidopsis. NPAS was combined with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment...

  11. (DArT) markers

    Indian Academy of Sciences (India)

    2EH Graham Centre for Agricultural Innovation (NSW Department of Industry and Investment and Charles Sturt. University), P. O. Box 588 Wagga Wagga, NSW 2650, Australia. 3Guangxi .... and obtain marker statistics. The exact order of the ...

  12. VT Roadside Historic Markers

    Data.gov (United States)

    Vermont Center for Geographic Information — Roadside Historic Site Marker program has proven an effective way to commemorate Vermont’s many people, events, and places of regional, statewide, or national...

  13. Inflammatory Cytokine Tumor Necrosis Factor α Confers Precancerous Phenotype in an Organoid Model of Normal Human Ovarian Surface Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Kwong

    2009-06-01

    Full Text Available In this study, we established an in vitro organoid model of normal human ovarian surface epithelial (HOSE cells. The spheroids of these normal HOSE cells resembled epithelial inclusion cysts in human ovarian cortex, which are the cells of origin of ovarian epithelial tumor. Because there are strong correlations between chronic inflammation and the incidence of ovarian cancer, we used the organoid model to test whether protumor inflammatory cytokine tumor necrosis factor α would induce malignant phenotype in normal HOSE cells. Prolonged treatment of tumor necrosis factor α induced phenotypic changes of the HOSE spheroids, which exhibited the characteristics of precancerous lesions of ovarian epithelial tumors, including reinitiation of cell proliferation, structural disorganization, epithelial stratification, loss of epithelial polarity, degradation of basement membrane, cell invasion, and overexpression of ovarian cancer markers. The result of this study provides not only an evidence supporting the link between chronic inflammation and ovarian cancer formation but also a relevant and novel in vitro model for studying of early events of ovarian cancer.

  14. Nedd4L expression is decreased in ovarian epithelial cancer tissues compared to ovarian non-cancer tissue.

    Science.gov (United States)

    Yang, Qiuyun; Zhao, Jinghe; Cui, Manhua; Gi, Shuting; Wang, Wei; Han, Xiaole

    2015-12-01

    Recent studies have demonstrated that the neural precursor cell expressed, developmentally downregulated 4-like (Nedd4L) gene plays a role in the progression of various cancers. However, reports describing Nedd4L expression in ovarian cancer tissues are limited. A cohort (n = 117) of archival formalin-fixed, paraffin embedded resected normal ovarian epithelial tissues (n = 10), benign ovarian epithelial tumor tissues (n = 10), serous borderline ovarian epithelial tumor tissues (n = 14), mucous borderline ovarian epithelial tumor tissues (n = 11), and invasive ovarian epithelial cancer tissues (n = 72) were assessed for Nedd4L protein expression using immunohistochemistry. Nedd4L protein expression was significantly decreased in invasive ovarian epithelial cancer tissues compared to non-cancer tissues (P < 0.05). Decreased Nedd4L protein expression correlated with clinical stage, pathological grade, lymph node metastasis and survival (P < 0.05). Nedd4L protein expression may be an independent prognostic marker of ovarian cancer development. © 2015 Japan Society of Obstetrics and Gynecology.

  15. Fabrication of corneal epithelial cell sheets maintaining colony-forming cells without feeder cells by oxygen-controlled method.

    Science.gov (United States)

    Nakajima, Ryota; Takeda, Shizu

    2014-01-01

    The use of murine 3T3 feeder cells needs to be avoided when fabricating corneal epithelial cell sheets for use in treating ocular surface diseases. However, the expression level of the epithelial stem/progenitor cell marker, p63, is down-regulated in feeder-free culture systems. In this study, in order to fabricate corneal epithelial cell sheets that maintain colony-forming cells without using any feeder cells, we investigated the use of an oxygen-controlled method that was developed previously to fabricate cell sheets efficiently. Rabbit limbal epithelial cells were cultured under hypoxia (1-10% O2) and under normoxia during stratification after reaching confluence. Multilayered corneal epithelial cell sheets were fabricated using an oxygen-controlled method, and immunofluorescence analysis showed that cytokeratin 3 and p63 was expressed in appropriate localization in the cell sheets. The colony-forming efficiency of the cell sheets fabricated by the oxygen-controlled method without feeder cells was significantly higher than that of cell sheets fabricated under 20% O2 without feeder cells. These results indicate that the oxygen-controlled method has the potential to achieve a feeder-free culture system for fabricating corneal epithelial cell sheets for corneal regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Overexpression of microRNA-194 suppresses the epithelial-mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells.

    Science.gov (United States)

    Gong, Baolan; Yue, Yan; Wang, Renxiao; Zhang, Yi; Jin, Quanfang; Zhou, Xi

    2017-06-01

    The epithelial-mesenchymal transition is the key process driving cancer metastasis. MicroRNA-194 inhibits epithelial-mesenchymal transition in several cancers and its downregulation indicates a poor prognosis in human endometrial carcinoma. Self-renewal factor Sox3 induces epithelial-mesenchymal transition at gastrulation and is also involved epithelial-mesenchymal transition in several cancers. We intended to determine the roles of Sox3 in inducing epithelial-mesenchymal transition in endometrial cancer stem cells and the possible role of microRNA-194 in controlling Sox3 expression. Firstly, we found that Sox3 and microRNA-194 expressions were associated with the status of endometrial cancer stem cells in a panel of endometrial carcinoma tissue, the CD133+ cell was higher in tumorsphere than in differentiated cells, and overexpression of microRNA-194 would decrease CD133+ cell expression. Silencing of Sox3 in endometrial cancer stem cell upregulated the epithelial marker E-cadherin, downregulated the mesenchymal marker vimentin, and significantly reduced cell invasion in vitro; overexpression of Sox3 reversed these phenotypes. Furthermore, we discovered that the expression of Sox3 was suppressed by microRNA-194 through direct binding to the Sox3 3'-untranslated region. Ectopic expression of microRNA-194 in endometrial cancer stem cells induced a mesenchymal-epithelial transition by restoring E-cadherin expression, decreasing vimentin expression, and inhibiting cell invasion in vitro. Moreover, overexpression of microRNA-194 inhibited endometrial cancer stem cell invasion or metastasis in vivo by injection of adenovirus microRNA-194. These findings demonstrate the novel mechanism by which Sox3 contributes to endometrial cancer stem cell invasion and suggest that repression of Sox3 by microRNA-194 may have therapeutic potential to suppress endometrial carcinoma metastasis. The cancer stem cell marker, CD133, might be the surface marker of endometrial cancer stem

  17. Urine albumin/creatinine ratio, high sensitivity C-reactive protein and N-terminal pro brain natriuretic peptide--three new cardiovascular risk markers--do they improve risk prediction and influence treatment?

    DEFF Research Database (Denmark)

    Olsen, Michael H; Sehestedt, Thomas; Lyngbaek, Stig

    2010-01-01

    -proBNP), related to hemodynamic cardiovascular risk factors, high sensitivity C-reactive protein (hsCRP), related to metabolic cardiovascular risk factors and urine albumin/creatinine ratio (UACR), related to hemodynamic as well as metabolic risk factors. In healthy subjects with a 10-year risk of cardiovascular...... death lower than 5% based on HeartScore and therefore not eligible for primary prevention, the actual 10-year risk of cardiovascular death exceeded 5% in a small subgroup of subjects with UACR higher than the 95-percentile of approximately 1.6 mg/mmol. Combined use of high UACR or high hsCRP identified...... a larger subgroup of 16% with high cardiovascular risk in which primary prevention may be advised despite low-moderate cardiovascular risk based on HeartScore. Furthermore, combined use of high UACR or high Nt-proBNP in subjects with known cardiovascular disease or diabetes identified a large subgroup...

  18. Human Calmodulin-Like Protein CALML3: A Novel Marker for Normal Oral Squamous Mucosa That Is Downregulated in Malignant Transformation

    Directory of Open Access Journals (Sweden)

    Michael D. Brooks

    2013-01-01

    Full Text Available Oral cancer is often diagnosed only at advanced stages due to a lack of reliable disease markers. The purpose of this study was to determine if the epithelial-specific human calmodulin-like protein (CALML3 could be used as marker for the various phases of oral tumor progression. Immunohistochemical analysis using an affinity-purified CALML3 antibody was performed on biopsy-confirmed oral tissue samples representing these phases. A total of 90 tissue specimens were derived from 52 patients. Each specimen was analyzed in the superficial and basal mucosal cell layers for overall staining and staining of cellular subcompartments. CALML3 was strongly expressed in benign oral mucosal cells with downregulation of expression as squamous cells progress to invasive carcinoma. Based on the Cochran-Armitage test for trend, expression in the nucleus and at the cytoplasmic membrane significantly decreased with increasing disease severity. Chi-square test showed that benign tissue specimens had significantly more expression compared to dysplasia/CIS and invasive specimens. Dysplasia/CIS tissue had significantly more expression than invasive tissue. We conclude that CALML3 is expressed in benign oral mucosal cells with a statistically significant trend in downregulation as tumorigenesis occurs. CALML3 may thus be a sensitive new marker for oral cancer screening.

  19. Repeated cisplatin treatment can lead to a multiresistant tumor cell population with stem cell features and sensitivity to 3-bromopyruvate.

    Science.gov (United States)

    Wintzell, My; Löfstedt, Lina; Johansson, Joel; Pedersen, Anne B; Fuxe, Jonas; Shoshan, Maria

    2012-12-01

    Cisplatin is used in treatment of several types of cancer, including epithelial ovarian carcinoma (EOC). In order to mimic clinical treatment and to investigate longterm effects of cisplatin in surviving cancer cells, two EOC cell lines were repeatedly treated with low doses. In the SKOV-3 cell line originating from malignant ascites, but not in A2780 cells from a primary tumor, this led to emergence of a stable population (SKOV-3-R) which in the absence of cisplatin showed increased motility, epithelial-mesenchymal transition (EMT) and expression of cancer stem cell markers CD117, CD44 and ALDH1. Accordingly, the cells formed self-renewing spheres in serum-free stem cell medium. Despite upregulation of mitochondrial mass and cytochrome c, and no upregulation of Bcl-2/Bcl-xL, SKOV-3-R were multiresistant to antineoplastic drugs. Cancer stem cells, or tumor-initiating cells (TICs) are highly chemoresistant and are believed to cause relapse into disseminated and resistant EOC. Our second aim was therefore to target resistance in these TIC-like cells. Resistance could be correlated with upregulation of hexokinase-II and VDAC, which are known to form a survival-promoting mitochondrial complex. The cells were thus sensitive to 3-bromopyruvate, which dissociates hexokinase-II from this complex, and were particularly sensitive to combination treatment with cisplatin at doses down to 0.1 x IC 50. 3-bromopyruvate might thus be of use in targeting the especially aggressive TIC populations.

  20. Cytoplasmic PELP1 and ERRgamma protect human mammary epithelial cells from Tam-induced cell death.

    Science.gov (United States)

    Girard, Brian J; Regan Anderson, Tarah M; Welch, Siya Lem; Nicely, Julie; Seewaldt, Victoria L; Ostrander, Julie H

    2015-01-01

    Tamoxifen (Tam) is the only FDA-approved chemoprevention agent for pre-menopausal women at high risk for developing breast cancer. While Tam reduces a woman's risk of developing estrogen receptor positive (ER+) breast cancer, the molecular mechanisms associated with risk reduction are poorly understood. Prior studies have shown that cytoplasmic proline, glutamic acid and leucine rich protein 1 (PELP1) promotes Tam resistance in breast cancer cell lines. Herein, we tested for PELP1 localization in breast epithelial cells from women at high risk for developing breast cancer and found that PELP1 was localized to the cytoplasm in 36% of samples. In vitro, immortalized HMECs expressing a nuclear localization signal (NLS) mutant of PELP1 (PELP1-cyto) were resistant to Tam-induced death. Furthermore, PELP1-cyto signaling through estrogen-related receptor gamma (ERRγ) promoted cell survival in the presence of Tam. Overexpression of ERRγ in immortalized HMECs protected cells from Tam-induced death, while knockdown of ERRγ sensitized PELP1-cyto expressing HMECs to Tam. Moreover, Tam-induced HMEC cell death was independent of apoptosis and involved accumulation of the autophagy marker LC3-II. Expression of PELP1-cyto and ERRγ reduced Tam-induced LC3-II accumulation, and knockdown of ERRγ increased LC3-II levels in response to Tam. Additionally, PELP1-cyto expression led to the upregulation of MMP-3 and MAOB, known PELP1 and ERRγ target genes, respectively. Our data indicate that cytoplasmic PELP1 induces signaling pathways that converge on ERRγ to promote cell survival in the presence of Tam. These data suggest that PELP1 localization and/or ERRγ activation could be developed as tissue biomarkers for Tam responsiveness.

  1. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    2010-03-01

    Full Text Available Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo.To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo.Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  2. Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience

    International Nuclear Information System (INIS)

    Barui, Ananya; Mandal, Naresh; Majumder, Subhadipa; Das, Raunak Kumar; Sengupta, Sanghamitra; Banerjee, Provas; Ray, Ajoy Kumar; RoyChaudhuri, Chirosree; Chatterjee, Jyotirmoy

    2013-01-01

    Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. - Highlights: • Role of honey based matrix is evaluated in wound re-epithelialization. • Healing impact of matrix studied in 2D in vitro keratinocyte (HaCaT) wound model. • Faster impedance restoration indicated rapid healing rate of HaCaT under honey. • PCR observations showed faster initiation of cell proliferation under honey. • ICC study indicated better up-regulation of healing markers under honey matrix

  3. Assessment of molecular events during in vitro re-epithelialization under honey-alginate matrix ambience

    Energy Technology Data Exchange (ETDEWEB)

    Barui, Ananya [Centre for Healthcare Science and Technology, BESU, Shibpur, Howrah 711103, West Bengal (India); Mandal, Naresh [Dept. of Electronics and Telecommunication Engg., BESU, Shibpur, Howrah 711103, West Bengal (India); Majumder, Subhadipa [Department of Biochemistry, University of Calcutta Ballygunge, Circular Road, Kolkata 700 019, West Bengal (India); Das, Raunak Kumar [School of Medical Science and Technology, IIT, Kharagpur 721 302, West Bengal (India); Sengupta, Sanghamitra [Department of Biochemistry, University of Calcutta Ballygunge, Circular Road, Kolkata 700 019, West Bengal (India); Banerjee, Provas [School of Medical Science and Technology, IIT, Kharagpur 721 302, West Bengal (India); Ray, Ajoy Kumar; RoyChaudhuri, Chirosree [Dept. of Electronics and Telecommunication Engg., BESU, Shibpur, Howrah 711103, West Bengal (India); Chatterjee, Jyotirmoy, E-mail: jchatterjee@smst.iitkgp.ernet.in [School of Medical Science and Technology, IIT, Kharagpur 721 302, West Bengal (India)

    2013-08-01

    Re-epithelialization is one of the most important stages of cutaneous regeneration and its success requires supportive micro-ambience which may be provided with suitable bio-matrix. Biocompatibility and efficacy of such bio-matrix in re-epithelialization could be explored by multimodal analysis of structural and functional attributes of in vitro wound healing model including evaluation of prime molecular expressions of the epithelial cells during repair. Present study examines the influence of honey-alginate and alginate matrices on re-epithelialization in keratinocyte (HaCaT) population in a 2-D wound model. Cellular viability, proliferation and cell–cell adhesion status were assessed during wound closure using live/dead cell assay and by evaluating expressions of Ki67, p63 and E-cadherin along-with % change in cellular electrical impedance. Efficacy of honey-alginate matrix in comparison to only alginate one was demonstrated by a quicker reduction in wound gap, improved cellular viability, enhanced expressions of Ki67, p63 and its isoforms (TAp63, ΔNp63) as well as E-cadherin. Faster restoration of electrical attribute (% of impedance change) after wounding also indicated better impact of honey-alginate matrix in re-epithelialization. - Highlights: • Role of honey based matrix is evaluated in wound re-epithelialization. • Healing impact of matrix studied in 2D in vitro keratinocyte (HaCaT) wound model. • Faster impedance restoration indicated rapid healing rate of HaCaT under honey. • PCR observations showed faster initiation of cell proliferation under honey. • ICC study indicated better up-regulation of healing markers under honey matrix.

  4. UPLC-MS/MS based diagnostics for epithelial ovarian cancer using fully sialylated C4-binding protein.

    Science.gov (United States)

    Tanabe, Kazuhiro; Matsuo, Koji; Miyazawa, Masaki; Hayashi, Masaru; Ikeda, Masae; Shida, Masako; Hirasawa, Takeshi; Sho, Ryuichiro; Mikami, Mikio

    2018-05-01

    Serum levels of fully sialylated C4-binding protein (FS-C4BP) are remarkably elevated in patients with epithelial ovarian cancer (EOC) and can be used as a marker to distinguish ovarian clear cell carcinoma from endometrioma. This study aimed to develop a stable, robust and reliable liquid chromatography-hybrid mass spectrometry (UPLC-MS/MS) based diagnostic method that would generalize FS-C4BP as a clinical EOC biomarker. Glycopeptides derived from 20 μL of trypsin-digested serum glycoprotein were analyzed via UPLC equipped with an electrospray ionization time-of-flight mass spectrometer. This UPLC-MS/MS-based diagnostic method was optimized for FS-C4BP and validated using sera from 119 patients with EOC and 127 women without cancer. A1958 (C4BP peptide with two fully sialylated biantennary glycans) was selected as a marker of FS-C4BP because its level in serum was highest among FS-C4BP family members. Preparation and UPLC-MS/MS were optimized for A1958, and performance and robustness were significantly improved relative to our previous method. An area under the curve analysis of the FS-C4BP index receiver operating characteristic curve revealed that the ratio between A1958 and A1813 (C4BP peptide with two partially sialylated biantennary glycans) reached 85%. A combination of the FS-C4BP index and carbohydrate antigen-125 levels further enhanced the sensitivity and specificity. © 2017 The Authors. Biomedical Chromatography published by John Wiley & Sons Ltd.

  5. From Subordinate Marker to Discourse Marker: que in Andean Spanish

    Directory of Open Access Journals (Sweden)

    Anna María Escobar

    2005-06-01

    Full Text Available This paper proposes an analysis of a redundant use of que ('that' found in Andean Spanish as an expression which has undergone a grammaticalization process. Evidence suggests that the function of que as subordinate marker is much more generalized in this variety than in other dialects of Spanish. que is found to be used as a marker introducing both nominal and adjectival clauses, suggesting that adjectival subordinates behave as nominal subordinates in this variety of Spanish. An intrusive que appears in restricted syntactic and semantic contexts with clauses that have nominal and adjectival functions, and even appears replacing adverbial expressions in some adverbial subordinates (temporal, spatial, and manner. Furthermore, it is found to be sensitive to the degree of the argument’s thematic/semantic function in the subordinate clause. In particular, it seems to occur more often with low-agency arguments in adjectival and nominal contexts, and, in nominal subordinates, tends to appear with a restricted set of epistemic and evidential main verbs (e.g. creer 'to believe', saber 'to know', decir 'to say'. The analysis suggests that que has developed a new function in this variety of Spanish, namely, one of indicating that the information contained in the subordinate clause does not constitute background information (as would be expected in non-contact varieties of Spanish but instead contains information relevant to the discourse.

  6. Andrographolide suppresses epithelial mesenchymal transition by ...

    Indian Academy of Sciences (India)

    2015-04-27

    Apr 27, 2015 ... by inhibition of MAPK signalling pathway in lens epithelial cells. FORUM KAYASTHA ... 1Iladevi Cataract and IOL Research Centre, Gurukul road, Memnagar, Ahmedabad 380 052, India ...... sition and the stem cell phenotype.

  7. Thymic epithelial cells. I. Expression of strong suppressive (veto) activity in mouse thymic epithelial cell cultures

    DEFF Research Database (Denmark)

    Claesson, Mogens Helweg; Ropke, C

    1990-01-01

    We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level. It is conclu......We show that thymic epithelial cells grown under serum-free conditions in a chemically defined culture medium can act as veto cells in vitro. The veto activity of thymic epithelial cells results in inactivation of specific alloreactive cytotoxic T-cell precursors at the clonal level...

  8. Diagnostic value of different tumor markers, our experience

    International Nuclear Information System (INIS)

    Pervez, T.; Anwar, S.

    2000-01-01

    Variety of tumor markers with varying sensitivity and specificity are used for diagnosis of different malignancies. This study was done to determine the diagnostic value of different tumor markers in our patients with various malignancies. Out of 235 patients studied, 162 were suffering from malignant and 73 from benign diseases. Among these 84 were positive for tumor markers. Out of these positive tumor markers, 75 were suffering from malignancy. Tumor marker analyzed were ca-15-3, ca-125, BETA-HCG, CEA, PSA and alpha-FP depending upon the type of the disease these cases presented. Analysis of the results revealed that different tumor markers had sensitivity varying from 76.9-95.8% and specificity varying form 75-90.9%. CA-125 was observed to be the most specific and sensitive tumor marker for ovarian tumors followed by alpha-FP for hepatocellular tumors and CEA for gastrointestinal tumors. Similarly, PSA for prostate cancers, beta-HCG for choriocarcinoma and CA-15-3 for breast cancer. It is concluded that all the tumor markers have a variable diagnostic value, which cannot be relied upon independently, without other tests added to increase diagnostic value. (author)

  9. Cell and Molecular Biology of Ataxia Telangiectasia Heterozygous Human Mammary Epithelial Cells Irradiated in Culture

    Science.gov (United States)

    Richmond, Robert C.

    2001-01-01

    Autologous isolates of cell types from obligate heterozygotes with the autosomal disorder ataxia-telangiectasia (A-T)were used to begin a tissue culture model for assessing pathways of radiation-induced cancer formation in this target tissue. This was done by establishing cultures of stromal fibroblasts and long-term growth human mammary epithelial cells (HMEC) in standard 2-dimensional tissue culture in order to establish expression of markers detailing early steps of carcinogenesis. The presumptive breast cancer susceptibility of A-T heterozygotes as a sequel to damage caused by ionizing radiation provided reason to study expression of markers in irradiated HMEC. Findings from our study with HMEC have included determination of differences in specific protein expression amongst growth phase (e.g., log vs stationary) and growth progression (e.g., pass 7 vs pass 9), as well as differences in morphologic markers within populations of irradiated HMEC (e.g., development of multinucleated cells).

  10. DNA repair in human bronchial epithelial cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Lechner, J.F.; Grafstrom, R.C.; Harris, C.C.

    1982-01-01

    The purpose of this investigation was to compare the response of human cell types (bronchial epithelial cells and fibroblasts and skin fibroblasts) to various DNA damaging agents. Repair of DNA single strand breaks (SSB) induced by 5 krads of X-ray was similar for all cell types; approximately 90% of the DNA SSB were rejoined within one hour. During excision repair of DNA damage from u.v.-radiation, the frequencies of DNA SSB as estimated by the alkaline elution technique, were similar in all cell types. Repair replication as measured by BND cellulose chromatography was also similar in epithelial and fibroblastic cells after u.v.-irradiation. Similar levels of SSB were also observed in epithelial and fibroblastic cells after exposure to chemical carcinogens: 7,12-dimethylbenz[a]anthracene; benzo[a]pyrene diol epoxide (BPDE); or N-methyl-N-nitro-N-nitrosoguanidine. Significant repair replication of BPDE-induced DNA damage was detected in both bronchial epithelial and fibroblastic cells, although the level in fibroblasts was approximately 40% of that in epithelial cells. The pulmonary carcinogen asbestos did not damage DNA. DNA-protein crosslinks induced by formaldehyde were rapidly removed in bronchial cells. Further, epithelial and fibroblastic cells, which were incubated with formaldehyde and the polymerase inhibitor combination of cytosine arabinoside and hydroxyurea, accumulated DNA SSB at approximately equal frequencies. These results should provide a useful background for further investigations of the response of human bronchial cells to various DNA damaging agents

  11. Establishment and characterization of novel epithelial-like cell lines derived from human periodontal ligament tissue in vitro.

    Science.gov (United States)

    Tansriratanawong, Kallapat; Ishikawa, Hiroshi; Toyomura, Junko; Sato, Soh

    2017-10-01

    In this study, novel human-derived epithelial-like cells (hEPLCs) lines were established from periodontal ligament (PDL) tissues, which were composed of a variety of cell types and exhibited complex cellular activities. To elucidate the putative features distinguishing these from epithelial rest of Malassez (ERM), we characterized hEPLCs based on cell lineage markers and tight junction protein expression. The aim of this study was, therefore, to establish and characterize hEPLCs lines from PDL tissues. The hEPLCs were isolated from PDL of third molar teeth. Cellular morphology and cell organelles were observed thoroughly. The characteristics of epithelial-endothelial-mesenchymal-like cells were compared in several markers by gene expression and immunofluorescence, to ERM and human umbilical-vein endothelial cells (HUVECs). The resistance between cellular junctions was assessed by transepithelial electron resistance, and inflammatory cytokines were detected by ELISA after infecting hEPLCs with periodontopathic bacteria. The hEPLCs developed into small epithelial-like cells in pavement appearance similar to ERM. However, gene expression patterns and immunofluorescence results were different from ERM and HUVECs, especially in tight junction markers (Claudin, ZO-1, and Occludins), and endothelial markers (vWF, CD34). The transepithelial electron resistance indicated higher resistance in hEPLCs, as compared to ERM. Periodontopathic bacteria were phagocytosed with upregulation of inflammatory cytokine secretion within 24 h. In conclusion, hEPLCs that were derived using the single cell isolation method formed tight multilayers colonies, as well as strongly expressed tight junction markers in gene expression and immunofluorescence. Novel hEPLCs lines exhibited differently from ERM, which might provide some specific functions such as metabolic exchange and defense mechanism against bacterial invasion in periodontal tissue.

  12. Telomerase-immortalized non-malignant human prostate epithelial cells retain the properties of multipotent stem cells

    International Nuclear Information System (INIS)

    Li Hongzhen; Zhou Jianjun; Miki, Jun; Furusato, Bungo; Gu Yongpeng; Srivastava, Shiv; McLeod, David G.; Vogel, Jonathan C.; Rhim, Johng S.

    2008-01-01

    Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin α2β1 hi and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetal bovine serum and 5 μg/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation

  13. Clinicopathological and prognostic significance of epithelial mesenchymal transition-related protein expression in intrahepatic cholangiocarcinoma

    Directory of Open Access Journals (Sweden)

    Yao X

    2012-10-01

    Full Text Available Xing Yao,1,* Xiang Wang,1,* Zishu Wang,2,* Licheng Dai,1 Guolei Zhang,1 Qiang Yan,1 Weimin Zhou11Huzhou Central Hospital, Zhejiang Huzhou, 2Department of Medical Oncology, First Affiliated Hospital, Bengbu Medical College, Anhui, People’s Republic of China *These authors contributed equally to this workBackground: The aim of this study was to examine the patterns of expression of epithelial-mesenchymal transition (EMT-related proteins in intrahepatic cholangiocarcinoma. The clinicopathological and prognostic value of these markers was also evaluated.Methods: We detected the expression status of three EMT-related proteins, ie, E-cadherin, vimentin, and N-cadherin, by immunohistochemistry in consecutive intrahepatic cholangiocarcinoma specimens from 96 patients.Results: The frequency of loss of the epithelial marker E-cadherin, and acquisition of mesenchymal markers, vimentin and N-cadherin, in intrahepatic cholangiocarcinoma was 43.8%, 37.5% and 57.3%, respectively. Altered expression of EMT markers was associated with aggressive tumor behavior, including lymph node metastasis, undifferentiated-type histology, advanced tumor stage, venous invasion, and shorter overall survival. Moreover, loss of E-cadherin was retained as an independent prognostic factor for patients with intrahepatic cholangiocarcinoma in multivariate analysis.Conclusion: Our results suggest that the EMT process is associated with tumor progression and a poor outcome in patients with intrahepatic cholangiocarcinoma, and inhibition of EMT might offer novel promising molecular targets for the treatment of affected patients.Keywords: intrahepatic cholangiocarcinoma, epithelial-mesenchymal transition, expression, prognosis, immunohistochemistry

  14. Changes in glomerular parietal epithelial cells in mouse kidneys with advanced age

    Science.gov (United States)

    Roeder, Sebastian S.; Stefanska, Ania; Eng, Diana G.; Kaverina, Natalya; Sunseri, Maria W.; McNicholas, Bairbre A.; Rabinovitch, Peter; Engel, Felix B.; Daniel, Christoph; Amann, Kerstin; Lichtnekert, Julia; Pippin, Jeffrey W.

    2015-01-01

    Kidney aging is accompanied by characteristic changes in the glomerulus, but little is known about the effect of aging on glomerular parietal epithelial cells (PECs), nor if the characteristic glomerular changes in humans and rats also occur in very old mice. Accordingly, a descriptive analysis was undertaken in 27-mo-old C57B6 mice, considered advanced age. PEC density was significantly lower in older mice compared with young mice (aged 3 mo), and the decrease was more pronounced in juxtamedullary glomeruli compared with outer cortical glomeruli. In addition to segmental and global glomerulosclerosis in older mice, staining for matrix proteins collagen type IV and heparan sulfate proteoglycan were markedly increased in Bowman's capsules of older mouse glomeruli, consistent with increased extracellular matrix production by PECs. De novo staining for CD44, a marker of activated and profibrotic PECs, was significantly increased in aged glomeruli. CD44 staining was more pronounced in the juxtamedullary region and colocalized with phosphorylated ERK. Additionally, a subset of aged PECs de novo expressed the epithelial-to-mesenchymal transition markers α-smooth muscle and vimentin, with no changes in epithelial-to-mesenchymal transition markers E-cadherin and β-catenin. The mural cell markers neural/glial antigen 2, PDGF receptor-β, and CD146 as well as Notch 3 were also substantially increased in aged PECs. These data show that mice can be used to better understand the aging kidney and that PECs undergo substantial changes, especially in juxtamedullary glomeruli, that may participate in the overall decline in glomerular structure and function with advancing age. PMID:26017974

  15. The role of epithelial-mesenchymal transition in squamous cell carcinoma of the oral cavity.

    Science.gov (United States)

    Zidar, Nina; Boštjančič, Emanuela; Malgaj, Marija; Gale, Nina; Dovšak, Tadej; Didanovič, Vojko

    2018-02-01

    Epithelial-mesenchymal transition (EMT) has emerged as a possible mechanism of cancer metastasizing, but strong evidence for EMT involvement in human cancer is lacking. Our aim was to compare oral spindle cell carcinoma (SpCC) as an example of EMT with oral conventional squamous cell carcinoma (SCC) with and without nodal metastases to test the hypothesis that EMT contributes to metastasizing in oral SCC. Thirty cases of oral SCC with and without nodal metastasis and 15 cases of SpCC were included. Epithelial (cytokeratin, E-cadherin), mesenchymal (vimentin, N-cadherin), and stem cell markers (ALDH-1, CD44, Nanog, Sox-2) and transcription repressors (Snail, Slug, Twist) were analyzed immunohistochemically. We also analyzed the expression of microRNAs miR-141, miR-200 family, miR-205, and miR-429. SpCC exhibited loss of epithelial markers and expression of mesenchymal markers or coexpression of both up-regulation of transcription repressors and down-regulation of the investigated microRNAs. SCC showed only occasional focal expression of mesenchymal markers at the invasive front. No other differences were observed between SCC with and without nodal metastases except for a higher expression of ALDH-1 in SCC with metastases. Our results suggest that SpCC is an example of true EMT but do not support the hypothesis that EMT is involved in metastasizing of conventional SCC. Regarding oral SCC progression and metastasizing, we have been facing a shift from the initial enthusiasm for the EMT concept towards a more critical approach with "EMT-like" and "partial EMT" concepts. The real question, though, is, is there no EMT at all?

  16. Changes in glomerular parietal epithelial cells in mouse kidneys with advanced age.

    Science.gov (United States)

    Roeder, Sebastian S; Stefanska, Ania; Eng, Diana G; Kaverina, Natalya; Sunseri, Maria W; McNicholas, Bairbre A; Rabinovitch, Peter; Engel, Felix B; Daniel, Christoph; Amann, Kerstin; Lichtnekert, Julia; Pippin, Jeffrey W; Shankland, Stuart J

    2015-07-15

    Kidney aging is accompanied by characteristic changes in the glomerulus, but little is known about the effect of aging on glomerular parietal epithelial cells (PECs), nor if the characteristic glomerular changes in humans and rats also occur in very old mice. Accordingly, a descriptive analysis was undertaken in 27-mo-old C57B6 mice, considered advanced age. PEC density was significantly lower in older mice compared with young mice (aged 3 mo), and the decrease was more pronounced in juxtamedullary glomeruli compared with outer cortical glomeruli. In addition to segmental and global glomerulosclerosis in older mice, staining for matrix proteins collagen type IV and heparan sulfate proteoglycan were markedly increased in Bowman's capsules of older mouse glomeruli, consistent with increased extracellular matrix production by PECs. De novo staining for CD44, a marker of activated and profibrotic PECs, was significantly increased in aged glomeruli. CD44 staining was more pronounced in the juxtamedullary region and colocalized with phosphorylated ERK. Additionally, a subset of aged PECs de novo expressed the epithelial-to-mesenchymal transition markers α-smooth muscle and vimentin, with no changes in epithelial-to-mesenchymal transition markers E-cadherin and β-catenin. The mural cell markers neural/glial antigen 2, PDGF receptor-β, and CD146 as well as Notch 3 were also substantially increased in aged PECs. These data show that mice can be used to better understand the aging kidney and that PECs undergo substantial changes, especially in juxtamedullary glomeruli, that may participate in the overall decline in glomerular structure and function with advancing age. Copyright © 2015 the American Physiological Society.

  17. Corneal markers of diabetic neuropathy.

    Science.gov (United States)

    Pritchard, Nicola; Edwards, Katie; Shahidi, Ayda M; Sampson, Geoff P; Russell, Anthony W; Malik, Rayaz A; Efron, Nathan

    2011-01-01

    Diabetic neuropathy is a significant clinical problem that currently has no effective therapy, and in advanced cases, leads to foot ulceration and lower limb amputation. The accurate detection, characterization and quantification of this condition are important in order to define at-risk patients, anticipate deterioration, monitor progression, and assess new therapies. This review evaluates novel corneal methods of assessing diabetic neuropathy. Two new noninvasive corneal markers have emerged, and in cross-sectional studies have demonstrated their ability to stratify the severity of this disease. Corneal confocal microscopy allows quantification of corneal nerve parameters and noncontact corneal esthesiometry, the functional correlate of corneal structure, assesses the sensitivity of the cornea. Both these techniques are quick to perform, produce little or no discomfort for the patient, and are suitable for clinical settings. Each has advantages and disadvantages over traditional techniques for assessing diabetic neuropathy. Application of these new corneal markers for longitudinal evaluation of diabetic neuropathy has the potential to reduce dependence on more invasive, costly, and time-consuming assessments, such as skin biopsy.

  18. Epithelial expression of cytokeratins 15 and 19 in vitiligo.

    Science.gov (United States)

    Saleh, Fatma Y; Awad, Sherif S; Nasif, Ghada A; Halim, Christein

    2016-12-01

    Cytokeratins (CK) belong to the family of intermediate filament proteins, and among them specific epithelial keratins are considered markers for stem cells activation. This study aims to investigate the expression of CK15 and CK19 as possible stem cell markers in vitiligo during phototherapy. The study was conducted on vitiligo patients receiving narrow-band ultraviolet therapy. Immunohistochemical staining for CK15 and CK19 was carried out, and clinical follow-up continued for 4 weeks. Of 28 patients, CK15 expression was demonstrated in 17 cases (61%) while CK19 expression was demonstrated in 11 cases (39%). Cells expressing positive staining were demonstrated in follicular and interfollicular epithelium. Expression was clearly demonstrated in patients younger than 20 years old, with shorter disease duration, with disease stability, and with normally pigmented hairs. Expression of cytokeratins was significantly correlated to improvement of vitiligo lesions. CK15 and CK19 are expressed in vitiligo during UV repigmentation in the follicular and interfollicular epithelium. This expression of cytokeratins was significantly correlated to improvement and can be considered valuable tool to monitor stem cells stimulation for the sake of the repigmentation process in vitiligo. © 2016 Wiley Periodicals, Inc.

  19. Molecular markers in glioma.

    Science.gov (United States)

    Ludwig, Kirsten; Kornblum, Harley I

    2017-09-01

    Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC's (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.

  20. SYTO probes: markers of apoptotic cell demise.

    Science.gov (United States)

    Wlodkowic, Donald; Skommer, Joanna

    2007-10-01

    As mechanistic studies on tumor cell death advance towards their ultimate translational goal, there is a need for specific, rapid, and high-throughput analytical tools to detect diverse cell demise modes. Patented DNA-binding SYTO probes, for example, are gaining increasing interest as easy-to-use markers of caspase-dependent apoptotic cell death. They are proving convenient for tracking apoptosis in diverse hematopoietic cell lines and primary tumor samples, and, due to their spectral characteristics, appear to be useful for the development of multiparameter flow cytometry assays. Herein, several protocols for multiparametric assessment of apoptotic events using SYTO probes are provided. There are protocols describing the use of green fluorescent SYTO 16 and red fluorescent SYTO 17 dyes in combination with plasma membrane permeability markers. Another protocol highlights the multiparametric use of SYTO 16 dye in conjunction with the mitochondrial membrane potential sensitive probe, tetramethylrhodamine methyl ester (TMRM), and the plasma membrane permeability marker, 7-aminoactinomycin D (7-AAD).

  1. Intracellular Position of Centrioles and the Direction of Homeostatic Epithelial Cell Movements in the Mouse Cornea.

    Science.gov (United States)

    Silverman, Erika; Zhao, Jin; Merriam, John C; Nagasaki, Takayuki

    2017-02-01

    Corneal epithelial cells exhibit continuous centripetal movements at a rate of about 30 µm per day, but neither the driving force nor the mechanism that determines the direction of movements is known. To facilitate the investigation of homeostatic cell movement, we examined if the intracellular position of a centriole can be used as a directional marker of epithelial cell movements in the mouse cornea. A direction of cell movements was estimated in fixed specimens from a pattern of underlying subepithelial nerve fibers. Intracellular position of centrioles was determined by gamma-tubulin immunohistology and plotted in a narrow strip along the entire diameter of a cornea from limbus to limbus. When we determined the position of centrioles in the peripheral cornea where cell movements proceed generally along a radial path, about 55% of basal epithelial cells contained a centriole in the front half of a cell. However, in the central cornea where cells exhibit a spiral pattern of movements, centrioles were distributed randomly. These results suggest that centrioles tend to be positioned toward the direction of movement in corneal basal epithelial cells when they are moving centripetally at a steady rate.

  2. Wnt-10b secreted from lymphocytes promotes differentiation of skin epithelial cells

    International Nuclear Information System (INIS)

    Ouji, Yukiteru; Yoshikawa, Masahide; Shiroi, Akira; Ishizaka, Shigeaki

    2006-01-01

    Wnt-10b was originally isolated from lymphoid tissue and is known to be involved in a wide range of biological actions, while recently it was found to be expressed early in the development of hair follicles. However, few studies have been conducted concerning the role of Wnt-10b with the differentiation of skin epithelial cells. To evaluate its role in epithelial differentiation, we purified Wnt-10b from the supernatant of a concanavalin A-stimulated lymphocyte culture using an affinity column and investigated its effects on the differentiation of adult mouse-derived primary skin epithelial cells (MPSEC). MPSEC cultured with Wnt-10b showed morphological changes from cuboidal to spindle-shaped with inhibited proliferation, and also obtained characteristics of the hair shaft and inner root sheath of the hair follicle, represented by red-colored Ayoub Shklar staining, and reactions to AE-13 and AE-15 as seen with immunocytology. Further, RT-PCR analysis demonstrated the expression of mRNA for keratin 1, keratin 2, loricrin, mHa5, and mHb5, in association with a decreased expression of the basal cell marker keratin 5, in Wnt-10b-treated MPSEC. In addition, involvement of the canonical Wnt signal pathway was demonstrated by a TCF reporter (pTOPFLASH) assay. These results suggest that Wnt-10b promotes the differentiation of MPSEC and may play an important role in hair follicle development by promoting differentiation of epithelial cells

  3. Cysteine cathepsins B and X promote epithelial-mesenchymal transition of tumor cells.

    Science.gov (United States)

    Mitrović, Ana; Pečar Fonović, Urša; Kos, Janko

    2017-09-01

    Cathepsins B and X are lysosomal cysteine carboxypeptidases suggested as having a redundant role in cancer. They are involved in a number of processes leading to tumor progression but their role in the epithelial-mesenchymal transition (EMT) remains unknown. We have investigated the contribution of both cathepsins B and X in EMT using tumor cell lines differing in their expression of epithelial and mesenchymal markers and cell morphology. Higher levels of both cathepsins are shown to promote EMT and are associated with the mesenchymal-like cell phenotype. Moreover, simultaneous knockdown of the two peptidases triggers a reverse, mesenchymal to epithelial transition. Of the two cathepsins, cathepsin B appears to be the stronger promotor of EMT. Furthermore, we evaluated the involvement of cathepsin B and X in the transforming growth factor-β1 (TGF-β1) signaling pathway, one of the key signaling mechanisms triggering EMT in cancer. In MCF-7 cells the expression of cathepsin B was shown to depend on their activation with TGF-β1 while, for cathepsin X, a TGF-β1 independent mechanism of induction during EMT is indicated. EMT is thus shown to be another mechanism linking cathepsins B and X with tumor progression. With silencing of their expression or inhibition of enzymatic activity, the tumor cells could be reverted to less aggressive epithelial-like phenotype. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Vitreous Humor Changes Expression of Iron-Handling Proteins in Lens Epithelial Cells

    Science.gov (United States)

    Goralska, Malgorzata; Fleisher, Lloyd N.; McGahan, M. Christine

    2017-01-01

    Purpose In humans, vitrectomy is associated with development of nuclear cataracts. Iron catalyzes free radical formation causing oxidative damage, which is implicated in cataract formation. This study was designed to determine if vitreous humor, which can initiate differentiation of lens epithelial cells, would have an effect on iron-handling proteins. Methods Cultured canine lens epithelial cells were treated with collected canine vitreous humor. Lysates of treated and control cells were separated by SDS-PAGE. Ferritin H- and L-chains, transferrin receptor 1, and aquaporin 0 were immunodetected and quantitated with specific antibodies. Morphologic changes in treated cells were assessed. Results Treatment of lens epithelial cells with a 33% (vol/vol) solution of vitreous humor changed the morphology of lens cells and induced expression of aquaporin 0, a marker of fiber cell differentiation that was undetectable in control cells. Treatment did not modify the size of iron-handling proteins but significantly increased content of ferritin from 2.9- to 8.8-fold over control and decreased levels of transferrin receptor by 37% to 59%. Conclusions Vitreous humor may significantly limit iron uptake by transferrin/transferrin receptor pathway, and by increasing ferritin levels could profoundly increase the iron-storage capacity of ferritin in lens cells. Vitreous humor may play a significant protective role against iron-catalyzed oxidative damage of lens epithelial cells and therefore in the formation of cataracts. PMID:28245299

  5. Stimulation of Na+ -K+ -pump currents by epithelial nicotinic receptors in rat colon.

    Science.gov (United States)

    Bader, Sandra; Lottig, Lena; Diener, Martin

    2017-05-01

    Acetylcholine-induced epithelial Cl - secretion is generally thought to be mediated by epithelial muscarinic receptors and nicotinic receptors on secretomotor neurons. However, recent data have shown expression of nicotinic receptors by intestinal epithelium and the stimulation of Cl - secretion by nicotine, in the presence of the neurotoxin, tetrodotoxin. Here, we aimed to identify the transporters activated by epithelial nicotinic receptors and to clarify their role in cholinergic regulation of intestinal ion transport. Ussing chamber experiments were performed, using rat distal colon with intact epithelia. Epithelia were basolaterally depolarized to measure currents across the apical membrane. Apically permeabilized tissue was also used to measure currents across the basolateral membrane in the presence of tetrodotoxin. Nicotine had no effect on currents through Cl - channels in the apical membrane or on currents through K + channels in the apical or the basolateral membrane. Instead, nicotine stimulated the Na + -K + -pump as indicated by Na + -dependency and sensitivity of the nicotine-induced current across the basolateral membrane to cardiac steroids. Effects of nicotine were inhibited by nicotinic receptor antagonists such as hexamethonium and mimicked by dimethyl-4-phenylpiperazinium, a chemically different nicotinic agonist. Simultaneous stimulation of epithelial muscarinic and nicotinic receptors led to a strong potentiation of transepithelial Cl - secretion. These results suggest a novel concept for the cholinergic regulation of transepithelial ion transport by costimulation of muscarinic and nicotinic epithelial receptors and a unique role of nicotinic receptors controlling the activity of the Na + -K + -ATPase. © 2017 The British Pharmacological Society.

  6. meta-analysis of Serum Tumor Markers in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xianfeng LU

    2010-12-01

    Full Text Available Background and objective The detection of serum tumor markers is of great value for early diagnosis of lung cancer. The aim of this study is to summarize the clinic significance characteristics of serum markers contributing to the detection of lung cancer. Methods References about serum markers of lung cancer were estimated using meta-analysis method. 712 references which included more than 20 cases, 20 controls, the serum markers of 52 832 patients with malignancies and 32 037 patients as controls were evaluated. Results Overall the detection of 13 markers play a significant part in lung cancer diagnosis. The sensitivity of CEA, CA125, CYFRA21-1, TPA, SCCAg, DKK1, NSE, ProGRP in the patients’ serum with lung cancer were 47.50%, 50.11%, 57.00%, 50.93%, 49.00%, 69.50%, 39.73%, 51.48% and the specificity were 92.34%, 80.19%, 90.16%, 88.41%, 91.07%, 92.20%, 89.11%, 94.89%. In the combined analysis of tumor markers: the sensitivity, specificity of NSE+ProGRP were 88.90% and 72.82% in diagnosis of small cell lung cancer, respectively. In diagnosis of squamous corcinoma, the sensitivity and specificity of TSGF+SCCAg+CYFRA21-1 were 95.30% and 74.20%. The the sensitivity and specificity of CA153+Ferrtin+CEA were 91.90% and 44.00% in diagnosis of lung cancer. Conclusion Although the assay of tumor markers in serum is useful for diagnosis of early lung cancer, the sensitivity and specificity are low. Combined detection of these tumor markers could increase sensitivity and specificity.

  7. Epigenetic Reprogramming of Lineage-Committed Human Mammary Epithelial Cells Requires DNMT3A and Loss of DOT1L

    Directory of Open Access Journals (Sweden)

    Jerrica L. Breindel

    2017-09-01

    Full Text Available Organogenesis and tissue development occur through sequential stepwise processes leading to increased lineage restriction and loss of pluripotency. An exception to this appears in the adult human breast, where rare variant epithelial cells exhibit pluripotency and multilineage differentiation potential when removed from the signals of their native microenvironment. This phenomenon provides a unique opportunity to study mechanisms that lead to cellular reprogramming and lineage plasticity in real time. Here, we show that primary human mammary epithelial cells (HMECs lose expression of differentiated mammary epithelial markers in a manner dependent on paracrine factors and epigenetic regulation. Furthermore, we demonstrate that HMEC reprogramming is dependent on gene silencing by the DNA methyltransferase DNMT3A and loss of histone transcriptional marks following downregulation of the methyltransferase DOT1L. These results demonstrate that lineage commitment in adult tissues is context dependent and highlight the plasticity of somatic cells when removed from their native tissue microenvironment.

  8. Role of Corneal Stromal Cells on Epithelial Cell Function during Wound Healing

    Directory of Open Access Journals (Sweden)

    Bhavani S. Kowtharapu

    2018-02-01

    Full Text Available Following injury, corneal stromal keratocytes transform into repair-phenotype of activated stromal fibroblasts (SFs and participate in wound repair. Simultaneously, ongoing bi-directional communications between corneal stromal-epithelial cells also play a vital role in mediating the process of wound healing. Factors produced by stromal cells are known to induce proliferation, differentiation, and motility of corneal epithelial cells, which are also subsequently the main processes that occur during wound healing. In this context, the present study aims to investigate the effect of SFs conditioned medium (SFCM on corneal epithelial cell function along with substance P (SP. Antibody microarrays were employed to profile differentially expressed cell surface markers and cytokines in the presence of SFCM and SP. Antibody microarray data revealed enhanced expression of the ITGB1 in corneal epithelial cells following stimulation with SP whereas SFCM induced abundant expression of IL-8, ITGB1, PD1L1, PECA1, IL-15, BDNF, ICAM1, CD8A, CD44 and NTF4. All these proteins have either direct or indirect roles in epithelial cell growth, movement and adhesion related signaling cascades during tissue regeneration. We also observed activation of MAPK signaling pathway along with increased expression of focal adhesion kinase (FAK, paxillin, vimentin, β-catenin and vasodilator-stimulated phosphoprotein (VASP phosphorylation. Additionally, epithelial-to-mesenchymal transition (EMT regulating transcription factors Slug and ZEB1 expression were enhanced in the presence of SFCM. SP enriched the expression of integrin subunits α4, α5, αV, β1 and β3 whereas SFCM increased α4, α5, αV, β1 and β5 integrin subunits. We also observed increased expression of Serpin E1 following SP and SFCM treatment. Wound healing scratch assay revealed enhanced migration of epithelial cells following the addition of SFCM. Taken together, we conclude that SFCM-mediated sustained

  9. The Regenerative Potential of Parietal Epithelial Cells in Adult Mice

    Science.gov (United States)

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H.; Floege, Jürgen; Smeets, Bart

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman’s capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glomerular hypertrophy was induced by progressive partial nephrectomies. Again, no significant podocyte replenishment was observed. Rather, labeled PECs exclusively invaded segments of the tuft affected by glomerulosclerosis, consistent with our previous findings. We next reassessed PEC recruitment in juvenile mice using a different reporter mouse and confirmed significant recruitment of labeled PECs onto the glomerular tuft. Moreover, some labeled cells on Bowman’s capsule expressed podocyte markers, and cells on Bowman’s capsule were also directly labeled in juvenile podocyte-specific Pod-rtTA transgenic mice. In 6-week-old mice, however, cells on Bowman’s capsule no longer expressed podocyte-specific markers. Similarly, in human kidneys, some cells on Bowman’s capsule expressed the podocyte marker synaptopodin from 2 weeks to 2 years of age but not at 7 years of age. In summary, podocyte regeneration from PECs could not be detected in aging mice or models of glomerular hypertrophy. We propose that a small fraction of committed podocytes reside on Bowman’s capsule close to the vascular stalk and are recruited onto the glomerular tuft during infancy to adolescence in mice and humans. PMID:24408873

  10. TCDD alters medial epithelial cell differentiation during palatogenesis

    International Nuclear Information System (INIS)

    Abbott, B.D.; Birnbaum, L.S.

    1989-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widely distributed, persistent environmental contaminant that is teratogenic in mice, where it induces hydronephrosis and cleft palate. The incidence of clefting has been shown to be dose dependent after exposure on either gestation Day (GD) 10 or 12, although the embryo is more susceptible on GD 12. TCDD-exposed palatal shelves meet but do not fuse, and programmed cell death of the medial epithelial cells is inhibited. The mechanism of action through which TCDD alters the program of medial cell development has not been examined in earlier studies, and it is not known whether the mechanism is the same regardless of the dose or developmental stage of exposure. In this study, C57BL/6N mice, a strain sensitive to TCDD, were dosed orally on GD 10 or 12 with 0, 6, 12, 24, or 30 micrograms/kg body wt, in 10 ml corn oil/kg. Embryonic palatal shelves were examined on GD 14, 15, or 16. The degree of palatal closure, epithelial surface morphology, and cellular ultrastructure, the incorporation of [3H]TdR, the expression of EGF receptors, and the binding of 125I-EGF were assessed. After exposure on GD 10 or 12, TCDD altered the differentiation pathway of the medial epithelial cells. The palatal shelves were of normal size and overall morphology, but fusion of the medial epithelia of the opposing shelves did not occur. TCDD prevented programmed cell death of the medial peridermal cells. The expression of EGF receptors by medial cells continued through Day 16 and the receptors were able to bind ligand. The medial cells differentiated into a stratified, squamous, keratinizing epithelium. The shift in phenotype to an oral-like epithelium occurred after exposure on either GD 10 or 12. At the lower dose (6 micrograms/kg), fewer cleft palates were produced, but those shelves which did respond had a fully expressed shift in differentiation

  11. Immunoregulation by airway epithelial cells (AECs against respiratory virus infection

    Directory of Open Access Journals (Sweden)

    Yan YAN

    2017-11-01

    Full Text Available The respiratory tract is primary contact site of the body and environment, and it is ventilated by 10-20 thousand liters of air per day. Inevitably, the respiratory system comes into contact with airborne microbes, which contain the disease-causing pathogens. Airway epithelial cells (AECs are known to have innate sensor functions, which are similar to the "professional" immune cells, such as alveolar macrophage and sub- or intra-epithelial dendritic cells (DCs. Thus AECs are able to detect invading microbial danger including different types of respiratory viruses, and mount a potent host response, for example, activating type Ⅰ interferon signaling pathway genes. To avoid chronic inflammation and maintain the immunological homeostasis, the pulmonary system has developed intrinsic mechanisms to control local immune responses. Most recently, the role of AECs in control of local immunity has gained much attention, as 1 AECs express the pattern recognition receptors (PRRs, such as Toll-like receptors, retinoic acid inducible gene Ⅰ (RIG-I-like receptor, and so on, thus AECs are equipped to participate in innate detection of microbial encounter; 2 To keep immunological homeostasis in the respiratory tract, AECs behave not only as innate immune sensors but also as immune modulators in parallel, through modulating the sensitivity of innate immune sensing of both AECs per se and sub- or intra-epithelial immune cells; 3 Loss of modularity capacity of AECs might be involved in the development of chronic airway diseases. In present review, how the AECs act will be intensively discussed in response to respiratory viruses and modulate the local immunity through cis- and trans-factors (direct and indirect factors, as well as the consequence of impairment of this control of local immunity, in the development and exacerbation of airway diseases, such as acute and chronic rhinosinusitis. DOI: 10.11855/j.issn.0577-7402.2017.10.02

  12. Epithelial cell kinetics of the gastric mucosa during Helicobacter pylori infection

    DEFF Research Database (Denmark)

    Norn, Svend

    2007-01-01

    Helicobacter pylori is an important pathogen in major gastroduodenal diseases, including inflammation with ulceration and gastric malignancies. Alterations in H. pylori associated cell turnover in gastric epithelial cells are examined in relation to inflammatory activity, bacteria load and cytoki......Helicobacter pylori is an important pathogen in major gastroduodenal diseases, including inflammation with ulceration and gastric malignancies. Alterations in H. pylori associated cell turnover in gastric epithelial cells are examined in relation to inflammatory activity, bacteria load...... and the proliferative marker Ki-67. H. pylori infection, bacteria load and inflammatory activity were associated with increased cell turnover as judged by enhanced activities of TUNEL, p53 and Ki-67. Only p53 was significantly correlated to IFN-γ, IL-8 and IL-10. The H. pylori-positive state was furthermore accompanied...... of the gastrointestinal tract, such studies in cell turnover may provide insights valuable in the investigations of potential precursors of gastric malignancies....

  13. The Swift Turbidity Marker

    Science.gov (United States)

    Omar, Ahmad Fairuz; MatJafri, Mohd Zubir

    2011-01-01

    The Swift Turbidity Marker is an optical instrument developed to measure the level of water turbidity. The components and configuration selected for the system are based on common turbidity meter design concepts but use a simplified methodology to produce rapid turbidity measurements. This work is aimed at high school physics students and is the…

  14. Paleoreconstruction by biological markers

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, W K; Moldowan, J M

    1981-06-01

    During diagenesis and conversion of the original lipid fraction of biological systems to petroleum hydrocarbons, the following four basic events needed for paleoreconstruction may be monitored by biological markers: (1) sourcing, (2) maturation, (3) migration and (4) biodegradation. Actual cases of applying biological markers to petroleum exploration problems in different parts of the world are demonstrated. Cretaceous- and Phosphoria-sourced oils in the Wyoming Thrust Belt can be distinguished from one another by high quality source fingerprinting of biomarker terpanes using gas chromatography mass spectrometry. Identification of recently discovered biological markers, head-to-head isoprenoids, allows source differentiation between some oils from Sumatra. The degree of crude oil maturation in basins from California, Alaska, Russia, Wyoming and Louisiana can be assessed by specific biomarker ratios (20S/20R sterane epimers). Field evidence from such interpretation is augmented by laboratory pyrolysis of the rock. Extensive migration is documented by biomarkers in several oils. Biological marker results are consistent with the geological setting and add a dimension in assisting the petroleum explorationist towar paleoreconstruction.

  15. Magik Markers Trehvis

    Index Scriptorium Estoniae

    2008-01-01

    Müra-rock'i viljelevast USA duost Magik Markers (ansambel osaleb režissöör Veiko Õunapuu uue mängufilmi "Püha Tõnu kiusamine" võtetel, kontsert 15. nov. Tartus klubis Trehv, vt. www.magikmarkers.audiosport.org.)

  16. TLA-marker for wear rate monitoring

    International Nuclear Information System (INIS)

    Stan-Sion, C.; Plostinaru, D.; Ivan, A.; Catana, M.; Roman, M.

    1992-01-01

    A very effective and promising method of wear monitoring in industry is the Thin Layer Activation (TLA) method. The main feature of this technique is the creation of thin radioactive layers on the investigated surface by irradiation of the sample with an accelerated ion beam (protons, deuterons, 3-He). In the present paper we describe an extension of the TLA-Method to produce radioactive markers to be implanted into heavy object which can hardly be transported to an accelerator for direct surface activation. The sensitivity of wear measuring is usually 1% of the actual layer thickness. It is obvious that the TLA technique has a sensitivity about two orders of magnitude higher than the activation in the bulk volume, produced in a nuclear reactor. Controlling the activation depth (80 - 250 microns) we produced different marker sets with sensitivities of 1 - 3 microns. The TLA markers were used to measure the wear rate of railway-car brake disks and of the railroad. The measured data were corroborated with other physical parameters of interest. (Author)

  17. TLA-marker for wear rate monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Stan-Sion, C; Plostinaru, D; Ivan, A [Institute of Atomic Physics, Institute of Physics and Nuclear Engineering, R-76900 Bucharest, P.O.Box MG-6, (Romania); Catana, M; Roman, M [Institute for Research and Design in Transportation, Bucharest, (Romania)

    1992-01-01

    A very effective and promising method of wear monitoring in industry is the Thin Layer Activation (TLA) method. The main feature of this technique is the creation of thin radioactive layers on the investigated surface by irradiation of the sample with an accelerated ion beam (protons, deuterons, 3-He). In the present paper we describe an extension of the TLA-Method to produce radioactive markers to be implanted into heavy object which can hardly be transported to an accelerator for direct surface activation. The sensitivity of wear measuring is usually 1% of the actual layer thickness. It is obvious that the TLA technique has a sensitivity about two orders of magnitude higher than the activation in the bulk volume, produced in a nuclear reactor. Controlling the activation depth (80 - 250 microns) we produced different marker sets with sensitivities of 1 - 3 microns. The TLA markers were used to measure the wear rate of railway-car brake disks and of the railroad. The measured data were corroborated with other physical parameters of interest. (Author).

  18. INPP4B reverses docetaxel resistance and epithelial-to-mesenchymal transition via the PI3K/Akt signaling pathway in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiwen; Li, Hongliang, E-mail: honglianglity@sina.com; Chen, Qi

    2016-08-26

    Docetaxel efficiency in the therapy of prostate cancer (PCa) patients is limited due to the development of chemoresistance. Recent studies have implied a role of INPP4B in tumor chemoresistance, while the effects of INPP4B on docetaxel resistance in PCa have not been elucidated. In the present study, the docetaxel-resistant human PCa cell lines PC3-DR and DU-145-DR were established from the parental cell lines PC3 and DU-145, and the expression and role of INPP4B in docetaxel-resistant PCa cells were investigated. The results demonstrated that INPP4B expression was significantly downregulated in docetaxel-resistant cells. Overexpression of INPP4B increased the sensitivity to docetaxel and promoted cell apoptosis in PC3-DR and DU-145-DR cells. In addition, INPP4B overexpression downregulated the expression of the mesenchymal markers fibronectin, N-cadherin, and vimentin, and upregulated the expression level of the epithelial maker E-cadherin. Furthermore, INPP4B overexpression markedly inhibited the PI3K/Akt pathway. We also found that IGF-1, the inhibitor of PI3K/Akt, markedly blocked the change in EMT markers induced by overexpression of INPP4B, and reversed the resistance of PC3-DR and DU-145-DR cells to docetaxel, which is sensitized by Flag-INPP4B. In summary, the presented data indicate that INPP4B is crucial for docetaxel-resistant PCa cell survival, potentially by regulating EMT through the PI3K/Akt signaling pathway. - Highlights: • INPP4B is downregulated in docetaxel-resistant PCa cells. • INPP4B inhibits cell proliferation. • INPP4B induces cell apoptosis. • INPP4B inhibits PCa cell EMT.

  19. Periovulatory follicular fluid levels of estradiol trigger inflammatory and DNA damage responses in oviduct epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sergio E Palma-Vera

    Full Text Available Ovarian steroid hormones (mainly E2 and P4 regulate oviduct physiology. Serum-E2 acts on the oviduct epithelium from the basolateral cell compartment. Upon ovulation, the apical compartment of the oviduct epithelium is temporarily exposed to follicular fluid, which contains much higher levels of E2 than serum. The aim of this study was to evaluate the effects of human periovulatory follicular fluid levels of E2 on oviduct epithelial cells using two porcine in vitro models.A cell line derived from the porcine oviductal epithelium (CCLV-RIE270 was characterized (lineage markers, proliferation characteristics and transformation status. Primary porcine oviduct epithelial cells (POEC were cultured in air-liquid interface and differentiation was assessed histologically. Both cultures were exposed to E2 (10 ng/ml and 200 ng/ml. Proliferation of CCLV-RIE270 and POEC was determined by real-time impedance monitoring and immunohistochemical detection of Ki67. Furthermore, marker gene expression for DNA damage response (DDR and inflammation was quantified.CCLV-RIE270 was not transformed and exhibited properties of secretory oviduct epithelial cells. Periovulatory follicular fluid levels of E2 (200 ng/ml upregulated the expression of inflammatory genes in CCLV-RIE270 but not in POEC (except for IL8. Expression of DDR genes was elevated in both models. A significant increase in cell proliferation could not be detected in response to E2.CCLV-RIE270 and POEC are complementary models to evaluate the consequences of oviduct exposure to follicular fluid components. Single administration of periovulatory follicular fluid E2 levels trigger inflammatory and DNA damage responses, but not proliferation in oviduct epithelial cells.

  20. Human glomerular epithelial cell proteoglycans

    International Nuclear Information System (INIS)

    Thomas, G.J.; Jenner, L.; Mason, R.M.; Davies, M.

    1990-01-01

    Proteoglycans synthesized by cultures of human glomerular epithelial cells have been isolated and characterized. Three types of heparan sulfate were detected. Heparan sulfate proteoglycan I (HSPG-I; Kav 6B 0.04) was found in the cell layer and medium and accounted for 12% of the total proteoglycans synthesized. HSPG-II (Kav 6B 0.25) accounted for 18% of the proteoglycans and was located in the medium and cell layer. A third population (9% of the proteoglycan population), heparan sulfate glycosaminoglycan (HS-GAG; Kav 6B 0.4-0.8), had properties consistent with single glycosaminoglycan chains or their fragments and was found only in the cell layer. HSPG-I and HSPG-II from the cell layer had hydrophobic properties; they were released from the cell layer by mild trypsin treatment. HS-GAG lacked these properties, consisted of low-molecular-mass heparan sulfate oligosaccharides, and were intracellular. HSPG-I and -II released to the medium lacked hydrophobic properties. The cells also produced three distinct types of chondroitin sulfates. The major species, chondroitin sulfate proteoglycan I (CSPG-I) eluted in the excluded volume of a Sepharose CL-6B column, accounted for 30% of the proteoglycans detected, and was found in both the cell layer and medium. Cell layer CSPG-I bound to octyl-Sepharose. It was released from the cell layer by mild trypsin treatment. CSPG-II (Kav 6B 0.1-0.23) accounted for 10% of the total 35S-labeled macromolecules and was found predominantly in the culture medium. A small amount of CS-GAG (Kav 6B 0.25-0.6) is present in the cell extract and like HS-GAG is intracellular. Pulse-chase experiments indicated that HSPG-I and -II and CSPG-I and -II are lost from the cell layer either by direct release into the medium or by internalization where they are metabolized to single glycosaminoglycan chains and subsequently to inorganic sulfate

  1. An epithelial to mesenchymal transition programme does not usually drive the phenotype of invasive lobular carcinomas.

    Science.gov (United States)

    McCart Reed, Amy E; Kutasovic, Jamie R; Vargas, Ana C; Jayanthan, Janani; Al-Murrani, Amel; Reid, Lynne E; Chambers, Rachael; Da Silva, Leonard; Melville, Lewis; Evans, Elizabeth; Porter, Alan; Papadimos, David; Thompson, Erik W; Lakhani, Sunil R; Simpson, Peter T

    2016-03-01

    Epithelial to mesenchymal transition (EMT) is a cellular phenotype switching phenomenon which occurs during normal development and is proposed to promote tumour cell invasive capabilities during tumour progression. Invasive lobular carcinoma (ILC) is a histological special type of breast cancer with a peculiar aetiology - the tumour cells display an invasive growth pattern, with detached, single cells or single files of cells, and a canonical feature is the loss of E-cadherin expression. These characteristics are indicative of an EMT or at the very least that they represent some plasticity between phenotypes. While some gene expression profiling data support this view, the tumour cells remain epithelial and limited immunohistochemistry data suggest that EMT markers may not feature prominently in ILC. We assessed the expression of a panel of EMT markers (fibronectin, vimentin, N-cadherin, smooth muscle actin, osteonectin, Snail, Twist) in 148 ILCs and performed a meta-analysis of publically available molecular data from 154 ILCs. Three out of 148 (2%) ILCs demonstrated an early and coordinated alteration of multiple EMT markers (down-regulation of E-cadherin, nuclear TWIST, and up-regulation of vimentin, osteonectin, and smooth muscle actin). However, the data overall do not support a role for EMT in defining the phenotypic peculiarities of the majority of ILCs. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  2. Sensitivity analysis

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003741.htm Sensitivity analysis To use the sharing features on this page, please enable JavaScript. Sensitivity analysis determines the effectiveness of antibiotics against microorganisms (germs) ...

  3. Persistent Transmissible Gastroenteritis Virus Infection Enhances Enterotoxigenic Escherichia coli K88 Adhesion by Promoting Epithelial-Mesenchymal Transition in Intestinal Epithelial Cells.

    Science.gov (United States)

    Xia, Lu; Dai, Lei; Yu, Qinghua; Yang, Qian

    2017-11-01

    Transmissible gastroenteritis virus (TGEV) is a coronavirus characterized by diarrhea and high morbidity rates, and the mortality rate is 100% in piglets less than 2 weeks old. Pigs infected with TGEV often suffer secondary infection by other pathogens, which aggravates the severity of diarrhea, but the mechanisms remain unknown. Here, we hypothesized that persistent TGEV infection stimulates the epithelial-mesenchymal transition (EMT), and thus enterotoxigenic Escherichia coli (ETEC) can more easily adhere to generating cells. Intestinal epithelial cells are the primary targets of TGEV and ETEC infections. We found that TGEV can persistently infect porcine intestinal columnar epithelial cells (IPEC-J2) and cause EMT, consistent with multiple changes in key cell characteristics. Infected cells display fibroblast-like shapes; exhibit increases in levels of mesenchymal markers with a corresponding loss of epithelial markers; have enhanced expression levels of interleukin-1β (IL-1β), IL-6, IL-8, transforming growth factor β (TGF-β), and tumor necrosis factor alpha (TNF-α) mRNAs; and demonstrate increases in migratory and invasive behaviors. Additional experiments showed that the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK) signaling pathways via TGF-β is critical for the TGEV-mediated EMT process. Cellular uptake is also modified in cells that have undergone EMT. TGEV-infected cells have higher levels of integrin α5 and fibronectin and exhibit enhanced ETEC K88 adhesion. Reversal of EMT reduces ETEC K88 adhesion and inhibits the expression of integrin α5 and fibronectin. Overall, these results suggest that TGEV infection induces EMT in IPEC-J2 cells, increasing the adhesion of ETEC K88 in the intestine and facilitating dual infection. IMPORTANCE Transmissible gastroenteritis virus (TGEV) causes pig diarrhea and is often followed by secondary infection by other pathogens. In this study, we showed

  4. Studying cytokinesis in Drosophila epithelial tissues.

    Science.gov (United States)

    Pinheiro, D; Bellaïche, Y

    2017-01-01

    Epithelial tissue cohesiveness is ensured through cell-cell junctions that maintain both adhesion and mechanical coupling between neighboring cells. During development, epithelial tissues undergo intensive cell proliferation. Cell division, and particularly cytokinesis, is coupled to the formation of new adhesive contacts, thereby preserving tissue integrity and propagating cell polarity. Remarkably, the geometry of the new interfaces is determined by the combined action of the dividing cell and its neighbors. To further understand the interplay between the dividing cell and its neighbors, as well as the role of cell division for tissue morphogenesis, it is important to analyze cytokinesis in vivo. Here we present methods to perform live imaging of cell division in Drosophila epithelial tissues and discuss some aspects of image processing and analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Surgical management of anterior chamber epithelial cysts.

    Science.gov (United States)

    Haller, Julia A; Stark, Walter J; Azab, Amr; Thomsen, Robert W; Gottsch, John D

    2003-03-01

    To review management strategies for treatment of anterior chamber epithelial cysts. Retrospective review of consecutive interventional case series. Charts of patients treated for epithelial ingrowth over a 10-year period by a single surgeon were reviewed. Cases of anterior chamber epithelial cysts were identified and recorded, including details of ocular history, preoperative and postoperative acuity, intraocular pressure (IOP), and ocular examination, type of surgical intervention, and details of further procedures performed. Seven eyes with epithelial cysts were identified. Patient age ranged from 1.5 to 53 years at presentation. Four patients were children. In four eyes, cysts were secondary to trauma, one case was presumably congenital, one case developed after corneal perforation in an eye with Terrien's marginal degeneration, and one case developed after penetrating keratoplasty (PK). Three eyes were treated with vitrectomy, en bloc resection of the cyst and associated tissue, fluid-air exchange and cryotherapy. The last four eyes were treated with a new conservative strategy of cyst aspiration (three cases) or local excision (one keratin "pearl" cyst), and endolaser photocoagulation of the collapsed cyst wall/base. All epithelial tissue was successfully eradicated by clinical criteria; one case required repeat excision (follow-up, 9 to 78 months, mean 45). Two eyes required later surgery for elevated IOP, two for cataract extraction and one for repeat PK. Final visual acuity ranged from 20/20 to hand motions, depending on associated ocular damage. Best-corrected visual results were obtained in the more conservatively managed eyes. Anterior chamber epithelial cysts can be managed conservatively in selected cases with good results. This strategy may be particularly useful in children's eyes, where preservation of the lens, iris, and other structures may facilitate amblyopia management. Copyright 2003 by Elsevier Science Inc.

  6. Phototherapeutic LASEK for a persistent epithelial defect and a recurrent epithelial erosion.

    Science.gov (United States)

    Hondur, Ahmet; Bilgihan, Kamil; Hasanreisoglu, Berati

    2005-01-01

    To present two patients, one with persistent epithelial defect and one with recurrent epithelial erosion, unresponsive to conventional therapy treated with phototherapeutic keratectomy (PTK) with the laser subepithelial keratomileusis (LASEK) technique (phototherapeutic LASEK). The epithelial flap was created following 18% ethanol application for 20 seconds. A 10-microm deep ablation was performed in the central 7.0-mm zone. A contact lens was placed and the patient examined daily until epithelial closure. Upon epithelial closure, the contact lens was removed. A mild topical steroid and artificial tears were applied for 2 weeks. The epithelium healed in 4 days in both patients. Patients reported only mild pain until epithelial closure. The manifest refraction and uncorrected visual acuity remained unchanged in both eyes. No haze was noted. The first patient has remained asymptomatic without any recurrence for 12 months, and the second for 9 months. Phototherapeutic LASEK provides a therapeutic option for refractory recurrent erosions and persistent epithelial defects, with the additional benefit of being less painful and less risky for haze development than conventional PTK.

  7. Cytokeratin expression of engrafted three-dimensional culture tissues using epithelial cells derived from porcine periodontal ligaments.

    Science.gov (United States)

    Yamada, Rie; Kitajima, Kayoko; Arai, Kyoko; Igarashi, Masaru

    2014-09-01

    This study investigated the differentiation and proliferation of epithelial cells derived from periodontal ligaments after three-dimensional culture using collagen gel with fibroblasts in vitro and in vivo. Epithelial cells and fibroblasts were derived from porcine periodontal ligaments. Epithelial cells were labeled using a fluorescent red membrane marker (PKH-26GL) and were seeded onto collagen gel with fibroblasts, followed by incubation in an air-liquid interface for 7 days. Three-dimensional cultures were grafted onto the backs of nude mice and removed at 1, 7, and 14 days after surgery (in vivo model). Unfixed sections (5 μm) were used to detect the presence of red fluorescent cells. Paraffin sections were analyzed histologically and immunohistochemically. Specimens were compared with three-dimensional culture tissues at 8, 14 and 21 days (in vitro model). Grafted three-dimensional cultures formed a stratified epithelial structure similar to skin in vivo. Epithelial cells were sequenced in basal-layer-like structures at 14 days in vivo. Immunohistochemical findings showed that the expression of cytokeratin was detected in the epithelial layer in in vitro and in vivo models. Ck8 + 18 + 19 was expressed in the upper epithelial layer in the in vitro model at 14 and 21 days, but not in vivo. Involucrin was expressed in the certified layers in vitro at 14 days, but not in vivo. Laminin was detected at the dermo-epidermal junction in vivo at 7 and 14 days, but not in vitro. These results suggest that differentiation of three-dimensional culture tissues differs in vivo and in vitro. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Extensive Focal Epithelial Hyperplasia: A Case Report.

    Science.gov (United States)

    Mansouri, Zahra; Bakhtiari, Sedigheh; Noormohamadi, Robab

    2015-01-01

    Focal epithelial hyperplasia (FEH) or Heck's disease is a rare viral infection of the oral mucosa caused by human papilloma virus especially subtypes 13 or 32. The frequency of this disease varies widely from one geographic region and ethnic groups to another. This paper reports an Iranian case of extensive focal epithelial hyperplasia. A 35-year-old man with FEH is described, in whom the lesions had persisted for more than 25 years. The lesion was diagnosed according to both clinical and histopathological features. Dental practitioner should be aware of these types of lesions and histopathological examination together and a careful clinical observation should be carried out for a definitive diagnosis.

  9. Management of herpes simplex virus epithelial keratitis.

    Science.gov (United States)

    Roozbahani, Mehdi; Hammersmith, Kristin M

    2018-04-24

    To review recent advancements in the management of herpes simplex virus (HSV) epithelial keratitis. Trifluridine eye drop, acyclovir (ACV) ointment, ganciclovir gel, and oral ACV are still the main therapeutic agents. Cryopreserved amniotic membrane has been recently used as an adjuvant treatment. Resistance to ACV has become a concerning issue. The animal models of HSV vaccine are able to reduce HSV keratitis. New antivirals are under development. Current cases of HSV epithelial keratitis are manageable with available medications, but new advancements are required to decrease disease burden in the future. HSV vaccine can be revolutionary.

  10. Segmentation and Quantitative Analysis of Epithelial Tissues.

    Science.gov (United States)

    Aigouy, Benoit; Umetsu, Daiki; Eaton, Suzanne

    2016-01-01

    Epithelia are tissues that regulate exchanges with the environment. They are very dynamic and can acquire virtually any shape; at the cellular level, they are composed of cells tightly connected by junctions. Most often epithelia are amenable to live imaging; however, the large number of cells composing an epithelium and the absence of informatics tools dedicated to epithelial analysis largely prevented tissue scale studies. Here we present Tissue Analyzer, a free tool that can be used to segment and analyze epithelial cells and monitor tissue dynamics.

  11. The urine marker test

    DEFF Research Database (Denmark)

    Elbe, Anne-Marie; Jensen, Stine Nylandsted; Elsborg, Peter

    2016-01-01

    BACKGROUND: Urine sample collection for doping control tests is a key component of the World Anti-Doping Agency's fight against doping in sport. However, a substantial number of athletes experience difficulty when having to urinate under supervision. Furthermore, it cannot always be ensured...... that athletes are actually delivering their own urine. A method that can be used to alleviate the negative impact of a supervised urination procedure and which can also identify urine as coming from a specific athlete is the urine marker test. Monodisperse low molecular weight polyethylene glycols (PEGs......) are given orally prior to urination. Urine samples can be traced to the donor by analysis of the PEGs previously given. OBJECTIVE: The objective of this study was to investigate the use of the urine marker during urine doping control testing. METHODS: Two studies investigated athletes' acceptance...

  12. Prevalence of sensitization to allergens in school children with asthma residents from Guadalajara metropolitan area

    Directory of Open Access Journals (Sweden)

    Guadalupe Alcalá-Padilla

    2016-05-01

    Conclusion: The high prevalence of the sensitization to house dust mites and epithelial in children with asthma, stimulates to implement methods of environmental control for contributing a better control of the disease.

  13. Progesterone inhibits epithelial-to-mesenchymal transition in endometrial cancer.

    Directory of Open Access Journals (Sweden)

    Paul H van der Horst

    Full Text Available BACKGROUND: Every year approximately 74,000 women die of endometrial cancer, mainly due to recurrent or metastatic disease. The presence of tumor infiltrating lymphocytes (TILs as well as progesterone receptor (PR positivity has been correlated with improved prognosis. This study describes two mechanisms by which progesterone inhibits metastatic spread of endometrial cancer: by stimulating T-cell infiltration and by inhibiting epithelial-to-mesenchymal cell transition (EMT. METHODOLOGY AND PRINCIPAL FINDINGS: Paraffin sections from patients with (n = 9 or without (n = 9 progressive endometrial cancer (recurrent or metastatic disease were assessed for the presence of CD4+ (helper, CD8+ (cytotoxic and Foxp3+ (regulatory T-lymphocytes and PR expression. Progressive disease was observed to be associated with significant loss of TILs and loss of PR expression. Frozen tumor samples, used for genome-wide expression analysis, showed significant regulation of pathways involved in immunesurveillance, EMT and metastasis. For a number of genes, such as CXCL14, DKK1, DKK4, PEG10 and WIF1, quantitive RT-PCR was performed to verify up- or downregulation in progressive disease. To corroborate the role of progesterone in regulating invasion, Ishikawa (IK endometrial cancer cell lines stably transfected with PRA (IKPRA, PRB (IKPRB and PRA+PRB (IKPRAB were cultured in presence/absence of progesterone (MPA and used for genome-wide expression analysis, Boyden- and wound healing migration assays, and IHC for known EMT markers. IKPRB and IKPRAB cell lines showed MPA induced inhibition of migration and loss of the mesenchymal marker vimentin at the invasive front of the wound healing assay. Furthermore, pathway analysis of significantly MPA regulated genes showed significant down regulation of important pathways involved in EMT, immunesuppression and metastasis: such as IL6-, TGF-β and Wnt/β-catenin signaling. CONCLUSION: Intact progesterone signaling in non

  14. An Update on Ocular Surface Epithelial Stem Cells: Cornea and Conjunctiva

    Directory of Open Access Journals (Sweden)

    Tiago Ramos

    2015-01-01

    Full Text Available The human ocular surface (front surface of the eye is formed by two different types of epithelia: the corneal epithelium centrally and the conjunctival epithelium that surrounds this. These two epithelia are maintained by different stem cell populations (limbal stem cells for the corneal epithelium and the conjunctival epithelial stem cells. In this review, we provide an update on our understanding of these epithelia and their stem cells systems, including embryology, new markers, and controversy around the location of these stem cells. We also provide an update on the translation of this understanding into clinical applications for the treatment of debilitating ocular surface diseases.

  15. Andrographolide Sensitizes Ras-Transformed Cells to Radiation in vitro and in vivo

    International Nuclear Information System (INIS)

    Hung, Shih-Kai; Hung, Ling-Chien; Kuo, Cheng-Deng

    2010-01-01

    Purpose: Increasing the sensitivity of tumor cells to radiation is a major goal of radiotherapy. The present study investigated the radiosensitizing effects of andrographolide and examined the molecular mechanisms of andrographolide-mediated radiosensitization. Methods and Materials: An H-ras-transformed rat kidney epithelial (RK3E) cell line was used to measure the radiosensitizing effects of andrographolide in clonogenic assays, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide assays, and a xenograft tumor growth model. The mechanism of andrographolide-sensitized cell death was analyzed using annexin V staining, caspase 3 activity assays, and terminal transferase uridyl nick end labeling assays. The roles of nuclear factor kappa B (NF-κB) and Akt in andrographolide-mediated sensitization were examined using reporter assays, electrophoretic mobility shift assays, and Western blotting. Results: Concurrent andrographolide treatment (10 μM, 3 h) sensitized Ras-transformed cells to radiation in vitro (sensitizer enhancement ratio, 1.73). Andrographolide plus radiation (one dose of 300 mg/kg peritumor andrographolide and one dose of 6 Gy radiation) resulted in significant tumor growth delay (27 ± 2.5 days) compared with radiation alone (22 ± 1.5 days; p <.05). Radiation induced apoptotic markers (e.g., caspase-3, membrane reversion, DNA fragmentation), and andrographolide treatment did not promote radiation-induced apoptosis. However, the protein level of activated Akt was significantly reduced by andrographolide. NF-κB activity was elevated in irradiated Ras-transformed cells, and andrographolide treatment significantly reduced radiation-induced NF-κB activity. Conclusion: Andrographolide sensitized Ras-transformed cells to radiation both in vitro and in vivo. Andrographolide-mediated radiosensitization was associated with downregulation of Akt and NF-κB activity. These observations indicate that andrographolide is a novel radiosensitizing agent

  16. Effects of rotation and systematic occlusion on fiducial marker recognition

    Directory of Open Access Journals (Sweden)

    Sagitov Artur

    2017-01-01

    Full Text Available Fiducial marker systems consist of patterns that are placed in environment for miscellaneous applications and are further automatically detected with cameras. A variety of applications determines the criteria, which characterize qualitative properties of a marker and include such evaluation benchmarks as resilience to occlusion, distance to a marker, false positive and false negative rates, sensitivity to illumination, and others. The paper compares existing ARTag, AprilTag, and CALTag systems utilizing a high fidelity camera, which is a main vision sensor of a full-size Russian humanoid robot AR-601M. In experiments the comparison of the three marker systems reliability and detection rate in occlusions of various types and intensities was verified. Finally, a preferable for AR-601M robot visual applications marker system was selected.

  17. CD44 plays a functional role in Helicobacter pylori-induced epithelial cell proliferation.

    Directory of Open Access Journals (Sweden)

    Nina Bertaux-Skeirik

    2015-02-01

    Full Text Available The cytotoxin-associated gene (Cag pathogenicity island is a strain-specific constituent of Helicobacter pylori (H. pylori that augments cancer risk. CagA translocates into the cytoplasm where it stimulates cell signaling through the interaction with tyrosine kinase c-Met receptor, leading cellular proliferation. Identified as a potential gastric stem cell marker, cluster-of-differentiation (CD CD44 also acts as a co-receptor for c-Met, but whether it plays a functional role in H. pylori-induced epithelial proliferation is unknown. We tested the hypothesis that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation. To assay changes in gastric epithelial cell proliferation in relation to the direct interaction with H. pylori, human- and mouse-derived gastric organoids were infected with the G27 H. pylori strain or a mutant G27 strain bearing cagA deletion (∆CagA::cat. Epithelial proliferation was quantified by EdU immunostaining. Phosphorylation of c-Met was analyzed by immunoprecipitation followed by Western blot analysis for expression of CD44 and CagA. H. pylori infection of both mouse- and human-derived gastric organoids induced epithelial proliferation that correlated with c-Met phosphorylation. CagA and CD44 co-immunoprecipitated with phosphorylated c-Met. The formation of this complex did not occur in organoids infected with ∆CagA::cat. Epithelial proliferation in response to H. pylori infection was lost in infected organoids derived from CD44-deficient mouse stomachs. Human-derived fundic gastric organoids exhibited an induction in proliferation when infected with H. pylori that was not seen in organoids pre-treated with a peptide inhibitor specific to CD44. In the well-established Mongolian gerbil model of gastric cancer, animals treated with CD44 peptide inhibitor Pep1, resulted in the inhibition of H. pylori-induced proliferation and associated atrophic gastritis. The current study reports a unique

  18. Coronavirus infection of polarized epithelial cells

    NARCIS (Netherlands)

    Rossen, J W; Horzinek, M C; Rottier, P J

    1995-01-01

    Epithelial cells are the first host cells to be infected by incoming c oronaviruses. Recent observations in vitro show that coronaviruses are released from a specific side of these polarized cells, and this polarized release might be important for the spread of the infection in vivo. Mechanisms for

  19. THE BUFFER CAPACITY OF AIRWAY EPITHELIAL SECRETIONS

    Directory of Open Access Journals (Sweden)

    Dusik eKim

    2014-06-01

    Full Text Available The pH of airway epithelial secretions influences bacterial killing and mucus properties and is reduced by acidic pollutants, gastric reflux, and respiratory diseases such as cystic fibrosis (CF. The effect of acute acid loads depends on buffer capacity, however the buffering of airway secretions has not been well characterized. In this work we develop a method for titrating micro-scale (30 µl volumes and use it to study fluid secreted by the human airway epithelial cell line Calu-3, a widely used model for submucosal gland serous cells. Microtitration curves revealed that HCO3- is the major buffer. Peak buffer capacity (β increased from 17 to 28 mM/pH during forskolin stimulation, and was reduced by >50% in fluid secreted by cystic fibrosis transmembrane conductance regulator (CFTR-deficient Calu-3 monolayers, confirming an important role of CFTR in HCO3- secretion. Back-titration with NaOH revealed non-volatile buffer capacity due to proteins synthesized and released by the epithelial cells. Lysozyme and mucin concentrations were too low to buffer Calu-3 fluid significantly, however model titrations of porcine gastric mucins at concentrations near the sol-gel transition suggest that mucins may contribute to the buffer capacity of ASL in vivo. We conclude that CFTR-dependent HCO3- secretion and epithelially-derived proteins are the predominant buffers in Calu-3 secretions.

  20. Do topical antibiotics help corneal epithelial trauma?

    OpenAIRE

    King, J. W.; Brison, R. J.

    1993-01-01

    Topical antibiotics are routinely used in emergency rooms to treat corneal trauma, although no published evidence supports this treatment. In a noncomparative clinical trial, 351 patients with corneal epithelial injuries were treated without antibiotics. The infection rate was 0.7%, suggesting that such injuries can be safely and effectively managed without antibiotics. A comparative clinical trial is neither warranted nor feasible.

  1. Cytokine Tuning of Intestinal Epithelial Function

    Directory of Open Access Journals (Sweden)

    Caroline Andrews

    2018-06-01

    Full Text Available The intestine serves as both our largest single barrier to the external environment and the host of more immune cells than any other location in our bodies. Separating these potential combatants is a single layer of dynamic epithelium composed of heterogeneous epithelial subtypes, each uniquely adapted to carry out a subset of the intestine’s diverse functions. In addition to its obvious role in digestion, the intestinal epithelium is responsible for a wide array of critical tasks, including maintaining barrier integrity, preventing invasion by microbial commensals and pathogens, and modulating the intestinal immune system. Communication between these epithelial cells and resident immune cells is crucial for maintaining homeostasis and coordinating appropriate responses to disease and can occur through cell-to-cell contact or by the release or recognition of soluble mediators. The objective of this review is to highlight recent literature illuminating how cytokines and chemokines, both those made by and acting on the intestinal epithelium, orchestrate many of the diverse functions of the intestinal epithelium and its interactions with immune cells in health and disease. Areas of focus include cytokine control of intestinal epithelial proliferation, cell death, and barrier permeability. In addition, the modulation of epithelial-derived cytokines and chemokines by factors such as interactions with stromal and immune cells, pathogen and commensal exposure, and diet will be discussed.

  2. Heterogeneity of limbal basal epithelial progenitor cells.

    Science.gov (United States)

    Hayashida, Yasutaka; Li, Wei; Chen, Ying-Ting; He, Hua; Chen, Szu-yu; Kheirkah, Ahmad; Zhu, Ying-Tien; Matsumoto, Yukihiro; Tseng, Scheffer C G

    2010-11-01

    Although corneal epithelial stem cells (SCs) are located at the limbus between the cornea and the conjunctiva, not all limbal basal epithelial cells are SCs. Using 2 dispase digestions to remove different amounts of limbal basal epithelial cells for cross-sections, flat mounts, and cytospin preparations, double immunostaining to pancytokeratins (PCK) and vimentin (Vim) identified 3 p63+ epithelial progenitors such as PCK-/Vim+, PCK/Vim, and PCK-/Vim+ and 1 p63+ mesenchymal cell, PCK-/Vim+. PCK-/Vim- progenitors had the smallest cell size were 10-20 times more enriched on collagen I-coated dishes in the 5-minute rapid adherent fraction that contained the highest percentage of p63+ cells but the lowest percentage of cytokeratin12+ cells, and gave rise to high Ki67 labeling and vivid clonal growth. In contrast, PCK+/Vim+ and PCK+/Vim- progenitors were found more in the slow-adherent fraction and yielded poor clonal growth. PCK/Vim progenitors and clusters of PCK-/Vim+ mesenchymal cells, which were neither melanocytes nor Langerhans cells, were located in the limbal basal region. Therefore, differential expression of PCK and Vim helps identify small PCK-/Vim- cells as the most likely candidate for SCs among a hierarchy of heterogeneous limbal basal progenitors, and their close association with PCK-/Vim+ presumed "niche" cells.

  3. Interaction with Epithelial Cells Modifies Airway Macrophage Response to Ozone

    Science.gov (United States)

    The initial innate immune response to ozone (03) in the lung is orchestrated by structural cells, such as epithelial cells, and resident immune cells, such as airway macrophages (Macs). We developed an epithelial cell-Mac coculture model to investigate how epithelial cell-derived...

  4. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  5. Function and expression of the epithelial Ca(2+) channel family: comparison of mammalian ECaC1 and 2.

    NARCIS (Netherlands)

    Hoenderop, J.G.J.; Vennekens, R.; Müller, D.G.; Prenen, J.; Droogmans, G.; Bindels, R.J.M.; Nilius, B.

    2001-01-01

    1. The epithelial Ca(2+) channel (ECaC) family represents a unique group of Ca(2+)-selective channels that share limited homology to the ligand-gated capsaicin receptors, the osmolarity-sensitive channel OTRPC4, as well as the transient receptor potential family. Southern blot analysis demonstrated

  6. Preoperative Molecular Markers in Thyroid Nodules.

    Science.gov (United States)

    Sahli, Zeyad T; Smith, Philip W; Umbricht, Christopher B; Zeiger, Martha A

    2018-01-01

    The need for distinguishing benign from malignant thyroid nodules has led to the pursuit of differentiating molecular markers. The most common molecular tests in clinical use are Afirma ® Gene Expression Classifier (GEC) and Thyroseq ® V2. Despite the rapidly developing field of molecular markers, several limitations exist. These challenges include the recent introduction of the histopathological diagnosis "Non-Invasive Follicular Thyroid neoplasm with Papillary-like nuclear features", the correlation of genetic mutations within both benign and malignant pathologic diagnoses, the lack of follow-up of molecular marker negative nodules, and the cost-effectiveness of molecular markers. In this manuscript, we review the current published literature surrounding the diagnostic value of Afirma ® GEC and Thyroseq ® V2. Among Afirma ® GEC studies, sensitivity (Se), specificity (Sp), positive predictive value (PPV), and negative predictive value (NPV) ranged from 75 to 100%, 5 to 53%, 13 to 100%, and 20 to 100%, respectively. Among Thyroseq ® V2 studies, Se, Sp, PPV, and NPV ranged from 40 to 100%, 56 to 93%, 13 to 90%, and 48 to 97%, respectively. We also discuss current challenges to Afirma ® GEC and Thyroseq ® V2 utility and clinical application, and preview the future directions of these rapidly developing technologies.

  7. Fecal Molecular Markers for Colorectal Cancer Screening

    Directory of Open Access Journals (Sweden)

    Rani Kanthan

    2012-01-01

    Full Text Available Despite multiple screening techniques, including colonoscopy, flexible sigmoidoscopy, radiological imaging, and fecal occult blood testing, colorectal cancer remains a leading cause of death. As these techniques improve, their sensitivity to detect malignant lesions is increasing; however, detection of precursor lesions remains problematic and has generated a lack of general acceptance for their widespread usage. Early detection by an accurate, noninvasive, cost-effective, simple-to-use screening technique is central to decreasing the incidence and mortality of this disease. Recent advances in the development of molecular markers in faecal specimens are encouraging for its use as a screening tool. Genetic mutations and epigenetic alterations that result from the carcinogenetic process can be detected by coprocytobiology in the colonocytes exfoliated from the lesion into the fecal matter. These markers have shown promising sensitivity and specificity in the detection of both malignant and premalignant lesions and are gaining popularity as a noninvasive technique that is representative of the entire colon. In this paper, we summarize the genetic and epigenetic fecal molecular markers that have been identified as potential targets in the screening of colorectal cancer.

  8. Modulation of epithelial sodium channel trafficking and function by sodium 4-phenylbutyrate in human nasal epithelial cells.

    Science.gov (United States)

    Prulière-Escabasse, Virginie; Planès, Carole; Escudier, Estelle; Fanen, Pascale; Coste, André; Clerici, Christine

    2007-11-23

    Sodium 4-phenylbutyrate (4-PBA) has been shown to correct the cellular trafficking of several mutant or nonmutant plasma membrane proteins such as cystic fibrosis transmembrane conductance regulator through the expression of 70-kDa heat shock proteins. The objective of the study was to determine whether 4-PBA may influence the functional expression of epithelial sodium channels (ENaC) in human nasal epithelial cells (HNEC). Using primary cultures of HNEC, we demonstrate that 4-PBA (5 mm for 6 h) markedly stimulated amiloride-sensitive sodium channel activity and that this was related to an increased abundance of alpha-, beta-, and gamma-ENaC subunits in the apical membrane. The increase in ENaC cell surface expression (i) was due to insertion of newly ENaC subunits as determined by brefeldin A experiments and (ii) was not associated with cell surface retention of ENaC subunits because endocytosis of ENaC subunits was unchanged. In addition, we find that ENaC co-immunoprecipitated with the heat shock protein constitutively expressed Hsc70, that has been reported to modulate ENaC trafficking, and that 4-PBA decreased Hsc70 protein level. Finally, we report that in cystic fibrosis HNEC obtained from two cystic fibrosis patients, 4-PBA increased functional expression of ENaC as demonstrated by the increase in amiloride-sensitive sodium transport and in alpha-, beta-, and gamma-ENaC subunit expression in the apical membrane. Our results suggest that in HNEC, 4-PBA increases the functional expression of ENaC through the insertion of new alpha-, beta-, and gamma-ENaC subunits into the apical membrane and also suggest that 4-PBA could modify ENaC trafficking by reducing Hsc70 protein expression.

  9. Malignant transformation in vitro: criteria, biological markers, and application in environmental screening of carcinogens

    International Nuclear Information System (INIS)

    Borek, C.

    1979-01-01

    Biological markers which distinguish malignantly transformed fibroblasts from their normal counterpart include pleomorphic morphology, lowered requirement for nutritional factors, loss of density inhibition of growth, complex topography as discernible by scanning electron microscopy, loss in surface proteins, incomplete glycosylation of membrane glycolylipids and glycoproteins, increased production of specific proteases, decreased organization of the cytoskeleton, and acquisition of neoantigens. Several of these markers are not consistently found in transformed epithelial cells and therefore cannot serve to distinguish unequivocally neoplastic epithelial cells from the normal counterparts. The only criteria associated with the transformed nature of both fibroblasts and epithelial cells are the ability of the cells to proliferate in semisolid medium and to induce tumors in appropriate hosts. In vitro systems represent a powerful tool for screening the mutagenic/oncogenic potential of physical, chemical, and environmental agents. Fibroblasts rather than epithelial cells are preferred for this purpose at the present time because of the clear-cut phenotypic differences between the normal and the transformed cells. These systems have been useful in establishing that malignant transformation can be induced by doses as low as 1 rad of X rays or 0.1 rad of neutrons, and that fractionation at low dose levelsleads to enhanced transformation. They have been useful in identifying a large number of hazardous chemicals and in evaluating the relationship between the mutagenic and carcinogenic potential of radiation and chemicals

  10. Lymphocyte depletion in thymic nurse cells: a tool to identify in situ lympho-epithelial complexes having thymic nurse cell characteristics

    NARCIS (Netherlands)

    Leene, W.; de Waal Malefijt, R.; Roholl, P. J.; Hoeben, K. A.

    1988-01-01

    In situ pre-existing complexes of epithelial cells and thymocytes having thymic nurse cell characteristics were visualized in the murine thymus cortex using dexamethasone as a potent killer of cortisone-sensitive thymocytes. The degradation and subsequent depletion of cortisone-sensitive thymocytes

  11. Proinflammatory effects of cookstove emissions on human bronchial epithelial cells.

    Science.gov (United States)

    Hawley, B; Volckens, J

    2013-02-01

    Approximately half of the world's population uses biomass fuel for indoor cooking and heating. This form of combustion typically occurs in open fires or primitive stoves. Human exposure to emissions from indoor biomass combustion is a global health concern, causing an estimated 1.5 million premature deaths each year. Many 'improved' stoves have been developed to address this concern; however, studies that examine exposure-response with cleaner-burning, more efficient stoves are few. The objective of this research was to evaluate the effects of traditional and cleaner-burning stove emissions on an established model of the bronchial epithelium. We exposed well-differentiated, normal human bronchial epithelial cells to emissions from a single biomass combustion event using either a traditional three-stone fire or one of two energy-efficient stoves. Air-liquid interface cultures were exposed using a novel, aerosol-to-cell deposition system. Cellular expression of a panel of three pro-inflammatory markers was evaluated at 1 and 24 h following exposure. Cells exposed to emissions from the cleaner-burning stoves generated significantly fewer amounts of pro-inflammatory markers than cells exposed to emissions from a traditional three-stone fire. Particulate matter emissions from each cookstove were substantially different, with the three-stone fire producing the largest concentrations of particles (by both number and mass). This study supports emerging evidence that more efficient cookstoves have the potential to reduce respiratory inflammation in settings where solid fuel combustion is used to meet basic domestic needs. Emissions from more efficient, cleaner-burning cookstoves produced less inflammation in well-differentiated bronchial lung cells. The results support evidence that more efficient cookstoves can reduce the health burden associated with exposure to indoor pollution from the combustion of biomass. © 2012 John Wiley & Sons A/S.

  12. Id-1 and Id-2 genes and products as markers of epithelial cancer

    Science.gov (United States)

    Desprez, Pierre-Yves [El Cerrito, CA; Campisi, Judith [Berkeley, CA

    2008-09-30

    A method for detection and prognosis of breast cancer and other types of cancer. The method comprises detecting expression, if any, for both an Id-1 and an Id-2 genes, or the ratio thereof, of gene products in samples of breast tissue obtained from a patient. When expressed, Id-1 gene is a prognostic indicator that breast cancer cells are invasive and metastatic, whereas Id-2 gene is a prognostic indicator that breast cancer cells are localized and noninvasive in the breast tissue.

  13. Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect.

    Science.gov (United States)

    Wang, Xingmin; Yang, Yonghong; Huycke, Mark M

    2015-03-01

    Commensal bacteria and innate immunity play a major role in the development of colorectal cancer (CRC). We propose that selected commensals polarise colon macrophages to produce endogenous mutagens that initiate chromosomal instability (CIN), lead to expression of progenitor and tumour stem cell markers, and drive CRC through a bystander effect. Primary murine colon epithelial cells were repetitively exposed to Enterococcus faecalis-infected macrophages, or purified trans-4-hydroxy-2-nonenal (4-HNE)-an endogenous mutagen and spindle poison produced by macrophages. CIN, gene expression, growth as allografts in immunodeficient mice were examined for clones and expression of markers confirmed using interleukin (IL) 10 knockout mice colonised by E. faecalis. Primary colon epithelial cells exposed to polarised macrophages or 4-hydroxy-2-nonenal developed CIN and were transformed after 10 weekly treatments. In immunodeficient mice, 8 of 25 transformed clones grew as poorly differentiated carcinomas with 3 tumours invading skin and/or muscle. All tumours stained for cytokeratins confirming their epithelial cell origin. Gene expression profiling of clones showed alterations in 3 to 7 cancer driver genes per clone. Clones also strongly expressed stem/progenitor cell markers Ly6A and Ly6E. Although not differentially expressed in clones, murine allografts positively stained for the tumour stem cell marker doublecortin-like kinase 1. Doublecortin-like kinase 1 and Ly6A/E were expressed by epithelial cells in colon biopsies for areas of inflamed and dysplastic tissue from E. faecalis-colonised IL-10 knockout mice. These results validate a novel mechanism for CRC that involves endogenous CIN and cellular transformation arising through a microbiome-driven bystander effect. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  14. Identification and Characterization of Mesenchymal-Epithelial Progenitor-Like Cells in Normal and Injured Rat Liver

    Science.gov (United States)

    Liu, Daqing; Yovchev, Mladen I.; Zhang, Jinghang; Alfieri, Alan A.; Tchaikovskaya, Tatyana; Laconi, Ezio; Dabeva, Mariana D.

    2016-01-01

    In normal rat liver, thymocyte antigen 1 (Thy1) is expressed in fibroblasts/myofibroblasts and in some blood progenitor cells. Thy1-expressing cells also accumulate in the liver during impaired liver regeneration. The origin and nature of these cells are not well understood. By using RT-PCR analysis and immunofluorescence microscopy, we describe the presence of rare Thy1+ cells in the liver lobule of normal animals, occasionally forming small collections of up to 20 cells. These cells constitute a small portion (1.7% to 1.8%) of nonparenchymal cells and reveal a mixed mesenchymal-epithelial phenotype, expressing E-cadherin, cytokeratin 18, and desmin. The most potent mitogens for mesenchymal-epithelial Thy1+ cells in vitro are the inflammatory cytokines interferon γ, IL-1, and platelet-derived growth factor-BB, which are not produced by Thy1+ cells. Thy1+ cells express all typical mesenchymal stem cell and hepatic progenitor cell markers and produce growth factor and cytokine mRNA (Hgf, Il6, Tgfa, and Tweak) for proteins that maintain oval cell growth and differentiation. Under appropriate conditions, mesenchymal-epithelial cells differentiate in vitro into hepatocyte-like cells. In this study, we show that the adult rat liver harbors a small pool of endogenous mesenchymal-epithelial cells not recognized previously. In the quiescent state, these cells express both mesenchymal and epithelial cell markers. They behave like hepatic stem cells/progenitors with dual phenotype, exhibiting high plasticity and long-lasting proliferative activity. PMID:25447047

  15. Clinical value of the alveolar epithelial permeability in various pulmonary diseases

    International Nuclear Information System (INIS)

    Todisco, T.; Dottorini, M.; Rossi, F.; Polidori, A.; Bruni, B.; Iannacci, L.; Palumbo, R.; Fedeli, L.

    1984-01-01

    The authors have measured the pulmonary epithelial permeability in normals, smokers, ex-smokers and in various pulmonary diseases, using the sup(99m)Tc-DTPA monodisperse radioaerosol delivered by a newly designed nebulizer. Reference values for alveolar epithelial permeability were those of their own laboratory. Accelerated clearance of small idrophylic solutes from the lungs to the blood was found in smokers and in all the patients with idiopathic diffuse pulmonary fibrosis, chronic obstructive lung disease, congestive heart failure, acute viral pneumonia and adult respiratory distress syndrome. The greatest increase of alveolar epithelial clearance was found in the lung zone affected by the viral infection. The normal upper-lover lobe gradient of epithelial clearance was lost only in some patients. The increased permeability of the alveolar wall, although not specific, is characteristic and early feature of many acute and chronic pulmonary disease. For practical purposes, this parameter, rather than diagnostic, should be considered as a sensitive index of alveolar damage and repair, especially suitable for the follow-up of patients with spontaneous or therapeutic reversibility of parenchimal lung diseases. (orig.)

  16. Calcium-Activated Cl- Channel: Insights on the Molecular Identity in Epithelial Tissues.

    Science.gov (United States)

    Rottgen, Trey S; Nickerson, Andrew J; Rajendran, Vazhaikkurichi M

    2018-05-10

    Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca 2+ -activated Cl − secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca 2+ -activated Cl − channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca 2+ -sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.

  17. Development of a wide-field fluorescence imaging system for evaluation of wound re-epithelialization

    Science.gov (United States)

    Franco, Walfre; Gutierrez-Herrera, Enoch; Purschke, Martin; Wang, Ying; Tam, Josh; Anderson, R. Rox; Doukas, Apostolos

    2013-03-01

    Normal skin barrier function depends on having a viable epidermis, an epithelial layer formed by keratinocytes. The transparent epidermis, which is less than a 100 mum thick, is nearly impossible to see. Thus, the clinical evaluation of re-epithelialization is difficult, which hinders selecting appropriate therapy for promoting wound healing. An imaging system was developed to evaluate epithelialization by detecting endogenous fluorescence emissions of cellular proliferation over a wide field of view. A custom-made 295 nm ultraviolet (UV) light source was used for excitation. Detection was done by integrating a near-UV camera with sensitivity down to 300 nm, a 12 mm quartz lens with iris and focus lock for the UV regime, and a fluorescence bandpass filter with 340 nm center wavelength. To demonstrate that changes in fluorescence are related to cellular processes, the epithelialization of a skin substitute was monitored in vitro. The skin substitute or construct was made by embedding microscopic live human skin tissue columns, 1 mm in diameter and spaced 1 mm apart, in acellular porcine dermis. Fluorescence emissions clearly delineate the extent of lateral surface migration of keratinocytes and the total surface covered by the new epithelium. The fluorescence image of new epidermis spatially correlates with the corresponding color image. A simple, user-friendly way of imaging the presence of skin epithelium would improve wound care in civilian burns, ulcers and surgeries.

  18. Tumor markers in pancreatic cancer: a European Group on Tumor Markers (EGTM) status report.

    LENUS (Irish Health Repository)

    Duffy, M J

    2012-02-01

    Pancreatic ductal adenocarcinoma is one of the most difficult malignancies to diagnose and treat. The aim of this article is to review how tumor markers can aid the diagnosis and management of patients with this malignancy. The most widely used and best validated marker for pancreatic cancer is CA 19-9. Inadequate sensitivity and specificity limit the use of CA 19-9 in the early diagnosis of pancreatic cancer. In non-jaundiced patients, however, CA 19-9 may complement other diagnostic procedures. In patients with resectable pancreatic cancer, presurgical and postresection CA 19-9 levels correlate with overall survival. In advanced disease, elevated pretreatment levels of CA 19-9 are associated with adverse patient outcome and thus may be combined with other factors for risk stratification. Most, but not all, reports indicate that serial levels of CA 19-9 correlate with response to systemic therapy. Use of CA 19-9 kinetics in conjunction with imaging is therefore recommended in monitoring therapy. Although several potential serum and tissue markers for pancreatic cancer are currently undergoing evaluation, none are sufficiently validated for routine clinical use. CA 19-9 thus remains the serum pancreatic cancer marker against which new markers for this malignancy should be judged.

  19. Assessing the clinical significance of tumor markers in common neoplasms.

    Science.gov (United States)

    Beketic-Oreskovic, Lidija; Maric, Petra; Ozretic, Petar; Oreskovic, Darko; Ajdukovic, Mia; Levanat, Sonja

    2012-06-01

    The term tumor markers include a spectrum of molecules and substances with widely divergent characteristics whose presence in the significant amount can be related to the malignant disease. An ideal tumor marker should have high specificity and sensitivity, which would allow its use in early diagnosis and prognosis of malignant disease, as well as in prediction of therapeutic response and follow-up of the patients. Numerous biochemical entities have emerged as potentially valuable tumor markers so far, but only few markers showed to be of considerable clinical reliability and have been accepted into standard clinical practice. Recent development of genomics and proteomics has enabled the examination of many new potential tumor markers. Scientific studies on discovery, development, and application of tumor markers have been proceeding quite rapidly providing great opportunities for improving the management of cancer patients. This review is focusing on the clinical usefulness of various tumor markers already in clinical practice as well as certain potential markers, giving a brief description of their prognostic and predictive significance in most common malignancies.

  20. The glomerular parietal epithelial cell's responses are influenced by SM22 alpha levels.

    Science.gov (United States)

    Naito, Shokichi; Pippin, Jeffrey W; Shankland, Stuart J

    2014-11-06

    Studies have shown in several diseases initially affecting podocytes, that the neighboring glomerular parietal epithelial cells (PECs) are secondarily involved. The PEC response might be reparative under certain circumstances, yet injurious under others. The factors governing these are not well understood. We have shown that SM22α, an actin-binding protein considered a marker of smooth muscle differentiation, is upregulated in podocytes and PECs in several models of podocyte disease. However, the impact of SM22α levels on PECs is not known. Experimental glomerular disease, characterized by primary podocyte injury, was induced in aged-matched SM22α+/+ and SM22α-/-mice by intraperitoneal injection of sheep anti-rabbit glomeruli antibody. Immunostaining methods were employed on days 7 and 14 of disease. The number of PEC transition cells, defined as cells co-expressing a PEC protein (PAX2) and podocyte protein (Synaptopodin) was higher in diseased SM22α-/-mice compared with SM22α+/+mice. WT1 staining along Bowman's capsule is higher in diseased SM22α-/-mice. This was accompanied by increased PEC proliferation (measured by ki-67 staining), and an increase in immunostaining for the progenitor marker NCAM, in a subpopulation of PECs in diseased SM22α-/-mice. In addition, immunostaining for vimentin and alpha smooth muscle actin, markers of epithelial-to-mesenchymal transition (EMT), was lower in diseased SM22α-/-mice compared to diseased SM22α+/+mice. SM22α levels may impact how PECs respond following a primary podocyte injury in experimental glomerular disease. Absent/lower levels favor an increase in PEC transition cells and PECs expressing a progenitor marker, and a lower EMT rate compared to SM22α+/+mice, where SM22 levels are markedly increased in PECs.

  1. Micrologie de Chris Marker

    Directory of Open Access Journals (Sweden)

    Nicolas Geneix

    2009-10-01

    Full Text Available Abstract (E: Using "micrology", as set out by Adorno in Negative Dialectics, this paper tries to
    characterize a central feature of Chris Marker's approach, as iconographer and writer, namely the way
    in which he explores the echoes of history and culture in the singularity and rarity of the documentary.
    As traveller and photographer he catches and collects microcosmic fragments, tying them up and
    editing them in the various frames of the book, the film or the new media.
    Abstract (F: En s'appuyant sur la "micrologie" proposée par Adorno dans la Dialectique négative,
    cet article tente de caractériser un aspect de la démarche de Chris Marker, iconographe et écrivain.
    C'est en effet dans le singulier et la rareté documentaires que ce cinéaste sonde des échos historiques et
    culturels. Voyageur et photographe, il saisit et collectionne des fragments microcosmiques, les liant et
    les montant dans les cadres divers du livre, du film et des nouveaux médias.

  2. Low Temperature Plasma for the Treatment of Epithelial Cancer Cells

    Science.gov (United States)

    Mohades, Soheila

    leading to their activation. The effectiveness of PAM against SCaBER cells is the highest when it is used immediately after preparation. It is found that the killing effect of PAM decreases gradually over time, depending on the dose of plasma exposure. Hydrogen peroxide is known as one of the most stable and impactful ROS in biological systems. Measurements show that the plasma pencil generates a significant amount of hydrogen peroxide in PAM. Interestingly, the concentration of hydrogen peroxide in PAM decreases gradually over time, which correlates well with the decrease of PAM effectiveness with storage time. While the effects of PAM treatment on cancerous epithelial cell lines have been studied, much less is known about the interaction of PAM with normal epithelial cells. Effects of PAM on non-cancerous Madin-Darby Canine kidney (MDCK) epithelial cells indicates that MDCK cells are much more robust than SCaBER cells against PAM treatment. The dose of PAM, which causes a widespread death in SCaBER cells, does not significantly impact viability and morphology of MDCK cells. Time-lapse imaging of normal cells shows that PAM treatment inhibits cell proliferation and random migration. In addition, immunofluorescence staining shows that PAM treatment causes a significant reduction in the nuclear localization of proliferation marker, Ki-67, without any damage to the morphological properties of cells including adhesions and cytoskeleton function. This dissertation clearly demonstrates the capability of PAM treatment in inducing death in cancerous cells that can be important for cancer therapy. Hydrogen peroxide is identified as an important ROS responsible for the anti-tumor properties of PAM, although much additional work remains to comprehensively understand all the involved ROS/RNS and their role in PAM treatment.

  3. Subtotal Ablation of Parietal Epithelial Cells Induces Crescent Formation

    Science.gov (United States)

    Sicking, Eva-Maria; Fuss, Astrid; Uhlig, Sandra; Jirak, Peggy; Dijkman, Henry; Wetzels, Jack; Engel, Daniel R.; Urzynicok, Torsten; Heidenreich, Stefan; Kriz, Wilhelm; Kurts, Christian; Ostendorf, Tammo; Floege, Jürgen; Smeets, Bart

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established an inducible transgenic mouse to allow subtotal ablation of PECs. Proteinuria developed during doxycycline-induced cellular ablation but fully reversed 26 days after termination of doxycycline administration. The ablation of PECs was focal, with only 30% of glomeruli exhibiting histologic changes; however, the number of PECs was reduced up to 90% within affected glomeruli. Ultrastructural analysis revealed disruption of PEC plasma membranes with cytoplasm shedding into Bowman’s space. Podocytes showed focal foot process effacement, which was the most likely cause for transient proteinuria. After >9 days of cellular ablation, the remaining PECs formed cellular extensions to cover the denuded Bowman’s capsule and expressed the activation marker CD44 de novo. The induced proliferation of PECs persisted throughout the observation period, resulting in the formation of typical cellular crescents with periglomerular infiltrate, albeit without accompanying proteinuria. In summary, subtotal ablation of PECs leads the remaining PECs to react with cellular activation and proliferation, which ultimately forms cellular crescents. PMID:22282596

  4. ILK modulates epithelial polarity and matrix formation in hair follicles.

    Science.gov (United States)

    Rudkouskaya, Alena; Welch, Ian; Dagnino, Lina

    2014-03-01

    Hair follicle morphogenesis requires coordination of multiple signals and communication between its epithelial and mesenchymal constituents. Cell adhesion protein platforms, which include integrins and integrin-linked kinase (ILK), are critical for hair follicle formation. However, their precise contribution to this process is poorly understood. We show that in the absence of ILK, the hair follicle matrix lineage fails to develop, likely due to abnormalities in development of apical-basal cell polarity, as well as in laminin-511 and basement membrane assembly at the tip of the hair bud. These defects also result in impaired specification of hair matrix and absence of precortex and inner sheath root cell lineages. The molecular pathways affected in ILK-deficient follicles are similar to those in the absence of epidermal integrin β1 and include Wnt, but not sonic hedgehog, signaling. ILK-deficient hair buds also show abnormalities in the dermal papilla. Addition of exogenous laminin-511 restores morphological and molecular markers associated with hair matrix formation, indicating that ILK regulates hair bud cell polarity and functions upstream from laminin-511 assembly to regulate the developmental progression of hair follicles beyond the germ stage.

  5. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Dagmar A. Kuhn

    2014-09-01

    Full Text Available Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1 and a human alveolar epithelial type II cell line (A549. In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis. Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.

  6. Three-dimensional epithelial tissues generated from human embryonic stem cells.

    Science.gov (United States)

    Hewitt, Kyle J; Shamis, Yulia; Carlson, Mark W; Aberdam, Edith; Aberdam, Daniel; Garlick, Jonathan A

    2009-11-01

    The use of pluripotent human embryonic stem (hES) cells for tissue engineering may provide advantages over traditional sources of progenitor cells because of their ability to give rise to multiple cell types and their unlimited expansion potential. We derived cell populations with properties of ectodermal and mesenchymal cells in two-dimensional culture and incorporated these divergent cell populations into three-dimensional (3D) epithelial tissues. When grown in specific media and substrate conditions, two-dimensional cultures were enriched in cells (EDK1) with mesenchymal morphology and surface markers. Cells with a distinct epithelial morphology (HDE1) that expressed cytokeratin 12 and beta-catenin at cell junctions became the predominant cell type when EDK1 were grown on surfaces enriched in keratinocyte-derived extracellular matrix proteins. When these cells were incorporated into the stromal and epithelial tissue compartments of 3D tissues, they generated multilayer epithelia similar to those generated with foreskin-derived epithelium and fibroblasts. Three-dimensional tissues demonstrated stromal cells with morphologic features of mature fibroblasts, type IV collagen deposition in the basement membrane, and a stratified epithelium that expressed cytokeratin 12. By deriving two distinct cell lineages from a common hES cell source to fabricate complex tissues, it is possible to explore environmental cues that will direct hES-derived cells toward optimal tissue form and function.

  7. Screening of the residual normal ovarian tissue adjacent to orthotopic epithelial ovarian carcinomas in nude mice.

    Science.gov (United States)

    Zhu, G H; Wang, S T; Yao, M Z; Cai, J H; Chen, C Y; Yang, Z X; Hong, L; Yang, S Y

    2014-04-16

    The objective of this study was to explore the feasibility and methods of screening the residual normal ovarian tissue adjacent to orthotopic ovarian carcinomas in nude mice. Human epithelial ovarian cancer cells (OVCAR3) were subcutaneously implanted for a tumor source and ovarian orthotopic transplantation. The cancer tissue, proximal paraneoplastic tissue, middle paraneoplastic tissue, remote paraneoplastic tissue, and normal ovarian tissue were removed. CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was detected by reverse transcription polymerase chain reaction. We obtained 35 paraneoplastic residual ovarian tissues with normal biopsies from 40 cases of an orthotopic epithelial ovarian carcinoma model (87.5%). CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was lower in proximal paraneoplastic tissue than in cancer tissue (P tissue (P tissue as well as among residual normal ovarian tissues with different severity (P > 0.05). In ovarian tissues of 20 normal nude mice, the expression of CK- 7, CA125, p53, survivin, MMP-2, and TIMP-2 was negative. Overall, the expression levels of CK-7, CA125, p53, survivin, MMP-2, TIMP-2, and other molecular markers showed a decreasing trend in the non-cancer tissue direction. The expression levels can be used as standards to screen residual normal ovarian tissue. We can obtain relatively safe normal ovarian tissues adjacent to epithelial ovarian cancer.

  8. Sox2 marks epithelial competence to generate teeth in mammals and reptiles

    Science.gov (United States)

    Juuri, Emma; Jussila, Maria; Seidel, Kerstin; Holmes, Scott; Wu, Ping; Richman, Joy; Heikinheimo, Kristiina; Chuong, Cheng-Ming; Arnold, Katrin; Hochedlinger, Konrad; Klein, Ophir; Michon, Frederic; Thesleff, Irma

    2013-01-01

    Tooth renewal is initiated from epithelium associated with existing teeth. The development of new teeth requires dental epithelial cells that have competence for tooth formation, but specific marker genes for these cells have not been identified. Here, we analyzed expression patterns of the transcription factor Sox2 in two different modes of successional tooth formation: tooth replacement and serial addition of primary teeth. We observed specific Sox2 expression in the dental lamina that gives rise to successional teeth in mammals with one round of tooth replacement as well as in reptiles with continuous tooth replacement. Sox2 was also expressed in the dental lamina during serial addition of mammalian molars, and genetic lineage tracing indicated that Sox2+ cells of the first molar give rise to the epithelial cell lineages of the second and third molars. Moreover, conditional deletion of Sox2 resulted in hyperplastic epithelium in the forming posterior molars. Our results indicate that the Sox2+ dental epithelium has competence for successional tooth formation and that Sox2 regulates the progenitor state of dental epithelial cells. The findings imply that the function of Sox2 has been conserved during evolution and that tooth replacement and serial addition of primary teeth represent variations of the same developmental process. The expression patterns of Sox2 support the hypothesis that dormant capacity for continuous tooth renewal exists in mammals. PMID:23462476

  9. Human Primary Intestinal Epithelial Cells as an Improved In Vitro Model for Cryptosporidium parvum Infection

    Science.gov (United States)

    Cabada, Miguel M.; Nichols, Joan; Gomez, Guillermo; White, A. Clinton

    2013-01-01

    The study of human intestinal pathogens has been limited by the lack of methods for the long-term culture of primary human intestinal epithelial cells (PECs). The development of infection models with PECs would allow a better understanding of host-parasite interactions. The objective of this study was to develop a novel method for prolonged in vitro cultivation of PECs that can be used to study Cryptosporidium infection. We isolated intact crypts from human intestines removed during weight loss surgery. The fragments of intestinal layers were cultivated with culture medium supplemented with growth factors and antiapoptotic molecules. After 7 days, the PECs formed self-regenerating cell clusters, forming villi that resemble intestinal epithelium. The PECs proliferated and remained viable for at least 60 days. The cells expressed markers for intestinal stem cells, epithelial cells, and mature enterocytes. The PECs were infected with Cryptosporidium. In contrast to older models in which parasite numbers decay, the burden of parasites increased for >120 h. In summary, we describe here a novel method for the cultivation of self-regenerating human epithelial cells from small intestinal crypts, which contain both intestinal stem cells and mature villus cells. We present data that suggest these cells support Cryptosporidium better than existing cell lines. PECs should provide an improved tool for studying host-parasite interactions involving Cryptosporidium and other intestinal pathogens. PMID:23509153

  10. Epithelial-mesenchymal transition in keloid tissues and TGF-β1-induced hair follicle outer root sheath keratinocytes.

    Science.gov (United States)

    Yan, Li; Cao, Rui; Wang, Lianzhao; Liu, Yuanbo; Pan, Bo; Yin, Yanhua; Lv, Xiaoyan; Zhuang, Qiang; Sun, Xuejian; Xiao, Ran

    2015-01-01

    Keloid is a skin fibrotic disease with the characteristics of recurrence and invasion, its pathogenesis still remains unrevealed. The epithelial-mesenchymal transition (EMT) is critical for wound healing, fibrosis, recurrence, and invasion of cancer. We sought to investigate the EMT in keloid and the mechanism through which the EMT regulates keloid formation. In keloid tissues, the expressions of EMT-associated markers and transforming growth factor (TGF)-β1/Smad3 signaling were examined by immunohistochemistry. In the keloid epidermis and dermal tissue, the expressions of genes related to the regulation of skin homeostasis, fibroblast growth factor receptor 2 (FGFR2) and p63, were analyzed using quantitative real-time polymerase chain reaction. The results showed that accompanying the loss of the epithelial marker E-cadherin and the gain of the mesenchymal markers fibroblast-specific protein 1 (FSP1) and vimentin in epithelial cells from epidermis and skin appendages, and in endothelial cells from dermal microvessels, enhanced TGF-β1 expression and Smad3 phosphorylation were noted in keloid tissues. Moreover, alternative splicing of the FGFR2 gene switched the predominantly expressed isoform from FGFR2-IIIb to -IIIc, concomitant with the decreased expression of ΔNp63 and TAp63, which changes might partially account for abnormal epidermis and appendages in keloids. In addition, we found that TGF-β1-induced hair follicle outer root sheath keratinocytes (ORSKs) and normal skin epithelial cells underwent EMT in vitro with ORSKs exhibiting more obvious EMT changes and more similar expression profiles for EMT-associated and skin homeostasis-related genes as in keloid tissues, suggesting that ORSKs might play crucial roles in the EMT in keloids. Our study provided insights into the molecular mechanisms mediating the EMT pathogenesis of keloids. © 2015 by the Wound Healing Society.

  11. Interleukin-6 promotes the migration and cellular senescence and inhibits apoptosis of human intrahepatic biliary epithelial cells.

    Science.gov (United States)

    Li, Ran; Dong, Juan; Bu, Xiu-Qin; Huang, Yong; Yang, Jing-Yu; Dong, Xuan; Liu, Jie

    2018-02-01

    Biliary epithelial cells (BEC) are closely related to some immune regulatory bile duct diseases. However, the complexity and polymorphism of the morphology and function of bile duct cells have hindered further investigation. Therefore, the aim of this study is to investigate how interleukin-6 (IL-6) affects the migration, cellular senescence, and apoptosis of human intrahepatic biliary epithelial cells (HIBECs). The HIBECs were stimulated by different concentrations of IL-6 (0, 5, 10, 15, and 20 ng/mL, respectively). Transwell assay was performed in order to measure the migration abilities, positive β-Galactosidase staining for the cellular senescence of HIBECs, MTT assay for changes of proliferation after IL-6 treatment and flow cytometry for cell cycle and apoptosis. The reverse transcription quantitative polymerase chain reaction (RT-qPCR) and Western blotting were conducted in order to detect the mRNA and protein expressions of epithelial-mesenchymal transition (EMT) markers in HIBECs. In comparison to the 0 ng/mL group, in the 5, 10, 15, and 20 ng/mL groups, a significant increase in the number of migratory HIBECs, proliferation, along with mRNA and protein expressions of EMT markers was observed. While the mRNA and protein expressions of epithelial markers, the number of β-galactosidase positive staining cells, as well as apoptosis rate of HIBECs dramatic decreased. Further, the aforementioned changes were significantly more evident in the 15 and 20 ng/mL groups in comparison to the 5 and 10 ng/mL groups. IL-6 may stimulate EMT, enhance the migration and proliferation, and inhibit apoptosis of HIBECs, thus delaying cellular senescence. © 2017 Wiley Periodicals, Inc.

  12. Climate Sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Lindzen, Richard [M.I.T.

    2011-11-09

    Warming observed thus far is entirely consistent with low climate sensitivity. However, the result is ambiguous because the sources of climate change are numerous and poorly specified. Model predictions of substantial warming aredependent on positive feedbacks associated with upper level water vapor and clouds, but models are notably inadequate in dealing with clouds and the impacts of clouds and water vapor are intimately intertwined. Various approaches to measuring sensitivity based on the physics of the feedbacks will be described. The results thus far point to negative feedbacks. Problems with these approaches as well as problems with the concept of climate sensitivity will be described.

  13. Pancreatic stellate cells promote epithelial-mesenchymal transition in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Kikuta, Kazuhiro; Masamune, Atsushi; Watanabe, Takashi; Ariga, Hiroyuki; Itoh, Hiromichi; Hamada, Shin; Satoh, Kennichi; Egawa, Shinichi; Unno, Michiaki; Shimosegawa, Tooru

    2010-01-01

    Research highlights: → Recent studies have shown that pancreatic stellate cells (PSCs) promote the progression of pancreatic cancer. → Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and scattered, fibroblast-like appearance. → PSCs decreased the expression of epithelial markers but increased that of mesenchymal markers, along with increased migration. → This study suggests epithelial-mesenchymal transition as a novel mechanism by which PSCs contribute to the aggressive behavior of pancreatic cancer cells. -- Abstract: The interaction between pancreatic cancer cells and pancreatic stellate cells (PSCs), a major profibrogenic cell type in the pancreas, is receiving increasing attention. There is accumulating evidence that PSCs promote the progression of pancreatic cancer by increasing cancer cell proliferation and invasion as well as by protecting them from radiation- and gemcitabine-induced apoptosis. Because epithelial-mesenchymal transition (EMT) plays a critical role in the progression of pancreatic cancer, we hypothesized that PSCs promote EMT in pancreatic cancer cells. Panc-1 and SUIT-2 pancreatic cancer cells were indirectly co-cultured with human PSCs isolated from patients undergoing operation for pancreatic cancer. The expression of epithelial and mesenchymal markers was examined by real-time PCR and immunofluorescent staining. The migration of pancreatic cancer cells was examined by scratch and two-chamber assays. Pancreatic cancer cells co-cultured with PSCs showed loose cell contacts and a scattered, fibroblast-like appearance. The expression of E-cadherin, cytokeratin 19, and membrane-associated β-catenin was decreased, whereas vimentin and Snail (Snai-1) expression was increased more in cancer cells co-cultured with PSCs than in mono-cultured cells. The migration of pancreatic cancer cells was increased by co-culture with PSCs. The PSC-induced decrease of E-cadherin expression was not altered by treatment with anti

  14. Epithelial architectural destruction is necessary for bone marrow derived cell contribution to regenerating prostate epithelium.

    Science.gov (United States)

    Palapattu, Ganesh S; Meeker, Alan; Harris, Timothy; Collector, Michael I; Sharkis, Saul J; DeMarzo, Angelo M; Warlick, Christopher; Drake, Charles G; Nelson, William G

    2006-08-01

    Using various nonphysiological tissue injury/repair models numerous studies have demonstrated the capacity of bone marrow derived cells to contribute to the repopulation of epithelial tissues following damage. To investigate whether this phenomenon might also occur during periods of physiological tissue degeneration/regeneration we compared the ability of bone marrow derived cells to rejuvenate the prostate gland in mice that were castrated and then later treated with dihydrotestosterone vs mice with prostate epithelium that had been damaged by lytic virus infection. Using allogenic bone marrow grafts from female donor transgenic mice expressing green fluorescent protein transplanted into lethally irradiated males we were able to assess the contributions of bone marrow derived cells to recovery of the prostatic epithelium in 2 distinct systems, including 1) surgical castration followed 1 week later by dihydrotestosterone replacement and 2) intraprostatic viral injection. Eight to 10-week-old male C57/Bl6 mice were distributed among bone marrow donor-->recipient/prostate injury groups, including 5 with C57/Bl6-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/no injury, 3 with green fluorescent protein-->C57/Bl6/vehicle injection, 4 with green fluorescent protein-->C57/Bl6/virus injection and 3 each with green fluorescent protein-->C57/Bl6/castration without and with dihydrotestosterone, respectively. Prostate tissues were harvested 3 weeks after dihydrotestosterone replacement or 14 days following intraprostatic viral injection. Prostate tissue immunofluorescence was performed with antibodies against the epithelial marker cytokeratin 5/8, the hematopoietic marker CD45 and green fluorescent protein. Mice that sustained prostate injury from vaccinia virus infection with concomitant severe inflammation and glandular disruption showed evidence of bone marrow derived cell reconstitution of prostate epithelium, that is approximately 4% of all green

  15. CNS sites activated by renal pelvic epithelial sodium channels (ENaCs) in response to hypertonic saline in awake rats.

    Science.gov (United States)

    Goodwill, Vanessa S; Terrill, Christopher; Hopewood, Ian; Loewy, Arthur D; Knuepfer, Mark M

    2017-05-01

    In some patients, renal nerve denervation has been reported to be an effective treatment for essential hypertension. Considerable evidence suggests that afferent renal nerves (ARN) and sodium balance play important roles in the development and maintenance of high blood pressure. ARN are sensitive to sodium concentrations in the renal pelvis. To better understand the role of ARN, we infused isotonic or hypertonic NaCl (308 or 500mOsm) into the left renal pelvis of conscious rats for two 2hours while recording arterial pressure and heart rate. Subsequently, brain tissue was analyzed for immunohistochemical detection of the protein Fos, a marker for neuronal activation. Fos-immunoreactive neurons were identified in numerous sites in the forebrain and brainstem. These areas included the nucleus tractus solitarius (NTS), the lateral parabrachial nucleus, the paraventricular nucleus of the hypothalamus (PVH) and the supraoptic nucleus (SON). The most effective stimulus was 500mOsm NaCl. Activation of these sites was attenuated or prevented by administration of benzamil (1μM) or amiloride (10μM) into the renal pelvis concomitantly with hypertonic saline. In anesthetized rats, infusion of hypertonic saline but not isotonic saline into the renal pelvis elevated ARN activity and this increase was attenuated by simultaneous infusion of benzamil or amiloride. We propose that renal pelvic epithelial sodium channels (ENaCs) play a role in activation of ARN and, via central visceral afferent circuits, this system modulates fluid volume and peripheral blood pressure. These pathways may contribute to the development of hypertension. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Involvement of Igf1r in Bronchiolar Epithelial Regeneration: Role during Repair Kinetics after Selective Club Cell Ablation.

    Directory of Open Access Journals (Sweden)

    Icíar P López

    Full Text Available Regeneration of lung epithelium is vital for maintaining airway function and integrity. An imbalance between epithelial damage and repair is at the basis of numerous chronic lung diseases such as asthma, COPD, pulmonary fibrosis and lung cancer. IGF (Insulin-like Growth Factors signaling has been associated with most of these respiratory pathologies, although their mechanisms of action in this tissue remain poorly understood. Expression profiles analyses of IGF system genes performed in mouse lung support their functional implication in pulmonary ontogeny. Immuno-localization revealed high expression levels of Igf1r (Insulin-like Growth Factor 1 Receptor in lung epithelial cells, alveolar macrophages and smooth muscle. To further understand the role of Igf1r in pulmonary homeostasis, two distinct lung epithelial-specific Igf1r mutant mice were generated and studied. The lack of Igf1r disturbed airway epithelial differentiation in adult mice, and revealed enhanced proliferation and altered morphology in distal airway club cells. During recovery after naphthalene-induced club cell injury, the kinetics of terminal bronchiolar epithelium regeneration was hindered in Igf1r mutants, revealing increased proliferation and delayed differentiation of club and ciliated cells. Amid airway restoration, lungs of Igf1r deficient mice showed increased levels of Igf1, Insr, Igfbp3 and epithelial precursor markers, reduced amounts of Scgb1a1 protein, and alterations in IGF signaling mediators. These results support the role of Igf1r in controlling the kinetics of cell proliferation and differentiation during pulmonary airway epithelial regeneration after injury.

  17. Chlorobenzene induces oxidative stress in human lung epithelial cells in vitro

    International Nuclear Information System (INIS)

    Feltens, Ralph; Moegel, Iljana; Roeder-Stolinski, Carmen; Simon, Jan-Christoph; Herberth, Gunda; Lehmann, Irina

    2010-01-01

    Chlorobenzene is a volatile organic compound (VOC) that is widely used as a solvent, degreasing agent and chemical intermediate in many industrial settings. Occupational studies have shown that acute and chronic exposure to chlorobenzene can cause irritation of the mucosa of the upper respiratory tract and eyes. Using in vitro assays, we have shown in a previous study that human bronchial epithelial cells release inflammatory mediators such as the cytokine monocyte chemoattractant protein-1 (MCP-1) in response to chlorobenzene. This response is mediated through the NF-κB signaling pathway. Here, we investigated the effects of monochlorobenzene on human lung cells, with emphasis on potential alterations of the redox equilibrium to clarify whether the chlorobenzene-induced inflammatory response in lung epithelial cells is caused via an oxidative stress-dependent mechanism. We found that expression of cellular markers for oxidative stress, such as heme oxygenase 1 (HO-1), glutathione S-transferase π1 (GSTP1), superoxide dismutase 1 (SOD1), prostaglandin-endoperoxide synthase 2 (PTGS2) and dual specificity phosphatase 1 (DUSP1), were elevated in the presence of monochlorobenzene. Likewise, intracellular reactive oxygen species (ROS) were increased in response to exposure. However, in the presence of the antioxidants N-(2-mercaptopropionyl)-glycine (MPG) or bucillamine, chlorobenzene-induced upregulation of marker proteins and release of the inflammatory mediator MCP-1 are suppressed. These results complement our previous findings and point to an oxidative stress-mediated inflammatory response following chlorobenzene exposure.

  18. Lentiviral Vector Mediated Claudin1 Silencing Inhibits Epithelial to Mesenchymal Transition in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Xianqi Zhao

    2015-06-01

    Full Text Available Breast cancer has a high incidence and mortality rate worldwide. Several viral vectors including lentiviral, adenoviral and adeno-associated viral vectors have been used in gene therapy for various forms of human cancer, and have shown promising effects in controlling tumor development. Claudin1 (CLDN1 is a member of the tetraspan transmembrane protein family that plays a major role in tight junctions and is associated with tumor metastasis. However, the role of CLDN1 in breast cancer is largely unexplored. In this study, we tested the therapeutic potential of silencing CLDN1 expression in two breast cancer (MDA-MB-231 and MCF7 cell lines using lentiviral vector mediated RNA interference. We found that a CLDN1 short hairpin (shRNA construct efficiently silenced CLDN1 expression in both breast cancer cell lines, and CLDN1 knockdown resulted in reduced cell proliferation, survival, migration and invasion. Furthermore, silencing CLDN1 inhibited epithelial to mesenchymal transition (EMT by upregulating the epithelial cell marker, E-cadherin, and downregulating mesenchymal markers, smooth muscle cell alpha-actin (SMA and Snai2. Our data demonstrated that lentiviral vector mediated CLDN1 RNA interference has great potential in breast cancer gene therapy by inhibiting EMT and controlling tumor cell growth.

  19. Gut microbial colonization orchestrates TLR2 expression, signaling and epithelial proliferation in the small intestinal mucosa.

    Directory of Open Access Journals (Sweden)

    Nives Hörmann

    Full Text Available The gut microbiota is an environmental factor that determines renewal of the intestinal epithelium and remodeling of the intestinal mucosa. At present, it is not resolved if components of the gut microbiota can augment innate immune sensing in the intestinal epithelium via the up-regulation of Toll-like receptors (TLRs. Here, we report that colonization of germ-free (GF Swiss Webster mice with a complex gut microbiota augments expression of TLR2. The microbiota-dependent up-regulation of components of the TLR2 signaling complex could be reversed by a 7 day broad-spectrum antibiotic treatment. TLR2 downstream signaling via the mitogen-activated protein kinase (ERK1/2 and protein-kinase B (AKT induced by bacterial TLR2 agonists resulted in increased proliferation of the small intestinal epithelial cell line MODE-K. Mice that were colonized from birth with a normal gut microbiota (conventionally-raised; CONV-R showed signs of increased small intestinal renewal and apoptosis compared with GF controls as indicated by elevated mRNA levels of the proliferation markers Ki67 and Cyclin D1, elevated transcripts of the apoptosis marker Caspase-3 and increased numbers of TUNEL-positive cells per intestinal villus structure. In accordance, TLR2-deficient mice showed reduced proliferation and reduced apoptosis. Our findings suggest that a tuned proliferation response of epithelial cells following microbial colonization could aid to protect the host from its microbial colonizers and increase intestinal surface area.

  20. Taste Bud Labeling in Whole Tongue Epithelial Sheet in Adult Mice.

    Science.gov (United States)

    Venkatesan, Nandakumar; Boggs, Kristin; Liu, Hong-Xiang

    2016-04-01

    Molecular labeling in whole-mount tissues provides an efficient way to obtain general information about the formation, maintenance, degeneration, and regeneration of many organs and tissues. However, labeling of lingual taste buds in whole tongue tissues in adult mice has been problematic because of the strong permeability barrier of the tongue epithelium. In this study, we present a simple method for labeling taste buds in the intact tongue epithelial sheet of an adult mouse. Following intralingual protease injection and incubation, immediate fixation of the tongue on mandible in 4% paraformaldehyde enabled the in situ shape of the tongue epithelium to be well maintained after peeling. The peeled epithelium was accessible to taste bud labeling with a pan-taste cell marker, keratin 8, and a type II taste cell marker, α-gustducin, in all three types of taste papillae, that is, fungiform, foliate, and circumvallate. Overnight incubation of tongue epithelial sheets with primary and secondary antibodies was sufficient for intense labeling of taste buds with both fluorescent and DAB visualizations. Labeled individual taste buds were easy to identify and quantify. This protocol provides an efficient way for phenotypic analyses of taste buds, especially regarding distribution pattern and number.

  1. Etiology and Pathogenesis of Epithelial Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Samuel C. Mok

    2007-01-01

    Full Text Available Ovarian cancer is complex disease composed of different histological grades and types. However, the underlying molecular mechanisms involved in the development of different phenotypes remain largely unknown. Epidemiological studies identified multiple exogenous and endogenous risk factors for ovarian cancer development. Among them, an inflammatory stromal microenvironment seems to play a critical role in the initiation of the disease. The interaction between such a microenvironment, genetic polymorphisms, and different epithelial components such as endosalpingiosis, endometriosis, and ovarian inclusion cyst in the ovarian cortex may induce different genetic changes identified in the epithelial component of different histological types of ovarian tumors. Genetic studies on different histological grades and types provide insight into the pathogenetic pathways for the development of different disease phenotypes. However, the link between all these genetic changes and the etiological factors remains to be established.

  2. Gastrointestinal Epithelial Organoid Cultures from Postsurgical Tissues.

    Science.gov (United States)

    Hahn, Soojung; Yoo, Jongman

    2017-08-17

    An organoid is a cellular structure three-dimensionally (3D) cultured from self-organizing stem cells in vitro, which has a cell population, architectures, and organ specific functions like the originating organs. Recent advances in the 3D culture of isolated intestinal crypts or gastric glands have enabled the generation of human gastrointestinal epithelial organoids. Gastrointestinal organoids recapitulate the human in vivo physiology because of all the intestinal epithelial cell types that differentiated and proliferated from tissue resident stem cells. Thus far, gastrointestinal organoids have been extensively used for generating gastrointestinal disease models. This protocol describes the method of isolating a gland or crypt using stomach or colon tissue after surgery and establishing them into gastroids or colonoids.

  3. Cancer and tumour markers

    International Nuclear Information System (INIS)

    Osifo, B.

    1999-02-01

    Cancer has been a major cause of death world wide and in Nigeria there are six commonest forms of manifestation of cancer known. Of these prostrate cancer is the highest with 16% occurrence of all known cancers according to a study by the Histopathology Department of the UCH. Many factors, amongst them dietary, environmental, lifestyle, age and sedentary work are possible causes. With the global rise in incidents, the IAEA initiated the Tumour Marker Project as a means of screening cancers in 15 African countries including Nigeria. In Nigeria, 4 groups of the commonest cancers have been chosen for screening. These are prostrate cancer, primary liver cancer, cancer of the GI tract and trophoblastic cancer

  4. Radioecological sensitivity

    International Nuclear Information System (INIS)

    Howard, Brenda J.; Strand, Per; Assimakopoulos, Panayotis

    2003-01-01

    After the release of radionuclide into the environment it is important to be able to readily identify major routes of radiation exposure, the most highly exposed individuals or populations and the geographical areas of most concern. Radioecological sensitivity can be broadly defined as the extent to which an ecosystem contributes to an enhanced radiation exposure to Man and biota. Radioecological sensitivity analysis integrates current knowledge on pathways, spatially attributes the underlying processes determining transfer and thereby identifies the most radioecologically sensitive areas leading to high radiation exposure. This identifies where high exposure may occur and why. A framework for the estimation of radioecological sensitivity with respect to humans is proposed and the various indicators by which it can be considered have been identified. These are (1) aggregated transfer coefficients (Tag), (2) action (and critical) loads, (3) fluxes and (4) individual exposure of humans. The importance of spatial and temporal consideration of all these outputs is emphasized. Information on the extent of radionuclide transfer and exposure to humans at different spatial scales is needed to reflect the spatial differences which can occur. Single values for large areas, such as countries, can often mask large variation within the country. Similarly, the relative importance of different pathways can change with time and therefore assessments of radiological sensitivity are needed over different time periods after contamination. Radioecological sensitivity analysis can be used in radiation protection, nuclear safety and emergency preparedness when there is a need to identify areas that have the potential of being of particular concern from a risk perspective. Prior identification of radioecologically sensitive areas and exposed individuals improve the focus of emergency preparedness and planning, and contribute to environmental impact assessment for future facilities. The

  5. Overexpression of Snail in retinal pigment epithelial triggered epithelial–mesenchymal transition

    International Nuclear Information System (INIS)

    Li, Hui; Li, Min; Xu, Ding; Zhao, Chun; Liu, Guodong; Wang, Fang

    2014-01-01

    Highlights: • First reported overexpression of Snail in RPE cells could directly trigger EMT. • Further confirmed the regulator role of Snail in RPE cells EMT in vitro. • Snail may be a potential therapeutic target to prevent the fibrosis of PVR. - Abstract: Snail transcription factor has been implicated as an important regulator in epithelial–mesenchymal transition (EMT) during tumourigenesis and fibrogenesis. Our previous work showed that Snail transcription factor was activated in transforming growth factor β1 (TGF-β1) induced EMT in retinal pigment epithelial (RPE) cells and may contribute to the development of retinal fibrotic disease such as proliferative vitreoretinopathy (PVR). However, whether Snail alone has a direct role on retinal pigment epithelial–mesenchymal transition has not been investigated. Here, we analyzed the capacity of Snail to drive EMT in human RPE cells. A vector encoding Snail gene or an empty vector were transfected into human RPE cell lines ARPE-19 respectively. Snail overexpression in ARPE-19 cells resulted in EMT, which was characterized by the expected phenotypic transition from a typical epithelial morphology to mesenchymal spindle-shaped. The expression of epithelial markers E-cadherin and Zona occludin-1 (ZO-1) were down-regulated, whereas mesenchymal markers a-smooth muscle actin (a-SMA) and fibronectin were up-regulated in Snail expression vector transfected cells. In addition, ectopic expression of Snail significantly enhanced ARPE-19 cell motility and migration. The present data suggest that overexpression of Snail in ARPE-19 cells could directly trigger EMT. These results may provide novel insight into understanding the regulator role of Snail in the development of retinal pigment epithelial–mesenchymal transition

  6. Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture.

    Science.gov (United States)

    Jin, Liting; Qu, Ying; Gomez, Liliana J; Chung, Stacey; Han, Bingchen; Gao, Bowen; Yue, Yong; Gong, Yiping; Liu, Xuefeng; Amersi, Farin; Dang, Catherine; Giuliano, Armando E; Cui, Xiaojiang

    2018-02-20

    Conditional reprogramming methods allow for the inexhaustible in vitro proliferation of primary epithelial cells from human tissue specimens. This methodology has the potential to enhance the utility of primary cell culture as a model for mammary gland research. However, few studies have systematically characterized this method in generating in vitro normal human mammary epithelial cell models. We show that cells derived from fresh normal breast tissues can be propagated and exhibit heterogeneous morphologic features. The cultures are composed of CK18, desmoglein 3, and CK19-positive luminal cells and vimentin, p63, and CK14-positive myoepithelial cells, suggesting the maintenance of in vivo heterogeneity. In addition, the cultures contain subpopulations with different CD49f and EpCAM expression profiles. When grown in 3D conditions, cells self-organize into distinct structures that express either luminal or basal cell markers. Among these structures, CK8-positive cells enclosing a lumen are capable of differentiation into milk-producing cells in the presence of lactogenic stimulus. Furthermore, our short-term cultures retain the expression of ERα, as well as its ability to respond to estrogen stimulation. We have investigated conditionally reprogrammed normal epithelial cells in terms of cell type heterogeneity, cellular marker expression, and structural arrangement in two-dimensional (2D) and three-dimensional (3D) systems. The conditional reprogramming methodology allows generation of a heterogeneous culture from normal human mammary tissue in vitro . We believe that this cell culture model will provide a valuable tool to study mammary cell function and malignant transformation.

  7. Fibro-epithelial hyperplasia mimicking mucocele.

    Science.gov (United States)

    Jain, K; Singh, B D; Dubey, A; Avinash, A

    2014-01-01

    The effects of chronic local irritation have been seen commonly in the form of fibroma or mucocele in children. We report a ten year old girl with the chief complaint of swelling in the lower right region of labial mucosa which was diagnosed clinically as mucocele and histologically as fibro-epithelial hyperplasia. Surgical excision was done under local anesthesia with no post-operative complication.

  8. Purinergic signalling in epithelial ion transport

    DEFF Research Database (Denmark)

    Novak, Ivana

    2011-01-01

    , including ion transport. In this review, I will first introduce the main components of the extracellular ATP signalling, which have become known as the purinergic signalling system. With more than 50 components or processes, just at cell membranes, it ranks as one of the most versatile signalling systems......-regulators of secretion. On an organ level, both receptor types can exert physiological functions and together with other partners in the purinergic signalling, integrated models for epithelial secretion and absorption are emerging....

  9. M2 macrophages activate WNT signaling pathway in epithelial cells: relevance in ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Jesús Cosín-Roger

    Full Text Available Macrophages, which exhibit great plasticity, are important components of the inflamed tissue and constitute an essential element of regenerative responses. Epithelial Wnt signalling is involved in mechanisms of proliferation and differentiation and expression of Wnt ligands by macrophages has been reported. We aim to determine whether the macrophage phenotype determines the expression of Wnt ligands, the influence of the macrophage phenotype in epithelial activation of Wnt signalling and the relevance of this pathway in ulcerative colitis. Human monocyte-derived macrophages and U937-derived macrophages were polarized towards M1 or M2 phenotypes and the expression of Wnt1 and Wnt3a was analyzed by qPCR. The effects of macrophages and the role of Wnt1 were analyzed on the expression of β-catenin, Tcf-4, c-Myc and markers of cell differentiation in a co-culture system with Caco-2 cells. Immunohistochemical staining of CD68, CD206, CD86, Wnt1, β-catenin and c-Myc were evaluated in the damaged and non-damaged mucosa of patients with UC. We also determined the mRNA expression of Lgr5 and c-Myc by qPCR and protein levels of β-catenin by western blot. Results show that M2, and no M1, activated the Wnt signaling pathway in co-culture epithelial cells through Wnt1 which impaired enterocyte differentiation. A significant increase in the number of CD206+ macrophages was observed in the damaged mucosa of chronic vs newly diagnosed patients. CD206 immunostaining co-localized with Wnt1 in the mucosa and these cells were associated with activation of canonical Wnt signalling pathway in epithelial cells and diminution of alkaline phosphatase activity. Our results show that M2 macrophages, and not M1, activate Wnt signalling pathways and decrease enterocyte differentiation in co-cultured epithelial cells. In the mucosa of UC patients, M2 macrophages increase with chronicity and are associated with activation of epithelial Wnt signalling and diminution in

  10. Connective tissue markers of rheumatoid arthritis

    DEFF Research Database (Denmark)

    Møller, H J

    1998-01-01

    Rheumatoid arthritis (RA) is a common systemic autoimmune disorder of unknown aetiology. The most common outcome of RA is a progressive development of joint destruction and deformity. Early introduction of disease-modifying antirheumatic drugs seems important for prevention of the long term...... of rheumatoid factor contributes to the classification of arthritis as RA, and acute phase reactants are useful for quantifying and comparing the level of inflammatory activity in the course of a given patient. There is, however, a lack of sensitive and specific biochemical markers for RA, and frontline...

  11. Endothelial induced EMT in breast epithelial cells with stem cell properties.

    Directory of Open Access Journals (Sweden)

    Valgardur Sigurdsson

    Full Text Available Epithelial to mesenchymal transition (EMT is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad to N-Cadherin (N-Cad and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high/CD24(low ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.

  12. Endothelial induced EMT in breast epithelial cells with stem cell properties.

    Science.gov (United States)

    Sigurdsson, Valgardur; Hilmarsdottir, Bylgja; Sigmundsdottir, Hekla; Fridriksdottir, Agla J R; Ringnér, Markus; Villadsen, Rene; Borg, Ake; Agnarsson, Bjarni A; Petersen, Ole William; Magnusson, Magnus K; Gudjonsson, Thorarinn

    2011-01-01

    Epithelial to mesenchymal transition (EMT) is a critical event in cancer progression and is closely linked to the breast epithelial cancer stem cell phenotype. Given the close interaction between the vascular endothelium and cancer cells, especially at the invasive front, we asked whether endothelial cells might play a role in EMT. Using a 3D culture model we demonstrate that endothelial cells are potent inducers of EMT in D492 an immortalized breast epithelial cell line with stem cell properties. Endothelial induced mesenchymal-like cells (D492M) derived from D492, show reduced expression of keratins, a switch from E-Cadherin (E-Cad) to N-Cadherin (N-Cad) and enhanced migration. Acquisition of cancer stem cell associated characteristics like increased CD44(high)/CD24(low) ratio, resistance to apoptosis and anchorage independent growth was also seen in D492M cells. Endothelial induced EMT in D492 was partially blocked by inhibition of HGF signaling. Basal-like breast cancer, a vascular rich cancer with stem cell properties and adverse prognosis has been linked with EMT. We immunostained several basal-like breast cancer samples for endothelial and EMT markers. Cancer cells close to the vascular rich areas show no or decreased expression of E-Cad and increased N-Cad expression suggesting EMT. Collectively, we have shown in a 3D culture model that endothelial cells are potent inducers of EMT in breast epithelial cells with stem cell properties. Furthermore, we demonstrate that basal-like breast cancer contains cells with an EMT phenotype, most prominently close to vascular rich areas of these tumors. We conclude that endothelial cells are potent inducers of EMT and may play a role in progression of basal-like breast cancer.

  13. Effect of estradiol on the expression of angiogenic factors in epithelial ovarian cancer.

    Science.gov (United States)

    Valladares, Macarena; Plaza-Parrochia, Francisca; Lépez, Macarena; López, Daniela; Gabler, Fernando; Gayan, Patricio; Selman, Alberto; Vega, Margarita; Romero, Carmen

    2017-11-01

    Ovarian cancer presents a high angiogenesis (formation of new blood vessels) regulated by pro-angiogenic factors, mainly vascular endothelial growth factor (VEGF) and nerve growth factor (NGF). An association between endogenous levels of estrogen and increased risk of developing ovarian cancer has been reported. Estrogen action is mediated by the binding to its specific receptors (ERα and ERβ), altered ERα/ERβ ratio may constitute a marker of ovarian carcinogenesis progression. To determine the effect of estradiol through ERα on the expression of NGF and VEGF in epithelial ovarian cancer (EOC). Levels of phosphorylated estrogen receptor alpha (pERα) were evaluated in well, moderate and poorly differentiated EOC samples (EOC-I, EOC-II, EOC-III). Additionally, ovarian cancer explants were stimulated with NGF (0, 10 and 100 ng/ml) and ERα, ERβ and pERα levels were detected. Finally, human ovarian surface epithelial (HOSE) and epithelial ovarian cancer (A2780) cell lines were stimulated with estradiol, where NGF and VEGF protein levels were evaluated. In tissues, ERs were detected being pERα levels significantly increased in EOC-III samples compared with EOC-I (p<0.05). Additionally, ovarian explants treated with NGF increased pERα levels meanwhile total ERα and ERβ levels did not change. Cell lines stimulated with estradiol revealed an increase of NGF and VEGF protein levels (p<0.05). Estradiol has a positive effect on pro-angiogenic factors such as NGF and VEGF expression in EOC, probably through the activation of ERα; generating a positive loop induced by NGF increasing pERα levels in epithelial ovarian cells.

  14. Epithelial Label-Retaining Cells Are Absent during Tooth Cycling in Salmo salar and Polypterus senegalus.

    Directory of Open Access Journals (Sweden)

    Sam Vandenplas

    Full Text Available The Atlantic salmon (Salmo salar and African bichir (Polypterus senegalus are both actinopterygian fish species that continuously replace their teeth without the involvement of a successional dental lamina. Instead, they share the presence of a middle dental epithelium: an epithelial tier enclosed by inner and outer dental epithelium. It has been hypothesized that this tier could functionally substitute for a successional dental lamina and might be a potential niche to house epithelial stem cells involved in tooth cycling. Therefore, in this study we performed a BrdU pulse chase experiment on both species to (1 determine the localization and extent of proliferating cells in the dental epithelial layers, (2 describe cell dynamics and (3 investigate if label-retaining cells are present, suggestive for the putative presence of stem cells. Cells proliferate in the middle dental epithelium, outer dental epithelium and cervical loop at the lingual side of the dental organ to form a new tooth germ. Using long chase times, both in S. salar (eight weeks and P. senegalus (eight weeks and twelve weeks, we could not reveal the presence of label-retaining cells in the dental organ. Immunostaining of P. senegalus dental organs for the transcription factor Sox2, often used as a stem cell marker, labelled cells in the zone of outer dental epithelium which grades into the oral epithelium (ODE transition zone and the inner dental epithelium of a successor only. The location of Sox2 distribution does not provide evidence for epithelial stem cells in the dental organ and, more specifically, in the middle dental epithelium. Comparison of S. salar and P. senegalus reveals shared traits in tooth cycling and thus advances our understanding of the developmental mechanism that ensures lifelong replacement.

  15. Tumor markers in colorectal cancer

    OpenAIRE

    Fernandes, Luís César [UNIFESP; Matos, Delcio [UNIFESP

    2002-01-01

    Colorectal cancer is a clinical entity of a persistent relevance in clinical practice and its early diagnosis is a determinant factor to obtain better therapeutic results. Tumor markers are helpful means for a better approach to individuals with such neoplasm. In the present review, the authors analyze the phases in which surgical-clinical treatment markers must be used: diagnosis, determination of tumor stage, establishment of prognosis and detection of recurrence. Current and future markers...

  16. Serum markers of liver fibrosis

    DEFF Research Database (Denmark)

    Veidal, Sanne Skovgård; Bay-Jensen, Anne-Christine; Tougas, Gervais

    2010-01-01

    -epitopes, may be targeted for novel biochemical marker development in fibrosis. We used the recently proposed BIPED system (Burden of disease, Investigative, Prognostic, Efficacy and Diagnostic) to characterise present serological markers. METHODS: Pubmed was search for keywords; Liver fibrosis, neo......, a systematic use of the neo-epitope approach, i.e. the quantification of peptide epitopes generated from enzymatic cleavage of proteins during extracellular remodeling, may prove productive in the quest to find new markers of liver fibrosis....

  17. ATP7B detoxifies silver in ciliated airway epithelial cells

    International Nuclear Information System (INIS)

    Ibricevic, Aida; Brody, Steven L.; Youngs, Wiley J.; Cannon, Carolyn L.

    2010-01-01

    Silver is a centuries-old antibiotic agent currently used to treat infected burns. The sensitivity of a wide range of drug-resistant microorganisms to silver killing suggests that it may be useful for treating refractory lung infections. Toward this goal, we previously developed a methylated caffeine silver acetate compound, SCC1, that exhibits broad-spectrum antimicrobial activity against clinical strains of bacteria in vitro and when nebulized to lungs in mouse infection models. Preclinical testing of high concentrations of SCC1 in primary culture mouse tracheal epithelial cells (mTEC) showed selective ciliated cell death. Ciliated cell death was induced by both silver- and copper-containing compounds but not by the methylated caffeine portion of SCC1. We hypothesized that copper transporting P-type ATPases, ATP7A and ATP7B, play a role in silver detoxification in the airway. In mTEC, ATP7A was expressed in non-ciliated cells, whereas ATP7B was expressed only in ciliated cells. The exposure of mTEC to SCC1 induced the trafficking of ATP7B, but not ATP7A, suggesting the presence of a cell-specific silver uptake and detoxification mechanisms. Indeed, the expression of the copper uptake protein CTR1 was also restricted to ciliated cells. A role of ATP7B in silver detoxification was further substantiated when treatment of SCC1 significantly increased cell death in ATP7B shRNA-treated HepG2 cells. In addition, mTEC from ATP7B -/- mice showed enhanced loss of ciliated cells compared to wild type. These studies are the first to demonstrate a cell type-specific expression of the Ag + /Cu + transporters ATP7A, ATP7B, and CTR1 in airway epithelial cells and a role for ATP7B in detoxification of these metals in the lung.

  18. Gremlin Activates the Smad Pathway Linked to Epithelial Mesenchymal Transdifferentiation in Cultured Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Raquel Rodrigues-Diez

    2014-01-01

    Full Text Available Gremlin is a developmental gene upregulated in human chronic kidney disease and in renal cells in response to transforming growth factor-β (TGF-β. Epithelial mesenchymal transition (EMT is one process involved in renal fibrosis. In tubular epithelial cells we have recently described that Gremlin induces EMT and acts as a downstream TGF-β mediator. Our aim was to investigate whether Gremlin participates in EMT by the regulation of the Smad pathway. Stimulation of human tubular epithelial cells (HK2 with Gremlin caused an early activation of the Smad signaling pathway (Smad 2/3 phosphorylation, nuclear translocation, and Smad-dependent gene transcription. The blockade of TGF-β, by a neutralizing antibody against active TGF-β, did not modify Gremlin-induced early Smad activation. These data show that Gremlin directly, by a TGF-β independent process, activates the Smad pathway. In tubular epithelial cells long-term incubation with Gremlin increased TGF-β production and caused a sustained Smad activation and a phenotype conversion into myofibroblasts-like cells. Smad 7 overexpression, which blocks Smad 2/3 activation, diminished EMT changes observed in Gremlin-transfected tubuloepithelial cells. TGF-β neutralization also diminished Gremlin-induced EMT changes. In conclusion, we propose that Gremlin could participate in renal fibrosis by inducing EMT in tubular epithelial cells through activation of Smad pathway and induction of TGF-β.

  19. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    International Nuclear Information System (INIS)

    Malizia, Andrea P.; Lacey, Noreen; Walls, Dermot; Egan, Jim J.; Doran, Peter P.

    2009-01-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGFβ1-mediated lytic phase. EBV lytic reactivation by TGFβ1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM 1 81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  20. CUX1/Wnt signaling regulates Epithelial Mesenchymal Transition in EBV infected epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Malizia, Andrea P.; Lacey, Noreen [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland); Walls, Dermot [School of Biotechnology, Dublin City University. Dublin, 9. Ireland (Ireland); Egan, Jim J. [Advanced Lung Disease and Lung Transplant Program, Mater Misericordiae University Hospital. 44, Eccles Street. Dublin, 7. Ireland (Ireland); Doran, Peter P., E-mail: peter.doran@ucd.ie [Clinical Research Centre, School of Medicine and Medical Science, University College Dublin. 21, Nelson Street. Dublin, 7. Ireland (Ireland)

    2009-07-01

    Idiopathic pulmonary fibrosis (IPF) is a refractory and lethal interstitial lung disease characterized by alveolar epithelial cells apoptosis, fibroblast proliferation and extra-cellular matrix protein deposition. EBV, localised to alveolar epithelial cells of pulmonary fibrosis patients is associated with a poor prognosis. A strategy based on microarray-differential gene expression analysis to identify molecular drivers of EBV-associated lung fibrosis was utilized. Alveolar epithelial cells were infected with EBV to identify genes whose expression was altered following TGF{beta}1-mediated lytic phase. EBV lytic reactivation by TGF{beta}1 drives a selective alteration in CUX1 variant (a) (NCBI accession number NM{sub 1}81552) expression, inducing activation of non-canonical Wnt pathway mediators, implicating it in Epithelial Mesenchymal Transition (EMT), the molecular event underpinning scar production in tissue fibrosis. The role of EBV in EMT can be attenuated by antiviral strategies and inhibition of Wnt signaling by using All-Trans Retinoic Acids (ATRA). Activation of non-canonical Wnt signaling pathway by EBV in epithelial cells suggests a novel mechanism of EMT via CUX1 signaling. These data present a framework for further description of the link between infectious agents and fibrosis, a significant disease burden.

  1. Neoadjuvant Chemotherapy for Advanced Epithelial Ovarian Cancer

    International Nuclear Information System (INIS)

    Avendano Juan; Buitrago, Giancarlo; Ramos, Pedro; Suescun Oscar

    2010-01-01

    Objective: To describe the experience at the National Cancer Institute (NCI) on the use of neoadjuvant chemotherapy as primary treatment for epithelial ovarian cancer among patients in stages IIIC and IV. Methods: We conducted a descriptive retrospective study (case series type) of patients diagnosed with epithelial ovarian cancer in stages IIIC and IV, treated at the NCI from January 1, 2003 to December 31,2006, who underwent neoadjuvant chemotherapy as primary treatment. Demographic characteristics and clinical outcomes are described. Results: Seventeen patients who fulfilled the above mentioned criteria were selected. Once neoadjuvant chemotherapy ended, 5 patients (29.4%) achieved complete or partial clinical response; 4 (23.8%) remained in stable condition, and 8 (47.6%) showed signs of progressive illness. Interval debulking surgery was performed on objective response patients. Maximum cytoreduction was achieved in 5 patients (100%); first relapse was reported at month 18 of follow-up; 2 disease-free survivors were identified in December, 2007; 8 (49%) reported some degree of non-severe chemotherapy-related toxicity. No mortality was related to chemotherapy, no post surgical complications were observed and no patient required advanced support management. Conclusions: Neoadjuvant chemotherapy, followed by optimal interval debulking surgery among selected patients, can be an alternative treatment for advanced epithelial ovarian cancer among women with irresecability or the critically ill. Further studies with improved design are required to confirm these findings.

  2. Ursodeoxycholic acid attenuates colonic epithelial secretory function

    Science.gov (United States)

    Kelly, Orlaith B; Mroz, Magdalena S; Ward, Joseph B J; Colliva, Carolina; Scharl, Michael; Pellicciari, Roberto; Gilmer, John F; Fallon, Padraic G; Hofmann, Alan F; Roda, Aldo; Murray, Frank E; Keely, Stephen J

    2013-01-01

    Dihydroxy bile acids, such as chenodeoxycholic acid (CDCA), are well known to promote colonic fluid and electrolyte secretion, thereby causing diarrhoea associated with bile acid malabsorption. However, CDCA is rapidly metabolised by colonic bacteria to ursodeoxycholic acid (UDCA), the effects of which on epithelial transport are poorly characterised. Here, we investigated the role of UDCA in the regulation of colonic epithelial secretion. Cl− secretion was measured across voltage-clamped monolayers of T84 cells and muscle-stripped sections of mouse or human colon. Cell surface biotinylation was used to assess abundance/surface expression of transport proteins. Acute (15 min) treatment of T84 cells with bilateral UDCA attenuated Cl− secretory responses to the Ca2+ and cAMP-dependent secretagogues carbachol (CCh) and forskolin (FSK) to 14.0 ± 3.8 and 40.2 ± 7.4% of controls, respectively (n= 18, P acid (LCA). Accordingly, LCA (50–200 μm) enhanced agonist-induced secretory responses in vitro and a metabolically stable UDCA analogue, 6α-methyl-UDCA, exerted anti-secretory actions in vitro and in vivo. In conclusion, UDCA exerts direct anti-secretory actions on colonic epithelial cells and metabolically stable derivatives of the bile acid may offer a new approach for treating intestinal diseases associated with diarrhoea. PMID:23507881

  3. Transcriptional networks in epithelial-mesenchymal transition.

    Directory of Open Access Journals (Sweden)

    Christo Venkov

    Full Text Available Epithelial-mesenchymal transition (EMT changes polarized epithelial cells into migratory phenotypes associated with loss of cell-cell adhesion molecules and cytoskeletal rearrangements. This form of plasticity is seen in mesodermal development, fibroblast formation, and cancer metastasis.Here we identify prominent transcriptional networks active during three time points of this transitional process, as epithelial cells become fibroblasts. DNA microarray in cultured epithelia undergoing EMT, validated in vivo, were used to detect various patterns of gene expression. In particular, the promoter sequences of differentially expressed genes and their transcription factors were analyzed to identify potential binding sites and partners. The four most frequent cis-regulatory elements (CREs in up-regulated genes were SRY, FTS-1, Evi-1, and GC-Box, and RNA inhibition of the four transcription factors, Atf2, Klf10, Sox11, and SP1, most frequently binding these CREs, establish their importance in the initiation and propagation of EMT. Oligonucleotides that block the most frequent CREs restrain EMT at early and intermediate stages through apoptosis of the cells.Our results identify new transcriptional interactions with high frequency CREs that modulate the stability of cellular plasticity, and may serve as targets for modulating these transitional states in fibroblasts.

  4. YY1 modulates taxane response in epithelial ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Noriomi; Huang, Zhiqing; Baba, Tsukasa; Lee, Paula S.; Barnett, Jason C.; Mori, Seiichi; Chang, Jeffrey T.; Kuo, Wen-Lin; Gusberg, Alison H.; Whitaker, Regina S.; Gray, JoeW.; Fujii, Shingo; Berchuck, Andrew; Murphy, Susan K.

    2008-10-10

    The results of this study show that a high YY1 gene signature (characterized by coordinate elevated expression of transcription factor YY1 and putative YY1 target genes) within serous epithelial ovarian cancers is associated with enhanced response to taxane-based chemotherapy and improved survival. If confirmed in a prospective study, these results have important implications for the potential future use of individualized therapy in treating patients with ovarian cancer. Identification of the YY1 gene signature profile within a tumor prior to initiation of chemotherapy may provide valuable information about the anticipated response of these tumors to taxane-based drugs, leading to better informed decisions regarding chemotherapeutic choice. Survival of ovarian cancer patients is largely dictated by their response to chemotherapy, which depends on underlying molecular features of the malignancy. We previously identified YIN YANG 1 (YY1) as a gene whose expression is positively correlated with ovarian cancer survival. Herein we investigated the mechanistic basis of this association. Epigenetic and genetic characteristics of YY1 in serous epithelial ovarian cancer (SEOC) were analyzed along with YY1 mRNA and protein. Patterns of gene expression in primary SEOC and in the NCI60 database were investigated using computational methods. YY1 function and modulation of chemotherapeutic response in vitro was studied using siRNA knockdown. Microarray analysis showed strong positive correlation between expression of YY1 and genes with YY1 and transcription factor E2F binding motifs in SEOC and in the NCI60 cancer cell lines. Clustering of microarray data for these genes revealed that high YY1/E2F3 activity positively correlates with survival of patients treated with the microtubule stabilizing drug paclitaxel. Increased sensitivity to taxanes, but not to DNA crosslinking platinum agents, was also characteristic of NCI60 cancer cell lines with a high YY1/E2F signature. YY1

  5. Hormonal regulation of epithelial organization in a three-dimensional breast tissue culture model.

    Science.gov (United States)

    Speroni, Lucia; Whitt, Gregory S; Xylas, Joanna; Quinn, Kyle P; Jondeau-Cabaton, Adeline; Barnes, Clifford; Georgakoudi, Irene; Sonnenschein, Carlos; Soto, Ana M

    2014-01-01

    The establishment of hormone target breast cells in the 1970's resulted in suitable models for the study of hormone control of cell proliferation and gene expression using two-dimensional (2D) cultures. However, to study mammogenesis and breast tumor development in vitro, cells must be able to organize in three-dimensional (3D) structures like in the tissue. We now report the development of a hormone-sensitive 3D culture model for the study of mammogenesis and neoplastic development. Hormone-sensitive T47D breast cancer cells respond to estradiol in a dose-dependent manner by forming complex epithelial structures. Treatment with the synthetic progestagen promegestone, in the presence of estradiol, results in flat epithelial structures that display cytoplasmic projections, a phenomenon reported to precede side-branching. Additionally, as in the mammary gland, treatment with prolactin in the presence of estradiol induces budding structures. These changes in epithelial organization are accompanied by collagen remodeling. Collagen is the major acellular component of the breast stroma and an important player in tumor development and progression. Quantitative analysis of second harmonic generation of collagen fibers revealed that collagen density was more variable surrounding budding and irregularly shaped structures when compared to more regular structures; suggesting that fiber organization in the former is more anisotropic than in the latter. In sum, this new 3D model recapitulates morphogenetic events modulated by mammogenic hormones in the breast, and is suitable for the evaluation of therapeutic agents.

  6. Interleukin-17A induces bicarbonate secretion in normal human bronchial epithelial cells

    Science.gov (United States)

    Kreindler, James L.; Bertrand, Carol A.; Lee, Robert J.; Karasic, Thomas; Aujla, Shean; Pilewski, Joseph M.; Frizzell, Raymond A.; Kolls, Jay K.

    2009-01-01

    The innate immune functions of human airways include mucociliary clearance and antimicrobial peptide activity. Both functions may be affected by changes in epithelial ion transport. Interleukin-17A (IL-17A), which has a receptor at the basolateral membrane of airway epithelia, is a T cell cytokine that has been shown to increase mucus secretion and antimicrobial peptide production by human bronchial epithelial (HBE) cells. Furthermore, IL-17A levels are increased in sputum from patients during pulmonary exacerbations of cystic fibrosis. Therefore, we investigated the effects of IL-17A on basal, amiloride-sensitive, and forskolin-stimulated ion transport in mature, well-differentiated HBE cells. Exposure of HBE monolayers to IL-17A for 48 h induced a novel forskolin-stimulated bicarbonate secretion in addition to forskolin-stimulated chloride secretion and resulted in alkalinization of liquid on the mucosal surface of polarized cells. IL-17A-induced bicarbonate secretion was cystic fibrosis transmembrane conductance regulator (CFTR)-dependent, mucosal chloride-dependent, partially Na+-dependent, and sensitive to serosal, but not mucosal, stilbene inhibition. These data suggest that IL-17A modulates epithelial bicarbonate secretion and implicate a mechanism by which airway surface liquid pH changes may be abnormal in cystic fibrosis. PMID:19074559

  7. Primary human polarized small intestinal epithelial barriers respond differently to a hazardous and an innocuous protein.

    Science.gov (United States)

    Eaton, A D; Zimmermann, C; Delaney, B; Hurley, B P

    2017-08-01

    An experimental platform employing human derived intestinal epithelial cell (IEC) line monolayers grown on permeable Transwell ® filters was previously investigated to differentiate between hazardous and innocuous proteins. This approach was effective at distinguishing these types of proteins and perturbation of monolayer integrity, particularly transepithelial electrical resistance (TEER), was the most sensitive indicator. In the current report, in vitro indicators of monolayer integrity, cytotoxicity, and inflammation were evaluated using primary (non-transformed) human polarized small intestinal epithelial barriers cultured on Transwell ® filters to compare effects of a hazardous protein (Clostridium difficile Toxin A [ToxA]) and an innocuous protein (bovine serum albumin [BSA]). ToxA exerted a reproducible decrease on barrier integrity at doses comparable to those producing effects observed from cell line-derived IEC monolayers, with TEER being the most sensitive indicator. In contrast, BSA, tested at concentrations substantially higher than ToxA, did not cause changes in any of the tested variables. These results demonstrate a similarity in response to certain proteins between cell line-derived polarized IEC models and a primary human polarized small intestinal epithelial barrier model, thereby reinforcing the potential usefulness of cell line-derived polarized IECs as a valid experimental platform to differentiate between hazardous and non-hazardous proteins. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Allergen recognition by innate immune cells: critical role of dendritic and epithelial cells

    Directory of Open Access Journals (Sweden)

    Fabian eSalazar

    2013-11-01

    Full Text Available Allergy is an exacerbated response of the immune system against non-self-proteins called allergens and is typically characterized by biased type-2 T helper cell and deleterious IgE mediated immune responses. The allergic cascade starts with the recognition of allergens by antigen presenting cells, mainly dendritic cells, culminating in mast cell sensitization and triggering. Dendritic cells have been demonstrated to play a crucial role in orchestrating allergic diseases. Using different C-type lectin receptors dendritic cells are able to recognize and internalize a number of allergens from diverse sources leading to sensitization. Furthermore, there is increasing evidence highlighting the role of epithelial cells in triggering and modulating immune responses to allergens. As well as providing a physical barrier, epithelial cells can interact with allergens and influence dendritic cells behaviour through the release of a number of Th2 promoting cytokines. In this review we will summarise current understanding of how allergens are recognised by dendritic cells and epithelial cells and what are the consequences of such interaction in the context of allergic sensitisation and downstream events leading to allergic inflammation. Better understanding of the molecular mechanisms of allergen recognition and associated signalling pathways could enable developing more effective therapeutic strategies that target the initial steps of allergic sensitisation hence hindering development or progression of allergic diseases.

  9. Diffusion-weighted MRI of epithelial ovarian cancers: Correlation of apparent diffusion coefficient values with histologic grade and surgical stage

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Ji-Won, E-mail: fromentin@naver.com [Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701 (Korea, Republic of); Rha, Sung Eun, E-mail: serha@catholic.ac.kr [Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701 (Korea, Republic of); Oh, Soon Nam, E-mail: hiohsn@catholic.ac.kr [Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701 (Korea, Republic of); Park, Michael Yong, E-mail: digirave@kmle.com [Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701 (Korea, Republic of); Byun, Jae Young, E-mail: jybyun@catholic.ac.kr [Department of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701 (Korea, Republic of); Lee, Ahwon, E-mail: klee@catholic.ac.kr [Department of Hospital Pathology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 137-701 (Korea, Republic of)

    2015-04-15

    Highlights: •The solid component of all invasive epithelial cancers showed high b{sub 1000} signal intensity. •ADCs can predict the histologic grade of epithelial ovarian cancer. •ADCs correlate negatively to the surgical stage of epithelial ovarian cancer. •ADCs may be useful imaging biomarkers to assess epithelial ovarian cancer. -- Abstract: Objective: The purpose of this article is to correlate the apparent diffusion coefficient (ADC) values of epithelial ovarian cancers with histologic grade and surgical stage. Materials and methods: We enrolled 43 patients with pathologically proven epithelial ovarian cancers for this retrospective study. All patients underwent preoperative pelvic magnetic resonance imaging (MRI) including diffusion-weighted images with b value of 0 and 1000 s/mm{sup 2} at 3.0-T unit. The mean ADC values of the solid portion of the tumor were measured and compared among different histologic grades and surgical stages. Results: The mean ADC values of epithelial ovarian cancers differed significantly between grade 1 (well-differentiated) and grade 2 (moderately-differentiated) (P = 0.013) as well as between grade 1 and grade 3 (poorly-differentiated) (P = 0.01); however, no statistically significant difference existed between grade 2 and grade 3 (P = 0.737). The receiver-operating characteristic analysis indicated that a cutoff ADC value of less than or equal to 1.09 × 10{sup −3} mm{sup 2}/s was associated with 94.4% sensitivity and 85.7% specificity in distinguishing grade 1 and grade 2/3 cancer. The difference in mean ADC values was statistically significant for early stage (FIGO stage I) and advanced stage (FIGO stage II-IV) cancer (P = 0.011). The interobserver agreement for the mean ADC values of epithelial ovarian cancers was excellent. Conclusion: The mean ADC values of the solid portion of epithelial ovarian cancers negatively correlated to histologic grade and surgical stage. The mean ADC values may be useful imaging

  10. MicroRNA-193a Regulates the Transdifferentiation of Human Parietal Epithelial Cells toward a Podocyte Phenotype.

    Science.gov (United States)

    Kietzmann, Leonie; Guhr, Sebastian S O; Meyer, Tobias N; Ni, Lan; Sachs, Marlies; Panzer, Ulf; Stahl, Rolf A K; Saleem, Moin A; Kerjaschki, Dontscho; Gebeshuber, Christoph A; Meyer-Schwesinger, Catherine

    2015-06-01

    Parietal epithelial cells have been identified as potential progenitor cells in glomerular regeneration, but the molecular mechanisms underlying this process are not fully defined. Here, we established an immortalized polyclonal human parietal epithelial cell (hPEC) line from naive human Bowman's capsule cells isolated by mechanical microdissection. These hPECs expressed high levels of PEC-specific proteins and microRNA-193a (miR-193a), a suppressor of podocyte differentiation through downregulation of Wilms' tumor 1 in mice. We then investigated the function of miR-193a in the establishment of podocyte and PEC identity and determined whether inhibition of miR-193a influences the behavior of PECs in glomerular disease. After stable knockdown of miR-193a, hPECs adopted a podocyte-like morphology and marker expression, with decreased expression levels of PEC markers. In mice, inhibition of miR-193a by complementary locked nucleic acids resulted in an upregulation of the podocyte proteins synaptopodin and Wilms' tumor 1. Conversely, overexpression of miR-193a in vivo resulted in the upregulation of PEC markers and the loss of podocyte markers in isolated glomeruli. Inhibition of miR-193a in a mouse model of nephrotoxic nephritis resulted in reduced crescent formation and decreased proteinuria. Together, these results show the establishment of a human PEC line and suggest that miR-193a functions as a master switch, such that glomerular epithelial cells with high levels of miR-193a adopt a PEC phenotype and cells with low levels of miR-193a adopt a podocyte phenotype. miR-193a-mediated maintenance of PECs in an undifferentiated reactive state might be a prerequisite for PEC proliferation and migration in crescent formation. Copyright © 2015 by the American Society of Nephrology.

  11. Flat epithelial atypia and atypical ductal hyperplasia: carcinoma underestimation rate.

    Science.gov (United States)

    Ingegnoli, Anna; d'Aloia, Cecilia; Frattaruolo, Antonia; Pallavera, Lara; Martella, Eugenia; Crisi, Girolamo; Zompatori, Maurizio

    2010-01-01

    This study was carried out to determine the underestimation rate of carcinoma upon surgical biopsy after a diagnosis of flat epithelial atypia and atypical ductal hyperplasia and 11-gauge vacuum-assisted breast biopsy. A retrospective review was conducted of 476 vacuum-assisted breast biopsy performed from May 2005 to January 2007 and a total of 70 cases of atypia were identified. Fifty cases (71%) were categorized as pure atypical ductal hyperplasia, 18 (26%) as pure flat epithelial atypia and two (3%) as concomitant flat epithelial atypia and atypical ductal hyperplasia. Each group were compared with the subsequent open surgical specimens. Surgical biopsy was performed in 44 patients with atypical ductal hyperplasia, 15 patients with flat epithelial atypia, and two patients with flat epithelial atypia and atypical ductal hyperplasia. Five cases of atypical ductal hyperplasia were upgraded to ductal carcinoma in situ, three cases of flat epithelial atypia yielded one ductal carcinoma in situ and two cases of invasive ductal carcinoma, and one case of flat epithelial atypia/atypical ductal hyperplasia had invasive ductal carcinoma. The overall rate of malignancy was 16% for atypical ductal hyperplasia (including flat epithelial atypia/atypical ductal hyperplasia patients) and 20% for flat epithelial atypia. The presence of flat epithelial atypia and atypical ductal hyperplasia at biopsy requires careful consideration, and surgical excision should be suggested.

  12. LEF1 is preferentially expressed in the tubal-peritoneal junctions and is a reliable marker of tubal intraepithelial lesions.

    Science.gov (United States)

    Schmoeckel, Elisa; Odai-Afotey, Ashley A; Schleißheimer, Michael; Rottmann, Miriam; Flesken-Nikitin, Andrea; Ellenson, Lora H; Kirchner, Thomas; Mayr, Doris; Nikitin, Alexander Yu

    2017-09-01

    Recently it has been reported that serous tubal intraepithelial carcinoma (STIC), the likely precursor of ovarian/extra-uterine high-grade serous carcinoma, are frequently located in the vicinity of tubal-peritoneal junctions, consistent with the cancer-prone features of many epithelial transitional regions. To test if p53 (aka TP53)-signatures and secretory cell outgrowths (SCOUTs) also localize to tubal-peritoneal junctions, we examined these lesions in the fallopian tubes of patients undergoing salpingo-oophorectomy for sporadic high-grade serous carcinomas or as a prophylactic procedure for carriers of familial BRCA1 or 2 mutations. STICs were located closest to the tubal-peritoneal junctions with an average distance of 1.31 mm, while SCOUTs were not detected in the fimbriated end of the fallopian tube. As many epithelial transitional regions contain stem cells, we also determined the expression of stem cell markers in the normal fallopian tube, tubal intraepithelial lesions and high-grade serous carcinomas. Of those, LEF1 was consistently expressed in the tubal-peritoneal junctions and all lesions, independent of p53 status. All SCOUTs demonstrated strong nuclear expression of β-catenin consistent with the LEF1 participation in the canonical WNT pathway. However, β-catenin was preferentially located in the cytoplasm of cells comprising STICs and p53 signatures, suggesting WNT-independent function of LEF1 in those lesions. Both frequency of LEF1 expression and β-catenin nuclear expression correlated with the worst 5-year patient survival, supporting important role of both proteins in high-grade serous carcinoma. Taken together, our findings suggest the existence of stem cell niche within the tubal-peritoneal junctions. Furthermore, they support the notion that the pathogenesis of SCOUTs is distinct from that of STICs and p53 signatures. The location and discrete patterns of LEF1 and β-catenin expression may serve as highly sensitive and reliable ancillary

  13. Overexpression of cathepsin Z contributes to tumor metastasis by inducing epithelial-mesenchymal transition in hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Jian Wang

    Full Text Available The aim of this study was to characterize the oncogenic function and mechanism of Cathepsin Z (CTSZ at 20q13.3, a frequently amplified region in hepatocellular carcinoma (HCC. Real-time PCR were used to compare CTSZ expression between paired HCC tumor and non-tumor specimens. CTSZ gene was stably transfected into HCC line QGY-7703 cells and its role in tumorigenicity and cell motility was characterized by soft agar, wound-healing, transwell invasion and cell adhesion assay, and tumor xenograft mouse model. Western blot analysis was used to study expression of proteins associated with epithelial-mesenchymal transition (EMT.Upregulation of CTSZ was detected in 59/137 (43% of primary HCCs, which was significantly associated with advanced clinical stage (P = 0.000. Functional study found that CTSZ could increase colony formation in soft agar and promote cell motility. Further study found that the metastatic effect of CTSZ was associated with its role in inducing epithelial-mesenchymal transition (EMT by upregulating mesenchymal markers (fibronectin and vimentin and downregulating epithelial markers (E-cadherin and α-catenin. In addition, CTSZ could also upregulate proteins associated with extracellular matrix remodeling such as MMP2, MMP3 and MMP9. Taken together, our data suggested that CTSZ was a candidate oncogene within the 20q13 amplicon and it played an important role in HCC metastasis.

  14. Proliferation of Estrogen Receptor alpha Positive Mammary Epithelial Cells is Restrained by TGFbeta1 in Adult Mice

    Energy Technology Data Exchange (ETDEWEB)

    Ewan, Kenneth B.R.; Oketch-Rabah, Hellen A.; Ravani, Shraddha A.; Shyamala, G.; Moses, Harold L.; Barcellos-Hoff, Mary Helen

    2005-03-03

    Transforming growth factor {beta}1 (TGF{beta}1) is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor {alpha} (ER{alpha}) cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF{beta}1 is necessary for the quiescence of ER{alpha}-positive population, we examined mouse mammary epithelial gland at estrus. Approximately 35% of cells showed TGF{beta}1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF{beta} signaling is autocrine. Furthermore, nuclear Smad co-localized with nuclear ER{alpha}. To test whether TGF{beta} was functional, we examined genetically engineered mice with different levels of TGF{beta}1. ER{alpha} co-localization with markers of proliferation (i.e. Ki-67 or BrdU) at estrus was significantly increased in the mammary glands of Tgf{beta}1 C57/bl/129SV heterozygote mice. This relationship was maintained following pregnancy, but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF{beta}1 via the MMTV promoter suppressed proliferation of ER{alpha} positive cells. Thus, TGF{beta}1 activation functionally restrains ER{alpha} positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF{beta}1 dysregulation may promote proliferation of ER{alpha} positive cells associated with breast cancer risk in humans.

  15. Disruption of sorting nexin 5 causes respiratory failure associated with undifferentiated alveolar epithelial type I cells in mice.

    Directory of Open Access Journals (Sweden)

    Sun-Kyoung Im

    Full Text Available Sorting nexin 5 (Snx5 has been posited to regulate the degradation of epidermal growth factor receptor and the retrograde trafficking of cation-independent mannose 6-phosphate receptor/insulin-like growth factor II receptor. Snx5 has also been suggested to interact with Mind bomb-1, an E3 ubiquitin ligase that regulates the activation of Notch signaling. However, the in vivo functions of Snx5 are largely unknown. Here, we report that disruption of the Snx5 gene in mice (Snx5(-/- mice resulted in partial perinatal lethality; 40% of Snx5(-/- mice died shortly after birth due to cyanosis, reduced air space in the lungs, and respiratory failure. Histological analysis revealed that Snx5(-/- mice exhibited thickened alveolar walls associated with undifferentiated alveolar epithelial type I cells. In contrast, alveolar epithelial type II cells were intact, exhibiting normal surfactant synthesis and secretion. Although the expression levels of surfactant proteins and saturated phosphatidylcholine in the lungs of Snx5(-/- mice were comparable to those of Snx5(+/+ mice, the expression levels of T1α, Aqp5, and Rage, markers for distal alveolar epithelial type I cells, were significantly decreased in Snx5 (-/- mice. These results demonstrate that Snx5 is necessary for the differentiation of alveolar epithelial type I cells, which may underlie the adaptation to air breathing at birth.

  16. Bile acid receptor TGR5 overexpression is associated with decreased intestinal mucosal injury and epithelial cell proliferation in obstructive jaundice.

    Science.gov (United States)

    Ji, Chen-Guang; Xie, Xiao-Li; Yin, Jie; Qi, Wei; Chen, Lei; Bai, Yun; Wang, Na; Zhao, Dong-Qiang; Jiang, Xiao-Yu; Jiang, Hui-Qing

    2017-04-01

    Bile acids stimulate intestinal epithelial proliferation in vitro. We sought to investigate the role of the bile acid receptor TGR5 in the protection of intestinal epithelial proliferation in obstructive jaundice. Intestinal tissues and serum samples were obtained from patients with malignant obstructive jaundice and from bile duct ligation (BDL) rats. Intestinal permeability and morphological changes in the intestinal mucosa were observed. The functions of TGR5 in cell proliferation in intestinal epithelial injury were determined by overexpression or knockdown studies in Caco-2 and FHs 74 Int cells pretreated with lipopolysaccharide (LPS). Internal biliary drainage was superior to external biliary drainage in recovering intestinal permeability and mucosal histology in patients with obstructive jaundice. In BDL rats, feeding of chenodeoxycholic acid (CDCA) decreased intestinal mucosa in